1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/init.h> 28 #include <linux/delay.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <linux/skbuff.h> 32 #include <linux/spinlock.h> 33 #include <linux/mii.h> 34 #include <linux/ethtool.h> 35 #include <linux/bitops.h> 36 #include <linux/fs.h> 37 #include <linux/platform_device.h> 38 #include <linux/phy.h> 39 #include <linux/of.h> 40 #include <linux/of_mdio.h> 41 #include <linux/of_platform.h> 42 #include <linux/of_gpio.h> 43 #include <linux/of_net.h> 44 45 #include <linux/vmalloc.h> 46 #include <asm/pgtable.h> 47 #include <asm/irq.h> 48 #include <asm/uaccess.h> 49 50 #include "fs_enet.h" 51 52 /*************************************************/ 53 54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 55 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 56 MODULE_LICENSE("GPL"); 57 MODULE_VERSION(DRV_MODULE_VERSION); 58 59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 60 module_param(fs_enet_debug, int, 0); 61 MODULE_PARM_DESC(fs_enet_debug, 62 "Freescale bitmapped debugging message enable value"); 63 64 #ifdef CONFIG_NET_POLL_CONTROLLER 65 static void fs_enet_netpoll(struct net_device *dev); 66 #endif 67 68 static void fs_set_multicast_list(struct net_device *dev) 69 { 70 struct fs_enet_private *fep = netdev_priv(dev); 71 72 (*fep->ops->set_multicast_list)(dev); 73 } 74 75 static void skb_align(struct sk_buff *skb, int align) 76 { 77 int off = ((unsigned long)skb->data) & (align - 1); 78 79 if (off) 80 skb_reserve(skb, align - off); 81 } 82 83 /* NAPI receive function */ 84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget) 85 { 86 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 87 struct net_device *dev = fep->ndev; 88 const struct fs_platform_info *fpi = fep->fpi; 89 cbd_t __iomem *bdp; 90 struct sk_buff *skb, *skbn, *skbt; 91 int received = 0; 92 u16 pkt_len, sc; 93 int curidx; 94 95 /* 96 * First, grab all of the stats for the incoming packet. 97 * These get messed up if we get called due to a busy condition. 98 */ 99 bdp = fep->cur_rx; 100 101 /* clear RX status bits for napi*/ 102 (*fep->ops->napi_clear_rx_event)(dev); 103 104 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 105 curidx = bdp - fep->rx_bd_base; 106 107 /* 108 * Since we have allocated space to hold a complete frame, 109 * the last indicator should be set. 110 */ 111 if ((sc & BD_ENET_RX_LAST) == 0) 112 dev_warn(fep->dev, "rcv is not +last\n"); 113 114 /* 115 * Check for errors. 116 */ 117 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 118 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 119 fep->stats.rx_errors++; 120 /* Frame too long or too short. */ 121 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 122 fep->stats.rx_length_errors++; 123 /* Frame alignment */ 124 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 125 fep->stats.rx_frame_errors++; 126 /* CRC Error */ 127 if (sc & BD_ENET_RX_CR) 128 fep->stats.rx_crc_errors++; 129 /* FIFO overrun */ 130 if (sc & BD_ENET_RX_OV) 131 fep->stats.rx_crc_errors++; 132 133 skb = fep->rx_skbuff[curidx]; 134 135 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 136 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 137 DMA_FROM_DEVICE); 138 139 skbn = skb; 140 141 } else { 142 skb = fep->rx_skbuff[curidx]; 143 144 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 145 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 146 DMA_FROM_DEVICE); 147 148 /* 149 * Process the incoming frame. 