1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <asm/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #ifdef CONFIG_NET_POLL_CONTROLLER 64 static void fs_enet_netpoll(struct net_device *dev); 65 #endif 66 67 static void fs_set_multicast_list(struct net_device *dev) 68 { 69 struct fs_enet_private *fep = netdev_priv(dev); 70 71 (*fep->ops->set_multicast_list)(dev); 72 } 73 74 static void skb_align(struct sk_buff *skb, int align) 75 { 76 int off = ((unsigned long)skb->data) & (align - 1); 77 78 if (off) 79 skb_reserve(skb, align - off); 80 } 81 82 /* NAPI receive function */ 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget) 84 { 85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 86 struct net_device *dev = fep->ndev; 87 const struct fs_platform_info *fpi = fep->fpi; 88 cbd_t __iomem *bdp; 89 struct sk_buff *skb, *skbn, *skbt; 90 int received = 0; 91 u16 pkt_len, sc; 92 int curidx; 93 94 if (budget <= 0) 95 return received; 96 97 /* 98 * First, grab all of the stats for the incoming packet. 99 * These get messed up if we get called due to a busy condition. 100 */ 101 bdp = fep->cur_rx; 102 103 /* clear RX status bits for napi*/ 104 (*fep->ops->napi_clear_rx_event)(dev); 105 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 107 curidx = bdp - fep->rx_bd_base; 108 109 /* 110 * Since we have allocated space to hold a complete frame, 111 * the last indicator should be set. 112 */ 113 if ((sc & BD_ENET_RX_LAST) == 0) 114 dev_warn(fep->dev, "rcv is not +last\n"); 115 116 /* 117 * Check for errors. 118 */ 119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 121 fep->stats.rx_errors++; 122 /* Frame too long or too short. */ 123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 124 fep->stats.rx_length_errors++; 125 /* Frame alignment */ 126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 127 fep->stats.rx_frame_errors++; 128 /* CRC Error */ 129 if (sc & BD_ENET_RX_CR) 130 fep->stats.rx_crc_errors++; 131 /* FIFO overrun */ 132 if (sc & BD_ENET_RX_OV) 133 fep->stats.rx_crc_errors++; 134 135 skb = fep->rx_skbuff[curidx]; 136 137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 139 DMA_FROM_DEVICE); 140 141 skbn = skb; 142 143 } else { 144 skb = fep->rx_skbuff[curidx]; 145 146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 148 DMA_FROM_DEVICE); 149 150 /* 151 * Process the incoming frame. 152 */ 153 fep->stats.rx_packets++; 154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 155 fep->stats.rx_bytes += pkt_len + 4; 156 157 if (pkt_len <= fpi->rx_copybreak) { 158 /* +2 to make IP header L1 cache aligned */ 159 skbn = netdev_alloc_skb(dev, pkt_len + 2); 160 if (skbn != NULL) { 161 skb_reserve(skbn, 2); /* align IP header */ 162 skb_copy_from_linear_data(skb, 163 skbn->data, pkt_len); 164 /* swap */ 165 skbt = skb; 166 skb = skbn; 167 skbn = skbt; 168 } 169 } else { 170 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 171 172 if (skbn) 173 skb_align(skbn, ENET_RX_ALIGN); 174 } 175 176 if (skbn != NULL) { 177 skb_put(skb, pkt_len); /* Make room */ 178 skb->protocol = eth_type_trans(skb, dev); 179 received++; 180 netif_receive_skb(skb); 181 } else { 182 fep->stats.rx_dropped++; 183 skbn = skb; 184 } 185 } 186 187 fep->rx_skbuff[curidx] = skbn; 188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 190 DMA_FROM_DEVICE)); 191 CBDW_DATLEN(bdp, 0); 192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 193 194 /* 195 * Update BD pointer to next entry. 