1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <asm/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #ifdef CONFIG_NET_POLL_CONTROLLER 64 static void fs_enet_netpoll(struct net_device *dev); 65 #endif 66 67 static void fs_set_multicast_list(struct net_device *dev) 68 { 69 struct fs_enet_private *fep = netdev_priv(dev); 70 71 (*fep->ops->set_multicast_list)(dev); 72 } 73 74 static void skb_align(struct sk_buff *skb, int align) 75 { 76 int off = ((unsigned long)skb->data) & (align - 1); 77 78 if (off) 79 skb_reserve(skb, align - off); 80 } 81 82 /* NAPI receive function */ 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget) 84 { 85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 86 struct net_device *dev = fep->ndev; 87 const struct fs_platform_info *fpi = fep->fpi; 88 cbd_t __iomem *bdp; 89 struct sk_buff *skb, *skbn; 90 int received = 0; 91 u16 pkt_len, sc; 92 int curidx; 93 94 if (budget <= 0) 95 return received; 96 97 /* 98 * First, grab all of the stats for the incoming packet. 99 * These get messed up if we get called due to a busy condition. 100 */ 101 bdp = fep->cur_rx; 102 103 /* clear RX status bits for napi*/ 104 (*fep->ops->napi_clear_rx_event)(dev); 105 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 107 curidx = bdp - fep->rx_bd_base; 108 109 /* 110 * Since we have allocated space to hold a complete frame, 111 * the last indicator should be set. 112 */ 113 if ((sc & BD_ENET_RX_LAST) == 0) 114 dev_warn(fep->dev, "rcv is not +last\n"); 115 116 /* 117 * Check for errors. 118 */ 119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 121 fep->stats.rx_errors++; 122 /* Frame too long or too short. */ 123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 124 fep->stats.rx_length_errors++; 125 /* Frame alignment */ 126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 127 fep->stats.rx_frame_errors++; 128 /* CRC Error */ 129 if (sc & BD_ENET_RX_CR) 130 fep->stats.rx_crc_errors++; 131 /* FIFO overrun */ 132 if (sc & BD_ENET_RX_OV) 133 fep->stats.rx_crc_errors++; 134 135 skb = fep->rx_skbuff[curidx]; 136 137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 139 DMA_FROM_DEVICE); 140 141 skbn = skb; 142 143 } else { 144 skb = fep->rx_skbuff[curidx]; 145 146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 148 DMA_FROM_DEVICE); 149 150 /* 151 * Process the incoming frame. 152 */ 153 fep->stats.rx_packets++; 154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 155 fep->stats.rx_bytes += pkt_len + 4; 156 157 if (pkt_len <= fpi->rx_copybreak) { 158 /* +2 to make IP header L1 cache aligned */ 159 skbn = netdev_alloc_skb(dev, pkt_len + 2); 160 if (skbn != NULL) { 161 skb_reserve(skbn, 2); /* align IP header */ 162 skb_copy_from_linear_data(skb, 163 skbn->data, pkt_len); 164 swap(skb, skbn); 165 } 166 } else { 167 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 168 169 if (skbn) 170 skb_align(skbn, ENET_RX_ALIGN); 171 } 172 173 if (skbn != NULL) { 174 skb_put(skb, pkt_len); /* Make room */ 175 skb->protocol = eth_type_trans(skb, dev); 176 received++; 177 netif_receive_skb(skb); 178 } else { 179 fep->stats.rx_dropped++; 180 skbn = skb; 181 } 182 } 183 184 fep->rx_skbuff[curidx] = skbn; 185 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 186 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 187 DMA_FROM_DEVICE)); 188 CBDW_DATLEN(bdp, 0); 189 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 190 191 /* 192 * Update BD pointer to next entry. 