1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <asm/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #ifdef CONFIG_NET_POLL_CONTROLLER 64 static void fs_enet_netpoll(struct net_device *dev); 65 #endif 66 67 static void fs_set_multicast_list(struct net_device *dev) 68 { 69 struct fs_enet_private *fep = netdev_priv(dev); 70 71 (*fep->ops->set_multicast_list)(dev); 72 } 73 74 static void skb_align(struct sk_buff *skb, int align) 75 { 76 int off = ((unsigned long)skb->data) & (align - 1); 77 78 if (off) 79 skb_reserve(skb, align - off); 80 } 81 82 /* NAPI receive function */ 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget) 84 { 85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 86 struct net_device *dev = fep->ndev; 87 const struct fs_platform_info *fpi = fep->fpi; 88 cbd_t __iomem *bdp; 89 struct sk_buff *skb, *skbn; 90 int received = 0; 91 u16 pkt_len, sc; 92 int curidx; 93 94 if (budget <= 0) 95 return received; 96 97 /* 98 * First, grab all of the stats for the incoming packet. 99 * These get messed up if we get called due to a busy condition. 100 */ 101 bdp = fep->cur_rx; 102 103 /* clear RX status bits for napi*/ 104 (*fep->ops->napi_clear_rx_event)(dev); 105 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 107 curidx = bdp - fep->rx_bd_base; 108 109 /* 110 * Since we have allocated space to hold a complete frame, 111 * the last indicator should be set. 112 */ 113 if ((sc & BD_ENET_RX_LAST) == 0) 114 dev_warn(fep->dev, "rcv is not +last\n"); 115 116 /* 117 * Check for errors. 118 */ 119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 121 fep->stats.rx_errors++; 122 /* Frame too long or too short. */ 123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 124 fep->stats.rx_length_errors++; 125 /* Frame alignment */ 126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 127 fep->stats.rx_frame_errors++; 128 /* CRC Error */ 129 if (sc & BD_ENET_RX_CR) 130 fep->stats.rx_crc_errors++; 131 /* FIFO overrun */ 132 if (sc & BD_ENET_RX_OV) 133 fep->stats.rx_crc_errors++; 134 135 skb = fep->rx_skbuff[curidx]; 136 137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 139 DMA_FROM_DEVICE); 140 141 skbn = skb; 142 143 } else { 144 skb = fep->rx_skbuff[curidx]; 145 146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 148 DMA_FROM_DEVICE); 149 150 /* 151 * Process the incoming frame. 152 */ 153 fep->stats.rx_packets++; 154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 155 fep->stats.rx_bytes += pkt_len + 4; 156 157 if (pkt_len <= fpi->rx_copybreak) { 158 /* +2 to make IP header L1 cache aligned */ 159 skbn = netdev_alloc_skb(dev, pkt_len + 2); 160 if (skbn != NULL) { 161 skb_reserve(skbn, 2); /* align IP header */ 162 skb_copy_from_linear_data(skb, 163 skbn->data, pkt_len); 164 swap(skb, skbn); 165 } 166 } else { 167 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 168 169 if (skbn) 170 skb_align(skbn, ENET_RX_ALIGN); 171 } 172 173 if (skbn != NULL) { 174 skb_put(skb, pkt_len); /* Make room */ 175 skb->protocol = eth_type_trans(skb, dev); 176 received++; 177 netif_receive_skb(skb); 178 } else { 179 fep->stats.rx_dropped++; 180 skbn = skb; 181 } 182 } 183 184 fep->rx_skbuff[curidx] = skbn; 185 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 186 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 187 DMA_FROM_DEVICE)); 188 CBDW_DATLEN(bdp, 0); 189 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 190 191 /* 192 * Update BD pointer to next entry. 