1 /* 2 * FCC driver for Motorola MPC82xx (PQ2). 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/spinlock.h> 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/bitops.h> 31 #include <linux/fs.h> 32 #include <linux/platform_device.h> 33 #include <linux/phy.h> 34 #include <linux/of_address.h> 35 #include <linux/of_device.h> 36 #include <linux/of_irq.h> 37 #include <linux/gfp.h> 38 39 #include <asm/immap_cpm2.h> 40 #include <asm/mpc8260.h> 41 #include <asm/cpm2.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/irq.h> 45 #include <asm/uaccess.h> 46 47 #include "fs_enet.h" 48 49 /*************************************************/ 50 51 /* FCC access macros */ 52 53 /* write, read, set bits, clear bits */ 54 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v)) 55 #define R32(_p, _m) in_be32(&(_p)->_m) 56 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) 57 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) 58 59 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v)) 60 #define R16(_p, _m) in_be16(&(_p)->_m) 61 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) 62 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) 63 64 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v)) 65 #define R8(_p, _m) in_8(&(_p)->_m) 66 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) 67 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) 68 69 /*************************************************/ 70 71 #define FCC_MAX_MULTICAST_ADDRS 64 72 73 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) 74 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff)) 75 #define mk_mii_end 0 76 77 #define MAX_CR_CMD_LOOPS 10000 78 79 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op) 80 { 81 const struct fs_platform_info *fpi = fep->fpi; 82 83 return cpm_command(fpi->cp_command, op); 84 } 85 86 static int do_pd_setup(struct fs_enet_private *fep) 87 { 88 struct platform_device *ofdev = to_platform_device(fep->dev); 89 struct fs_platform_info *fpi = fep->fpi; 90 int ret = -EINVAL; 91 92 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 93 if (fep->interrupt == NO_IRQ) 94 goto out; 95 96 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0); 97 if (!fep->fcc.fccp) 98 goto out; 99 100 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1); 101 if (!fep->fcc.ep) 102 goto out_fccp; 103 104 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2); 105 if (!fep->fcc.fcccp) 106 goto out_ep; 107 108 fep->fcc.mem = (void __iomem *)cpm2_immr; 109 fpi->dpram_offset = cpm_dpalloc(128, 32); 110 if (IS_ERR_VALUE(fpi->dpram_offset)) { 111 ret = fpi->dpram_offset; 112 goto out_fcccp; 113 } 114 115 return 0; 116 117 out_fcccp: 118 iounmap(fep->fcc.fcccp); 119 out_ep: 120 iounmap(fep->fcc.ep); 121 out_fccp: 122 iounmap(fep->fcc.fccp); 123 out: 124 return ret; 125 } 126 127 #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB) 128 #define FCC_NAPI_TX_EVENT_MSK (FCC_ENET_TXB) 129 #define FCC_RX_EVENT (FCC_ENET_RXF) 130 #define FCC_TX_EVENT (FCC_ENET_TXB) 131 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE) 132 133 static int setup_data(struct net_device *dev) 134 { 135 struct fs_enet_private *fep = netdev_priv(dev); 136 137 if (do_pd_setup(fep) != 0) 138 return -EINVAL; 139 140 fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK; 141 fep->ev_napi_tx = FCC_NAPI_TX_EVENT_MSK; 142 fep->ev_rx = FCC_RX_EVENT; 143 fep->ev_tx = FCC_TX_EVENT; 144 fep->ev_err = FCC_ERR_EVENT_MSK; 145 146 return 0; 147 } 148 149 static int