193 */ 194 if ((sc & BD_ENET_RX_WRAP) == 0) 195 bdp++; 196 else 197 bdp = fep->rx_bd_base; 198 199 (*fep->ops->rx_bd_done)(dev); 200 201 if (received >= budget) 202 break; 203 } 204 205 fep->cur_rx = bdp; 206 207 if (received < budget) { 208 /* done */ 209 napi_complete(napi); 210 (*fep->ops->napi_enable_rx)(dev); 211 } 212 return received; 213 } 214 215 static int fs_enet_tx_napi(struct napi_struct *napi, int budget) 216 { 217 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, 218 napi_tx); 219 struct net_device *dev = fep->ndev; 220 cbd_t __iomem *bdp; 221 struct sk_buff *skb; 222 int dirtyidx, do_wake, do_restart; 223 u16 sc; 224 int has_tx_work = 0; 225 226 spin_lock(&fep->tx_lock); 227 bdp = fep->dirty_tx; 228 229 /* clear TX status bits for napi*/ 230 (*fep->ops->napi_clear_tx_event)(dev); 231 232 do_wake = do_restart = 0; 233 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { 234 dirtyidx = bdp - fep->tx_bd_base; 235 236 if (fep->tx_free == fep->tx_ring) 237 break; 238 239 skb = fep->tx_skbuff[dirtyidx]; 240 241 /* 242 * Check for errors. 243 */ 244 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 245 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 246 247 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 248 fep->stats.tx_heartbeat_errors++; 249 if (sc & BD_ENET_TX_LC) /* Late collision */ 250 fep->stats.tx_window_errors++; 251 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 252 fep->stats.tx_aborted_errors++; 253 if (sc & BD_ENET_TX_UN) /* Underrun */ 254 fep->stats.tx_fifo_errors++; 255 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 256 fep->stats.tx_carrier_errors++; 257 258 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 259 fep->stats.tx_errors++; 260 do_restart = 1; 261 } 262 } else 263 fep->stats.tx_packets++; 264 265 if (sc & BD_ENET_TX_READY) { 266 dev_warn(fep->dev, 267 "HEY! Enet xmit interrupt and TX_READY.\n"); 268 } 269 270 /* 271 * Deferred means some collisions occurred during transmit, 272 * but we eventually sent the packet OK. 273 */ 274 if (sc & BD_ENET_TX_DEF) 275 fep->stats.collisions++; 276 277 /* unmap */ 278 if (fep->mapped_as_page[dirtyidx]) 279 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 280 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 281 else 282 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 283 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 284 285 /* 286 * Free the sk buffer associated with this last transmit. 287 */ 288 if (skb) { 289 dev_kfree_skb(skb); 290 fep->tx_skbuff[dirtyidx] = NULL; 291 } 292 293 /* 294 * Update pointer to next buffer descriptor to be transmitted. 295 */ 296 if ((sc & BD_ENET_TX_WRAP) == 0) 297 bdp++; 298 else 299 bdp = fep->tx_bd_base; 300 301 /* 302 * Since we have freed up a buffer, the ring is no longer 303 * full. 304 */ 305 if (++fep->tx_free >= MAX_SKB_FRAGS) 306 do_wake = 1; 307 has_tx_work = 1; 308 } 309 310 fep->dirty_tx = bdp; 311 312 if (do_restart) 313 (*fep->ops->tx_restart)(dev); 314 315 if (!has_tx_work) { 316 napi_complete(napi); 317 (*fep->ops->napi_enable_tx)(dev); 318 } 319 320 spin_unlock(&fep->tx_lock); 321 322 if (do_wake) 323 netif_wake_queue(dev); 324 325 if (has_tx_work) 326 return budget; 327 return 0; 328 } 329 330 /* 331 * The interrupt handler. 332 * This is called from the MPC core interrupt. 