xref: /linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c (revision 3d7b8ea7a8a20a45d019382c4dc6ed79e8bb95cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4  *
5  * Copyright (c) 2003 Intracom S.A.
6  *  by Pantelis Antoniou <panto@intracom.gr>
7  *
8  * 2005 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  *
11  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
12  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/phylink.h>
35 #include <linux/property.h>
36 #include <linux/of.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/pgtable.h>
40 #include <linux/rtnetlink.h>
41 
42 #include <linux/vmalloc.h>
43 #include <asm/irq.h>
44 #include <linux/uaccess.h>
45 
46 #include "fs_enet.h"
47 
48 /*************************************************/
49 
50 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
51 MODULE_DESCRIPTION("Freescale Ethernet Driver");
52 MODULE_LICENSE("GPL");
53 
54 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
55 module_param(fs_enet_debug, int, 0);
56 MODULE_PARM_DESC(fs_enet_debug,
57 		 "Freescale bitmapped debugging message enable value");
58 
59 #define RX_RING_SIZE	32
60 #define TX_RING_SIZE	64
61 
62 #ifdef CONFIG_NET_POLL_CONTROLLER
63 static void fs_enet_netpoll(struct net_device *dev);
64 #endif
65 
66 static void fs_set_multicast_list(struct net_device *dev)
67 {
68 	struct fs_enet_private *fep = netdev_priv(dev);
69 
70 	(*fep->ops->set_multicast_list)(dev);
71 }
72 
73 static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
74 {
75 	struct fs_enet_private *fep = netdev_priv(dev);
76 
77 	return phylink_mii_ioctl(fep->phylink, ifr, cmd);
78 }
79 
80 static void skb_align(struct sk_buff *skb, int align)
81 {
82 	int off = ((unsigned long)skb->data) & (align - 1);
83 
84 	if (off)
85 		skb_reserve(skb, align - off);
86 }
87 
88 /* NAPI function */
89 static int fs_enet_napi(struct napi_struct *napi, int budget)
90 {
91 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
92 	const struct fs_platform_info *fpi = fep->fpi;
93 	struct net_device *dev = fep->ndev;
94 	int curidx, dirtyidx, received = 0;
95 	int do_wake = 0, do_restart = 0;
96 	int tx_left = TX_RING_SIZE;
97 	struct sk_buff *skb, *skbn;
98 	cbd_t __iomem *bdp;
99 	u16 pkt_len, sc;
100 
101 	spin_lock(&fep->tx_lock);
102 	bdp = fep->dirty_tx;
103 
104 	/* clear status bits for napi*/
105 	(*fep->ops->napi_clear_event)(dev);
106 
107 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
108 		dirtyidx = bdp - fep->tx_bd_base;
109 
110 		if (fep->tx_free == fep->tx_ring)
111 			break;
112 
113 		skb = fep->tx_skbuff[dirtyidx];
114 
115 		 /* Check for errors. */
116 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
119 				dev->stats.tx_heartbeat_errors++;
120 			if (sc & BD_ENET_TX_LC)	/* Late collision */
121 				dev->stats.tx_window_errors++;
122 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
123 				dev->stats.tx_aborted_errors++;
124 			if (sc & BD_ENET_TX_UN)	/* Underrun */
125 				dev->stats.tx_fifo_errors++;
126 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
127 				dev->stats.tx_carrier_errors++;
128 
129 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 				dev->stats.tx_errors++;
131 				do_restart = 1;
132 			}
133 		} else {
134 			dev->stats.tx_packets++;
135 		}
136 
137 		if (sc & BD_ENET_TX_READY) {
138 			dev_warn(fep->dev,
139 				 "HEY! Enet xmit interrupt and TX_READY.\n");
140 		}
141 
142 		/* Deferred means some collisions occurred during transmit,
143 		 * but we eventually sent the packet OK.
144 		 */
145 		if (sc & BD_ENET_TX_DEF)
146 			dev->stats.collisions++;
147 
148 		/* unmap */
149 		if (fep->mapped_as_page[dirtyidx])
150 			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 		else
153 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155 
156 		/* Free the sk buffer associated with this last transmit. */
157 		if (skb) {
158 			dev_kfree_skb(skb);
159 			fep->tx_skbuff[dirtyidx] = NULL;
160 		}
161 
162 		/* Update pointer to next buffer descriptor to be transmitted.
