1 /* 2 * Copyright 2008-2015 Freescale Semiconductor Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * * Redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer. 8 * * Redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution. 11 * * Neither the name of Freescale Semiconductor nor the 12 * names of its contributors may be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * 16 * ALTERNATIVELY, this software may be distributed under the terms of the 17 * GNU General Public License ("GPL") as published by the Free Software 18 * Foundation, either version 2 of that License or (at your option) any 19 * later version. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 22 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 24 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/fsl/guts.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 #include <linux/module.h> 39 #include <linux/of_platform.h> 40 #include <linux/clk.h> 41 #include <linux/of_address.h> 42 #include <linux/of_irq.h> 43 #include <linux/interrupt.h> 44 #include <linux/libfdt_env.h> 45 46 #include "fman.h" 47 #include "fman_muram.h" 48 #include "fman_keygen.h" 49 50 /* General defines */ 51 #define FMAN_LIODN_TBL 64 /* size of LIODN table */ 52 #define MAX_NUM_OF_MACS 10 53 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS 4 54 #define BASE_RX_PORTID 0x08 55 #define BASE_TX_PORTID 0x28 56 57 /* Modules registers offsets */ 58 #define BMI_OFFSET 0x00080000 59 #define QMI_OFFSET 0x00080400 60 #define KG_OFFSET 0x000C1000 61 #define DMA_OFFSET 0x000C2000 62 #define FPM_OFFSET 0x000C3000 63 #define IMEM_OFFSET 0x000C4000 64 #define HWP_OFFSET 0x000C7000 65 #define CGP_OFFSET 0x000DB000 66 67 /* Exceptions bit map */ 68 #define EX_DMA_BUS_ERROR 0x80000000 69 #define EX_DMA_READ_ECC 0x40000000 70 #define EX_DMA_SYSTEM_WRITE_ECC 0x20000000 71 #define EX_DMA_FM_WRITE_ECC 0x10000000 72 #define EX_FPM_STALL_ON_TASKS 0x08000000 73 #define EX_FPM_SINGLE_ECC 0x04000000 74 #define EX_FPM_DOUBLE_ECC 0x02000000 75 #define EX_QMI_SINGLE_ECC 0x01000000 76 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID 0x00800000 77 #define EX_QMI_DOUBLE_ECC 0x00400000 78 #define EX_BMI_LIST_RAM_ECC 0x00200000 79 #define EX_BMI_STORAGE_PROFILE_ECC 0x00100000 80 #define EX_BMI_STATISTICS_RAM_ECC 0x00080000 81 #define EX_IRAM_ECC 0x00040000 82 #define EX_MURAM_ECC 0x00020000 83 #define EX_BMI_DISPATCH_RAM_ECC 0x00010000 84 #define EX_DMA_SINGLE_PORT_ECC 0x00008000 85 86 /* DMA defines */ 87 /* masks */ 88 #define DMA_MODE_BER 0x00200000 89 #define DMA_MODE_ECC 0x00000020 90 #define DMA_MODE_SECURE_PROT 0x00000800 91 #define DMA_MODE_AXI_DBG_MASK 0x0F000000 92 93 #define DMA_TRANSFER_PORTID_MASK 0xFF000000 94 #define DMA_TRANSFER_TNUM_MASK 0x00FF0000 95 #define DMA_TRANSFER_LIODN_MASK 0x00000FFF 96 97 #define DMA_STATUS_BUS_ERR 0x08000000 98 #define DMA_STATUS_READ_ECC 0x04000000 99 #define DMA_STATUS_SYSTEM_WRITE_ECC 0x02000000 100 #define DMA_STATUS_FM_WRITE_ECC 0x01000000 101 #define DMA_STATUS_FM_SPDAT_ECC 0x00080000 102 103 #define DMA_MODE_CACHE_OR_SHIFT 30 104 #define DMA_MODE_AXI_DBG_SHIFT 24 105 #define DMA_MODE_CEN_SHIFT 13 106 #define DMA_MODE_CEN_MASK 0x00000007 107 #define DMA_MODE_DBG_SHIFT 7 108 #define DMA_MODE_AID_MODE_SHIFT 4 109 110 #define DMA_THRESH_COMMQ_SHIFT 24 111 #define DMA_THRESH_READ_INT_BUF_SHIFT 16 112 #define DMA_THRESH_READ_INT_BUF_MASK 0x0000003f 113 #define DMA_THRESH_WRITE_INT_BUF_MASK 0x0000003f 114 115 #define DMA_TRANSFER_PORTID_SHIFT 24 116 #define DMA_TRANSFER_TNUM_SHIFT 16 117 118 #define DMA_CAM_SIZEOF_ENTRY 0x40 119 #define DMA_CAM_UNITS 8 120 121 #define DMA_LIODN_SHIFT 16 122 #define DMA_LIODN_BASE_MASK 0x00000FFF 123 124 /* FPM defines */ 125 #define FPM_EV_MASK_DOUBLE_ECC 0x80000000 126 #define FPM_EV_MASK_STALL 0x40000000 127 #define FPM_EV_MASK_SINGLE_ECC 0x20000000 128 #define FPM_EV_MASK_RELEASE_FM 0x00010000 129 #define FPM_EV_MASK_DOUBLE_ECC_EN 0x00008000 130 #define FPM_EV_MASK_STALL_EN 0x00004000 131 #define FPM_EV_MASK_SINGLE_ECC_EN 0x00002000 132 #define FPM_EV_MASK_EXTERNAL_HALT 0x00000008 133 #define FPM_EV_MASK_ECC_ERR_HALT 0x00000004 134 135 #define FPM_RAM_MURAM_ECC 0x00008000 136 #define FPM_RAM_IRAM_ECC 0x00004000 137 #define FPM_IRAM_ECC_ERR_EX_EN 0x00020000 138 #define FPM_MURAM_ECC_ERR_EX_EN 0x00040000 139 #define FPM_RAM_IRAM_ECC_EN 0x40000000 140 #define FPM_RAM_RAMS_ECC_EN 0x80000000 141 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL 0x08000000 142 143 #define FPM_REV1_MAJOR_MASK 0x0000FF00 144 #define FPM_REV1_MINOR_MASK 0x000000FF 145 146 #define FPM_DISP_LIMIT_SHIFT 24 147 148 #define FPM_PRT_FM_CTL1 0x00000001 149 #define FPM_PRT_FM_CTL2 0x00000002 150 #define FPM_PORT_FM_CTL_PORTID_SHIFT 24 151 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT 16 152 153 #define FPM_THR1_PRS_SHIFT 24 154 #define FPM_THR1_KG_SHIFT 16 155 #define FPM_THR1_PLCR_SHIFT 8 156 #define FPM_THR1_BMI_SHIFT 0 157 158 #define FPM_THR2_QMI_ENQ_SHIFT 24 159 #define FPM_THR2_QMI_DEQ_SHIFT 0 160 #define FPM_THR2_FM_CTL1_SHIFT 16 161 #define FPM_THR2_FM_CTL2_SHIFT 8 162 163 #define FPM_EV_MASK_CAT_ERR_SHIFT 1 164 #define FPM_EV_MASK_DMA_ERR_SHIFT 0 165 166 #define FPM_REV1_MAJOR_SHIFT 8 167 168 #define FPM_RSTC_FM_RESET 0x80000000 169 #define FPM_RSTC_MAC0_RESET 0x40000000 170 #define FPM_RSTC_MAC1_RESET 0x20000000 171 #define FPM_RSTC_MAC2_RESET 0x10000000 172 #define FPM_RSTC_MAC3_RESET 0x08000000 173 #define FPM_RSTC_MAC8_RESET 0x04000000 174 #define FPM_RSTC_MAC4_RESET 0x02000000 175 #define FPM_RSTC_MAC5_RESET 0x01000000 176 #define FPM_RSTC_MAC6_RESET 0x00800000 177 #define FPM_RSTC_MAC7_RESET 0x00400000 178 #define FPM_RSTC_MAC9_RESET 0x00200000 179 180 #define FPM_TS_INT_SHIFT 16 181 #define FPM_TS_CTL_EN 0x80000000 182 183 /* BMI defines */ 184 #define BMI_INIT_START 0x80000000 185 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC 0x80000000 186 #define BMI_ERR_INTR_EN_LIST_RAM_ECC 0x40000000 187 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC 0x20000000 188 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC 0x10000000 189 #define BMI_NUM_OF_TASKS_MASK 0x3F000000 190 #define BMI_NUM_OF_EXTRA_TASKS_MASK 0x000F0000 191 #define BMI_NUM_OF_DMAS_MASK 0x00000F00 192 #define BMI_NUM_OF_EXTRA_DMAS_MASK 0x0000000F 193 #define BMI_FIFO_SIZE_MASK 0x000003FF 194 #define BMI_EXTRA_FIFO_SIZE_MASK 0x03FF0000 195 #define BMI_CFG2_DMAS_MASK 0x0000003F 196 #define BMI_CFG2_TASKS_MASK 0x0000003F 197 198 #define BMI_CFG2_TASKS_SHIFT 16 199 #define BMI_CFG2_DMAS_SHIFT 0 200 #define BMI_CFG1_FIFO_SIZE_SHIFT 16 201 #define BMI_NUM_OF_TASKS_SHIFT 24 202 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT 16 203 #define BMI_NUM_OF_DMAS_SHIFT 8 204 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT 0 205 206 #define BMI_FIFO_ALIGN 0x100 207 208 #define BMI_EXTRA_FIFO_SIZE_SHIFT 16 209 210 /* QMI defines */ 211 #define QMI_CFG_ENQ_EN 0x80000000 212 #define QMI_CFG_DEQ_EN 0x40000000 213 #define QMI_CFG_EN_COUNTERS 0x10000000 214 #define QMI_CFG_DEQ_MASK 0x0000003F 215 #define QMI_CFG_ENQ_MASK 0x00003F00 216 #define QMI_CFG_ENQ_SHIFT 8 217 218 #define QMI_ERR_INTR_EN_DOUBLE_ECC 0x80000000 219 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF 0x40000000 220 #define QMI_INTR_EN_SINGLE_ECC 0x80000000 221 222 #define QMI_GS_HALT_NOT_BUSY 0x00000002 223 224 /* HWP defines */ 225 #define HWP_RPIMAC_PEN 0x00000001 226 227 /* IRAM defines */ 228 #define IRAM_IADD_AIE 0x80000000 229 #define IRAM_READY 0x80000000 230 231 /* Default values */ 232 #define DEFAULT_CATASTROPHIC_ERR 0 233 #define DEFAULT_DMA_ERR 0 234 #define DEFAULT_AID_MODE FMAN_DMA_AID_OUT_TNUM 235 #define DEFAULT_DMA_COMM_Q_LOW 0x2A 236 #define DEFAULT_DMA_COMM_Q_HIGH 0x3F 237 #define DEFAULT_CACHE_OVERRIDE 0 238 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES 64 239 #define DEFAULT_DMA_DBG_CNT_MODE 0 240 #define DEFAULT_DMA_SOS_EMERGENCY 0 241 #define DEFAULT_DMA_WATCHDOG 0 242 #define DEFAULT_DISP_LIMIT 0 243 #define DEFAULT_PRS_DISP_TH 16 244 #define DEFAULT_PLCR_DISP_TH 16 245 #define DEFAULT_KG_DISP_TH 16 246 #define DEFAULT_BMI_DISP_TH 16 247 #define DEFAULT_QMI_ENQ_DISP_TH 16 248 #define DEFAULT_QMI_DEQ_DISP_TH 16 249 #define DEFAULT_FM_CTL1_DISP_TH 16 250 #define DEFAULT_FM_CTL2_DISP_TH 16 251 252 #define DFLT_AXI_DBG_NUM_OF_BEATS 1 253 254 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf) \ 255 ((dma_thresh_max_buf + 1) / 2) 256 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf) \ 257 ((dma_thresh_max_buf + 1) * 3 / 4) 258 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf) \ 259 ((dma_thresh_max_buf + 1) / 2) 260 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\ 261 ((dma_thresh_max_buf + 1) * 3 / 4) 262 263 #define DMA_COMM_Q_LOW_FMAN_V3 0x2A 264 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq) \ 265 ((dma_thresh_max_commq + 1) / 2) 266 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq) \ 267 ((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 : \ 268 DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)) 269 270 #define DMA_COMM_Q_HIGH_FMAN_V3 0x3f 271 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq) \ 272 ((dma_thresh_max_commq + 1) * 3 / 4) 273 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq) \ 274 ((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 : \ 275 DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)) 276 277 #define TOTAL_NUM_OF_TASKS_FMAN_V3L 59 278 #define TOTAL_NUM_OF_TASKS_FMAN_V3H 124 279 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks) \ 280 ((major == 6) ? ((minor == 1 || minor == 4) ? \ 281 TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) : \ 282 bmi_max_num_of_tasks) 283 284 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 64 285 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2 32 286 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major) \ 287 (major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 : \ 288 DMA_CAM_NUM_OF_ENTRIES_FMAN_V2) 289 290 #define FM_TIMESTAMP_1_USEC_BIT 8 291 292 /* Defines used for enabling/disabling FMan interrupts */ 293 #define ERR_INTR_EN_DMA 0x00010000 294 #define ERR_INTR_EN_FPM 0x80000000 295 #define ERR_INTR_EN_BMI 0x00800000 296 #define ERR_INTR_EN_QMI 0x00400000 297 #define ERR_INTR_EN_MURAM 0x00040000 298 #define ERR_INTR_EN_MAC0 0x00004000 299 #define ERR_INTR_EN_MAC1 0x00002000 300 #define ERR_INTR_EN_MAC2 0x00001000 301 #define ERR_INTR_EN_MAC3 0x00000800 302 #define ERR_INTR_EN_MAC4 0x00000400 303 #define ERR_INTR_EN_MAC5 0x00000200 304 #define ERR_INTR_EN_MAC6 0x00000100 305 #define