1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx. 4 * 5 * Copyright (c) 2003 Intracom S.A. 6 * by Pantelis Antoniou <panto@intracom.gr> 7 * 8 * 2005 (c) MontaVista Software, Inc. 9 * Vitaly Bordug <vbordug@ru.mvista.com> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/string.h> 16 #include <linux/ptrace.h> 17 #include <linux/errno.h> 18 #include <linux/ioport.h> 19 #include <linux/interrupt.h> 20 #include <linux/delay.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/spinlock.h> 25 #include <linux/ethtool.h> 26 #include <linux/bitops.h> 27 #include <linux/fs.h> 28 #include <linux/platform_device.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 32 #include <asm/irq.h> 33 #include <linux/uaccess.h> 34 35 #include "fs_enet.h" 36 37 /*************************************************/ 38 #if defined(CONFIG_CPM1) 39 /* for a 8xx __raw_xxx's are sufficient */ 40 #define __fs_out32(addr, x) __raw_writel(x, addr) 41 #define __fs_out16(addr, x) __raw_writew(x, addr) 42 #define __fs_out8(addr, x) __raw_writeb(x, addr) 43 #define __fs_in32(addr) __raw_readl(addr) 44 #define __fs_in16(addr) __raw_readw(addr) 45 #define __fs_in8(addr) __raw_readb(addr) 46 #else 47 /* for others play it safe */ 48 #define __fs_out32(addr, x) out_be32(addr, x) 49 #define __fs_out16(addr, x) out_be16(addr, x) 50 #define __fs_in32(addr) in_be32(addr) 51 #define __fs_in16(addr) in_be16(addr) 52 #define __fs_out8(addr, x) out_8(addr, x) 53 #define __fs_in8(addr) in_8(addr) 54 #endif 55 56 /* write, read, set bits, clear bits */ 57 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v)) 58 #define R32(_p, _m) __fs_in32(&(_p)->_m) 59 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) 60 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) 61 62 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v)) 63 #define R16(_p, _m) __fs_in16(&(_p)->_m) 64 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) 65 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) 66 67 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v)) 68 #define R8(_p, _m) __fs_in8(&(_p)->_m) 69 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) 70 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) 71 72 #define SCC_MAX_MULTICAST_ADDRS 64 73 74 /* 75 * Delay to wait for SCC reset command to complete (in us) 76 */ 77 #define SCC_RESET_DELAY 50 78 79 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op) 80 { 81 const struct fs_platform_info *fpi = fep->fpi; 82 83 return cpm_command(fpi->cp_command, op); 84 } 85 86 static int do_pd_setup(struct fs_enet_private *fep) 87 { 88 struct platform_device *ofdev = to_platform_device(fep->dev); 89 90 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 91 if (!fep->interrupt) 92 return -EINVAL; 93 94 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0); 95 if (!fep->scc.sccp) 96 return -EINVAL; 97 98 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1); 99 if (!fep->scc.ep) { 100 iounmap(fep->scc.sccp); 101 return -EINVAL; 102 } 103 104 return 0; 105 } 106 107 #define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB) 108 #define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB) 109 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY) 110 111 static int setup_data(struct net_device *dev) 112 { 113 struct fs_enet_private *fep = netdev_priv(dev); 114 115 do_pd_setup(fep); 116 117 fep->scc.hthi = 0; 118 fep->scc.htlo = 0; 119 120 fep->ev_napi = SCC_NAPI_EVENT_MSK; 121 fep->ev = SCC_EVENT | SCCE_ENET_TXE; 122 fep->ev_err = SCC_ERR_EVENT_MSK; 123 124 return 0; 125 } 126 127 static int allocate_bd(struct net_device *dev) 128 { 129 struct fs_enet_private *fep = netdev_priv(dev); 130 struct fs_platform_info *fpi = fep->fpi; 131 132 fpi->dpram_offset = cpm_muram_alloc((fpi->tx_ring + fpi->rx_ring) * 133 sizeof(cbd_t), 8); 134 if (IS_ERR_VALUE(fpi->dpram_offset)) 135 return -ENOMEM; 136 137 fep->ring_base = cpm_muram_addr(fpi->dpram_offset); 138 139 return 0; 140 } 141 142 static void free_bd(struct net_device *dev) 143 { 144 struct fs_enet_private *fep = netdev_priv(dev); 145 const struct fs_platform_info *fpi = fep->fpi; 146 147 if (fep->ring_base) 148 cpm_muram_free(fpi->dpram_offset); 149 } 150 151 static void cleanup_data(struct net_device *dev) 152 { 153 /* nothing */ 154 } 155 156 static void set_promiscuous_mode(struct net_device *dev) 157 { 158 struct fs_enet_private *fep = netdev_priv(dev); 159 scc_t __iomem *sccp = fep->scc.sccp; 160 161 