163 		 */
164 		if ((sc & BD_ENET_TX_WRAP) == 0)
165 			bdp++;
166 		else
167 			bdp = fep->tx_bd_base;
168 
169 		/* Since we have freed up a buffer, the ring is no longer full.
170 		 */
171 		if (++fep->tx_free == MAX_SKB_FRAGS)
172 			do_wake = 1;
173 		tx_left--;
174 	}
175 
176 	fep->dirty_tx = bdp;
177 
178 	if (do_restart)
179 		(*fep->ops->tx_restart)(dev);
180 
181 	spin_unlock(&fep->tx_lock);
182 
183 	if (do_wake)
184 		netif_wake_queue(dev);
185 
186 	/* First, grab all of the stats for the incoming packet.
187 	 * These get messed up if we get called due to a busy condition.
188 	 */
189 	bdp = fep->cur_rx;
190 
191 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
192 	       received < budget) {
193 		curidx = bdp - fep->rx_bd_base;
194 
195 		/* Since we have allocated space to hold a complete frame,
196 		 * the last indicator should be set.
197 		 */
198 		if ((sc & BD_ENET_RX_LAST) == 0)
199 			dev_warn(fep->dev, "rcv is not +last\n");
200 
201 		/* Check for errors. */
202 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
203 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
204 			dev->stats.rx_errors++;
205 			/* Frame too long or too short. */
206 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
207 				dev->stats.rx_length_errors++;
208 			/* Frame alignment */
209 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
210 				dev->stats.rx_frame_errors++;
211 			/* CRC Error */
212 			if (sc & BD_ENET_RX_CR)
213 				dev->stats.rx_crc_errors++;
214 			/* FIFO overrun */
215 			if (sc & BD_ENET_RX_OV)
216 				dev->stats.rx_crc_errors++;
217 
218 			skbn = fep->rx_skbuff[curidx];
219 		} else {
220 			skb = fep->rx_skbuff[curidx];
221 
222 			/* Process the incoming frame */
223 			dev->stats.rx_packets++;
224 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
225 			dev->stats.rx_bytes += pkt_len + 4;
226 
227 			if (pkt_len <= fpi->rx_copybreak) {
228 				/* +2 to make IP header L1 cache aligned */
229 				skbn = netdev_alloc_skb(dev, pkt_len + 2);
230 				if (skbn) {
231 					skb_reserve(skbn, 2);	/* align IP header */
232 					skb_copy_from_linear_data(skb, skbn->data,
233 								  pkt_len);
234 					swap(skb, skbn);
235 					dma_sync_single_for_cpu(fep->dev,
236 								CBDR_BUFADDR(bdp),
237 								L1_CACHE_ALIGN(pkt_len),
238 								DMA_FROM_DEVICE);
239 				}
240 			} else {
241 				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
242 
243 				if (skbn) {
244 					dma_addr_t dma;
245 
246 					skb_align(skbn, ENET_RX_ALIGN);
247 
248 					dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
249 							 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
250 							 DMA_FROM_DEVICE);
251 
252 					dma = dma_map_single(fep->dev, skbn->data,
253 							     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
254 							     DMA_FROM_DEVICE);
255 					CBDW_BUFADDR(bdp, dma);
256 				}
257 			}
258 
259 			if (skbn) {
260 				skb_put(skb, pkt_len);	/* Make room */
261 				skb->protocol = eth_type_trans(skb, dev);
262 				received++;
263 				netif_receive_skb(skb);
264 			} else {
265 				dev->stats.rx_dropped++;
266 				skbn = skb;
267 			}
268 		}
269 
270 		fep->rx_skbuff[curidx] = skbn;
271 		CBDW_DATLEN(bdp, 0);
272 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
273 
274 		/* Update BD pointer to next entry */
275 		if ((sc & BD_ENET_RX_WRAP) == 0)
276 			bdp++;
277 		else
278 			bdp = fep->rx_bd_base;
279 
280 		(*fep->ops->rx_bd_done)(dev);
281 	}
282 
283 	fep->cur_rx = bdp;
284 
285 	if (received < budget && tx_left) {
286 		/* done */
287 		napi_complete_done(napi, received);
288 		(*fep->ops->napi_enable)(dev);
289 
290 		return received;
291 	}
292 
293 	return budget;
294 }
295 
296 /* The interrupt handler.
