xref: /linux/drivers/net/ethernet/freescale/fs_enet/mac-fcc.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FCC driver for Motorola MPC82xx (PQ2).
4  *
5  * Copyright (c) 2003 Intracom S.A.
6  *  by Pantelis Antoniou <panto@intracom.gr>
7  *
8  * 2005 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/string.h>
16 #include <linux/ptrace.h>
17 #include <linux/errno.h>
18 #include <linux/ioport.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/ethtool.h>
26 #include <linux/bitops.h>
27 #include <linux/fs.h>
28 #include <linux/platform_device.h>
29 #include <linux/phy.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/gfp.h>
33 #include <linux/pgtable.h>
34 
35 #include <asm/immap_cpm2.h>
36 #include <asm/cpm2.h>
37 
38 #include <asm/irq.h>
39 #include <linux/uaccess.h>
40 
41 #include "fs_enet.h"
42 
43 /*************************************************/
44 
45 /* FCC access macros */
46 
47 /* write, read, set bits, clear bits */
48 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
49 #define R32(_p, _m)	in_be32(&(_p)->_m)
50 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
51 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
52 
53 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
54 #define R16(_p, _m)	in_be16(&(_p)->_m)
55 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
56 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
57 
58 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
59 #define R8(_p, _m)	in_8(&(_p)->_m)
60 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
61 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
62 
63 /*************************************************/
64 
65 #define FCC_MAX_MULTICAST_ADDRS	64
66 
67 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
68 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
69 #define mk_mii_end		0
70 
71 #define MAX_CR_CMD_LOOPS	10000
72 
73 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
74 {
75 	const struct fs_platform_info *fpi = fep->fpi;
76 
77 	return cpm_command(fpi->cp_command, op);
78 }
79 
80 static int do_pd_setup(struct fs_enet_private *fep)
81 {
82 	struct platform_device *ofdev = to_platform_device(fep->dev);
83 	struct fs_platform_info *fpi = fep->fpi;
84 	int ret = -EINVAL;
85 
86 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
87 	if (!fep->interrupt)
88 		goto out;
89 
90 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
91 	if (!fep->fcc.fccp)
92 		goto out;
93 
94 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
95 	if (!fep->fcc.ep)
96 		goto out_fccp;
97 
98 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
99 	if (!fep->fcc.fcccp)
100 		goto out_ep;
101 
102 	fep->fcc.mem = (void __iomem *)cpm2_immr;
103 	fpi->dpram_offset = cpm_muram_alloc(128, 32);
104 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
105 		ret = fpi->dpram_offset;
106 		goto out_fcccp;
107 	}
108 
109 	return 0;
110 
111 out_fcccp:
112 	iounmap(fep->fcc.fcccp);
113 out_ep:
114 	iounmap(fep->fcc.ep);
115 out_fccp:
116 	iounmap(fep->fcc.fccp);
117 out:
118 	return ret;
119 }
120 
121 #define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
122 #define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
123 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
124 
125 static int setup_data(struct net_device *dev)
126 {
127 	struct fs_enet_private *fep = netdev_priv(dev);
128 
129 	if (do_pd_setup(fep) != 0)
130 		return -EINVAL;
131 
132 	fep->ev_napi = FCC_NAPI_EVENT_MSK;
133 	fep->ev = FCC_EVENT;
134 	fep->ev_err = FCC_ERR_EVENT_MSK;
135 
136 	return 0;
137 }
138 
139 static int allocate_bd(struct net_device *dev)
140 {
141 	struct fs_enet_private *fep = netdev_priv(dev);
142 	const struct fs_platform_info *fpi = fep->fpi;
143 
144 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
145 					    (fpi->tx_ring + fpi->rx_ring) *
146 					    sizeof(cbd_t), &fep->ring_mem_addr,
147 					    GFP_KERNEL);
148 	if (fep->ring_base == NULL)
149 		return -ENOMEM;
150 
151 	return 0;