196 */ 197 if ((sc & BD_ENET_RX_WRAP) == 0) 198 bdp++; 199 else 200 bdp = fep->rx_bd_base; 201 202 (*fep->ops->rx_bd_done)(dev); 203 204 if (received >= budget) 205 break; 206 } 207 208 fep->cur_rx = bdp; 209 210 if (received < budget) { 211 /* done */ 212 napi_complete(napi); 213 (*fep->ops->napi_enable_rx)(dev); 214 } 215 return received; 216 } 217 218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget) 219 { 220 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, 221 napi_tx); 222 struct net_device *dev = fep->ndev; 223 cbd_t __iomem *bdp; 224 struct sk_buff *skb; 225 int dirtyidx, do_wake, do_restart; 226 u16 sc; 227 int has_tx_work = 0; 228 229 spin_lock(&fep->tx_lock); 230 bdp = fep->dirty_tx; 231 232 /* clear TX status bits for napi*/ 233 (*fep->ops->napi_clear_tx_event)(dev); 234 235 do_wake = do_restart = 0; 236 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { 237 dirtyidx = bdp - fep->tx_bd_base; 238 239 if (fep->tx_free == fep->tx_ring) 240 break; 241 242 skb = fep->tx_skbuff[dirtyidx]; 243 244 /* 245 * Check for errors. 246 */ 247 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 248 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 249 250 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 251 fep->stats.tx_heartbeat_errors++; 252 if (sc & BD_ENET_TX_LC) /* Late collision */ 253 fep->stats.tx_window_errors++; 254 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 255 fep->stats.tx_aborted_errors++; 256 if (sc & BD_ENET_TX_UN) /* Underrun */ 257 fep->stats.tx_fifo_errors++; 258 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 259 fep->stats.tx_carrier_errors++; 260 261 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 262 fep->stats.tx_errors++; 263 do_restart = 1; 264 } 265 } else 266 fep->stats.tx_packets++; 267 268 if (sc & BD_ENET_TX_READY) { 269 dev_warn(fep->dev, 270 "HEY! Enet xmit interrupt and TX_READY.\n"); 271 } 272 273 /* 274 * Deferred means some collisions occurred during transmit, 275 * but we eventually sent the packet OK. 276 */ 277 if (sc & BD_ENET_TX_DEF) 278 fep->stats.collisions++; 279 280 /* unmap */ 281 if (fep->mapped_as_page[dirtyidx]) 282 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 283 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 284 else 285 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 286 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 287 288 /* 289 * Free the sk buffer associated with this last transmit. 290 */ 291 if (skb) { 292 dev_kfree_skb(skb); 293 fep->tx_skbuff[dirtyidx] = NULL; 294 } 295 296 /* 297 * Update pointer to next buffer descriptor to be transmitted. 298 */ 299 if ((sc & BD_ENET_TX_WRAP) == 0) 300 bdp++; 301 else 302 bdp = fep->tx_bd_base; 303 304 /* 305 * Since we have freed up a buffer, the ring is no longer 306 * full. 307 */ 308 if (++fep->tx_free >= MAX_SKB_FRAGS) 309 do_wake = 1; 310 has_tx_work = 1; 311 } 312 313 fep->dirty_tx = bdp; 314 315 if (do_restart) 316 (*fep->ops->tx_restart)(dev); 317 318 if (!has_tx_work) { 319 napi_complete(napi); 320 (*fep->ops->napi_enable_tx)(dev); 321 } 322 323 spin_unlock(&fep->tx_lock); 324 325 if (do_wake) 326 netif_wake_queue(dev); 327 328 if (has_tx_work) 329 return budget; 330 return 0; 331 } 332 333 /* 334 * The interrupt handler. 335 * This is called from the MPC core interrupt. 