xref: /linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/property.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_net.h>
42 #include <linux/pgtable.h>
43 
44 #include <linux/vmalloc.h>
45 #include <asm/irq.h>
46 #include <linux/uaccess.h>
47 
48 #include "fs_enet.h"
49 
50 /*************************************************/
51 
52 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
53 MODULE_DESCRIPTION("Freescale Ethernet Driver");
54 MODULE_LICENSE("GPL");
55 
56 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57 module_param(fs_enet_debug, int, 0);
58 MODULE_PARM_DESC(fs_enet_debug,
59 		 "Freescale bitmapped debugging message enable value");
60 
61 #define RX_RING_SIZE	32
62 #define TX_RING_SIZE	64
63 
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67 
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70 	struct fs_enet_private *fep = netdev_priv(dev);
71 
72 	(*fep->ops->set_multicast_list)(dev);
73 }
74 
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77 	int off = ((unsigned long)skb->data) & (align - 1);
78 
79 	if (off)
80 		skb_reserve(skb, align - off);
81 }
82 
83 /* NAPI function */
84 static int fs_enet_napi(struct napi_struct *napi, int budget)
85 {
86 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 	struct net_device *dev = fep->ndev;
88 	const struct fs_platform_info *fpi = fep->fpi;
89 	cbd_t __iomem *bdp;
90 	struct sk_buff *skb, *skbn;
91 	int received = 0;
92 	u16 pkt_len, sc;
93 	int curidx;
94 	int dirtyidx, do_wake, do_restart;
95 	int tx_left = TX_RING_SIZE;
96 
97 	spin_lock(&fep->tx_lock);
98 	bdp = fep->dirty_tx;
99 
100 	/* clear status bits for napi*/
101 	(*fep->ops->napi_clear_event)(dev);
102 
103 	do_wake = do_restart = 0;
104 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
105 		dirtyidx = bdp - fep->tx_bd_base;
106 
107 		if (fep->tx_free == fep->tx_ring)
108 			break;
109 
110 		skb = fep->tx_skbuff[dirtyidx];
111 
112 		/*
113 		 * Check for errors.
114 		 */
115 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
116 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
117 
118 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
119 				dev->stats.tx_heartbeat_errors++;
120 			if (sc & BD_ENET_TX_LC)	/* Late collision */
121 				dev->stats.tx_window_errors++;
122 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
123 				dev->stats.tx_aborted_errors++;
124 			if (sc & BD_ENET_TX_UN)	/* Underrun */
125 				dev->stats.tx_fifo_errors++;
126 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
127 				dev->stats.tx_carrier_errors++;
128 
129 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 				dev->stats.tx_errors++;
131 				do_restart = 1;
132 			}
133 		} else
134 			dev->stats.tx_packets++;
135 
136 		if (sc & BD_ENET_TX_READY) {
137 			dev_warn(fep->dev,
138 				 "HEY! Enet xmit interrupt and TX_READY.\n");
139 		}
140 
141 		/*
142 		 * Deferred means some collisions occurred during transmit,
143 		 * but we eventually sent the packet OK.
144 		 */
145 		if (sc & BD_ENET_TX_DEF)
146 			dev->stats.collisions++;
147 
148 		/* unmap */
149 		if (fep->mapped_as_page[dirtyidx])
150 			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 		else
153 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155 
156 		/*
157 		 * Free the sk buffer associated with this last transmit.
158 		 */
159 		if (skb) {
160 			dev_kfree_skb(skb);
161 			fep->tx_skbuff[dirtyidx] = NULL;
162 		}
163 
164 		/*
165 		 * Update pointer to next buffer descriptor to be transmitted.
166 		 */
167 		if ((sc & BD_ENET_TX_WRAP) == 0)
168 			bdp++;
169 		else
170 			bdp = fep->tx_bd_base;
171 
172 		/*
173 		 * Since we have freed up a buffer, the ring is no longer
174 		 * full.
175 		 */
176 		if (++fep->tx_free == MAX_SKB_FRAGS)
177 			do_wake = 1;
178 		tx_left--;
179 	}
180 
181 	fep->dirty_tx = bdp;
182 
183 	if (do_restart)
184 		(*fep->ops->tx_restart)(dev);
185 
186 	spin_unlock(&fep->tx_lock);
187 
188 	if (do_wake)
189 		netif_wake_queue(dev);
190 
191 	/*
192 	 * First, grab all of the stats for the incoming packet.