152 }
153 
154 static void free_bd(struct net_device *dev)
155 {
156 	struct fs_enet_private *fep = netdev_priv(dev);
157 	const struct fs_platform_info *fpi = fep->fpi;
158 
159 	if (fep->ring_base)
160 		dma_free_coherent(fep->dev,
161 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
162 			(void __force *)fep->ring_base, fep->ring_mem_addr);
163 }
164 
165 static void cleanup_data(struct net_device *dev)
166 {
167 	/* nothing */
168 }
169 
170 static void set_promiscuous_mode(struct net_device *dev)
171 {
172 	struct fs_enet_private *fep = netdev_priv(dev);
173 	fcc_t __iomem *fccp = fep->fcc.fccp;
174 
175 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
176 }
177 
178 static void set_multicast_start(struct net_device *dev)
179 {
180 	struct fs_enet_private *fep = netdev_priv(dev);
181 	fcc_enet_t __iomem *ep = fep->fcc.ep;
182 
183 	W32(ep, fen_gaddrh, 0);
184 	W32(ep, fen_gaddrl, 0);
185 }
186 
187 static void set_multicast_one(struct net_device *dev, const u8 *mac)
188 {
189 	struct fs_enet_private *fep = netdev_priv(dev);
190 	fcc_enet_t __iomem *ep = fep->fcc.ep;
191 	u16 taddrh, taddrm, taddrl;
192 
193 	taddrh = ((u16)mac[5] << 8) | mac[4];
194 	taddrm = ((u16)mac[3] << 8) | mac[2];
195 	taddrl = ((u16)mac[1] << 8) | mac[0];
196 
197 	W16(ep, fen_taddrh, taddrh);
198 	W16(ep, fen_taddrm, taddrm);
199 	W16(ep, fen_taddrl, taddrl);
200 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
201 }
202 
203 static void set_multicast_finish(struct net_device *dev)
204 {
205 	struct fs_enet_private *fep = netdev_priv(dev);
206 	fcc_t __iomem *fccp = fep->fcc.fccp;
207 	fcc_enet_t __iomem *ep = fep->fcc.ep;
208 
209 	/* clear promiscuous always */
210 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
211 
212 	/* if all multi or too many multicasts; just enable all */
213 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
214 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
215 
216 		W32(ep, fen_gaddrh, 0xffffffff);
217 		W32(ep, fen_gaddrl, 0xffffffff);
218 	}
219 
220 	/* read back */
221 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
222 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
223 }
224 
225 static void set_multicast_list(struct net_device *dev)
226 {
227 	struct netdev_hw_addr *ha;
228 
229 	if ((dev->flags & IFF_PROMISC) == 0) {
230 		set_multicast_start(dev);
231 		netdev_for_each_mc_addr(ha, dev)
232 			set_multicast_one(dev, ha->addr);
233 		set_multicast_finish(dev);
234 	} else
235 		set_promiscuous_mode(dev);
236 }
237 
238 static void restart(struct net_device *dev, phy_interface_t interface,
239 		    int speed, int duplex)
240 {
241 	struct fs_enet_private *fep = netdev_priv(dev);
242 	const struct fs_platform_info *fpi = fep->fpi;
243 	fcc_t __iomem *fccp = fep->fcc.fccp;
244 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
245 	fcc_enet_t __iomem *ep = fep->fcc.ep;
246 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
247 	u16 paddrh, paddrm, paddrl;
248 	const unsigned char *mac;
249 	int i;
250 
251 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
252 
253 	/* clear everything (slow & steady does it) */
254 	for (i = 0; i < sizeof(*ep); i++)
255 		out_8((u8 __iomem *)ep + i, 0);
256 
257 	/* get physical address */
258 	rx_bd_base_phys = fep->ring_mem_addr;
259 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
260 
261 	/* point to bds */
262 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
263 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
264 
265 	/* Set maximum bytes per receive buffer.
266 	 * It must be a multiple of 32.
267 	 */
268 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
269 
270 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
271 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
272 
273 	/* Allocate space in the reserved FCC area of DPRAM for the
274 	 * internal buffers.  No one uses this space (yet), so we
275 	 * can do this.  Later, we will add resource management for
276 	 * this area.
