1 /* 2 * Copyright 2008-2015 Freescale Semiconductor Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * * Redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer. 8 * * Redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution. 11 * * Neither the name of Freescale Semiconductor nor the 12 * names of its contributors may be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * 16 * ALTERNATIVELY, this software may be distributed under the terms of the 17 * GNU General Public License ("GPL") as published by the Free Software 18 * Foundation, either version 2 of that License or (at your option) any 19 * later version. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 22 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 24 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include "fman.h" 36 #include "fman_muram.h" 37 38 #include <linux/fsl/guts.h> 39 #include <linux/slab.h> 40 #include <linux/delay.h> 41 #include <linux/module.h> 42 #include <linux/of_platform.h> 43 #include <linux/clk.h> 44 #include <linux/of_address.h> 45 #include <linux/of_irq.h> 46 #include <linux/interrupt.h> 47 #include <linux/libfdt_env.h> 48 49 /* General defines */ 50 #define FMAN_LIODN_TBL 64 /* size of LIODN table */ 51 #define MAX_NUM_OF_MACS 10 52 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS 4 53 #define BASE_RX_PORTID 0x08 54 #define BASE_TX_PORTID 0x28 55 56 /* Modules registers offsets */ 57 #define BMI_OFFSET 0x00080000 58 #define QMI_OFFSET 0x00080400 59 #define DMA_OFFSET 0x000C2000 60 #define FPM_OFFSET 0x000C3000 61 #define IMEM_OFFSET 0x000C4000 62 #define CGP_OFFSET 0x000DB000 63 64 /* Exceptions bit map */ 65 #define EX_DMA_BUS_ERROR 0x80000000 66 #define EX_DMA_READ_ECC 0x40000000 67 #define EX_DMA_SYSTEM_WRITE_ECC 0x20000000 68 #define EX_DMA_FM_WRITE_ECC 0x10000000 69 #define EX_FPM_STALL_ON_TASKS 0x08000000 70 #define EX_FPM_SINGLE_ECC 0x04000000 71 #define EX_FPM_DOUBLE_ECC 0x02000000 72 #define EX_QMI_SINGLE_ECC 0x01000000 73 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID 0x00800000 74 #define EX_QMI_DOUBLE_ECC 0x00400000 75 #define EX_BMI_LIST_RAM_ECC 0x00200000 76 #define EX_BMI_STORAGE_PROFILE_ECC 0x00100000 77 #define EX_BMI_STATISTICS_RAM_ECC 0x00080000 78 #define EX_IRAM_ECC 0x00040000 79 #define EX_MURAM_ECC 0x00020000 80 #define EX_BMI_DISPATCH_RAM_ECC 0x00010000 81 #define EX_DMA_SINGLE_PORT_ECC 0x00008000 82 83 /* DMA defines */ 84 /* masks */ 85 #define DMA_MODE_BER 0x00200000 86 #define DMA_MODE_ECC 0x00000020 87 #define DMA_MODE_SECURE_PROT 0x00000800 88 #define DMA_MODE_AXI_DBG_MASK 0x0F000000 89 90 #define DMA_TRANSFER_PORTID_MASK 0xFF000000 91 #define DMA_TRANSFER_TNUM_MASK 0x00FF0000 92 #define DMA_TRANSFER_LIODN_MASK 0x00000FFF 93 94 #define DMA_STATUS_BUS_ERR 0x08000000 95 #define DMA_STATUS_READ_ECC 0x04000000 96 #define DMA_STATUS_SYSTEM_WRITE_ECC 0x02000000 97 #define DMA_STATUS_FM_WRITE_ECC 0x01000000 98 #define DMA_STATUS_FM_SPDAT_ECC 0x00080000 99 100 #define DMA_MODE_CACHE_OR_SHIFT 30 101 #define DMA_MODE_AXI_DBG_SHIFT 24 102 #define DMA_MODE_CEN_SHIFT 13 103 #define DMA_MODE_CEN_MASK 0x00000007 104 #define DMA_MODE_DBG_SHIFT 7 105 #define DMA_MODE_AID_MODE_SHIFT 4 106 107 #define DMA_THRESH_COMMQ_SHIFT 24 108 #define DMA_THRESH_READ_INT_BUF_SHIFT 16 109 #define DMA_THRESH_READ_INT_BUF_MASK 0x0000003f 110 #define DMA_THRESH_WRITE_INT_BUF_MASK 0x0000003f 111 112 #define DMA_TRANSFER_PORTID_SHIFT 24 113 #define DMA_TRANSFER_TNUM_SHIFT 16 114 115 #define DMA_CAM_SIZEOF_ENTRY 0x40 116 #define DMA_CAM_UNITS 8 117 118 #define DMA_LIODN_SHIFT 16 119 #define DMA_LIODN_BASE_MASK 0x00000FFF 120 121 /* FPM defines */ 122 #define FPM_EV_MASK_DOUBLE_ECC 0x80000000 123 #define FPM_EV_MASK_STALL 0x40000000 124 #define FPM_EV_MASK_SINGLE_ECC 0x20000000 125 #define FPM_EV_MASK_RELEASE_FM 0x00010000 126 #define FPM_EV_MASK_DOUBLE_ECC_EN 0x00008000 127 #define FPM_EV_MASK_STALL_EN 0x00004000 128 #define FPM_EV_MASK_SINGLE_ECC_EN 0x00002000 129 #define FPM_EV_MASK_EXTERNAL_HALT 0x00000008 130 #define FPM_EV_MASK_ECC_ERR_HALT 0x00000004 131 132 #define FPM_RAM_MURAM_ECC 0x00008000 133 #define FPM_RAM_IRAM_ECC 0x00004000 134 #define FPM_IRAM_ECC_ERR_EX_EN 0x00020000 135 #define FPM_MURAM_ECC_ERR_EX_EN 0x00040000 136 #define FPM_RAM_IRAM_ECC_EN 0x40000000 137 #define FPM_RAM_RAMS_ECC_EN 0x80000000 138 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL 0x08000000 139 140 #define FPM_REV1_MAJOR_MASK 0x0000FF00 141 #define FPM_REV1_MINOR_MASK 0x000000FF 142 143 #define FPM_DISP_LIMIT_SHIFT 24 144 145 #define FPM_PRT_FM_CTL1 0x00000001 146 #define FPM_PRT_FM_CTL2 0x00000002 147 #define FPM_PORT_FM_CTL_PORTID_SHIFT 24 148 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT 16 149 150 #define FPM_THR1_PRS_SHIFT 24 151 #define FPM_THR1_KG_SHIFT 16 152 #define FPM_THR1_PLCR_SHIFT 8 153 #define FPM_THR1_BMI_SHIFT 0 154 155 #define FPM_THR2_QMI_ENQ_SHIFT 24 156 #define FPM_THR2_QMI_DEQ_SHIFT 0 157 #define FPM_THR2_FM_CTL1_SHIFT 16 158 #define FPM_THR2_FM_CTL2_SHIFT 8 159 160 #define FPM_EV_MASK_CAT_ERR_SHIFT 1 161 #define FPM_EV_MASK_DMA_ERR_SHIFT 0 162 163 #define FPM_REV1_MAJOR_SHIFT 8 164 165 #define FPM_RSTC_FM_RESET 0x80000000 166 #define FPM_RSTC_MAC0_RESET 0x40000000 167 #define FPM_RSTC_MAC1_RESET 0x20000000 168 #define FPM_RSTC_MAC2_RESET 0x10000000 169 #define FPM_RSTC_MAC3_RESET 0x08000000 170 #define FPM_RSTC_MAC8_RESET 0x04000000 171 #define FPM_RSTC_MAC4_RESET 0x02000000 172 #define FPM_RSTC_MAC5_RESET 0x01000000 173 #define FPM_RSTC_MAC6_RESET 0x00800000 174 #define FPM_RSTC_MAC7_RESET 0x00400000 175 #define FPM_RSTC_MAC9_RESET 0x00200000 176 177 #define FPM_TS_INT_SHIFT 16 178 #define FPM_TS_CTL_EN 0x80000000 179 180 /* BMI defines */ 181 #define BMI_INIT_START 0x80000000 182 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC 0x80000000 183 #define BMI_ERR_INTR_EN_LIST_RAM_ECC 0x40000000 184 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC 0x20000000 185 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC 0x10000000 186 #define BMI_NUM_OF_TASKS_MASK 0x3F000000 187 #define BMI_NUM_OF_EXTRA_TASKS_MASK 0x000F0000 188 #define BMI_NUM_OF_DMAS_MASK 0x00000F00 189 #define BMI_NUM_OF_EXTRA_DMAS_MASK 0x0000000F 190 #define BMI_FIFO_SIZE_MASK 0x000003FF 191 #define BMI_EXTRA_FIFO_SIZE_MASK 0x03FF0000 192 #define BMI_CFG2_DMAS_MASK 0x0000003F 193 #define BMI_CFG2_TASKS_MASK 0x0000003F 194 195 #define BMI_CFG2_TASKS_SHIFT 16 196 #define BMI_CFG2_DMAS_SHIFT 0 197 #define BMI_CFG1_FIFO_SIZE_SHIFT 16 198 #define BMI_NUM_OF_TASKS_SHIFT 24 199 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT 16 200 #define BMI_NUM_OF_DMAS_SHIFT 8 201 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT 0 202 203 #define BMI_FIFO_ALIGN 0x100 204 205 #define BMI_EXTRA_FIFO_SIZE_SHIFT 16 206 207 /* QMI defines */ 208 #define QMI_CFG_ENQ_EN 0x80000000 209 #define QMI_CFG_DEQ_EN 0x40000000 210 #define QMI_CFG_EN_COUNTERS 0x10000000 211 #define QMI_CFG_DEQ_MASK 0x0000003F 212 #define QMI_CFG_ENQ_MASK 0x00003F00 213 #define QMI_CFG_ENQ_SHIFT 8 214 215 #define QMI_ERR_INTR_EN_DOUBLE_ECC 0x80000000 216 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF 0x40000000 217 #define QMI_INTR_EN_SINGLE_ECC 0x80000000 218 219 #define QMI_GS_HALT_NOT_BUSY 0x00000002 220 221 /* IRAM defines */ 222 #define IRAM_IADD_AIE 0x80000000 223 #define IRAM_READY 0x80000000 224 225 /* Default values */ 226 #define DEFAULT_CATASTROPHIC_ERR 0 227 #define DEFAULT_DMA_ERR 0 228 #define DEFAULT_AID_MODE FMAN_DMA_AID_OUT_TNUM 229 #define DEFAULT_DMA_COMM_Q_LOW 0x2A 230 #define DEFAULT_DMA_COMM_Q_HIGH 0x3F 231 #define DEFAULT_CACHE_OVERRIDE 0 232 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES 64 233 #define DEFAULT_DMA_DBG_CNT_MODE 0 234 #define DEFAULT_DMA_SOS_EMERGENCY 0 235 #define DEFAULT_DMA_WATCHDOG 0 236 #define DEFAULT_DISP_LIMIT 0 237 #define DEFAULT_PRS_DISP_TH 16 238 #define DEFAULT_PLCR_DISP_TH 16 239 #define DEFAULT_KG_DISP_TH 16 240 #define DEFAULT_BMI_DISP_TH 16 241 #define DEFAULT_QMI_ENQ_DISP_TH 16 242 #define DEFAULT_QMI_DEQ_DISP_TH 16 243 #define DEFAULT_FM_CTL1_DISP_TH 16 244 #define DEFAULT_FM_CTL2_DISP_TH 16 245 246 #define DFLT_AXI_DBG_NUM_OF_BEATS 1 247 248 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf) \ 249 ((dma_thresh_max_buf + 1) / 2) 250 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf) \ 251 ((dma_thresh_max_buf + 1) * 3 / 4) 252 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf) \ 253 ((dma_thresh_max_buf + 1) / 2) 254 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\ 255 ((dma_thresh_max_buf + 1) * 3 / 4) 256 257 #define DMA_COMM_Q_LOW_FMAN_V3 0x2A 258 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq) \ 259 ((dma_thresh_max_commq + 1) / 2) 260 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq) \ 261 ((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 : \ 262 DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)) 263 264 #define DMA_COMM_Q_HIGH_FMAN_V3 0x3f 265 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq) \ 266 ((dma_thresh_max_commq + 1) * 3 / 4) 267 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq) \ 268 ((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 : \ 269 DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)) 270 271 #define TOTAL_NUM_OF_TASKS_FMAN_V3L 59 272 #define TOTAL_NUM_OF_TASKS_FMAN_V3H 124 273 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks) \ 274 ((major == 6) ? ((minor == 1 || minor == 4) ? \ 275 TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) : \ 276 bmi_max_num_of_tasks) 277 278 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 64 279 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2 32 280 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major) \ 281 (major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 : \ 282 DMA_CAM_NUM_OF_ENTRIES_FMAN_V2) 283 284 #define FM_TIMESTAMP_1_USEC_BIT 8 285 286 /* Defines used for enabling/disabling FMan interrupts */ 287 #define ERR_INTR_EN_DMA 0x00010000 288 #define ERR_INTR_EN_FPM 0x80000000 289 #define ERR_INTR_EN_BMI 0x00800000 290 #define ERR_INTR_EN_QMI 0x00400000 291 #define ERR_INTR_EN_MURAM 0x00040000 292 #define ERR_INTR_EN_MAC0 0x00004000 293 #define ERR_INTR_EN_MAC1 0x00002000 294 #define ERR_INTR_EN_MAC2 0x00001000 295 #define ERR_INTR_EN_MAC3 0x00000800 296 #define ERR_INTR_EN_MAC4 0x00000400 297 #define ERR_INTR_EN_MAC5 0x00000200 298 #define ERR_INTR_EN_MAC6 0x00000100 299 #define ERR_INTR_EN_MAC7 0x00000080 300 #define ERR_INTR_EN_MAC8 0x00008000 301 #define ERR_INTR_EN_MAC9 0x00000040 302 303 #define INTR_EN_QMI 0x40000000 304 #define INTR_EN_MAC0 0x00080000 305 #define INTR_EN_MAC1 0x00040000 306 #define INTR_EN_MAC2 0x00020000 307 #define INTR_EN_MAC3 0x00010000 308 #define INTR_EN_MAC4 0x00000040 309 #define INTR_EN_MAC5 0x00000020 310 #define INTR_EN_MAC6 0x00000008 311 #define INTR_EN_MAC7 0x00000002 312 #define INTR_EN_MAC8 0x00200000 313 #define INTR_EN_MAC9 0x00100000 314 #define INTR_EN_REV0 0x00008000 315 #define INTR_EN_REV1 0x00004000 316 #define INTR_EN_REV2 0x00002000 317 #define INTR_EN_REV3 0x00001000 318 #define INTR_EN_TMR 0x01000000 319 320 enum fman_dma_aid_mode { 321 FMAN_DMA_AID_OUT_PORT_ID = 0, /* 4 LSB of PORT_ID */ 322 FMAN_DMA_AID_OUT_TNUM /* 4 LSB of TNUM */ 323 }; 324 325 struct fman_iram_regs { 326 u32 iadd; /* FM IRAM instruction address register */ 327 u32 idata; /* FM IRAM instruction data register */ 328 u32 itcfg; /* FM IRAM timing config register */ 329 u32 iready; /* FM IRAM ready register */ 330 }; 331 332 struct fman_fpm_regs { 333 u32 fmfp_tnc; /* FPM TNUM Control 0x00 */ 334 u32 fmfp_prc; /* FPM Port_ID FmCtl Association 0x04 */ 335 u32 fmfp_brkc; /* FPM Breakpoint Control 0x08 */ 336 u32 fmfp_mxd; /* FPM Flush Control 0x0c */ 337 u32 fmfp_dist1; /* FPM Dispatch Thresholds1 0x10 */ 338 u32 fmfp_dist2; /* FPM Dispatch Thresholds2 0x14 */ 339 u32 fm_epi; /* FM Error Pending Interrupts 0x18 */ 340 u32 fm_rie; /* FM Error Interrupt