333 */ 334 static irqreturn_t 335 fs_enet_interrupt(int irq, void *dev_id) 336 { 337 struct net_device *dev = dev_id; 338 struct fs_enet_private *fep; 339 const struct fs_platform_info *fpi; 340 u32 int_events; 341 u32 int_clr_events; 342 int nr, napi_ok; 343 int handled; 344 345 fep = netdev_priv(dev); 346 fpi = fep->fpi; 347 348 nr = 0; 349 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 350 nr++; 351 352 int_clr_events = int_events; 353 int_clr_events &= ~fep->ev_napi_rx; 354 355 (*fep->ops->clear_int_events)(dev, int_clr_events); 356 357 if (int_events & fep->ev_err) 358 (*fep->ops->ev_error)(dev, int_events); 359 360 if (int_events & fep->ev_rx) { 361 napi_ok = napi_schedule_prep(&fep->napi); 362 363 (*fep->ops->napi_disable_rx)(dev); 364 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx); 365 366 /* NOTE: it is possible for FCCs in NAPI mode */ 367 /* to submit a spurious interrupt while in poll */ 368 if (napi_ok) 369 __napi_schedule(&fep->napi); 370 } 371 372 if (int_events & fep->ev_tx) { 373 napi_ok = napi_schedule_prep(&fep->napi_tx); 374 375 (*fep->ops->napi_disable_tx)(dev); 376 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx); 377 378 /* NOTE: it is possible for FCCs in NAPI mode */ 379 /* to submit a spurious interrupt while in poll */ 380 if (napi_ok) 381 __napi_schedule(&fep->napi_tx); 382 } 383 } 384 385 handled = nr > 0; 386 return IRQ_RETVAL(handled); 387 } 388 389 void fs_init_bds(struct net_device *dev) 390 { 391 struct fs_enet_private *fep = netdev_priv(dev); 392 cbd_t __iomem *bdp; 393 struct sk_buff *skb; 394 int i; 395 396 fs_cleanup_bds(dev); 397 398 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 399 fep->tx_free = fep->tx_ring; 400 fep->cur_rx = fep->rx_bd_base; 401 402 /* 403 * Initialize the receive buffer descriptors. 404 */ 405 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 406 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 407 if (skb == NULL) 408 break; 409 410 skb_align(skb, ENET_RX_ALIGN); 411 fep->rx_skbuff[i] = skb; 412 CBDW_BUFADDR(bdp, 413 dma_map_single(fep->dev, skb->data, 414 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 415 DMA_FROM_DEVICE)); 416 CBDW_DATLEN(bdp, 0); /* zero */ 417 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 418 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 419 } 420 /* 421 * if we failed, fillup remainder 422 */ 423 for (; i < fep->rx_ring; i++, bdp++) { 424 fep->rx_skbuff[i] = NULL; 425 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 426 } 427 428 /* 429 * ...and the same for transmit. 430 */ 431 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 432 fep->tx_skbuff[i] = NULL; 433 CBDW_BUFADDR(bdp, 0); 434 CBDW_DATLEN(bdp, 0); 435 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 436 } 437 } 438 439 void fs_cleanup_bds(struct net_device *dev) 440 { 441 struct fs_enet_private *fep = netdev_priv(dev); 442 struct sk_buff *skb; 443 cbd_t __iomem *bdp; 444 int i; 445 446 /* 447 * Reset SKB transmit buffers. 448 */ 449 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 450 if ((skb = fep->tx_skbuff[i]) == NULL) 451 continue; 452 453 /* unmap */ 454 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 455 skb->len, DMA_TO_DEVICE); 456 457 fep->tx_skbuff[i] = NULL; 458 dev_kfree_skb(skb); 459 } 460 461 /* 462 * Reset SKB receive buffers 463 */ 464 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 465 if ((skb = fep->rx_skbuff[i]) == NULL) 466 continue; 467 468 /* unmap */ 469 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 470 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 471 DMA_FROM_DEVICE); 472 473 fep->rx_skbuff[i] = NULL; 474 475 dev_kfree_skb(skb); 