1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <linux/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #define RX_RING_SIZE 32 64 #define TX_RING_SIZE 64 65 66 #ifdef CONFIG_NET_POLL_CONTROLLER 67 static void fs_enet_netpoll(struct net_device *dev); 68 #endif 69 70 static void fs_set_multicast_list(struct net_device *dev) 71 { 72 struct fs_enet_private *fep = netdev_priv(dev); 73 74 (*fep->ops->set_multicast_list)(dev); 75 } 76 77 static void skb_align(struct sk_buff *skb, int align) 78 { 79 int off = ((unsigned long)skb->data) & (align - 1); 80 81 if (off) 82 skb_reserve(skb, align - off); 83 } 84 85 /* NAPI function */ 86 static int fs_enet_napi(struct napi_struct *napi, int budget) 87 { 88 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 89 struct net_device *dev = fep->ndev; 90 const struct fs_platform_info *fpi = fep->fpi; 91 cbd_t __iomem *bdp; 92 struct sk_buff *skb, *skbn; 93 int received = 0; 94 u16 pkt_len, sc; 95 int curidx; 96 int dirtyidx, do_wake, do_restart; 97 int tx_left = TX_RING_SIZE; 98 99 spin_lock(&fep->tx_lock); 100 bdp = fep->dirty_tx; 101 102 /* clear status bits for napi*/ 103 (*fep->ops->napi_clear_event)(dev); 104 105 do_wake = do_restart = 0; 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) { 107 dirtyidx = bdp - fep->tx_bd_base; 108 109 if (fep->tx_free == fep->tx_ring) 110 break; 111 112 skb = fep->tx_skbuff[dirtyidx]; 113 114 /* 115 * Check for errors. 116 */ 117 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 118 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 119 120 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 121 dev->stats.tx_heartbeat_errors++; 122 if (sc & BD_ENET_TX_LC) /* Late collision */ 123 dev->stats.tx_window_errors++; 124 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 125 dev->stats.tx_aborted_errors++; 126 if (sc & BD_ENET_TX_UN) /* Underrun */ 127 dev->stats.tx_fifo_errors++; 128 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 129 dev->stats.tx_carrier_errors++; 130 131 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 132 dev->stats.tx_errors++; 133 do_restart = 1; 134 } 135 } else 136 dev->stats.tx_packets++; 137 138 if (sc & BD_ENET_TX_READY) { 139 dev_warn(fep->dev, 140 "HEY! Enet xmit interrupt and TX_READY.\n"); 141 } 142 143 /* 144 * Deferred means some collisions occurred during transmit, 145 * but we eventually sent the packet OK. 146 */ 147 if (sc & BD_ENET_TX_DEF) 148 dev->stats.collisions++; 149 150 /* unmap */ 151 if (fep->mapped_as_page[dirtyidx]) 152 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 153 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 154 else 155 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 156 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 157 158 /* 159 * Free the sk buffer associated with this last transmit. 160 */ 161 if (skb) { 162 dev_kfree_skb(skb); 163 fep->tx_skbuff[dirtyidx] = NULL; 164 } 165 166 /* 167 * Update pointer to next buffer descriptor to be transmitted. 168 */ 169 if ((sc & BD_ENET_TX_WRAP) == 0) 170 bdp++; 171 else 172 bdp = fep->tx_bd_base; 173 174 /* 175 * Since we have freed up a buffer, the ring is no longer 176 * full. 177 */ 178 if (++fep->tx_free == MAX_SKB_FRAGS) 179 do_wake = 1; 180 tx_left--; 181 } 182 183 fep->dirty_tx = bdp; 184 185 if (do_restart) 186 (*fep->ops->tx_restart)(dev); 187 188 spin_unlock(&fep->tx_lock); 189 190 if (do_wake) 191 netif_wake_queue(dev); 192 193 /* 194 * First, grab all of the stats for the incoming packet. 