Enable 0x1c */ 341 u32 fmfp_fcev[4]; /* FPM FMan-Controller Event 1-4 0x20-0x2f */ 342 u32 res0030[4]; /* res 0x30 - 0x3f */ 343 u32 fmfp_cee[4]; /* PM FMan-Controller Event 1-4 0x40-0x4f */ 344 u32 res0050[4]; /* res 0x50-0x5f */ 345 u32 fmfp_tsc1; /* FPM TimeStamp Control1 0x60 */ 346 u32 fmfp_tsc2; /* FPM TimeStamp Control2 0x64 */ 347 u32 fmfp_tsp; /* FPM Time Stamp 0x68 */ 348 u32 fmfp_tsf; /* FPM Time Stamp Fraction 0x6c */ 349 u32 fm_rcr; /* FM Rams Control 0x70 */ 350 u32 fmfp_extc; /* FPM External Requests Control 0x74 */ 351 u32 fmfp_ext1; /* FPM External Requests Config1 0x78 */ 352 u32 fmfp_ext2; /* FPM External Requests Config2 0x7c */ 353 u32 fmfp_drd[16]; /* FPM Data_Ram Data 0-15 0x80 - 0xbf */ 354 u32 fmfp_dra; /* FPM Data Ram Access 0xc0 */ 355 u32 fm_ip_rev_1; /* FM IP Block Revision 1 0xc4 */ 356 u32 fm_ip_rev_2; /* FM IP Block Revision 2 0xc8 */ 357 u32 fm_rstc; /* FM Reset Command 0xcc */ 358 u32 fm_cld; /* FM Classifier Debug 0xd0 */ 359 u32 fm_npi; /* FM Normal Pending Interrupts 0xd4 */ 360 u32 fmfp_exte; /* FPM External Requests Enable 0xd8 */ 361 u32 fmfp_ee; /* FPM Event&Mask 0xdc */ 362 u32 fmfp_cev[4]; /* FPM CPU Event 1-4 0xe0-0xef */ 363 u32 res00f0[4]; /* res 0xf0-0xff */ 364 u32 fmfp_ps[50]; /* FPM Port Status 0x100-0x1c7 */ 365 u32 res01c8[14]; /* res 0x1c8-0x1ff */ 366 u32 fmfp_clfabc; /* FPM CLFABC 0x200 */ 367 u32 fmfp_clfcc; /* FPM CLFCC 0x204 */ 368 u32 fmfp_clfaval; /* FPM CLFAVAL 0x208 */ 369 u32 fmfp_clfbval; /* FPM CLFBVAL 0x20c */ 370 u32 fmfp_clfcval; /* FPM CLFCVAL 0x210 */ 371 u32 fmfp_clfamsk; /* FPM CLFAMSK 0x214 */ 372 u32 fmfp_clfbmsk; /* FPM CLFBMSK 0x218 */ 373 u32 fmfp_clfcmsk; /* FPM CLFCMSK 0x21c */ 374 u32 fmfp_clfamc; /* FPM CLFAMC 0x220 */ 375 u32 fmfp_clfbmc; /* FPM CLFBMC 0x224 */ 376 u32 fmfp_clfcmc; /* FPM CLFCMC 0x228 */ 377 u32 fmfp_decceh; /* FPM DECCEH 0x22c */ 378 u32 res0230[116]; /* res 0x230 - 0x3ff */ 379 u32 fmfp_ts[128]; /* 0x400: FPM Task Status 0x400 - 0x5ff */ 380 u32 res0600[0x400 - 384]; 381 }; 382 383 struct fman_bmi_regs { 384 u32 fmbm_init; /* BMI Initialization 0x00 */ 385 u32 fmbm_cfg1; /* BMI Configuration 1 0x04 */ 386 u32 fmbm_cfg2; /* BMI Configuration 2 0x08 */ 387 u32 res000c[5]; /* 0x0c - 0x1f */ 388 u32 fmbm_ievr; /* Interrupt Event Register 0x20 */ 389 u32 fmbm_ier; /* Interrupt Enable Register 0x24 */ 390 u32 fmbm_ifr; /* Interrupt Force Register 0x28 */ 391 u32 res002c[5]; /* 0x2c - 0x3f */ 392 u32 fmbm_arb[8]; /* BMI Arbitration 0x40 - 0x5f */ 393 u32 res0060[12]; /* 0x60 - 0x8f */ 394 u32 fmbm_dtc[3]; /* Debug Trap Counter 0x90 - 0x9b */ 395 u32 res009c; /* 0x9c */ 396 u32 fmbm_dcv[3][4]; /* Debug Compare val 0xa0-0xcf */ 397 u32 fmbm_dcm[3][4]; /* Debug Compare Mask 0xd0-0xff */ 398 u32 fmbm_gde; /* BMI Global Debug Enable 0x100 */ 399 u32 fmbm_pp[63]; /* BMI Port Parameters 0x104 - 0x1ff */ 400 u32 res0200; /* 0x200 */ 401 u32 fmbm_pfs[63]; /* BMI Port FIFO Size 0x204 - 0x2ff */ 402 u32 res0300; /* 0x300 */ 403 u32 fmbm_spliodn[63]; /* Port Partition ID 0x304 - 0x3ff */ 404 }; 405 406 struct fman_qmi_regs { 407 u32 fmqm_gc; /* General Configuration Register 0x00 */ 408 u32 res0004; /* 0x04 */ 409 u32 fmqm_eie; /* Error Interrupt Event Register 0x08 */ 410 u32 fmqm_eien; /* Error Interrupt Enable Register 0x0c */ 411 u32 fmqm_eif; /* Error Interrupt Force Register 0x10 */ 412 u32 fmqm_ie; /* Interrupt Event Register 0x14 */ 413 u32 fmqm_ien; /* Interrupt Enable Register 0x18 */ 414 u32 fmqm_if; /* Interrupt Force Register 0x1c */ 415 u32 fmqm_gs; /* Global Status Register 0x20 */ 416 u32 fmqm_ts; /* Task Status Register 0x24 */ 417 u32 fmqm_etfc; /* Enqueue Total Frame Counter 0x28 */ 418 u32 fmqm_dtfc; /* Dequeue Total Frame Counter 0x2c */ 419 u32 fmqm_dc0; /* Dequeue Counter 0 0x30 */ 420 u32 fmqm_dc1; /* Dequeue Counter 1 0x34 */ 421 u32 fmqm_dc2; /* Dequeue Counter 2 0x38 */ 422 u32 fmqm_dc3; /* Dequeue Counter 3 0x3c */ 423 u32 fmqm_dfdc; /* Dequeue FQID from Default Counter 0x40 */ 424 u32 fmqm_dfcc; /* Dequeue FQID from Context Counter 0x44 */ 425 u32 fmqm_dffc; /* Dequeue FQID from FD Counter 0x48 */ 426 u32 fmqm_dcc; /* Dequeue Confirm Counter 0x4c */ 427 u32 res0050[7]; /* 0x50 - 0x6b */ 428 u32 fmqm_tapc; /* Tnum Aging Period Control 0x6c */ 429 u32 fmqm_dmcvc; /* Dequeue MAC Command Valid Counter 0x70 */ 430 u32 fmqm_difdcc; /* Dequeue Invalid FD Command Counter 0x74 */ 431 u32 fmqm_da1v; /* Dequeue A1 Valid Counter 0x78 */ 432 u32 res007c; /* 0x7c */ 433 u32 fmqm_dtc; /* 0x80 Debug Trap Counter 0x80 */ 434 u32 fmqm_efddd; /* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */ 435 u32 res0088[2]; /* 0x88 - 0x8f */ 436 struct { 437 u32 fmqm_dtcfg1; /* 0x90 dbg trap cfg 1 Register 0x00 */ 438 u32 fmqm_dtval1; /* Debug Trap Value 1 Register 0x04 */ 439 u32 fmqm_dtm1; /* Debug Trap Mask 1 Register 0x08 */ 440 u32 fmqm_dtc1; /* Debug Trap Counter 1 Register 0x0c */ 441 u32 fmqm_dtcfg2; /* dbg Trap cfg 2 Register 0x10 */ 442 u32 fmqm_dtval2; /* Debug Trap Value 2 Register 0x14 */ 443 u32 fmqm_dtm2; /* Debug Trap Mask 2 Register 0x18 */ 444 u32 res001c; /* 0x1c */ 445 } dbg_traps[3]; /* 0x90 - 0xef */ 446 u8 res00f0[0x400 - 0xf0]; /* 0xf0 - 0x3ff */ 447 }; 448 449 struct fman_dma_regs { 450 u32 fmdmsr; /* FM DMA status register 0x00 */ 451 u32 fmdmmr; /* FM DMA mode register 0x04 */ 452 u32 fmdmtr; /* FM DMA bus threshold register 0x08 */ 453 u32 fmdmhy; /* FM DMA bus hysteresis register 0x0c */ 454 u32 fmdmsetr; /* FM DMA SOS emergency Threshold Register 0x10 */ 455 u32 fmdmtah; /* FM DMA transfer bus address high reg 0x14 */ 456 u32 fmdmtal; /* FM DMA transfer bus address low reg 0x18 */ 457 u32 fmdmtcid; /* FM DMA transfer bus communication ID reg 0x1c */ 458 u32 fmdmra; /* FM DMA bus internal ram address register 0x20 */ 459 u32 fmdmrd; /* FM DMA bus internal ram data register 0x24 */ 460 u32 fmdmwcr; /* FM DMA CAM watchdog counter value 0x28 */ 461 u32 fmdmebcr; /* FM DMA CAM base in MURAM register 0x2c */ 462 u32 fmdmccqdr; /* FM DMA CAM and CMD Queue Debug reg 0x30 */ 463 u32 fmdmccqvr1; /* FM DMA CAM and CMD Queue Value reg #1 0x34 */ 464 u32 fmdmccqvr2; /* FM DMA CAM and CMD Queue Value reg #2 0x38 */ 465 u32 fmdmcqvr3; /* FM DMA CMD Queue Value register #3 0x3c */ 466 u32 fmdmcqvr4; /* FM DMA CMD Queue Value register #4 0x40 */ 467 u32 fmdmcqvr5; /* FM DMA CMD Queue Value register #5 0x44 */ 468 u32 fmdmsefrc; /* FM DMA Semaphore Entry Full Reject Cntr 0x48 */ 469 u32 fmdmsqfrc; /* FM DMA Semaphore Queue Full Reject Cntr 0x4c */ 470 u32 fmdmssrc; /* FM DMA Semaphore SYNC Reject Counter 0x50 */ 471 u32 fmdmdcr; /* FM DMA Debug Counter 0x54 */ 472 u32 fmdmemsr; /* FM DMA Emergency Smoother Register 0x58 */ 473 u32 res005c; /* 0x5c */ 474 u32 fmdmplr[FMAN_LIODN_TBL / 2]; /* DMA LIODN regs 0x60-0xdf */ 475 u32 res00e0[0x400 - 56]; 476 }; 477 478 /* Structure that holds current FMan state. 479 * Used for saving run time information. 480 */ 481 struct fman_state_struct { 482 u8 fm_id; 483 u16 fm_clk_freq; 484 struct fman_rev_info rev_info; 485 bool enabled_time_stamp; 486 u8 count1_micro_bit; 487 u8 total_num_of_tasks; 488 u8 accumulated_num_of_tasks; 489 u32 accumulated_fifo_size; 490 u8 accumulated_num_of_open_dmas; 491 u8 accumulated_num_of_deq_tnums; 492 u32 exceptions; 493 u32 extra_fifo_pool_size; 494 u8 extra_tasks_pool_size; 495 u8 extra_open_dmas_pool_size; 496 u16 port_mfl[MAX_NUM_OF_MACS]; 497 u16 mac_mfl[MAX_NUM_OF_MACS]; 498 499 /* SOC specific */ 500 u32 fm_iram_size; 501 /* DMA */ 502 u32 dma_thresh_max_commq; 503 u32 dma_thresh_max_buf; 504 u32 max_num_of_open_dmas; 505 /* QMI */ 506 u32 qmi_max_num_of_tnums; 507 u32 qmi_def_tnums_thresh; 508 /* BMI */ 509 u32 bmi_max_num_of_tasks; 510 u32 bmi_max_fifo_size; 511 /* General */ 512 u32 fm_port_num_of_cg; 513 u32 num_of_rx_ports; 514 u32 total_fifo_size; 515 516 u32 qman_channel_base; 517 u32 num_of_qman_channels; 518 519 struct resource *res; 520 }; 521 522 /* Structure that holds FMan initial configuration */ 523 struct fman_cfg { 524 u8 disp_limit_tsh; 525 u8 prs_disp_tsh; 526 u8 plcr_disp_tsh; 527 u8 kg_disp_tsh; 528 u8 bmi_disp_tsh; 529 u8 qmi_enq_disp_tsh; 530 u8 qmi_deq_disp_tsh; 531 u8 fm_ctl1_disp_tsh; 532 u8 fm_ctl2_disp_tsh; 533 int dma_cache_override; 534 enum fman_dma_aid_mode dma_aid_mode; 535 u32 dma_axi_dbg_num_of_beats; 536 u32 dma_cam_num_of_entries; 537 u32 dma_watchdog; 538 u8 dma_comm_qtsh_asrt_emer; 539 u32 dma_write_buf_tsh_asrt_emer; 540 u32 dma_read_buf_tsh_asrt_emer; 541 u8 dma_comm_qtsh_clr_emer; 542 u32 dma_write_buf_tsh_clr_emer; 543 u32 dma_read_buf_tsh_clr_emer; 544 u32 dma_sos_emergency; 545 int dma_dbg_cnt_mode; 546 int catastrophic_err; 547 int dma_err; 548 u32 exceptions; 549 u16 clk_freq; 550 u32 cam_base_addr; 551 u32 fifo_base_addr; 552 u32 total_fifo_size; 553 u32 total_num_of_tasks; 554 u32 qmi_def_tnums_thresh; 555 }; 556 557 /* Structure that holds information received from device tree */ 558 struct fman_dts_params { 559 void __iomem *base_addr; /* FMan virtual address */ 560 struct resource *res; /* FMan memory resource */ 561 u8 id; /* FMan ID */ 562 563 int err_irq; /* FMan Error IRQ */ 564 565 u16 clk_freq; /* FMan clock freq (In Mhz) */ 566 567 u32 qman_channel_base; /* QMan channels base */ 568 u32 num_of_qman_channels; /* Number of QMan channels */ 569 570 struct resource muram_res; /* MURAM resource */ 571 }; 572 573 /** fman_exceptions_cb 574 * fman - Pointer to FMan 575 * exception - The exception. 576 * 577 * Exceptions user callback routine, will be called upon an exception 578 * passing the exception identification. 579 * 580 * Return: irq status 581 */ 582 typedef irqreturn_t (fman_exceptions_cb)(struct fman *fman, 583 enum fman_exceptions exception); 584 585 /** fman_bus_error_cb 586 * fman - Pointer to FMan 587 * port_id - Port id 588 * addr - Address that caused the error 589 * tnum - Owner of error 590 * liodn - Logical IO device number 591 * 592 * Bus error user callback routine, will be called upon bus error, 593 * passing parameters describing the errors and the owner. 594 * 595 * Return: IRQ status 596 */ 597 typedef irqreturn_t (fman_bus_error_cb)(struct fman *fman, u8 port_id, 598 u64 addr, u8 tnum, u16 liodn); 599 600 struct fman { 601 struct device *dev; 602 void __iomem *base_addr; 603 struct fman_intr_src intr_mng[FMAN_EV_CNT]; 604 605 struct fman_fpm_regs __iomem *fpm_regs; 606 struct fman_bmi_regs __iomem *bmi_regs; 607 struct fman_qmi_regs __iomem *qmi_regs; 608 struct fman_dma_regs __iomem *dma_regs; 609 fman_exceptions_cb *exception_cb; 610 fman_bus_error_cb *bus_error_cb; 611 /* Spinlock for FMan use */ 612 spinlock_t spinlock; 613 struct fman_state_struct *state; 614 615 struct fman_cfg *cfg; 616 struct muram_info *muram; 617 /* cam section in muram */ 618 unsigned long cam_offset; 619 size_t cam_size; 620 /* Fifo in MURAM */ 621 unsigned long fifo_offset; 622 size_t fifo_size; 623 624 u32 liodn_base[64]; 625 u32 liodn_offset[64]; 626 627 struct fman_dts_params dts_params; 628 }; 629 630 static irqreturn_t fman_exceptions(struct fman *fman, 631 enum fman_exceptions exception) 632 { 633 dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n", 634 __func__, fman->state->fm_id, exception); 635 636 return IRQ_HANDLED; 637 } 638 639 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id, 640 u64 __maybe_unused addr, 641 u8 __maybe_unused tnum, 642 u16 __maybe_unused liodn) 643 { 644 dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n", 645 __func__, fman->state->fm_id, port_id); 646 647 return IRQ_HANDLED; 648 } 649 650 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id) 651 { 652 if (fman->intr_mng[id].isr_cb) { 653 fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle); 654 655 return IRQ_HANDLED; 656 } 657 658 return IRQ_NONE; 659 } 660 661 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id) 662 { 663 u8 sw_port_id = 0; 664 665 if (hw_port_id >= BASE_TX_PORTID) 666 sw_port_id = hw_port_id - BASE_TX_PORTID; 667 