297  * This is called from the MPC core interrupt.
298  */
299 static irqreturn_t
300 fs_enet_interrupt(int irq, void *dev_id)
301 {
302 	struct net_device *dev = dev_id;
303 	u32 int_events, int_clr_events;
304 	struct fs_enet_private *fep;
305 	int nr, napi_ok, handled;
306 
307 	fep = netdev_priv(dev);
308 
309 	nr = 0;
310 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
311 		nr++;
312 
313 		int_clr_events = int_events;
314 		int_clr_events &= ~fep->ev_napi;
315 
316 		(*fep->ops->clear_int_events)(dev, int_clr_events);
317 
318 		if (int_events & fep->ev_err)
319 			(*fep->ops->ev_error)(dev, int_events);
320 
321 		if (int_events & fep->ev) {
322 			napi_ok = napi_schedule_prep(&fep->napi);
323 
324 			(*fep->ops->napi_disable)(dev);
325 			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
326 
327 			/* NOTE: it is possible for FCCs in NAPI mode
328 			 * to submit a spurious interrupt while in poll
329 			 */
330 			if (napi_ok)
331 				__napi_schedule(&fep->napi);
332 		}
333 	}
334 
335 	handled = nr > 0;
336 	return IRQ_RETVAL(handled);
337 }
338 
339 void fs_init_bds(struct net_device *dev)
340 {
341 	struct fs_enet_private *fep = netdev_priv(dev);
342 	struct sk_buff *skb;
343 	cbd_t __iomem *bdp;
344 	int i;
345 
346 	fs_cleanup_bds(dev);
347 
348 	fep->dirty_tx = fep->tx_bd_base;
349 	fep->cur_tx = fep->tx_bd_base;
350 	fep->tx_free = fep->tx_ring;
351 	fep->cur_rx = fep->rx_bd_base;
352 
353 	/* Initialize the receive buffer descriptors */
354 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
355 		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
356 		if (!skb)
357 			break;
358 
359 		skb_align(skb, ENET_RX_ALIGN);
360 		fep->rx_skbuff[i] = skb;
361 		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
362 						 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
363 						 DMA_FROM_DEVICE));
364 		CBDW_DATLEN(bdp, 0);	/* zero */
365 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
366 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
367 	}
368 
369 	/* if we failed, fillup remainder */
370 	for (; i < fep->rx_ring; i++, bdp++) {
371 		fep->rx_skbuff[i] = NULL;
372 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
373 	}
374 
375 	/* ...and the same for transmit. */
376 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
377 		fep->tx_skbuff[i] = NULL;
378 		CBDW_BUFADDR(bdp, 0);
379 		CBDW_DATLEN(bdp, 0);
380 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
381 	}
382 }
383 
384 void fs_cleanup_bds(struct net_device *dev)
385 {
386 	struct fs_enet_private *fep = netdev_priv(dev);
387 	struct sk_buff *skb;
388 	cbd_t __iomem *bdp;
389 	int i;
390 
391 	/* Reset SKB transmit buffers. */
392 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
393 		skb = fep->tx_skbuff[i];
394 		if (!skb)
395 			continue;
396 
397 		/* unmap */
398 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
399 				 skb->len, DMA_TO_DEVICE);
400 
401 		fep->tx_skbuff[i] = NULL;
402 		dev_kfree_skb(skb);
403 	}
404 
405 	/* Reset SKB receive buffers */
406 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
407 		skb = fep->rx_skbuff[i];
408 		if (!skb)
409 			continue;
410 
411 		/* unmap */
412 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
413 				 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
414 				 DMA_FROM_DEVICE);
415 
416 		fep->rx_skbuff[i] = NULL;
417 
418 		dev_kfree_skb(skb);
419 	}
420 }
421 
422 #ifdef CONFIG_FS_ENET_MPC5121_FEC
423 /* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
424 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
425 					       struct sk_buff *skb)
426 {
427 	struct sk_buff *new_skb;
428 
429 	if (skb_linearize(skb))
430 		return NULL;
431 
432 	/* Alloc new skb */
433 	new_skb = netdev_alloc_skb(dev, skb->len + 4);
434 	if (!new_skb)
435 		return NULL;
436 
437 	/* Make sure new skb is properly aligned */
438 	skb_align(new_skb, 4);
439 
440 	/* Copy data to new skb ... */
441 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
442 	skb_put(new_skb, skb->len);
443 
444 	/* ... and free an old one */
445 	dev_kfree_skb_any(skb);
446 
447 	return new_skb;
448 }
449 #endif