150 */ 151 fep->stats.rx_packets++; 152 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 153 fep->stats.rx_bytes += pkt_len + 4; 154 155 if (pkt_len <= fpi->rx_copybreak) { 156 /* +2 to make IP header L1 cache aligned */ 157 skbn = netdev_alloc_skb(dev, pkt_len + 2); 158 if (skbn != NULL) { 159 skb_reserve(skbn, 2); /* align IP header */ 160 skb_copy_from_linear_data(skb, 161 skbn->data, pkt_len); 162 /* swap */ 163 skbt = skb; 164 skb = skbn; 165 skbn = skbt; 166 } 167 } else { 168 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 169 170 if (skbn) 171 skb_align(skbn, ENET_RX_ALIGN); 172 } 173 174 if (skbn != NULL) { 175 skb_put(skb, pkt_len); /* Make room */ 176 skb->protocol = eth_type_trans(skb, dev); 177 received++; 178 netif_receive_skb(skb); 179 } else { 180 dev_warn(fep->dev, 181 "Memory squeeze, dropping packet.\n"); 182 fep->stats.rx_dropped++; 183 skbn = skb; 184 } 185 } 186 187 fep->rx_skbuff[curidx] = skbn; 188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 190 DMA_FROM_DEVICE)); 191 CBDW_DATLEN(bdp, 0); 192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 193 194 /* 195 * Update BD pointer to next entry. 196 */ 197 if ((sc & BD_ENET_RX_WRAP) == 0) 198 bdp++; 199 else 200 bdp = fep->rx_bd_base; 201 202 (*fep->ops->rx_bd_done)(dev); 203 204 if (received >= budget) 205 break; 206 } 207 208 fep->cur_rx = bdp; 209 210 if (received < budget) { 211 /* done */ 212 napi_complete(napi); 213 (*fep->ops->napi_enable_rx)(dev); 214 } 215 return received; 216 } 217 218 /* non NAPI receive function */ 219 static int fs_enet_rx_non_napi(struct net_device *dev) 220 { 221 struct fs_enet_private *fep = netdev_priv(dev); 222 const struct fs_platform_info *fpi = fep->fpi; 223 cbd_t __iomem *bdp; 224 struct sk_buff *skb, *skbn, *skbt; 225 int received = 0; 226 u16 pkt_len, sc; 227 int curidx; 228 /* 229 * First, grab all of the stats for the incoming packet. 230 * These get messed up if we get called due to a busy condition. 231 */ 232 bdp = fep->cur_rx; 233 234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 235 236 curidx = bdp - fep->rx_bd_base; 237 238 /* 239 * Since we have allocated space to hold a complete frame, 240 * the last indicator should be set. 241 */ 242 if ((sc & BD_ENET_RX_LAST) == 0) 243 dev_warn(fep->dev, "rcv is not +last\n"); 244 245 /* 246 * Check for errors. 247 */ 248 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 249 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 250 fep->stats.rx_errors++; 251 /* Frame too long or too short. */ 252 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 253 fep->stats.rx_length_errors++; 254 /* Frame alignment */ 255 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 256 fep->stats.rx_frame_errors++; 257 /* CRC Error */ 258 if (sc & BD_ENET_RX_CR) 259 fep->stats.rx_crc_errors++; 260 /* FIFO overrun */ 261 if (sc & BD_ENET_RX_OV) 262 fep->stats.rx_crc_errors++; 263 264 skb = fep->rx_skbuff[curidx]; 265 266 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 268 DMA_FROM_DEVICE); 269 270 skbn = skb; 271 272 } else { 273 274 skb = fep->rx_skbuff[curidx]; 275 276 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 277 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 278 DMA_FROM_DEVICE); 279 280 /* 281 * Process the incoming frame. 282 */ 283 fep->stats.rx_packets++; 284 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 285 fep->stats.rx_bytes += pkt_len + 4; 286 287 if (pkt_len <= fpi->rx_copybreak) { 288 /* +2 to make IP header L1 cache aligned */ 289 skbn = netdev_alloc_skb(dev, pkt_len + 2); 290 if (skbn != NULL) { 291 skb_reserve(skbn, 2); /* align IP header */ 292 skb_copy_from_linear_data(skb, 293 skbn->data, pkt_len); 294 /* swap */ 295 skbt = skb; 296 skb = skbn; 297 skbn = skbt; 298 } 299 } else { 300 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 301 302 if (skbn) 303 skb_align(skbn, ENET_RX_ALIGN); 304 } 305 306 if (skbn != NULL) { 307 skb_put(skb, pkt_len); /* Make room */ 308 skb->protocol = eth_type_trans(skb, dev); 309 received++; 310 netif_rx(skb); 311 } else { 312 dev_warn(fep->dev, 313 "Memory squeeze, dropping packet.