xref: /linux/drivers/net/ethernet/freescale/fs_enet/mac-fcc.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * FCC driver for Motorola MPC82xx (PQ2).
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/gfp.h>
37 #include <linux/pgtable.h>
38 
39 #include <asm/immap_cpm2.h>
40 #include <asm/cpm2.h>
41 
42 #include <asm/irq.h>
43 #include <linux/uaccess.h>
44 
45 #include "fs_enet.h"
46 
47 /*************************************************/
48 
49 /* FCC access macros */
50 
51 /* write, read, set bits, clear bits */
52 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
53 #define R32(_p, _m)	in_be32(&(_p)->_m)
54 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
55 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
56 
57 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
58 #define R16(_p, _m)	in_be16(&(_p)->_m)
59 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
60 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
61 
62 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
63 #define R8(_p, _m)	in_8(&(_p)->_m)
64 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
65 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
66 
67 /*************************************************/
68 
69 #define FCC_MAX_MULTICAST_ADDRS	64
70 
71 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
72 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
73 #define mk_mii_end		0
74 
75 #define MAX_CR_CMD_LOOPS	10000
76 
77 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
78 {
79 	const struct fs_platform_info *fpi = fep->fpi;
80 
81 	return cpm_command(fpi->cp_command, op);
82 }
83 
84 static int do_pd_setup(struct fs_enet_private *fep)
85 {
86 	struct platform_device *ofdev = to_platform_device(fep->dev);
87 	struct fs_platform_info *fpi = fep->fpi;
88 	int ret = -EINVAL;
89 
90 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
91 	if (!fep->interrupt)
92 		goto out;
93 
94 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
95 	if (!fep->fcc.fccp)
96 		goto out;
97 
98 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
99 	if (!fep->fcc.ep)
100 		goto out_fccp;
101 
102 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
103 	if (!fep->fcc.fcccp)
104 		goto out_ep;
105 
106 	fep->fcc.mem = (void __iomem *)cpm2_immr;
107 	fpi->dpram_offset = cpm_muram_alloc(128, 32);
108 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
109 		ret = fpi->dpram_offset;
110 		goto out_fcccp;
111 	}
112 
113 	return 0;
114 
115 out_fcccp:
116 	iounmap(fep->fcc.fcccp);
117 out_ep:
118 	iounmap(fep->fcc.ep);
119 out_fccp:
120 	iounmap(fep->fcc.fccp);
121 out:
122 	return ret;
123 }
124 
125 #define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
126 #define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
127 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
128 
129 static int setup_data(struct net_device *dev)
130 {
131 	struct fs_enet_private *fep = netdev_priv(dev);
132 
133 	if (do_pd_setup(fep) != 0)
134 		return -EINVAL;
135 
136 	fep->ev_napi = FCC_NAPI_EVENT_MSK;
137 	fep->ev = FCC_EVENT;
138 	fep->ev_err = FCC_ERR_EVENT_MSK;
139 
140 	return 0;
141 }
142 
143 static int allocate_bd(struct net_device *dev)
144 {
145 	struct fs_enet_private *fep = netdev_priv(dev);
146 	const struct fs_platform_info *fpi = fep->fpi;
147 
148 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
149 					    (fpi->tx_ring + fpi->rx_ring) *
150 					    sizeof(cbd_t), &fep->ring_mem_addr,
151 					    GFP_KERNEL);
152 	if (fep->ring_base == NULL)
153 		return -ENOMEM;
154 
155 	return 0;
156 }
157 
158 static void free_bd(struct net_device *dev)
159 {
160 	struct fs_enet_private *fep = netdev_priv(dev);
161 	const struct fs_platform_info *fpi = fep->fpi;
162 