S16(sccp, scc_psmr, SCC_PSMR_PRO); 162 } 163 164 static void set_multicast_start(struct net_device *dev) 165 { 166 struct fs_enet_private *fep = netdev_priv(dev); 167 scc_enet_t __iomem *ep = fep->scc.ep; 168 169 W16(ep, sen_gaddr1, 0); 170 W16(ep, sen_gaddr2, 0); 171 W16(ep, sen_gaddr3, 0); 172 W16(ep, sen_gaddr4, 0); 173 } 174 175 static void set_multicast_one(struct net_device *dev, const u8 * mac) 176 { 177 struct fs_enet_private *fep = netdev_priv(dev); 178 scc_enet_t __iomem *ep = fep->scc.ep; 179 u16 taddrh, taddrm, taddrl; 180 181 taddrh = ((u16) mac[5] << 8) | mac[4]; 182 taddrm = ((u16) mac[3] << 8) | mac[2]; 183 taddrl = ((u16) mac[1] << 8) | mac[0]; 184 185 W16(ep, sen_taddrh, taddrh); 186 W16(ep, sen_taddrm, taddrm); 187 W16(ep, sen_taddrl, taddrl); 188 scc_cr_cmd(fep, CPM_CR_SET_GADDR); 189 } 190 191 static void set_multicast_finish(struct net_device *dev) 192 { 193 struct fs_enet_private *fep = netdev_priv(dev); 194 scc_t __iomem *sccp = fep->scc.sccp; 195 scc_enet_t __iomem *ep = fep->scc.ep; 196 197 /* clear promiscuous always */ 198 C16(sccp, scc_psmr, SCC_PSMR_PRO); 199 200 /* if all multi or too many multicasts; just enable all */ 201 if ((dev->flags & IFF_ALLMULTI) != 0 || 202 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) { 203 204 W16(ep, sen_gaddr1, 0xffff); 205 W16(ep, sen_gaddr2, 0xffff); 206 W16(ep, sen_gaddr3, 0xffff); 207 W16(ep, sen_gaddr4, 0xffff); 208 } 209 } 210 211 static void set_multicast_list(struct net_device *dev) 212 { 213 struct netdev_hw_addr *ha; 214 215 if ((dev->flags & IFF_PROMISC) == 0) { 216 set_multicast_start(dev); 217 netdev_for_each_mc_addr(ha, dev) 218 set_multicast_one(dev, ha->addr); 219 set_multicast_finish(dev); 220 } else 221 set_promiscuous_mode(dev); 222 } 223 224 /* 225 * This function is called to start or restart the FEC during a link 226 * change. This only happens when switching between half and full 227 * duplex. 228 */ 229 static void restart(struct net_device *dev, phy_interface_t interface, 230 int speed, int duplex) 231 { 232 struct fs_enet_private *fep = netdev_priv(dev); 233 scc_t __iomem *sccp = fep->scc.sccp; 234 scc_enet_t __iomem *ep = fep->scc.ep; 235 const struct fs_platform_info *fpi = fep->fpi; 236 u16 paddrh, paddrm, paddrl; 237 const unsigned char *mac; 238 int i; 239 240 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 241 242 /* clear everything (slow & steady does it) */ 243 for (i = 0; i < sizeof(*ep); i++) 244 __fs_out8((u8 __iomem *)ep + i, 0); 245 246 /* point to bds */ 247 W16(ep, sen_genscc.scc_rbase, fpi->dpram_offset); 248 W16(ep, sen_genscc.scc_tbase, 249 fpi->dpram_offset + sizeof(cbd_t) * fpi->rx_ring); 250 251 /* Initialize function code registers for big-endian. 252 */ 253 #ifndef CONFIG_NOT_COHERENT_CACHE 254 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL); 255 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL); 256 #else 257 W8(ep, sen_genscc.scc_rfcr, SCC_EB); 258 W8(ep, sen_genscc.scc_tfcr, SCC_EB); 259 #endif 260 261 /* Set maximum bytes per receive buffer. 262 * This appears to be an Ethernet frame size, not the buffer 263 * fragment size. It must be a multiple of four. 264 */ 265 W16(ep, sen_genscc.scc_mrblr, 0x5f0); 266 267 /* Set CRC preset and mask. 268 */ 269 W32(ep, sen_cpres, 0xffffffff); 270 W32(ep, sen_cmask, 0xdebb20e3); 271 272 W32(ep, sen_crcec, 0); /* CRC Error counter */ 273 W32(ep, sen_alec, 0); /* alignment error counter */ 274 W32(ep, sen_disfc, 0); /* discard frame counter */ 275 276 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */ 277 W16(ep, sen_retlim, 15); /* Retry limit threshold */ 278 279 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */ 280 281 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ 282 283 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */ 284 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */ 285 286 /* Clear hash tables. 287 */ 288 W16(ep, sen_gaddr1, 0); 289 W16(ep, sen_gaddr2, 0); 290 W16(ep, sen_gaddr3, 0); 291 W16(ep, sen_gaddr4, 0); 292 W16(ep, sen_iaddr1, 0); 293 W16(ep, sen_iaddr2, 0); 294 W16(ep, sen_iaddr3, 0); 295 W16(ep, sen_iaddr4, 0); 296 297 /* set address 298 */ 299 mac = dev->dev_addr; 300 paddrh = ((u16) mac[5] << 8) | mac[4]; 301 paddrm = ((u16) mac[3] << 8) | mac[2]; 302 paddrl = ((u16) mac[1] << 8) | mac[0]; 303 304 W16(ep, sen_paddrh, paddrh); 305 W16(ep, sen_paddrm, paddrm); 306 W16(ep, sen_paddrl, paddrl); 307 308 W16(ep, sen_pper, 0); 309 W16(ep, sen_taddrl, 0); 310 W16(ep, sen_taddrm, 0); 311 W16(ep, sen_taddrh, 0); 312 313 fs_init_bds(dev); 314 315 scc_cr_cmd(fep, CPM_CR_INIT_TRX); 316 317 W16(sccp, scc_scce, 0xffff); 318 319 /* Enable interrupts we wish to service. 