\n"); 314 fep->stats.rx_dropped++; 315 skbn = skb; 316 } 317 } 318 319 fep->rx_skbuff[curidx] = skbn; 320 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 321 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 322 DMA_FROM_DEVICE)); 323 CBDW_DATLEN(bdp, 0); 324 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 325 326 /* 327 * Update BD pointer to next entry. 328 */ 329 if ((sc & BD_ENET_RX_WRAP) == 0) 330 bdp++; 331 else 332 bdp = fep->rx_bd_base; 333 334 (*fep->ops->rx_bd_done)(dev); 335 } 336 337 fep->cur_rx = bdp; 338 339 return 0; 340 } 341 342 static void fs_enet_tx(struct net_device *dev) 343 { 344 struct fs_enet_private *fep = netdev_priv(dev); 345 cbd_t __iomem *bdp; 346 struct sk_buff *skb; 347 int dirtyidx, do_wake, do_restart; 348 u16 sc; 349 350 spin_lock(&fep->tx_lock); 351 bdp = fep->dirty_tx; 352 353 do_wake = do_restart = 0; 354 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { 355 dirtyidx = bdp - fep->tx_bd_base; 356 357 if (fep->tx_free == fep->tx_ring) 358 break; 359 360 skb = fep->tx_skbuff[dirtyidx]; 361 362 /* 363 * Check for errors. 364 */ 365 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 366 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 367 368 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 369 fep->stats.tx_heartbeat_errors++; 370 if (sc & BD_ENET_TX_LC) /* Late collision */ 371 fep->stats.tx_window_errors++; 372 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 373 fep->stats.tx_aborted_errors++; 374 if (sc & BD_ENET_TX_UN) /* Underrun */ 375 fep->stats.tx_fifo_errors++; 376 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 377 fep->stats.tx_carrier_errors++; 378 379 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 380 fep->stats.tx_errors++; 381 do_restart = 1; 382 } 383 } else 384 fep->stats.tx_packets++; 385 386 if (sc & BD_ENET_TX_READY) { 387 dev_warn(fep->dev, 388 "HEY! Enet xmit interrupt and TX_READY.\n"); 389 } 390 391 /* 392 * Deferred means some collisions occurred during transmit, 393 * but we eventually sent the packet OK. 394 */ 395 if (sc & BD_ENET_TX_DEF) 396 fep->stats.collisions++; 397 398 /* unmap */ 399 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 400 skb->len, DMA_TO_DEVICE); 401 402 /* 403 * Free the sk buffer associated with this last transmit. 404 */ 405 dev_kfree_skb_irq(skb); 406 fep->tx_skbuff[dirtyidx] = NULL; 407 408 /* 409 * Update pointer to next buffer descriptor to be transmitted. 410 */ 411 if ((sc & BD_ENET_TX_WRAP) == 0) 412 bdp++; 413 else 414 bdp = fep->tx_bd_base; 415 416 /* 417 * Since we have freed up a buffer, the ring is no longer 418 * full. 419 */ 420 if (!fep->tx_free++) 421 do_wake = 1; 422 } 423 424 fep->dirty_tx = bdp; 425 426 if (do_restart) 427 (*fep->ops->tx_restart)(dev); 428 429 spin_unlock(&fep->tx_lock); 430 431 if (do_wake) 432 netif_wake_queue(dev); 433 } 434 435 /* 436 * The interrupt handler. 437 * This is called from the MPC core interrupt. 438 */ 439 static irqreturn_t 440 fs_enet_interrupt(int irq, void *dev_id) 441 { 442 struct net_device *dev = dev_id; 443 struct fs_enet_private *fep; 444 const struct fs_platform_info *fpi; 445 u32 int_events; 446 u32 int_clr_events; 447 int nr, napi_ok; 448 int handled; 449 450 fep = netdev_priv(dev); 451 fpi = fep->fpi; 452 453 nr = 0; 454 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 455 nr++; 456 457 int_clr_events = int_events; 458 if (fpi->use_napi) 459 int_clr_events &= ~fep->ev_napi_rx; 460 461 (*fep->ops->clear_int_events)(dev, int_clr_events); 462 463 if (int_events & fep->ev_err) 464 (*fep->ops->ev_error)(dev, int_events); 