allocate_bd(struct net_device *dev) 150 { 151 struct fs_enet_private *fep = netdev_priv(dev); 152 const struct fs_platform_info *fpi = fep->fpi; 153 154 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev, 155 (fpi->tx_ring + fpi->rx_ring) * 156 sizeof(cbd_t), &fep->ring_mem_addr, 157 GFP_KERNEL); 158 if (fep->ring_base == NULL) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 static void free_bd(struct net_device *dev) 165 { 166 struct fs_enet_private *fep = netdev_priv(dev); 167 const struct fs_platform_info *fpi = fep->fpi; 168 169 if (fep->ring_base) 170 dma_free_coherent(fep->dev, 171 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t), 172 (void __force *)fep->ring_base, fep->ring_mem_addr); 173 } 174 175 static void cleanup_data(struct net_device *dev) 176 { 177 /* nothing */ 178 } 179 180 static void set_promiscuous_mode(struct net_device *dev) 181 { 182 struct fs_enet_private *fep = netdev_priv(dev); 183 fcc_t __iomem *fccp = fep->fcc.fccp; 184 185 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO); 186 } 187 188 static void set_multicast_start(struct net_device *dev) 189 { 190 struct fs_enet_private *fep = netdev_priv(dev); 191 fcc_enet_t __iomem *ep = fep->fcc.ep; 192 193 W32(ep, fen_gaddrh, 0); 194 W32(ep, fen_gaddrl, 0); 195 } 196 197 static void set_multicast_one(struct net_device *dev, const u8 *mac) 198 { 199 struct fs_enet_private *fep = netdev_priv(dev); 200 fcc_enet_t __iomem *ep = fep->fcc.ep; 201 u16 taddrh, taddrm, taddrl; 202 203 taddrh = ((u16)mac[5] << 8) | mac[4]; 204 taddrm = ((u16)mac[3] << 8) | mac[2]; 205 taddrl = ((u16)mac[1] << 8) | mac[0]; 206 207 W16(ep, fen_taddrh, taddrh); 208 W16(ep, fen_taddrm, taddrm); 209 W16(ep, fen_taddrl, taddrl); 210 fcc_cr_cmd(fep, CPM_CR_SET_GADDR); 211 } 212 213 static void set_multicast_finish(struct net_device *dev) 214 { 215 struct fs_enet_private *fep = netdev_priv(dev); 216 fcc_t __iomem *fccp = fep->fcc.fccp; 217 fcc_enet_t __iomem *ep = fep->fcc.ep; 218 219 /* clear promiscuous always */ 220 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO); 221 222 /* if all multi or too many multicasts; just enable all */ 223 if ((dev->flags & IFF_ALLMULTI) != 0 || 224 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) { 225 226 W32(ep, fen_gaddrh, 0xffffffff); 227 W32(ep, fen_gaddrl, 0xffffffff); 228 } 229 230 /* read back */ 231 fep->fcc.gaddrh = R32(ep, fen_gaddrh); 232 fep->fcc.gaddrl = R32(ep, fen_gaddrl); 233 } 234 235 static void set_multicast_list(struct net_device *dev) 236 { 237 struct netdev_hw_addr *ha; 238 239 if ((dev->flags & IFF_PROMISC) == 0) { 240 set_multicast_start(dev); 241 netdev_for_each_mc_addr(ha, dev) 242 set_multicast_one(dev, ha->addr); 243 set_multicast_finish(dev); 244 } else 245 set_promiscuous_mode(dev); 246 } 247 248 static void restart(struct net_device *dev) 249 { 250 struct fs_enet_private *fep = netdev_priv(dev); 251 const struct fs_platform_info *fpi = fep->fpi; 252 fcc_t __iomem *fccp = fep->fcc.fccp; 253 fcc_c_t __iomem *fcccp = fep->fcc.fcccp; 254 fcc_enet_t __iomem *ep = fep->fcc.ep; 255 dma_addr_t rx_bd_base_phys, tx_bd_base_phys; 256 u16 paddrh, paddrm, paddrl; 257 const unsigned char *mac; 258 int i; 259 260 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); 261 262 /* clear everything (slow & steady does it) */ 263 for (i = 0; i < sizeof(*ep); i++) 264 out_8((u8 __iomem *)ep + i, 0); 265 266 /* get physical address */ 267 rx_bd_base_phys = fep->ring_mem_addr; 268 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring; 269 270 /* point to bds */ 271 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys); 272 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys); 273 274 /* Set maximum bytes per receive buffer. 