336 */ 337 static irqreturn_t 338 fs_enet_interrupt(int irq, void *dev_id) 339 { 340 struct net_device *dev = dev_id; 341 struct fs_enet_private *fep; 342 const struct fs_platform_info *fpi; 343 u32 int_events; 344 u32 int_clr_events; 345 int nr, napi_ok; 346 int handled; 347 348 fep = netdev_priv(dev); 349 fpi = fep->fpi; 350 351 nr = 0; 352 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 353 nr++; 354 355 int_clr_events = int_events; 356 int_clr_events &= ~fep->ev_napi_rx; 357 358 (*fep->ops->clear_int_events)(dev, int_clr_events); 359 360 if (int_events & fep->ev_err) 361 (*fep->ops->ev_error)(dev, int_events); 362 363 if (int_events & fep->ev_rx) { 364 napi_ok = napi_schedule_prep(&fep->napi); 365 366 (*fep->ops->napi_disable_rx)(dev); 367 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx); 368 369 /* NOTE: it is possible for FCCs in NAPI mode */ 370 /* to submit a spurious interrupt while in poll */ 371 if (napi_ok) 372 __napi_schedule(&fep->napi); 373 } 374 375 if (int_events & fep->ev_tx) { 376 napi_ok = napi_schedule_prep(&fep->napi_tx); 377 378 (*fep->ops->napi_disable_tx)(dev); 379 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx); 380 381 /* NOTE: it is possible for FCCs in NAPI mode */ 382 /* to submit a spurious interrupt while in poll */ 383 if (napi_ok) 384 __napi_schedule(&fep->napi_tx); 385 } 386 } 387 388 handled = nr > 0; 389 return IRQ_RETVAL(handled); 390 } 391 392 void fs_init_bds(struct net_device *dev) 393 { 394 struct fs_enet_private *fep = netdev_priv(dev); 395 cbd_t __iomem *bdp; 396 struct sk_buff *skb; 397 int i; 398 399 fs_cleanup_bds(dev); 400 401 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 402 fep->tx_free = fep->tx_ring; 403 fep->cur_rx = fep->rx_bd_base; 404 405 /* 406 * Initialize the receive buffer descriptors. 407 */ 408 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 409 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 410 if (skb == NULL) 411 break; 412 413 skb_align(skb, ENET_RX_ALIGN); 414 fep->rx_skbuff[i] = skb; 415 CBDW_BUFADDR(bdp, 416 dma_map_single(fep->dev, skb->data, 417 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 418 DMA_FROM_DEVICE)); 419 CBDW_DATLEN(bdp, 0); /* zero */ 420 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 421 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 422 } 423 /* 424 * if we failed, fillup remainder 425 */ 426 for (; i < fep->rx_ring; i++, bdp++) { 427 fep->rx_skbuff[i] = NULL; 428 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 429 } 430 431 /* 432 * ...and the same for transmit. 433 */ 434 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 435 fep->tx_skbuff[i] = NULL; 436 CBDW_BUFADDR(bdp, 0); 437 CBDW_DATLEN(bdp, 0); 438 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 439 } 440 } 441 442 void fs_cleanup_bds(struct net_device *dev) 443 { 444 struct fs_enet_private *fep = netdev_priv(dev); 445 struct sk_buff *skb; 446 cbd_t __iomem *bdp; 447 int i; 448 449 /* 450 * Reset SKB transmit buffers. 451 */ 452 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 453 if ((skb = fep->tx_skbuff[i]) == NULL) 454 continue; 455 456 /* unmap */ 457 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 458 skb->len, DMA_TO_DEVICE); 459 460 fep->tx_skbuff[i] = NULL; 461 dev_kfree_skb(skb); 462 } 463 464 /* 465 * Reset SKB receive buffers 466 */ 467 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 468 if ((skb = fep->rx_skbuff[i]) == NULL) 469 continue; 470 471 /* unmap */ 472 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 