xref: /linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48 
49 #include "fs_enet.h"
50 
51 /*************************************************/
52 
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57 
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 		 "Freescale bitmapped debugging message enable value");
62 
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66 
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 	struct fs_enet_private *fep = netdev_priv(dev);
70 
71 	(*fep->ops->set_multicast_list)(dev);
72 }
73 
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 	int off = ((unsigned long)skb->data) & (align - 1);
77 
78 	if (off)
79 		skb_reserve(skb, align - off);
80 }
81 
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 	struct net_device *dev = fep->ndev;
87 	const struct fs_platform_info *fpi = fep->fpi;
88 	cbd_t __iomem *bdp;
89 	struct sk_buff *skb, *skbn;
90 	int received = 0;
91 	u16 pkt_len, sc;
92 	int curidx;
93 
94 	if (budget <= 0)
95 		return received;
96 
97 	/*
98 	 * First, grab all of the stats for the incoming packet.
99 	 * These get messed up if we get called due to a busy condition.
100 	 */
101 	bdp = fep->cur_rx;
102 
103 	/* clear RX status bits for napi*/
104 	(*fep->ops->napi_clear_rx_event)(dev);
105 
106 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 		curidx = bdp - fep->rx_bd_base;
108 
109 		/*
110 		 * Since we have allocated space to hold a complete frame,
111 		 * the last indicator should be set.
112 		 */
113 		if ((sc & BD_ENET_RX_LAST) == 0)
114 			dev_warn(fep->dev, "rcv is not +last\n");
115 
116 		/*
117 		 * Check for errors.
118 		 */
119 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 			fep->stats.rx_errors++;
122 			/* Frame too long or too short. */
123 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 				fep->stats.rx_length_errors++;
125 			/* Frame alignment */
126 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 				fep->stats.rx_frame_errors++;
128 			/* CRC Error */
129 			if (sc & BD_ENET_RX_CR)
130 				fep->stats.rx_crc_errors++;
131 			/* FIFO overrun */
132 			if (sc & BD_ENET_RX_OV)
133 				fep->stats.rx_crc_errors++;
134 
135 			skb = fep->rx_skbuff[curidx];
136 
137 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 				DMA_FROM_DEVICE);
140 
141 			skbn = skb;
142 
143 		} else {
144 			skb = fep->rx_skbuff[curidx];
145 
146 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 				DMA_FROM_DEVICE);
149 
150 			/*
151 			 * Process the incoming frame.
152 			 */
153 			fep->stats.rx_packets++;
154 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
155 			fep->stats.rx_bytes += pkt_len + 4;
156 
157 			if (pkt_len <= fpi->rx_copybreak) {
158 				/* +2 to make IP header L1 cache aligned */
159 				skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 				if (skbn != NULL) {
161 					skb_reserve(skbn, 2);	/* align IP header */
162 					skb_copy_from_linear_data(skb,
163 						      skbn->data, pkt_len);
164 					swap(skb, skbn);
165 				}
166 			} else {
167 				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
168 
169 				if (skbn)
170 					skb_align(skbn, ENET_RX_ALIGN);
171 			}
172 
173 			if (skbn != NULL) {
174 				skb_put(skb, pkt_len);	/* Make room */
175 				skb->protocol = eth_type_trans(skb, dev);
176 				received++;
177 				netif_receive_skb(skb);
178 			} else {
179 				fep->stats.rx_dropped++;
180 				skbn = skb;
181 			}
182 		}
183 
184 		fep->rx_skbuff[curidx] = skbn;
185 		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
186 			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
187 			     DMA_FROM_DEVICE));
188 		CBDW_DATLEN(bdp, 0);
189 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
190 
191 		/*
192 		 * Update BD pointer to next entry.