195 * These get messed up if we get called due to a busy condition. 196 */ 197 bdp = fep->cur_rx; 198 199 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 && 200 received < budget) { 201 curidx = bdp - fep->rx_bd_base; 202 203 /* 204 * Since we have allocated space to hold a complete frame, 205 * the last indicator should be set. 206 */ 207 if ((sc & BD_ENET_RX_LAST) == 0) 208 dev_warn(fep->dev, "rcv is not +last\n"); 209 210 /* 211 * Check for errors. 212 */ 213 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 214 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 215 dev->stats.rx_errors++; 216 /* Frame too long or too short. */ 217 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 218 dev->stats.rx_length_errors++; 219 /* Frame alignment */ 220 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 221 dev->stats.rx_frame_errors++; 222 /* CRC Error */ 223 if (sc & BD_ENET_RX_CR) 224 dev->stats.rx_crc_errors++; 225 /* FIFO overrun */ 226 if (sc & BD_ENET_RX_OV) 227 dev->stats.rx_crc_errors++; 228 229 skbn = fep->rx_skbuff[curidx]; 230 } else { 231 skb = fep->rx_skbuff[curidx]; 232 233 /* 234 * Process the incoming frame. 235 */ 236 dev->stats.rx_packets++; 237 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 238 dev->stats.rx_bytes += pkt_len + 4; 239 240 if (pkt_len <= fpi->rx_copybreak) { 241 /* +2 to make IP header L1 cache aligned */ 242 skbn = netdev_alloc_skb(dev, pkt_len + 2); 243 if (skbn != NULL) { 244 skb_reserve(skbn, 2); /* align IP header */ 245 skb_copy_from_linear_data(skb, 246 skbn->data, pkt_len); 247 swap(skb, skbn); 248 dma_sync_single_for_cpu(fep->dev, 249 CBDR_BUFADDR(bdp), 250 L1_CACHE_ALIGN(pkt_len), 251 DMA_FROM_DEVICE); 252 } 253 } else { 254 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 255 256 if (skbn) { 257 dma_addr_t dma; 258 259 skb_align(skbn, ENET_RX_ALIGN); 260 261 dma_unmap_single(fep->dev, 262 CBDR_BUFADDR(bdp), 263 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 264 DMA_FROM_DEVICE); 265 266 dma = dma_map_single(fep->dev, 267 skbn->data, 268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 269 DMA_FROM_DEVICE); 270 CBDW_BUFADDR(bdp, dma); 271 } 272 } 273 274 if (skbn != NULL) { 275 skb_put(skb, pkt_len); /* Make room */ 276 skb->protocol = eth_type_trans(skb, dev); 277 received++; 278 netif_receive_skb(skb); 279 } else { 280 dev->stats.rx_dropped++; 281 skbn = skb; 282 } 283 } 284 285 fep->rx_skbuff[curidx] = skbn; 286 CBDW_DATLEN(bdp, 0); 287 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 288 289 /* 290 * Update BD pointer to next entry. 291 */ 292 if ((sc & BD_ENET_RX_WRAP) == 0) 293 bdp++; 294 else 295 bdp = fep->rx_bd_base; 296 297 (*fep->ops->rx_bd_done)(dev); 298 } 299 300 fep->cur_rx = bdp; 301 302 if (received < budget && tx_left) { 303 /* done */ 304 napi_complete_done(napi, received); 305 (*fep->ops->napi_enable)(dev); 306 307 return received; 308 } 309 310 return budget; 311 } 312 313 /* 314 * The interrupt handler. 315 * This is called from the MPC core interrupt. 