473 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 474 DMA_FROM_DEVICE); 475 476 fep->rx_skbuff[i] = NULL; 477 478 dev_kfree_skb(skb); 479 } 480 } 481 482 /**********************************************************************************/ 483 484 #ifdef CONFIG_FS_ENET_MPC5121_FEC 485 /* 486 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 487 */ 488 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 489 struct sk_buff *skb) 490 { 491 struct sk_buff *new_skb; 492 493 /* Alloc new skb */ 494 new_skb = netdev_alloc_skb(dev, skb->len + 4); 495 if (!new_skb) 496 return NULL; 497 498 /* Make sure new skb is properly aligned */ 499 skb_align(new_skb, 4); 500 501 /* Copy data to new skb ... */ 502 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 503 skb_put(new_skb, skb->len); 504 505 /* ... and free an old one */ 506 dev_kfree_skb_any(skb); 507 508 return new_skb; 509 } 510 #endif 511 512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 513 { 514 struct fs_enet_private *fep = netdev_priv(dev); 515 cbd_t __iomem *bdp; 516 int curidx; 517 u16 sc; 518 int nr_frags = skb_shinfo(skb)->nr_frags; 519 skb_frag_t *frag; 520 int len; 521 522 #ifdef CONFIG_FS_ENET_MPC5121_FEC 523 if (((unsigned long)skb->data) & 0x3) { 524 skb = tx_skb_align_workaround(dev, skb); 525 if (!skb) { 526 /* 527 * We have lost packet due to memory allocation error 528 * in tx_skb_align_workaround(). Hopefully original 529 * skb is still valid, so try transmit it later. 530 */ 531 return NETDEV_TX_BUSY; 532 } 533 } 534 #endif 535 spin_lock(&fep->tx_lock); 536 537 /* 538 * Fill in a Tx ring entry 539 */ 540 bdp = fep->cur_tx; 541 542 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 543 netif_stop_queue(dev); 544 spin_unlock(&fep->tx_lock); 545 546 /* 547 * Ooops. All transmit buffers are full. Bail out. 548 * This should not happen, since the tx queue should be stopped. 549 */ 550 dev_warn(fep->dev, "tx queue full!.\n"); 551 return NETDEV_TX_BUSY; 552 } 553 554 curidx = bdp - fep->tx_bd_base; 555 556 len = skb->len; 557 fep->stats.tx_bytes += len; 558 if (nr_frags) 559 len -= skb->data_len; 560 fep->tx_free -= nr_frags + 1; 561 /* 562 * Push the data cache so the CPM does not get stale memory data. 563 */ 564 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 565 skb->data, len, DMA_TO_DEVICE)); 566 CBDW_DATLEN(bdp, len); 567 568 fep->mapped_as_page[curidx] = 0; 569 frag = skb_shinfo(skb)->frags; 570 while (nr_frags) { 571 CBDC_SC(bdp, 572 BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC); 573 CBDS_SC(bdp, BD_ENET_TX_READY); 574 575 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 576 bdp++, curidx++; 577 else 578 bdp = fep->tx_bd_base, curidx = 0; 579 580 len = skb_frag_size(frag); 581 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 582 DMA_TO_DEVICE)); 583 CBDW_DATLEN(bdp, len); 584 585 fep->tx_skbuff[curidx] = NULL; 586 fep->mapped_as_page[curidx] = 1; 587 588 frag++; 589 nr_frags--; 590 } 591 592 /* Trigger transmission start */ 593 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 594 BD_ENET_TX_LAST | BD_ENET_TX_TC; 595 596 /* note that while FEC does not have this bit 597 * it marks it as available for software use 598 * yay for hw reuse :) */ 599 if (skb->len <= 60) 600 sc |= BD_ENET_TX_PAD; 601 CBDC_SC(bdp, BD_ENET_TX_STATS); 602 CBDS_SC(bdp, sc); 603 604 /* Save skb pointer. */ 605 fep->tx_skbuff[curidx] = skb; 606 607 /* If this