ERR_INTR_EN_MAC7 0x00000080 306 #define ERR_INTR_EN_MAC8 0x00008000 307 #define ERR_INTR_EN_MAC9 0x00000040 308 309 #define INTR_EN_QMI 0x40000000 310 #define INTR_EN_MAC0 0x00080000 311 #define INTR_EN_MAC1 0x00040000 312 #define INTR_EN_MAC2 0x00020000 313 #define INTR_EN_MAC3 0x00010000 314 #define INTR_EN_MAC4 0x00000040 315 #define INTR_EN_MAC5 0x00000020 316 #define INTR_EN_MAC6 0x00000008 317 #define INTR_EN_MAC7 0x00000002 318 #define INTR_EN_MAC8 0x00200000 319 #define INTR_EN_MAC9 0x00100000 320 #define INTR_EN_REV0 0x00008000 321 #define INTR_EN_REV1 0x00004000 322 #define INTR_EN_REV2 0x00002000 323 #define INTR_EN_REV3 0x00001000 324 #define INTR_EN_TMR 0x01000000 325 326 enum fman_dma_aid_mode { 327 FMAN_DMA_AID_OUT_PORT_ID = 0, /* 4 LSB of PORT_ID */ 328 FMAN_DMA_AID_OUT_TNUM /* 4 LSB of TNUM */ 329 }; 330 331 struct fman_iram_regs { 332 u32 iadd; /* FM IRAM instruction address register */ 333 u32 idata; /* FM IRAM instruction data register */ 334 u32 itcfg; /* FM IRAM timing config register */ 335 u32 iready; /* FM IRAM ready register */ 336 }; 337 338 struct fman_fpm_regs { 339 u32 fmfp_tnc; /* FPM TNUM Control 0x00 */ 340 u32 fmfp_prc; /* FPM Port_ID FmCtl Association 0x04 */ 341 u32 fmfp_brkc; /* FPM Breakpoint Control 0x08 */ 342 u32 fmfp_mxd; /* FPM Flush Control 0x0c */ 343 u32 fmfp_dist1; /* FPM Dispatch Thresholds1 0x10 */ 344 u32 fmfp_dist2; /* FPM Dispatch Thresholds2 0x14 */ 345 u32 fm_epi; /* FM Error Pending Interrupts 0x18 */ 346 u32 fm_rie; /* FM Error Interrupt Enable 0x1c */ 347 u32 fmfp_fcev[4]; /* FPM FMan-Controller Event 1-4 0x20-0x2f */ 348 u32 res0030[4]; /* res 0x30 - 0x3f */ 349 u32 fmfp_cee[4]; /* PM FMan-Controller Event 1-4 0x40-0x4f */ 350 u32 res0050[4]; /* res 0x50-0x5f */ 351 u32 fmfp_tsc1; /* FPM TimeStamp Control1 0x60 */ 352 u32 fmfp_tsc2; /* FPM TimeStamp Control2 0x64 */ 353 u32 fmfp_tsp; /* FPM Time Stamp 0x68 */ 354 u32 fmfp_tsf; /* FPM Time Stamp Fraction 0x6c */ 355 u32 fm_rcr; /* FM Rams Control 0x70 */ 356 u32 fmfp_extc; /* FPM External Requests Control 0x74 */ 357 u32 fmfp_ext1; /* FPM External Requests Config1 0x78 */ 358 u32 fmfp_ext2; /* FPM External Requests Config2 0x7c */ 359 u32 fmfp_drd[16]; /* FPM Data_Ram Data 0-15 0x80 - 0xbf */ 360 u32 fmfp_dra; /* FPM Data Ram Access 0xc0 */ 361 u32 fm_ip_rev_1; /* FM IP Block Revision 1 0xc4 */ 362 u32 fm_ip_rev_2; /* FM IP Block Revision 2 0xc8 */ 363 u32 fm_rstc; /* FM Reset Command 0xcc */ 364 u32 fm_cld; /* FM Classifier Debug 0xd0 */ 365 u32 fm_npi; /* FM Normal Pending Interrupts 0xd4 */ 366 u32 fmfp_exte; /* FPM External Requests Enable 0xd8 */ 367 u32 fmfp_ee; /* FPM Event&Mask 0xdc */ 368 u32 fmfp_cev[4]; /* FPM CPU Event 1-4 0xe0-0xef */ 369 u32 res00f0[4]; /* res 0xf0-0xff */ 370 u32 fmfp_ps[50]; /* FPM Port Status 0x100-0x1c7 */ 371 u32 res01c8[14]; /* res 0x1c8-0x1ff */ 372 u32 fmfp_clfabc; /* FPM CLFABC 0x200 */ 373 u32 fmfp_clfcc; /* FPM CLFCC 0x204 */ 374 u32 fmfp_clfaval; /* FPM CLFAVAL 0x208 */ 375 u32 fmfp_clfbval; /* FPM CLFBVAL 0x20c */ 376 u32 fmfp_clfcval; /* FPM CLFCVAL 0x210 */ 377 u32 fmfp_clfamsk; /* FPM CLFAMSK 0x214 */ 378 u32 fmfp_clfbmsk; /* FPM CLFBMSK 0x218 */ 379 u32 fmfp_clfcmsk; /* FPM CLFCMSK 0x21c */ 380 u32 fmfp_clfamc; /* FPM CLFAMC 0x220 */ 381 u32 fmfp_clfbmc; /* FPM CLFBMC 0x224 */ 382 u32 fmfp_clfcmc; /* FPM CLFCMC 0x228 */ 383 u32 fmfp_decceh; /* FPM DECCEH 0x22c */ 384 u32 res0230[116]; /* res 0x230 - 0x3ff */ 385 u32 fmfp_ts[128]; /* 0x400: FPM Task Status 0x400 - 0x5ff */ 386 u32 res0600[0x400 - 384]; 387 }; 388 389 struct fman_bmi_regs { 390 u32 fmbm_init; /* BMI Initialization 0x00 */ 391 u32 fmbm_cfg1; /* BMI Configuration 1 0x04 */ 392 u32 fmbm_cfg2; /* BMI Configuration 2 0x08 */ 393 u32 res000c[5]; /* 0x0c - 0x1f */ 394 u32 fmbm_ievr; /* Interrupt Event Register 0x20 */ 395 u32 fmbm_ier; /* Interrupt Enable Register 0x24 */ 396 u32 fmbm_ifr; /* Interrupt Force Register 0x28 */ 397 u32 res002c[5]; /* 0x2c - 0x3f */ 398 u32 fmbm_arb[8]; /* BMI Arbitration 0x40 - 0x5f */ 399 u32 res0060[12]; /* 0x60 - 0x8f */ 400 u32 fmbm_dtc[3]; /* Debug Trap Counter 0x90 - 0x9b */ 401 u32 res009c; /* 0x9c */ 402 u32 fmbm_dcv[3][4]; /* Debug Compare val 0xa0-0xcf */ 403 u32 fmbm_dcm[3][4]; /* Debug Compare Mask 0xd0-0xff */ 404 u32 fmbm_gde; /* BMI Global Debug Enable 0x100 */ 405 u32 fmbm_pp[63]; /* BMI Port Parameters 0x104 - 0x1ff */ 406 u32 res0200; /* 0x200 */ 407 u32 fmbm_pfs[63]; /* BMI Port FIFO Size 0x204 - 0x2ff */ 408 u32 res0300; /* 0x300 */ 409 u32 fmbm_spliodn[63]; /* Port Partition ID 0x304 - 0x3ff */ 410 }; 411 412 struct fman_qmi_regs { 413 u32 fmqm_gc; /* General Configuration Register 0x00 */ 414 u32 res0004; /* 0x04 */ 415 u32 fmqm_eie; /* Error Interrupt Event Register 0x08 */ 416 u32 fmqm_eien; /* Error Interrupt Enable Register 0x0c */ 417 u32 fmqm_eif; /* Error Interrupt Force Register 0x10 */ 418 u32 fmqm_ie; /* Interrupt Event Register 0x14 */ 419 u32 fmqm_ien; /* Interrupt Enable Register 0x18 */ 420 u32 fmqm_if; /* Interrupt Force Register 0x1c */ 421 u32 fmqm_gs; /* Global Status Register 0x20 */ 422 u32 fmqm_ts; /* Task Status Register 0x24 */ 423 u32 fmqm_etfc; /* Enqueue Total Frame Counter 0x28 */ 424 u32 fmqm_dtfc; /* Dequeue Total Frame Counter 0x2c */ 425 u32 fmqm_dc0; /* Dequeue Counter 0 0x30 */ 426 u32 fmqm_dc1; /* Dequeue Counter 1 0x34 */ 427 u32 fmqm_dc2; /* Dequeue Counter 2 0x38 */ 428 u32 fmqm_dc3; /* Dequeue Counter 3 0x3c */ 429 u32 fmqm_dfdc; /* Dequeue FQID from Default Counter 0x40 */ 430 u32 fmqm_dfcc; /* Dequeue FQID from Context Counter 0x44 */ 431 u32 fmqm_dffc; /* Dequeue FQID from FD Counter 0x48 */ 432 u32 fmqm_dcc; /* Dequeue Confirm Counter 0x4c */ 433 u32 res0050[7]; /* 0x50 - 0x6b */ 434 u32 fmqm_tapc; /* Tnum Aging Period Control 0x6c */ 435 u32 fmqm_dmcvc; /* Dequeue MAC Command Valid Counter 0x70 */ 436 u32 fmqm_difdcc; /* Dequeue Invalid FD Command Counter 0x74 */ 437 u32 fmqm_da1v; /* Dequeue A1 Valid Counter 0x78 */ 438 u32 res007c; /* 0x7c */ 439 u32 fmqm_dtc; /* 0x80 Debug Trap Counter 0x80 */ 440 u32 fmqm_efddd; /* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */ 441 u32 res0088[2]; /* 0x88 - 0x8f */ 442 struct { 443 u32 fmqm_dtcfg1; /* 0x90 dbg trap cfg 1 Register 0x00 */ 444 u32 fmqm_dtval1; /* Debug Trap Value 1 Register 0x04 */ 445 u32 fmqm_dtm1; /* Debug Trap Mask 1 Register 0x08 */ 446 u32 fmqm_dtc1; /* Debug Trap Counter 1 Register 0x0c */ 447 u32 fmqm_dtcfg2; /* dbg Trap cfg 2 Register 0x10 */ 448 u32 fmqm_dtval2; /* Debug Trap Value 2 Register 0x14 */ 449 u32 fmqm_dtm2; /* Debug Trap Mask 2 Register 0x18 */ 450 u32 res001c; /* 0x1c */ 451 } dbg_traps[3]; /* 0x90 - 0xef */ 452 u8 res00f0[0x400 - 0xf0]; /* 0xf0 - 0x3ff */ 453 }; 454 455 struct fman_dma_regs { 456 u32 fmdmsr; /* FM DMA status register 0x00 */ 457 u32 fmdmmr; /* FM DMA mode register 0x04 */ 458 u32 fmdmtr; /* FM DMA bus threshold register 0x08 */ 459 u32 fmdmhy; /* FM DMA bus hysteresis register 0x0c */ 460 u32 fmdmsetr; /* FM DMA SOS emergency Threshold Register 0x10 */ 461 u32 fmdmtah; /* FM DMA transfer bus address high reg 0x14 */ 462 u32 fmdmtal; /* FM DMA transfer bus address low reg 0x18 */ 463 u32 fmdmtcid; /* FM DMA transfer bus communication ID reg 0x1c */ 464 u32 fmdmra; /* FM DMA bus internal ram address register 0x20 */ 465 u32 fmdmrd; /* FM DMA bus internal ram data register 0x24 */ 466 u32 fmdmwcr; /* FM DMA CAM watchdog counter value 0x28 */ 467 u32 fmdmebcr; /* FM DMA CAM base in MURAM register 0x2c */ 468 u32 fmdmccqdr; /* FM DMA CAM and CMD Queue Debug reg 0x30 */ 469 u32 fmdmccqvr1; /* FM DMA CAM and CMD Queue Value reg #1 0x34 */ 470 u32 fmdmccqvr2; /* FM DMA CAM and CMD Queue Value reg #2 0x38 */ 471 u32 fmdmcqvr3; /* FM DMA CMD Queue Value register #3 0x3c */ 472 u32 fmdmcqvr4; /* FM DMA CMD Queue Value register #4 0x40 */ 473 u32 fmdmcqvr5; /* FM DMA CMD Queue Value register #5 0x44 */ 474 u32 fmdmsefrc; /* FM DMA Semaphore Entry Full Reject Cntr 0x48 */ 475 u32 fmdmsqfrc; /* FM DMA Semaphore Queue Full Reject Cntr 0x4c */ 476 u32 fmdmssrc; /* FM DMA Semaphore SYNC Reject Counter 0x50 */ 477 u32 fmdmdcr; /* FM DMA Debug Counter 0x54 */ 478 u32 fmdmemsr; /* FM DMA Emergency Smoother Register 0x58 */ 479 u32 res005c; /* 0x5c */ 480 u32 fmdmplr[FMAN_LIODN_TBL / 2]; /* DMA LIODN regs 0x60-0xdf */ 481 u32 res00e0[0x400 - 56]; 482 }; 483 484 struct fman_hwp_regs { 485 u32 res0000[0x844 / 4]; /* 0x000..0x843 */ 486 u32 fmprrpimac; /* FM Parser Internal memory access control */ 487 u32 res[(0x1000 - 0x848) / 4]; /* 0x848..0xFFF */ 488 }; 489 490 /* Structure that holds current FMan state. 491 * Used for saving run time information. 492 */ 493 struct fman_state_struct { 494 u8 fm_id; 495 u16 fm_clk_freq; 496 struct fman_rev_info rev_info; 497 bool enabled_time_stamp; 498 u8 count1_micro_bit; 499 u8 total_num_of_tasks; 500 u8 accumulated_num_of_tasks; 501 u32 accumulated_fifo_size; 502 u8 accumulated_num_of_open_dmas; 503 u8 accumulated_num_of_deq_tnums; 504 u32 exceptions; 505 u32 extra_fifo_pool_size; 506 u8 extra_tasks_pool_size; 507 u8 extra_open_dmas_pool_size; 508 u16 port_mfl[MAX_NUM_OF_MACS]; 509 u16 mac_mfl[MAX_NUM_OF_MACS]; 510 511 /* SOC specific */ 512 u32 fm_iram_size; 513 /* DMA */ 514 u32 dma_thresh_max_commq; 515 u32 dma_thresh_max_buf; 516 u32 max_num_of_open_dmas; 517 /* QMI */ 518 u32 qmi_max_num_of_tnums; 519 u32 qmi_def_tnums_thresh; 520 /* BMI */ 521 u32 bmi_max_num_of_tasks; 522 u32 bmi_max_fifo_size; 523 /* General */ 524 u32 fm_port_num_of_cg; 525 u32 num_of_rx_ports; 526 u32 total_fifo_size; 527 528 u32 qman_channel_base; 529 u32 num_of_qman_channels; 530 531 struct resource *res; 532 }; 533 534 /* Structure that holds FMan initial configuration */ 535 struct fman_cfg { 536 u8 disp_limit_tsh; 537 u8 prs_disp_tsh; 538 u8 plcr_disp_tsh; 539 u8 kg_disp_tsh; 540 u8 bmi_disp_tsh; 541 u8 qmi_enq_disp_tsh; 542 u8 qmi_deq_disp_tsh; 543 u8 fm_ctl1_disp_tsh; 544 u8 fm_ctl2_disp_tsh; 545 int dma_cache_override; 546 enum fman_dma_aid_mode dma_aid_mode; 547 u32 dma_axi_dbg_num_of_beats; 548 u32 dma_cam_num_of_entries; 549 u32 dma_watchdog; 550 u8 dma_comm_qtsh_asrt_emer; 551 u32 dma_write_buf_tsh_asrt_emer; 552 u32 dma_read_buf_tsh_asrt_emer; 553 u8 dma_comm_qtsh_clr_emer; 554 u32 dma_write_buf_tsh_clr_emer; 555 u32 dma_read_buf_tsh_clr_emer; 556 u32 dma_sos_emergency; 557 int dma_dbg_cnt_mode; 558 int catastrophic_err; 559 int dma_err; 560 u32 exceptions; 561 u16 clk_freq; 562 u32 cam_base_addr; 563 u32 fifo_base_addr; 564 u32 total_fifo_size; 565 u32 total_num_of_tasks; 566 u32 qmi_def_tnums_thresh; 567 }; 568 569 static