193 	 * These get messed up if we get called due to a busy condition.
194 	 */
195 	bdp = fep->cur_rx;
196 
197 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
198 	       received < budget) {
199 		curidx = bdp - fep->rx_bd_base;
200 
201 		/*
202 		 * Since we have allocated space to hold a complete frame,
203 		 * the last indicator should be set.
204 		 */
205 		if ((sc & BD_ENET_RX_LAST) == 0)
206 			dev_warn(fep->dev, "rcv is not +last\n");
207 
208 		/*
209 		 * Check for errors.
210 		 */
211 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
212 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
213 			dev->stats.rx_errors++;
214 			/* Frame too long or too short. */
215 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
216 				dev->stats.rx_length_errors++;
217 			/* Frame alignment */
218 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
219 				dev->stats.rx_frame_errors++;
220 			/* CRC Error */
221 			if (sc & BD_ENET_RX_CR)
222 				dev->stats.rx_crc_errors++;
223 			/* FIFO overrun */
224 			if (sc & BD_ENET_RX_OV)
225 				dev->stats.rx_crc_errors++;
226 
227 			skbn = fep->rx_skbuff[curidx];
228 		} else {
229 			skb = fep->rx_skbuff[curidx];
230 
231 			/*
232 			 * Process the incoming frame.
233 			 */
234 			dev->stats.rx_packets++;
235 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
236 			dev->stats.rx_bytes += pkt_len + 4;
237 
238 			if (pkt_len <= fpi->rx_copybreak) {
239 				/* +2 to make IP header L1 cache aligned */
240 				skbn = netdev_alloc_skb(dev, pkt_len + 2);
241 				if (skbn != NULL) {
242 					skb_reserve(skbn, 2);	/* align IP header */
243 					skb_copy_from_linear_data(skb,
244 						      skbn->data, pkt_len);
245 					swap(skb, skbn);
246 					dma_sync_single_for_cpu(fep->dev,
247 						CBDR_BUFADDR(bdp),
248 						L1_CACHE_ALIGN(pkt_len),
249 						DMA_FROM_DEVICE);
250 				}
251 			} else {
252 				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
253 
254 				if (skbn) {
255 					dma_addr_t dma;
256 
257 					skb_align(skbn, ENET_RX_ALIGN);
258 
259 					dma_unmap_single(fep->dev,
260 						CBDR_BUFADDR(bdp),
261 						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
262 						DMA_FROM_DEVICE);
263 
264 					dma = dma_map_single(fep->dev,
265 						skbn->data,
266 						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
267 						DMA_FROM_DEVICE);
268 					CBDW_BUFADDR(bdp, dma);
269 				}
270 			}
271 
272 			if (skbn != NULL) {
273 				skb_put(skb, pkt_len);	/* Make room */
274 				skb->protocol = eth_type_trans(skb, dev);
275 				received++;
276 				netif_receive_skb(skb);
277 			} else {
278 				dev->stats.rx_dropped++;
279 				skbn = skb;
280 			}
281 		}
282 
283 		fep->rx_skbuff[curidx] = skbn;
284 		CBDW_DATLEN(bdp, 0);
285 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
286 
287 		/*
288 		 * Update BD pointer to next entry.
289 		 */
290 		if ((sc & BD_ENET_RX_WRAP) == 0)
291 			bdp++;
292 		else
293 			bdp = fep->rx_bd_base;
294 
295 		(*fep->ops->rx_bd_done)(dev);
296 	}
297 
298 	fep->cur_rx = bdp;
299 
300 	if (received < budget && tx_left) {
301 		/* done */
302 		napi_complete_done(napi, received);
303 		(*fep->ops->napi_enable)(dev);
304 
305 		return received;
306 	}
307 
308 	return budget;
309 }
310 
311 /*
312  * The interrupt handler.
313  * This is called from the MPC core interrupt.