316 */ 317 static irqreturn_t 318 fs_enet_interrupt(int irq, void *dev_id) 319 { 320 struct net_device *dev = dev_id; 321 struct fs_enet_private *fep; 322 const struct fs_platform_info *fpi; 323 u32 int_events; 324 u32 int_clr_events; 325 int nr, napi_ok; 326 int handled; 327 328 fep = netdev_priv(dev); 329 fpi = fep->fpi; 330 331 nr = 0; 332 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 333 nr++; 334 335 int_clr_events = int_events; 336 int_clr_events &= ~fep->ev_napi; 337 338 (*fep->ops->clear_int_events)(dev, int_clr_events); 339 340 if (int_events & fep->ev_err) 341 (*fep->ops->ev_error)(dev, int_events); 342 343 if (int_events & fep->ev) { 344 napi_ok = napi_schedule_prep(&fep->napi); 345 346 (*fep->ops->napi_disable)(dev); 347 (*fep->ops->clear_int_events)(dev, fep->ev_napi); 348 349 /* NOTE: it is possible for FCCs in NAPI mode */ 350 /* to submit a spurious interrupt while in poll */ 351 if (napi_ok) 352 __napi_schedule(&fep->napi); 353 } 354 355 } 356 357 handled = nr > 0; 358 return IRQ_RETVAL(handled); 359 } 360 361 void fs_init_bds(struct net_device *dev) 362 { 363 struct fs_enet_private *fep = netdev_priv(dev); 364 cbd_t __iomem *bdp; 365 struct sk_buff *skb; 366 int i; 367 368 fs_cleanup_bds(dev); 369 370 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 371 fep->tx_free = fep->tx_ring; 372 fep->cur_rx = fep->rx_bd_base; 373 374 /* 375 * Initialize the receive buffer descriptors. 376 */ 377 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 378 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 379 if (skb == NULL) 380 break; 381 382 skb_align(skb, ENET_RX_ALIGN); 383 fep->rx_skbuff[i] = skb; 384 CBDW_BUFADDR(bdp, 385 dma_map_single(fep->dev, skb->data, 386 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 387 DMA_FROM_DEVICE)); 388 CBDW_DATLEN(bdp, 0); /* zero */ 389 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 390 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 391 } 392 /* 393 * if we failed, fillup remainder 394 */ 395 for (; i < fep->rx_ring; i++, bdp++) { 396 fep->rx_skbuff[i] = NULL; 397 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 398 } 399 400 /* 401 * ...and the same for transmit. 402 */ 403 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 404 fep->tx_skbuff[i] = NULL; 405 CBDW_BUFADDR(bdp, 0); 406 CBDW_DATLEN(bdp, 0); 407 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 408 } 409 } 410 411 void fs_cleanup_bds(struct net_device *dev) 412 { 413 struct fs_enet_private *fep = netdev_priv(dev); 414 struct sk_buff *skb; 415 cbd_t __iomem *bdp; 416 int i; 417 418 /* 419 * Reset SKB transmit buffers. 420 */ 421 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 422 if ((skb = fep->tx_skbuff[i]) == NULL) 423 continue; 424 425 /* unmap */ 426 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 427 skb->len, DMA_TO_DEVICE); 428 429 fep->tx_skbuff[i] = NULL; 430 dev_kfree_skb(skb); 431 } 432 433 /* 434 * Reset SKB receive buffers 435 */ 436 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 437 if ((skb = fep->rx_skbuff[i]) == NULL) 438 continue; 439 440 /* unmap */ 441 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 442 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 443 DMA_FROM_DEVICE); 444 445 fep->rx_skbuff[i] = NULL; 446 447 dev_kfree_skb(skb); 448 } 449 } 450 451 /**********************************************************************************/ 452 453 #ifdef CONFIG_FS_ENET_MPC5121_FEC 454 /* 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 456 */ 457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 458 struct sk_buff *skb) 459 { 460 struct sk_buff *new_skb; 461 462 if (skb_linearize(skb)) 463 return NULL; 464 465 /* Alloc new skb */ 466 new_skb = netdev_alloc_skb(dev, skb->len + 4); 467 if (!new_skb) 468 return NULL; 469 470 /* Make sure new skb is properly aligned */ 471 skb_align(new_skb, 4); 472 473 /* Copy data to new skb ... */ 474 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 475 skb_put(new_skb, skb->len); 476 477 /* ... and free an old one */ 478 dev_kfree_skb_any(skb); 479 480 return new_skb; 481 } 482 #endif 483 484 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 485 { 486 struct fs_enet_private *fep = netdev_priv(dev); 487 cbd_t __iomem *bdp; 488 int curidx; 489 u16 sc; 490 int nr_frags; 491 skb_frag_t *frag; 492 int len; 493 #ifdef CONFIG_FS_ENET_MPC5121_FEC 494 int is_aligned = 1; 495 int i; 496 497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 498 is_aligned = 0; 499 } else { 500 nr_frags = skb_shinfo(skb)->nr_frags; 501 frag = skb_shinfo(skb)->frags; 502 for (i = 0; i < nr_frags; i++, frag++) { 503 if (!IS_ALIGNED(frag->page_offset, 4)) { 504 is_aligned = 0; 505 break; 506 } 507 } 508 } 509 510 if (!is_aligned) { 511 skb = tx_skb_align_workaround(dev, skb); 512 if (!skb) { 513 /* 514 * We have lost packet due to memory allocation error 515 * in tx_skb_align_workaround(). Hopefully original 516 * skb is still valid, so try transmit it later. 517 */ 518 return NETDEV_TX_BUSY; 519 } 520 } 521 #endif 522 523 spin_lock(&fep->tx_lock); 524 525 /* 526 * Fill in a Tx ring entry 527 */ 528 bdp = fep->cur_tx; 529 530 nr_frags = skb_shinfo(skb)->nr_frags; 531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 532 netif_stop_queue(dev); 533 spin_unlock(&fep->tx_lock); 534 535 /* 536 * Ooops. All transmit buffers are full. Bail out. 537 * This should not happen, since the tx queue should be stopped. 538 */ 539 dev_warn(fep->dev, "tx queue full!.\n"); 540 return NETDEV_TX_BUSY; 541 } 542 543 curidx = bdp - fep->tx_bd_base; 544 545 len = skb->len; 546 dev->stats.tx_bytes += len; 547 if (nr_frags) 548 len -= skb->data_len; 549 fep->tx_free -= nr_frags + 1; 550 /* 551 * Push the data cache so the CPM does not get stale memory data. 552 */ 553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 554 skb->data, len, DMA_TO_DEVICE)); 555 CBDW_DATLEN(bdp, len); 556 557 fep->mapped_as_page[curidx] = 0; 558 frag = skb_shinfo(skb)->frags; 559 while (nr_frags) { 560 CBDC_SC(bdp, 561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | 562 BD_ENET_TX_TC); 563 CBDS_SC(bdp, BD_ENET_TX_READY); 564 565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 566 bdp++, curidx++; 567 else 568 bdp = fep->tx_bd_base, curidx = 0; 569 570 len = skb_frag_size(frag); 571 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 572 DMA_TO_DEVICE)); 573 CBDW_DATLEN(bdp, len); 574 575 fep->tx_skbuff[curidx] = NULL; 576 fep->mapped_as_page[curidx] = 1; 577 578 frag++; 579 nr_frags--; 580 } 581 582 /* Trigger transmission start */ 583 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 584 BD_ENET_TX_LAST | BD_ENET_TX_TC; 585 586 /* note that while FEC does not have this bit 587 * it marks it as available for software use 588 * yay for hw reuse :) */ 589 if (skb->len <= 60) 590 sc |= BD_ENET_TX_PAD; 591 CBDC_SC(bdp, BD_ENET_TX_STATS); 592 CBDS_SC(bdp, sc); 593 594 /* Save skb pointer. */ 595 fep->tx_skbuff[curidx] = skb; 596 597 /* If this was the last BD in the ring, start at the beginning again. */ 598 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 599 bdp++; 600 else 601 bdp = fep->tx_bd_base; 602 fep->cur_tx = bdp; 603 604 if (fep->tx_free < MAX_SKB_FRAGS) 605 netif_stop_queue(dev); 606 607 skb_tx_timestamp(skb); 608 609 (*fep->ops->tx_kickstart)(dev); 610 611 spin_unlock(&fep->tx_lock); 612 613 return NETDEV_TX_OK; 614 } 615 616 static void fs_timeout(struct net_device *dev) 617 { 618 struct fs_enet_private *fep = netdev_priv(dev); 619 unsigned long flags; 620 int wake = 0; 621 622 dev->stats.tx_errors++; 623 624 spin_lock_irqsave(&fep->lock, flags); 625 626 if (dev->flags & IFF_UP) { 627 phy_stop(dev->phydev); 628 (*fep->ops->stop)(dev); 629 (*fep->ops->restart)(dev); 630 phy_start(dev->phydev); 631 } 632 633 phy_start(dev->phydev); 634 wake = fep->tx_free >= MAX_SKB_FRAGS && 635 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 636 spin_unlock_irqrestore(&fep->lock, flags); 637 638 if (wake) 639 netif_wake_queue(dev); 640 } 641 642 /*----------------------------------------------------------------------------- 643 * generic link-change handler - should be sufficient for most cases 644 *-----------------------------------------------------------------------------*/ 645 static void generic_adjust_link(struct net_device *dev) 646 { 647 struct fs_enet_private *fep = netdev_priv(dev); 648 struct phy_device *phydev = dev->phydev; 649 int new_state = 0; 650 651 if (phydev->link) { 652 /* adjust to duplex mode */ 653 if (phydev->duplex != fep->oldduplex) { 654 new_state = 1; 655 fep->oldduplex = phydev->duplex; 656 } 657 658 if (phydev->speed != fep->oldspeed) { 659 new_state = 1; 660 fep->oldspeed = phydev->speed; 661 } 662 663 if (!fep->oldlink) { 664 new_state = 1; 665 fep->oldlink = 1; 666 } 667 668 if (new_state) 669 fep->ops->restart(dev); 670 } else if (fep->oldlink) { 671 new_state = 1; 672 fep->oldlink = 0; 673 fep->oldspeed = 0; 674 fep->oldduplex = -1; 675 } 676 677 if (new_state && netif_msg_link(fep)) 678 phy_print_status(phydev); 679 } 680 681 682 static void fs_adjust_link(struct net_device *dev) 683 { 684 struct fs_enet_private *fep = netdev_priv(dev); 685 unsigned long flags; 686 687 spin_lock_irqsave(&fep->lock, flags); 688 689 if(fep->ops->adjust_link) 690 fep->ops->adjust_link(dev); 691 else 692 generic_adjust_link(dev); 693 694 spin_unlock_irqrestore(&fep->lock, flags); 695 } 696 697 static int fs_init_phy(struct net_device *dev) 698 { 699 struct fs_enet_private *fep = netdev_priv(dev); 700 struct phy_device *phydev; 701 phy_interface_t iface; 702 703 fep->oldlink = 0; 704 fep->oldspeed = 0; 705 fep->oldduplex = -1; 706 707 iface = fep->fpi->use_rmii ? 708 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 709 710 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 711 iface); 712 if (!phydev) { 713 dev_err(&dev->dev, "Could not attach to PHY\n"); 714 return -ENODEV; 715 } 716 717 return 0; 718 } 719 720 static int fs_enet_open(struct net_device *dev) 721 { 722 struct fs_enet_private *fep = netdev_priv(dev); 723 int r; 724 int err; 725 726 /* to initialize the fep->cur_rx,... */ 727 /* not doing this, will cause a crash in fs_enet_napi */ 728 fs_init_bds(fep->ndev); 729 730 napi_enable(&fep->napi); 731 732 /* Install our interrupt handler. */ 733 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 734 "fs_enet-mac", dev); 735 if (r != 0) { 736 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 737 napi_disable(&fep->napi); 738 return -EINVAL; 739 } 740 741 err = fs_init_phy(dev); 742 if (err) { 743 free_irq(fep->interrupt, dev); 744 napi_disable(&fep->napi); 745 return err; 