irqreturn_t fman_exceptions(struct fman *fman, 570 enum fman_exceptions exception) 571 { 572 dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n", 573 __func__, fman->state->fm_id, exception); 574 575 return IRQ_HANDLED; 576 } 577 578 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id, 579 u64 __maybe_unused addr, 580 u8 __maybe_unused tnum, 581 u16 __maybe_unused liodn) 582 { 583 dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n", 584 __func__, fman->state->fm_id, port_id); 585 586 return IRQ_HANDLED; 587 } 588 589 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id) 590 { 591 if (fman->intr_mng[id].isr_cb) { 592 fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle); 593 594 return IRQ_HANDLED; 595 } 596 597 return IRQ_NONE; 598 } 599 600 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id) 601 { 602 u8 sw_port_id = 0; 603 604 if (hw_port_id >= BASE_TX_PORTID) 605 sw_port_id = hw_port_id - BASE_TX_PORTID; 606 else if (hw_port_id >= BASE_RX_PORTID) 607 sw_port_id = hw_port_id - BASE_RX_PORTID; 608 else 609 sw_port_id = 0; 610 611 return sw_port_id; 612 } 613 614 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg, 615 u8 port_id) 616 { 617 u32 tmp = 0; 618 619 tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT; 620 621 tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1; 622 623 /* order restoration */ 624 if (port_id % 2) 625 tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; 626 else 627 tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; 628 629 iowrite32be(tmp, &fpm_rg->fmfp_prc); 630 } 631 632 static void set_port_liodn(struct fman *fman, u8 port_id, 633 u32 liodn_base, u32 liodn_ofst) 634 { 635 u32 tmp; 636 637 /* set LIODN base for this port */ 638 tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]); 639 if (port_id % 2) { 640 tmp &= ~DMA_LIODN_BASE_MASK; 641 tmp |= liodn_base; 642 } else { 643 tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT); 644 tmp |= liodn_base << DMA_LIODN_SHIFT; 645 } 646 iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]); 647 iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]); 648 } 649 650 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) 651 { 652 u32 tmp; 653 654 tmp = ioread32be(&fpm_rg->fm_rcr); 655 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) 656 iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 657 else 658 iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN | 659 FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 660 } 661 662 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) 663 { 664 u32 tmp; 665 666 tmp = ioread32be(&fpm_rg->fm_rcr); 667 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) 668 iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); 669 else 670 iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN), 671 &fpm_rg->fm_rcr); 672 } 673 674 static void fman_defconfig(struct fman_cfg *cfg) 675 { 676 memset(cfg, 0, sizeof(struct fman_cfg)); 677 678 cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR; 679 cfg->dma_err = DEFAULT_DMA_ERR; 680 cfg->dma_aid_mode = DEFAULT_AID_MODE; 681 cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW; 682 cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH; 683 cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE; 684 cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES; 685 cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE; 686 cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY; 687 cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG; 688 cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT; 689 cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH; 690 cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH; 691 cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH; 692 cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH; 693 cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH; 694 cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH; 695 cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH; 696 cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH; 697 } 698 699 static int dma_init(struct fman *fman) 700 { 701 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; 702 struct fman_cfg *cfg = fman->cfg; 703 u32 tmp_reg; 704 705 /* Init DMA Registers */ 706 707 /* clear status reg events */ 708 tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC | 709 DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC); 710 iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr); 711 712 /* configure mode register */ 713 tmp_reg = 0; 714 tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT; 715 if (cfg->exceptions & EX_DMA_BUS_ERROR) 716 tmp_reg |= DMA_MODE_BER; 717 if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) | 718 (cfg->exceptions & EX_DMA_READ_ECC) | 719 (cfg->exceptions & EX_DMA_FM_WRITE_ECC)) 720 tmp_reg |= DMA_MODE_ECC; 721 if (cfg->dma_axi_dbg_num_of_beats) 722 tmp_reg |= (DMA_MODE_AXI_DBG_MASK & 723 ((cfg->dma_axi_dbg_num_of_beats - 1) 724 << DMA_MODE_AXI_DBG_SHIFT)); 725 726 tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) & 727 DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT; 728 tmp_reg |= DMA_MODE_SECURE_PROT; 729 tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT; 730 tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT; 731 732 iowrite32be(tmp_reg, &dma_rg->fmdmmr); 733 734 /* configure thresholds register */ 735 tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer << 736 DMA_THRESH_COMMQ_SHIFT); 737 tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer & 738 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; 739 tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer & 740 DMA_THRESH_WRITE_INT_BUF_MASK; 741 742 iowrite32be(tmp_reg, &dma_rg->fmdmtr); 743 744 /* configure hysteresis register */ 745 tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer << 746 DMA_THRESH_COMMQ_SHIFT); 747 tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer & 748 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; 749 tmp_reg |= cfg->dma_write_buf_tsh_clr_emer & 750 DMA_THRESH_WRITE_INT_BUF_MASK; 751 752 iowrite32be(tmp_reg, &dma_rg->fmdmhy); 753 754 /* configure emergency threshold */ 755 iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr); 756 757 /* configure Watchdog */ 758 iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr); 759 760 iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr); 761 762 /* Allocate MURAM for CAM */ 763 fman->cam_size = 764 (u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY); 765 fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size); 766 if (IS_ERR_VALUE(fman->cam_offset)) { 767 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", 768 __func__); 769 return -ENOMEM; 770 } 771 772 if (fman->state->rev_info.major == 2) { 773 u32 __iomem *cam_base_addr; 774 775 fman_muram_free_mem(fman->muram, fman->cam_offset, 776 fman->cam_size); 777 778 fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128; 779 fman->cam_offset = fman_muram_alloc(fman->muram, 780 fman->cam_size); 781 if (IS_ERR_VALUE(fman->cam_offset)) { 782 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", 783 __func__); 784 return -ENOMEM; 785 } 786 787 if (fman->cfg->dma_cam_num_of_entries % 8 || 788 fman->cfg->dma_cam_num_of_entries > 32) { 789 dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n", 790 __func__); 791 return -EINVAL; 792 } 793 794 cam_base_addr = (u32 __iomem *) 795 fman_muram_offset_to_vbase(fman->muram, 796 fman->cam_offset); 797 iowrite32be(~((1 << 798 (32 - fman->cfg->dma_cam_num_of_entries)) - 1), 799 cam_base_addr); 800 } 801 802 fman->cfg->cam_base_addr = fman->cam_offset; 803 804 return 0; 805 } 806 807 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg) 808 { 809 u32 tmp_reg; 810 int i; 811 812 /* Init FPM Registers */ 813 814 tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT); 815 iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd); 816 817 tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) | 818 ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) | 819 ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) | 820 ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT)); 821 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1); 822 823 tmp_reg = 824 (((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) | 825 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) | 826 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) | 827 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT)); 828 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2); 829 830 /* define exceptions and error behavior */ 831 tmp_reg = 0; 832 /* Clear events */ 833 tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC | 834 FPM_EV_MASK_SINGLE_ECC); 835 /* enable interrupts */ 836 if (cfg->exceptions & EX_FPM_STALL_ON_TASKS) 837 tmp_reg |= FPM_EV_MASK_STALL_EN; 838 if (cfg->exceptions & EX_FPM_SINGLE_ECC) 839 tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN; 840 if (cfg->exceptions & EX_FPM_DOUBLE_ECC) 841 tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN; 842 tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT); 843 tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT); 844 /* FMan is not halted upon external halt activation */ 845 tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT; 846 /* Man is not halted upon Unrecoverable ECC error behavior */ 847 tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT; 848 iowrite32be(tmp_reg, &fpm_rg->fmfp_ee); 849 850 /* clear all fmCtls event registers */ 851 for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++) 852 iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]); 853 854 /* RAM ECC - enable and clear events */ 855 /* first we need to clear all parser memory, 856 * as it is uninitialized and may cause ECC errors 857 */ 858 /* event bits */ 859 tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC); 860 861 iowrite32be(tmp_reg, &fpm_rg->fm_rcr); 862 863 tmp_reg = 0; 864 if (cfg->exceptions & EX_IRAM_ECC) { 865 tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN; 866 enable_rams_ecc(fpm_rg); 867 } 868 if (cfg->exceptions & EX_MURAM_ECC) { 869 tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN; 870 enable_rams_ecc(fpm_rg); 871 } 872 iowrite32be(tmp_reg, &fpm_rg->fm_rie); 873 } 874 875 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg, 876 struct fman_cfg *cfg) 877 { 878 u32 tmp_reg; 879 880 /* Init BMI Registers */ 881 882 /* define common resources */ 883 tmp_reg = cfg->fifo_base_addr; 884 tmp_reg = tmp_reg / BMI_FIFO_ALIGN; 885 886 tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) << 887 BMI_CFG1_FIFO_SIZE_SHIFT); 888 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1); 889 890 tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) << 891 BMI_CFG2_TASKS_SHIFT; 892 /* num of DMA's will be dynamically updated when each port is set */ 893 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2); 894 895 /* define unmaskable exceptions, enable and clear events */ 896 tmp_reg = 0; 897 iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC | 898 BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC | 899 BMI_ERR_INTR_EN_STATISTICS_RAM_ECC | 900 BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr); 901 902 if (cfg->exceptions & EX_BMI_LIST_RAM_ECC) 903 tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC; 904 if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC) 905 tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 906 if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC) 907 tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 908 if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC) 909 tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 910 iowrite32be(tmp_reg, &bmi_rg->fmbm_ier); 911 } 912 913 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg, 914 struct fman_cfg *cfg) 915 { 916 u32 tmp_reg; 917 918 /* Init QMI Registers */ 919 920 /* Clear error interrupt events */ 921 922 iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF, 923 &qmi_rg->fmqm_eie); 924 tmp_reg = 0; 925 if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID) 926 tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; 927 if (cfg->exceptions & EX_QMI_DOUBLE_ECC) 928 tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC; 929 /* enable events */ 930 iowrite32be(tmp_reg, &qmi_rg->fmqm_eien); 931 932 tmp_reg = 0; 933 /* Clear interrupt events */ 934 iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie); 935 if (cfg->exceptions & EX_QMI_SINGLE_ECC) 936 tmp_reg |= QMI_INTR_EN_SINGLE_ECC; 937 /* enable events */ 938 iowrite32be(tmp_reg, &qmi_rg->fmqm_ien); 939 } 940 941 static void hwp_init(struct fman_hwp_regs __iomem *hwp_rg) 942 { 943 /* enable HW Parser */ 944 iowrite32be(HWP_RPIMAC_PEN, &hwp_rg->fmprrpimac); 945 } 946 947 static int enable(struct fman *fman, struct fman_cfg *cfg) 948 { 949 u32 cfg_reg = 0; 950 951 /* Enable all modules */ 952 953 /* clear&enable global counters - calculate reg and save for later, 954 * because it's the same reg for QMI enable 955 */ 956 cfg_reg = QMI_CFG_EN_COUNTERS; 957 958 /* Set enqueue and dequeue thresholds */ 959 cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh; 960 961 iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init); 962 iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN, 963 &fman->qmi_regs->fmqm_gc); 964 965 return 0; 966 } 967 968 static int set_exception(struct fman *fman, 969 enum fman_exceptions exception, bool enable) 970 { 971 u32 tmp; 972 973 switch (exception) { 974 case FMAN_EX_DMA_BUS_ERROR: 975 tmp = ioread32be(&fman->dma_regs->fmdmmr); 976 if (enable) 977 tmp |= DMA_MODE_BER; 978 else 979 tmp &= ~DMA_MODE_BER; 980 /* disable bus error */ 981 iowrite32be(tmp, &fman->dma_regs->fmdmmr); 982 break; 983 case FMAN_EX_DMA_READ_ECC: 984 case FMAN_EX_DMA_SYSTEM_WRITE_ECC: 985 case FMAN_EX_DMA_FM_WRITE_ECC: 986 tmp = ioread32be(&fman->dma_regs->fmdmmr); 987 if (enable) 988 tmp |= DMA_MODE_ECC; 989 else 990 tmp &= ~DMA_MODE_ECC; 991 iowrite32be(tmp, &fman->dma_regs->fmdmmr); 992 break; 993 case FMAN_EX_FPM_STALL_ON_TASKS: 994 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 995 if (enable) 996 tmp |= FPM_EV_MASK_STALL_EN; 997 else 998 tmp &= ~FPM_EV_MASK_STALL_EN; 999 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1000 break; 1001 case FMAN_EX_FPM_SINGLE_ECC: 1002 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 1003 if (enable) 1004 tmp |= FPM_EV_MASK_SINGLE_ECC_EN; 1005 else 1006 tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN; 1007 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1008 break; 1009 case FMAN_EX_FPM_DOUBLE_ECC: 1010 tmp = ioread32be(&fman->fpm_regs->fmfp_ee); 1011 if (enable) 1012 tmp |= FPM_EV_MASK_DOUBLE_ECC_EN; 1013 else 1014 tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN; 1015 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); 1016 break; 1017 case FMAN_EX_QMI_SINGLE_ECC: 1018 tmp = ioread32be(&fman->qmi_regs->fmqm_ien); 1019 if (enable) 1020 tmp |= QMI_INTR_EN_SINGLE_ECC; 1021 else 1022 tmp &= ~QMI_INTR_EN_SINGLE_ECC; 1023 iowrite32be(tmp, &fman->qmi_regs->fmqm_ien); 1024 break; 1025 case FMAN_EX_QMI_DOUBLE_ECC: 1026 tmp = ioread32be(&fman->qmi_regs->fmqm_eien); 1027 if (enable) 1028 tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC; 1029 else 1030 tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC; 1031 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); 1032 break; 1033 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: 1034 tmp = ioread32be(&fman->qmi_regs->fmqm_eien); 1035 if (enable) 1036 tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; 1037 else 1038 tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF; 1039 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); 1040 break; 1041 case FMAN_EX_BMI_LIST_RAM_ECC: 1042 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1043 if (enable) 1044 tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC; 1045 else 1046 tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC; 1047 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1048 break; 1049 case FMAN_EX_BMI_STORAGE_PROFILE_ECC: 1050 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1051 if (enable) 1052 tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 1053 else 1054 tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; 1055 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1056 break; 1057 case FMAN_EX_BMI_STATISTICS_RAM_ECC: 1058 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1059 if (enable) 1060 tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 1061 else 1062 tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; 1063 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1064 break; 1065 case FMAN_EX_BMI_DISPATCH_RAM_ECC: 1066 tmp = ioread32be(&fman->bmi_regs->fmbm_ier); 1067 if (enable) 1068 tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 1069 else 1070 tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; 1071 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); 1072 break; 1073 case FMAN_EX_IRAM_ECC: 1074 tmp = ioread32be(&fman->fpm_regs->fm_rie); 1075 if (enable) { 1076 /* enable ECC if not enabled */ 1077 enable_rams_ecc(fman->fpm_regs); 1078 /* enable ECC interrupts */ 1079 tmp |= FPM_IRAM_ECC_ERR_EX_EN; 1080 } else { 1081 /* ECC mechanism may be disabled, 1082 * depending on driver status 1083 */ 1084 disable_rams_ecc(fman->fpm_regs); 1085 tmp &= ~FPM_IRAM_ECC_ERR_EX_EN; 1086 } 1087 iowrite32be(tmp, &fman->fpm_regs->fm_rie); 1088 break; 1089 case FMAN_EX_MURAM_ECC: 1090 tmp = ioread32be(&fman->fpm_regs->fm_rie); 1091 if (enable) { 1092 /* enable ECC if not enabled */ 1093 enable_rams_ecc(fman->fpm_regs); 1094 /* enable ECC interrupts */ 1095 tmp |= FPM_MURAM_ECC_ERR_EX_EN; 1096 } else { 1097 /* ECC mechanism may be disabled, 1098 * depending on driver status 1099 */ 1100 disable_rams_ecc(fman->fpm_regs); 1101 tmp &= ~FPM_MURAM_ECC_ERR_EX_EN; 1102 } 1103 iowrite32be(tmp, &fman->fpm_regs->fm_rie); 1104 break; 1105 default: 1106 return -EINVAL; 1107 } 1108 return 0; 1109 } 1110 1111 static void resume(struct fman_fpm_regs __iomem *fpm_rg) 1112 { 1113 u32 tmp; 1114 1115 tmp = ioread32be(&fpm_rg->fmfp_ee); 1116 /* clear tmp_reg event bits in order not to clear standing events */ 1117 tmp &= ~(FPM_EV_MASK_DOUBLE_ECC | 1118 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC); 1119 tmp |= FPM_EV_MASK_RELEASE_FM; 1120 1121 iowrite32be(tmp, &fpm_rg->fmfp_ee); 1122 } 1123 1124 static int fill_soc_specific_params(struct fman_state_struct *state) 1125 { 1126 u8 minor = state->rev_info.minor; 1127 /* P4080 - Major 2 1128 * P2041/P3041/P5020/P5040 - Major 3 1129 * Tx/Bx - Major 6 1130 */ 1131 switch (state->rev_info.major) { 1132 case 3: 1133 state->bmi_max_fifo_size = 160 * 1024; 1134 state->fm_iram_size = 64 * 1024; 1135 state->dma_thresh_max_commq = 31; 1136 state->dma_thresh_max_buf = 127; 1137 state->qmi_max_num_of_tnums = 64; 1138 state->qmi_def_tnums_thresh = 48; 1139 state->bmi_max_num_of_tasks = 128; 1140 state->max_num_of_open_dmas = 32; 1141 state->fm_port_num_of_cg = 256; 1142 state->num_of_rx_ports = 6; 1143 state->total_fifo_size = 136 * 1024; 1144 break; 1145 1146 case 2: 1147 state->bmi_max_fifo_size = 160 * 1024; 1148 state->fm_iram_size = 64 * 1024; 1149 state->dma_thresh_max_commq = 31; 1150 state->dma_thresh_max_buf = 127; 1151 state->qmi_max_num_of_tnums = 64; 1152 state->qmi_def_tnums_thresh = 48; 1153 state->bmi_max_num_of_tasks = 128; 1154 state->max_num_of_open_dmas = 32; 1155 state->fm_port_num_of_cg = 256; 1156 state->num_of_rx_ports = 5; 1157 state->total_fifo_size = 100 * 1024; 1158 break; 1159 1160 case 6: 1161 state->dma_thresh_max_commq = 83; 1162 state->dma_thresh_max_buf = 127; 1163 state->qmi_max_num_of_tnums = 64; 1164 state->qmi_def_tnums_thresh = 32; 1165 state->fm_port_num_of_cg = 256; 1166 1167 /* FManV3L */ 1168 if (minor == 1 || minor == 4) { 1169 state->bmi_max_fifo_size = 192 * 1024; 1170 state->bmi_max_num_of_tasks = 64; 1171 state->max_num_of_open_dmas = 32; 1172 state->num_of_rx_ports = 5; 1173 if (minor == 1) 1174 state->fm_iram_size = 32 * 1024; 1175 else 1176 state->fm_iram_size = 64 * 1024; 1177 state->total_fifo_size = 156 * 1024; 1178 } 1179 /* FManV3H */ 1180 else if (minor == 0 || minor == 2 || minor == 3) { 1181 state->bmi_max_fifo_size = 384 * 1024; 1182 state->fm_iram_size = 64 * 1024; 1183 state->bmi_max_num_of_tasks = 128; 1184 state->max_num_of_open_dmas = 84; 1185 state->num_of_rx_ports = 8; 1186 state->total_fifo_size = 295 * 1024; 1187 } else { 1188 pr_err("Unsupported FManv3 version\n"); 1189 return -EINVAL; 1190 } 1191 1192 break; 1193 default: 1194 pr_err("Unsupported FMan version\n"); 1195 return -EINVAL; 1196 } 1197 1198 return 0; 1199 } 1200 1201 static bool is_init_done(struct fman_cfg *cfg) 1202 { 1203 /* Checks if FMan driver parameters were initialized */ 1204 if (!cfg) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 static void free_init_resources(struct fman *fman) 1211 { 1212 if (fman->cam_offset) 1213 