163 	if (fep->ring_base)
164 		dma_free_coherent(fep->dev,
165 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
166 			(void __force *)fep->ring_base, fep->ring_mem_addr);
167 }
168 
169 static void cleanup_data(struct net_device *dev)
170 {
171 	/* nothing */
172 }
173 
174 static void set_promiscuous_mode(struct net_device *dev)
175 {
176 	struct fs_enet_private *fep = netdev_priv(dev);
177 	fcc_t __iomem *fccp = fep->fcc.fccp;
178 
179 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
180 }
181 
182 static void set_multicast_start(struct net_device *dev)
183 {
184 	struct fs_enet_private *fep = netdev_priv(dev);
185 	fcc_enet_t __iomem *ep = fep->fcc.ep;
186 
187 	W32(ep, fen_gaddrh, 0);
188 	W32(ep, fen_gaddrl, 0);
189 }
190 
191 static void set_multicast_one(struct net_device *dev, const u8 *mac)
192 {
193 	struct fs_enet_private *fep = netdev_priv(dev);
194 	fcc_enet_t __iomem *ep = fep->fcc.ep;
195 	u16 taddrh, taddrm, taddrl;
196 
197 	taddrh = ((u16)mac[5] << 8) | mac[4];
198 	taddrm = ((u16)mac[3] << 8) | mac[2];
199 	taddrl = ((u16)mac[1] << 8) | mac[0];
200 
201 	W16(ep, fen_taddrh, taddrh);
202 	W16(ep, fen_taddrm, taddrm);
203 	W16(ep, fen_taddrl, taddrl);
204 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
205 }
206 
207 static void set_multicast_finish(struct net_device *dev)
208 {
209 	struct fs_enet_private *fep = netdev_priv(dev);
210 	fcc_t __iomem *fccp = fep->fcc.fccp;
211 	fcc_enet_t __iomem *ep = fep->fcc.ep;
212 
213 	/* clear promiscuous always */
214 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
215 
216 	/* if all multi or too many multicasts; just enable all */
217 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
218 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
219 
220 		W32(ep, fen_gaddrh, 0xffffffff);
221 		W32(ep, fen_gaddrl, 0xffffffff);
222 	}
223 
224 	/* read back */
225 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
226 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
227 }
228 
229 static void set_multicast_list(struct net_device *dev)
230 {
231 	struct netdev_hw_addr *ha;
232 
233 	if ((dev->flags & IFF_PROMISC) == 0) {
234 		set_multicast_start(dev);
235 		netdev_for_each_mc_addr(ha, dev)
236 			set_multicast_one(dev, ha->addr);
237 		set_multicast_finish(dev);
238 	} else
239 		set_promiscuous_mode(dev);
240 }
241 
242 static void restart(struct net_device *dev)
243 {
244 	struct fs_enet_private *fep = netdev_priv(dev);
245 	const struct fs_platform_info *fpi = fep->fpi;
246 	fcc_t __iomem *fccp = fep->fcc.fccp;
247 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
248 	fcc_enet_t __iomem *ep = fep->fcc.ep;
249 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
250 	u16 paddrh, paddrm, paddrl;
251 	const unsigned char *mac;
252 	int i;
253 
254 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
255 
256 	/* clear everything (slow & steady does it) */
257 	for (i = 0; i < sizeof(*ep); i++)
258 		out_8((u8 __iomem *)ep + i, 0);
259 
260 	/* get physical address */
261 	rx_bd_base_phys = fep->ring_mem_addr;
262 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
263 
264 	/* point to bds */
265 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
266 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
267 
268 	/* Set maximum bytes per receive buffer.
269 	 * It must be a multiple of 32.
270 	 */
271 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
272 
273 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
274 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
275 
276 	/* Allocate space in the reserved FCC area of DPRAM for the
277 	 * internal buffers.  No one uses this space (yet), so we
278 	 * can do this.  Later, we will add resource management for
279 	 * this area.