193 		 */
194 		if ((sc & BD_ENET_RX_WRAP) == 0)
195 			bdp++;
196 		else
197 			bdp = fep->rx_bd_base;
198 
199 		(*fep->ops->rx_bd_done)(dev);
200 
201 		if (received >= budget)
202 			break;
203 	}
204 
205 	fep->cur_rx = bdp;
206 
207 	if (received < budget) {
208 		/* done */
209 		napi_complete(napi);
210 		(*fep->ops->napi_enable_rx)(dev);
211 	}
212 	return received;
213 }
214 
215 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
216 {
217 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
218 						   napi_tx);
219 	struct net_device *dev = fep->ndev;
220 	cbd_t __iomem *bdp;
221 	struct sk_buff *skb;
222 	int dirtyidx, do_wake, do_restart;
223 	u16 sc;
224 	int has_tx_work = 0;
225 
226 	spin_lock(&fep->tx_lock);
227 	bdp = fep->dirty_tx;
228 
229 	/* clear TX status bits for napi*/
230 	(*fep->ops->napi_clear_tx_event)(dev);
231 
232 	do_wake = do_restart = 0;
233 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
234 		dirtyidx = bdp - fep->tx_bd_base;
235 
236 		if (fep->tx_free == fep->tx_ring)
237 			break;
238 
239 		skb = fep->tx_skbuff[dirtyidx];
240 
241 		/*
242 		 * Check for errors.
243 		 */
244 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
245 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
246 
247 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
248 				fep->stats.tx_heartbeat_errors++;
249 			if (sc & BD_ENET_TX_LC)	/* Late collision */
250 				fep->stats.tx_window_errors++;
251 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
252 				fep->stats.tx_aborted_errors++;
253 			if (sc & BD_ENET_TX_UN)	/* Underrun */
254 				fep->stats.tx_fifo_errors++;
255 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
256 				fep->stats.tx_carrier_errors++;
257 
258 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
259 				fep->stats.tx_errors++;
260 				do_restart = 1;
261 			}
262 		} else
263 			fep->stats.tx_packets++;
264 
265 		if (sc & BD_ENET_TX_READY) {
266 			dev_warn(fep->dev,
267 				 "HEY! Enet xmit interrupt and TX_READY.\n");
268 		}
269 
270 		/*
271 		 * Deferred means some collisions occurred during transmit,
272 		 * but we eventually sent the packet OK.
273 		 */
274 		if (sc & BD_ENET_TX_DEF)
275 			fep->stats.collisions++;
276 
277 		/* unmap */
278 		if (fep->mapped_as_page[dirtyidx])
279 			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
280 				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
281 		else
282 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
283 					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284 
285 		/*
286 		 * Free the sk buffer associated with this last transmit.
287 		 */
288 		if (skb) {
289 			dev_kfree_skb(skb);
290 			fep->tx_skbuff[dirtyidx] = NULL;
291 		}
292 
293 		/*
294 		 * Update pointer to next buffer descriptor to be transmitted.
295 		 */
296 		if ((sc & BD_ENET_TX_WRAP) == 0)
297 			bdp++;
298 		else
299 			bdp = fep->tx_bd_base;
300 
301 		/*
302 		 * Since we have freed up a buffer, the ring is no longer
303 		 * full.
304 		 */
305 		if (++fep->tx_free >= MAX_SKB_FRAGS)
306 			do_wake = 1;
307 		has_tx_work = 1;
308 	}
309 
310 	fep->dirty_tx = bdp;
311 
312 	if (do_restart)
313 		(*fep->ops->tx_restart)(dev);
314 
315 	if (!has_tx_work) {
316 		napi_complete(napi);
317 		(*fep->ops->napi_enable_tx)(dev);
318 	}
319 
320 	spin_unlock(&fep->tx_lock);
321 
322 	if (do_wake)
323 		netif_wake_queue(dev);
324 
325 	if (has_tx_work)
326 		return budget;
327 	return 0;
328 }
329 
330 /*
331  * The interrupt handler.
332  * This is called from the MPC core interrupt.