465 466 if (int_events & fep->ev_rx) { 467 if (!fpi->use_napi) 468 fs_enet_rx_non_napi(dev); 469 else { 470 napi_ok = napi_schedule_prep(&fep->napi); 471 472 (*fep->ops->napi_disable_rx)(dev); 473 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx); 474 475 /* NOTE: it is possible for FCCs in NAPI mode */ 476 /* to submit a spurious interrupt while in poll */ 477 if (napi_ok) 478 __napi_schedule(&fep->napi); 479 } 480 } 481 482 if (int_events & fep->ev_tx) 483 fs_enet_tx(dev); 484 } 485 486 handled = nr > 0; 487 return IRQ_RETVAL(handled); 488 } 489 490 void fs_init_bds(struct net_device *dev) 491 { 492 struct fs_enet_private *fep = netdev_priv(dev); 493 cbd_t __iomem *bdp; 494 struct sk_buff *skb; 495 int i; 496 497 fs_cleanup_bds(dev); 498 499 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 500 fep->tx_free = fep->tx_ring; 501 fep->cur_rx = fep->rx_bd_base; 502 503 /* 504 * Initialize the receive buffer descriptors. 505 */ 506 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 507 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 508 if (skb == NULL) { 509 dev_warn(fep->dev, 510 "Memory squeeze, unable to allocate skb\n"); 511 break; 512 } 513 skb_align(skb, ENET_RX_ALIGN); 514 fep->rx_skbuff[i] = skb; 515 CBDW_BUFADDR(bdp, 516 dma_map_single(fep->dev, skb->data, 517 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 518 DMA_FROM_DEVICE)); 519 CBDW_DATLEN(bdp, 0); /* zero */ 520 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 521 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 522 } 523 /* 524 * if we failed, fillup remainder 525 */ 526 for (; i < fep->rx_ring; i++, bdp++) { 527 fep->rx_skbuff[i] = NULL; 528 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 529 } 530 531 /* 532 * ...and the same for transmit. 533 */ 534 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 535 fep->tx_skbuff[i] = NULL; 536 CBDW_BUFADDR(bdp, 0); 537 CBDW_DATLEN(bdp, 0); 538 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 539 } 540 } 541 542 void fs_cleanup_bds(struct net_device *dev) 543 { 544 struct fs_enet_private *fep = netdev_priv(dev); 545 struct sk_buff *skb; 546 cbd_t __iomem *bdp; 547 int i; 548 549 /* 550 * Reset SKB transmit buffers. 551 */ 552 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 553 if ((skb = fep->tx_skbuff[i]) == NULL) 554 continue; 555 556 /* unmap */ 557 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 558 skb->len, DMA_TO_DEVICE); 559 560 fep->tx_skbuff[i] = NULL; 561 dev_kfree_skb(skb); 562 } 563 564 /* 565 * Reset SKB receive buffers 566 */ 567 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 568 if ((skb = fep->rx_skbuff[i]) == NULL) 569 continue; 570 571 /* unmap */ 572 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 573 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 574 DMA_FROM_DEVICE); 575 576 fep->rx_skbuff[i] = NULL; 577 578 dev_kfree_skb(skb); 579 } 580 } 581 582 /**********************************************************************************/ 583 584 #ifdef CONFIG_FS_ENET_MPC5121_FEC 585 /* 586 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 587 */ 588 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 589 struct sk_buff *skb) 590 { 591 struct sk_buff *new_skb; 592 struct fs_enet_private *fep = netdev_priv(dev); 593 594 /* Alloc new skb */ 595 new_skb = netdev_alloc_skb(dev, skb->len + 4); 596 if (!new_skb) { 597 if (net_ratelimit()) { 598 dev_warn(fep->dev, 599 "Memory squeeze, dropping tx packet.