193 */ 194 if ((sc & BD_ENET_RX_WRAP) == 0) 195 bdp++; 196 else 197 bdp = fep->rx_bd_base; 198 199 (*fep->ops->rx_bd_done)(dev); 200 201 if (received >= budget) 202 break; 203 } 204 205 fep->cur_rx = bdp; 206 207 if (received < budget) { 208 /* done */ 209 napi_complete(napi); 210 (*fep->ops->napi_enable_rx)(dev); 211 } 212 return received; 213 } 214 215 static int fs_enet_tx_napi(struct napi_struct *napi, int budget) 216 { 217 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, 218 napi_tx); 219 struct net_device *dev = fep->ndev; 220 cbd_t __iomem *bdp; 221 struct sk_buff *skb; 222 int dirtyidx, do_wake, do_restart; 223 u16 sc; 224 int has_tx_work = 0; 225 226 spin_lock(&fep->tx_lock); 227 bdp = fep->dirty_tx; 228 229 /* clear TX status bits for napi*/ 230 (*fep->ops->napi_clear_tx_event)(dev); 231 232 do_wake = do_restart = 0; 233 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { 234 dirtyidx = bdp - fep->tx_bd_base; 235 236 if (fep->tx_free == fep->tx_ring) 237 break; 238 239 skb = fep->tx_skbuff[dirtyidx]; 240 241 /* 242 * Check for errors. 243 */ 244 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 245 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 246 247 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 248 fep->stats.tx_heartbeat_errors++; 249 if (sc & BD_ENET_TX_LC) /* Late collision */ 250 fep->stats.tx_window_errors++; 251 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 252 fep->stats.tx_aborted_errors++; 253 if (sc & BD_ENET_TX_UN) /* Underrun */ 254 fep->stats.tx_fifo_errors++; 255 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 256 fep->stats.tx_carrier_errors++; 257 258 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 259 fep->stats.tx_errors++; 260 do_restart = 1; 261 } 262 } else 263 fep->stats.tx_packets++; 264 265 if (sc & BD_ENET_TX_READY) { 266 dev_warn(fep->dev, 267 "HEY! Enet xmit interrupt and TX_READY.\n"); 268 } 269 270 /* 271 * Deferred means some collisions occurred during transmit, 272 * but we eventually sent the packet OK. 273 */ 274 if (sc & BD_ENET_TX_DEF) 275 fep->stats.collisions++; 276 277 /* unmap */ 278 if (fep->mapped_as_page[dirtyidx]) 279 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 280 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 281 else 282 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 283 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 284 285 /* 286 * Free the sk buffer associated with this last transmit. 287 */ 288 if (skb) { 289 dev_kfree_skb(skb); 290 fep->tx_skbuff[dirtyidx] = NULL; 291 } 292 293 /* 294 * Update pointer to next buffer descriptor to be transmitted. 295 */ 296 if ((sc & BD_ENET_TX_WRAP) == 0) 297 bdp++; 298 else 299 bdp = fep->tx_bd_base; 300 301 /* 302 * Since we have freed up a buffer, the ring is no longer 303 * full. 304 */ 305 if (++fep->tx_free >= MAX_SKB_FRAGS) 306 do_wake = 1; 307 has_tx_work = 1; 308 } 309 310 fep->dirty_tx = bdp; 311 312 if (do_restart) 313 (*fep->ops->tx_restart)(dev); 314 315 if (!has_tx_work) { 316 napi_complete(napi); 317 (*fep->ops->napi_enable_tx)(dev); 318 } 319 320 spin_unlock(&fep->tx_lock); 321 322 if (do_wake) 323 netif_wake_queue(dev); 324 325 if (has_tx_work) 326 return budget; 327 return 0; 328 } 329 330 /* 331 * The interrupt handler. 332 * This is called from the MPC core interrupt. 