was the last BD in the ring, start at the beginning again. */ 608 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 609 bdp++; 610 else 611 bdp = fep->tx_bd_base; 612 fep->cur_tx = bdp; 613 614 if (fep->tx_free < MAX_SKB_FRAGS) 615 netif_stop_queue(dev); 616 617 skb_tx_timestamp(skb); 618 619 (*fep->ops->tx_kickstart)(dev); 620 621 spin_unlock(&fep->tx_lock); 622 623 return NETDEV_TX_OK; 624 } 625 626 static void fs_timeout(struct net_device *dev) 627 { 628 struct fs_enet_private *fep = netdev_priv(dev); 629 unsigned long flags; 630 int wake = 0; 631 632 fep->stats.tx_errors++; 633 634 spin_lock_irqsave(&fep->lock, flags); 635 636 if (dev->flags & IFF_UP) { 637 phy_stop(fep->phydev); 638 (*fep->ops->stop)(dev); 639 (*fep->ops->restart)(dev); 640 phy_start(fep->phydev); 641 } 642 643 phy_start(fep->phydev); 644 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 645 spin_unlock_irqrestore(&fep->lock, flags); 646 647 if (wake) 648 netif_wake_queue(dev); 649 } 650 651 /*----------------------------------------------------------------------------- 652 * generic link-change handler - should be sufficient for most cases 653 *-----------------------------------------------------------------------------*/ 654 static void generic_adjust_link(struct net_device *dev) 655 { 656 struct fs_enet_private *fep = netdev_priv(dev); 657 struct phy_device *phydev = fep->phydev; 658 int new_state = 0; 659 660 if (phydev->link) { 661 /* adjust to duplex mode */ 662 if (phydev->duplex != fep->oldduplex) { 663 new_state = 1; 664 fep->oldduplex = phydev->duplex; 665 } 666 667 if (phydev->speed != fep->oldspeed) { 668 new_state = 1; 669 fep->oldspeed = phydev->speed; 670 } 671 672 if (!fep->oldlink) { 673 new_state = 1; 674 fep->oldlink = 1; 675 } 676 677 if (new_state) 678 fep->ops->restart(dev); 679 } else if (fep->oldlink) { 680 new_state = 1; 681 fep->oldlink = 0; 682 fep->oldspeed = 0; 683 fep->oldduplex = -1; 684 } 685 686 if (new_state && netif_msg_link(fep)) 687 phy_print_status(phydev); 688 } 689 690 691 static void fs_adjust_link(struct net_device *dev) 692 { 693 struct fs_enet_private *fep = netdev_priv(dev); 694 unsigned long flags; 695 696 spin_lock_irqsave(&fep->lock, flags); 697 698 if(fep->ops->adjust_link) 699 fep->ops->adjust_link(dev); 700 else 701 generic_adjust_link(dev); 702 703 spin_unlock_irqrestore(&fep->lock, flags); 704 } 705 706 static int fs_init_phy(struct net_device *dev) 707 { 708 struct fs_enet_private *fep = netdev_priv(dev); 709 struct phy_device *phydev; 710 phy_interface_t iface; 711 712 fep->oldlink = 0; 713 fep->oldspeed = 0; 714 fep->oldduplex = -1; 715 716 iface = fep->fpi->use_rmii ? 717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 718 719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 720 iface); 721 if (!phydev) { 722 dev_err(&dev->dev, "Could not attach to PHY\n"); 723 return -ENODEV; 724 } 725 726 fep->phydev = phydev; 727 728 return 0; 729 } 730 731 static int fs_enet_open(struct net_device *dev) 732 { 733 struct fs_enet_private *fep = netdev_priv(dev); 734 int r; 735 int err; 736 737 /* to initialize the fep->cur_rx,... */ 738 /* not doing this, will cause a crash in fs_enet_rx_napi */ 739 fs_init_bds(fep->ndev); 740 741 napi_enable(&fep->napi); 742 napi_enable(&fep->napi_tx); 743 744 /* Install our interrupt handler. */ 745 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 746 "fs_enet-mac", dev); 747 if (r != 0) { 748 