fman_muram_free_mem(fman->muram, fman->cam_offset, 1214 fman->cam_size); 1215 if (fman->fifo_offset) 1216 fman_muram_free_mem(fman->muram, fman->fifo_offset, 1217 fman->fifo_size); 1218 } 1219 1220 static irqreturn_t bmi_err_event(struct fman *fman) 1221 { 1222 u32 event, mask, force; 1223 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1224 irqreturn_t ret = IRQ_NONE; 1225 1226 event = ioread32be(&bmi_rg->fmbm_ievr); 1227 mask = ioread32be(&bmi_rg->fmbm_ier); 1228 event &= mask; 1229 /* clear the forced events */ 1230 force = ioread32be(&bmi_rg->fmbm_ifr); 1231 if (force & event) 1232 iowrite32be(force & ~event, &bmi_rg->fmbm_ifr); 1233 /* clear the acknowledged events */ 1234 iowrite32be(event, &bmi_rg->fmbm_ievr); 1235 1236 if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC) 1237 ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC); 1238 if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC) 1239 ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC); 1240 if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC) 1241 ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC); 1242 if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC) 1243 ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC); 1244 1245 return ret; 1246 } 1247 1248 static irqreturn_t qmi_err_event(struct fman *fman) 1249 { 1250 u32 event, mask, force; 1251 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; 1252 irqreturn_t ret = IRQ_NONE; 1253 1254 event = ioread32be(&qmi_rg->fmqm_eie); 1255 mask = ioread32be(&qmi_rg->fmqm_eien); 1256 event &= mask; 1257 1258 /* clear the forced events */ 1259 force = ioread32be(&qmi_rg->fmqm_eif); 1260 if (force & event) 1261 iowrite32be(force & ~event, &qmi_rg->fmqm_eif); 1262 /* clear the acknowledged events */ 1263 iowrite32be(event, &qmi_rg->fmqm_eie); 1264 1265 if (event & QMI_ERR_INTR_EN_DOUBLE_ECC) 1266 ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC); 1267 if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF) 1268 ret = fman->exception_cb(fman, 1269 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID); 1270 1271 return ret; 1272 } 1273 1274 static irqreturn_t dma_err_event(struct fman *fman) 1275 { 1276 u32 status, mask, com_id; 1277 u8 tnum, port_id, relative_port_id; 1278 u16 liodn; 1279 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; 1280 irqreturn_t ret = IRQ_NONE; 1281 1282 status = ioread32be(&dma_rg->fmdmsr); 1283 mask = ioread32be(&dma_rg->fmdmmr); 1284 1285 /* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */ 1286 if ((mask & DMA_MODE_BER) != DMA_MODE_BER) 1287 status &= ~DMA_STATUS_BUS_ERR; 1288 1289 /* clear relevant bits if mask has no DMA_MODE_ECC */ 1290 if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC) 1291 status &= ~(DMA_STATUS_FM_SPDAT_ECC | 1292 DMA_STATUS_READ_ECC | 1293 DMA_STATUS_SYSTEM_WRITE_ECC | 1294 DMA_STATUS_FM_WRITE_ECC); 1295 1296 /* clear set events */ 1297 iowrite32be(status, &dma_rg->fmdmsr); 1298 1299 if (status & DMA_STATUS_BUS_ERR) { 1300 u64 addr; 1301 1302 addr = (u64)ioread32be(&dma_rg->fmdmtal); 1303 addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32); 1304 1305 com_id = ioread32be(&dma_rg->fmdmtcid); 1306 port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >> 1307 DMA_TRANSFER_PORTID_SHIFT)); 1308 relative_port_id = 1309 hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); 1310 tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >> 1311 DMA_TRANSFER_TNUM_SHIFT); 1312 liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK); 1313 ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum, 1314 liodn); 1315 } 1316 if (status & DMA_STATUS_FM_SPDAT_ECC) 1317 ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC); 1318 if (status & DMA_STATUS_READ_ECC) 1319 ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC); 1320 if (status & DMA_STATUS_SYSTEM_WRITE_ECC) 1321 ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC); 1322 if (status & DMA_STATUS_FM_WRITE_ECC) 1323 ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC); 1324 1325 return ret; 1326 } 1327 1328 static irqreturn_t fpm_err_event(struct fman *fman) 1329 { 1330 u32 event; 1331 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1332 irqreturn_t ret = IRQ_NONE; 1333 1334 event = ioread32be(&fpm_rg->fmfp_ee); 1335 /* clear the all occurred events */ 1336 iowrite32be(event, &fpm_rg->fmfp_ee); 1337 1338 if ((event & FPM_EV_MASK_DOUBLE_ECC) && 1339 (event & FPM_EV_MASK_DOUBLE_ECC_EN)) 1340 ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC); 1341 if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN)) 1342 ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS); 1343 if ((event & FPM_EV_MASK_SINGLE_ECC) && 1344 (event & FPM_EV_MASK_SINGLE_ECC_EN)) 1345 ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC); 1346 1347 return ret; 1348 } 1349 1350 static irqreturn_t muram_err_intr(struct fman *fman) 1351 { 1352 u32 event, mask; 1353 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1354 irqreturn_t ret = IRQ_NONE; 1355 1356 event = ioread32be(&fpm_rg->fm_rcr); 1357 mask = ioread32be(&fpm_rg->fm_rie); 1358 1359 /* clear MURAM event bit (do not clear IRAM event) */ 1360 iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr); 1361 1362 if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC)) 1363 ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC); 1364 1365 return ret; 1366 } 1367 1368 static irqreturn_t qmi_event(struct fman *fman) 1369 { 1370 u32 event, mask, force; 1371 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; 1372 irqreturn_t ret = IRQ_NONE; 1373 1374 event = ioread32be(&qmi_rg->fmqm_ie); 1375 mask = ioread32be(&qmi_rg->fmqm_ien); 1376 event &= mask; 1377 /* clear the forced events */ 1378 force = ioread32be(&qmi_rg->fmqm_if); 1379 if (force & event) 1380 iowrite32be(force & ~event, &qmi_rg->fmqm_if); 1381 /* clear the acknowledged events */ 1382 iowrite32be(event, &qmi_rg->fmqm_ie); 1383 1384 if (event & QMI_INTR_EN_SINGLE_ECC) 1385 ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC); 1386 1387 return ret; 1388 } 1389 1390 static void enable_time_stamp(struct fman *fman) 1391 { 1392 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 1393 u16 fm_clk_freq = fman->state->fm_clk_freq; 1394 u32 tmp, intgr, ts_freq; 1395 u64 frac; 1396 1397 ts_freq = (u32)(1 << fman->state->count1_micro_bit); 1398 /* configure timestamp so that bit 8 will count 1 microsecond 1399 * Find effective count rate at TIMESTAMP least significant bits: 1400 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz 1401 * Find frequency ratio between effective count rate and the clock: 1402 * Effective_Count_Rate / CLK e.g. for 600 MHz clock: 1403 * 256/600 = 0.4266666... 1404 */ 1405 1406 intgr = ts_freq / fm_clk_freq; 1407 /* we multiply by 2^16 to keep the fraction of the division 1408 * we do not div back, since we write this value as a fraction 1409 * see spec 1410 */ 1411 1412 frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq; 1413 /* we check remainder of the division in order to round up if not int */ 1414 if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq) 1415 frac++; 1416 1417 tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac; 1418 iowrite32be(tmp, &fpm_rg->fmfp_tsc2); 1419 1420 /* enable timestamp with original clock */ 1421 iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1); 1422 fman->state->enabled_time_stamp = true; 1423 } 1424 1425 static int clear_iram(struct fman *fman) 1426 { 1427 struct fman_iram_regs __iomem *iram; 1428 int i, count; 1429 1430 iram = fman->base_addr + IMEM_OFFSET; 1431 1432 /* Enable the auto-increment */ 1433 iowrite32be(IRAM_IADD_AIE, &iram->iadd); 1434 count = 100; 1435 do { 1436 udelay(1); 1437 } while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count); 1438 if (count == 0) 1439 return -EBUSY; 1440 1441 for (i = 0; i < (fman->state->fm_iram_size / 4); i++) 1442 iowrite32be(0xffffffff, &iram->idata); 1443 1444 iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd); 1445 count = 100; 1446 do { 1447 udelay(1); 1448 } while ((ioread32be(&iram->idata) != 0xffffffff) && --count); 1449 if (count == 0) 1450 return -EBUSY; 1451 1452 return 0; 1453 } 1454 1455 static u32 get_exception_flag(enum fman_exceptions exception) 1456 { 1457 u32 bit_mask; 1458 1459 switch (exception) { 1460 case FMAN_EX_DMA_BUS_ERROR: 1461 bit_mask = EX_DMA_BUS_ERROR; 1462 break; 1463 case FMAN_EX_DMA_SINGLE_PORT_ECC: 1464 bit_mask = EX_DMA_SINGLE_PORT_ECC; 1465 break; 1466 case FMAN_EX_DMA_READ_ECC: 1467 bit_mask = EX_DMA_READ_ECC; 1468 break; 1469 case FMAN_EX_DMA_SYSTEM_WRITE_ECC: 1470 bit_mask = EX_DMA_SYSTEM_WRITE_ECC; 1471 break; 1472 case FMAN_EX_DMA_FM_WRITE_ECC: 1473 bit_mask = EX_DMA_FM_WRITE_ECC; 1474 break; 1475 case FMAN_EX_FPM_STALL_ON_TASKS: 1476 bit_mask = EX_FPM_STALL_ON_TASKS; 1477 break; 1478 case FMAN_EX_FPM_SINGLE_ECC: 1479 bit_mask = EX_FPM_SINGLE_ECC; 1480 break; 1481 case FMAN_EX_FPM_DOUBLE_ECC: 1482 bit_mask = EX_FPM_DOUBLE_ECC; 1483 break; 1484 case FMAN_EX_QMI_SINGLE_ECC: 1485 bit_mask = EX_QMI_SINGLE_ECC; 1486 break; 1487 case FMAN_EX_QMI_DOUBLE_ECC: 1488 bit_mask = EX_QMI_DOUBLE_ECC; 1489 break; 1490 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: 1491 bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID; 1492 break; 1493 case FMAN_EX_BMI_LIST_RAM_ECC: 1494 bit_mask = EX_BMI_LIST_RAM_ECC; 1495 break; 1496 case FMAN_EX_BMI_STORAGE_PROFILE_ECC: 1497 bit_mask = EX_BMI_STORAGE_PROFILE_ECC; 1498 break; 1499 case FMAN_EX_BMI_STATISTICS_RAM_ECC: 1500 bit_mask = EX_BMI_STATISTICS_RAM_ECC; 1501 break; 1502 case FMAN_EX_BMI_DISPATCH_RAM_ECC: 1503 bit_mask = EX_BMI_DISPATCH_RAM_ECC; 1504 break; 1505 case FMAN_EX_MURAM_ECC: 1506 bit_mask = EX_MURAM_ECC; 1507 break; 1508 default: 1509 bit_mask = 0; 1510 break; 1511 } 1512 1513 return bit_mask; 1514 } 1515 1516 static int get_module_event(enum fman_event_modules module, u8 mod_id, 1517 enum fman_intr_type intr_type) 1518 { 1519 int event; 1520 1521 switch (module) { 1522 case FMAN_MOD_MAC: 1523 if (intr_type == FMAN_INTR_TYPE_ERR) 1524 event = FMAN_EV_ERR_MAC0 + mod_id; 1525 else 1526 event = FMAN_EV_MAC0 + mod_id; 1527 break; 1528 case FMAN_MOD_FMAN_CTRL: 1529 if (intr_type == FMAN_INTR_TYPE_ERR) 1530 event = FMAN_EV_CNT; 1531 else 1532 event = (FMAN_EV_FMAN_CTRL_0 + mod_id); 1533 break; 1534 case FMAN_MOD_DUMMY_LAST: 1535 event = FMAN_EV_CNT; 1536 break; 1537 default: 1538 event = FMAN_EV_CNT; 1539 break; 1540 } 1541 1542 return event; 1543 } 1544 1545 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo, 1546 u32 *extra_size_of_fifo) 1547 { 