else if (hw_port_id >= BASE_RX_PORTID) 668 sw_port_id = hw_port_id - BASE_RX_PORTID; 669 else 670 sw_port_id = 0; 671 672 return sw_port_id; 673 } 674 675 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg, 676 u8 port_id) 677 { 678 u32 tmp = 0; 679 680 tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT; 681 682 tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1; 683 684 /* order restoration */ 685 if (port_id % 2) 686 tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; 687 else 688 tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; 689 690 iowrite32be(tmp, &fpm_rg->fmfp_prc); 691 } 692 693 static void set_port_liodn(struct fman *fman, u8 port_id, 694 u32 liodn_base, u32 liodn_ofst) 695 { 696 u32 tmp; 697 698 /* set LIODN base for this port */ 699 tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]); 700 if (port_id % 2) { 701 tmp &= ~DMA_LIODN_BASE_MASK; 702 tmp |= liodn_base; 703 } else { 704 tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT); 705 tmp |= liodn_base << DMA_LIODN_SHIFT; 706 } 707 iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]); 708 iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]); 709 } 710 711 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) 712 { 713 u32 tmp; 714 715 tmp = ioread32be(&fpm_rg->fm_rcr); 716 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) 717 iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 718 else 719 iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN | 720 FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 721 } 722 723 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) 724 { 725 u32 tmp; 726 727 tmp = ioread32be(&fpm_rg->fm_rcr); 728 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) 729 iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 730 else 731 iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN), 732 &fpm_rg->fm_rcr); 733 } 734 735 static void fman_defconfig(struct fman_cfg *cfg) 736 { 737 memset(cfg, 0, sizeof(struct fman_cfg)); 738 739 cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR; 740 cfg->dma_err = DEFAULT_DMA_ERR; 741 cfg->dma_aid_mode = DEFAULT_AID_MODE; 742 cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW; 743 cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH; 744 cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE; 745 cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES; 746 cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE; 747 cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY; 748 cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG; 749 cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT; 750 cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH; 751 cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH; 752 cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH; 753 cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH; 754 cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH; 755 cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH; 756 cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH; 757 cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH; 758 } 759 760 static int dma_init(struct fman *fman) 761 { 762 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; 763 struct fman_cfg *cfg = fman->cfg; 764 u32 tmp_reg; 765 766 /* Init DMA Registers */ 767 768 /* clear status reg events */ 769 tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC | 770 DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC); 771 iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr); 772 773 /* configure mode register */ 774 tmp_reg = 0; 775 tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT; 776 if (cfg->exceptions & EX_DMA_BUS_ERROR) 777 tmp_reg |= DMA_MODE_BER; 778 if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) | 779 (cfg->exceptions & EX_DMA_READ_ECC) | 780 (cfg->exceptions & EX_DMA_FM_WRITE_ECC)) 781 tmp_reg |= DMA_MODE_ECC; 782 if (cfg->dma_axi_dbg_num_of_beats) 783 tmp_reg |= (DMA_MODE_AXI_DBG_MASK & 784 ((cfg->dma_axi_dbg_num_of_beats - 1) 785 << DMA_MODE_AXI_DBG_SHIFT)); 786 787 tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) & 788 DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT; 789 tmp_reg |= DMA_MODE_SECURE_PROT; 790 tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT; 791 tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT; 792 793 iowrite32be(tmp_reg, &dma_rg->fmdmmr); 794 795 /* configure thresholds register */ 796 tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer << 797 DMA_THRESH_COMMQ_SHIFT); 798 tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer & 799 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; 800 tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer & 801 DMA_THRESH_WRITE_INT_BUF_MASK; 802 803 iowrite32be(tmp_reg, &dma_rg->fmdmtr); 804 805 /* configure hysteresis register */ 806 tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer << 807 DMA_THRESH_COMMQ_SHIFT); 808 tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer & 809 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; 810 tmp_reg |= cfg->dma_write_buf_tsh_clr_emer & 811 DMA_THRESH_WRITE_INT_BUF_MASK; 812 813 iowrite32be(tmp_reg, &dma_rg->fmdmhy); 814 815 /* configure emergency threshold */ 816 iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr); 817 818 /* configure Watchdog */ 819 iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr); 820 821 iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr); 822 823 /* Allocate MURAM for CAM */ 824 fman->cam_size = 825 (u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY); 826 fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size); 827 if (IS_ERR_VALUE(fman->cam_offset)) { 828 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", 829 __func__); 830 return -ENOMEM; 831 } 832 833 if (fman->state->rev_info.major == 2) { 834 u32 __iomem *cam_base_addr; 835 836 fman_muram_free_mem(fman->muram, fman->cam_offset, 837 fman->cam_size); 838 839 fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128; 840 fman->cam_offset = fman_muram_alloc(fman->muram, 841 fman->cam_size); 842 if (IS_ERR_VALUE(fman->cam_offset)) { 843 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", 844 __func__); 845 return -ENOMEM; 846 } 847 848 if (fman->cfg->dma_cam_num_of_entries % 8 || 849 fman->cfg->dma_cam_num_of_entries > 32) { 850 dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n", 851 __func__); 852 return -EINVAL; 853 } 854 855 cam_base_addr = (u32 __iomem *) 856 fman_muram_offset_to_vbase(fman->muram, 857 fman->cam_offset); 858 iowrite32be(~((1 << 859 (32 - fman->cfg->dma_cam_num_of_entries)) - 1), 860 cam_base_addr); 861 } 862 863 fman->cfg->cam_base_addr = fman->cam_offset; 864 865 return 0; 866 } 867 868 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg) 869 { 870 u32 tmp_reg; 871 int i; 872 873 /* Init FPM Registers */ 874 875 tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT); 876 iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd); 877 878 tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) | 879 ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) | 880 ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) | 881 ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT)); 882 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1); 883 884 tmp_reg = 885 (((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) | 886 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) | 887 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) | 888 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT)); 889 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2); 890 891 /* define exceptions and error behavior */ 892 tmp_reg = 0; 893 /* Clear events */ 894 tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC | 895 FPM_EV_MASK_SINGLE_ECC); 896 /* enable interrupts */ 897 if (cfg->exceptions & EX_FPM_STALL_ON_TASKS) 898 tmp_reg |= FPM_EV_MASK_STALL_EN; 899 if (cfg->exceptions & EX_FPM_SINGLE_ECC) 900 tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN; 901 if (cfg->exceptions & EX_FPM_DOUBLE_ECC) 902 tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN; 903 tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT); 904 tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT); 905 /* FMan is not halted upon external halt activation */ 906 tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT; 907 /* Man is not halted upon Unrecoverable ECC error behavior */ 908 tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT; 909 iowrite32be(tmp_reg, &fpm_rg->fmfp_ee); 910 911 /* clear all fmCtls event registers */ 912 for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++) 913 iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]); 914 915 /* RAM ECC - enable and clear events */ 916 /* first we need to clear all parser memory, 917 * as it is uninitialized and may cause ECC errors 918 */ 919 /* event bits */ 920 tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC); 921 922 iowrite32be(tmp_reg, &fpm_rg->fm_rcr); 923 924 tmp_reg = 0; 925 if (cfg->exceptions & EX_IRAM_ECC) { 926 tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN; 927 enable_rams_ecc(fpm_rg); 928 } 929 if (cfg->exceptions & EX_MURAM_ECC) { 930 tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN; 931 enable_rams_ecc(fpm_rg); 932 } 933 iowrite32be(tmp_reg, &fpm_rg->fm_rie); 934 } 935 936 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg, 937 struct fman_cfg *cfg) 938 { 939 u32 tmp_reg; 940 941 /* Init BMI Registers */ 942 943 /* define common resources */ 944 tmp_reg = cfg->fifo_base_addr; 945 tmp_reg = tmp_reg / BMI_FIFO_ALIGN; 946 947 tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) << 948 BMI_CFG1_FIFO_SIZE_SHIFT); 949 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1); 950 951 tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) << 952 BMI_CFG2_TASKS_SHIFT; 953 /* num of DMA's will be dynamically updated when each port is set */ 954 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2); 955 956 /* define unmaskable exceptions, enable and clear events */ 957 tmp_reg = 0; 958 iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC | 959 BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC | 960 BMI_ERR_INTR_EN_STATISTICS_RAM_ECC | 961 BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr); 962 963 if (cfg->exceptions & EX_BMI_LIST_RAM_ECC) 964 tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC; 965 if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC) 966 tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 967 if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC) 968 tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 969 if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC) 970 tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 971 iowrite32be(tmp_reg, &bmi_rg->fmbm_ier); 972 } 973 974 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg, 975 struct fman_cfg *cfg) 976 { 977 u32 tmp_reg; 978 979 /* Init QMI Registers */ 980 981 /* Clear error interrupt events */ 982 983 iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF, 984 &qmi_rg->fmqm_eie); 985 tmp_reg = 0; 986 if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID) 987 tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; 988 if (cfg->exceptions & EX_QMI_DOUBLE_ECC) 989 tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC; 990 /* enable events */ 991 iowrite32be(tmp_reg, &qmi_rg->fmqm_eien); 992 993 tmp_reg = 0; 994 /* Clear interrupt events */ 995 iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie); 996 if (cfg->exceptions & EX_QMI_SINGLE_ECC) 997 tmp_reg |= QMI_INTR_EN_SINGLE_ECC; 998 /* enable events */ 999 iowrite32be(tmp_reg, &qmi_rg->fmqm_ien); 1000 } 1001 1002 static int enable(struct fman *fman, struct fman_cfg *cfg) 1003 { 1004 u32 cfg_reg = 0; 1005 1006 /* Enable all modules */ 1007 1008 /* clear&enable global counters - calculate reg and save