1 /* 2 * Freescale Ethernet controllers 3 * 4 * Copyright (c) 2005 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/spinlock.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/bitops.h> 32 #include <linux/fs.h> 33 #include <linux/platform_device.h> 34 #include <linux/of_address.h> 35 #include <linux/of_device.h> 36 #include <linux/of_irq.h> 37 #include <linux/gfp.h> 38 39 #include <asm/irq.h> 40 #include <asm/uaccess.h> 41 42 #ifdef CONFIG_8xx 43 #include <asm/8xx_immap.h> 44 #include <asm/pgtable.h> 45 #include <asm/mpc8xx.h> 46 #include <asm/cpm1.h> 47 #endif 48 49 #include "fs_enet.h" 50 #include "fec.h" 51 52 /*************************************************/ 53 54 #if defined(CONFIG_CPM1) 55 /* for a CPM1 __raw_xxx's are sufficient */ 56 #define __fs_out32(addr, x) __raw_writel(x, addr) 57 #define __fs_out16(addr, x) __raw_writew(x, addr) 58 #define __fs_in32(addr) __raw_readl(addr) 59 #define __fs_in16(addr) __raw_readw(addr) 60 #else 61 /* for others play it safe */ 62 #define __fs_out32(addr, x) out_be32(addr, x) 63 #define __fs_out16(addr, x) out_be16(addr, x) 64 #define __fs_in32(addr) in_be32(addr) 65 #define __fs_in16(addr) in_be16(addr) 66 #endif 67 68 /* write */ 69 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v)) 70 71 /* read */ 72 #define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg) 73 74 /* set bits */ 75 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v)) 76 77 /* clear bits */ 78 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v)) 79 80 /* 81 * Delay to wait for FEC reset command to complete (in us) 82 */ 83 #define FEC_RESET_DELAY 50 84 85 static int whack_reset(struct fec __iomem *fecp) 86 { 87 int i; 88 89 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET); 90 for (i = 0; i < FEC_RESET_DELAY; i++) { 91 if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0) 92 return 0; /* OK */ 93 udelay(1); 94 } 95 96 return -1; 97 } 98 99 static int do_pd_setup(struct fs_enet_private *fep) 100 { 101 struct platform_device *ofdev = to_platform_device(fep->dev); 102 103 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 104 if (fep->interrupt == NO_IRQ) 105 return -EINVAL; 106 107 fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0); 108 if (!fep->fcc.fccp) 109 return -EINVAL; 110 111 return 0; 112 } 113 114 #define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB) 115 #define FEC_RX_EVENT (FEC_ENET_RXF) 116 #define FEC_TX_EVENT (FEC_ENET_TXF) 117 #define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \ 118 FEC_ENET_BABT | FEC_ENET_EBERR) 119 120 static int setup_data(struct net_device *dev) 121 { 122 struct fs_enet_private *fep = netdev_priv(dev); 123 124 if (do_pd_setup(fep) != 0) 125 return -EINVAL; 126 127 fep->fec.hthi = 0; 128 fep->fec.htlo = 0; 129 130 fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK; 131 fep->ev_rx = FEC_RX_EVENT; 132 fep->ev_tx = FEC_TX_EVENT; 133 fep->ev_err = FEC_ERR_EVENT_MSK; 134 135 return 0; 136 } 137 138 static int allocate_bd(struct net_device *dev) 139 { 140 struct fs_enet_private *fep = netdev_priv(dev); 141 const struct fs_platform_info *fpi = fep->fpi; 142 143 fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev, 144 (fpi->tx_ring + fpi->rx_ring) * 145 sizeof(cbd_t), &fep->ring_mem_addr, 146 GFP_KERNEL); 147 if (fep->ring_base == NULL) 148 return -ENOMEM; 149 150 return 0; 151 } 152 153 static void free_bd(struct net_device *dev) 154 { 155 struct fs_enet_private *fep = netdev_priv(dev); 156 const struct fs_platform_info *fpi = fep->fpi; 157 158 if(fep->ring_base) 159 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) 160 * sizeof(cbd_t), 161 (void __force *)fep->ring_base, 162 fep->ring_mem_addr); 163 } 164 165 static void cleanup_data(struct net_device *dev) 166 { 167 /* nothing */ 168 } 169 170 static void set_promiscuous_mode(struct net_device *dev) 171 { 172 struct fs_enet_private *fep = netdev_priv(dev); 173 struct fec __iomem *fecp = fep->fec.fecp; 174 175 FS(fecp, r_cntrl, FEC_RCNTRL_PROM); 176 } 177 178 static void set_multicast_start(struct net_device *dev) 179 { 180 struct fs_enet_private *fep = netdev_priv(dev); 181 182 fep->fec.hthi = 0; 183 fep->fec.htlo = 0; 184 } 185 186 static void set_multicast_one(struct net_device *dev, const u8 *mac) 187 { 188 struct fs_enet_private *fep = netdev_priv(dev); 189 int temp, hash_index, i, j; 190 u32 crc, csrVal; 191 u8 byte, msb; 192 193 crc = 0xffffffff; 194 for (i = 0; i < 6; i++) { 195 byte = mac[i]; 196 for (j = 0; j < 8; j++) { 197 msb = crc >> 31; 198 crc <<= 1; 199 if (msb ^ (byte & 0x1)) 200 crc ^= FEC_CRC_POLY; 201 byte >>= 1; 202 } 203 } 204 205 temp = (crc & 0x3f) >> 1; 206 hash_index = ((temp & 0x01) << 4) | 207 ((temp & 0x02) << 2) | 208 ((temp & 0x04)) | 209 ((temp & 0x08) >> 2) | 210 ((temp & 0x10) >> 4); 211 csrVal = 1 << hash_index; 212 if (crc & 1) 213 fep->fec.hthi |= csrVal; 214 else 215 fep->fec.htlo |= csrVal; 216 } 217 218 static void set_multicast_finish(struct net_device *dev) 219 { 220 struct fs_enet_private *fep = netdev_priv(dev); 221 struct fec __iomem *fecp = fep->fec.fecp; 222 223 /* if all multi or too many multicasts; just enable all */ 224 if ((dev->flags & IFF_ALLMULTI) != 0 || 225 netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) { 226 fep->fec.hthi = 0xffffffffU; 227 fep->fec.htlo = 0xffffffffU; 228 } 229 230 FC(fecp, r_cntrl, FEC_RCNTRL_PROM); 231 FW(fecp, grp_hash_table_high, fep->fec.hthi); 232 FW(fecp, grp_hash_table_low, fep->fec.htlo); 233 } 234 235 static void set_multicast_list(struct net_device *dev) 236 { 237 struct netdev_hw_addr *ha; 238 239 if ((dev->flags & IFF_PROMISC) == 0) { 240 set_multicast_start(dev); 241 netdev_for_each_mc_addr(ha, dev) 242 set_multicast_one(dev, ha->addr); 243 set_multicast_finish(dev); 244 } else 245 set_promiscuous_mode(dev); 246 } 247 248 static void restart(struct net_device *dev) 249 { 250 struct fs_enet_private *fep = netdev_priv(dev); 251 struct fec __iomem *fecp = fep->fec.fecp; 252 const struct fs_platform_info *fpi = fep->fpi; 253 dma_addr_t rx_bd_base_phys, tx_bd_base_phys; 254 int r; 255 u32 addrhi, addrlo; 256 257 struct mii_bus* mii = fep->phydev->bus; 258 struct fec_info* fec_inf = mii->priv; 259 260 r = whack_reset(fep->fec.fecp); 261 if (r != 0) 262 dev_err(fep->dev, "FEC Reset FAILED!\n"); 263 /* 264 * Set station address. 265 */ 266 addrhi = ((u32) dev->dev_addr[0] << 24) | 267 ((u32) dev->dev_addr[1] << 16) | 268 ((u32) dev->dev_addr[2] << 8) | 269 (u32) dev->dev_addr[3]; 270 addrlo = ((u32) dev->dev_addr[4] << 24) | 271 ((u32) dev->dev_addr[5] << 16); 272 FW(fecp, addr_low, addrhi); 273 FW(fecp, addr_high, addrlo); 274 275 /* 276 * Reset all multicast. 277 */ 278 FW(fecp, grp_hash_table_high, fep->fec.hthi); 279 FW(fecp, grp_hash_table_low, fep->fec.htlo); 280 281 /* 282 * Set maximum receive buffer size. 283 */ 284 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE); 285 #ifdef CONFIG_FS_ENET_MPC5121_FEC 286 FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16); 287 #else 288 FW(fecp, r_hash, PKT_MAXBUF_SIZE); 289 #endif 290 291 /* get physical address */ 292 rx_bd_base_phys = fep->ring_mem_addr; 293 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring; 294 295 /* 296 * Set receive and transmit descriptor base. 297 */ 298 FW(fecp, r_des_start, rx_bd_base_phys); 299 FW(fecp, x_des_start, tx_bd_base_phys); 300 301 fs_init_bds(dev); 302 303 /* 304 * Enable big endian and don't care about SDMA FC. 305 */ 306 #ifdef CONFIG_FS_ENET_MPC5121_FEC 307 FS(fecp, dma_control, 0xC0000000); 308 #else 309 FW(fecp, fun_code, 0x78000000); 310 #endif 311 312 /* 313 * Set MII speed. 314 */ 315 FW(fecp, mii_speed, fec_inf->mii_speed); 316 317 /* 318 * Clear any outstanding interrupt. 319 */ 320 FW(fecp, ievent, 0xffc0); 321 #ifndef CONFIG_FS_ENET_MPC5121_FEC 322 FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29); 323 324 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */ 325 #else 326 /* 327 * Only set MII/RMII mode - do not touch maximum frame length 328 * configured before. 329 */ 330 FS(fecp, r_cntrl, fpi->use_rmii ? 331 FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE); 332 #endif 333 /* 334 * adjust to duplex mode 335 */ 336 if (fep->phydev->duplex) { 337 FC(fecp, r_cntrl, FEC_RCNTRL_DRT); 338 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */ 339 } else { 340 FS(fecp, r_cntrl, FEC_RCNTRL_DRT); 341 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */ 342 } 343 344 /* 345 * Enable interrupts we wish to service. 346 */ 347 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB | 348 FEC_ENET_RXF | FEC_ENET_RXB); 349 350 /* 351 * And last, enable the transmit and receive processing. 