314  */
315 static irqreturn_t
316 fs_enet_interrupt(int irq, void *dev_id)
317 {
318 	struct net_device *dev = dev_id;
319 	struct fs_enet_private *fep;
320 	u32 int_events;
321 	u32 int_clr_events;
322 	int nr, napi_ok;
323 	int handled;
324 
325 	fep = netdev_priv(dev);
326 
327 	nr = 0;
328 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
329 		nr++;
330 
331 		int_clr_events = int_events;
332 		int_clr_events &= ~fep->ev_napi;
333 
334 		(*fep->ops->clear_int_events)(dev, int_clr_events);
335 
336 		if (int_events & fep->ev_err)
337 			(*fep->ops->ev_error)(dev, int_events);
338 
339 		if (int_events & fep->ev) {
340 			napi_ok = napi_schedule_prep(&fep->napi);
341 
342 			(*fep->ops->napi_disable)(dev);
343 			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
344 
345 			/* NOTE: it is possible for FCCs in NAPI mode    */
346 			/* to submit a spurious interrupt while in poll  */
347 			if (napi_ok)
348 				__napi_schedule(&fep->napi);
349 		}
350 
351 	}
352 
353 	handled = nr > 0;
354 	return IRQ_RETVAL(handled);
355 }
356 
357 void fs_init_bds(struct net_device *dev)
358 {
359 	struct fs_enet_private *fep = netdev_priv(dev);
360 	cbd_t __iomem *bdp;
361 	struct sk_buff *skb;
362 	int i;
363 
364 	fs_cleanup_bds(dev);
365 
366 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
367 	fep->tx_free = fep->tx_ring;
368 	fep->cur_rx = fep->rx_bd_base;
369 
370 	/*
371 	 * Initialize the receive buffer descriptors.
372 	 */
373 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
374 		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
375 		if (skb == NULL)
376 			break;
377 
378 		skb_align(skb, ENET_RX_ALIGN);
379 		fep->rx_skbuff[i] = skb;
380 		CBDW_BUFADDR(bdp,
381 			dma_map_single(fep->dev, skb->data,
382 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
383 				DMA_FROM_DEVICE));
384 		CBDW_DATLEN(bdp, 0);	/* zero */
385 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
386 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
387 	}
388 	/*
389 	 * if we failed, fillup remainder
390 	 */
391 	for (; i < fep->rx_ring; i++, bdp++) {
392 		fep->rx_skbuff[i] = NULL;
393 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
394 	}
395 
396 	/*
397 	 * ...and the same for transmit.
398 	 */
399 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
400 		fep->tx_skbuff[i] = NULL;
401 		CBDW_BUFADDR(bdp, 0);
402 		CBDW_DATLEN(bdp, 0);
403 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
404 	}
405 }
406 
407 void fs_cleanup_bds(struct net_device *dev)
408 {
409 	struct fs_enet_private *fep = netdev_priv(dev);
410 	struct sk_buff *skb;
411 	cbd_t __iomem *bdp;
412 	int i;
413 
414 	/*
415 	 * Reset SKB transmit buffers.
416 	 */
417 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
418 		if ((skb = fep->tx_skbuff[i]) == NULL)
419 			continue;
420 
421 		/* unmap */
422 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
423 				skb->len, DMA_TO_DEVICE);
424 
425 		fep->tx_skbuff[i] = NULL;
426 		dev_kfree_skb(skb);
427 	}
428 
429 	/*
430 	 * Reset SKB receive buffers
431 	 */
432 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
433 		if ((skb = fep->rx_skbuff[i]) == NULL)
434 			continue;
435 
436 		/* unmap */
437 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
438 			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
439 			DMA_FROM_DEVICE);
440 
441 		fep->rx_skbuff[i] = NULL;
442 
443 		dev_kfree_skb(skb);
444 	}
445 }
446 
447 /**********************************************************************************/
448 
449 #ifdef CONFIG_FS_ENET_MPC5121_FEC
450 /*
451  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
452  */
453 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
454 					       struct sk_buff *skb)
455 {
456 	struct sk_buff *new_skb;
457 
458 	if (skb_linearize(skb))
459 		return NULL;
460 
461 	/* Alloc new skb */
462 	new_skb = netdev_alloc_skb(dev, skb->len + 4);
463 	if (!new_skb)
464 		return NULL;
465 
466 	/* Make sure new skb is properly aligned */
467 	skb_align(new_skb, 4);
468 
469 	/* Copy data to new skb ... */
470 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
471 	skb_put(new_skb, skb->len);
472 
473 	/* ... and free an old one */
474 	dev_kfree_skb_any(skb);
475 
476 	return new_skb;
477 }
478 #endif
479 
480 static netdev_tx_t
481 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
482 {
483 	struct fs_enet_private *fep = netdev_priv(dev);
484 	cbd_t __iomem *bdp;
485 	int curidx;
486 	u16 sc;
487 	int nr_frags;
488 	skb_frag_t *frag;
489 	int len;
490 #ifdef CONFIG_FS_ENET_MPC5121_FEC
491 	int is_aligned = 1;
492 	int i;
493 
494 	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
495 		is_aligned = 0;
496 	} else {
497 		nr_frags = skb_shinfo(skb)->nr_frags;
498 		frag = skb_shinfo(skb)->frags;
499 		for (i = 0; i < nr_frags; i++, frag++) {
500 			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
501 				is_aligned = 0;
502 				break;
503 			}
504 		}
505 	}
506 
507 	if (!is_aligned) {
508 		skb = tx_skb_align_workaround(dev, skb);
509 		if (!skb) {
510 			/*
511 			 * We have lost packet due to memory allocation error
512 			 * in tx_skb_align_workaround(). Hopefully original
513 			 * skb is still valid, so try transmit it later.