746 } 747 phy_start(dev->phydev); 748 749 netif_start_queue(dev); 750 751 return 0; 752 } 753 754 static int fs_enet_close(struct net_device *dev) 755 { 756 struct fs_enet_private *fep = netdev_priv(dev); 757 unsigned long flags; 758 759 netif_stop_queue(dev); 760 netif_carrier_off(dev); 761 napi_disable(&fep->napi); 762 phy_stop(dev->phydev); 763 764 spin_lock_irqsave(&fep->lock, flags); 765 spin_lock(&fep->tx_lock); 766 (*fep->ops->stop)(dev); 767 spin_unlock(&fep->tx_lock); 768 spin_unlock_irqrestore(&fep->lock, flags); 769 770 /* release any irqs */ 771 phy_disconnect(dev->phydev); 772 free_irq(fep->interrupt, dev); 773 774 return 0; 775 } 776 777 /*************************************************************************/ 778 779 static void fs_get_drvinfo(struct net_device *dev, 780 struct ethtool_drvinfo *info) 781 { 782 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 783 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 784 } 785 786 static int fs_get_regs_len(struct net_device *dev) 787 { 788 struct fs_enet_private *fep = netdev_priv(dev); 789 790 return (*fep->ops->get_regs_len)(dev); 791 } 792 793 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 794 void *p) 795 { 796 struct fs_enet_private *fep = netdev_priv(dev); 797 unsigned long flags; 798 int r, len; 799 800 len = regs->len; 801 802 spin_lock_irqsave(&fep->lock, flags); 803 r = (*fep->ops->get_regs)(dev, p, &len); 804 spin_unlock_irqrestore(&fep->lock, flags); 805 806 if (r == 0) 807 regs->version = 0; 808 } 809 810 static u32 fs_get_msglevel(struct net_device *dev) 811 { 812 struct fs_enet_private *fep = netdev_priv(dev); 813 return fep->msg_enable; 814 } 815 816 static void fs_set_msglevel(struct net_device *dev, u32 value) 817 { 818 struct fs_enet_private *fep = netdev_priv(dev); 819 fep->msg_enable = value; 820 } 821 822 static int fs_get_tunable(struct net_device *dev, 823 const struct ethtool_tunable *tuna, void *data) 824 { 825 struct fs_enet_private *fep = netdev_priv(dev); 826 struct fs_platform_info *fpi = fep->fpi; 827 int ret = 0; 828 829 switch (tuna->id) { 830 case ETHTOOL_RX_COPYBREAK: 831 *(u32 *)data = fpi->rx_copybreak; 832 break; 833 default: 834 ret = -EINVAL; 835 break; 836 } 837 838 return ret; 839 } 840 841 static int fs_set_tunable(struct net_device *dev, 842 const struct ethtool_tunable *tuna, const void *data) 843 { 844 struct fs_enet_private *fep = netdev_priv(dev); 845 struct fs_platform_info *fpi = fep->fpi; 846 int ret = 0; 847 848 switch (tuna->id) { 849 case ETHTOOL_RX_COPYBREAK: 850 fpi->rx_copybreak = *(u32 *)data; 851 break; 852 default: 853 ret = -EINVAL; 854 break; 855 } 856 857 return ret; 858 } 859 860 static const struct ethtool_ops fs_ethtool_ops = { 861 .get_drvinfo = fs_get_drvinfo, 862 .get_regs_len = fs_get_regs_len, 863 .nway_reset = phy_ethtool_nway_reset, 864 .get_link = ethtool_op_get_link, 865 .get_msglevel = fs_get_msglevel, 866 .set_msglevel = fs_set_msglevel, 867 .get_regs = fs_get_regs, 868 .get_ts_info = ethtool_op_get_ts_info, 869 .get_link_ksettings = phy_ethtool_get_link_ksettings, 870 .set_link_ksettings = phy_ethtool_set_link_ksettings, 871 .get_tunable = fs_get_tunable, 872 .set_tunable = fs_set_tunable, 873 }; 874 875 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 876 { 877 if (!netif_running(dev)) 878 return -EINVAL; 879 880 return phy_mii_ioctl(dev->phydev, rq, cmd); 881 } 882 883 extern int fs_mii_connect(struct