320 */ 321 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); 322 323 /* Set GSMR_H to enable all normal operating modes. 324 * Set GSMR_L to enable Ethernet to MC68160. 325 */ 326 W32(sccp, scc_gsmrh, 0); 327 W32(sccp, scc_gsmrl, 328 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | 329 SCC_GSMRL_MODE_ENET); 330 331 /* Set sync/delimiters. 332 */ 333 W16(sccp, scc_dsr, 0xd555); 334 335 /* Set processing mode. Use Ethernet CRC, catch broadcast, and 336 * start frame search 22 bit times after RENA. 337 */ 338 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22); 339 340 /* Set full duplex mode if needed */ 341 if (duplex == DUPLEX_FULL) 342 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE); 343 344 /* Restore multicast and promiscuous settings */ 345 set_multicast_list(dev); 346 347 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 348 } 349 350 static void stop(struct net_device *dev) 351 { 352 struct fs_enet_private *fep = netdev_priv(dev); 353 scc_t __iomem *sccp = fep->scc.sccp; 354 int i; 355 356 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++) 357 udelay(1); 358 359 if (i == SCC_RESET_DELAY) 360 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n"); 361 362 W16(sccp, scc_sccm, 0); 363 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 364 365 fs_cleanup_bds(dev); 366 } 367 368 static void napi_clear_event_fs(struct net_device *dev) 369 { 370 struct fs_enet_private *fep = netdev_priv(dev); 371 scc_t __iomem *sccp = fep->scc.sccp; 372 373 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK); 374 } 375 376 static void napi_enable_fs(struct net_device *dev) 377 { 378 struct fs_enet_private *fep = netdev_priv(dev); 379 scc_t __iomem *sccp = fep->scc.sccp; 380 381 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 382 } 383 384 static void napi_disable_fs(struct net_device *dev) 385 { 386 struct fs_enet_private *fep = netdev_priv(dev); 387 scc_t __iomem *sccp = fep->scc.sccp; 388 389 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 390 } 391 392 static void rx_bd_done(struct net_device *dev) 393 { 394 /* nothing */ 395 } 396 397 static void tx_kickstart(struct net_device *dev) 398 { 399 /* nothing */ 400 } 401 402 static u32 get_int_events(struct net_device *dev) 403 { 404 struct fs_enet_private *fep = netdev_priv(dev); 405 scc_t __iomem *sccp = fep->scc.sccp; 406 407 return (u32) R16(sccp, scc_scce); 408 } 409 410 static void clear_int_events(struct net_device *dev, u32 int_events) 411 { 412 struct fs_enet_private *fep = netdev_priv(dev); 413 scc_t __iomem *sccp = fep->scc.sccp; 414 415 W16(sccp, scc_scce, int_events & 0xffff); 416 } 417 418 static void ev_error(struct net_device *dev, u32 int_events) 419 { 420 struct fs_enet_private *fep = netdev_priv(dev); 421 422 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events); 423 } 424 425 static int get_regs(struct net_device *dev, void *p, int *sizep) 426 { 427 struct fs_enet_private *fep = netdev_priv(dev); 428 429 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *)) 430 return -EINVAL; 431 432 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t)); 433 p = (char *)p + sizeof(scc_t); 434 435 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *)); 436 437 return 0; 438 } 439 440 static int get_regs_len(struct net_device *dev) 441 { 442 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *); 443 } 444 445 static void tx_restart(struct net_device *dev) 446 { 447 struct fs_enet_private *fep = netdev_priv(dev); 448 449 scc_cr_cmd(fep, CPM_CR_RESTART_TX); 450 } 451 452 453 454 /*************************************************************************/ 455 456 const struct fs_ops fs_scc_ops = { 457 .setup_data = setup_data, 458 .cleanup_data = cleanup_data, 459 .set_multicast_list = set_multicast_list, 460 .restart = restart, 461 .stop = stop, 462 .napi_clear_event = napi_clear_event_fs, 463 .napi_enable = napi_enable_fs, 464 .napi_disable = napi_disable_fs, 465 .rx_bd_done = rx_bd_done, 466 .tx_kickstart = tx_kickstart, 467 .get_int_events = get_int_events, 468 .clear_int_events = clear_int_events, 469 .ev_error = ev_error, 470 .get_regs = get_regs, 471 .get_regs_len = get_regs_len, 472 .tx_restart = tx_restart, 473 .allocate_bd = allocate_bd, 474 .free_bd = free_bd, 475 }; 476