514 			 */
515 			return NETDEV_TX_BUSY;
516 		}
517 	}
518 #endif
519 
520 	spin_lock(&fep->tx_lock);
521 
522 	/*
523 	 * Fill in a Tx ring entry
524 	 */
525 	bdp = fep->cur_tx;
526 
527 	nr_frags = skb_shinfo(skb)->nr_frags;
528 	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
529 		netif_stop_queue(dev);
530 		spin_unlock(&fep->tx_lock);
531 
532 		/*
533 		 * Ooops.  All transmit buffers are full.  Bail out.
534 		 * This should not happen, since the tx queue should be stopped.
535 		 */
536 		dev_warn(fep->dev, "tx queue full!.\n");
537 		return NETDEV_TX_BUSY;
538 	}
539 
540 	curidx = bdp - fep->tx_bd_base;
541 
542 	len = skb->len;
543 	dev->stats.tx_bytes += len;
544 	if (nr_frags)
545 		len -= skb->data_len;
546 	fep->tx_free -= nr_frags + 1;
547 	/*
548 	 * Push the data cache so the CPM does not get stale memory data.
549 	 */
550 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
551 				skb->data, len, DMA_TO_DEVICE));
552 	CBDW_DATLEN(bdp, len);
553 
554 	fep->mapped_as_page[curidx] = 0;
555 	frag = skb_shinfo(skb)->frags;
556 	while (nr_frags) {
557 		CBDC_SC(bdp,
558 			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
559 			BD_ENET_TX_TC);
560 		CBDS_SC(bdp, BD_ENET_TX_READY);
561 
562 		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
563 			bdp++;
564 			curidx++;
565 		} else {
566 			bdp = fep->tx_bd_base;
567 			curidx = 0;
568 		}
569 
570 		len = skb_frag_size(frag);
571 		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572 						   DMA_TO_DEVICE));
573 		CBDW_DATLEN(bdp, len);
574 
575 		fep->tx_skbuff[curidx] = NULL;
576 		fep->mapped_as_page[curidx] = 1;
577 
578 		frag++;
579 		nr_frags--;
580 	}
581 
582 	/* Trigger transmission start */
583 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
585 
586 	/* note that while FEC does not have this bit
587 	 * it marks it as available for software use
588 	 * yay for hw reuse :) */
589 	if (skb->len <= 60)
590 		sc |= BD_ENET_TX_PAD;
591 	CBDC_SC(bdp, BD_ENET_TX_STATS);
592 	CBDS_SC(bdp, sc);
593 
594 	/* Save skb pointer. */
595 	fep->tx_skbuff[curidx] = skb;
596 
597 	/* If this was the last BD in the ring, start at the beginning again. */
598 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599 		bdp++;
600 	else
601 		bdp = fep->tx_bd_base;
602 	fep->cur_tx = bdp;
603 
604 	if (fep->tx_free < MAX_SKB_FRAGS)
605 		netif_stop_queue(dev);
606 
607 	skb_tx_timestamp(skb);
608 
609 	(*fep->ops->tx_kickstart)(dev);
610 
611 	spin_unlock(&fep->tx_lock);
612 
613 	return NETDEV_TX_OK;
614 }
615 
616 static void fs_timeout_work(struct work_struct *work)