for later, 1009 * because it's the same reg for QMI enable 1010 */ 1011 cfg_reg = QMI_CFG_EN_COUNTERS; 1012 1013 /* Set enqueue and dequeue thresholds */ 1014 cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh; 1015 1016 iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init); 1017 iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN, 1018 &fman->qmi_regs->fmqm_gc); 1019 1020 return 0; 1021 } 1022 1023 static int set_exception(struct fman *fman, 1024 enum fman_exceptions exception, bool enable) 1025 { 1026 u32 tmp; 1027 1028 switch (exception) { 1029 case FMAN_EX_DMA_BUS_ERROR: 1030 tmp = ioread32be(&fman->dma_regs->fmdmmr); 1031 if (enable) 1032 tmp |= DMA_MODE_BER; 1033 else 1034 tmp &= ~DMA_MODE_BER; 1035 /* disable bus error */ 1036 iowrite32be(tmp, &fman->dma_regs->fmdmmr); 1037 break; 1038 case FMAN_EX_DMA_READ_ECC: 1039 case FMAN_EX_DMA_SYSTEM_WRITE_ECC: 1040 case FMAN_EX_DMA_FM_WRITE_ECC: 1041 tmp = ioread32be(&fman->dma_regs->fmdmmr); 1042 if (enable) 1043 tmp |= DMA_MODE_ECC; 1044 else 1045 tmp &= ~DMA_MODE_ECC; 1046 iowrite32be(tmp, &fman->dma_regs->fmdmmr); 1047 break; 1048 case FMAN_EX_FPM_STALL_ON_TASKS: 1049 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 1050 if (enable) 1051 tmp |= FPM_EV_MASK_STALL_EN; 1052 else 1053 tmp &= ~FPM_EV_MASK_STALL_EN; 1054 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1055 break; 1056 case FMAN_EX_FPM_SINGLE_ECC: 1057 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 1058 if (enable) 1059 tmp |= FPM_EV_MASK_SINGLE_ECC_EN; 1060 else 1061 tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN; 1062 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1063 break; 1064 case FMAN_EX_FPM_DOUBLE_ECC: 1065 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 1066 if (enable) 1067 tmp |= FPM_EV_MASK_DOUBLE_ECC_EN; 1068 else 1069 tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN; 1070 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1071 break; 1072 case FMAN_EX_QMI_SINGLE_ECC: 1073 tmp = ioread32be(&fman->qmi_regs->fmqm_ien); 1074 if (enable) 1075 tmp |= QMI_INTR_EN_SINGLE_ECC; 1076 else 1077 tmp &= ~QMI_INTR_EN_SINGLE_ECC; 1078 iowrite32be(tmp, &fman->qmi_regs->fmqm_ien); 1079 break; 1080 case FMAN_EX_QMI_DOUBLE_ECC: 1081 tmp = ioread32be(&fman->qmi_regs->fmqm_eien); 1082 if (enable) 1083 tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC; 1084 else 1085 tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC; 1086 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); 1087 break; 1088 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: 1089 tmp = ioread32be(&fman->qmi_regs->fmqm_eien); 1090 if (enable) 1091 tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; 1092 else 1093 tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF; 1094 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); 1095 break; 1096 case FMAN_EX_BMI_LIST_RAM_ECC: 1097 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1098 if (enable) 1099 tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC; 1100 else 1101 tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC; 1102 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1103 break; 1104 case FMAN_EX_BMI_STORAGE_PROFILE_ECC: 1105 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1106 if (enable) 1107 tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 1108 else 1109 tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 1110 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1111 break; 1112 case FMAN_EX_BMI_STATISTICS_RAM_ECC: 1113 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1114 if (enable) 1115 tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 1116 else 1117 tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 1118 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1119 break; 1120 case FMAN_EX_BMI_DISPATCH_RAM_ECC: 1121 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1122 if (enable) 1123 tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 1124 else 1125 tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 1126 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1127 break; 1128 case FMAN_EX_IRAM_ECC: 1129 tmp = ioread32be(&fman->fpm_regs->fm_rie); 1130 if (enable) { 1131 /* enable ECC if not enabled */ 1132 enable_rams_ecc(fman->fpm_regs); 1133 /* enable ECC interrupts */ 1134 tmp |= FPM_IRAM_ECC_ERR_EX_EN; 1135 } else { 1136 /* ECC mechanism may be disabled, 1137 * depending on driver status 1138 */ 1139 disable_rams_ecc(fman->fpm_regs); 1140 tmp &= ~FPM_IRAM_ECC_ERR_EX_EN; 1141 } 1142 iowrite32be(tmp, &fman->fpm_regs->fm_rie); 1143 break; 1144 case FMAN_EX_MURAM_ECC: 1145 tmp = ioread32be(&fman->fpm_regs->fm_rie); 1146 if (enable) { 1147 /* enable ECC if not enabled */ 1148 enable_rams_ecc(fman->fpm_regs); 1149 /* enable ECC interrupts */ 1150 tmp |= FPM_MURAM_ECC_ERR_EX_EN; 1151 } else { 1152 /* ECC mechanism may be disabled, 1153 * depending on driver status 1154 */ 1155 disable_rams_ecc(fman->fpm_regs); 1156 tmp &= ~FPM_MURAM_ECC_ERR_EX_EN; 1157 } 1158 iowrite32be(tmp, &fman->fpm_regs->fm_rie); 1159 break; 1160 default: 1161 return -EINVAL; 1162 } 1163 return 0; 1164 } 1165 1166 static void resume(struct fman_fpm_regs __iomem *fpm_rg) 1167 { 1168 u32 tmp; 1169 1170 tmp = ioread32be(&fpm_rg->fmfp_ee); 1171 /* clear tmp_reg event bits in order not to clear standing events */ 1172 tmp &= ~(FPM_EV_MASK_DOUBLE_ECC | 1173 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC); 1174 tmp |= FPM_EV_MASK_RELEASE_FM; 1175 1176 iowrite32be(tmp, &fpm_rg->fmfp_ee); 1177 } 1178 1179 static int fill_soc_specific_params(struct fman_state_struct *state) 1180 { 1181 u8 minor = state->rev_info.minor; 1182 /* P4080 - Major 2 1183 * P2041/P3041/P5020/P5040 - Major 3 1184 * Tx/Bx - Major 6 1185 */ 1186 switch (state->rev_info.major) { 1187 case 3: 1188 state->bmi_max_fifo_size = 160 * 1024; 1189 state->fm_iram_size = 64 * 1024; 1190 state->dma_thresh_max_commq = 31; 1191 state->dma_thresh_max_buf = 127; 1192 state->qmi_max_num_of_tnums = 64; 1193 state->qmi_def_tnums_thresh = 48; 1194 state->bmi_max_num_of_tasks = 128; 1195 state->max_num_of_open_dmas = 32; 1196 state->fm_port_num_of_cg = 256; 1197 state->num_of_rx_ports = 6; 1198 state->total_fifo_size = 122 * 1024; 1199 break; 1200 1201 case 2: 1202 state->bmi_max_fifo_size = 160 * 1024; 1203 state->fm_iram_size = 64 * 1024; 1204 state->dma_thresh_max_commq = 31; 1205 state->dma_thresh_max_buf = 127; 1206 state->qmi_max_num_of_tnums = 64; 1207 state->qmi_def_tnums_thresh = 48; 1208 state->bmi_max_num_of_tasks = 128; 1209 state->max_num_of_open_dmas = 32; 1210 state->fm_port_num_of_cg = 256; 1211 state->num_of_rx_ports = 5; 1212 state->total_fifo_size = 100 * 1024; 1213 break; 1214 1215 case 6: 1216 state->dma_thresh_max_commq = 83; 1217 state->dma_thresh_max_buf = 127; 1218 state->qmi_max_num_of_tnums = 64; 1219 state->qmi_def_tnums_thresh = 32; 1220 state->fm_port_num_of_cg = 256; 1221 1222 /* FManV3L */ 1223 if (minor == 1 || minor == 4) { 1224 state->bmi_max_fifo_size = 192 * 1024; 1225 state->bmi_max_num_of_tasks = 64; 1226 state->max_num_of_open_dmas = 32; 1227 state->num_of_rx_ports = 5; 1228 if (minor == 1) 1229 state->fm_iram_size = 32 * 1024; 1230 else 1231 state->fm_iram_size = 64 * 1024; 1232 state->total_fifo_size = 156 * 1024; 1233 } 1234 /* FManV3H */ 1235 else if (minor == 0 || minor == 2 || minor == 3) { 1236 state->bmi_max_fifo_size = 384 * 1024; 1237 state->fm_iram_size = 64 * 1024; 1238 state->bmi_max_num_of_tasks = 128; 1239 state->max_num_of_open_dmas = 84; 1240 state->num_of_rx_ports = 8; 1241 state->total_fifo_size = 295 * 1024; 1242 } else { 1243 pr_err("Unsupported FManv3 version\n"); 1244 return -EINVAL; 1245 } 1246 1247 break; 1248 default: 1249 pr_err("Unsupported FMan version\n"); 1250 return -EINVAL; 1251 } 1252 1253 return 0; 1254 } 1255 1256 static bool is_init_done(struct fman_cfg *cfg) 1257 { 1258 /* Checks if FMan driver parameters were initialized */ 1259 if (!cfg) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 static void free_init_resources(struct fman *fman) 1266 { 1267 if (fman->cam_offset) 1268 fman_muram_free_mem(fman->muram, fman->cam_offset, 1269 fman->cam_size); 1270 if (fman->fifo_offset) 1271 fman_muram_free_mem(fman->muram, fman->fifo_offset, 1272 fman->fifo_size); 1273 } 1274 1275 static irqreturn_t bmi_err_event(struct fman *fman) 1276 { 1277 u32 event, mask, force; 1278 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1279 irqreturn_t ret = IRQ_NONE; 1280 1281 event = ioread32be(&bmi_rg->fmbm_ievr); 1282 mask = ioread32be(&bmi_rg->fmbm_ier); 1283 event &= mask; 1284 /* clear the forced events */ 1285 force = ioread32be(&bmi_rg->fmbm_ifr); 1286 if (force & event) 1287 iowrite32be(force & ~event, &bmi_rg->fmbm_ifr); 1288 /* clear the acknowledged events */ 1289 iowrite32be(event, &bmi_rg->fmbm_ievr); 1290 1291 if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC) 1292 ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC); 1293 if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC) 1294 ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC); 1295 if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC) 1296 ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC); 1297 if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC) 1298 ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC); 1299 1300 return ret; 1301 } 1302 1303 static irqreturn_t qmi_err_event(struct fman *fman) 1304 { 1305 u32 event, mask, force; 1306 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; 1307 irqreturn_t ret = IRQ_NONE; 1308 1309 event = ioread32be(&qmi_rg->fmqm_eie); 1310 mask = ioread32be(&qmi_rg->fmqm_eien); 1311 event &= mask; 1312 1313 /* clear the forced events */ 1314 force = ioread32be(&qmi_rg->fmqm_eif); 1315 if (force & event) 1316 iowrite32be(force & ~event, &qmi_rg->fmqm_eif); 1317 /* clear the acknowledged events */ 1318 iowrite32be(event, &qmi_rg->fmqm_eie); 1319 1320 if (event & QMI_ERR_INTR_EN_DOUBLE_ECC) 1321 ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC); 1322 if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF) 1323 ret = fman->exception_cb(fman, 1324 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID); 1325 1326 return ret; 1327 } 1328 1329 static irqreturn_t dma_err_event(struct fman *fman) 1330 { 1331 u32 status, mask, com_id; 1332 u8 tnum, port_id, relative_port_id; 1333 u16 liodn; 1334 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; 1335 irqreturn_t ret = IRQ_NONE; 1336 1337 status = ioread32be(&dma_rg->fmdmsr); 1338 mask = ioread32be(&dma_rg->fmdmmr); 1339 1340 /* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */ 1341 if ((mask & DMA_MODE_BER) != DMA_MODE_BER) 1342 status &= ~DMA_STATUS_BUS_ERR; 1343 1344 /* clear relevant bits if mask has no DMA_MODE_ECC */ 1345 if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC) 1346 status &= ~(DMA_STATUS_FM_SPDAT_ECC | 1347 DMA_STATUS_READ_ECC | 1348 DMA_STATUS_SYSTEM_WRITE_ECC | 1349 DMA_STATUS_FM_WRITE_ECC); 1350 1351 /* clear set events */ 1352 iowrite32be(status, &dma_rg->fmdmsr); 1353 1354 if (status & DMA_STATUS_BUS_ERR) { 1355 u64 addr; 1356 1357 addr = (u64)ioread32be(&dma_rg->fmdmtal); 1358 addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32); 1359 1360 com_id = ioread32be(&dma_rg->fmdmtcid); 1361 port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >> 1362 DMA_TRANSFER_PORTID_SHIFT)); 1363 relative_port_id = 1364 hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); 1365 tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >> 1366 DMA_TRANSFER_TNUM_SHIFT); 1367 liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK); 1368 ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum, 1369 liodn); 1370 } 1371 if (status & DMA_STATUS_FM_SPDAT_ECC) 1372 ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC); 1373 if (status & DMA_STATUS_READ_ECC) 1374 ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC); 1375 