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 749 napi_disable(&fep->napi); 750 napi_disable(&fep->napi_tx); 751 return -EINVAL; 752 } 753 754 err = fs_init_phy(dev); 755 if (err) { 756 free_irq(fep->interrupt, dev); 757 napi_disable(&fep->napi); 758 napi_disable(&fep->napi_tx); 759 return err; 760 } 761 phy_start(fep->phydev); 762 763 netif_start_queue(dev); 764 765 return 0; 766 } 767 768 static int fs_enet_close(struct net_device *dev) 769 { 770 struct fs_enet_private *fep = netdev_priv(dev); 771 unsigned long flags; 772 773 netif_stop_queue(dev); 774 netif_carrier_off(dev); 775 napi_disable(&fep->napi); 776 napi_disable(&fep->napi_tx); 777 phy_stop(fep->phydev); 778 779 spin_lock_irqsave(&fep->lock, flags); 780 spin_lock(&fep->tx_lock); 781 (*fep->ops->stop)(dev); 782 spin_unlock(&fep->tx_lock); 783 spin_unlock_irqrestore(&fep->lock, flags); 784 785 /* release any irqs */ 786 phy_disconnect(fep->phydev); 787 fep->phydev = NULL; 788 free_irq(fep->interrupt, dev); 789 790 return 0; 791 } 792 793 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev) 794 { 795 struct fs_enet_private *fep = netdev_priv(dev); 796 return &fep->stats; 797 } 798 799 /*************************************************************************/ 800 801 static void fs_get_drvinfo(struct net_device *dev, 802 struct ethtool_drvinfo *info) 803 { 804 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 805 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 806 } 807 808 static int fs_get_regs_len(struct net_device *dev) 809 { 810 struct fs_enet_private *fep = netdev_priv(dev); 811 812 return (*fep->ops->get_regs_len)(dev); 813 } 814 815 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 816 void *p) 817 { 818 struct fs_enet_private *fep = netdev_priv(dev); 819 unsigned long flags; 820 int r, len; 821 822 len = regs->len; 823 824 spin_lock_irqsave(&fep->lock, flags); 825 r = (*fep->ops->get_regs)(dev, p, &len); 826 spin_unlock_irqrestore(&fep->lock, flags); 827 828 if (r == 0) 829 regs->version = 0; 830 } 831 832 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 833 { 834 struct fs_enet_private *fep = netdev_priv(dev); 835 836 if (!fep->phydev) 837 return -ENODEV; 838 839 return phy_ethtool_gset(fep->phydev, cmd); 840 } 841 842 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 843 { 844 struct fs_enet_private *fep = netdev_priv(dev); 845 846 if (!fep->phydev) 847 return -ENODEV; 848 849 return phy_ethtool_sset(fep->phydev, cmd); 850 } 851 852 static int fs_nway_reset(struct net_device *dev) 853 { 854 return 0; 855 } 856 857 static u32 fs_get_msglevel(struct net_device *dev) 858 { 859 struct fs_enet_private *fep = netdev_priv(dev); 860 return fep->msg_enable; 861 } 862 863 static void fs_set_msglevel(struct net_device *dev, u32 value) 864 { 865 struct fs_enet_private *fep = netdev_priv(dev); 866 fep->msg_enable = value; 867 } 868 869 static const struct ethtool_ops fs_ethtool_ops = { 870 .get_drvinfo = fs_get_drvinfo, 871 .get_regs_len = fs_get_regs_len, 872 .get_settings = fs_get_settings, 873 .set_settings = fs_set_settings, 874 .nway_reset = fs_nway_reset, 875 .get_link = ethtool_op_get_link, 876 .get_msglevel = fs_get_msglevel, 877 .set_msglevel = fs_set_msglevel, 878 .get_regs = fs_get_regs, 879 .get_ts_info = ethtool_op_get_ts_info, 880 }; 881 882 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 883 { 884 struct fs_enet_private *fep = netdev_priv(dev); 885 886 