450 
451 static netdev_tx_t
452 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
453 {
454 	struct fs_enet_private *fep = netdev_priv(dev);
455 	int curidx, nr_frags, len;
456 	cbd_t __iomem *bdp;
457 	skb_frag_t *frag;
458 	u16 sc;
459 #ifdef CONFIG_FS_ENET_MPC5121_FEC
460 	int i, is_aligned = 1;
461 
462 	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
463 		is_aligned = 0;
464 	} else {
465 		nr_frags = skb_shinfo(skb)->nr_frags;
466 		frag = skb_shinfo(skb)->frags;
467 		for (i = 0; i < nr_frags; i++, frag++) {
468 			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
469 				is_aligned = 0;
470 				break;
471 			}
472 		}
473 	}
474 
475 	if (!is_aligned) {
476 		skb = tx_skb_align_workaround(dev, skb);
477 		if (!skb) {
478 			/* We have lost packet due to memory allocation error
479 			 * in tx_skb_align_workaround(). Hopefully original
480 			 * skb is still valid, so try transmit it later.
481 			 */
482 			return NETDEV_TX_BUSY;
483 		}
484 	}
485 #endif
486 
487 	spin_lock(&fep->tx_lock);
488 
489 	/* Fill in a Tx ring entry */
490 	bdp = fep->cur_tx;
491 
492 	nr_frags = skb_shinfo(skb)->nr_frags;
493 	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
494 		netif_stop_queue(dev);
495 		spin_unlock(&fep->tx_lock);
496 
497 		/* Ooops.  All transmit buffers are full.  Bail out.
498 		 * This should not happen, since the tx queue should be stopped.
499 		 */
500 		dev_warn(fep->dev, "tx queue full!.\n");
501 		return NETDEV_TX_BUSY;
502 	}
503 
504 	curidx = bdp - fep->tx_bd_base;
505 
506 	len = skb->len;
507 	dev->stats.tx_bytes += len;
508 	if (nr_frags)
509 		len -= skb->data_len;
510 
511 	fep->tx_free -= nr_frags + 1;
512 	/* Push the data cache so the CPM does not get stale memory data.
513 	 */
514 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
515 					 skb->data, len, DMA_TO_DEVICE));
516 	CBDW_DATLEN(bdp, len);
517 
518 	fep->mapped_as_page[curidx] = 0;
519 	frag = skb_shinfo(skb)->frags;
520 	while (nr_frags) {
521 		CBDC_SC(bdp,
522 			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
523 			BD_ENET_TX_TC);
524 		CBDS_SC(bdp, BD_ENET_TX_READY);
525 
526 		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
527 			bdp++;
528 			curidx++;
529 		} else {
530 			bdp = fep->tx_bd_base;
531 			curidx = 0;
532 		}
533 
534 		len = skb_frag_size(frag);
535 		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
536 						   DMA_TO_DEVICE));
537 		CBDW_DATLEN(bdp, len);
538 
539 		fep->tx_skbuff[curidx] = NULL;
540 		fep->mapped_as_page[curidx] = 1;
541 
542 		frag++;
543 		nr_frags--;
544 	}
545 
546 	/* Trigger transmission start */
547 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
548 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
549 
550 	/* note that while FEC does not have this bit
551 	 * it marks it as available for software use
552 	 * yay for hw reuse :)
553 	 */
554 	if (skb->len <= 60)
555 		sc |= BD_ENET_TX_PAD;
556 
557 	CBDC_SC(bdp, BD_ENET_TX_STATS);
558 	CBDS_SC(bdp, sc);
559 
560 	/* Save skb pointer. */
561 	fep->tx_skbuff[curidx] = skb;
562 
563 	/* If this was the last BD in the ring, start at the beginning again. */
564 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
565 		bdp++;
566 	else
567 		bdp = fep->tx_bd_base;
568 
569 	fep->cur_tx = bdp;
570 
571 	if (fep->tx_free < MAX_SKB_FRAGS)
572 		netif_stop_queue(dev);
573 
574 	skb_tx_timestamp(skb);
575 
576 	(*fep->ops->tx_kickstart)(dev);
577 
578 	spin_unlock(&fep->tx_lock);
579 
580 	return NETDEV_TX_OK;
581 }
582 
583 static void fs_timeout_work(struct work_struct *work)
584 {
585 	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
586 						   timeout_work);
587 	struct net_device *dev = fep->ndev;
588 	unsigned long flags;
589 	int wake = 0;
590 
591 	dev->stats.tx_errors++;
592 
593 	/* In the event a timeout was detected, but the netdev is brought down
594 	 * shortly after, it no longer makes sense to try to recover from the
595 	 * timeout. netif_running() will return false when called from the
596 	 * .ndo_close() callback. Calling the following recovery code while
597 	 * called from .ndo_close() could deadlock on rtnl.