476 } 477 } 478 479 /**********************************************************************************/ 480 481 #ifdef CONFIG_FS_ENET_MPC5121_FEC 482 /* 483 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 484 */ 485 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 486 struct sk_buff *skb) 487 { 488 struct sk_buff *new_skb; 489 490 if (skb_linearize(skb)) 491 return NULL; 492 493 /* Alloc new skb */ 494 new_skb = netdev_alloc_skb(dev, skb->len + 4); 495 if (!new_skb) 496 return NULL; 497 498 /* Make sure new skb is properly aligned */ 499 skb_align(new_skb, 4); 500 501 /* Copy data to new skb ... */ 502 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 503 skb_put(new_skb, skb->len); 504 505 /* ... and free an old one */ 506 dev_kfree_skb_any(skb); 507 508 return new_skb; 509 } 510 #endif 511 512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 513 { 514 struct fs_enet_private *fep = netdev_priv(dev); 515 cbd_t __iomem *bdp; 516 int curidx; 517 u16 sc; 518 int nr_frags; 519 skb_frag_t *frag; 520 int len; 521 #ifdef CONFIG_FS_ENET_MPC5121_FEC 522 int is_aligned = 1; 523 int i; 524 525 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 526 is_aligned = 0; 527 } else { 528 nr_frags = skb_shinfo(skb)->nr_frags; 529 frag = skb_shinfo(skb)->frags; 530 for (i = 0; i < nr_frags; i++, frag++) { 531 if (!IS_ALIGNED(frag->page_offset, 4)) { 532 is_aligned = 0; 533 break; 534 } 535 } 536 } 537 538 if (!is_aligned) { 539 skb = tx_skb_align_workaround(dev, skb); 540 if (!skb) { 541 /* 542 * We have lost packet due to memory allocation error 543 * in tx_skb_align_workaround(). Hopefully original 544 * skb is still valid, so try transmit it later. 545 */ 546 return NETDEV_TX_BUSY; 547 } 548 } 549 #endif 550 551 spin_lock(&fep->tx_lock); 552 553 /* 554 * Fill in a Tx ring entry 555 */ 556 bdp = fep->cur_tx; 557 558 nr_frags = skb_shinfo(skb)->nr_frags; 559 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 560 netif_stop_queue(dev); 561 spin_unlock(&fep->tx_lock); 562 563 /* 564 * Ooops. All transmit buffers are full. Bail out. 565 * This should not happen, since the tx queue should be stopped. 566 */ 567 dev_warn(fep->dev, "tx queue full!.\n"); 568 return NETDEV_TX_BUSY; 569 } 570 571 curidx = bdp - fep->tx_bd_base; 572 573 len = skb->len; 574 fep->stats.tx_bytes += len; 575 if (nr_frags) 576 len -= skb->data_len; 577 fep->tx_free -= nr_frags + 1; 578 /* 579 * Push the data cache so the CPM does not get stale memory data. 580 */ 581 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 582 skb->data, len, DMA_TO_DEVICE)); 583 CBDW_DATLEN(bdp, len); 584 585 fep->mapped_as_page[curidx] = 0; 586 frag = skb_shinfo(skb)->frags; 587 while (nr_frags) { 588 CBDC_SC(bdp, 589 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | 590 BD_ENET_TX_TC); 591 CBDS_SC(bdp, BD_ENET_TX_READY); 592 593 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 594 bdp++, curidx++; 595 else 596 bdp = fep->tx_bd_base, curidx = 0; 597 598 len = skb_frag_size(frag); 599 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 600 DMA_TO_DEVICE)); 601 CBDW_DATLEN(bdp, len); 602 603 fep->tx_skbuff[curidx] = NULL; 604 fep->mapped_as_page[curidx] = 1; 605 606 frag++; 607 nr_frags--; 608 } 609 610 /* Trigger transmission start */ 611 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 612 BD_ENET_TX_LAST | BD_ENET_TX_TC; 613 614 /* note that while FEC does not have this bit 615 * it marks it as available for software use 616 * yay for hw reuse :) */ 617 if (skb->len <= 60) 618 sc |= BD_ENET_TX_PAD; 619 CBDC_SC(bdp, BD_ENET_TX_STATS); 620 CBDS_SC(bdp, sc); 621 622 /* Save skb pointer. */ 623 fep->tx_skbuff[curidx] = skb; 624 625 /* If this was the last BD in the ring, start at the beginning again. */ 626 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 627 bdp++; 628 else 629 bdp = fep->tx_bd_base; 630 fep->cur_tx = bdp; 631 632 if (fep->tx_free < MAX_SKB_FRAGS) 633 netif_stop_queue(dev); 634 635 skb_tx_timestamp(skb); 636 637 (*fep->ops->tx_kickstart)(dev); 638 639 spin_unlock(&fep->tx_lock); 640 641 return NETDEV_TX_OK; 642 } 643 644 static void fs_timeout(struct net_device *dev) 645 { 646 struct fs_enet_private *fep = netdev_priv(dev); 647 unsigned long flags; 648 int wake = 0; 649 650 fep->stats.tx_errors++; 651 652 spin_lock_irqsave(&fep->lock, flags); 653 654 if (dev->flags & IFF_UP) { 655 phy_stop(fep->phydev); 656 (*fep->ops->stop)(dev); 657 (*fep->ops->restart)(dev); 658 phy_start(fep->phydev); 659 } 660 661 phy_start(fep->phydev); 662 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 663 spin_unlock_irqrestore(&fep->lock, flags); 664 665 if (wake) 666 netif_wake_queue(dev); 667 } 668 669 /*----------------------------------------------------------------------------- 670 * generic link-change handler - should be sufficient for most cases 671 *-----------------------------------------------------------------------------*/ 672 static void generic_adjust_link(struct net_device *dev) 673 { 674 struct fs_enet_private *fep = netdev_priv(dev); 675 struct phy_device *phydev = fep->phydev; 676 int new_state = 0; 677 678 if (phydev->link) { 679 /* adjust to duplex mode */ 680 if (phydev->duplex != fep->oldduplex) { 681 new_state = 1; 682 fep->oldduplex = phydev->duplex; 683 } 684 685 if (phydev->speed != fep->oldspeed) { 686 new_state = 1; 687 fep->oldspeed = phydev->speed; 688 } 689 690 if (!fep->oldlink) { 691 new_state = 1; 692 fep->oldlink = 1; 693 } 694 695 if (new_state) 696 fep->ops->restart(dev); 697 } else if (fep->oldlink) { 698 new_state = 1; 699 fep->oldlink = 0; 700 fep->oldspeed = 0; 701 fep->oldduplex = -1; 702 } 703 704 if (new_state && netif_msg_link(fep)) 705 phy_print_status(phydev); 706 } 707 708 709 static void fs_adjust_link(struct net_device *dev) 710 { 711 struct fs_enet_private *fep = netdev_priv(dev); 712 unsigned long flags; 713 714 spin_lock_irqsave(&fep->lock, flags); 715 716 if(fep->ops->adjust_link) 717 fep->ops->adjust_link(dev); 718 else 719 generic_adjust_link(dev); 720 721 spin_unlock_irqrestore(&fep->lock, flags); 722 } 723 724 static int fs_init_phy(struct net_device *dev) 725 { 726 struct fs_enet_private *fep = netdev_priv(dev); 727 struct phy_device *phydev; 728 phy_interface_t iface; 729 730 fep->oldlink = 0; 731 fep->oldspeed = 0; 732 fep->oldduplex = -1; 733 734 iface = fep->fpi->use_rmii ? 735 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 736 737 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 738 iface); 739 if (!phydev) { 740 dev_err(&dev->dev, "Could not attach to PHY\n"); 741 return -ENODEV; 742 } 743 744 fep->phydev = phydev; 745 746 return 0; 747 } 748 749 static int fs_enet_open(struct net_device *dev) 750 { 751 struct fs_enet_private *fep = netdev_priv(dev); 752 int r; 753 int err; 754 755 /* to initialize the fep->cur_rx,... */ 756 /* not doing this, will cause a crash in fs_enet_rx_napi */ 757 fs_init_bds(fep->ndev); 758 759 napi_enable(&fep->napi); 760 napi_enable(&fep->napi_tx); 761 762 /* Install our interrupt handler. */ 763 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 764 "fs_enet-mac", dev); 765 if (r != 0) { 766 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 767 napi_disable(&fep->napi); 768 napi_disable(&fep->napi_tx); 769 return -EINVAL; 770 } 771 772 err = fs_init_phy(dev); 773 if (err) { 774 free_irq(fep->interrupt, dev); 775 napi_disable(&fep->napi); 776 napi_disable(&fep->napi_tx); 777 return err; 778 } 779 phy_start(fep->phydev); 780 781 netif_start_queue(dev); 782 783 return 0; 784 } 785 786 static int fs_enet_close(struct net_device *dev) 787 { 788 struct fs_enet_private *fep = netdev_priv(dev); 789 unsigned long flags; 790 791 netif_stop_queue(dev); 792 netif_carrier_off(dev); 793 napi_disable(&fep->napi); 794 napi_disable(&fep->napi_tx); 795 phy_stop(fep->phydev); 796 797 spin_lock_irqsave(&fep->lock, flags); 798 spin_lock(&fep->tx_lock); 799 (*fep->ops->stop)(dev); 800 spin_unlock(&fep->tx_lock); 801 spin_unlock_irqrestore(&fep->lock, flags); 802 803 /* release any irqs */ 804 phy_disconnect(fep->phydev); 805 fep->phydev = NULL; 806 free_irq(fep->interrupt, dev); 807 808 return 0; 809 } 810 811 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev) 812 { 813 struct fs_enet_private *fep = netdev_priv(dev); 814 return &fep->stats; 815 } 816 817 /*************************************************************************/ 818 819 static void fs_get_drvinfo(struct net_device *dev, 820 struct ethtool_drvinfo *info) 821 { 822 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 823 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 824 } 825 826 static int fs_get_regs_len(struct net_device *dev) 827 { 828 struct fs_enet_private *fep = netdev_priv(dev); 829 830 return (*fep->ops->get_regs_len)(dev); 831 } 832 833 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 834 void *p) 835 { 836 struct fs_enet_private *fep = netdev_priv(dev); 837 unsigned long flags; 838 int r, len; 839 840 len = regs->len; 841 842 spin_lock_irqsave(&fep->lock, flags); 843 r = (*fep->ops->get_regs)(dev, p, &len); 844 spin_unlock_irqrestore(&fep->lock, flags); 845 846 if (r == 0) 847 regs->version = 0; 848 } 849 850 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 851 { 852 struct fs_enet_private *fep = netdev_priv(dev); 853 854 if (!fep->phydev) 855 return -ENODEV; 856 857 return phy_ethtool_gset(fep->phydev, cmd); 858 } 859 860 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 861 { 862 struct fs_enet_private *fep = netdev_priv(dev); 863 864 if (!fep->phydev) 865 return -ENODEV; 866 867 return phy_ethtool_sset(fep->phydev, cmd); 868 } 869 870 static int fs_nway_reset(struct net_device *dev) 871 { 872 return 0; 873 } 874 875 static u32 fs_get_msglevel(struct net_device *dev) 876 { 877 struct fs_enet_private *fep = netdev_priv(dev); 878 return fep->msg_enable; 879 } 880 881 static void fs_set_msglevel(struct net_device *dev, u32 value) 882 { 883 struct fs_enet_private *fep = netdev_priv(dev); 884 fep->msg_enable = value; 885 } 886 887 static const struct ethtool_ops fs_ethtool_ops = { 888 .get_drvinfo = fs_get_drvinfo, 889 .get_regs_len = fs_get_regs_len, 890 .get_settings = fs_get_settings, 891 .set_settings = fs_set_settings, 892 .nway_reset = fs_nway_reset, 893 .get_link = ethtool_op_get_link, 894 .get_msglevel = fs_get_msglevel, 895 .set_msglevel = fs_set_msglevel, 896 .get_regs = fs_get_regs, 897 .get_ts_info = ethtool_op_get_ts_info, 898 }; 899 900 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 