333  */
334 static irqreturn_t
335 fs_enet_interrupt(int irq, void *dev_id)
336 {
337 	struct net_device *dev = dev_id;
338 	struct fs_enet_private *fep;
339 	const struct fs_platform_info *fpi;
340 	u32 int_events;
341 	u32 int_clr_events;
342 	int nr, napi_ok;
343 	int handled;
344 
345 	fep = netdev_priv(dev);
346 	fpi = fep->fpi;
347 
348 	nr = 0;
349 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
350 		nr++;
351 
352 		int_clr_events = int_events;
353 		int_clr_events &= ~fep->ev_napi_rx;
354 
355 		(*fep->ops->clear_int_events)(dev, int_clr_events);
356 
357 		if (int_events & fep->ev_err)
358 			(*fep->ops->ev_error)(dev, int_events);
359 
360 		if (int_events & fep->ev_rx) {
361 			napi_ok = napi_schedule_prep(&fep->napi);
362 
363 			(*fep->ops->napi_disable_rx)(dev);
364 			(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
365 
366 			/* NOTE: it is possible for FCCs in NAPI mode    */
367 			/* to submit a spurious interrupt while in poll  */
368 			if (napi_ok)
369 				__napi_schedule(&fep->napi);
370 		}
371 
372 		if (int_events & fep->ev_tx) {
373 			napi_ok = napi_schedule_prep(&fep->napi_tx);
374 
375 			(*fep->ops->napi_disable_tx)(dev);
376 			(*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
377 
378 			/* NOTE: it is possible for FCCs in NAPI mode    */
379 			/* to submit a spurious interrupt while in poll  */
380 			if (napi_ok)
381 				__napi_schedule(&fep->napi_tx);
382 		}
383 	}
384 
385 	handled = nr > 0;
386 	return IRQ_RETVAL(handled);
387 }
388 
389 void fs_init_bds(struct net_device *dev)
390 {
391 	struct fs_enet_private *fep = netdev_priv(dev);
392 	cbd_t __iomem *bdp;
393 	struct sk_buff *skb;
394 	int i;
395 
396 	fs_cleanup_bds(dev);
397 
398 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
399 	fep->tx_free = fep->tx_ring;
400 	fep->cur_rx = fep->rx_bd_base;
401 
402 	/*
403 	 * Initialize the receive buffer descriptors.
404 	 */
405 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
406 		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
407 		if (skb == NULL)
408 			break;
409 
410 		skb_align(skb, ENET_RX_ALIGN);
411 		fep->rx_skbuff[i] = skb;
412 		CBDW_BUFADDR(bdp,
413 			dma_map_single(fep->dev, skb->data,
414 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
415 				DMA_FROM_DEVICE));
416 		CBDW_DATLEN(bdp, 0);	/* zero */
417 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
418 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
419 	}
420 	/*
421 	 * if we failed, fillup remainder
422 	 */
423 	for (; i < fep->rx_ring; i++, bdp++) {
424 		fep->rx_skbuff[i] = NULL;
425 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
426 	}
427 
428 	/*
429 	 * ...and the same for transmit.
430 	 */
431 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
432 		fep->tx_skbuff[i] = NULL;
433 		CBDW_BUFADDR(bdp, 0);