\n"); 600 } 601 return NULL; 602 } 603 604 /* Make sure new skb is properly aligned */ 605 skb_align(new_skb, 4); 606 607 /* Copy data to new skb ... */ 608 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 609 skb_put(new_skb, skb->len); 610 611 /* ... and free an old one */ 612 dev_kfree_skb_any(skb); 613 614 return new_skb; 615 } 616 #endif 617 618 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 619 { 620 struct fs_enet_private *fep = netdev_priv(dev); 621 cbd_t __iomem *bdp; 622 int curidx; 623 u16 sc; 624 unsigned long flags; 625 626 #ifdef CONFIG_FS_ENET_MPC5121_FEC 627 if (((unsigned long)skb->data) & 0x3) { 628 skb = tx_skb_align_workaround(dev, skb); 629 if (!skb) { 630 /* 631 * We have lost packet due to memory allocation error 632 * in tx_skb_align_workaround(). Hopefully original 633 * skb is still valid, so try transmit it later. 634 */ 635 return NETDEV_TX_BUSY; 636 } 637 } 638 #endif 639 spin_lock_irqsave(&fep->tx_lock, flags); 640 641 /* 642 * Fill in a Tx ring entry 643 */ 644 bdp = fep->cur_tx; 645 646 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 647 netif_stop_queue(dev); 648 spin_unlock_irqrestore(&fep->tx_lock, flags); 649 650 /* 651 * Ooops. All transmit buffers are full. Bail out. 652 * This should not happen, since the tx queue should be stopped. 653 */ 654 dev_warn(fep->dev, "tx queue full!.\n"); 655 return NETDEV_TX_BUSY; 656 } 657 658 curidx = bdp - fep->tx_bd_base; 659 /* 660 * Clear all of the status flags. 661 */ 662 CBDC_SC(bdp, BD_ENET_TX_STATS); 663 664 /* 665 * Save skb pointer. 666 */ 667 fep->tx_skbuff[curidx] = skb; 668 669 fep->stats.tx_bytes += skb->len; 670 671 /* 672 * Push the data cache so the CPM does not get stale memory data. 673 */ 674 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 675 skb->data, skb->len, DMA_TO_DEVICE)); 676 CBDW_DATLEN(bdp, skb->len); 677 678 /* 679 * If this was the last BD in the ring, start at the beginning again. 680 */ 681 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 682 fep->cur_tx++; 683 else 684 fep->cur_tx = fep->tx_bd_base; 685 686 if (!--fep->tx_free) 687 netif_stop_queue(dev); 688 689 /* Trigger transmission start */ 690 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 691 BD_ENET_TX_LAST | BD_ENET_TX_TC; 692 693 /* note that while FEC does not have this bit 694 * it marks it as available for software use 695 * yay for hw reuse :) */ 696 if (skb->len <= 60) 697 sc |= BD_ENET_TX_PAD; 698 CBDS_SC(bdp, sc); 699 700 skb_tx_timestamp(skb); 701 702 (*fep->ops->tx_kickstart)(dev); 703 704 spin_unlock_irqrestore(&fep->tx_lock, flags); 705 706 return NETDEV_TX_OK; 707 } 708 709 static void fs_timeout(struct net_device *dev) 710 { 711 struct fs_enet_private *fep = netdev_priv(dev); 712 unsigned long flags; 713 int wake = 0; 714 715 fep->stats.tx_errors++; 716 717 spin_lock_irqsave(&fep->lock, flags); 718 719 if (dev->flags & IFF_UP) { 720 phy_stop(fep->phydev); 721 (*fep->ops->stop)(dev); 722 (*fep->ops->restart)(dev); 723 phy_start(fep->phydev); 724 } 725 726 phy_start(fep->phydev); 727 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 728 spin_unlock_irqrestore(&fep->lock, flags); 729 730 if (wake) 731 netif_wake_queue(dev); 732 } 733 734 /*----------------------------------------------------------------------------- 735 * generic link-change handler - should be sufficient for most cases 736 *-----------------------------------------------------------------------------*/ 737 static void generic_adjust_link(struct net_device *dev) 738 { 739 struct fs_enet_private *fep = netdev_priv(dev); 740 struct phy_device *phydev = fep->phydev; 741 int new_state = 0; 742 743 if (phydev->link) { 744 /* adjust to duplex mode */ 745 if (phydev->duplex != fep->oldduplex) { 746 new_state = 1; 747 fep->oldduplex = phydev->duplex; 748 } 749 750 if (phydev->speed != fep->oldspeed) { 751 new_state = 1; 752 fep->oldspeed = phydev->speed; 753 } 754 755 if (!fep->oldlink) { 756 new_state = 1; 757 fep->oldlink = 1; 