598 	 */
599 	if (!netif_running(dev))
600 		return;
601 
602 	rtnl_lock();
603 	phylink_stop(fep->phylink);
604 	phylink_start(fep->phylink);
605 	rtnl_unlock();
606 
607 	spin_lock_irqsave(&fep->lock, flags);
608 	wake = fep->tx_free >= MAX_SKB_FRAGS &&
609 	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
610 	spin_unlock_irqrestore(&fep->lock, flags);
611 
612 	if (wake)
613 		netif_wake_queue(dev);
614 }
615 
616 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
617 {
618 	struct fs_enet_private *fep = netdev_priv(dev);
619 
620 	schedule_work(&fep->timeout_work);
621 }
622 
623 static void fs_mac_link_up(struct phylink_config *config,
624 			   struct phy_device *phy,
625 			   unsigned int mode, phy_interface_t interface,
626 			   int speed, int duplex,
627 			   bool tx_pause, bool rx_pause)
628 {
629 	struct net_device *ndev = to_net_dev(config->dev);
630 	struct fs_enet_private *fep = netdev_priv(ndev);
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&fep->lock, flags);
634 	fep->ops->restart(ndev, interface, speed, duplex);
635 	spin_unlock_irqrestore(&fep->lock, flags);
636 }
637 
638 static void fs_mac_link_down(struct phylink_config *config,
639 			     unsigned int mode, phy_interface_t interface)
640 {
641 	struct net_device *ndev = to_net_dev(config->dev);
642 	struct fs_enet_private *fep = netdev_priv(ndev);
643 	unsigned long flags;
644 
645 	spin_lock_irqsave(&fep->lock, flags);
646 	fep->ops->stop(ndev);
647 	spin_unlock_irqrestore(&fep->lock, flags);
648 }
649 
650 static void fs_mac_config(struct phylink_config *config, unsigned int mode,
651 			  const struct phylink_link_state *state)
652 {
653 	/* Nothing to do */
654 }
655 
656 static int fs_enet_open(struct net_device *dev)
657 {
658 	struct fs_enet_private *fep = netdev_priv(dev);
659 	int r;
660 	int err;
661 
662 	/* to initialize the fep->cur_rx,...