1548 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1549 u32 fifo = *size_of_fifo; 1550 u32 extra_fifo = *extra_size_of_fifo; 1551 u32 tmp; 1552 1553 /* if this is the first time a port requires extra_fifo_pool_size, 1554 * the total extra_fifo_pool_size must be initialized to 1 buffer per 1555 * port 1556 */ 1557 if (extra_fifo && !fman->state->extra_fifo_pool_size) 1558 fman->state->extra_fifo_pool_size = 1559 fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS; 1560 1561 fman->state->extra_fifo_pool_size = 1562 max(fman->state->extra_fifo_pool_size, extra_fifo); 1563 1564 /* check that there are enough uncommitted fifo size */ 1565 if ((fman->state->accumulated_fifo_size + fifo) > 1566 (fman->state->total_fifo_size - 1567 fman->state->extra_fifo_pool_size)) { 1568 dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n", 1569 __func__); 1570 return -EAGAIN; 1571 } 1572 1573 /* Read, modify and write to HW */ 1574 tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) | 1575 ((extra_fifo / FMAN_BMI_FIFO_UNITS) << 1576 BMI_EXTRA_FIFO_SIZE_SHIFT); 1577 iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]); 1578 1579 /* update accumulated */ 1580 fman->state->accumulated_fifo_size += fifo; 1581 1582 return 0; 1583 } 1584 1585 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks, 1586 u8 *num_of_extra_tasks) 1587 { 1588 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1589 u8 tasks = *num_of_tasks; 1590 u8 extra_tasks = *num_of_extra_tasks; 1591 u32 tmp; 1592 1593 if (extra_tasks) 1594 fman->state->extra_tasks_pool_size = 1595 max(fman->state->extra_tasks_pool_size, extra_tasks); 1596 1597 /* check that there are enough uncommitted tasks */ 1598 if ((fman->state->accumulated_num_of_tasks + tasks) > 1599 (fman->state->total_num_of_tasks - 1600 fman->state->extra_tasks_pool_size)) { 1601 dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n", 1602 __func__, fman->state->fm_id); 1603 return -EAGAIN; 1604 } 1605 /* update accumulated */ 1606 fman->state->accumulated_num_of_tasks += tasks; 1607 1608 /* Write to HW */ 1609 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & 1610 ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK); 1611 tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) | 1612 (u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT)); 1613 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); 1614 1615 return 0; 1616 } 1617 1618 static int set_num_of_open_dmas(struct fman *fman, u8 port_id, 1619 u8 *num_of_open_dmas, 1620 u8 *num_of_extra_open_dmas) 1621 { 1622 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; 1623 u8 open_dmas = *num_of_open_dmas; 1624 u8 extra_open_dmas = *num_of_extra_open_dmas; 1625 u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0; 1626 u32 tmp; 1627 1628 if (!open_dmas) { 1629 /* Configuration according to values in the HW. 1630 * read the current number of open Dma's 1631 */ 1632 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); 1633 current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >> 1634 BMI_EXTRA_NUM_OF_DMAS_SHIFT); 1635 1636 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); 1637 current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >> 1638 BMI_NUM_OF_DMAS_SHIFT) + 1); 1639 1640 /* This is the first configuration and user did not 1641 * specify value (!open_dmas), reset values will be used 1642 * and we just save these values for resource management 1643 */ 1644 fman->state->extra_open_dmas_pool_size = 1645 (u8)max(fman->state->extra_open_dmas_pool_size, 1646 current_extra_val); 1647 fman->state->accumulated_num_of_open_dmas += current_val; 1648 *num_of_open_dmas = current_val; 1649 *num_of_extra_open_dmas = current_extra_val; 1650 return 0; 1651 } 1652 1653 if (extra_open_dmas > current_extra_val) 1654 fman->state->extra_open_dmas_pool_size = 1655 (u8)max(fman->state->extra_open_dmas_pool_size, 1656 extra_open_dmas); 1657 1658 if ((fman->state->rev_info.major < 6) && 1659 (fman->state->accumulated_num_of_open_dmas - current_val + 1660 open_dmas > fman->state->max_num_of_open_dmas)) { 1661 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n", 1662 __func__, fman->state->fm_id); 1663 return -EAGAIN; 1664 } else if ((fman->state->rev_info.major >= 6) && 1665 !((fman->state->rev_info.major == 6) && 1666 (fman->state->rev_info.minor == 0)) && 1667 (fman->state->accumulated_num_of_open_dmas - 1668 current_val + open_dmas > 1669 fman->state->dma_thresh_max_commq + 1)) { 1670 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n", 1671 __func__, fman->state->fm_id, 1672 fman->state->dma_thresh_max_commq + 1); 1673 return -EAGAIN; 1674 } 1675 1676 WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val); 1677 /* update acummulated */ 1678 fman->state->accumulated_num_of_open_dmas -= current_val; 1679 fman->state->accumulated_num_of_open_dmas += open_dmas; 1680 1681 if (fman->state->rev_info.major < 6) 1682 total_num_dmas = 1683 (u8)(fman->state->accumulated_num_of_open_dmas + 1684 fman->state->extra_open_dmas_pool_size); 1685 1686 /* calculate reg */ 1687 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & 1688 ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK); 1689 tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) | 1690 (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT)); 1691 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); 1692 1693 /* update total num of DMA's with committed number of open DMAS, 1694 * and max uncommitted pool. 1695 */ 1696 if (total_num_dmas) { 1697 tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK; 1698 tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT; 1699 iowrite32be(tmp, &bmi_rg->fmbm_cfg2); 1700 } 1701 1702 return 0; 1703 } 1704 1705 static int fman_config(struct fman *fman) 1706 { 1707 void __iomem *base_addr; 1708 int err; 1709 1710 base_addr = fman->dts_params.base_addr; 1711 1712 fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL); 1713 if (!fman->state) 1714 goto err_fm_state; 1715 1716 /* Allocate the FM driver's parameters structure */ 1717 fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL); 1718 if (!fman->cfg) 1719 goto err_fm_drv; 1720 1721 /* Initialize MURAM block */ 1722 fman->muram = 1723 fman_muram_init(fman->dts_params.muram_res.start, 1724 resource_size(&fman->dts_params.muram_res)); 1725 if (!fman->muram) 1726 goto err_fm_soc_specific; 1727 1728 /* Initialize FM parameters which will be kept by the driver */ 1729 fman->state->fm_id = fman->dts_params.id; 1730 fman->state->fm_clk_freq = fman->dts_params.clk_freq; 1731 fman->state->qman_channel_base = fman->dts_params.qman_channel_base; 1732 fman->state->num_of_qman_channels = 1733 fman->dts_params.num_of_qman_channels; 1734 fman->state->res = fman->dts_params.res; 1735 fman->exception_cb = fman_exceptions; 1736 fman->bus_error_cb = fman_bus_error; 1737 fman->fpm_regs = base_addr + FPM_OFFSET; 1738 fman->bmi_regs = base_addr + BMI_OFFSET; 1739 fman->qmi_regs = base_addr + QMI_OFFSET; 1740 fman->dma_regs = base_addr + DMA_OFFSET; 1741 fman->hwp_regs = base_addr + HWP_OFFSET; 1742 fman->kg_regs = base_addr + KG_OFFSET; 1743 fman->base_addr = base_addr; 1744 1745 spin_lock_init(&fman->spinlock); 1746 fman_defconfig(fman->cfg); 1747 1748 fman->state->extra_fifo_pool_size = 0; 1749 fman->state->exceptions = (EX_DMA_BUS_ERROR | 1750 EX_DMA_READ_ECC | 1751 EX_DMA_SYSTEM_WRITE_ECC | 1752 EX_DMA_FM_WRITE_ECC | 1753 EX_FPM_STALL_ON_TASKS | 1754 EX_FPM_SINGLE_ECC | 1755 EX_FPM_DOUBLE_ECC | 1756 EX_QMI_DEQ_FROM_UNKNOWN_PORTID | 1757 EX_BMI_LIST_RAM_ECC | 1758 EX_BMI_STORAGE_PROFILE_ECC | 1759 EX_BMI_STATISTICS_RAM_ECC | 1760 EX_MURAM_ECC | 1761 EX_BMI_DISPATCH_RAM_ECC | 1762 EX_QMI_DOUBLE_ECC | 1763 EX_QMI_SINGLE_ECC); 1764 1765 /* Read FMan revision for future use*/ 1766 fman_get_revision(fman, &fman->state->rev_info); 1767 1768 err = fill_soc_specific_params(fman->state); 1769 if (err) 1770 goto err_fm_soc_specific; 1771 1772 /* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */ 1773 if (fman->state->rev_info.major >= 6) 1774 fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID; 1775 1776 fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh; 1777 1778 fman->state->total_num_of_tasks = 1779 (u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major, 1780 fman->state->rev_info.minor, 1781 fman->state->bmi_max_num_of_tasks); 1782 1783 if (fman->state->rev_info.major < 6) { 1784 fman->cfg->dma_comm_qtsh_clr_emer = 1785 (u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major, 1786 fman->state->dma_thresh_max_commq); 1787 1788 fman->cfg->dma_comm_qtsh_asrt_emer = 1789 (u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major, 1790 fman->state->dma_thresh_max_commq); 1791 1792 fman->cfg->dma_cam_num_of_entries = 1793 DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major); 1794 1795 fman->cfg->dma_read_buf_tsh_clr_emer = 1796 DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf); 1797 1798 fman->cfg->dma_read_buf_tsh_asrt_emer = 1799 DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); 1800 1801 fman->cfg->dma_write_buf_tsh_clr_emer = 1802 DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf); 1803 1804 fman->cfg->dma_write_buf_tsh_asrt_emer = 1805 DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); 1806 1807 fman->cfg->dma_axi_dbg_num_of_beats = 1808 DFLT_AXI_DBG_NUM_OF_BEATS; 1809 } 1810 1811 return 0; 1812 1813 err_fm_soc_specific: 1814 kfree(fman->cfg); 1815 err_fm_drv: 1816 kfree(fman->state); 1817 err_fm_state: 1818 kfree(fman); 1819 return -EINVAL; 1820 } 1821 1822 static int fman_reset(struct fman *fman) 1823 { 1824 u32 count; 1825 int err = 0; 1826 1827 if (fman->state->rev_info.major < 6) { 1828 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); 1829 /* Wait for reset completion */ 1830 count = 100; 1831 do { 1832 udelay(1); 1833 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & 1834 FPM_RSTC_FM_RESET) && --count); 1835 if (count == 0) 1836 err = -EBUSY; 1837 1838 goto _return; 1839 } else { 1840 #ifdef CONFIG_PPC 1841 struct device_node *guts_node; 1842 struct ccsr_guts __iomem *guts_regs; 1843 u32 devdisr2, reg; 1844 1845 /* Errata A007273 */ 1846 guts_node = 1847 of_find_compatible_node(NULL, NULL, 1848 "fsl,qoriq-device-config-2.0"); 1849 if (!guts_node) { 1850 dev_err(fman->dev, "%s: Couldn't find guts node\n", 1851 __func__); 1852 goto guts_node; 1853 } 1854 1855 guts_regs = of_iomap(guts_node, 0); 1856 if (!guts_regs) { 1857 dev_err(fman->dev, "%s: Couldn't map %pOF regs\n", 1858 __func__, guts_node); 1859 goto guts_regs; 1860 } 