275 * It must be a multiple of 32. 276 */ 277 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE); 278 279 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24); 280 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24); 281 282 /* Allocate space in the reserved FCC area of DPRAM for the 283 * internal buffers. No one uses this space (yet), so we 284 * can do this. Later, we will add resource management for 285 * this area. 286 */ 287 288 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset); 289 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32); 290 291 W16(ep, fen_padptr, fpi->dpram_offset + 64); 292 293 /* fill with special symbol... */ 294 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32); 295 296 W32(ep, fen_genfcc.fcc_rbptr, 0); 297 W32(ep, fen_genfcc.fcc_tbptr, 0); 298 W32(ep, fen_genfcc.fcc_rcrc, 0); 299 W32(ep, fen_genfcc.fcc_tcrc, 0); 300 W16(ep, fen_genfcc.fcc_res1, 0); 301 W32(ep, fen_genfcc.fcc_res2, 0); 302 303 /* no CAM */ 304 W32(ep, fen_camptr, 0); 305 306 /* Set CRC preset and mask */ 307 W32(ep, fen_cmask, 0xdebb20e3); 308 W32(ep, fen_cpres, 0xffffffff); 309 310 W32(ep, fen_crcec, 0); /* CRC Error counter */ 311 W32(ep, fen_alec, 0); /* alignment error counter */ 312 W32(ep, fen_disfc, 0); /* discard frame counter */ 313 W16(ep, fen_retlim, 15); /* Retry limit threshold */ 314 W16(ep, fen_pper, 0); /* Normal persistence */ 315 316 /* set group address */ 317 W32(ep, fen_gaddrh, fep->fcc.gaddrh); 318 W32(ep, fen_gaddrl, fep->fcc.gaddrh); 319 320 /* Clear hash filter tables */ 321 W32(ep, fen_iaddrh, 0); 322 W32(ep, fen_iaddrl, 0); 323 324 /* Clear the Out-of-sequence TxBD */ 325 W16(ep, fen_tfcstat, 0); 326 W16(ep, fen_tfclen, 0); 327 W32(ep, fen_tfcptr, 0); 328 329 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */ 330 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ 331 332 /* set address */ 333 mac = dev->dev_addr; 334 paddrh = ((u16)mac[5] << 8) | mac[4]; 335 paddrm = ((u16)mac[3] << 8) | mac[2]; 336 paddrl = ((u16)mac[1] << 8) | mac[0]; 337 338 W16(ep, fen_paddrh, paddrh); 339 W16(ep, fen_paddrm, paddrm); 340 W16(ep, fen_paddrl, paddrl); 341 342 W16(ep, fen_taddrh, 0); 343 W16(ep, fen_taddrm, 0); 344 W16(ep, fen_taddrl, 0); 345 346 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */ 347 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */ 348 349 /* Clear stat counters, in case we ever enable RMON */ 350 W32(ep, fen_octc, 0); 351 W32(ep, fen_colc, 0); 352 W32(ep, fen_broc, 0); 353 W32(ep, fen_mulc, 0); 354 W32(ep, fen_uspc, 0); 355 W32(ep, fen_frgc, 0); 356 W32(ep, fen_ospc, 0); 357 W32(ep, fen_jbrc, 0); 358 W32(ep, fen_p64c, 0); 359 W32(ep, fen_p65c, 0); 360 W32(ep, fen_p128c, 0); 361 W32(ep, fen_p256c, 0); 362 W32(ep, fen_p512c, 0); 363 W32(ep, fen_p1024c, 0); 364 365 W16(ep, fen_rfthr, 0); /* Suggested by manual */ 366 W16(ep, fen_rfcnt, 0); 367 W16(ep, fen_cftype, 0); 368 369 fs_init_bds(dev); 370 371 /* adjust to speed (for RMII mode) */ 372 if (fpi->use_rmii) { 373 if (dev->phydev->speed == 100) 374 C8(fcccp, fcc_gfemr, 0x20); 375 else 376 S8(fcccp, fcc_gfemr, 0x20); 377 } 378 379 fcc_cr_cmd(fep, CPM_CR_INIT_TRX); 380 381 /* clear events */ 382 W16(fccp, fcc_fcce, 0xffff); 383 384 /* Enable interrupts we wish to service */ 385 