663 	 * not doing this, will cause a crash in fs_enet_napi
664 	 */
665 	fs_init_bds(fep->ndev);
666 
667 	napi_enable(&fep->napi);
668 
669 	/* Install our interrupt handler. */
670 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
671 			"fs_enet-mac", dev);
672 	if (r != 0) {
673 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
674 		napi_disable(&fep->napi);
675 		return -EINVAL;
676 	}
677 
678 	err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
679 	if (err) {
680 		free_irq(fep->interrupt, dev);
681 		napi_disable(&fep->napi);
682 		return err;
683 	}
684 	phylink_start(fep->phylink);
685 
686 	netif_start_queue(dev);
687 
688 	return 0;
689 }
690 
691 static int fs_enet_close(struct net_device *dev)
692 {
693 	struct fs_enet_private *fep = netdev_priv(dev);
694 	unsigned long flags;
695 
696 	netif_stop_queue(dev);
697 	napi_disable(&fep->napi);
698 	cancel_work(&fep->timeout_work);
699 	phylink_stop(fep->phylink);
700 
701 	spin_lock_irqsave(&fep->lock, flags);
702 	spin_lock(&fep->tx_lock);
703 	(*fep->ops->stop)(dev);
704 	spin_unlock(&fep->tx_lock);
705 	spin_unlock_irqrestore(&fep->lock, flags);
706 	phylink_disconnect_phy(fep->phylink);
707 
708 	/* release any irqs */
709 	free_irq(fep->interrupt, dev);
710 
711 	return 0;
712 }
713 
714 static void fs_get_drvinfo(struct net_device *dev,
715 			   struct ethtool_drvinfo *info)
716 {
717 	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
718 }
719 
720 static int fs_get_regs_len(struct net_device *dev)
721 {
722 	struct fs_enet_private *fep = netdev_priv(dev);
723 
724 	return (*fep->ops->get_regs_len)(dev);
725 }
726 
727 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
728 			void *p)
729 {
730 	struct fs_enet_private *fep = netdev_priv(dev);
731 	unsigned long flags;
732 	int r, len;
733 
734 	len = regs->len;
735 
736 	spin_lock_irqsave(&fep->lock, flags);
737 	r = (*fep->ops->get_regs)(dev, p, &len);
738 	spin_unlock_irqrestore(&fep->lock, flags);
739 
740 	if (r == 0)
741 		regs->version = 0;
742 }
743 
744 static u32 fs_get_msglevel(struct net_device *dev)
745 {
746 	struct fs_enet_private *fep = netdev_priv(dev);
747 
748 	return fep->msg_enable;
749 }
750 
751 static void fs_set_msglevel(struct net_device *dev, u32 value)
752 {
753 	struct fs_enet_private *fep = netdev_priv(dev);
754 
755 	fep->msg_enable = value;
756 }
757 
758 static int fs_get_tunable(struct net_device *dev,
759 			  const struct ethtool_tunable *tuna, void *data)
760 {
761 	struct fs_enet_private *fep = netdev_priv(dev);
762 	struct fs_platform_info *fpi = fep->fpi;
763 	int ret = 0;
764 
765 	switch (tuna->id) {
766 	case ETHTOOL_RX_COPYBREAK:
767 		*(u32 *)data = fpi->rx_copybreak;
768 		break;
769 	default:
770 		ret = -EINVAL;
771 		break;
772 	}
773 
774 	return ret;
775 }
776 
777 static int fs_set_tunable(struct net_device *dev,
778 			  const struct ethtool_tunable *tuna, const void *data)
779 {
780 	struct fs_enet_private *fep = netdev_priv(dev);
781 	struct fs_platform_info *fpi = fep->fpi;
782 	int ret = 0;
783 
784 	switch (tuna->id) {
785 	case ETHTOOL_RX_COPYBREAK:
786 		fpi->rx_copybreak = *(u32 *)data;
787 		break;
788 	default:
789 		ret = -EINVAL;
790 		break;
791 	}
792 
793 	return ret;
794 }
795 
796 static int fs_ethtool_set_link_ksettings(struct net_device *dev,
797 					 const struct ethtool_link_ksettings *cmd)
798 {
799 	struct fs_enet_private *fep = netdev_priv(dev);
800 
801 	return phylink_ethtool_ksettings_set(fep->phylink, cmd);
802 }
803 
804 static int fs_ethtool_get_link_ksettings(struct net_device *dev,
805 					 struct ethtool_link_ksettings *cmd)
806 {