434 		CBDW_DATLEN(bdp, 0);
435 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
436 	}
437 }
438 
439 void fs_cleanup_bds(struct net_device *dev)
440 {
441 	struct fs_enet_private *fep = netdev_priv(dev);
442 	struct sk_buff *skb;
443 	cbd_t __iomem *bdp;
444 	int i;
445 
446 	/*
447 	 * Reset SKB transmit buffers.
448 	 */
449 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
450 		if ((skb = fep->tx_skbuff[i]) == NULL)
451 			continue;
452 
453 		/* unmap */
454 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
455 				skb->len, DMA_TO_DEVICE);
456 
457 		fep->tx_skbuff[i] = NULL;
458 		dev_kfree_skb(skb);
459 	}
460 
461 	/*
462 	 * Reset SKB receive buffers
463 	 */
464 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
465 		if ((skb = fep->rx_skbuff[i]) == NULL)
466 			continue;
467 
468 		/* unmap */
469 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
470 			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
471 			DMA_FROM_DEVICE);
472 
473 		fep->rx_skbuff[i] = NULL;
474 
475 		dev_kfree_skb(skb);
476 	}
477 }
478 
479 /**********************************************************************************/
480 
481 #ifdef CONFIG_FS_ENET_MPC5121_FEC
482 /*
483  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
484  */
485 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
486 					       struct sk_buff *skb)
487 {
488 	struct sk_buff *new_skb;
489 
490 	if (skb_linearize(skb))
491 		return NULL;
492 
493 	/* Alloc new skb */
494 	new_skb = netdev_alloc_skb(dev, skb->len + 4);
495 	if (!new_skb)
496 		return NULL;
497 
498 	/* Make sure new skb is properly aligned */
499 	skb_align(new_skb, 4);
500 
501 	/* Copy data to new skb ... */
502 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503 	skb_put(new_skb, skb->len);
504 
505 	/* ... and free an old one */
506 	dev_kfree_skb_any(skb);
507 
508 	return new_skb;
509 }
510 #endif
511 
512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513 {
514 	struct fs_enet_private *fep = netdev_priv(dev);
515 	cbd_t __iomem *bdp;
516 	int curidx;
517 	u16 sc;
518 	int nr_frags;
519 	skb_frag_t *frag;
520 	int len;
521 #ifdef CONFIG_FS_ENET_MPC5121_FEC
522 	int is_aligned = 1;
523 	int i;
524 
525 	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
526 		is_aligned = 0;
527 	} else {
528 		nr_frags = skb_shinfo(skb)->nr_frags;
529 		frag = skb_shinfo(skb)->frags;
530 		for (i = 0; i < nr_frags; i++, frag++) {
531 			if (!IS_ALIGNED(frag->page_offset, 4)) {
532 				is_aligned = 0;
533 				break;
534 			}
535 		}
536 	}
537 
538 	if (!is_aligned) {
539 		skb = tx_skb_align_workaround(dev, skb);
540 		if (!skb) {
541 			/*
542 			 * We have lost packet due to memory allocation error
543 			 * in tx_skb_align_workaround(). Hopefully original
544 			 * skb is still valid, so try transmit it later.