277 	 */
278 
279 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
280 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
281 
282 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
283 
284 	/* fill with special symbol...  */
285 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
286 
287 	W32(ep, fen_genfcc.fcc_rbptr, 0);
288 	W32(ep, fen_genfcc.fcc_tbptr, 0);
289 	W32(ep, fen_genfcc.fcc_rcrc, 0);
290 	W32(ep, fen_genfcc.fcc_tcrc, 0);
291 	W16(ep, fen_genfcc.fcc_res1, 0);
292 	W32(ep, fen_genfcc.fcc_res2, 0);
293 
294 	/* no CAM */
295 	W32(ep, fen_camptr, 0);
296 
297 	/* Set CRC preset and mask */
298 	W32(ep, fen_cmask, 0xdebb20e3);
299 	W32(ep, fen_cpres, 0xffffffff);
300 
301 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
302 	W32(ep, fen_alec, 0);		/* alignment error counter */
303 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
304 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
305 	W16(ep, fen_pper, 0);		/* Normal persistence      */
306 
307 	/* set group address */
308 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
309 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
310 
311 	/* Clear hash filter tables */
312 	W32(ep, fen_iaddrh, 0);
313 	W32(ep, fen_iaddrl, 0);
314 
315 	/* Clear the Out-of-sequence TxBD  */
316 	W16(ep, fen_tfcstat, 0);
317 	W16(ep, fen_tfclen, 0);
318 	W32(ep, fen_tfcptr, 0);
319 
320 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
321 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
322 
323 	/* set address */
324 	mac = dev->dev_addr;
325 	paddrh = ((u16)mac[5] << 8) | mac[4];
326 	paddrm = ((u16)mac[3] << 8) | mac[2];
327 	paddrl = ((u16)mac[1] << 8) | mac[0];
328 
329 	W16(ep, fen_paddrh, paddrh);
330 	W16(ep, fen_paddrm, paddrm);
331 	W16(ep, fen_paddrl, paddrl);
332 
333 	W16(ep, fen_taddrh, 0);
334 	W16(ep, fen_taddrm, 0);
335 	W16(ep, fen_taddrl, 0);
336 
337 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
338 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
339 
340 	/* Clear stat counters, in case we ever enable RMON */
341 	W32(ep, fen_octc, 0);
342 	W32(ep, fen_colc, 0);
343 	W32(ep, fen_broc, 0);
344 	W32(ep, fen_mulc, 0);
345 	W32(ep, fen_uspc, 0);
346 	W32(ep, fen_frgc, 0);
347 	W32(ep, fen_ospc, 0);
348 	W32(ep, fen_jbrc, 0);
349 	W32(ep, fen_p64c, 0);
350 	W32(ep, fen_p65c, 0);
351 	W32(ep, fen_p128c, 0);
352 	W32(ep, fen_p256c, 0);
353 	W32(ep, fen_p512c, 0);
354 	W32(ep, fen_p1024c, 0);
355 
356 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
357 	W16(ep, fen_rfcnt, 0);
358 	W16(ep, fen_cftype, 0);
359 
360 	fs_init_bds(dev);
361 
362 	/* adjust to speed (for RMII mode) */
363 	if (interface == PHY_INTERFACE_MODE_RMII) {
364 		if (speed == SPEED_100)
365 			C8(fcccp, fcc_gfemr, 0x20);
366 		else
367 			S8(fcccp, fcc_gfemr, 0x20);
368 	}
369 
370 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
371 
372 	/* clear events */
373 	W16(fccp, fcc_fcce, 0xffff);
374 
375 	/* Enable interrupts we wish to service */
376 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
377 
378 	/* Set GFMR to enable Ethernet operating mode */
379 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
380 
381 	/* set sync/delimiters */
382 	W16(fccp, fcc_fdsr, 0xd555);
383 
384 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
385 
386 	if (interface == PHY_INTERFACE_MODE_RMII)
387 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
388 
389 	/* adjust to duplex mode */
390 	if (duplex == DUPLEX_FULL)
391 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
392 	else
393 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
394 
395 	/* Restore multicast and promiscuous settings */
396 	set_multicast_list(dev);
397 
398 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
399 }
400 
401 static void stop(struct net_device *dev)
402 {
403 	struct fs_enet_private *fep = netdev_priv(dev);
404 	fcc_t __iomem *fccp = fep->fcc.fccp;
405 
406 	/* stop ethernet */
407 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
408 
409 	/* clear events */
410 	W16(fccp, fcc_fcce, 0xffff);
411 
412 	/* clear interrupt mask */
413 	W16(fccp, fcc_fccm, 0);
414 
415 	fs_cleanup_bds(dev);
416 }
417 
418 static void napi_clear_event_fs(struct net_device *dev)
419 {
420 	struct fs_enet_private *fep = netdev_priv(dev);
421 	fcc_t __iomem *fccp = fep->fcc.fccp;
422 
423 	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
424 }
425 
426 static void napi_enable_fs(struct net_device *dev)
427 {
428 	struct fs_enet_private *fep = netdev_priv(dev);
429 	fcc_t __iomem *fccp = fep->fcc.fccp;
430 
431 	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
432 }
433 
434 static void napi_disable_fs(struct net_device *dev)
435 {