807 	struct fs_enet_private *fep = netdev_priv(dev);
808 
809 	return phylink_ethtool_ksettings_get(fep->phylink, cmd);
810 }
811 
812 static const struct ethtool_ops fs_ethtool_ops = {
813 	.get_drvinfo = fs_get_drvinfo,
814 	.get_regs_len = fs_get_regs_len,
815 	.nway_reset = phy_ethtool_nway_reset,
816 	.get_link = ethtool_op_get_link,
817 	.get_msglevel = fs_get_msglevel,
818 	.set_msglevel = fs_set_msglevel,
819 	.get_regs = fs_get_regs,
820 	.get_ts_info = ethtool_op_get_ts_info,
821 	.get_link_ksettings = fs_ethtool_get_link_ksettings,
822 	.set_link_ksettings = fs_ethtool_set_link_ksettings,
823 	.get_tunable = fs_get_tunable,
824 	.set_tunable = fs_set_tunable,
825 };
826 
827 #ifdef CONFIG_FS_ENET_HAS_FEC
828 #define IS_FEC(ops) ((ops) == &fs_fec_ops)
829 #else
830 #define IS_FEC(ops) 0
831 #endif
832 
833 static const struct net_device_ops fs_enet_netdev_ops = {
834 	.ndo_open		= fs_enet_open,
835 	.ndo_stop		= fs_enet_close,
836 	.ndo_start_xmit		= fs_enet_start_xmit,
837 	.ndo_tx_timeout		= fs_timeout,
838 	.ndo_set_rx_mode	= fs_set_multicast_list,
839 	.ndo_eth_ioctl		= fs_eth_ioctl,
840 	.ndo_validate_addr	= eth_validate_addr,
841 	.ndo_set_mac_address	= eth_mac_addr,
842 #ifdef CONFIG_NET_POLL_CONTROLLER
843 	.ndo_poll_controller	= fs_enet_netpoll,
844 #endif
845 };
846 
847 static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
848 	.mac_config = fs_mac_config,
849 	.mac_link_down = fs_mac_link_down,
850 	.mac_link_up = fs_mac_link_up,
851 };
852 
853 static int fs_enet_probe(struct platform_device *ofdev)
854 {
855 	int privsize, len, ret = -ENODEV;
856 	struct fs_platform_info *fpi;
857 	struct fs_enet_private *fep;
858 	phy_interface_t phy_mode;
859 	const struct fs_ops *ops;
860 	struct net_device *ndev;
861 	struct phylink *phylink;
862 	const u32 *data;
863 	struct clk *clk;
864 
865 	ops = device_get_match_data(&ofdev->dev);
866 	if (!ops)
867 		return -EINVAL;
868 
869 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
870 	if (!fpi)
871 		return -ENOMEM;
872 
873 	if (!IS_FEC(ops)) {
874 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
875 		if (!data || len != 4)
876 			goto out_free_fpi;
877 
878 		fpi->cp_command = *data;
879 	}
880 
881 	ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
882 	if (ret) {
883 		/* For compatibility, if the mode isn't specified in DT,
884 		 * assume MII
885 		 */
886 		phy_mode = PHY_INTERFACE_MODE_MII;
887 	}
888 
889 	fpi->rx_ring = RX_RING_SIZE;
890 	fpi->tx_ring = TX_RING_SIZE;
891 	fpi->rx_copybreak = 240;
892 	fpi->napi_weight = 17;
893 
894 	/* make clock lookup non-fatal (the driver is shared among platforms),
895 	 * but require enable to succeed when a clock was specified/found,
896 	 * keep a reference to the clock upon successful acquisition
897 	 */
898 	clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
899 	if (IS_ERR(clk))
900 		goto out_free_fpi;
901 
902 	privsize = sizeof(*fep) +
903 		   sizeof(struct sk_buff **) *
904 		     (fpi->rx_ring + fpi->tx_ring) +
905 		   sizeof(char) * fpi->tx_ring;
906 
907 	ndev = alloc_etherdev(privsize);
908 	if (!ndev) {
909 		ret = -ENOMEM;
910 		goto out_free_fpi;
911 	}
912 
913 	SET_NETDEV_DEV(ndev, &ofdev->dev);
914 	platform_set_drvdata(ofdev, ndev);
915 
916 	fep = netdev_priv(ndev);
917 	fep->dev = &ofdev->dev;
918 	fep->ndev = ndev;
919 	fep->fpi = fpi;
920 	fep->ops = ops;
921 
922 	fep->phylink_config.dev = &ndev->dev;
923 	fep->phylink_config.type = PHYLINK_NETDEV;
924 	fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
925 
926 	__set_bit(PHY_INTERFACE_MODE_MII,
927 		  fep->phylink_config.supported_interfaces);
928 