545 			 */
546 			return NETDEV_TX_BUSY;
547 		}
548 	}
549 #endif
550 
551 	spin_lock(&fep->tx_lock);
552 
553 	/*
554 	 * Fill in a Tx ring entry
555 	 */
556 	bdp = fep->cur_tx;
557 
558 	nr_frags = skb_shinfo(skb)->nr_frags;
559 	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
560 		netif_stop_queue(dev);
561 		spin_unlock(&fep->tx_lock);
562 
563 		/*
564 		 * Ooops.  All transmit buffers are full.  Bail out.
565 		 * This should not happen, since the tx queue should be stopped.
566 		 */
567 		dev_warn(fep->dev, "tx queue full!.\n");
568 		return NETDEV_TX_BUSY;
569 	}
570 
571 	curidx = bdp - fep->tx_bd_base;
572 
573 	len = skb->len;
574 	fep->stats.tx_bytes += len;
575 	if (nr_frags)
576 		len -= skb->data_len;
577 	fep->tx_free -= nr_frags + 1;
578 	/*
579 	 * Push the data cache so the CPM does not get stale memory data.
580 	 */
581 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
582 				skb->data, len, DMA_TO_DEVICE));
583 	CBDW_DATLEN(bdp, len);
584 
585 	fep->mapped_as_page[curidx] = 0;
586 	frag = skb_shinfo(skb)->frags;
587 	while (nr_frags) {
588 		CBDC_SC(bdp,
589 			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
590 			BD_ENET_TX_TC);
591 		CBDS_SC(bdp, BD_ENET_TX_READY);
592 
593 		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
594 			bdp++, curidx++;
595 		else
596 			bdp = fep->tx_bd_base, curidx = 0;
597 
598 		len = skb_frag_size(frag);
599 		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
600 						   DMA_TO_DEVICE));
601 		CBDW_DATLEN(bdp, len);
602 
603 		fep->tx_skbuff[curidx] = NULL;
604 		fep->mapped_as_page[curidx] = 1;
605 
606 		frag++;
607 		nr_frags--;
608 	}
609 
610 	/* Trigger transmission start */
611 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
612 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
613 
614 	/* note that while FEC does not have this bit
615 	 * it marks it as available for software use
616 	 * yay for hw reuse :) */
617 	if (skb->len <= 60)
618 		sc |= BD_ENET_TX_PAD;
619 	CBDC_SC(bdp, BD_ENET_TX_STATS);
620 	CBDS_SC(bdp, sc);
621 
622 	/* Save skb pointer. */
623 	fep->tx_skbuff[curidx] = skb;
624 
625 	/* If this was the last BD in the ring, start at the beginning again. */
626 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
627 		bdp++;
628 	else
629 		bdp = fep->tx_bd_base;
630 	fep->cur_tx = bdp;
631 
632 	if (fep->tx_free < MAX_SKB_FRAGS)
633 		netif_stop_queue(dev);
634 
635 	skb_tx_timestamp(skb);
636 
637 	(*fep->ops->tx_kickstart)(dev);
638 
639 	spin_unlock(&fep->tx_lock);
640 
641 	return NETDEV_TX_OK;
642 }
643 
644 static void fs_timeout(struct net_device *dev)
645 {
646 	struct fs_enet_private *fep = netdev_priv(dev);
647 	unsigned long flags;
648 	int wake = 0;
649 
650 	fep->stats.tx_errors++;
651 
652 	spin_lock_irqsave(&fep->lock, flags);
653 
654 	if (dev->flags & IFF_UP) {
655 		phy_stop(fep->phydev);
656 		(*fep->ops->stop)(dev);
657 		(*fep->ops->restart)(dev);
658 		phy_start(fep->phydev);
659 	}
660 
661 	phy_start(fep->phydev);
662 	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
663 	spin_unlock_irqrestore(&fep->lock, flags);
664 
665 	if (wake)
666 		netif_wake_queue(dev);
667 }
668 
669 /*-----------------------------------------------------------------------------
670  *  generic link-change handler - should be sufficient for most cases
671  *-----------------------------------------------------------------------------*/
672 static void generic_adjust_link(struct  net_device *dev)
673 {
674 	struct fs_enet_private *fep = netdev_priv(dev);
675 	struct phy_device *phydev = fep->phydev;
676 	int new_state = 0;
677 
678 	if (phydev->link) {
679 		/* adjust to duplex mode */
680 		if (phydev->duplex != fep->oldduplex) {
681 			new_state = 1;
682 			fep->oldduplex = phydev->duplex;
683 		}
684 
685 		if (phydev->speed != fep->oldspeed) {
686 			new_state = 1;
687 			fep->oldspeed = phydev->speed;
688 		}
689 
690 		if (!fep->oldlink) {
691 			new_state = 1;
692 			fep->oldlink = 1;
693 		}
694 
695 		if (new_state)
696 			fep->ops->restart(dev);
697 	} else if (fep->oldlink) {
698 		new_state = 1;
699 		fep->oldlink = 0;
700 		fep->oldspeed = 0;
701 		fep->oldduplex = -1;
702 	}
703 
704 	if (new_state && netif_msg_link(fep))
705 		phy_print_status(phydev);
706 }
707 
708 
709 static void fs_adjust_link(struct net_device *dev)
710 {
711 	struct fs_enet_private *fep = netdev_priv(dev);
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&fep->lock, flags);
715 
716 	if(fep->ops->adjust_link)
717 		fep->ops->adjust_link(dev);
718 	else
719 		generic_adjust_link(dev);
720 
721 	spin_unlock_irqrestore(&fep->lock, flags);
722 }
723 
724 static int fs_init_phy(struct net_device *dev)
725 {
726 	struct fs_enet_private *fep = netdev_priv(dev);
727 	struct phy_device *phydev;
728 	phy_interface_t iface;
729 
730 	fep->oldlink = 0;
731 	fep->oldspeed = 0;
732 	fep->oldduplex = -1;
733 
734 	iface = fep->fpi->use_rmii ?