901 { 902 struct fs_enet_private *fep = netdev_priv(dev); 903 904 if (!netif_running(dev)) 905 return -EINVAL; 906 907 return phy_mii_ioctl(fep->phydev, rq, cmd); 908 } 909 910 extern int fs_mii_connect(struct net_device *dev); 911 extern void fs_mii_disconnect(struct net_device *dev); 912 913 /**************************************************************************************/ 914 915 #ifdef CONFIG_FS_ENET_HAS_FEC 916 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 917 #else 918 #define IS_FEC(match) 0 919 #endif 920 921 static const struct net_device_ops fs_enet_netdev_ops = { 922 .ndo_open = fs_enet_open, 923 .ndo_stop = fs_enet_close, 924 .ndo_get_stats = fs_enet_get_stats, 925 .ndo_start_xmit = fs_enet_start_xmit, 926 .ndo_tx_timeout = fs_timeout, 927 .ndo_set_rx_mode = fs_set_multicast_list, 928 .ndo_do_ioctl = fs_ioctl, 929 .ndo_validate_addr = eth_validate_addr, 930 .ndo_set_mac_address = eth_mac_addr, 931 .ndo_change_mtu = eth_change_mtu, 932 #ifdef CONFIG_NET_POLL_CONTROLLER 933 .ndo_poll_controller = fs_enet_netpoll, 934 #endif 935 }; 936 937 static const struct of_device_id fs_enet_match[]; 938 static int fs_enet_probe(struct platform_device *ofdev) 939 { 940 const struct of_device_id *match; 941 struct net_device *ndev; 942 struct fs_enet_private *fep; 943 struct fs_platform_info *fpi; 944 const u32 *data; 945 struct clk *clk; 946 int err; 947 const u8 *mac_addr; 948 const char *phy_connection_type; 949 int privsize, len, ret = -ENODEV; 950 951 match = of_match_device(fs_enet_match, &ofdev->dev); 952 if (!match) 953 return -EINVAL; 954 955 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 956 if (!fpi) 957 return -ENOMEM; 958 959 if (!IS_FEC(match)) { 960 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 961 if (!data || len != 4) 962 goto out_free_fpi; 963 964 fpi->cp_command = *data; 965 } 966 967 fpi->rx_ring = 32; 968 fpi->tx_ring = 64; 969 fpi->rx_copybreak = 240; 970 fpi->napi_weight = 17; 971 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 972 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 973 err = of_phy_register_fixed_link(ofdev->dev.of_node); 974 if (err) 975 goto out_free_fpi; 976 977 /* In the case of a fixed PHY, the DT node associated 978 * to the PHY is the Ethernet MAC DT node. 979 */ 980 fpi->phy_node = of_node_get(ofdev->dev.of_node); 981 } 982 983 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 984 phy_connection_type = of_get_property(ofdev->dev.of_node, 985 "phy-connection-type", NULL); 986 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 987 fpi->use_rmii = 1; 988 } 989 990 /* make clock lookup non-fatal (the driver is shared among platforms), 991 * but require enable to succeed when a clock was specified/found, 992 * keep a reference to the clock upon successful acquisition 993 */ 994 clk = devm_clk_get(&ofdev->dev, "per"); 995 if (!IS_ERR(clk)) { 996 err = clk_prepare_enable(clk); 997 if (err) { 998 ret = err; 999 goto out_free_fpi; 1000 } 1001 fpi->clk_per = clk; 1002 } 1003 1004 privsize = sizeof(*fep) + 1005 sizeof(struct sk_buff **) * 1006 (fpi->rx_ring + fpi->tx_ring) + 1007 sizeof(char) * fpi->tx_ring; 1008 1009 ndev = alloc_etherdev(privsize); 1010 if (!ndev) { 1011 ret = -ENOMEM; 1012 goto out_put; 1013 } 1014 1015 SET_NETDEV_DEV(ndev, &ofdev->dev); 1016 platform_set_drvdata(ofdev, ndev); 1017 1018 fep = netdev_priv(ndev); 1019 fep->dev = &ofdev->dev; 1020 fep->ndev = ndev; 1021 fep->fpi = fpi; 1022 fep->ops = match->data; 