617 {
618 	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
619 						   timeout_work);
620 	struct net_device *dev = fep->ndev;
621 	unsigned long flags;
622 	int wake = 0;
623 
624 	dev->stats.tx_errors++;
625 
626 	spin_lock_irqsave(&fep->lock, flags);
627 
628 	if (dev->flags & IFF_UP) {
629 		phy_stop(dev->phydev);
630 		(*fep->ops->stop)(dev);
631 		(*fep->ops->restart)(dev);
632 	}
633 
634 	phy_start(dev->phydev);
635 	wake = fep->tx_free >= MAX_SKB_FRAGS &&
636 	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
637 	spin_unlock_irqrestore(&fep->lock, flags);
638 
639 	if (wake)
640 		netif_wake_queue(dev);
641 }
642 
643 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
644 {
645 	struct fs_enet_private *fep = netdev_priv(dev);
646 
647 	schedule_work(&fep->timeout_work);
648 }
649 
650 /*-----------------------------------------------------------------------------
651  *  generic link-change handler - should be sufficient for most cases
652  *-----------------------------------------------------------------------------*/
653 static void generic_adjust_link(struct  net_device *dev)
654 {
655 	struct fs_enet_private *fep = netdev_priv(dev);
656 	struct phy_device *phydev = dev->phydev;
657 	int new_state = 0;
658 
659 	if (phydev->link) {
660 		/* adjust to duplex mode */
661 		if (phydev->duplex != fep->oldduplex) {
662 			new_state = 1;
663 			fep->oldduplex = phydev->duplex;
664 		}
665 
666 		if (phydev->speed != fep->oldspeed) {
667 			new_state = 1;
668 			fep->oldspeed = phydev->speed;
669 		}
670 
671 		if (!fep->oldlink) {
672 			new_state = 1;
673 			fep->oldlink = 1;
674 		}
675 
676 		if (new_state)
677 			fep->ops->restart(dev);
678 	} else if (fep->oldlink) {
679 		new_state = 1;
680 		fep->oldlink = 0;
681 		fep->oldspeed = 0;
682 		fep->oldduplex = -1;
683 	}
684 
685 	if (new_state && netif_msg_link(fep))
686 		phy_print_status(phydev);
687 }
688 
689 
690 static void fs_adjust_link(struct net_device *dev)
691 {
692 	struct fs_enet_private *fep = netdev_priv(dev);
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&fep->lock, flags);
696 
697 	if(fep->ops->adjust_link)
698 		fep->ops->adjust_link(dev);
699 	else
700 		generic_adjust_link(dev);
701 
702 	spin_unlock_irqrestore(&fep->lock, flags);
703 }
704 
705 static int fs_init_phy(struct net_device *dev)
706 {
707 	struct fs_enet_private *fep = netdev_priv(dev);
708 	struct phy_device *phydev;
709 	phy_interface_t iface;
710 
711 	fep->oldlink = 0;
712 	fep->oldspeed = 0;
713 	fep->oldduplex = -1;
714 
715 	iface = fep->fpi->use_rmii ?