758 } 759 760 if (new_state) 761 fep->ops->restart(dev); 762 } else if (fep->oldlink) { 763 new_state = 1; 764 fep->oldlink = 0; 765 fep->oldspeed = 0; 766 fep->oldduplex = -1; 767 } 768 769 if (new_state && netif_msg_link(fep)) 770 phy_print_status(phydev); 771 } 772 773 774 static void fs_adjust_link(struct net_device *dev) 775 { 776 struct fs_enet_private *fep = netdev_priv(dev); 777 unsigned long flags; 778 779 spin_lock_irqsave(&fep->lock, flags); 780 781 if(fep->ops->adjust_link) 782 fep->ops->adjust_link(dev); 783 else 784 generic_adjust_link(dev); 785 786 spin_unlock_irqrestore(&fep->lock, flags); 787 } 788 789 static int fs_init_phy(struct net_device *dev) 790 { 791 struct fs_enet_private *fep = netdev_priv(dev); 792 struct phy_device *phydev; 793 phy_interface_t iface; 794 795 fep->oldlink = 0; 796 fep->oldspeed = 0; 797 fep->oldduplex = -1; 798 799 iface = fep->fpi->use_rmii ? 800 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 801 802 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 803 iface); 804 if (!phydev) { 805 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link, 806 iface); 807 } 808 if (!phydev) { 809 dev_err(&dev->dev, "Could not attach to PHY\n"); 810 return -ENODEV; 811 } 812 813 fep->phydev = phydev; 814 815 return 0; 816 } 817 818 static int fs_enet_open(struct net_device *dev) 819 { 820 struct fs_enet_private *fep = netdev_priv(dev); 821 int r; 822 int err; 823 824 /* to initialize the fep->cur_rx,... */ 825 /* not doing this, will cause a crash in fs_enet_rx_napi */ 826 fs_init_bds(fep->ndev); 827 828 if (fep->fpi->use_napi) 829 napi_enable(&fep->napi); 830 831 /* Install our interrupt handler. */ 832 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 833 "fs_enet-mac", dev); 834 if (r != 0) { 835 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 836 if (fep->fpi->use_napi) 837 napi_disable(&fep->napi); 838 return -EINVAL; 839 } 840 841 err = fs_init_phy(dev); 842 if (err) { 843 free_irq(fep->interrupt, dev); 844 if (fep->fpi->use_napi) 845 napi_disable(&fep->napi); 846 return err; 847 } 848 phy_start(fep->phydev); 849 850 netif_start_queue(dev); 851 852 return 0; 853 } 854 855 static int fs_enet_close(struct net_device *dev) 856 { 857 struct fs_enet_private *fep = netdev_priv(dev); 858 unsigned long flags; 859 860 netif_stop_queue(dev); 861 netif_carrier_off(dev); 862 if (fep->fpi->use_napi) 863 napi_disable(&fep->napi); 864 phy_stop(fep->phydev); 865 866 spin_lock_irqsave(&fep->lock, flags); 867 spin_lock(&fep->tx_lock); 868 (*fep->ops->stop)(dev); 869 spin_unlock(&fep->tx_lock); 870 spin_unlock_irqrestore(&fep->lock, flags); 871 872 /* release any irqs */ 873 phy_disconnect(fep->phydev); 874 fep->phydev = NULL; 875 free_irq(fep->interrupt, dev); 876 877 return 0; 878 } 879 880 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev) 881 { 882 struct fs_enet_private *fep = netdev_priv(dev); 883 return &fep->stats; 884 } 885 886 /*************************************************************************/ 887 888 static void fs_get_drvinfo(struct net_device *dev, 889 struct ethtool_drvinfo *info) 890 { 891 strcpy(info->driver, DRV_MODULE_NAME); 892 strcpy(info->version, DRV_MODULE_VERSION); 893 } 894 895 static int fs_get_regs_len(struct net_device *dev) 896 { 897 struct fs_enet_private *fep = netdev_priv(dev); 898 899 return (*fep->ops->get_regs_len)(dev); 900 } 901 902 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 903 void *p) 904 { 905 struct fs_enet_private *fep = netdev_priv(dev); 906 unsigned long flags; 907 int r, len; 908 909 len = regs->len; 910 911 spin_lock_irqsave(&fep->lock, flags); 912 r = (*fep->ops->get_regs)(dev, p, &len); 913 spin_unlock_irqrestore(&fep->lock, flags); 914 915 if (r == 