280 	 */
281 
282 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
283 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
284 
285 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
286 
287 	/* fill with special symbol...  */
288 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
289 
290 	W32(ep, fen_genfcc.fcc_rbptr, 0);
291 	W32(ep, fen_genfcc.fcc_tbptr, 0);
292 	W32(ep, fen_genfcc.fcc_rcrc, 0);
293 	W32(ep, fen_genfcc.fcc_tcrc, 0);
294 	W16(ep, fen_genfcc.fcc_res1, 0);
295 	W32(ep, fen_genfcc.fcc_res2, 0);
296 
297 	/* no CAM */
298 	W32(ep, fen_camptr, 0);
299 
300 	/* Set CRC preset and mask */
301 	W32(ep, fen_cmask, 0xdebb20e3);
302 	W32(ep, fen_cpres, 0xffffffff);
303 
304 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
305 	W32(ep, fen_alec, 0);		/* alignment error counter */
306 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
307 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
308 	W16(ep, fen_pper, 0);		/* Normal persistence      */
309 
310 	/* set group address */
311 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
312 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
313 
314 	/* Clear hash filter tables */
315 	W32(ep, fen_iaddrh, 0);
316 	W32(ep, fen_iaddrl, 0);
317 
318 	/* Clear the Out-of-sequence TxBD  */
319 	W16(ep, fen_tfcstat, 0);
320 	W16(ep, fen_tfclen, 0);
321 	W32(ep, fen_tfcptr, 0);
322 
323 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
324 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
325 
326 	/* set address */
327 	mac = dev->dev_addr;
328 	paddrh = ((u16)mac[5] << 8) | mac[4];
329 	paddrm = ((u16)mac[3] << 8) | mac[2];
330 	paddrl = ((u16)mac[1] << 8) | mac[0];
331 
332 	W16(ep, fen_paddrh, paddrh);
333 	W16(ep, fen_paddrm, paddrm);
334 	W16(ep, fen_paddrl, paddrl);
335 
336 	W16(ep, fen_taddrh, 0);
337 	W16(ep, fen_taddrm, 0);
338 	W16(ep, fen_taddrl, 0);
339 
340 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
341 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
342 
343 	/* Clear stat counters, in case we ever enable RMON */
344 	W32(ep, fen_octc, 0);
345 	W32(ep, fen_colc, 0);
346 	W32(ep, fen_broc, 0);
347 	W32(ep, fen_mulc, 0);
348 	W32(ep, fen_uspc, 0);
349 	W32(ep, fen_frgc, 0);
350 	W32(ep, fen_ospc, 0);
351 	W32(ep, fen_jbrc, 0);
352 	W32(ep, fen_p64c, 0);
353 	W32(ep, fen_p65c, 0);
354 	W32(ep, fen_p128c, 0);
355 	W32(ep, fen_p256c, 0);
356 	W32(ep, fen_p512c, 0);
357 	W32(ep, fen_p1024c, 0);
358 
359 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
360 	W16(ep, fen_rfcnt, 0);
361 	W16(ep, fen_cftype, 0);
362 
363 	fs_init_bds(dev);
364 
365 	/* adjust to speed (for RMII mode) */
366 	if (fpi->use_rmii) {
367 		if (dev->phydev->speed == 100)
368 			C8(fcccp, fcc_gfemr, 0x20);
369 		else
370 			S8(fcccp, fcc_gfemr, 0x20);
371 	}
372 
373 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
374 
375 	/* clear events */
376 	W16(fccp, fcc_fcce, 0xffff);
377 
378 	/* Enable interrupts we wish to service */
379 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
380 
381 	/* Set GFMR to enable Ethernet operating mode */
382 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
383 
384 	/* set sync/delimiters */
385 	W16(fccp, fcc_fdsr, 0xd555);
386 
387 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
388 
389 	if (fpi->use_rmii)
390 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
391 
392 	/* adjust to duplex mode */
393 	if (dev->phydev->duplex)
394 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
395 	else
396 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
397 
398 	/* Restore multicast and promiscuous settings */
399 	set_multicast_list(dev);
400 
401 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
402 }
403 
404 static void stop(struct net_device *dev)
405 {
406 	struct fs_enet_private *fep = netdev_priv(dev);
407 	fcc_t __iomem *fccp = fep->fcc.fccp;
408 
409 	/* stop ethernet */
410 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
411 
412 	/* clear events */
413 	W16(fccp, fcc_fcce, 0xffff);
414 
415 	/* clear interrupt mask */
416 	W16(fccp, fcc_fccm, 0);
417 
418 	fs_cleanup_bds(dev);
419 }
420 
421 static void napi_clear_event_fs(struct net_device *dev)
422 {
423 	struct fs_enet_private *fep = netdev_priv(dev);
424 	fcc_t __iomem *fccp = fep->fcc.fccp;
425 
426 	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
427 }
428 
429 static void napi_enable_fs(struct net_device *dev)
430 {
431 	struct fs_enet_private *fep = netdev_priv(dev);
432 	fcc_t __iomem *fccp = fep->fcc.fccp;
433 
434 	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
435 }
436 
437 static void napi_disable_fs(struct net_device *dev)
438 {