333 */ 334 static irqreturn_t 335 fs_enet_interrupt(int irq, void *dev_id) 336 { 337 struct net_device *dev = dev_id; 338 struct fs_enet_private *fep; 339 const struct fs_platform_info *fpi; 340 u32 int_events; 341 u32 int_clr_events; 342 int nr, napi_ok; 343 int handled; 344 345 fep = netdev_priv(dev); 346 fpi = fep->fpi; 347 348 nr = 0; 349 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 350 nr++; 351 352 int_clr_events = int_events; 353 int_clr_events &= ~fep->ev_napi_rx; 354 355 (*fep->ops->clear_int_events)(dev, int_clr_events); 356 357 if (int_events & fep->ev_err) 358 (*fep->ops->ev_error)(dev, int_events); 359 360 if (int_events & fep->ev_rx) { 361 napi_ok = napi_schedule_prep(&fep->napi); 362 363 (*fep->ops->napi_disable_rx)(dev); 364 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx); 365 366 /* NOTE: it is possible for FCCs in NAPI mode */ 367 /* to submit a spurious interrupt while in poll */ 368 if (napi_ok) 369 __napi_schedule(&fep->napi); 370 } 371 372 if (int_events & fep->ev_tx) { 373 napi_ok = napi_schedule_prep(&fep->napi_tx); 374 375 (*fep->ops->napi_disable_tx)(dev); 376 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx); 377 378 /* NOTE: it is possible for FCCs in NAPI mode */ 379 /* to submit a spurious interrupt while in poll */ 380 if (napi_ok) 381 __napi_schedule(&fep->napi_tx); 382 } 383 } 384 385 handled = nr > 0; 386 return IRQ_RETVAL(handled); 387 } 388 389 void fs_init_bds(struct net_device *dev) 390 { 391 struct fs_enet_private *fep = netdev_priv(dev); 392 cbd_t __iomem *bdp; 393 struct sk_buff *skb; 394 int i; 395 396 fs_cleanup_bds(dev); 397 398 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 399 fep->tx_free = fep->tx_ring; 400 fep->cur_rx = fep->rx_bd_base; 401 402 /* 403 * Initialize the receive buffer descriptors. 404 */ 405 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 406 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 407 if (skb == NULL) 408 break; 409 410 skb_align(skb, ENET_RX_ALIGN); 411 fep->rx_skbuff[i] = skb; 412 CBDW_BUFADDR(bdp, 413 dma_map_single(fep->dev, skb->data, 414 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 415 DMA_FROM_DEVICE)); 416 CBDW_DATLEN(bdp, 0); /* zero */ 417 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 418 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 419 } 420 /* 421 * if we failed, fillup remainder 422 */ 423 for (; i < fep->rx_ring; i++, bdp++) { 424 fep->rx_skbuff[i] = NULL; 425 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 426 } 427 428 /* 429 * ...and the same for transmit. 430 */ 431 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 432 fep->tx_skbuff[i] = NULL; 433 CBDW_BUFADDR(bdp, 0); 434 CBDW_DATLEN(bdp, 0); 435 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 436 } 437 } 438 439 void fs_cleanup_bds(struct net_device *dev) 440 { 441 struct fs_enet_private *fep = netdev_priv(dev); 442 struct sk_buff *skb; 443 cbd_t __iomem *bdp; 444 int i; 445 446 /* 447 * Reset SKB transmit buffers. 448 */ 449 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 450 if ((skb = fep->tx_skbuff[i]) == NULL) 451 continue; 452 453 /* unmap */ 454 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 455 skb->len, DMA_TO_DEVICE); 456 457 fep->tx_skbuff[i] = NULL; 458 dev_kfree_skb(skb); 459 } 460 461 /* 462 * Reset SKB receive buffers 463 */ 464 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 465 if ((skb = fep->rx_skbuff[i]) == NULL) 466 continue; 467 468 /* unmap */ 469 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 470 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 471 DMA_FROM_DEVICE); 472 473 fep->rx_skbuff[i] = NULL; 474 475 dev_kfree_skb(skb); 