352 */ 353 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); 354 FW(fecp, r_des_active, 0x01000000); 355 } 356 357 static void stop(struct net_device *dev) 358 { 359 struct fs_enet_private *fep = netdev_priv(dev); 360 const struct fs_platform_info *fpi = fep->fpi; 361 struct fec __iomem *fecp = fep->fec.fecp; 362 363 struct fec_info* feci= fep->phydev->bus->priv; 364 365 int i; 366 367 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0) 368 return; /* already down */ 369 370 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */ 371 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) && 372 i < FEC_RESET_DELAY; i++) 373 udelay(1); 374 375 if (i == FEC_RESET_DELAY) 376 dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n"); 377 /* 378 * Disable FEC. Let only MII interrupts. 379 */ 380 FW(fecp, imask, 0); 381 FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN); 382 383 fs_cleanup_bds(dev); 384 385 /* shut down FEC1? that's where the mii bus is */ 386 if (fpi->has_phy) { 387 FS(fecp, r_cntrl, fpi->use_rmii ? 388 FEC_RCNTRL_RMII_MODE : 389 FEC_RCNTRL_MII_MODE); /* MII/RMII enable */ 390 FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); 391 FW(fecp, ievent, FEC_ENET_MII); 392 FW(fecp, mii_speed, feci->mii_speed); 393 } 394 } 395 396 static void napi_clear_rx_event(struct net_device *dev) 397 { 398 struct fs_enet_private *fep = netdev_priv(dev); 399 struct fec __iomem *fecp = fep->fec.fecp; 400 401 FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK); 402 } 403 404 static void napi_enable_rx(struct net_device *dev) 405 { 406 struct fs_enet_private *fep = netdev_priv(dev); 407 struct fec __iomem *fecp = fep->fec.fecp; 408 409 FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK); 410 } 411 412 static void napi_disable_rx(struct net_device *dev) 413 { 414 struct fs_enet_private *fep = netdev_priv(dev); 415 struct fec __iomem *fecp = fep->fec.fecp; 416 417 FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK); 418 } 419 420 static void rx_bd_done(struct net_device *dev) 421 { 422 struct fs_enet_private *fep = netdev_priv(dev); 423 struct fec __iomem *fecp = fep->fec.fecp; 424 425 FW(fecp, r_des_active, 0x01000000); 426 } 427 428 static void tx_kickstart(struct net_device *dev) 429 { 430 struct fs_enet_private *fep = netdev_priv(dev); 431 struct fec __iomem *fecp = fep->fec.fecp; 432 433 FW(fecp, x_des_active, 0x01000000); 434 } 435 436 static u32 get_int_events(struct net_device *dev) 437 { 438 struct fs_enet_private *fep = netdev_priv(dev); 439 struct fec __iomem *fecp = fep->fec.fecp; 440 441 return FR(fecp, ievent) & FR(fecp, imask); 442 } 443 444 static void clear_int_events(struct net_device *dev, u32 int_events) 445 { 446 struct fs_enet_private *fep = netdev_priv(dev); 447 struct fec __iomem *fecp = fep->fec.fecp; 448 449 FW(fecp, ievent, int_events); 450 } 451 452 static void ev_error(struct net_device *dev, u32 int_events) 453 { 454 struct fs_enet_private *fep = netdev_priv(dev); 455 456 dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events); 457 } 458 459 static int get_regs(struct net_device *dev, void *p, int *sizep) 460 { 461 struct fs_enet_private *fep = netdev_priv(dev); 462 463 if (*sizep < sizeof(struct fec)) 464 return -EINVAL; 465 466 memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec)); 467 468 return 0; 469 } 470 471 static int get_regs_len(struct net_device *dev) 472 { 473 return sizeof(struct fec); 474 } 475 476 static void tx_restart(struct net_device *dev) 477 { 478 /* nothing */ 479 } 480 481 /*************************************************************************/ 482 483 const struct fs_ops fs_fec_ops = { 484 .setup_data = setup_data, 485 .cleanup_data = cleanup_data, 486 .set_multicast_list = set_multicast_list, 487 .restart = restart, 488 .stop = stop, 489 .napi_clear_rx_event = napi_clear_rx_event, 490 .napi_enable_rx = napi_enable_rx, 491 .napi_disable_rx = napi_disable_rx, 492 .rx_bd_done = rx_bd_done, 493 .tx_kickstart = tx_kickstart, 494 .get_int_events = get_int_events, 495 .clear_int_events = clear_int_events, 496 .ev_error = ev_error, 497 .get_regs = get_regs, 498 .get_regs_len = get_regs_len, 499 .tx_restart = tx_restart, 500 .allocate_bd = allocate_bd, 501 .free_bd = free_bd, 502 }; 503 504