0) 916 regs->version = 0; 917 } 918 919 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 920 { 921 struct fs_enet_private *fep = netdev_priv(dev); 922 923 if (!fep->phydev) 924 return -ENODEV; 925 926 return phy_ethtool_gset(fep->phydev, cmd); 927 } 928 929 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 930 { 931 struct fs_enet_private *fep = netdev_priv(dev); 932 933 if (!fep->phydev) 934 return -ENODEV; 935 936 return phy_ethtool_sset(fep->phydev, cmd); 937 } 938 939 static int fs_nway_reset(struct net_device *dev) 940 { 941 return 0; 942 } 943 944 static u32 fs_get_msglevel(struct net_device *dev) 945 { 946 struct fs_enet_private *fep = netdev_priv(dev); 947 return fep->msg_enable; 948 } 949 950 static void fs_set_msglevel(struct net_device *dev, u32 value) 951 { 952 struct fs_enet_private *fep = netdev_priv(dev); 953 fep->msg_enable = value; 954 } 955 956 static const struct ethtool_ops fs_ethtool_ops = { 957 .get_drvinfo = fs_get_drvinfo, 958 .get_regs_len = fs_get_regs_len, 959 .get_settings = fs_get_settings, 960 .set_settings = fs_set_settings, 961 .nway_reset = fs_nway_reset, 962 .get_link = ethtool_op_get_link, 963 .get_msglevel = fs_get_msglevel, 964 .set_msglevel = fs_set_msglevel, 965 .get_regs = fs_get_regs, 966 .get_ts_info = ethtool_op_get_ts_info, 967 }; 968 969 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 970 { 971 struct fs_enet_private *fep = netdev_priv(dev); 972 973 if (!netif_running(dev)) 974 return -EINVAL; 975 976 return phy_mii_ioctl(fep->phydev, rq, cmd); 977 } 978 979 extern int fs_mii_connect(struct net_device *dev); 980 extern void fs_mii_disconnect(struct net_device *dev); 981 982 /**************************************************************************************/ 983 984 #ifdef CONFIG_FS_ENET_HAS_FEC 985 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 986 #else 987 #define IS_FEC(match) 0 988 #endif 989 990 static const struct net_device_ops fs_enet_netdev_ops = { 991 .ndo_open = fs_enet_open, 992 .ndo_stop = fs_enet_close, 993 .ndo_get_stats = fs_enet_get_stats, 994 .ndo_start_xmit = fs_enet_start_xmit, 995 .ndo_tx_timeout = fs_timeout, 996 .ndo_set_rx_mode = fs_set_multicast_list, 997 .ndo_do_ioctl = fs_ioctl, 998 .ndo_validate_addr = eth_validate_addr, 999 .ndo_set_mac_address = eth_mac_addr, 1000 .ndo_change_mtu = eth_change_mtu, 1001 #ifdef CONFIG_NET_POLL_CONTROLLER 1002 .ndo_poll_controller = fs_enet_netpoll, 1003 #endif 1004 }; 1005 1006 static struct of_device_id fs_enet_match[]; 1007 static int __devinit fs_enet_probe(struct platform_device *ofdev) 1008 { 1009 const struct of_device_id *match; 1010 struct net_device *ndev; 1011 struct fs_enet_private *fep; 1012 struct fs_platform_info *fpi; 1013 const u32 *data; 1014 const u8 *mac_addr; 1015 const char *phy_connection_type; 1016 int privsize, len, ret = -ENODEV; 1017 1018 match = of_match_device(fs_enet_match, &ofdev->dev); 1019 if (!match) 1020 return -EINVAL; 1021 1022 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 1023 if (!fpi) 1024 return -ENOMEM; 1025 1026 if (!IS_FEC(match)) { 1027 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 1028 if (!data || len != 4) 1029 goto out_free_fpi; 1030 1031 fpi->cp_command = *data; 1032 } 1033 1034 fpi->rx_ring = 32; 1035 fpi->tx_ring = 32; 1036 fpi->rx_copybreak = 240; 1037 fpi->use_napi = 1; 1038 fpi->napi_weight = 17; 1039 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 1040 if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link", 1041 NULL))) 1042 goto out_free_fpi; 1043 1044 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 1045 phy_connection_type = of_get_property(ofdev->dev.of_node, 1046 "phy-connection-type", NULL); 1047 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 