476 } 477 } 478 479 /**********************************************************************************/ 480 481 #ifdef CONFIG_FS_ENET_MPC5121_FEC 482 /* 483 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 484 */ 485 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 486 struct sk_buff *skb) 487 { 488 struct sk_buff *new_skb; 489 490 if (skb_linearize(skb)) 491 return NULL; 492 493 /* Alloc new skb */ 494 new_skb = netdev_alloc_skb(dev, skb->len + 4); 495 if (!new_skb) 496 return NULL; 497 498 /* Make sure new skb is properly aligned */ 499 skb_align(new_skb, 4); 500 501 /* Copy data to new skb ... */ 502 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 503 skb_put(new_skb, skb->len); 504 505 /* ... and free an old one */ 506 dev_kfree_skb_any(skb); 507 508 return new_skb; 509 } 510 #endif 511 512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 513 { 514 struct fs_enet_private *fep = netdev_priv(dev); 515 cbd_t __iomem *bdp; 516 int curidx; 517 u16 sc; 518 int nr_frags; 519 skb_frag_t *frag; 520 int len; 521 #ifdef CONFIG_FS_ENET_MPC5121_FEC 522 int is_aligned = 1; 523 int i; 524 525 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 526 is_aligned = 0; 527 } else { 528 nr_frags = skb_shinfo(skb)->nr_frags; 529 frag = skb_shinfo(skb)->frags; 530 for (i = 0; i < nr_frags; i++, frag++) { 531 if (!IS_ALIGNED(frag->page_offset, 4)) { 532 is_aligned = 0; 533 break; 534 } 535 } 536 } 537 538 if (!is_aligned) { 539 skb = tx_skb_align_workaround(dev, skb); 540 if (!skb) { 541 /* 542 * We have lost packet due to memory allocation error 543 * in tx_skb_align_workaround(). Hopefully original 544 * skb is still valid, so try transmit it later. 545 */ 546 return NETDEV_TX_BUSY; 547 } 548 } 549 #endif 550 551 spin_lock(&fep->tx_lock); 552 553 /* 554 * Fill in a Tx ring entry 555 */ 556 bdp = fep->cur_tx; 557 558 nr_frags = skb_shinfo(skb)->nr_frags; 559 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 560 netif_stop_queue(dev); 561 spin_unlock(&fep->tx_lock); 562 563 /* 564 * Ooops. All transmit buffers are full. Bail out. 565 * This should not happen, since the tx queue should be stopped. 566 */ 567 dev_warn(fep->dev, "tx queue full!.\n"); 568 return NETDEV_TX_BUSY; 569 } 570 571 curidx = bdp - fep->tx_bd_base; 572 573 len = skb->len; 574 fep->stats.tx_bytes += len; 575 if (nr_frags) 576 len -= skb->data_len; 577 fep->tx_free -= nr_frags + 1; 578 /* 579 * Push the data cache so the CPM does not get stale memory data. 580 */ 581 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 582 skb->data, len, DMA_TO_DEVICE)); 583 CBDW_DATLEN(bdp, len); 584 585 fep->mapped_as_page[curidx] = 0; 586 frag = skb_shinfo(skb)->frags; 587 while (nr_frags) { 588 CBDC_SC(bdp, 589 BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC); 590 CBDS_SC(bdp, BD_ENET_TX_READY); 591 592 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 593 bdp++, curidx++; 594 else 595 bdp = fep->tx_bd_base, curidx = 0; 596 597 len = skb_frag_size(frag); 598 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 599 DMA_TO_DEVICE)); 600 CBDW_DATLEN(bdp, len); 601 602 fep->tx_skbuff[curidx] = NULL; 603 fep->mapped_as_page[curidx] = 1; 604 605 frag++; 606 nr_frags--; 607 } 608 609 /* Trigger transmission start */ 610 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 611 BD_ENET_TX_LAST | BD_ENET_TX_TC; 612 613 /* note that while FEC does not have this bit 614 * it marks it as available for software use 615 * yay for hw reuse :) */ 616 