716 		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
717 
718 	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
719 				iface);
720 	if (!phydev) {
721 		dev_err(&dev->dev, "Could not attach to PHY\n");
722 		return -ENODEV;
723 	}
724 
725 	return 0;
726 }
727 
728 static int fs_enet_open(struct net_device *dev)
729 {
730 	struct fs_enet_private *fep = netdev_priv(dev);
731 	int r;
732 	int err;
733 
734 	/* to initialize the fep->cur_rx,... */
735 	/* not doing this, will cause a crash in fs_enet_napi */
736 	fs_init_bds(fep->ndev);
737 
738 	napi_enable(&fep->napi);
739 
740 	/* Install our interrupt handler. */
741 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
742 			"fs_enet-mac", dev);
743 	if (r != 0) {
744 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
745 		napi_disable(&fep->napi);
746 		return -EINVAL;
747 	}
748 
749 	err = fs_init_phy(dev);
750 	if (err) {
751 		free_irq(fep->interrupt, dev);
752 		napi_disable(&fep->napi);
753 		return err;
754 	}
755 	phy_start(dev->phydev);
756 
757 	netif_start_queue(dev);
758 
759 	return 0;
760 }
761 
762 static int fs_enet_close(struct net_device *dev)
763 {
764 	struct fs_enet_private *fep = netdev_priv(dev);
765 	unsigned long flags;
766 
767 	netif_stop_queue(dev);
768 	netif_carrier_off(dev);
769 	napi_disable(&fep->napi);
770 	cancel_work_sync(&fep->timeout_work);
771 	phy_stop(dev->phydev);
772 
773 	spin_lock_irqsave(&fep->lock, flags);
774 	spin_lock(&fep->tx_lock);
775 	(*fep->ops->stop)(dev);
776 	spin_unlock(&fep->tx_lock);
777 	spin_unlock_irqrestore(&fep->lock, flags);
778 
779 	/* release any irqs */
780 	phy_disconnect(dev->phydev);
781 	free_irq(fep->interrupt, dev);
782 
783 	return 0;
784 }
785 
786 /*************************************************************************/
787 
788 static void fs_get_drvinfo(struct net_device *dev,
789 			    struct ethtool_drvinfo *info)
790 {
791 	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
792 }
793 
794 static int fs_get_regs_len(struct net_device *dev)
795 {
796 	struct fs_enet_private *fep = netdev_priv(dev);
797 
798 	return (*fep->ops->get_regs_len)(dev);
799 }
800 
801 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
802 			 void *p)
803 {
804 	struct fs_enet_private *fep = netdev_priv(dev);
805 	unsigned long flags;
806 	int r, len;
807 
808 	len = regs->len;
809 
810 	spin_lock_irqsave(&fep->lock, flags);
811 	r = (*fep->ops->get_regs)(dev, p, &len);
812 	spin_unlock_irqrestore(&fep->lock, flags);
813 
814 	if (r == 0)
815 		regs->version = 0;
816 }
817 
818 static u32 fs_get_msglevel(struct net_device *dev)
819 {
820 	struct fs_enet_private *fep = netdev_priv(dev);
821 	return fep->msg_enable;
822 }
823 
824 static void fs_set_msglevel(struct net_device *dev, u32 value)
825 {
826 	struct fs_enet_private *fep = netdev_priv(dev);
827 	fep->msg_enable = value;
828 }
829 
830 static int fs_get_tunable(struct net_device *dev,
831 			  const struct ethtool_tunable *tuna, void *data)
832 {
833 	struct fs_enet_private *fep = netdev_priv(dev);
834 	struct fs_platform_info *fpi = fep->fpi;
835 	int ret = 0;
836 
837 	switch (tuna->id) {
838 	case ETHTOOL_RX_COPYBREAK:
839 		*(u32 *)data = fpi->rx_copybreak;
840 		break;
841 	default:
842 		ret = -EINVAL;
843 		break;
844 	}
845 
846 	return ret;
847 }
848 
849 static int fs_set_tunable(struct net_device *dev,
850 			  const struct ethtool_tunable *tuna, const void *data)
851 {
852 	struct fs_enet_private *fep = netdev_priv(dev);
853 	struct fs_platform_info *fpi = fep->fpi;
854 	int ret = 0;
855 
856 	switch (tuna->id) {
857 	case ETHTOOL_RX_COPYBREAK:
858 		fpi->rx_copybreak = *(u32 *)data;
859 		break;
860 	default:
861 		ret = -EINVAL;
862 		break;
863 	}