735 		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
736 
737 	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
738 				iface);
739 	if (!phydev) {
740 		dev_err(&dev->dev, "Could not attach to PHY\n");
741 		return -ENODEV;
742 	}
743 
744 	fep->phydev = phydev;
745 
746 	return 0;
747 }
748 
749 static int fs_enet_open(struct net_device *dev)
750 {
751 	struct fs_enet_private *fep = netdev_priv(dev);
752 	int r;
753 	int err;
754 
755 	/* to initialize the fep->cur_rx,... */
756 	/* not doing this, will cause a crash in fs_enet_rx_napi */
757 	fs_init_bds(fep->ndev);
758 
759 	napi_enable(&fep->napi);
760 	napi_enable(&fep->napi_tx);
761 
762 	/* Install our interrupt handler. */
763 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
764 			"fs_enet-mac", dev);
765 	if (r != 0) {
766 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
767 		napi_disable(&fep->napi);
768 		napi_disable(&fep->napi_tx);
769 		return -EINVAL;
770 	}
771 
772 	err = fs_init_phy(dev);
773 	if (err) {
774 		free_irq(fep->interrupt, dev);
775 		napi_disable(&fep->napi);
776 		napi_disable(&fep->napi_tx);
777 		return err;
778 	}
779 	phy_start(fep->phydev);
780 
781 	netif_start_queue(dev);
782 
783 	return 0;
784 }
785 
786 static int fs_enet_close(struct net_device *dev)
787 {
788 	struct fs_enet_private *fep = netdev_priv(dev);
789 	unsigned long flags;
790 
791 	netif_stop_queue(dev);
792 	netif_carrier_off(dev);
793 	napi_disable(&fep->napi);
794 	napi_disable(&fep->napi_tx);
795 	phy_stop(fep->phydev);
796 
797 	spin_lock_irqsave(&fep->lock, flags);
798 	spin_lock(&fep->tx_lock);
799 	(*fep->ops->stop)(dev);
800 	spin_unlock(&fep->tx_lock);
801 	spin_unlock_irqrestore(&fep->lock, flags);
802 
803 	/* release any irqs */
804 	phy_disconnect(fep->phydev);
805 	fep->phydev = NULL;
806 	free_irq(fep->interrupt, dev);
807 
808 	return 0;
809 }
810 
811 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
812 {
813 	struct fs_enet_private *fep = netdev_priv(dev);
814 	return &fep->stats;
815 }
816 
817 /*************************************************************************/
818 
819 static void fs_get_drvinfo(struct net_device *dev,
820 			    struct ethtool_drvinfo *info)
821 {
822 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
823 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
824 }
825 
826 static int fs_get_regs_len(struct net_device *dev)
827 {
828 	struct fs_enet_private *fep = netdev_priv(dev);
829 
830 	return (*fep->ops->get_regs_len)(dev);
831 }
832 
833 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
834 			 void *p)
835 {
836 	struct fs_enet_private *fep = netdev_priv(dev);
837 	unsigned long flags;
838 	int r, len;
839 
840 	len = regs->len;
841 
842 	spin_lock_irqsave(&fep->lock, flags);
843 	r = (*fep->ops->get_regs)(dev, p, &len);
844 	spin_unlock_irqrestore(&fep->lock, flags);
845 
846 	if (r == 0)
847 		regs->version = 0;
848 }
849 
850 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
851 {
852 	struct fs_enet_private *fep = netdev_priv(dev);
853 
854 	if (!fep->phydev)
855 		return -ENODEV;
856 
857 	return phy_ethtool_gset(fep->phydev, cmd);
858 }
859 
860 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
861 {
862 	struct fs_enet_private *fep = netdev_priv(dev);
863 
864 	if (!fep->phydev)
865 		return -ENODEV;
866 
867 	return phy_ethtool_sset(fep->phydev, cmd);
868 }
869 
870 static int fs_nway_reset(struct net_device *dev)
871 {
872 	return 0;
873 }
874 
875 static u32 fs_get_msglevel(struct net_device *dev)
876 {
877 	struct fs_enet_private *fep = netdev_priv(dev);
878 	return fep->msg_enable;
879 }
880 
881 static void fs_set_msglevel(struct net_device *dev, u32 value)
882 {
883 	struct fs_enet_private *fep = netdev_priv(dev);
884 	fep->msg_enable = value;
885 }
886 
887 static const struct ethtool_ops fs_ethtool_ops = {