if (status & DMA_STATUS_SYSTEM_WRITE_ECC) 1376 ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC); 1377 if (status & DMA_STATUS_FM_WRITE_ECC) 1378 ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC); 1379 1380 return ret; 1381 } 1382 1383 static irqreturn_t fpm_err_event(struct fman *fman) 1384 { 1385 u32 event; 1386 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1387 irqreturn_t ret = IRQ_NONE; 1388 1389 event = ioread32be(&fpm_rg->fmfp_ee); 1390 /* clear the all occurred events */ 1391 iowrite32be(event, &fpm_rg->fmfp_ee); 1392 1393 if ((event & FPM_EV_MASK_DOUBLE_ECC) && 1394 (event & FPM_EV_MASK_DOUBLE_ECC_EN)) 1395 ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC); 1396 if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN)) 1397 ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS); 1398 if ((event & FPM_EV_MASK_SINGLE_ECC) && 1399 (event & FPM_EV_MASK_SINGLE_ECC_EN)) 1400 ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC); 1401 1402 return ret; 1403 } 1404 1405 static irqreturn_t muram_err_intr(struct fman *fman) 1406 { 1407 u32 event, mask; 1408 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1409 irqreturn_t ret = IRQ_NONE; 1410 1411 event = ioread32be(&fpm_rg->fm_rcr); 1412 mask = ioread32be(&fpm_rg->fm_rie); 1413 1414 /* clear MURAM event bit (do not clear IRAM event) */ 1415 iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr); 1416 1417 if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC)) 1418 ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC); 1419 1420 return ret; 1421 } 1422 1423 static irqreturn_t qmi_event(struct fman *fman) 1424 { 1425 u32 event, mask, force; 1426 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; 1427 irqreturn_t ret = IRQ_NONE; 1428 1429 event = ioread32be(&qmi_rg->fmqm_ie); 1430 mask = ioread32be(&qmi_rg->fmqm_ien); 1431 event &= mask; 1432 /* clear the forced events */ 1433 force = ioread32be(&qmi_rg->fmqm_if); 1434 if (force & event) 1435 iowrite32be(force & ~event, &qmi_rg->fmqm_if); 1436 /* clear the acknowledged events */ 1437 iowrite32be(event, &qmi_rg->fmqm_ie); 1438 1439 if (event & QMI_INTR_EN_SINGLE_ECC) 1440 ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC); 1441 1442 return ret; 1443 } 1444 1445 static void enable_time_stamp(struct fman *fman) 1446 { 1447 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1448 u16 fm_clk_freq = fman->state->fm_clk_freq; 1449 u32 tmp, intgr, ts_freq; 1450 u64 frac; 1451 1452 ts_freq = (u32)(1 << fman->state->count1_micro_bit); 1453 /* configure timestamp so that bit 8 will count 1 microsecond 1454 * Find effective count rate at TIMESTAMP least significant bits: 1455 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz 1456 * Find frequency ratio between effective count rate and the clock: 1457 * Effective_Count_Rate / CLK e.g. for 600 MHz clock: 1458 * 256/600 = 0.4266666... 1459 */ 1460 1461 intgr = ts_freq / fm_clk_freq; 1462 /* we multiply by 2^16 to keep the fraction of the division 1463 * we do not div back, since we write this value as a fraction 1464 * see spec 1465 */ 1466 1467 frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq; 1468 /* we check remainder of the division in order to round up if not int */ 1469 if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq) 1470 frac++; 1471 1472 tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac; 1473 iowrite32be(tmp, &fpm_rg->fmfp_tsc2); 1474 1475 /* enable timestamp with original clock */ 1476 iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1); 1477 fman->state->enabled_time_stamp = true; 1478 } 1479 1480 static int clear_iram(struct fman *fman) 1481 { 1482 struct fman_iram_regs __iomem *iram; 1483 int i, count; 1484 1485 iram = fman->base_addr + IMEM_OFFSET; 1486 1487 /* Enable the auto-increment */ 1488 iowrite32be(IRAM_IADD_AIE, &iram->iadd); 1489 count = 100; 1490 do { 1491 udelay(1); 1492 } while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count); 1493 if (count == 0) 1494 return -EBUSY; 1495 1496 for (i = 0; i < (fman->state->fm_iram_size / 4); i++) 1497 iowrite32be(0xffffffff, &iram->idata); 1498 1499 iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd); 1500 count = 100; 1501 do { 1502 udelay(1); 1503 } while ((ioread32be(&iram->idata) != 0xffffffff) && --count); 1504 if (count == 0) 1505 return -EBUSY; 1506 1507 return 0; 1508 } 1509 1510 static u32 get_exception_flag(enum fman_exceptions exception) 1511 { 1512 u32 bit_mask; 1513 1514 switch (exception) { 1515 case FMAN_EX_DMA_BUS_ERROR: 1516 bit_mask = EX_DMA_BUS_ERROR; 1517 break; 1518 case FMAN_EX_DMA_SINGLE_PORT_ECC: 1519 bit_mask = EX_DMA_SINGLE_PORT_ECC; 1520 break; 1521 case FMAN_EX_DMA_READ_ECC: 1522 bit_mask = EX_DMA_READ_ECC; 1523 break; 1524 case FMAN_EX_DMA_SYSTEM_WRITE_ECC: 1525 bit_mask = EX_DMA_SYSTEM_WRITE_ECC; 1526 break; 1527 case FMAN_EX_DMA_FM_WRITE_ECC: 1528 bit_mask = EX_DMA_FM_WRITE_ECC; 1529 break; 1530 case FMAN_EX_FPM_STALL_ON_TASKS: 1531 bit_mask = EX_FPM_STALL_ON_TASKS; 1532 break; 1533 case FMAN_EX_FPM_SINGLE_ECC: 1534 bit_mask = EX_FPM_SINGLE_ECC; 1535 break; 1536 case FMAN_EX_FPM_DOUBLE_ECC: 1537 bit_mask = EX_FPM_DOUBLE_ECC; 1538 break; 1539 case FMAN_EX_QMI_SINGLE_ECC: 1540 bit_mask = EX_QMI_SINGLE_ECC; 1541 break; 1542 case FMAN_EX_QMI_DOUBLE_ECC: 1543 bit_mask = EX_QMI_DOUBLE_ECC; 1544 break; 1545 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: 1546 bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID; 1547 break; 1548 case FMAN_EX_BMI_LIST_RAM_ECC: 1549 bit_mask = EX_BMI_LIST_RAM_ECC; 1550 break; 1551 case FMAN_EX_BMI_STORAGE_PROFILE_ECC: 1552 bit_mask = EX_BMI_STORAGE_PROFILE_ECC; 1553 break; 1554 case FMAN_EX_BMI_STATISTICS_RAM_ECC: 1555 bit_mask = EX_BMI_STATISTICS_RAM_ECC; 1556 break; 1557 case FMAN_EX_BMI_DISPATCH_RAM_ECC: 1558 bit_mask = EX_BMI_DISPATCH_RAM_ECC; 1559 break; 1560 case FMAN_EX_MURAM_ECC: 1561 bit_mask = EX_MURAM_ECC; 1562 break; 1563 default: 1564 bit_mask = 0; 1565 break; 1566 } 1567 1568 return bit_mask; 1569 } 1570 1571 static int get_module_event(enum fman_event_modules module, u8 mod_id, 1572 enum fman_intr_type intr_type) 1573 { 1574 int event; 1575 1576 switch (module) { 1577 case FMAN_MOD_MAC: 1578 if (intr_type == FMAN_INTR_TYPE_ERR) 1579 event = FMAN_EV_ERR_MAC0 + mod_id; 1580 else 1581 event = FMAN_EV_MAC0 + mod_id; 1582 break; 1583 case FMAN_MOD_FMAN_CTRL: 1584 if (intr_type == FMAN_INTR_TYPE_ERR) 1585 event = FMAN_EV_CNT; 1586 else 1587 event = (FMAN_EV_FMAN_CTRL_0 + mod_id); 1588 break; 1589 case FMAN_MOD_DUMMY_LAST: 1590 event = FMAN_EV_CNT; 1591 break; 1592 default: 1593 event = FMAN_EV_CNT; 1594 break; 1595 } 1596 1597 return event; 1598 } 1599 1600 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo, 1601 u32 *extra_size_of_fifo) 1602 { 1603 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1604 u32 fifo = *size_of_fifo; 1605 u32 extra_fifo = *extra_size_of_fifo; 1606 u32 tmp; 1607 1608 /* if this is the first time a port requires extra_fifo_pool_size, 1609 * the total extra_fifo_pool_size must be initialized to 1 buffer per 1610 * port 1611 */ 1612 if (extra_fifo && !fman->state->extra_fifo_pool_size) 1613 fman->state->extra_fifo_pool_size = 1614 fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS; 1615 1616 fman->state->extra_fifo_pool_size = 1617 max(fman->state->extra_fifo_pool_size, extra_fifo); 1618 1619 /* check that there are enough uncommitted fifo size */ 1620 if ((fman->state->accumulated_fifo_size + fifo) > 1621 (fman->state->total_fifo_size - 1622 fman->state->extra_fifo_pool_size)) { 1623 dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n", 1624 __func__); 1625 return -EAGAIN; 1626 } 1627 1628 /* Read, modify and write to HW */ 1629 tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) | 1630 ((extra_fifo / FMAN_BMI_FIFO_UNITS) << 1631 BMI_EXTRA_FIFO_SIZE_SHIFT); 1632 iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]); 1633 1634 /* update accumulated */ 1635 fman->state->accumulated_fifo_size += fifo; 1636 1637 return 0; 1638 } 1639 1640 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks, 1641 u8 *num_of_extra_tasks) 1642 { 1643 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1644 u8 tasks = *num_of_tasks; 1645 u8 extra_tasks = *num_of_extra_tasks; 1646 u32 tmp; 1647 1648 if (extra_tasks) 1649 fman->state->extra_tasks_pool_size = 1650 max(fman->state->extra_tasks_pool_size, extra_tasks); 1651 1652 /* check that there are enough uncommitted tasks */ 1653 if ((fman->state->accumulated_num_of_tasks + tasks) > 1654 (fman->state->total_num_of_tasks - 1655 fman->state->extra_tasks_pool_size)) { 1656 dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n", 1657 __func__, fman->state->fm_id); 1658 return -EAGAIN; 1659 } 1660 /* update accumulated */ 1661 fman->state->accumulated_num_of_tasks += tasks; 1662 1663 /* Write to HW */ 1664 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & 1665 ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK); 1666 tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) | 1667 (u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT)); 1668 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); 1669 1670 return 0; 1671 } 1672 1673 static int set_num_of_open_dmas(struct fman *fman, u8 port_id, 1674 u8 *num_of_open_dmas, 1675 u8 *num_of_extra_open_dmas) 1676 { 1677 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1678 u8 open_dmas = *num_of_open_dmas; 1679 u8 extra_open_dmas = *num_of_extra_open_dmas; 1680 u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0; 1681 u32 tmp; 1682 1683 if (!open_dmas) { 1684 /* Configuration according to values in the HW. 1685 * read the current number of open Dma's 1686 */ 1687 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); 1688 current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >> 1689 BMI_EXTRA_NUM_OF_DMAS_SHIFT); 1690 1691 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); 1692 current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >> 1693 BMI_NUM_OF_DMAS_SHIFT) + 1); 1694 1695 /* This is the first configuration and user did not 1696 * specify value (!open_dmas), reset values will be used 1697 * and we just save these values for resource management 1698 */ 1699 fman->state->extra_open_dmas_pool_size = 1700 (u8)max(fman->state->extra_open_dmas_pool_size, 1701 current_extra_val); 1702 fman->state->accumulated_num_of_open_dmas += current_val; 1703 *num_of_open_dmas = current_val; 1704 *num_of_extra_open_dmas = current_extra_val; 1705 return 0; 1706 } 1707 1708 if (extra_open_dmas > current_extra_val) 1709 fman->state->extra_open_dmas_pool_size = 1710 (u8)max(fman->state->extra_open_dmas_pool_size, 1711 extra_open_dmas); 1712 1713 if ((fman->state->rev_info.major < 6) && 1714 (fman->state->accumulated_num_of_open_dmas - current_val + 1715 open_dmas > fman->state->max_num_of_open_dmas)) { 1716 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n", 1717 __func__, fman->state->fm_id); 1718 return -EAGAIN; 1719 } else if ((fman->state->rev_info.major >= 6) && 1720 !