if (!netif_running(dev)) 887 return -EINVAL; 888 889 return phy_mii_ioctl(fep->phydev, rq, cmd); 890 } 891 892 extern int fs_mii_connect(struct net_device *dev); 893 extern void fs_mii_disconnect(struct net_device *dev); 894 895 /**************************************************************************************/ 896 897 #ifdef CONFIG_FS_ENET_HAS_FEC 898 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 899 #else 900 #define IS_FEC(match) 0 901 #endif 902 903 static const struct net_device_ops fs_enet_netdev_ops = { 904 .ndo_open = fs_enet_open, 905 .ndo_stop = fs_enet_close, 906 .ndo_get_stats = fs_enet_get_stats, 907 .ndo_start_xmit = fs_enet_start_xmit, 908 .ndo_tx_timeout = fs_timeout, 909 .ndo_set_rx_mode = fs_set_multicast_list, 910 .ndo_do_ioctl = fs_ioctl, 911 .ndo_validate_addr = eth_validate_addr, 912 .ndo_set_mac_address = eth_mac_addr, 913 .ndo_change_mtu = eth_change_mtu, 914 #ifdef CONFIG_NET_POLL_CONTROLLER 915 .ndo_poll_controller = fs_enet_netpoll, 916 #endif 917 }; 918 919 static struct of_device_id fs_enet_match[]; 920 static int fs_enet_probe(struct platform_device *ofdev) 921 { 922 const struct of_device_id *match; 923 struct net_device *ndev; 924 struct fs_enet_private *fep; 925 struct fs_platform_info *fpi; 926 const u32 *data; 927 struct clk *clk; 928 int err; 929 const u8 *mac_addr; 930 const char *phy_connection_type; 931 int privsize, len, ret = -ENODEV; 932 933 match = of_match_device(fs_enet_match, &ofdev->dev); 934 if (!match) 935 return -EINVAL; 936 937 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 938 if (!fpi) 939 return -ENOMEM; 940 941 if (!IS_FEC(match)) { 942 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 943 if (!data || len != 4) 944 goto out_free_fpi; 945 946 fpi->cp_command = *data; 947 } 948 949 fpi->rx_ring = 32; 950 fpi->tx_ring = 64; 951 fpi->rx_copybreak = 240; 952 fpi->napi_weight = 17; 953 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 954 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 955 err = of_phy_register_fixed_link(ofdev->dev.of_node); 956 if (err) 957 goto out_free_fpi; 958 959 /* In the case of a fixed PHY, the DT node associated 960 * to the PHY is the Ethernet MAC DT node. 961 */ 962 fpi->phy_node = of_node_get(ofdev->dev.of_node); 963 } 964 965 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 966 phy_connection_type = of_get_property(ofdev->dev.of_node, 967 "phy-connection-type", NULL); 968 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 969 fpi->use_rmii = 1; 970 } 971 972 /* make clock lookup non-fatal (the driver is shared among platforms), 973 * but require enable to succeed when a clock was specified/found, 974 * keep a reference to the clock upon successful acquisition 975 */ 976 clk = devm_clk_get(&ofdev->dev, "per"); 977 if (!IS_ERR(clk)) { 978 err = clk_prepare_enable(clk); 979 if (err) { 980 ret = err; 981 goto out_free_fpi; 982 } 983 fpi->clk_per = clk; 984 } 985 986 privsize = sizeof(*fep) + 987 sizeof(struct sk_buff **) * 988 (fpi->rx_ring + fpi->tx_ring) + 989 sizeof(char) * fpi->tx_ring; 990 991 ndev = alloc_etherdev(privsize); 992 if (!ndev) { 993 ret = -ENOMEM; 994 goto out_put; 995 } 996 997 SET_NETDEV_DEV(ndev, &ofdev->dev); 998 platform_set_drvdata(ofdev, ndev); 999 1000 fep = netdev_priv(ndev); 1001 fep->dev = &ofdev->dev; 1002 fep->ndev = ndev; 1003 fep->fpi = fpi; 1004 fep->ops = match->data; 1005 1006 ret = fep->ops->setup_data(ndev); 