888 	.get_drvinfo = fs_get_drvinfo,
889 	.get_regs_len = fs_get_regs_len,
890 	.get_settings = fs_get_settings,
891 	.set_settings = fs_set_settings,
892 	.nway_reset = fs_nway_reset,
893 	.get_link = ethtool_op_get_link,
894 	.get_msglevel = fs_get_msglevel,
895 	.set_msglevel = fs_set_msglevel,
896 	.get_regs = fs_get_regs,
897 	.get_ts_info = ethtool_op_get_ts_info,
898 };
899 
900 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
901 {
902 	struct fs_enet_private *fep = netdev_priv(dev);
903 
904 	if (!netif_running(dev))
905 		return -EINVAL;
906 
907 	return phy_mii_ioctl(fep->phydev, rq, cmd);
908 }
909 
910 extern int fs_mii_connect(struct net_device *dev);
911 extern void fs_mii_disconnect(struct net_device *dev);
912 
913 /**************************************************************************************/
914 
915 #ifdef CONFIG_FS_ENET_HAS_FEC
916 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
917 #else
918 #define IS_FEC(match) 0
919 #endif
920 
921 static const struct net_device_ops fs_enet_netdev_ops = {
922 	.ndo_open		= fs_enet_open,
923 	.ndo_stop		= fs_enet_close,
924 	.ndo_get_stats		= fs_enet_get_stats,
925 	.ndo_start_xmit		= fs_enet_start_xmit,
926 	.ndo_tx_timeout		= fs_timeout,
927 	.ndo_set_rx_mode	= fs_set_multicast_list,
928 	.ndo_do_ioctl		= fs_ioctl,
929 	.ndo_validate_addr	= eth_validate_addr,
930 	.ndo_set_mac_address	= eth_mac_addr,
931 	.ndo_change_mtu		= eth_change_mtu,
932 #ifdef CONFIG_NET_POLL_CONTROLLER
933 	.ndo_poll_controller	= fs_enet_netpoll,
934 #endif
935 };
936 
937 static const struct of_device_id fs_enet_match[];
938 static int fs_enet_probe(struct platform_device *ofdev)
939 {
940 	const struct of_device_id *match;
941 	struct net_device *ndev;
942 	struct fs_enet_private *fep;
943 	struct fs_platform_info *fpi;
944 	const u32 *data;
945 	struct clk *clk;
946 	int err;
947 	const u8 *mac_addr;
948 	const char *phy_connection_type;
949 	int privsize, len, ret = -ENODEV;
950 
951 	match = of_match_device(fs_enet_match, &ofdev->dev);
952 	if (!match)
953 		return -EINVAL;
954 
955 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
956 	if (!fpi)
957 		return -ENOMEM;
958 
959 	if (!IS_FEC(match)) {
960 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
961 		if (!data || len != 4)
962 			goto out_free_fpi;
963 
964 		fpi->cp_command = *data;
965 	}
966 
967 	fpi->rx_ring = 32;
968 	fpi->tx_ring = 64;
969 	fpi->rx_copybreak = 240;
970 	fpi->napi_weight = 17;
971 	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
972 	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
973 		err = of_phy_register_fixed_link(ofdev->dev.of_node);
974 		if (err)
975 			goto out_free_fpi;
976 
977 		/* In the case of a fixed PHY, the DT node associated
978 		 * to the PHY is the Ethernet MAC DT node.
979 		 */
980 		fpi->phy_node = of_node_get(ofdev->dev.of_node);
981 	}
982 
983 	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
984 		phy_connection_type = of_get_property(ofdev->dev.of_node,
985 						"phy-connection-type", NULL);
986 		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
987 			fpi->use_rmii = 1;
988 	}
989 
990 	/* make clock lookup non-fatal (the driver is shared among platforms),
991 	 * but require enable to succeed when a clock was specified/found,
992 	 * keep a reference to the clock upon successful acquisition
993 	 */
994 	clk = devm_clk_get(&ofdev->dev, "per");
995 	if (!IS_ERR(clk)) {
996 		err = clk_prepare_enable(clk);
997 		if (err) {
998 			ret = err;
999 			goto out_free_fpi;
1000 		}
1001 		fpi->clk_per = clk;
1002 	}
1003 
1004 	privsize = sizeof(*fep) +
1005 	           sizeof(struct sk_buff **) *
1006 		     (fpi->rx_ring + fpi->tx_ring) +
1007 		   sizeof(char) * fpi->tx_ring;
1008 
1009 	ndev = alloc_etherdev(privsize);
1010 	if (!ndev) {
1011 		ret = -ENOMEM;
1012 		goto out_put;
1013 	}