net_device *dev); 884 extern void fs_mii_disconnect(struct net_device *dev); 885 886 /**************************************************************************************/ 887 888 #ifdef CONFIG_FS_ENET_HAS_FEC 889 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 890 #else 891 #define IS_FEC(match) 0 892 #endif 893 894 static const struct net_device_ops fs_enet_netdev_ops = { 895 .ndo_open = fs_enet_open, 896 .ndo_stop = fs_enet_close, 897 .ndo_start_xmit = fs_enet_start_xmit, 898 .ndo_tx_timeout = fs_timeout, 899 .ndo_set_rx_mode = fs_set_multicast_list, 900 .ndo_do_ioctl = fs_ioctl, 901 .ndo_validate_addr = eth_validate_addr, 902 .ndo_set_mac_address = eth_mac_addr, 903 #ifdef CONFIG_NET_POLL_CONTROLLER 904 .ndo_poll_controller = fs_enet_netpoll, 905 #endif 906 }; 907 908 static const struct of_device_id fs_enet_match[]; 909 static int fs_enet_probe(struct platform_device *ofdev) 910 { 911 const struct of_device_id *match; 912 struct net_device *ndev; 913 struct fs_enet_private *fep; 914 struct fs_platform_info *fpi; 915 const u32 *data; 916 struct clk *clk; 917 int err; 918 const u8 *mac_addr; 919 const char *phy_connection_type; 920 int privsize, len, ret = -ENODEV; 921 922 match = of_match_device(fs_enet_match, &ofdev->dev); 923 if (!match) 924 return -EINVAL; 925 926 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 927 if (!fpi) 928 return -ENOMEM; 929 930 if (!IS_FEC(match)) { 931 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 932 if (!data || len != 4) 933 goto out_free_fpi; 934 935 fpi->cp_command = *data; 936 } 937 938 fpi->rx_ring = RX_RING_SIZE; 939 fpi->tx_ring = TX_RING_SIZE; 940 fpi->rx_copybreak = 240; 941 fpi->napi_weight = 17; 942 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 943 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 944 err = of_phy_register_fixed_link(ofdev->dev.of_node); 945 if (err) 946 goto out_free_fpi; 947 948 /* In the case of a fixed PHY, the DT node associated 949 * to the PHY is the Ethernet MAC DT node. 950 */ 951 fpi->phy_node = of_node_get(ofdev->dev.of_node); 952 } 953 954 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 955 phy_connection_type = of_get_property(ofdev->dev.of_node, 956 "phy-connection-type", NULL); 957 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 958 fpi->use_rmii = 1; 959 } 960 961 /* make clock lookup non-fatal (the driver is shared among platforms), 962 * but require enable to succeed when a clock was specified/found, 963 * keep a reference to the clock upon successful acquisition 964 */ 965 clk = devm_clk_get(&ofdev->dev, "per"); 966 if (!IS_ERR(clk)) { 967 ret = clk_prepare_enable(clk); 968 if (ret) 969 goto out_deregister_fixed_link; 970 971 fpi->clk_per = clk; 972 } 973 974 privsize = sizeof(*fep) + 975 sizeof(struct sk_buff **) * 976 (fpi->rx_ring + fpi->tx_ring) + 977 sizeof(char) * fpi->tx_ring; 978 979 ndev = alloc_etherdev(privsize); 980 if (!ndev) { 981 ret = -ENOMEM; 982 goto out_put; 983 } 984 985 SET_NETDEV_DEV(ndev, &ofdev->dev); 986 platform_set_drvdata(ofdev, ndev); 987 988 fep = netdev_priv(ndev); 989 fep->dev = &ofdev->dev; 990 fep->ndev = ndev; 991 fep->fpi = fpi; 992 fep->ops = match->data; 993 994 ret = fep->ops->setup_data(ndev); 995 if (ret) 996 goto out_free_dev; 997 998 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 999 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1000 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1001 