((fman->state->rev_info.major == 6) && 1721 (fman->state->rev_info.minor == 0)) && 1722 (fman->state->accumulated_num_of_open_dmas - 1723 current_val + open_dmas > 1724 fman->state->dma_thresh_max_commq + 1)) { 1725 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n", 1726 __func__, fman->state->fm_id, 1727 fman->state->dma_thresh_max_commq + 1); 1728 return -EAGAIN; 1729 } 1730 1731 WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val); 1732 /* update acummulated */ 1733 fman->state->accumulated_num_of_open_dmas -= current_val; 1734 fman->state->accumulated_num_of_open_dmas += open_dmas; 1735 1736 if (fman->state->rev_info.major < 6) 1737 total_num_dmas = 1738 (u8)(fman->state->accumulated_num_of_open_dmas + 1739 fman->state->extra_open_dmas_pool_size); 1740 1741 /* calculate reg */ 1742 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & 1743 ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK); 1744 tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) | 1745 (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT)); 1746 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); 1747 1748 /* update total num of DMA's with committed number of open DMAS, 1749 * and max uncommitted pool. 1750 */ 1751 if (total_num_dmas) { 1752 tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK; 1753 tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT; 1754 iowrite32be(tmp, &bmi_rg->fmbm_cfg2); 1755 } 1756 1757 return 0; 1758 } 1759 1760 static int fman_config(struct fman *fman) 1761 { 1762 void __iomem *base_addr; 1763 int err; 1764 1765 base_addr = fman->dts_params.base_addr; 1766 1767 fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL); 1768 if (!fman->state) 1769 goto err_fm_state; 1770 1771 /* Allocate the FM driver's parameters structure */ 1772 fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL); 1773 if (!fman->cfg) 1774 goto err_fm_drv; 1775 1776 /* Initialize MURAM block */ 1777 fman->muram = 1778 fman_muram_init(fman->dts_params.muram_res.start, 1779 resource_size(&fman->dts_params.muram_res)); 1780 if (!fman->muram) 1781 goto err_fm_soc_specific; 1782 1783 /* Initialize FM parameters which will be kept by the driver */ 1784 fman->state->fm_id = fman->dts_params.id; 1785 fman->state->fm_clk_freq = fman->dts_params.clk_freq; 1786 fman->state->qman_channel_base = fman->dts_params.qman_channel_base; 1787 fman->state->num_of_qman_channels = 1788 fman->dts_params.num_of_qman_channels; 1789 fman->state->res = fman->dts_params.res; 1790 fman->exception_cb = fman_exceptions; 1791 fman->bus_error_cb = fman_bus_error; 1792 fman->fpm_regs = base_addr + FPM_OFFSET; 1793 fman->bmi_regs = base_addr + BMI_OFFSET; 1794 fman->qmi_regs = base_addr + QMI_OFFSET; 1795 fman->dma_regs = base_addr + DMA_OFFSET; 1796 fman->base_addr = base_addr; 1797 1798 spin_lock_init(&fman->spinlock); 1799 fman_defconfig(fman->cfg); 1800 1801 fman->state->extra_fifo_pool_size = 0; 1802 fman->state->exceptions = (EX_DMA_BUS_ERROR | 1803 EX_DMA_READ_ECC | 1804 EX_DMA_SYSTEM_WRITE_ECC | 1805 EX_DMA_FM_WRITE_ECC | 1806 EX_FPM_STALL_ON_TASKS | 1807 EX_FPM_SINGLE_ECC | 1808 EX_FPM_DOUBLE_ECC | 1809 EX_QMI_DEQ_FROM_UNKNOWN_PORTID | 1810 EX_BMI_LIST_RAM_ECC | 1811 EX_BMI_STORAGE_PROFILE_ECC | 1812 EX_BMI_STATISTICS_RAM_ECC | 1813 EX_MURAM_ECC | 1814 EX_BMI_DISPATCH_RAM_ECC | 1815 EX_QMI_DOUBLE_ECC | 1816 EX_QMI_SINGLE_ECC); 1817 1818 /* Read FMan revision for future use*/ 1819 fman_get_revision(fman, &fman->state->rev_info); 1820 1821 err = fill_soc_specific_params(fman->state); 1822 if (err) 1823 goto err_fm_soc_specific; 1824 1825 /* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */ 1826 if (fman->state->rev_info.major >= 6) 1827 fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID; 1828 1829 fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh; 1830 1831 fman->state->total_num_of_tasks = 1832 (u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major, 1833 fman->state->rev_info.minor, 1834 fman->state->bmi_max_num_of_tasks); 1835 1836 if (fman->state->rev_info.major < 6) { 1837 fman->cfg->dma_comm_qtsh_clr_emer = 1838 (u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major, 1839 fman->state->dma_thresh_max_commq); 1840 1841 fman->cfg->dma_comm_qtsh_asrt_emer = 1842 (u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major, 1843 fman->state->dma_thresh_max_commq); 1844 1845 fman->cfg->dma_cam_num_of_entries = 1846 DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major); 1847 1848 fman->cfg->dma_read_buf_tsh_clr_emer = 1849 DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf); 1850 1851 fman->cfg->dma_read_buf_tsh_asrt_emer = 1852 DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); 1853 1854 fman->cfg->dma_write_buf_tsh_clr_emer = 1855 DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf); 1856 1857 fman->cfg->dma_write_buf_tsh_asrt_emer = 1858 DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); 1859 1860 fman->cfg->dma_axi_dbg_num_of_beats = 1861 DFLT_AXI_DBG_NUM_OF_BEATS; 1862 } 1863 1864 return 0; 1865 1866 err_fm_soc_specific: 1867 kfree(fman->cfg); 1868 err_fm_drv: 1869 kfree(fman->state); 1870 err_fm_state: 1871 kfree(fman); 1872 return -EINVAL; 1873 } 1874 1875 static int fman_reset(struct fman *fman) 1876 { 1877 u32 count; 1878 int err = 0; 1879 1880 if (fman->state->rev_info.major < 6) { 1881 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); 1882 /* Wait for reset completion */ 1883 count = 100; 1884 do { 1885 udelay(1); 1886 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & 1887 FPM_RSTC_FM_RESET) && --count); 1888 if (count == 0) 1889 err = -EBUSY; 1890 1891 goto _return; 1892 } else { 1893 struct device_node *guts_node; 1894 struct ccsr_guts __iomem *guts_regs; 1895 u32 devdisr2, reg; 1896 1897 /* Errata A007273 */ 1898 guts_node = 1899 of_find_compatible_node(NULL, NULL, 1900 "fsl,qoriq-device-config-2.0"); 1901 if (!guts_node) { 1902 dev_err(fman->dev, "%s: Couldn't find guts node\n", 1903 __func__); 1904 goto guts_node; 1905 } 1906 1907 guts_regs = of_iomap(guts_node, 0); 1908 if (!guts_regs) { 1909 dev_err(fman->dev, "%s: Couldn't map %s regs\n", 1910 __func__, guts_node->full_name); 1911 goto guts_regs; 1912 } 1913 #define FMAN1_ALL_MACS_MASK 0xFCC00000 1914 #define FMAN2_ALL_MACS_MASK 0x000FCC00 1915 /* Read current state */ 1916 devdisr2 = ioread32be(&guts_regs->devdisr2); 1917 if (fman->dts_params.id == 0) 1918 reg = devdisr2 & ~FMAN1_ALL_MACS_MASK; 1919 else 1920 reg = devdisr2 & ~FMAN2_ALL_MACS_MASK; 1921 1922 /* Enable all MACs */ 1923 iowrite32be(reg, &guts_regs->devdisr2); 1924 1925 /* Perform FMan reset */ 1926 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); 1927 1928 /* Wait for reset completion */ 1929 count = 100; 1930 do { 1931 udelay(1); 1932 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & 1933 FPM_RSTC_FM_RESET) && --count); 1934 if (count == 0) { 1935 iounmap(guts_regs); 1936 of_node_put(guts_node); 1937 err = -EBUSY; 1938 goto _return; 1939 } 1940 1941 /* Restore devdisr2 value */ 1942 iowrite32be(devdisr2, &guts_regs->devdisr2); 1943 1944 iounmap(guts_regs); 1945 of_node_put(guts_node); 1946 1947 goto _return; 1948 1949 guts_regs: 1950 of_node_put(guts_node); 1951 guts_node: 1952 dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n", 1953 __func__); 1954 } 1955 _return: 1956 return err; 1957 } 1958 1959 static int fman_init(struct fman *fman) 1960 { 1961 struct fman_cfg *cfg = NULL; 1962 int err = 0, i, count; 1963 1964 if (is_init_done(fman->cfg)) 1965 return -EINVAL; 1966 1967 fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT; 1968 1969 cfg = fman->cfg; 1970 1971 /* clear revision-dependent non existing exception */ 1972 if (fman->state->rev_info.major < 6) 1973 fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC; 1974 1975 if (fman->state->rev_info.major >= 6) 1976 fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC; 1977 1978 /* clear CPG */ 1979 memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0, 1980 fman->state->fm_port_num_of_cg); 1981 1982 /* Save LIODN info before FMan reset 1983 * Skipping non-existent port 0 (i = 1) 1984 */ 1985 for (i = 1; i < FMAN_LIODN_TBL; i++) { 1986 u32 liodn_base; 1987 1988 fman->liodn_offset[i] = 1989 ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]); 1990 liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]); 1991 if (i % 2) { 1992 /* FMDM_PLR LSB holds LIODN base for odd ports */ 1993 liodn_base &= DMA_LIODN_BASE_MASK; 1994 } else { 1995 /* FMDM_PLR MSB holds LIODN base for even ports */ 1996 liodn_base >>= DMA_LIODN_SHIFT; 1997 liodn_base &= DMA_LIODN_BASE_MASK; 1998 } 1999 fman->liodn_base[i] = liodn_base; 2000 } 2001 2002 err = fman_reset(fman); 2003 if (err) 2004 return err; 2005 2006 if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) { 2007 resume(fman->fpm_regs); 2008 /* Wait until QMI is not in halt not busy state */ 2009 count = 100; 2010 do { 2011 udelay(1); 2012 } while (((ioread32be(&fman->qmi_regs->fmqm_gs)) & 2013 QMI_GS_HALT_NOT_BUSY) && --count); 2014 if (count == 0) 2015 dev_warn(fman->dev, "%s: QMI is in halt not busy state\n", 2016 __func__); 2017 } 2018 2019 if (clear_iram(fman) != 0) 2020 return -EINVAL; 2021 2022 cfg->exceptions = fman->state->exceptions; 2023 2024 /* Init DMA Registers */ 2025 2026 err = dma_init(fman); 2027 if (err != 0) { 2028 free_init_resources(fman); 2029 return err; 2030 } 2031 2032 /* Init FPM Registers */ 2033 fpm_init(fman->fpm_regs, fman->cfg); 2034 2035 /* define common resources */ 2036 /* allocate MURAM for FIFO according to total size */ 2037 fman->fifo_offset = fman_muram_alloc(fman->muram, 2038 fman->state->total_fifo_size); 2039 if (IS_ERR_VALUE(fman->fifo_offset)) { 2040 free_init_resources(fman); 2041 dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n", 2042 __func__); 2043 return -ENOMEM; 2044 } 2045 2046 cfg->fifo_base_addr = fman->fifo_offset; 2047 cfg->total_fifo_size = fman->state->total_fifo_size; 2048 cfg->total_num_of_tasks = fman->state->total_num_of_tasks; 2049 cfg->clk_freq = fman->state->fm_clk_freq; 2050 2051 /* Init BMI Registers */ 2052 bmi_init(fman->bmi_regs, fman->cfg); 2053 2054 /* Init QMI Registers */ 2055 qmi_init(fman->qmi_regs, fman->cfg); 2056 2057 err = enable(fman, cfg); 2058 if (err != 0) 2059 return err; 2060 2061 enable_time_stamp(fman); 2062 2063 kfree(fman->cfg); 2064 fman->cfg = NULL; 2065 2066 return 0; 2067 } 2068 2069 static int fman_set_exception(struct fman *fman, 2070 enum fman_exceptions exception, bool enable) 2071 { 2072 u32 bit_mask = 0; 2073 2074 if (!is_init_done(fman->cfg)) 2075 return -EINVAL; 2076 2077 bit_mask = get_exception_flag(exception); 2078 if (bit_mask) { 2079 if (enable) 2080 fman->state->exceptions |= bit_mask; 2081 else 2082 fman->state->exceptions &= ~bit_mask; 2083 } else { 2084 dev_err(fman->dev, "%s: Undefined exception (%d)\n", 2085 __func__, exception); 2086 return -EINVAL; 2087 } 2088 2089 return set_exception(fman, exception, enable); 2090 } 2091 2092 /** 2093 * fman_register_intr 2094 * @fman: A Pointer to FMan device 2095 * @mod: Calling module 2096 * @mod_id: Module id (if more than 1 exists, '0' if not) 2097 * @intr_type: Interrupt type (error/normal) selection. 2098 * @f_isr: The interrupt service routine. 2099 * @h_src_arg: Argument to be passed to f_isr. 2100 * 2101 * Used to register an event handler to be processed by FMan 2102 * 2103 * Return: 0 on success; Error code otherwise. 2104 */ 2105 void fman_register_intr(struct fman *fman, enum fman_event_modules module, 2106 u8 mod_id, enum fman_intr_type intr_type, 2107 void (*isr_cb)(void *src_arg), void *src_arg) 2108 { 2109 int event = 0; 2110 2111 event = get_module_event(module, mod_id, intr_type); 2112 WARN_ON(event >= FMAN_EV_CNT); 2113 2114 /* register in local FM structure */ 2115 fman->intr_mng[event].isr_cb = isr_cb; 2116 fman->intr_mng[event].src_handle = src_arg; 2117 } 2118 EXPORT_SYMBOL(fman_register_intr); 2119 2120 /** 2121 * fman_unregister_intr 2122 * @fman: A Pointer to FMan device 2123 * @mod: Calling module 2124 * @mod_id: Module id (if more than 1 exists, '0' if not) 2125 * @intr_type: Interrupt type (error/normal) selection. 2126 * 2127 * Used to unregister an event handler to be processed by FMan 2128 * 2129 * Return: 0 on success; Error code otherwise. 2130 */ 2131 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module, 2132 u8 mod_id, enum fman_intr_type intr_type) 2133 { 2134 int event = 0; 2135 2136 event = get_module_event(module, mod_id, intr_type); 2137 WARN_ON(event >= FMAN_EV_CNT); 2138 2139 fman->intr_mng[event].isr_cb = NULL; 2140 fman->intr_mng[event].src_handle = NULL; 2141 } 2142 EXPORT_SYMBOL(fman_unregister_intr); 2143 2144 /** 2145 * fman_set_port_params 2146 * @fman: A Pointer to FMan device 2147 * @port_params: Port parameters 2148 * 2149 * Used by FMan Port to pass parameters to the FMan 2150 * 2151 * Return: 0 on success; Error code otherwise. 