929 	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
930 		__set_bit(PHY_INTERFACE_MODE_RMII,
931 			  fep->phylink_config.supported_interfaces);
932 
933 	phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
934 				 phy_mode, &fs_enet_phylink_mac_ops);
935 	if (IS_ERR(phylink)) {
936 		ret = PTR_ERR(phylink);
937 		goto out_free_dev;
938 	}
939 
940 	fep->phylink = phylink;
941 
942 	ret = fep->ops->setup_data(ndev);
943 	if (ret)
944 		goto out_phylink;
945 
946 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
947 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
948 	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
949 				       fpi->tx_ring);
950 
951 	spin_lock_init(&fep->lock);
952 	spin_lock_init(&fep->tx_lock);
953 
954 	of_get_ethdev_address(ofdev->dev.of_node, ndev);
955 
956 	ret = fep->ops->allocate_bd(ndev);
957 	if (ret)
958 		goto out_cleanup_data;
959 
960 	fep->rx_bd_base = fep->ring_base;
961 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
962 
963 	fep->tx_ring = fpi->tx_ring;
964 	fep->rx_ring = fpi->rx_ring;
965 
966 	ndev->netdev_ops = &fs_enet_netdev_ops;
967 	ndev->watchdog_timeo = 2 * HZ;
968 	INIT_WORK(&fep->timeout_work, fs_timeout_work);
969 	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
970 			      fpi->napi_weight);
971 
972 	ndev->ethtool_ops = &fs_ethtool_ops;
973 
974 	ndev->features |= NETIF_F_SG;
975 
976 	ret = register_netdev(ndev);
977 	if (ret)
978 		goto out_free_bd;
979 
980 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
981 
982 	return 0;
983 
984 out_free_bd:
985 	fep->ops->free_bd(ndev);
986 out_cleanup_data:
987 	fep->ops->cleanup_data(ndev);
988 out_phylink:
989 	phylink_destroy(fep->phylink);
990 out_free_dev:
991 	free_netdev(ndev);
992 out_free_fpi:
993 	kfree(fpi);
994 	return ret;
995 }
996 
997 static void fs_enet_remove(struct platform_device *ofdev)
998 {
999 	struct net_device *ndev = platform_get_drvdata(ofdev);
1000 	struct fs_enet_private *fep = netdev_priv(ndev);
1001 
1002 	unregister_netdev(ndev);
1003 
1004 	fep->ops->free_bd(ndev);
1005 	fep->ops->cleanup_data(ndev);
1006 	dev_set_drvdata(fep->dev, NULL);
1007 	phylink_destroy(fep->phylink);
1008 	free_netdev(ndev);
1009 }
1010 
1011 static const struct of_device_id fs_enet_match[] = {
1012 #ifdef CONFIG_FS_ENET_HAS_SCC
1013 	{
1014 		.compatible = "fsl,cpm1-scc-enet",
1015 		.data = (void *)&fs_scc_ops,
1016 	},
1017 	{
1018 		.compatible = "fsl,cpm2-scc-enet",
1019 		.data = (void *)&fs_scc_ops,
1020 	},
1021 #endif
1022 #ifdef CONFIG_FS_ENET_HAS_FCC
1023 	{
1024 		.compatible = "fsl,cpm2-fcc-enet",
1025 		.data = (void *)&fs_fcc_ops,
1026 	},
1027 #endif
1028 #ifdef CONFIG_FS_ENET_HAS_FEC
1029 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1030 	{
1031 		.compatible = "fsl,mpc5121-fec",
1032 		.data = (void *)&fs_fec_ops,
1033 	},
1034 	{
1035 		.compatible = "fsl,mpc5125-fec",
1036 		.data = (void *)&fs_fec_ops,
1037 	},
1038 #else
1039 	{
1040 		.compatible = "fsl,pq1-fec-enet",
1041 		.data = (void *)&fs_fec_ops,
1042 	},
1043 #endif
1044 #endif
1045 	{}
1046 };
1047 MODULE_DEVICE_TABLE(of, fs_enet_match);
1048 
1049 static struct platform_driver fs_enet_driver = {
1050 	.driver = {
1051 		.name = "fs_enet",
1052 		.of_match_table = fs_enet_match,
1053 	},
1054 	.probe = fs_enet_probe,
1055 	.remove_new = fs_enet_remove,
1056 };
1057 
1058 #ifdef CONFIG_NET_POLL_CONTROLLER
1059 static void fs_enet_netpoll(struct net_device *dev)
1060 {
1061 	disable_irq(dev->irq);
1062 	fs_enet_interrupt(dev->irq, dev);
1063 	enable_irq(dev->irq);
1064 }
1065 #endif
1066 
1067 module_platform_driver(fs_enet_driver);
1068