if (skb->len <= 60) 617 sc |= BD_ENET_TX_PAD; 618 CBDC_SC(bdp, BD_ENET_TX_STATS); 619 CBDS_SC(bdp, sc); 620 621 /* Save skb pointer. */ 622 fep->tx_skbuff[curidx] = skb; 623 624 /* If this was the last BD in the ring, start at the beginning again. */ 625 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 626 bdp++; 627 else 628 bdp = fep->tx_bd_base; 629 fep->cur_tx = bdp; 630 631 if (fep->tx_free < MAX_SKB_FRAGS) 632 netif_stop_queue(dev); 633 634 skb_tx_timestamp(skb); 635 636 (*fep->ops->tx_kickstart)(dev); 637 638 spin_unlock(&fep->tx_lock); 639 640 return NETDEV_TX_OK; 641 } 642 643 static void fs_timeout(struct net_device *dev) 644 { 645 struct fs_enet_private *fep = netdev_priv(dev); 646 unsigned long flags; 647 int wake = 0; 648 649 fep->stats.tx_errors++; 650 651 spin_lock_irqsave(&fep->lock, flags); 652 653 if (dev->flags & IFF_UP) { 654 phy_stop(fep->phydev); 655 (*fep->ops->stop)(dev); 656 (*fep->ops->restart)(dev); 657 phy_start(fep->phydev); 658 } 659 660 phy_start(fep->phydev); 661 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 662 spin_unlock_irqrestore(&fep->lock, flags); 663 664 if (wake) 665 netif_wake_queue(dev); 666 } 667 668 /*----------------------------------------------------------------------------- 669 * generic link-change handler - should be sufficient for most cases 670 *-----------------------------------------------------------------------------*/ 671 static void generic_adjust_link(struct net_device *dev) 672 { 673 struct fs_enet_private *fep = netdev_priv(dev); 674 struct phy_device *phydev = fep->phydev; 675 int new_state = 0; 676 677 if (phydev->link) { 678 /* adjust to duplex mode */ 679 if (phydev->duplex != fep->oldduplex) { 680 new_state = 1; 681 fep->oldduplex = phydev->duplex; 682 } 683 684 if (phydev->speed != fep->oldspeed) { 685 new_state = 1; 686 fep->oldspeed = phydev->speed; 687 } 688 689 if (!fep->oldlink) { 690 new_state = 1; 691 fep->oldlink = 1; 692 } 693 694 if (new_state) 695 fep->ops->restart(dev); 696 } else if (fep->oldlink) { 697 new_state = 1; 698 fep->oldlink = 0; 699 fep->oldspeed = 0; 700 fep->oldduplex = -1; 701 } 702 703 if (new_state && netif_msg_link(fep)) 704 phy_print_status(phydev); 705 } 706 707 708 static void fs_adjust_link(struct net_device *dev) 709 { 710 struct fs_enet_private *fep = netdev_priv(dev); 711 unsigned long flags; 712 713 spin_lock_irqsave(&fep->lock, flags); 714 715 if(fep->ops->adjust_link) 716 fep->ops->adjust_link(dev); 717 else 718 generic_adjust_link(dev); 719 720 spin_unlock_irqrestore(&fep->lock, flags); 721 } 722 723 static int fs_init_phy(struct net_device *dev) 724 { 725 struct fs_enet_private *fep = netdev_priv(dev); 726 struct phy_device *phydev; 727 phy_interface_t iface; 728 729 fep->oldlink = 0; 730 fep->oldspeed = 0; 731 fep->oldduplex = -1; 732 733 iface = fep->fpi->use_rmii ? 734 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 735 736 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 737 iface); 738 if (!phydev) { 739 dev_err(&dev->dev, "Could not attach to PHY\n"); 740 return -ENODEV; 741 } 742 743 fep->phydev = phydev; 744 745 return 0; 746 } 747 748 static int fs_enet_open(struct net_device *dev) 749 { 750 struct fs_enet_private *fep = netdev_priv(dev); 751 int r; 752 int err; 753 754 /* to initialize the fep->cur_rx,... */ 755 /* not doing this, will cause a crash in fs_enet_rx_napi */ 756 fs_init_bds(fep->ndev); 757 758 napi_enable(&fep->napi); 759 napi_enable(&fep->napi_tx); 760 761 /* Install our interrupt handler. */ 762 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 763 "fs_enet-mac", dev); 764 if (r != 0) { 765 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 766 napi_disable(&fep->napi); 767 napi_disable(&fep->napi_tx); 768 return -EINVAL; 769 } 770 771 err = fs_init_phy(dev); 772 if (err) { 773 free_irq(fep->interrupt, dev); 774 napi_disable(&fep->napi); 775 napi_disable(&fep->napi_tx); 776 return err; 777 } 778 phy_start(fep->phydev); 779 780 netif_start_queue(dev); 781 782 return 0; 783 } 784 785 static int fs_enet_close(struct net_device *dev) 786 { 787 struct fs_enet_private *fep = netdev_priv(dev); 788 unsigned long flags; 789 790 netif_stop_queue(dev); 791 netif_carrier_off(dev); 792 napi_disable(&fep->napi); 793 napi_disable(&fep->napi_tx); 794 phy_stop(fep->phydev); 795 796 spin_lock_irqsave(&fep->lock, flags); 797 spin_lock(&fep->tx_lock); 798 (*fep->ops->stop)(dev); 799 spin_unlock(&fep->tx_lock); 800 spin_unlock_irqrestore(&fep->lock, flags); 801 802 /* release any irqs */ 803 phy_disconnect(fep->phydev); 804 fep->phydev = NULL; 805 free_irq(fep->interrupt, dev); 806 807 return 0; 808 } 809 810 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev) 811 { 812 struct fs_enet_private *fep = netdev_priv(dev); 813 return &fep->stats; 814 } 815 816 /*************************************************************************/ 817 818 static void fs_get_drvinfo(struct net_device *dev, 819 struct ethtool_drvinfo *info) 820 { 821 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 822 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 823 } 824 825 static int fs_get_regs_len(struct net_device *dev) 826 { 827 struct fs_enet_private *fep = netdev_priv(dev); 828 829 return (*fep->ops->get_regs_len)(dev); 830 } 831 832 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 833 void *p) 834 { 835 struct fs_enet_private *fep = netdev_priv(dev); 836 unsigned long flags; 837 int r, len; 838 839 len = regs->len; 840 841 spin_lock_irqsave(&fep->lock, flags); 842 r = (*fep->ops->get_regs)(dev, p, &len); 843 spin_unlock_irqrestore(&fep->lock, flags); 844 845 if (r == 0) 846 regs->version = 0; 847 } 848 849 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 850 { 851 struct fs_enet_private *fep = netdev_priv(dev); 852 853 if (!fep->phydev) 854 return -ENODEV; 855 856 return phy_ethtool_gset(fep->phydev, cmd); 857 } 858 859 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 860 { 861 struct fs_enet_private *fep = netdev_priv(dev); 862 863 if (!fep->phydev) 864 return -ENODEV; 865 866 return phy_ethtool_sset(fep->phydev, cmd); 867 } 868 869 static int fs_nway_reset(struct net_device *dev) 870 { 871 return 0; 872 } 873 874 static u32 fs_get_msglevel(struct net_device *dev) 875 { 876 struct fs_enet_private *fep = netdev_priv(dev); 877 return fep->msg_enable; 878 } 879 880 static void fs_set_msglevel(struct net_device *dev, u32 value) 881 { 882 struct fs_enet_private *fep = netdev_priv(dev); 883 fep->msg_enable = value; 884 } 885 886 static const struct ethtool_ops fs_ethtool_ops = { 887 .get_drvinfo = fs_get_drvinfo, 888 .get_regs_len = fs_get_regs_len, 889 .get_settings = fs_get_settings, 890 .set_settings = fs_set_settings, 891 .nway_reset = fs_nway_reset, 892 .get_link = ethtool_op_get_link, 893 .get_msglevel = fs_get_msglevel, 894 .set_msglevel = fs_set_msglevel, 895 .get_regs = fs_get_regs, 896 .get_ts_info = ethtool_op_get_ts_info, 897 }; 898 899 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 