2152 */ 2153 int fman_set_port_params(struct fman *fman, 2154 struct fman_port_init_params *port_params) 2155 { 2156 int err; 2157 unsigned long flags; 2158 u8 port_id = port_params->port_id, mac_id; 2159 2160 spin_lock_irqsave(&fman->spinlock, flags); 2161 2162 err = set_num_of_tasks(fman, port_params->port_id, 2163 &port_params->num_of_tasks, 2164 &port_params->num_of_extra_tasks); 2165 if (err) 2166 goto return_err; 2167 2168 /* TX Ports */ 2169 if (port_params->port_type != FMAN_PORT_TYPE_RX) { 2170 u32 enq_th, deq_th, reg; 2171 2172 /* update qmi ENQ/DEQ threshold */ 2173 fman->state->accumulated_num_of_deq_tnums += 2174 port_params->deq_pipeline_depth; 2175 enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) & 2176 QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT; 2177 /* if enq_th is too big, we reduce it to the max value 2178 * that is still 0 2179 */ 2180 if (enq_th >= (fman->state->qmi_max_num_of_tnums - 2181 fman->state->accumulated_num_of_deq_tnums)) { 2182 enq_th = 2183 fman->state->qmi_max_num_of_tnums - 2184 fman->state->accumulated_num_of_deq_tnums - 1; 2185 2186 reg = ioread32be(&fman->qmi_regs->fmqm_gc); 2187 reg &= ~QMI_CFG_ENQ_MASK; 2188 reg |= (enq_th << QMI_CFG_ENQ_SHIFT); 2189 iowrite32be(reg, &fman->qmi_regs->fmqm_gc); 2190 } 2191 2192 deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) & 2193 QMI_CFG_DEQ_MASK; 2194 /* if deq_th is too small, we enlarge it to the min 2195 * value that is still 0. 2196 * depTh may not be larger than 63 2197 * (fman->state->qmi_max_num_of_tnums-1). 2198 */ 2199 if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) && 2200 (deq_th < fman->state->qmi_max_num_of_tnums - 1)) { 2201 deq_th = fman->state->accumulated_num_of_deq_tnums + 1; 2202 reg = ioread32be(&fman->qmi_regs->fmqm_gc); 2203 reg &= ~QMI_CFG_DEQ_MASK; 2204 reg |= deq_th; 2205 iowrite32be(reg, &fman->qmi_regs->fmqm_gc); 2206 } 2207 } 2208 2209 err = set_size_of_fifo(fman, port_params->port_id, 2210 &port_params->size_of_fifo, 2211 &port_params->extra_size_of_fifo); 2212 if (err) 2213 goto return_err; 2214 2215 err = set_num_of_open_dmas(fman, port_params->port_id, 2216 &port_params->num_of_open_dmas, 2217 &port_params->num_of_extra_open_dmas); 2218 if (err) 2219 goto return_err; 2220 2221 set_port_liodn(fman, port_id, fman->liodn_base[port_id], 2222 fman->liodn_offset[port_id]); 2223 2224 if (fman->state->rev_info.major < 6) 2225 set_port_order_restoration(fman->fpm_regs, port_id); 2226 2227 mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); 2228 2229 if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) { 2230 fman->state->port_mfl[mac_id] = port_params->max_frame_length; 2231 } else { 2232 dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n", 2233 __func__, port_id, mac_id); 2234 err = -EINVAL; 2235 goto return_err; 2236 } 2237 2238 spin_unlock_irqrestore(&fman->spinlock, flags); 2239 2240 return 0; 2241 2242 return_err: 2243 spin_unlock_irqrestore(&fman->spinlock, flags); 2244 return err; 2245 } 2246 EXPORT_SYMBOL(fman_set_port_params); 2247 2248 /** 2249 * fman_reset_mac 2250 * @fman: A Pointer to FMan device 2251 * @mac_id: MAC id to be reset 2252 * 2253 * Reset a specific MAC 2254 * 2255 * Return: 0 on success; Error code otherwise. 2256 */ 2257 int fman_reset_mac(struct fman *fman, u8 mac_id) 2258 { 2259 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 2260 u32 msk, timeout = 100; 2261 2262 if (fman->state->rev_info.major >= 6) { 2263 dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n", 2264 __func__); 2265 return -EINVAL; 2266 } 2267 2268 /* Get the relevant bit mask */ 2269 switch (mac_id) { 2270 case 0: 2271 msk = FPM_RSTC_MAC0_RESET; 2272 break; 2273 case 1: 2274 msk = FPM_RSTC_MAC1_RESET; 2275 break; 2276 case 2: 2277 msk = FPM_RSTC_MAC2_RESET; 2278 break; 2279 case 3: 2280 msk = FPM_RSTC_MAC3_RESET; 2281 break; 2282 case 4: 2283 msk = FPM_RSTC_MAC4_RESET; 2284 break; 2285 case 5: 2286 msk = FPM_RSTC_MAC5_RESET; 2287 break; 2288 case 6: 2289 msk = FPM_RSTC_MAC6_RESET; 2290 break; 2291 case 7: 2292 msk = FPM_RSTC_MAC7_RESET; 2293 break; 2294 case 8: 2295 msk = FPM_RSTC_MAC8_RESET; 2296 break; 2297 case 9: 2298 msk = FPM_RSTC_MAC9_RESET; 2299 break; 2300 default: 2301 dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n", 2302 __func__, mac_id); 2303 return -EINVAL; 2304 } 2305 2306 /* reset */ 2307 iowrite32be(msk, &fpm_rg->fm_rstc); 2308 while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout) 2309 udelay(10); 2310 2311 if (!timeout) 2312 return -EIO; 2313 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(fman_reset_mac); 2317 2318 /** 2319 * fman_set_mac_max_frame 2320 * @fman: A Pointer to FMan device 2321 * @mac_id: MAC id 2322 * @mfl: Maximum frame length 2323 * 2324 * Set maximum frame length of specific MAC in FMan driver 2325 * 2326 * Return: 0 on success; Error code otherwise. 2327 */ 2328 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl) 2329 { 2330 /* if port is already initialized, check that MaxFrameLength is smaller 2331 * or equal to the port's max 2332 */ 2333 if ((!fman->state->port_mfl[mac_id]) || 2334 (mfl <= fman->state->port_mfl[mac_id])) { 2335 fman->state->mac_mfl[mac_id] = mfl; 2336 } else { 2337 dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n", 2338 __func__); 2339 return -EINVAL; 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(fman_set_mac_max_frame); 2344 2345 /** 2346 * fman_get_clock_freq 2347 * @fman: A Pointer to FMan device 2348 * 2349 * Get FMan clock frequency 2350 * 2351 * Return: FMan clock frequency 2352 */ 2353 u16 fman_get_clock_freq(struct fman *fman) 2354 { 2355 return fman->state->fm_clk_freq; 2356 } 2357 2358 /** 2359 * fman_get_bmi_max_fifo_size 2360 * @fman: A Pointer to FMan device 2361 * 2362 * Get FMan maximum FIFO size 2363 * 2364 * Return: FMan Maximum FIFO size 2365 */ 2366 u32 fman_get_bmi_max_fifo_size(struct fman *fman) 2367 { 2368 return fman->state->bmi_max_fifo_size; 2369 } 2370 EXPORT_SYMBOL(fman_get_bmi_max_fifo_size); 2371 2372 /** 2373 * fman_get_revision 2374 * @fman - Pointer to the FMan module 2375 * @rev_info - A structure of revision information parameters. 2376 * 2377 * Returns the FM revision 2378 * 2379 * Allowed only following fman_init(). 2380 * 2381 * Return: 0 on success; Error code otherwise. 2382 */ 2383 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info) 2384 { 2385 u32 tmp; 2386 2387 tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1); 2388 rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >> 2389 FPM_REV1_MAJOR_SHIFT); 2390 rev_info->minor = tmp & FPM_REV1_MINOR_MASK; 2391 } 2392 EXPORT_SYMBOL(fman_get_revision); 2393 2394 /** 2395 * fman_get_qman_channel_id 2396 * @fman: A Pointer to FMan device 2397 * @port_id: Port id 2398 * 2399 * Get QMan channel ID associated to the Port id 2400 * 2401 * Return: QMan channel ID 2402 */ 2403 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id) 2404 { 2405 int i; 2406 2407 if (fman->state->rev_info.major >= 6) { 2408 u32 port_ids[] = {0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b, 2409 0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7}; 2410 for (i = 0; i < fman->state->num_of_qman_channels; i++) { 2411 if (port_ids[i] == port_id) 2412 break; 2413 } 2414 } else { 2415 u32 port_ids[] = {0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1, 2416 0x2, 0x3, 0x4, 0x5, 0x7, 0x7}; 2417 for (i = 0; i < fman->state->num_of_qman_channels; i++) { 2418 if (port_ids[i] == port_id) 2419 break; 2420 } 2421 } 2422 2423 if (i == fman->state->num_of_qman_channels) 2424 return 0; 2425 2426 return fman->state->qman_channel_base + i; 2427 } 2428 EXPORT_SYMBOL(fman_get_qman_channel_id); 2429 2430 /** 2431 * fman_get_mem_region 2432 * @fman: A Pointer to FMan device 2433 * 2434 * Get FMan memory region 2435 * 2436 * Return: A structure with FMan memory region information 2437 */ 2438 struct resource *fman_get_mem_region(struct fman *fman) 2439 { 2440 return fman->state->res; 2441 } 2442 EXPORT_SYMBOL(fman_get_mem_region); 2443 2444 /* Bootargs defines */ 2445 /* Extra headroom for RX buffers - Default, min and max */ 2446 #define FSL_FM_RX_EXTRA_HEADROOM 64 2447 #define FSL_FM_RX_EXTRA_HEADROOM_MIN 16 2448 #define FSL_FM_RX_EXTRA_HEADROOM_MAX 384 2449 2450 /* Maximum frame length */ 2451 #define FSL_FM_MAX_FRAME_SIZE 1522 2452 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE 9600 2453 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE 64 2454 2455 /* Extra headroom for Rx buffers. 2456 * FMan is instructed to allocate, on the Rx path, this amount of 2457 * space at the beginning of a data buffer, beside the DPA private 2458 * data area and the IC fields. 2459 * Does not impact Tx buffer layout. 2460 * Configurable from bootargs. 64 by default, it's needed on 2461 * particular forwarding scenarios that add extra headers to the 2462 * forwarded frame. 2463 */ 2464 static int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; 2465 module_param(fsl_fm_rx_extra_headroom, int, 0); 2466 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers"); 2467 2468 /* Max frame size, across all interfaces. 2469 * Configurable from bootargs, to avoid allocating oversized (socket) 2470 * buffers when not using jumbo frames. 2471 * Must be large enough to accommodate the network MTU, but small enough 2472 * to avoid wasting skb memory. 2473 * 2474 * Could be overridden once, at boot-time, via the 2475 * fm_set_max_frm() callback. 2476 */ 2477 static int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; 2478 module_param(fsl_fm_max_frm, int, 0); 2479 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces"); 2480 2481 /** 2482 * fman_get_max_frm 2483 * 2484 * Return: Max frame length configured in the FM driver 2485 */ 2486 u16 fman_get_max_frm(void) 2487 { 2488 static bool fm_check_mfl; 2489 2490 if (!fm_check_mfl) { 2491 if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE || 2492 fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) { 2493 pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", 2494 fsl_fm_max_frm, 2495 FSL_FM_MIN_POSSIBLE_FRAME_SIZE, 2496 FSL_FM_MAX_POSSIBLE_FRAME_SIZE, 2497 FSL_FM_MAX_FRAME_SIZE); 2498 fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; 2499 } 2500 fm_check_mfl = true; 2501 } 2502 2503 return fsl_fm_max_frm; 2504 } 2505 EXPORT_SYMBOL(fman_get_max_frm); 2506 2507 /** 2508 * fman_get_rx_extra_headroom 2509 * 2510 * Return: Extra headroom size configured in the FM driver 2511 */ 2512 int fman_get_rx_extra_headroom(void) 2513 { 2514 static bool fm_check_rx_extra_headroom; 2515 2516 if (!fm_check_rx_extra_headroom) { 2517 if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX || 2518 fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) { 2519 pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", 2520 fsl_fm_rx_extra_headroom, 2521 FSL_FM_RX_EXTRA_HEADROOM_MIN, 2522 FSL_FM_RX_EXTRA_HEADROOM_MAX, 2523 FSL_FM_RX_EXTRA_HEADROOM); 2524 fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; 2525 } 2526 2527 fm_check_rx_extra_headroom = true; 2528 fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16); 2529 } 2530 2531 return fsl_fm_rx_extra_headroom; 2532 } 2533 EXPORT_SYMBOL(fman_get_rx_extra_headroom); 2534 2535 /** 2536 * fman_bind 2537 * @dev: FMan OF device pointer 2538 * 2539 * Bind to a specific FMan device. 2540 * 2541 * Allowed only after the port was created. 