1023 1024 ret = fep->ops->setup_data(ndev); 1025 if (ret) 1026 goto out_free_dev; 1027 1028 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1029 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1030 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1031 fpi->tx_ring); 1032 1033 spin_lock_init(&fep->lock); 1034 spin_lock_init(&fep->tx_lock); 1035 1036 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1037 if (mac_addr) 1038 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 1039 1040 ret = fep->ops->allocate_bd(ndev); 1041 if (ret) 1042 goto out_cleanup_data; 1043 1044 fep->rx_bd_base = fep->ring_base; 1045 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1046 1047 fep->tx_ring = fpi->tx_ring; 1048 fep->rx_ring = fpi->rx_ring; 1049 1050 ndev->netdev_ops = &fs_enet_netdev_ops; 1051 ndev->watchdog_timeo = 2 * HZ; 1052 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight); 1053 netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2); 1054 1055 ndev->ethtool_ops = &fs_ethtool_ops; 1056 1057 init_timer(&fep->phy_timer_list); 1058 1059 netif_carrier_off(ndev); 1060 1061 ndev->features |= NETIF_F_SG; 1062 1063 ret = register_netdev(ndev); 1064 if (ret) 1065 goto out_free_bd; 1066 1067 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1068 1069 return 0; 1070 1071 out_free_bd: 1072 fep->ops->free_bd(ndev); 1073 out_cleanup_data: 1074 fep->ops->cleanup_data(ndev); 1075 out_free_dev: 1076 free_netdev(ndev); 1077 out_put: 1078 of_node_put(fpi->phy_node); 1079 if (fpi->clk_per) 1080 clk_disable_unprepare(fpi->clk_per); 1081 out_free_fpi: 1082 kfree(fpi); 1083 return ret; 1084 } 1085 1086 static int fs_enet_remove(struct platform_device *ofdev) 1087 { 1088 struct net_device *ndev = platform_get_drvdata(ofdev); 1089 struct fs_enet_private *fep = netdev_priv(ndev); 1090 1091 unregister_netdev(ndev); 1092 1093 fep->ops->free_bd(ndev); 1094 fep->ops->cleanup_data(ndev); 1095 dev_set_drvdata(fep->dev, NULL); 1096 of_node_put(fep->fpi->phy_node); 1097 if (fep->fpi->clk_per) 1098 clk_disable_unprepare(fep->fpi->clk_per); 1099 free_netdev(ndev); 1100 return 0; 1101 } 1102 1103 static const struct of_device_id fs_enet_match[] = { 1104 #ifdef CONFIG_FS_ENET_HAS_SCC 1105 { 1106 .compatible = "fsl,cpm1-scc-enet", 1107 .data = (void *)&fs_scc_ops, 1108 }, 1109 { 1110 .compatible = "fsl,cpm2-scc-enet", 1111 .data = (void *)&fs_scc_ops, 1112 }, 1113 #endif 1114 #ifdef CONFIG_FS_ENET_HAS_FCC 1115 { 1116 .compatible = "fsl,cpm2-fcc-enet", 1117 .data = (void *)&fs_fcc_ops, 1118 }, 1119 #endif 1120 #ifdef CONFIG_FS_ENET_HAS_FEC 1121 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1122 { 1123 .compatible = "fsl,mpc5121-fec", 1124 .data = (void *)&fs_fec_ops, 1125 }, 1126 { 1127 .compatible = "fsl,mpc5125-fec", 1128 .data = (void *)&fs_fec_ops, 1129 }, 1130 #else 1131 { 1132 .compatible = "fsl,pq1-fec-enet", 1133 .data = (void *)&fs_fec_ops, 1134 }, 1135 #endif 1136 #endif 1137 {} 1138 }; 1139 MODULE_DEVICE_TABLE(of, fs_enet_match); 1140 1141 static struct platform_driver fs_enet_driver = { 1142 .driver = { 1143 .name = "fs_enet", 1144 .of_match_table = fs_enet_match, 1145 }, 1146 .probe = fs_enet_probe, 1147 .remove = fs_enet_remove, 1148 }; 1149 1150 #ifdef CONFIG_NET_POLL_CONTROLLER 1151 static void fs_enet_netpoll(struct net_device *dev) 1152 { 1153 disable_irq(dev->irq); 1154 fs_enet_interrupt(dev->irq, dev); 1155 enable_irq(dev->irq); 1156 } 1157 #endif 1158 1159 module_platform_driver(fs_enet_driver); 1160