439 	struct fs_enet_private *fep = netdev_priv(dev);
440 	fcc_t __iomem *fccp = fep->fcc.fccp;
441 
442 	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
443 }
444 
445 static void rx_bd_done(struct net_device *dev)
446 {
447 	/* nothing */
448 }
449 
450 static void tx_kickstart(struct net_device *dev)
451 {
452 	struct fs_enet_private *fep = netdev_priv(dev);
453 	fcc_t __iomem *fccp = fep->fcc.fccp;
454 
455 	S16(fccp, fcc_ftodr, 0x8000);
456 }
457 
458 static u32 get_int_events(struct net_device *dev)
459 {
460 	struct fs_enet_private *fep = netdev_priv(dev);
461 	fcc_t __iomem *fccp = fep->fcc.fccp;
462 
463 	return (u32)R16(fccp, fcc_fcce);
464 }
465 
466 static void clear_int_events(struct net_device *dev, u32 int_events)
467 {
468 	struct fs_enet_private *fep = netdev_priv(dev);
469 	fcc_t __iomem *fccp = fep->fcc.fccp;
470 
471 	W16(fccp, fcc_fcce, int_events & 0xffff);
472 }
473 
474 static void ev_error(struct net_device *dev, u32 int_events)
475 {
476 	struct fs_enet_private *fep = netdev_priv(dev);
477 
478 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
479 }
480 
481 static int get_regs(struct net_device *dev, void *p, int *sizep)
482 {
483 	struct fs_enet_private *fep = netdev_priv(dev);
484 
485 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
486 		return -EINVAL;
487 
488 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
489 	p = (char *)p + sizeof(fcc_t);
490 
491 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
492 	p = (char *)p + sizeof(fcc_enet_t);
493 
494 	memcpy_fromio(p, fep->fcc.fcccp, 1);
495 	return 0;
496 }
497 
498 static int get_regs_len(struct net_device *dev)
499 {
500 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
501 }
502 
503 /* Some transmit errors cause the transmitter to shut
504  * down.  We now issue a restart transmit.
505  * Also, to workaround 8260 device erratum CPM37, we must
506  * disable and then re-enable the transmitterfollowing a
507  * Late Collision, Underrun, or Retry Limit error.
508  * In addition, tbptr may point beyond BDs beyond still marked
509  * as ready due to internal pipelining, so we need to look back
510  * through the BDs and adjust tbptr to point to the last BD
511  * marked as ready.  This may result in some buffers being
512  * retransmitted.
513  */
514 static void tx_restart(struct net_device *dev)
515 {
516 	struct fs_enet_private *fep = netdev_priv(dev);
517 	fcc_t __iomem *fccp = fep->fcc.fccp;
518 	const struct fs_platform_info *fpi = fep->fpi;
519 	fcc_enet_t __iomem *ep = fep->fcc.ep;
520 	cbd_t __iomem *curr_tbptr;
521 	cbd_t __iomem *recheck_bd;
522 	cbd_t __iomem *prev_bd;
523 	cbd_t __iomem *last_tx_bd;
524 
525 	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
526 
527 	/* get the current bd held in TBPTR  and scan back from this point */
528 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
529 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
530 		fep->ring_base);
531 
532 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
533 
534 	/* Move through the bds in reverse, look for the earliest buffer
535 	 * that is not ready.  Adjust TBPTR to the following buffer */
536 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
537 		/* Go back one buffer */
538 		recheck_bd = prev_bd;
539 
540 		/* update the previous buffer */
541 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
542 
543 		/* We should never see all bds marked as ready, check anyway */
544 		if (recheck_bd == curr_tbptr)
545 			break;
546 	}
547 	/* Now update the TBPTR and dirty flag to the current buffer */
548 	W32(ep, fen_genfcc.fcc_tbptr,
549 		(uint)(((void __iomem *)recheck_bd - fep->ring_base) +
550 		fep->ring_mem_addr));
551 	fep->dirty_tx = recheck_bd;
552 
553 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
554 	udelay(10);
555 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
556 
557 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
558 }
559 
560 /*************************************************************************/
561 
562 const struct fs_ops fs_fcc_ops = {
563 	.setup_data		= setup_data,
564 	.cleanup_data		= cleanup_data,
565 	.set_multicast_list	= set_multicast_list,
566 	.restart		= restart,
567 	.stop			= stop,
568 	.napi_clear_event	= napi_clear_event_fs,
569 	.napi_enable		= napi_enable_fs,
570 	.napi_disable		= napi_disable_fs,
571 	.rx_bd_done		= rx_bd_done,
572 	.tx_kickstart		= tx_kickstart,
573 	.get_int_events		= get_int_events,
574 	.clear_int_events	= clear_int_events,
575 	.ev_error		= ev_error,
576 	.get_regs		= get_regs,
577 	.get_regs_len		= get_regs_len,
578 	.tx_restart		= tx_restart,
579 	.allocate_bd		= allocate_bd,
580 	.free_bd		= free_bd,
581 };
582