2542 * 2543 * Return: A pointer to the FMan device 2544 */ 2545 struct fman *fman_bind(struct device *fm_dev) 2546 { 2547 return (struct fman *)(dev_get_drvdata(get_device(fm_dev))); 2548 } 2549 EXPORT_SYMBOL(fman_bind); 2550 2551 static irqreturn_t fman_err_irq(int irq, void *handle) 2552 { 2553 struct fman *fman = (struct fman *)handle; 2554 u32 pending; 2555 struct fman_fpm_regs __iomem *fpm_rg; 2556 irqreturn_t single_ret, ret = IRQ_NONE; 2557 2558 if (!is_init_done(fman->cfg)) 2559 return IRQ_NONE; 2560 2561 fpm_rg = fman->fpm_regs; 2562 2563 /* error interrupts */ 2564 pending = ioread32be(&fpm_rg->fm_epi); 2565 if (!pending) 2566 return IRQ_NONE; 2567 2568 if (pending & ERR_INTR_EN_BMI) { 2569 single_ret = bmi_err_event(fman); 2570 if (single_ret == IRQ_HANDLED) 2571 ret = IRQ_HANDLED; 2572 } 2573 if (pending & ERR_INTR_EN_QMI) { 2574 single_ret = qmi_err_event(fman); 2575 if (single_ret == IRQ_HANDLED) 2576 ret = IRQ_HANDLED; 2577 } 2578 if (pending & ERR_INTR_EN_FPM) { 2579 single_ret = fpm_err_event(fman); 2580 if (single_ret == IRQ_HANDLED) 2581 ret = IRQ_HANDLED; 2582 } 2583 if (pending & ERR_INTR_EN_DMA) { 2584 single_ret = dma_err_event(fman); 2585 if (single_ret == IRQ_HANDLED) 2586 ret = IRQ_HANDLED; 2587 } 2588 if (pending & ERR_INTR_EN_MURAM) { 2589 single_ret = muram_err_intr(fman); 2590 if (single_ret == IRQ_HANDLED) 2591 ret = IRQ_HANDLED; 2592 } 2593 2594 /* MAC error interrupts */ 2595 if (pending & ERR_INTR_EN_MAC0) { 2596 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0); 2597 if (single_ret == IRQ_HANDLED) 2598 ret = IRQ_HANDLED; 2599 } 2600 if (pending & ERR_INTR_EN_MAC1) { 2601 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1); 2602 if (single_ret == IRQ_HANDLED) 2603 ret = IRQ_HANDLED; 2604 } 2605 if (pending & ERR_INTR_EN_MAC2) { 2606 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2); 2607 if (single_ret == IRQ_HANDLED) 2608 ret = IRQ_HANDLED; 2609 } 2610 if (pending & ERR_INTR_EN_MAC3) { 2611 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3); 2612 if (single_ret == IRQ_HANDLED) 2613 ret = IRQ_HANDLED; 2614 } 2615 if (pending & ERR_INTR_EN_MAC4) { 2616 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4); 2617 if (single_ret == IRQ_HANDLED) 2618 ret = IRQ_HANDLED; 2619 } 2620 if (pending & ERR_INTR_EN_MAC5) { 2621 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5); 2622 if (single_ret == IRQ_HANDLED) 2623 ret = IRQ_HANDLED; 2624 } 2625 if (pending & ERR_INTR_EN_MAC6) { 2626 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6); 2627 if (single_ret == IRQ_HANDLED) 2628 ret = IRQ_HANDLED; 2629 } 2630 if (pending & ERR_INTR_EN_MAC7) { 2631 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7); 2632 if (single_ret == IRQ_HANDLED) 2633 ret = IRQ_HANDLED; 2634 } 2635 if (pending & ERR_INTR_EN_MAC8) { 2636 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8); 2637 if (single_ret == IRQ_HANDLED) 2638 ret = IRQ_HANDLED; 2639 } 2640 if (pending & ERR_INTR_EN_MAC9) { 2641 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9); 2642 if (single_ret == IRQ_HANDLED) 2643 ret = IRQ_HANDLED; 2644 } 2645 2646 return ret; 2647 } 2648 2649 static irqreturn_t fman_irq(int irq, void *handle) 2650 { 2651 struct fman *fman = (struct fman *)handle; 2652 u32 pending; 2653 struct fman_fpm_regs __iomem *fpm_rg; 2654 irqreturn_t single_ret, ret = IRQ_NONE; 2655 2656 if (!is_init_done(fman->cfg)) 2657 return IRQ_NONE; 2658 2659 fpm_rg = fman->fpm_regs; 2660 2661 /* normal interrupts */ 2662 pending = ioread32be(&fpm_rg->fm_npi); 2663 if (!pending) 2664 return IRQ_NONE; 2665 2666 if (pending & INTR_EN_QMI) { 2667 single_ret = qmi_event(fman); 2668 if (single_ret == IRQ_HANDLED) 2669 ret = IRQ_HANDLED; 2670 } 2671 2672 /* MAC interrupts */ 2673 if (pending & INTR_EN_MAC0) { 2674 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0); 2675 if (single_ret == IRQ_HANDLED) 2676 ret = IRQ_HANDLED; 2677 } 2678 if (pending & INTR_EN_MAC1) { 2679 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1); 2680 if (single_ret == IRQ_HANDLED) 2681 ret = IRQ_HANDLED; 2682 } 2683 if (pending & INTR_EN_MAC2) { 2684 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2); 2685 if (single_ret == IRQ_HANDLED) 2686 ret = IRQ_HANDLED; 2687 } 2688 if (pending & INTR_EN_MAC3) { 2689 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3); 2690 if (single_ret == IRQ_HANDLED) 2691 ret = IRQ_HANDLED; 2692 } 2693 if (pending & INTR_EN_MAC4) { 2694 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4); 2695 if (single_ret == IRQ_HANDLED) 2696 ret = IRQ_HANDLED; 2697 } 2698 if (pending & INTR_EN_MAC5) { 2699 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5); 2700 if (single_ret == IRQ_HANDLED) 2701 ret = IRQ_HANDLED; 2702 } 2703 if (pending & INTR_EN_MAC6) { 2704 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6); 2705 if (single_ret == IRQ_HANDLED) 2706 ret = IRQ_HANDLED; 2707 } 2708 if (pending & INTR_EN_MAC7) { 2709 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7); 2710 if (single_ret == IRQ_HANDLED) 2711 ret = IRQ_HANDLED; 2712 } 2713 if (pending & INTR_EN_MAC8) { 2714 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8); 2715 if (single_ret == IRQ_HANDLED) 2716 ret = IRQ_HANDLED; 2717 } 2718 if (pending & INTR_EN_MAC9) { 2719 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9); 2720 if (single_ret == IRQ_HANDLED) 2721 ret = IRQ_HANDLED; 2722 } 2723 2724 return ret; 2725 } 2726 2727 static const struct of_device_id fman_muram_match[] = { 2728 { 2729 .compatible = "fsl,fman-muram"}, 2730 {} 2731 }; 2732 MODULE_DEVICE_TABLE(of, fman_muram_match); 2733 2734 static struct fman *read_dts_node(struct platform_device *of_dev) 2735 { 2736 struct fman *fman; 2737 struct device_node *fm_node, *muram_node; 2738 struct resource *res; 2739 u32 val, range[2]; 2740 int err, irq; 2741 struct clk *clk; 2742 u32 clk_rate; 2743 phys_addr_t phys_base_addr; 2744 resource_size_t mem_size; 2745 2746 fman = kzalloc(sizeof(*fman), GFP_KERNEL); 2747 if (!fman) 2748 return NULL; 2749 2750 fm_node = of_node_get(of_dev->dev.of_node); 2751 2752 err = of_property_read_u32(fm_node, "cell-index", &val); 2753 if (err) { 2754 dev_err(&of_dev->dev, "%s: failed to read cell-index for %s\n", 2755 __func__, fm_node->full_name); 2756 goto fman_node_put; 2757 } 2758 fman->dts_params.id = (u8)val; 2759 2760 /* Get the FM interrupt */ 2761 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0); 2762 if (!res) { 2763 dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n", 2764 __func__); 2765 goto fman_node_put; 2766 } 2767 irq = res->start; 2768 2769 /* Get the FM error interrupt */ 2770 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1); 2771 if (!res) { 2772 dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n", 2773 __func__); 2774 goto fman_node_put; 2775 } 2776 fman->dts_params.err_irq = res->start; 2777 2778 /* Get the FM address */ 2779 res = platform_get_resource(of_dev, IORESOURCE_MEM, 0); 2780 if (!res) { 2781 dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n", 2782 __func__); 2783 goto fman_node_put; 2784 } 2785 2786 phys_base_addr = res->start; 2787 mem_size = resource_size(res); 2788 2789 clk = of_clk_get(fm_node, 0); 2790 if (IS_ERR(clk)) { 2791 dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n", 2792 __func__, fman->dts_params.id); 2793 goto fman_node_put; 2794 } 2795 2796 clk_rate = clk_get_rate(clk); 2797 if (!clk_rate) { 2798 dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n", 2799 __func__, fman->dts_params.id); 2800 goto fman_node_put; 2801 } 2802 /* Rounding to MHz */ 2803 fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000); 2804 2805 err = of_property_read_u32_array(fm_node, "fsl,qman-channel-range", 2806 &range[0], 2); 2807 if (err) { 2808 dev_err(&of_dev->dev, "%s: failed to read fsl,qman-channel-range for %s\n", 2809 __func__, fm_node->full_name); 2810 goto fman_node_put; 2811 } 2812 fman->dts_params.qman_channel_base = range[0]; 2813 fman->dts_params.num_of_qman_channels = range[1]; 2814 2815 /* Get the MURAM base address and size */ 2816 muram_node = of_find_matching_node(fm_node, fman_muram_match); 2817 if (!muram_node) { 2818 dev_err(&of_dev->dev, "%s: could not find MURAM node\n", 2819 __func__); 2820 goto fman_node_put; 2821 } 2822 2823 err = of_address_to_resource(muram_node, 0, 2824 &fman->dts_params.muram_res); 2825 if (err) { 2826 of_node_put(muram_node); 2827 dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n", 2828 __func__, err); 2829 goto fman_node_put; 2830 } 2831 2832 of_node_put(muram_node); 2833 of_node_put(fm_node); 2834 2835 err = devm_request_irq(&of_dev->dev, irq, fman_irq, 0, "fman", fman); 2836 if (err < 0) { 2837 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", 2838 __func__, irq, err); 2839 goto fman_free; 2840 } 2841 2842 if (fman->dts_params.err_irq != 0) { 2843 err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq, 2844 fman_err_irq, IRQF_SHARED, 2845 "fman-err", fman); 2846 if (err < 0) { 2847 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", 2848 __func__, fman->dts_params.err_irq, err); 2849 goto fman_free; 2850 } 2851 } 2852 2853 fman->dts_params.res = 2854 devm_request_mem_region(&of_dev->dev, phys_base_addr, 2855 mem_size, "fman"); 2856 if (!fman->dts_params.res) { 2857 dev_err(&of_dev->dev, "%s: request_mem_region() failed\n", 2858 __func__); 2859 goto fman_free; 2860 } 2861 2862 fman->dts_params.base_addr = 2863 devm_ioremap(&of_dev->dev, phys_base_addr, mem_size); 2864 if (!fman->dts_params.base_addr) { 2865 dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__); 2866 goto fman_free; 2867 } 2868 2869 fman->dev = &of_dev->dev; 2870 2871 return fman; 2872 2873 fman_node_put: 2874 of_node_put(fm_node); 2875 fman_free: 2876 kfree(fman); 2877 return NULL; 2878 } 2879 2880 static int fman_probe(struct platform_device *of_dev) 2881 { 2882 struct fman *fman; 2883 struct device *dev; 2884 int err; 2885 2886 dev = &of_dev->dev; 2887 2888 fman = read_dts_node(of_dev); 2889 if (!fman) 2890 return -EIO; 2891 2892 err = fman_config(fman); 2893 if (err) { 2894 dev_err(dev, "%s: FMan config failed\n", __func__); 2895 return -EINVAL; 2896 } 2897 2898 if (fman_init(fman) != 0) { 2899 dev_err(dev, "%s: FMan init failed\n", __func__); 2900 return -EINVAL; 2901 } 2902 2903 if (fman->dts_params.err_irq == 0) { 2904 fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false); 2905 fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false); 2906 fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false); 2907 fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false); 2908 fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false); 2909 fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false); 2910 fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false); 2911 fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false); 2912 fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false); 2913 fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false); 2914 fman_set_exception(fman, 2915 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false); 2916 fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false); 2917 fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC, 2918 false); 2919 fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false); 2920 fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false); 2921 } 2922 2923 dev_set_drvdata(dev, fman); 2924 2925 dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id); 2926 2927 return 0; 2928 } 2929 2930 static const struct of_device_id fman_match[] = { 2931 { 2932 .compatible = "fsl,fman"}, 2933 {} 2934 }; 2935 2936 MODULE_DEVICE_TABLE(of, fman_match); 2937 2938 static struct platform_driver fman_driver = { 2939 .driver = { 2940 .name = "fsl-fman", 2941 .of_match_table = fman_match, 2942 }, 2943 .probe = fman_probe, 2944 }; 2945 2946 static int __init fman_load(void) 2947 { 2948 int err; 2949 2950 pr_debug("FSL DPAA FMan driver\n"); 2951 2952 err = platform_driver_register(&fman_driver); 2953 if (err < 0) 2954 pr_err("Error, platform_driver_register() = %d\n", err); 2955 2956 return err; 2957 } 2958 module_init(fman_load); 2959 2960 static void __exit fman_unload(void) 2961 { 2962 platform_driver_unregister(&fman_driver); 2963 } 2964 module_exit(fman_unload); 2965 2966 MODULE_LICENSE("Dual BSD/GPL"); 2967 MODULE_DESCRIPTION("Freescale DPAA Frame Manager driver"); 2968