1861 #define FMAN1_ALL_MACS_MASK 0xFCC00000 1862 #define FMAN2_ALL_MACS_MASK 0x000FCC00 1863 /* Read current state */ 1864 devdisr2 = ioread32be(&guts_regs->devdisr2); 1865 if (fman->dts_params.id == 0) 1866 reg = devdisr2 & ~FMAN1_ALL_MACS_MASK; 1867 else 1868 reg = devdisr2 & ~FMAN2_ALL_MACS_MASK; 1869 1870 /* Enable all MACs */ 1871 iowrite32be(reg, &guts_regs->devdisr2); 1872 #endif 1873 1874 /* Perform FMan reset */ 1875 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); 1876 1877 /* Wait for reset completion */ 1878 count = 100; 1879 do { 1880 udelay(1); 1881 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & 1882 FPM_RSTC_FM_RESET) && --count); 1883 if (count == 0) { 1884 #ifdef CONFIG_PPC 1885 iounmap(guts_regs); 1886 of_node_put(guts_node); 1887 #endif 1888 err = -EBUSY; 1889 goto _return; 1890 } 1891 #ifdef CONFIG_PPC 1892 1893 /* Restore devdisr2 value */ 1894 iowrite32be(devdisr2, &guts_regs->devdisr2); 1895 1896 iounmap(guts_regs); 1897 of_node_put(guts_node); 1898 #endif 1899 1900 goto _return; 1901 1902 #ifdef CONFIG_PPC 1903 guts_regs: 1904 of_node_put(guts_node); 1905 guts_node: 1906 dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n", 1907 __func__); 1908 #endif 1909 } 1910 _return: 1911 return err; 1912 } 1913 1914 static int fman_init(struct fman *fman) 1915 { 1916 struct fman_cfg *cfg = NULL; 1917 int err = 0, i, count; 1918 1919 if (is_init_done(fman->cfg)) 1920 return -EINVAL; 1921 1922 fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT; 1923 1924 cfg = fman->cfg; 1925 1926 /* clear revision-dependent non existing exception */ 1927 if (fman->state->rev_info.major < 6) 1928 fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC; 1929 1930 if (fman->state->rev_info.major >= 6) 1931 fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC; 1932 1933 /* clear CPG */ 1934 memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0, 1935 fman->state->fm_port_num_of_cg); 1936 1937 /* Save LIODN info before FMan reset 1938 * Skipping non-existent port 0 (i = 1) 1939 */ 1940 for (i = 1; i < FMAN_LIODN_TBL; i++) { 1941 u32 liodn_base; 1942 1943 fman->liodn_offset[i] = 1944 ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]); 1945 liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]); 1946 if (i % 2) { 1947 /* FMDM_PLR LSB holds LIODN base for odd ports */ 1948 liodn_base &= DMA_LIODN_BASE_MASK; 1949 } else { 1950 /* FMDM_PLR MSB holds LIODN base for even ports */ 1951 liodn_base >>= DMA_LIODN_SHIFT; 1952 liodn_base &= DMA_LIODN_BASE_MASK; 1953 } 1954 fman->liodn_base[i] = liodn_base; 1955 } 1956 1957 err = fman_reset(fman); 1958 if (err) 1959 return err; 1960 1961 if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) { 1962 resume(fman->fpm_regs); 1963 /* Wait until QMI is not in halt not busy state */ 1964 count = 100; 1965 do { 1966 udelay(1); 1967 } while (((ioread32be(&fman->qmi_regs->fmqm_gs)) & 1968 QMI_GS_HALT_NOT_BUSY) && --count); 1969 if (count == 0) 1970 dev_warn(fman->dev, "%s: QMI is in halt not busy state\n", 1971 __func__); 1972 } 1973 1974 if (clear_iram(fman) != 0) 1975 return -EINVAL; 1976 1977 cfg->exceptions = fman->state->exceptions; 1978 1979 /* Init DMA Registers */ 1980 1981 err = dma_init(fman); 1982 if (err != 0) { 1983 free_init_resources(fman); 1984 return err; 1985 } 1986 1987 /* Init FPM Registers */ 1988 fpm_init(fman->fpm_regs, fman->cfg); 1989 1990 /* define common resources */ 1991 /* allocate MURAM for FIFO according to total size */ 1992 fman->fifo_offset = fman_muram_alloc(fman->muram, 1993 fman->state->total_fifo_size); 1994 if (IS_ERR_VALUE(fman->fifo_offset)) { 1995 free_init_resources(fman); 1996 dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n", 1997 __func__); 1998 return -ENOMEM; 1999 } 2000 2001 cfg->fifo_base_addr = fman->fifo_offset; 2002 cfg->total_fifo_size = fman->state->total_fifo_size; 2003 cfg->total_num_of_tasks = fman->state->total_num_of_tasks; 2004 cfg->clk_freq = fman->state->fm_clk_freq; 2005 2006 /* Init BMI Registers */ 2007 bmi_init(fman->bmi_regs, fman->cfg); 2008 2009 /* Init QMI Registers */ 2010 qmi_init(fman->qmi_regs, fman->cfg); 2011 2012 /* Init HW Parser */ 2013 hwp_init(fman->hwp_regs); 2014 2015 /* Init KeyGen */ 2016 fman->keygen = keygen_init(fman->kg_regs); 2017 if (!fman->keygen) 2018 return -EINVAL; 2019 2020 err = enable(fman, cfg); 2021 if (err != 0) 2022 return err; 2023 2024 enable_time_stamp(fman); 2025 2026 kfree(fman->cfg); 2027 fman->cfg = NULL; 2028 2029 return 0; 2030 } 2031 2032 static int fman_set_exception(struct fman *fman, 2033 enum fman_exceptions exception, bool enable) 2034 { 2035 u32 bit_mask = 0; 2036 2037 if (!is_init_done(fman->cfg)) 2038 return -EINVAL; 2039 2040 bit_mask = get_exception_flag(exception); 2041 if (bit_mask) { 2042 if (enable) 2043 fman->state->exceptions |= bit_mask; 2044 else 2045 fman->state->exceptions &= ~bit_mask; 2046 } else { 2047 dev_err(fman->dev, "%s: Undefined exception (%d)\n", 2048 __func__, exception); 2049 return -EINVAL; 2050 } 2051 2052 return set_exception(fman, exception, enable); 2053 } 2054 2055 /** 2056 * fman_register_intr 2057 * @fman: A Pointer to FMan device 2058 * @mod: Calling module 2059 * @mod_id: Module id (if more than 1 exists, '0' if not) 2060 * @intr_type: Interrupt type (error/normal) selection. 2061 * @f_isr: The interrupt service routine. 2062 * @h_src_arg: Argument to be passed to f_isr. 2063 * 2064 * Used to register an event handler to be processed by FMan 2065 * 2066 * Return: 0 on success; Error code otherwise. 2067 */ 2068 void fman_register_intr(struct fman *fman, enum fman_event_modules module, 2069 u8 mod_id, enum fman_intr_type intr_type, 2070 void (*isr_cb)(void *src_arg), void *src_arg) 2071 { 2072 int event = 0; 2073 2074 event = get_module_event(module, mod_id, intr_type); 2075 WARN_ON(event >= FMAN_EV_CNT); 2076 2077 /* register in local FM structure */ 2078 fman->intr_mng[event].isr_cb = isr_cb; 2079 fman->intr_mng[event].src_handle = src_arg; 2080 } 2081 EXPORT_SYMBOL(fman_register_intr); 2082 2083 /** 2084 * fman_unregister_intr 2085 * @fman: A Pointer to FMan device 2086 * @mod: Calling module 2087 * @mod_id: Module id (if more than 1 exists, '0' if not) 2088 * @intr_type: Interrupt type (error/normal) selection. 2089 * 2090 * Used to unregister an event handler to be processed by FMan 2091 * 2092 * Return: 0 on success; Error code otherwise. 2093 */ 2094 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module, 2095 u8 mod_id, enum fman_intr_type intr_type) 2096 { 2097 int event = 0; 2098 2099 event = get_module_event(module, mod_id, intr_type); 2100 WARN_ON(event >= FMAN_EV_CNT); 2101 2102 fman->intr_mng[event].isr_cb = NULL; 2103 fman->intr_mng[event].src_handle = NULL; 2104 } 2105 EXPORT_SYMBOL(fman_unregister_intr); 2106 2107 /** 2108 * fman_set_port_params 2109 * @fman: A Pointer to FMan device 2110 * @port_params: Port parameters 2111 * 2112 * Used by FMan Port to pass parameters to the FMan 2113 * 2114 * Return: 0 on success; Error code otherwise. 2115 */ 2116 int fman_set_port_params(struct fman *fman, 2117 struct fman_port_init_params *port_params) 2118 { 2119 int err; 2120 unsigned long flags; 2121 u8 port_id = port_params->port_id, mac_id; 2122 2123 spin_lock_irqsave(&fman->spinlock, flags); 2124 2125 err = set_num_of_tasks(fman, port_params->port_id, 2126 &port_params->num_of_tasks, 2127 &port_params->num_of_extra_tasks); 2128 if (err) 2129 goto return_err; 2130 2131 /* TX Ports */ 2132 if (port_params->port_type != FMAN_PORT_TYPE_RX) { 2133 u32 enq_th, deq_th, reg; 2134 2135 /* update qmi ENQ/DEQ threshold */ 2136 fman->state->accumulated_num_of_deq_tnums += 2137 port_params->deq_pipeline_depth; 2138 enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) & 2139 QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT; 2140 /* if enq_th is too big, we reduce it to the max value 2141 * that is still 0 2142 */ 2143 if (enq_th >= (fman->state->qmi_max_num_of_tnums - 2144 fman->state->accumulated_num_of_deq_tnums)) { 2145 enq_th = 2146 fman->state->qmi_max_num_of_tnums - 2147 fman->state->accumulated_num_of_deq_tnums - 1; 2148 2149 reg = ioread32be(&fman->qmi_regs->fmqm_gc); 2150 reg &= ~QMI_CFG_ENQ_MASK; 2151 reg |= (enq_th << QMI_CFG_ENQ_SHIFT); 2152 iowrite32be(reg, &fman->qmi_regs->fmqm_gc); 2153 } 2154 2155 deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) & 2156 QMI_CFG_DEQ_MASK; 2157 /* if deq_th is too small, we enlarge it to the min 2158 * value that is still 0. 2159 * depTh may not be larger than 63 2160 * (fman->state->qmi_max_num_of_tnums-1). 2161 */ 2162 if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) && 2163 (deq_th < fman->state->qmi_max_num_of_tnums - 1)) { 2164 deq_th = fman->state->accumulated_num_of_deq_tnums + 1; 2165 reg = ioread32be(&fman->qmi_regs->fmqm_gc); 2166 reg &= ~QMI_CFG_DEQ_MASK; 2167 reg |= deq_th; 2168 iowrite32be(reg, &fman->qmi_regs->fmqm_gc); 2169 } 2170 } 2171 2172 err = set_size_of_fifo(fman, port_params->port_id, 2173 &port_params->size_of_fifo, 2174 &port_params->extra_size_of_fifo); 2175 if (err) 2176 goto return_err; 2177 2178 err = set_num_of_open_dmas(fman, port_params->port_id, 2179 &port_params->num_of_open_dmas, 2180 &port_params->num_of_extra_open_dmas); 2181 if (err) 2182 goto return_err; 2183 2184 set_port_liodn(fman, port_id, fman->liodn_base[port_id], 2185 fman->liodn_offset[port_id]); 2186 2187 if (fman->state->rev_info.major < 6) 2188 set_port_order_restoration(fman->fpm_regs, port_id); 2189 2190 mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); 2191 2192 if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) { 2193 fman->state->port_mfl[mac_id] = port_params->max_frame_length; 2194 } else { 2195 dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n", 2196 __func__, port_id, mac_id); 2197 err = -EINVAL; 2198 goto return_err; 2199 } 2200 2201 spin_unlock_irqrestore(&fman->spinlock, flags); 2202 2203 return 0; 2204 2205 return_err: 2206 spin_unlock_irqrestore(&fman->spinlock, flags); 2207 return err; 2208 } 2209 EXPORT_SYMBOL(fman_set_port_params); 2210 2211 /** 2212 * fman_reset_mac 2213 * @fman: A Pointer to FMan device 2214 * @mac_id: MAC id to be reset 2215 * 2216 * Reset a specific MAC 2217 * 2218 * Return: 0 on success; Error code otherwise. 