436 	struct fs_enet_private *fep = netdev_priv(dev);
437 	fcc_t __iomem *fccp = fep->fcc.fccp;
438 
439 	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
440 }
441 
442 static void rx_bd_done(struct net_device *dev)
443 {
444 	/* nothing */
445 }
446 
447 static void tx_kickstart(struct net_device *dev)
448 {
449 	struct fs_enet_private *fep = netdev_priv(dev);
450 	fcc_t __iomem *fccp = fep->fcc.fccp;
451 
452 	S16(fccp, fcc_ftodr, 0x8000);
453 }
454 
455 static u32 get_int_events(struct net_device *dev)
456 {
457 	struct fs_enet_private *fep = netdev_priv(dev);
458 	fcc_t __iomem *fccp = fep->fcc.fccp;
459 
460 	return (u32)R16(fccp, fcc_fcce);
461 }
462 
463 static void clear_int_events(struct net_device *dev, u32 int_events)
464 {
465 	struct fs_enet_private *fep = netdev_priv(dev);
466 	fcc_t __iomem *fccp = fep->fcc.fccp;
467 
468 	W16(fccp, fcc_fcce, int_events & 0xffff);
469 }
470 
471 static void ev_error(struct net_device *dev, u32 int_events)
472 {
473 	struct fs_enet_private *fep = netdev_priv(dev);
474 
475 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
476 }
477 
478 static int get_regs(struct net_device *dev, void *p, int *sizep)
479 {
480 	struct fs_enet_private *fep = netdev_priv(dev);
481 
482 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
483 		return -EINVAL;
484 
485 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
486 	p = (char *)p + sizeof(fcc_t);
487 
488 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
489 	p = (char *)p + sizeof(fcc_enet_t);
490 
491 	memcpy_fromio(p, fep->fcc.fcccp, 1);
492 	return 0;
493 }
494 
495 static int get_regs_len(struct net_device *dev)
496 {
497 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
498 }
499 
500 /* Some transmit errors cause the transmitter to shut
501  * down.  We now issue a restart transmit.
502  * Also, to workaround 8260 device erratum CPM37, we must
503  * disable and then re-enable the transmitterfollowing a
504  * Late Collision, Underrun, or Retry Limit error.
505  * In addition, tbptr may point beyond BDs beyond still marked
506  * as ready due to internal pipelining, so we need to look back
507  * through the BDs and adjust tbptr to point to the last BD
508  * marked as ready.  This may result in some buffers being
509  * retransmitted.
510  */
511 static void tx_restart(struct net_device *dev)
512 {
513 	struct fs_enet_private *fep = netdev_priv(dev);
514 	fcc_t __iomem *fccp = fep->fcc.fccp;
515 	const struct fs_platform_info *fpi = fep->fpi;
516 	fcc_enet_t __iomem *ep = fep->fcc.ep;
517 	cbd_t __iomem *curr_tbptr;
518 	cbd_t __iomem *recheck_bd;
519 	cbd_t __iomem *prev_bd;
520 	cbd_t __iomem *last_tx_bd;
521 
522 	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
523 
524 	/* get the current bd held in TBPTR  and scan back from this point */
525 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
526 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
527 		fep->ring_base);
528 
529 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
530 
531 	/* Move through the bds in reverse, look for the earliest buffer
532 	 * that is not ready.  Adjust TBPTR to the following buffer */
533 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
534 		/* Go back one buffer */
535 		recheck_bd = prev_bd;
536 
537 		/* update the previous buffer */
538 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
539 
540 		/* We should never see all bds marked as ready, check anyway */
541 		if (recheck_bd == curr_tbptr)
542 			break;
543 	}
544 	/* Now update the TBPTR and dirty flag to the current buffer */
545 	W32(ep, fen_genfcc.fcc_tbptr,
546 		(uint)(((void __iomem *)recheck_bd - fep->ring_base) +
547 		fep->ring_mem_addr));
548 	fep->dirty_tx = recheck_bd;
549 
550 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
551 	udelay(10);
552 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
553 
554 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
555 }
556 
557 /*************************************************************************/
558 
559 const struct fs_ops fs_fcc_ops = {
560 	.setup_data		= setup_data,
561 	.cleanup_data		= cleanup_data,
562 	.set_multicast_list	= set_multicast_list,
563 	.restart		= restart,
564 	.stop			= stop,
565 	.napi_clear_event	= napi_clear_event_fs,
566 	.napi_enable		= napi_enable_fs,
567 	.napi_disable		= napi_disable_fs,
568 	.rx_bd_done		= rx_bd_done,
569 	.tx_kickstart		= tx_kickstart,
570 	.get_int_events		= get_int_events,
571 	.clear_int_events	= clear_int_events,
572 	.ev_error		= ev_error,
573 	.get_regs		= get_regs,
574 	.get_regs_len		= get_regs_len,
575 	.tx_restart		= tx_restart,
576 	.allocate_bd		= allocate_bd,
577 	.free_bd		= free_bd,
578 };
579