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); 386 387 /* Set GFMR to enable Ethernet operating mode */ 388 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); 389 390 /* set sync/delimiters */ 391 W16(fccp, fcc_fdsr, 0xd555); 392 393 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC); 394 395 if (fpi->use_rmii) 396 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII); 397 398 /* adjust to duplex mode */ 399 if (dev->phydev->duplex) 400 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB); 401 else 402 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB); 403 404 /* Restore multicast and promiscuous settings */ 405 set_multicast_list(dev); 406 407 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); 408 } 409 410 static void stop(struct net_device *dev) 411 { 412 struct fs_enet_private *fep = netdev_priv(dev); 413 fcc_t __iomem *fccp = fep->fcc.fccp; 414 415 /* stop ethernet */ 416 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); 417 418 /* clear events */ 419 W16(fccp, fcc_fcce, 0xffff); 420 421 /* clear interrupt mask */ 422 W16(fccp, fcc_fccm, 0); 423 424 fs_cleanup_bds(dev); 425 } 426 427 static void napi_clear_rx_event(struct net_device *dev) 428 { 429 struct fs_enet_private *fep = netdev_priv(dev); 430 fcc_t __iomem *fccp = fep->fcc.fccp; 431 432 W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK); 433 } 434 435 static void napi_enable_rx(struct net_device *dev) 436 { 437 struct fs_enet_private *fep = netdev_priv(dev); 438 fcc_t __iomem *fccp = fep->fcc.fccp; 439 440 S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK); 441 } 442 443 static void napi_disable_rx(struct net_device *dev) 444 { 445 struct fs_enet_private *fep = netdev_priv(dev); 446 fcc_t __iomem *fccp = fep->fcc.fccp; 447 448 C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK); 449 } 450 451 static void napi_clear_tx_event(struct net_device *dev) 452 { 453 struct fs_enet_private *fep = netdev_priv(dev); 454 fcc_t __iomem *fccp = fep->fcc.fccp; 455 456 W16(fccp, fcc_fcce, FCC_NAPI_TX_EVENT_MSK); 457 } 458 459 static void napi_enable_tx(struct net_device *dev) 460 { 461 struct fs_enet_private *fep = netdev_priv(dev); 462 fcc_t __iomem *fccp = fep->fcc.fccp; 463 464 S16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK); 465 } 466 467 static void napi_disable_tx(struct net_device *dev) 468 { 469 struct fs_enet_private *fep = netdev_priv(dev); 470 fcc_t __iomem *fccp = fep->fcc.fccp; 471 472 C16(fccp, fcc_fccm, FCC_NAPI_TX_EVENT_MSK); 473 } 474 475 static void rx_bd_done(struct net_device *dev) 476 { 477 /* nothing */ 478 } 479 480 static void tx_kickstart(struct net_device *dev) 481 { 482 struct fs_enet_private *fep = netdev_priv(dev); 483 fcc_t __iomem *fccp = fep->fcc.fccp; 484 485 S16(fccp, fcc_ftodr, 0x8000); 486 } 487 488 static u32 get_int_events(struct net_device *dev) 489 { 490 struct fs_enet_private *fep = netdev_priv(dev); 491 fcc_t __iomem *fccp = fep->fcc.fccp; 492 493 return (u32)R16(fccp, fcc_fcce); 494 } 495 496 static void clear_int_events(struct net_device *dev, u32 int_events) 497 { 498 struct fs_enet_private *fep = netdev_priv(dev); 499 fcc_t __iomem *fccp = fep->fcc.fccp; 500 501 W16(fccp, fcc_fcce, int_events & 0xffff); 502 } 503 504 static void ev_error(struct net_device *dev, u32 int_events) 505 { 506 struct fs_enet_private *fep = netdev_priv(dev); 507 508 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events); 509 } 510 511 static int get_regs(struct net_device *dev, void *p, int *sizep) 512 { 513 