900 { 901 struct fs_enet_private *fep = netdev_priv(dev); 902 903 if (!netif_running(dev)) 904 return -EINVAL; 905 906 return phy_mii_ioctl(fep->phydev, rq, cmd); 907 } 908 909 extern int fs_mii_connect(struct net_device *dev); 910 extern void fs_mii_disconnect(struct net_device *dev); 911 912 /**************************************************************************************/ 913 914 #ifdef CONFIG_FS_ENET_HAS_FEC 915 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 916 #else 917 #define IS_FEC(match) 0 918 #endif 919 920 static const struct net_device_ops fs_enet_netdev_ops = { 921 .ndo_open = fs_enet_open, 922 .ndo_stop = fs_enet_close, 923 .ndo_get_stats = fs_enet_get_stats, 924 .ndo_start_xmit = fs_enet_start_xmit, 925 .ndo_tx_timeout = fs_timeout, 926 .ndo_set_rx_mode = fs_set_multicast_list, 927 .ndo_do_ioctl = fs_ioctl, 928 .ndo_validate_addr = eth_validate_addr, 929 .ndo_set_mac_address = eth_mac_addr, 930 .ndo_change_mtu = eth_change_mtu, 931 #ifdef CONFIG_NET_POLL_CONTROLLER 932 .ndo_poll_controller = fs_enet_netpoll, 933 #endif 934 }; 935 936 static const struct of_device_id fs_enet_match[]; 937 static int fs_enet_probe(struct platform_device *ofdev) 938 { 939 const struct of_device_id *match; 940 struct net_device *ndev; 941 struct fs_enet_private *fep; 942 struct fs_platform_info *fpi; 943 const u32 *data; 944 struct clk *clk; 945 int err; 946 const u8 *mac_addr; 947 const char *phy_connection_type; 948 int privsize, len, ret = -ENODEV; 949 950 match = of_match_device(fs_enet_match, &ofdev->dev); 951 if (!match) 952 return -EINVAL; 953 954 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 955 if (!fpi) 956 return -ENOMEM; 957 958 if (!IS_FEC(match)) { 959 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 960 if (!data || len != 4) 961 goto out_free_fpi; 962 963 fpi->cp_command = *data; 964 } 965 966 fpi->rx_ring = 32; 967 fpi->tx_ring = 64; 968 fpi->rx_copybreak = 240; 969 fpi->napi_weight = 17; 970 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 971 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 972 err = of_phy_register_fixed_link(ofdev->dev.of_node); 973 if (err) 974 goto out_free_fpi; 975 976 /* In the case of a fixed PHY, the DT node associated 977 * to the PHY is the Ethernet MAC DT node. 978 */ 979 fpi->phy_node = of_node_get(ofdev->dev.of_node); 980 } 981 982 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 983 phy_connection_type = of_get_property(ofdev->dev.of_node, 984 "phy-connection-type", NULL); 985 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 986 fpi->use_rmii = 1; 987 } 988 989 /* make clock lookup non-fatal (the driver is shared among platforms), 990 * but require enable to succeed when a clock was specified/found, 991 * keep a reference to the clock upon successful acquisition 992 */ 993 clk = devm_clk_get(&ofdev->dev, "per"); 994 if (!IS_ERR(clk)) { 995 err = clk_prepare_enable(clk); 996 if (err) { 997 ret = err; 998 goto out_free_fpi; 999 } 1000 fpi->clk_per = clk; 1001 } 1002 1003 privsize = sizeof(*fep) + 1004 sizeof(struct sk_buff **) * 1005 (fpi->rx_ring + fpi->tx_ring) + 1006 sizeof(char) * fpi->tx_ring; 1007 1008 ndev = alloc_etherdev(privsize); 1009 if (!ndev) { 1010 ret = -ENOMEM; 1011 goto out_put; 1012 } 1013 1014 SET_NETDEV_DEV(ndev, &ofdev->dev); 1015 platform_set_drvdata(ofdev, ndev); 1016 1017 fep = netdev_priv(ndev); 1018 fep->dev = &ofdev->dev; 1019 fep->ndev = ndev; 1020 fep->fpi = fpi; 1021 fep->ops = match->data; 