864 
865 	return ret;
866 }
867 
868 static const struct ethtool_ops fs_ethtool_ops = {
869 	.get_drvinfo = fs_get_drvinfo,
870 	.get_regs_len = fs_get_regs_len,
871 	.nway_reset = phy_ethtool_nway_reset,
872 	.get_link = ethtool_op_get_link,
873 	.get_msglevel = fs_get_msglevel,
874 	.set_msglevel = fs_set_msglevel,
875 	.get_regs = fs_get_regs,
876 	.get_ts_info = ethtool_op_get_ts_info,
877 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
878 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
879 	.get_tunable = fs_get_tunable,
880 	.set_tunable = fs_set_tunable,
881 };
882 
883 /**************************************************************************************/
884 
885 #ifdef CONFIG_FS_ENET_HAS_FEC
886 #define IS_FEC(ops) ((ops) == &fs_fec_ops)
887 #else
888 #define IS_FEC(ops) 0
889 #endif
890 
891 static const struct net_device_ops fs_enet_netdev_ops = {
892 	.ndo_open		= fs_enet_open,
893 	.ndo_stop		= fs_enet_close,
894 	.ndo_start_xmit		= fs_enet_start_xmit,
895 	.ndo_tx_timeout		= fs_timeout,
896 	.ndo_set_rx_mode	= fs_set_multicast_list,
897 	.ndo_eth_ioctl		= phy_do_ioctl_running,
898 	.ndo_validate_addr	= eth_validate_addr,
899 	.ndo_set_mac_address	= eth_mac_addr,
900 #ifdef CONFIG_NET_POLL_CONTROLLER
901 	.ndo_poll_controller	= fs_enet_netpoll,
902 #endif
903 };
904 
905 static int fs_enet_probe(struct platform_device *ofdev)
906 {
907 	const struct fs_ops *ops;
908 	struct net_device *ndev;
909 	struct fs_enet_private *fep;
910 	struct fs_platform_info *fpi;
911 	const u32 *data;
912 	struct clk *clk;
913 	int err;
914 	const char *phy_connection_type;
915 	int privsize, len, ret = -ENODEV;
916 
917 	ops = device_get_match_data(&ofdev->dev);
918 	if (!ops)
919 		return -EINVAL;
920 
921 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
922 	if (!fpi)
923 		return -ENOMEM;
924 
925 	if (!IS_FEC(ops)) {
926 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
927 		if (!data || len != 4)
928 			goto out_free_fpi;
929 
930 		fpi->cp_command = *data;
931 	}
932 
933 	fpi->rx_ring = RX_RING_SIZE;
934 	fpi->tx_ring = TX_RING_SIZE;
935 	fpi->rx_copybreak = 240;
936 	fpi->napi_weight = 17;
937 	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
938 	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
939 		err = of_phy_register_fixed_link(ofdev->dev.of_node);
940 		if (err)
941 			goto out_free_fpi;
942 
943 		/* In the case of a fixed PHY, the DT node associated
944 		 * to the PHY is the Ethernet MAC DT node.
945 		 */
946 		fpi->phy_node = of_node_get(ofdev->dev.of_node);
947 	}
948 
949 	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
950 		phy_connection_type = of_get_property(ofdev->dev.of_node,
951 						"phy-connection-type", NULL);
952 		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
953 			fpi->use_rmii = 1;
954 	}
955 
956 	/* make clock lookup non-fatal (the driver is shared among platforms),
957 	 * but require enable to succeed when a clock was specified/found,
958 	 * keep a reference to the clock upon successful acquisition
959 	 */
960 	clk = devm_clk_get(&ofdev->dev, "per");
961 	if (!IS_ERR(clk)) {
962 		ret = clk_prepare_enable(clk);
963 		if (ret)
964 			goto out_deregister_fixed_link;
965 
966 		fpi->clk_per = clk;
967 	}
968 
969 	privsize = sizeof(*fep) +
970 	           sizeof(struct sk_buff **) *
971 		     (fpi->rx_ring + fpi->tx_ring) +
972 		   sizeof(char) * fpi->tx_ring;
973 
974 	ndev = alloc_etherdev(privsize);
975 	if (!ndev) {
976 		ret = -ENOMEM;
977 		goto out_put;
978 	}
979 
980 	SET_NETDEV_DEV(ndev, &ofdev->dev);
981 	platform_set_drvdata(ofdev, ndev);
982 
983 	fep = netdev_priv(ndev);
984 	fep->dev = &ofdev->dev;
985 	fep->ndev = ndev;
986 	fep->fpi = fpi;
987 	fep->ops = ops;