struct fs_enet_private *fep = netdev_priv(dev); 514 515 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1) 516 return -EINVAL; 517 518 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t)); 519 p = (char *)p + sizeof(fcc_t); 520 521 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t)); 522 p = (char *)p + sizeof(fcc_enet_t); 523 524 memcpy_fromio(p, fep->fcc.fcccp, 1); 525 return 0; 526 } 527 528 static int get_regs_len(struct net_device *dev) 529 { 530 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1; 531 } 532 533 /* Some transmit errors cause the transmitter to shut 534 * down. We now issue a restart transmit. 535 * Also, to workaround 8260 device erratum CPM37, we must 536 * disable and then re-enable the transmitterfollowing a 537 * Late Collision, Underrun, or Retry Limit error. 538 * In addition, tbptr may point beyond BDs beyond still marked 539 * as ready due to internal pipelining, so we need to look back 540 * through the BDs and adjust tbptr to point to the last BD 541 * marked as ready. This may result in some buffers being 542 * retransmitted. 543 */ 544 static void tx_restart(struct net_device *dev) 545 { 546 struct fs_enet_private *fep = netdev_priv(dev); 547 fcc_t __iomem *fccp = fep->fcc.fccp; 548 const struct fs_platform_info *fpi = fep->fpi; 549 fcc_enet_t __iomem *ep = fep->fcc.ep; 550 cbd_t __iomem *curr_tbptr; 551 cbd_t __iomem *recheck_bd; 552 cbd_t __iomem *prev_bd; 553 cbd_t __iomem *last_tx_bd; 554 555 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1); 556 557 /* get the current bd held in TBPTR and scan back from this point */ 558 recheck_bd = curr_tbptr = (cbd_t __iomem *) 559 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) + 560 fep->ring_base); 561 562 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1; 563 564 /* Move through the bds in reverse, look for the earliest buffer 565 * that is not ready. Adjust TBPTR to the following buffer */ 566 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) { 567 /* Go back one buffer */ 568 recheck_bd = prev_bd; 569 570 /* update the previous buffer */ 571 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1; 572 573 /* We should never see all bds marked as ready, check anyway */ 574 if (recheck_bd == curr_tbptr) 575 break; 576 } 577 /* Now update the TBPTR and dirty flag to the current buffer */ 578 W32(ep, fen_genfcc.fcc_tbptr, 579 (uint) (((void *)recheck_bd - fep->ring_base) + 580 fep->ring_mem_addr)); 581 fep->dirty_tx = recheck_bd; 582 583 C32(fccp, fcc_gfmr, FCC_GFMR_ENT); 584 udelay(10); 585 S32(fccp, fcc_gfmr, FCC_GFMR_ENT); 586 587 fcc_cr_cmd(fep, CPM_CR_RESTART_TX); 588 } 589 590 /*************************************************************************/ 591 592 const struct fs_ops fs_fcc_ops = { 593 .setup_data = setup_data, 594 .cleanup_data = cleanup_data, 595 .set_multicast_list = set_multicast_list, 596 .restart = restart, 597 .stop = stop, 598 .napi_clear_rx_event = napi_clear_rx_event, 599 .napi_enable_rx = napi_enable_rx, 600 .napi_disable_rx = napi_disable_rx, 601 .napi_clear_tx_event = napi_clear_tx_event, 602 .napi_enable_tx = napi_enable_tx, 603 .napi_disable_tx = napi_disable_tx, 604 .rx_bd_done = rx_bd_done, 605 .tx_kickstart = tx_kickstart, 606 .get_int_events = get_int_events, 607 .clear_int_events = clear_int_events, 608 .ev_error = ev_error, 609 .get_regs = get_regs, 610 .get_regs_len = get_regs_len, 611 .tx_restart = tx_restart, 612 .allocate_bd = allocate_bd, 613 .free_bd = free_bd, 614 }; 615