1022 1023 ret = fep->ops->setup_data(ndev); 1024 if (ret) 1025 goto out_free_dev; 1026 1027 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1028 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1029 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1030 fpi->tx_ring); 1031 1032 spin_lock_init(&fep->lock); 1033 spin_lock_init(&fep->tx_lock); 1034 1035 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1036 if (mac_addr) 1037 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 1038 1039 ret = fep->ops->allocate_bd(ndev); 1040 if (ret) 1041 goto out_cleanup_data; 1042 1043 fep->rx_bd_base = fep->ring_base; 1044 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1045 1046 fep->tx_ring = fpi->tx_ring; 1047 fep->rx_ring = fpi->rx_ring; 1048 1049 ndev->netdev_ops = &fs_enet_netdev_ops; 1050 ndev->watchdog_timeo = 2 * HZ; 1051 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight); 1052 netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2); 1053 1054 ndev->ethtool_ops = &fs_ethtool_ops; 1055 1056 init_timer(&fep->phy_timer_list); 1057 1058 netif_carrier_off(ndev); 1059 1060 ndev->features |= NETIF_F_SG; 1061 1062 ret = register_netdev(ndev); 1063 if (ret) 1064 goto out_free_bd; 1065 1066 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1067 1068 return 0; 1069 1070 out_free_bd: 1071 fep->ops->free_bd(ndev); 1072 out_cleanup_data: 1073 fep->ops->cleanup_data(ndev); 1074 out_free_dev: 1075 free_netdev(ndev); 1076 out_put: 1077 of_node_put(fpi->phy_node); 1078 if (fpi->clk_per) 1079 clk_disable_unprepare(fpi->clk_per); 1080 out_free_fpi: 1081 kfree(fpi); 1082 return ret; 1083 } 1084 1085 static int fs_enet_remove(struct platform_device *ofdev) 1086 { 1087 struct net_device *ndev = platform_get_drvdata(ofdev); 1088 struct fs_enet_private *fep = netdev_priv(ndev); 1089 1090 unregister_netdev(ndev); 1091 1092 fep->ops->free_bd(ndev); 1093 fep->ops->cleanup_data(ndev); 1094 dev_set_drvdata(fep->dev, NULL); 1095 of_node_put(fep->fpi->phy_node); 1096 if (fep->fpi->clk_per) 1097 clk_disable_unprepare(fep->fpi->clk_per); 1098 free_netdev(ndev); 1099 return 0; 1100 } 1101 1102 static const struct of_device_id fs_enet_match[] = { 1103 #ifdef CONFIG_FS_ENET_HAS_SCC 1104 { 1105 .compatible = "fsl,cpm1-scc-enet", 1106 .data = (void *)&fs_scc_ops, 1107 }, 1108 { 1109 .compatible = "fsl,cpm2-scc-enet", 1110 .data = (void *)&fs_scc_ops, 1111 }, 1112 #endif 1113 #ifdef CONFIG_FS_ENET_HAS_FCC 1114 { 1115 .compatible = "fsl,cpm2-fcc-enet", 1116 .data = (void *)&fs_fcc_ops, 1117 }, 1118 #endif 1119 #ifdef CONFIG_FS_ENET_HAS_FEC 1120 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1121 { 1122 .compatible = "fsl,mpc5121-fec", 1123 .data = (void *)&fs_fec_ops, 1124 }, 1125 { 1126 .compatible = "fsl,mpc5125-fec", 1127 .data = (void *)&fs_fec_ops, 1128 }, 1129 #else 1130 { 1131 .compatible = "fsl,pq1-fec-enet", 1132 .data = (void *)&fs_fec_ops, 1133 }, 1134 #endif 1135 #endif 1136 {} 1137 }; 1138 MODULE_DEVICE_TABLE(of, fs_enet_match); 1139 1140 static struct platform_driver fs_enet_driver = { 1141 .driver = { 1142 .name = "fs_enet", 1143 .of_match_table = fs_enet_match, 1144 }, 1145 .probe = fs_enet_probe, 1146 .remove = fs_enet_remove, 1147 }; 1148 1149 #ifdef CONFIG_NET_POLL_CONTROLLER 1150 static void fs_enet_netpoll(struct net_device *dev) 1151 { 1152 disable_irq(dev->irq); 1153 fs_enet_interrupt(dev->irq, dev); 1154 enable_irq(dev->irq); 1155 } 1156 #endif 1157 1158 module_platform_driver(fs_enet_driver); 1159