1048 fpi->use_rmii = 1; 1049 } 1050 1051 privsize = sizeof(*fep) + 1052 sizeof(struct sk_buff **) * 1053 (fpi->rx_ring + fpi->tx_ring); 1054 1055 ndev = alloc_etherdev(privsize); 1056 if (!ndev) { 1057 ret = -ENOMEM; 1058 goto out_put; 1059 } 1060 1061 SET_NETDEV_DEV(ndev, &ofdev->dev); 1062 dev_set_drvdata(&ofdev->dev, ndev); 1063 1064 fep = netdev_priv(ndev); 1065 fep->dev = &ofdev->dev; 1066 fep->ndev = ndev; 1067 fep->fpi = fpi; 1068 fep->ops = match->data; 1069 1070 ret = fep->ops->setup_data(ndev); 1071 if (ret) 1072 goto out_free_dev; 1073 1074 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1075 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1076 1077 spin_lock_init(&fep->lock); 1078 spin_lock_init(&fep->tx_lock); 1079 1080 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1081 if (mac_addr) 1082 memcpy(ndev->dev_addr, mac_addr, 6); 1083 1084 ret = fep->ops->allocate_bd(ndev); 1085 if (ret) 1086 goto out_cleanup_data; 1087 1088 fep->rx_bd_base = fep->ring_base; 1089 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1090 1091 fep->tx_ring = fpi->tx_ring; 1092 fep->rx_ring = fpi->rx_ring; 1093 1094 ndev->netdev_ops = &fs_enet_netdev_ops; 1095 ndev->watchdog_timeo = 2 * HZ; 1096 if (fpi->use_napi) 1097 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, 1098 fpi->napi_weight); 1099 1100 ndev->ethtool_ops = &fs_ethtool_ops; 1101 1102 init_timer(&fep->phy_timer_list); 1103 1104 netif_carrier_off(ndev); 1105 1106 ret = register_netdev(ndev); 1107 if (ret) 1108 goto out_free_bd; 1109 1110 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1111 1112 return 0; 1113 1114 out_free_bd: 1115 fep->ops->free_bd(ndev); 1116 out_cleanup_data: 1117 fep->ops->cleanup_data(ndev); 1118 out_free_dev: 1119 free_netdev(ndev); 1120 dev_set_drvdata(&ofdev->dev, NULL); 1121 out_put: 1122 of_node_put(fpi->phy_node); 1123 out_free_fpi: 1124 kfree(fpi); 1125 return ret; 1126 } 1127 1128 static int fs_enet_remove(struct platform_device *ofdev) 1129 { 1130 struct net_device *ndev = dev_get_drvdata(&ofdev->dev); 1131 struct fs_enet_private *fep = netdev_priv(ndev); 1132 1133 unregister_netdev(ndev); 1134 1135 fep->ops->free_bd(ndev); 1136 fep->ops->cleanup_data(ndev); 1137 dev_set_drvdata(fep->dev, NULL); 1138 of_node_put(fep->fpi->phy_node); 1139 free_netdev(ndev); 1140 return 0; 1141 } 1142 1143 static struct of_device_id fs_enet_match[] = { 1144 #ifdef CONFIG_FS_ENET_HAS_SCC 1145 { 1146 .compatible = "fsl,cpm1-scc-enet", 1147 .data = (void *)&fs_scc_ops, 1148 }, 1149 { 1150 .compatible = "fsl,cpm2-scc-enet", 1151 .data = (void *)&fs_scc_ops, 1152 }, 1153 #endif 1154 #ifdef CONFIG_FS_ENET_HAS_FCC 1155 { 1156 .compatible = "fsl,cpm2-fcc-enet", 1157 .data = (void *)&fs_fcc_ops, 1158 }, 1159 #endif 1160 #ifdef CONFIG_FS_ENET_HAS_FEC 1161 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1162 { 1163 .compatible = "fsl,mpc5121-fec", 1164 .data = (void *)&fs_fec_ops, 1165 }, 1166 { 1167 .compatible = "fsl,mpc5125-fec", 1168 .data = (void *)&fs_fec_ops, 1169 }, 1170 #else 1171 { 1172 .compatible = "fsl,pq1-fec-enet", 1173 .data = (void *)&fs_fec_ops, 1174 }, 1175 #endif 1176 #endif 1177 {} 1178 }; 1179 MODULE_DEVICE_TABLE(of, fs_enet_match); 1180 1181 static struct platform_driver fs_enet_driver = { 1182 .driver = { 1183 .owner = THIS_MODULE, 1184 .name = "fs_enet", 1185 .of_match_table = fs_enet_match, 1186 }, 1187 .probe = fs_enet_probe, 1188 .remove = fs_enet_remove, 1189 }; 1190 1191 #ifdef CONFIG_NET_POLL_CONTROLLER 1192 static void fs_enet_netpoll(struct net_device *dev) 1193 { 1194 disable_irq(dev->irq); 1195 fs_enet_interrupt(dev->irq, dev); 1196 enable_irq(dev->irq); 1197 } 1198 #endif 1199 1200 module_platform_driver(fs_enet_driver); 1201