1007 if (ret) 1008 goto out_free_dev; 1009 1010 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1011 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1012 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1013 fpi->tx_ring); 1014 1015 spin_lock_init(&fep->lock); 1016 spin_lock_init(&fep->tx_lock); 1017 1018 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1019 if (mac_addr) 1020 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 1021 1022 ret = fep->ops->allocate_bd(ndev); 1023 if (ret) 1024 goto out_cleanup_data; 1025 1026 fep->rx_bd_base = fep->ring_base; 1027 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1028 1029 fep->tx_ring = fpi->tx_ring; 1030 fep->rx_ring = fpi->rx_ring; 1031 1032 ndev->netdev_ops = &fs_enet_netdev_ops; 1033 ndev->watchdog_timeo = 2 * HZ; 1034 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight); 1035 netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2); 1036 1037 ndev->ethtool_ops = &fs_ethtool_ops; 1038 1039 init_timer(&fep->phy_timer_list); 1040 1041 netif_carrier_off(ndev); 1042 1043 ndev->features |= NETIF_F_SG; 1044 1045 ret = register_netdev(ndev); 1046 if (ret) 1047 goto out_free_bd; 1048 1049 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1050 1051 return 0; 1052 1053 out_free_bd: 1054 fep->ops->free_bd(ndev); 1055 out_cleanup_data: 1056 fep->ops->cleanup_data(ndev); 1057 out_free_dev: 1058 free_netdev(ndev); 1059 out_put: 1060 of_node_put(fpi->phy_node); 1061 if (fpi->clk_per) 1062 clk_disable_unprepare(fpi->clk_per); 1063 out_free_fpi: 1064 kfree(fpi); 1065 return ret; 1066 } 1067 1068 static int fs_enet_remove(struct platform_device *ofdev) 1069 { 1070 struct net_device *ndev = platform_get_drvdata(ofdev); 1071 struct fs_enet_private *fep = netdev_priv(ndev); 1072 1073 unregister_netdev(ndev); 1074 1075 fep->ops->free_bd(ndev); 1076 fep->ops->cleanup_data(ndev); 1077 dev_set_drvdata(fep->dev, NULL); 1078 of_node_put(fep->fpi->phy_node); 1079 if (fep->fpi->clk_per) 1080 clk_disable_unprepare(fep->fpi->clk_per); 1081 free_netdev(ndev); 1082 return 0; 1083 } 1084 1085 static struct of_device_id fs_enet_match[] = { 1086 #ifdef CONFIG_FS_ENET_HAS_SCC 1087 { 1088 .compatible = "fsl,cpm1-scc-enet", 1089 .data = (void *)&fs_scc_ops, 1090 }, 1091 { 1092 .compatible = "fsl,cpm2-scc-enet", 1093 .data = (void *)&fs_scc_ops, 1094 }, 1095 #endif 1096 #ifdef CONFIG_FS_ENET_HAS_FCC 1097 { 1098 .compatible = "fsl,cpm2-fcc-enet", 1099 .data = (void *)&fs_fcc_ops, 1100 }, 1101 #endif 1102 #ifdef CONFIG_FS_ENET_HAS_FEC 1103 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1104 { 1105 .compatible = "fsl,mpc5121-fec", 1106 .data = (void *)&fs_fec_ops, 1107 }, 1108 { 1109 .compatible = "fsl,mpc5125-fec", 1110 .data = (void *)&fs_fec_ops, 1111 }, 1112 #else 1113 { 1114 .compatible = "fsl,pq1-fec-enet", 1115 .data = (void *)&fs_fec_ops, 1116 }, 1117 #endif 1118 #endif 1119 {} 1120 }; 1121 MODULE_DEVICE_TABLE(of, fs_enet_match); 1122 1123 static struct platform_driver fs_enet_driver = { 1124 .driver = { 1125 .name = "fs_enet", 1126 .of_match_table = fs_enet_match, 1127 }, 1128 .probe = fs_enet_probe, 1129 .remove = fs_enet_remove, 1130 }; 1131 1132 #ifdef CONFIG_NET_POLL_CONTROLLER 1133 static void fs_enet_netpoll(struct net_device *dev) 1134 { 1135 disable_irq(dev->irq); 1136 fs_enet_interrupt(dev->irq, dev); 1137 enable_irq(dev->irq); 1138 } 1139 #endif 1140 1141 module_platform_driver(fs_enet_driver); 1142