988 
989 	ret = fep->ops->setup_data(ndev);
990 	if (ret)
991 		goto out_free_dev;
992 
993 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
994 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
995 	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
996 				       fpi->tx_ring);
997 
998 	spin_lock_init(&fep->lock);
999 	spin_lock_init(&fep->tx_lock);
1000 
1001 	of_get_ethdev_address(ofdev->dev.of_node, ndev);
1002 
1003 	ret = fep->ops->allocate_bd(ndev);
1004 	if (ret)
1005 		goto out_cleanup_data;
1006 
1007 	fep->rx_bd_base = fep->ring_base;
1008 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1009 
1010 	fep->tx_ring = fpi->tx_ring;
1011 	fep->rx_ring = fpi->rx_ring;
1012 
1013 	ndev->netdev_ops = &fs_enet_netdev_ops;
1014 	ndev->watchdog_timeo = 2 * HZ;
1015 	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1016 	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1017 			      fpi->napi_weight);
1018 
1019 	ndev->ethtool_ops = &fs_ethtool_ops;
1020 
1021 	netif_carrier_off(ndev);
1022 
1023 	ndev->features |= NETIF_F_SG;
1024 
1025 	ret = register_netdev(ndev);
1026 	if (ret)
1027 		goto out_free_bd;
1028 
1029 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1030 
1031 	return 0;
1032 
1033 out_free_bd:
1034 	fep->ops->free_bd(ndev);
1035 out_cleanup_data:
1036 	fep->ops->cleanup_data(ndev);
1037 out_free_dev:
1038 	free_netdev(ndev);
1039 out_put:
1040 	clk_disable_unprepare(fpi->clk_per);
1041 out_deregister_fixed_link:
1042 	of_node_put(fpi->phy_node);
1043 	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1044 		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1045 out_free_fpi:
1046 	kfree(fpi);
1047 	return ret;
1048 }
1049 
1050 static void fs_enet_remove(struct platform_device *ofdev)
1051 {
1052 	struct net_device *ndev = platform_get_drvdata(ofdev);
1053 	struct fs_enet_private *fep = netdev_priv(ndev);
1054 
1055 	unregister_netdev(ndev);
1056 
1057 	fep->ops->free_bd(ndev);
1058 	fep->ops->cleanup_data(ndev);
1059 	dev_set_drvdata(fep->dev, NULL);
1060 	of_node_put(fep->fpi->phy_node);
1061 	clk_disable_unprepare(fep->fpi->clk_per);
1062 	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1063 		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1064 	free_netdev(ndev);
1065 }
1066 
1067 static const struct of_device_id fs_enet_match[] = {
1068 #ifdef CONFIG_FS_ENET_HAS_SCC
1069 	{
1070 		.compatible = "fsl,cpm1-scc-enet",
1071 		.data = (void *)&fs_scc_ops,
1072 	},
1073 	{
1074 		.compatible = "fsl,cpm2-scc-enet",
1075 		.data = (void *)&fs_scc_ops,
1076 	},
1077 #endif
1078 #ifdef CONFIG_FS_ENET_HAS_FCC
1079 	{
1080 		.compatible = "fsl,cpm2-fcc-enet",
1081 		.data = (void *)&fs_fcc_ops,
1082 	},
1083 #endif
1084 #ifdef CONFIG_FS_ENET_HAS_FEC
1085 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1086 	{
1087 		.compatible = "fsl,mpc5121-fec",
1088 		.data = (void *)&fs_fec_ops,
1089 	},
1090 	{
1091 		.compatible = "fsl,mpc5125-fec",
1092 		.data = (void *)&fs_fec_ops,
1093 	},
1094 #else
1095 	{
1096 		.compatible = "fsl,pq1-fec-enet",
1097 		.data = (void *)&fs_fec_ops,
1098 	},
1099 #endif
1100 #endif
1101 	{}
1102 };
1103 MODULE_DEVICE_TABLE(of, fs_enet_match);
1104 
1105 static struct platform_driver fs_enet_driver = {
1106 	.driver = {
1107 		.name = "fs_enet",
1108 		.of_match_table = fs_enet_match,
1109 	},
1110 	.probe = fs_enet_probe,
1111 	.remove_new = fs_enet_remove,
1112 };
1113 
1114 #ifdef CONFIG_NET_POLL_CONTROLLER
1115 static void fs_enet_netpoll(struct net_device *dev)
1116 {
1117        disable_irq(dev->irq);
1118        fs_enet_interrupt(dev->irq, dev);
1119        enable_irq(dev->irq);
1120 }
1121 #endif
1122 
1123 module_platform_driver(fs_enet_driver);
1124