1014 
1015 	SET_NETDEV_DEV(ndev, &ofdev->dev);
1016 	platform_set_drvdata(ofdev, ndev);
1017 
1018 	fep = netdev_priv(ndev);
1019 	fep->dev = &ofdev->dev;
1020 	fep->ndev = ndev;
1021 	fep->fpi = fpi;
1022 	fep->ops = match->data;
1023 
1024 	ret = fep->ops->setup_data(ndev);
1025 	if (ret)
1026 		goto out_free_dev;
1027 
1028 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1029 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1030 	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1031 				       fpi->tx_ring);
1032 
1033 	spin_lock_init(&fep->lock);
1034 	spin_lock_init(&fep->tx_lock);
1035 
1036 	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1037 	if (mac_addr)
1038 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1039 
1040 	ret = fep->ops->allocate_bd(ndev);
1041 	if (ret)
1042 		goto out_cleanup_data;
1043 
1044 	fep->rx_bd_base = fep->ring_base;
1045 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1046 
1047 	fep->tx_ring = fpi->tx_ring;
1048 	fep->rx_ring = fpi->rx_ring;
1049 
1050 	ndev->netdev_ops = &fs_enet_netdev_ops;
1051 	ndev->watchdog_timeo = 2 * HZ;
1052 	netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1053 	netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1054 
1055 	ndev->ethtool_ops = &fs_ethtool_ops;
1056 
1057 	init_timer(&fep->phy_timer_list);
1058 
1059 	netif_carrier_off(ndev);
1060 
1061 	ndev->features |= NETIF_F_SG;
1062 
1063 	ret = register_netdev(ndev);
1064 	if (ret)
1065 		goto out_free_bd;
1066 
1067 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1068 
1069 	return 0;
1070 
1071 out_free_bd:
1072 	fep->ops->free_bd(ndev);
1073 out_cleanup_data:
1074 	fep->ops->cleanup_data(ndev);
1075 out_free_dev:
1076 	free_netdev(ndev);
1077 out_put:
1078 	of_node_put(fpi->phy_node);
1079 	if (fpi->clk_per)
1080 		clk_disable_unprepare(fpi->clk_per);
1081 out_free_fpi:
1082 	kfree(fpi);
1083 	return ret;
1084 }
1085 
1086 static int fs_enet_remove(struct platform_device *ofdev)
1087 {
1088 	struct net_device *ndev = platform_get_drvdata(ofdev);
1089 	struct fs_enet_private *fep = netdev_priv(ndev);
1090 
1091 	unregister_netdev(ndev);
1092 
1093 	fep->ops->free_bd(ndev);
1094 	fep->ops->cleanup_data(ndev);
1095 	dev_set_drvdata(fep->dev, NULL);
1096 	of_node_put(fep->fpi->phy_node);
1097 	if (fep->fpi->clk_per)
1098 		clk_disable_unprepare(fep->fpi->clk_per);
1099 	free_netdev(ndev);
1100 	return 0;
1101 }
1102 
1103 static const struct of_device_id fs_enet_match[] = {
1104 #ifdef CONFIG_FS_ENET_HAS_SCC
1105 	{
1106 		.compatible = "fsl,cpm1-scc-enet",
1107 		.data = (void *)&fs_scc_ops,
1108 	},
1109 	{
1110 		.compatible = "fsl,cpm2-scc-enet",
1111 		.data = (void *)&fs_scc_ops,
1112 	},
1113 #endif
1114 #ifdef CONFIG_FS_ENET_HAS_FCC
1115 	{
1116 		.compatible = "fsl,cpm2-fcc-enet",
1117 		.data = (void *)&fs_fcc_ops,
1118 	},
1119 #endif
1120 #ifdef CONFIG_FS_ENET_HAS_FEC
1121 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1122 	{
1123 		.compatible = "fsl,mpc5121-fec",
1124 		.data = (void *)&fs_fec_ops,
1125 	},
1126 	{
1127 		.compatible = "fsl,mpc5125-fec",
1128 		.data = (void *)&fs_fec_ops,
1129 	},
1130 #else
1131 	{
1132 		.compatible = "fsl,pq1-fec-enet",
1133 		.data = (void *)&fs_fec_ops,
1134 	},
1135 #endif
1136 #endif
1137 	{}
1138 };
1139 MODULE_DEVICE_TABLE(of, fs_enet_match);
1140 
1141 static struct platform_driver fs_enet_driver = {
1142 	.driver = {
1143 		.name = "fs_enet",
1144 		.of_match_table = fs_enet_match,
1145 	},
1146 	.probe = fs_enet_probe,
1147 	.remove = fs_enet_remove,
1148 };
1149 
1150 #ifdef CONFIG_NET_POLL_CONTROLLER
1151 static void fs_enet_netpoll(struct net_device *dev)
1152 {
1153        disable_irq(dev->irq);
1154        fs_enet_interrupt(dev->irq, dev);
1155        enable_irq(dev->irq);
1156 }
1157 #endif
1158 
1159 module_platform_driver(fs_enet_driver);
1160