fpi->tx_ring); 1002 1003 spin_lock_init(&fep->lock); 1004 spin_lock_init(&fep->tx_lock); 1005 1006 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1007 if (mac_addr) 1008 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 1009 1010 ret = fep->ops->allocate_bd(ndev); 1011 if (ret) 1012 goto out_cleanup_data; 1013 1014 fep->rx_bd_base = fep->ring_base; 1015 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1016 1017 fep->tx_ring = fpi->tx_ring; 1018 fep->rx_ring = fpi->rx_ring; 1019 1020 ndev->netdev_ops = &fs_enet_netdev_ops; 1021 ndev->watchdog_timeo = 2 * HZ; 1022 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight); 1023 1024 ndev->ethtool_ops = &fs_ethtool_ops; 1025 1026 init_timer(&fep->phy_timer_list); 1027 1028 netif_carrier_off(ndev); 1029 1030 ndev->features |= NETIF_F_SG; 1031 1032 ret = register_netdev(ndev); 1033 if (ret) 1034 goto out_free_bd; 1035 1036 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1037 1038 return 0; 1039 1040 out_free_bd: 1041 fep->ops->free_bd(ndev); 1042 out_cleanup_data: 1043 fep->ops->cleanup_data(ndev); 1044 out_free_dev: 1045 free_netdev(ndev); 1046 out_put: 1047 if (fpi->clk_per) 1048 clk_disable_unprepare(fpi->clk_per); 1049 out_deregister_fixed_link: 1050 of_node_put(fpi->phy_node); 1051 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1052 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1053 out_free_fpi: 1054 kfree(fpi); 1055 return ret; 1056 } 1057 1058 static int fs_enet_remove(struct platform_device *ofdev) 1059 { 1060 struct net_device *ndev = platform_get_drvdata(ofdev); 1061 struct fs_enet_private *fep = netdev_priv(ndev); 1062 1063 unregister_netdev(ndev); 1064 1065 fep->ops->free_bd(ndev); 1066 fep->ops->cleanup_data(ndev); 1067 dev_set_drvdata(fep->dev, NULL); 1068 of_node_put(fep->fpi->phy_node); 1069 if (fep->fpi->clk_per) 1070 clk_disable_unprepare(fep->fpi->clk_per); 1071 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1072 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1073 free_netdev(ndev); 1074 return 0; 1075 } 1076 1077 static const struct of_device_id fs_enet_match[] = { 1078 #ifdef CONFIG_FS_ENET_HAS_SCC 1079 { 1080 .compatible = "fsl,cpm1-scc-enet", 1081 .data = (void *)&fs_scc_ops, 1082 }, 1083 { 1084 .compatible = "fsl,cpm2-scc-enet", 1085 .data = (void *)&fs_scc_ops, 1086 }, 1087 #endif 1088 #ifdef CONFIG_FS_ENET_HAS_FCC 1089 { 1090 .compatible = "fsl,cpm2-fcc-enet", 1091 .data = (void *)&fs_fcc_ops, 1092 }, 1093 #endif 1094 #ifdef CONFIG_FS_ENET_HAS_FEC 1095 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1096 { 1097 .compatible = "fsl,mpc5121-fec", 1098 .data = (void *)&fs_fec_ops, 1099 }, 1100 { 1101 .compatible = "fsl,mpc5125-fec", 1102 .data = (void *)&fs_fec_ops, 1103 }, 1104 #else 1105 { 1106 .compatible = "fsl,pq1-fec-enet", 1107 .data = (void *)&fs_fec_ops, 1108 }, 1109 #endif 1110 #endif 1111 {} 1112 }; 1113 MODULE_DEVICE_TABLE(of, fs_enet_match); 1114 1115 static struct platform_driver fs_enet_driver = { 1116 .driver = { 1117 .name = "fs_enet", 1118 .of_match_table = fs_enet_match, 1119 }, 1120 .probe = fs_enet_probe, 1121 .remove = fs_enet_remove, 1122 }; 1123 1124 #ifdef CONFIG_NET_POLL_CONTROLLER 1125 static void fs_enet_netpoll(struct net_device *dev) 1126 { 1127 disable_irq(dev->irq); 1128 fs_enet_interrupt(dev->irq, dev); 1129 enable_irq(dev->irq); 1130 } 1131 #endif 1132 1133 module_platform_driver(fs_enet_driver); 1134