2219 */ 2220 int fman_reset_mac(struct fman *fman, u8 mac_id) 2221 { 2222 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; 2223 u32 msk, timeout = 100; 2224 2225 if (fman->state->rev_info.major >= 6) { 2226 dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n", 2227 __func__); 2228 return -EINVAL; 2229 } 2230 2231 /* Get the relevant bit mask */ 2232 switch (mac_id) { 2233 case 0: 2234 msk = FPM_RSTC_MAC0_RESET; 2235 break; 2236 case 1: 2237 msk = FPM_RSTC_MAC1_RESET; 2238 break; 2239 case 2: 2240 msk = FPM_RSTC_MAC2_RESET; 2241 break; 2242 case 3: 2243 msk = FPM_RSTC_MAC3_RESET; 2244 break; 2245 case 4: 2246 msk = FPM_RSTC_MAC4_RESET; 2247 break; 2248 case 5: 2249 msk = FPM_RSTC_MAC5_RESET; 2250 break; 2251 case 6: 2252 msk = FPM_RSTC_MAC6_RESET; 2253 break; 2254 case 7: 2255 msk = FPM_RSTC_MAC7_RESET; 2256 break; 2257 case 8: 2258 msk = FPM_RSTC_MAC8_RESET; 2259 break; 2260 case 9: 2261 msk = FPM_RSTC_MAC9_RESET; 2262 break; 2263 default: 2264 dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n", 2265 __func__, mac_id); 2266 return -EINVAL; 2267 } 2268 2269 /* reset */ 2270 iowrite32be(msk, &fpm_rg->fm_rstc); 2271 while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout) 2272 udelay(10); 2273 2274 if (!timeout) 2275 return -EIO; 2276 2277 return 0; 2278 } 2279 EXPORT_SYMBOL(fman_reset_mac); 2280 2281 /** 2282 * fman_set_mac_max_frame 2283 * @fman: A Pointer to FMan device 2284 * @mac_id: MAC id 2285 * @mfl: Maximum frame length 2286 * 2287 * Set maximum frame length of specific MAC in FMan driver 2288 * 2289 * Return: 0 on success; Error code otherwise. 2290 */ 2291 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl) 2292 { 2293 /* if port is already initialized, check that MaxFrameLength is smaller 2294 * or equal to the port's max 2295 */ 2296 if ((!fman->state->port_mfl[mac_id]) || 2297 (mfl <= fman->state->port_mfl[mac_id])) { 2298 fman->state->mac_mfl[mac_id] = mfl; 2299 } else { 2300 dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n", 2301 __func__); 2302 return -EINVAL; 2303 } 2304 return 0; 2305 } 2306 EXPORT_SYMBOL(fman_set_mac_max_frame); 2307 2308 /** 2309 * fman_get_clock_freq 2310 * @fman: A Pointer to FMan device 2311 * 2312 * Get FMan clock frequency 2313 * 2314 * Return: FMan clock frequency 2315 */ 2316 u16 fman_get_clock_freq(struct fman *fman) 2317 { 2318 return fman->state->fm_clk_freq; 2319 } 2320 2321 /** 2322 * fman_get_bmi_max_fifo_size 2323 * @fman: A Pointer to FMan device 2324 * 2325 * Get FMan maximum FIFO size 2326 * 2327 * Return: FMan Maximum FIFO size 2328 */ 2329 u32 fman_get_bmi_max_fifo_size(struct fman *fman) 2330 { 2331 return fman->state->bmi_max_fifo_size; 2332 } 2333 EXPORT_SYMBOL(fman_get_bmi_max_fifo_size); 2334 2335 /** 2336 * fman_get_revision 2337 * @fman - Pointer to the FMan module 2338 * @rev_info - A structure of revision information parameters. 2339 * 2340 * Returns the FM revision 2341 * 2342 * Allowed only following fman_init(). 2343 * 2344 * Return: 0 on success; Error code otherwise. 2345 */ 2346 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info) 2347 { 2348 u32 tmp; 2349 2350 tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1); 2351 rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >> 2352 FPM_REV1_MAJOR_SHIFT); 2353 rev_info->minor = tmp & FPM_REV1_MINOR_MASK; 2354 } 2355 EXPORT_SYMBOL(fman_get_revision); 2356 2357 /** 2358 * fman_get_qman_channel_id 2359 * @fman: A Pointer to FMan device 2360 * @port_id: Port id 2361 * 2362 * Get QMan channel ID associated to the Port id 2363 * 2364 * Return: QMan channel ID 2365 */ 2366 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id) 2367 { 2368 int i; 2369 2370 if (fman->state->rev_info.major >= 6) { 2371 static const u32 port_ids[] = { 2372 0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b, 2373 0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7 2374 }; 2375 2376 for (i = 0; i < fman->state->num_of_qman_channels; i++) { 2377 if (port_ids[i] == port_id) 2378 break; 2379 } 2380 } else { 2381 static const u32 port_ids[] = { 2382 0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1, 2383 0x2, 0x3, 0x4, 0x5, 0x7, 0x7 2384 }; 2385 2386 for (i = 0; i < fman->state->num_of_qman_channels; i++) { 2387 if (port_ids[i] == port_id) 2388 break; 2389 } 2390 } 2391 2392 if (i == fman->state->num_of_qman_channels) 2393 return 0; 2394 2395 return fman->state->qman_channel_base + i; 2396 } 2397 EXPORT_SYMBOL(fman_get_qman_channel_id); 2398 2399 /** 2400 * fman_get_mem_region 2401 * @fman: A Pointer to FMan device 2402 * 2403 * Get FMan memory region 2404 * 2405 * Return: A structure with FMan memory region information 2406 */ 2407 struct resource *fman_get_mem_region(struct fman *fman) 2408 { 2409 return fman->state->res; 2410 } 2411 EXPORT_SYMBOL(fman_get_mem_region); 2412 2413 /* Bootargs defines */ 2414 /* Extra headroom for RX buffers - Default, min and max */ 2415 #define FSL_FM_RX_EXTRA_HEADROOM 64 2416 #define FSL_FM_RX_EXTRA_HEADROOM_MIN 16 2417 #define FSL_FM_RX_EXTRA_HEADROOM_MAX 384 2418 2419 /* Maximum frame length */ 2420 #define FSL_FM_MAX_FRAME_SIZE 1522 2421 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE 9600 2422 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE 64 2423 2424 /* Extra headroom for Rx buffers. 2425 * FMan is instructed to allocate, on the Rx path, this amount of 2426 * space at the beginning of a data buffer, beside the DPA private 2427 * data area and the IC fields. 2428 * Does not impact Tx buffer layout. 2429 * Configurable from bootargs. 64 by default, it's needed on 2430 * particular forwarding scenarios that add extra headers to the 2431 * forwarded frame. 2432 */ 2433 static int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; 2434 module_param(fsl_fm_rx_extra_headroom, int, 0); 2435 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers"); 2436 2437 /* Max frame size, across all interfaces. 2438 * Configurable from bootargs, to avoid allocating oversized (socket) 2439 * buffers when not using jumbo frames. 2440 * Must be large enough to accommodate the network MTU, but small enough 2441 * to avoid wasting skb memory. 2442 */ 2443 static int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; 2444 module_param(fsl_fm_max_frm, int, 0); 2445 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces"); 2446 2447 /** 2448 * fman_get_max_frm 2449 * 2450 * Return: Max frame length configured in the FM driver 2451 */ 2452 u16 fman_get_max_frm(void) 2453 { 2454 static bool fm_check_mfl; 2455 2456 if (!fm_check_mfl) { 2457 if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE || 2458 fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) { 2459 pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", 2460 fsl_fm_max_frm, 2461 FSL_FM_MIN_POSSIBLE_FRAME_SIZE, 2462 FSL_FM_MAX_POSSIBLE_FRAME_SIZE, 2463 FSL_FM_MAX_FRAME_SIZE); 2464 fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; 2465 } 2466 fm_check_mfl = true; 2467 } 2468 2469 return fsl_fm_max_frm; 2470 } 2471 EXPORT_SYMBOL(fman_get_max_frm); 2472 2473 /** 2474 * fman_get_rx_extra_headroom 2475 * 2476 * Return: Extra headroom size configured in the FM driver 2477 */ 2478 int fman_get_rx_extra_headroom(void) 2479 { 2480 static bool fm_check_rx_extra_headroom; 2481 2482 if (!fm_check_rx_extra_headroom) { 2483 if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX || 2484 fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) { 2485 pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", 2486 fsl_fm_rx_extra_headroom, 2487 FSL_FM_RX_EXTRA_HEADROOM_MIN, 2488 FSL_FM_RX_EXTRA_HEADROOM_MAX, 2489 FSL_FM_RX_EXTRA_HEADROOM); 2490 fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; 2491 } 2492 2493 fm_check_rx_extra_headroom = true; 2494 fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16); 2495 } 2496 2497 return fsl_fm_rx_extra_headroom; 2498 } 2499 EXPORT_SYMBOL(fman_get_rx_extra_headroom); 2500 2501 /** 2502 * fman_bind 2503 * @dev: FMan OF device pointer 2504 * 2505 * Bind to a specific FMan device. 2506 * 2507 * Allowed only after the port was created. 2508 * 2509 * Return: A pointer to the FMan device 2510 */ 2511 struct fman *fman_bind(struct device *fm_dev) 2512 { 2513 return (struct fman *)(dev_get_drvdata(get_device(fm_dev))); 2514 } 2515 EXPORT_SYMBOL(fman_bind); 2516 2517 static irqreturn_t fman_err_irq(int irq, void *handle) 2518 { 2519 struct fman *fman = (struct fman *)handle; 2520 u32 pending; 2521 struct fman_fpm_regs __iomem *fpm_rg; 2522 irqreturn_t single_ret, ret = IRQ_NONE; 2523 2524 if (!is_init_done(fman->cfg)) 2525 return IRQ_NONE; 2526 2527 fpm_rg = fman->fpm_regs; 2528 2529 /* error interrupts */ 2530 pending = ioread32be(&fpm_rg->fm_epi); 2531 if (!pending) 2532 return IRQ_NONE; 2533 2534 if (pending & ERR_INTR_EN_BMI) { 2535 single_ret = bmi_err_event(fman); 2536 if (single_ret == IRQ_HANDLED) 2537 ret = IRQ_HANDLED; 2538 } 2539 if (pending & ERR_INTR_EN_QMI) { 2540 single_ret = qmi_err_event(fman); 2541 if (single_ret == IRQ_HANDLED) 2542 ret = IRQ_HANDLED; 2543 } 2544 if (pending & ERR_INTR_EN_FPM) { 2545 single_ret = fpm_err_event(fman); 2546 if (single_ret == IRQ_HANDLED) 2547 ret = IRQ_HANDLED; 2548 } 2549 if (pending & ERR_INTR_EN_DMA) { 2550 single_ret = dma_err_event(fman); 2551 if (single_ret == IRQ_HANDLED) 2552 ret = IRQ_HANDLED; 2553 } 2554 if (pending & ERR_INTR_EN_MURAM) { 2555 single_ret = muram_err_intr(fman); 2556 if (single_ret == IRQ_HANDLED) 2557 ret = IRQ_HANDLED; 2558 } 2559 2560 /* MAC error interrupts */ 2561 if (pending & ERR_INTR_EN_MAC0) { 2562 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0); 2563 if (single_ret == IRQ_HANDLED) 2564 ret = IRQ_HANDLED; 2565 } 2566 if (pending & ERR_INTR_EN_MAC1) { 2567 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1); 2568 if (single_ret == IRQ_HANDLED) 2569 ret = IRQ_HANDLED; 2570 } 2571 if (pending & ERR_INTR_EN_MAC2) { 2572 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2); 2573 if (single_ret == IRQ_HANDLED) 2574 ret = IRQ_HANDLED; 2575 } 2576 if (pending & ERR_INTR_EN_MAC3) { 2577 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3); 2578 if (single_ret == IRQ_HANDLED) 2579 ret = IRQ_HANDLED; 2580 } 2581 if (pending & ERR_INTR_EN_MAC4) { 2582 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4); 2583 if (single_ret == IRQ_HANDLED) 2584 ret = IRQ_HANDLED; 2585 } 2586 if (pending & ERR_INTR_EN_MAC5) { 2587 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5); 2588 if (single_ret == IRQ_HANDLED) 2589 ret = IRQ_HANDLED; 2590 } 2591 if (pending & ERR_INTR_EN_MAC6) { 2592 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6); 2593 if (single_ret == IRQ_HANDLED) 2594 ret = IRQ_HANDLED; 2595 } 2596 if (pending & ERR_INTR_EN_MAC7) { 2597 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7); 2598 if (single_ret == IRQ_HANDLED) 2599 ret = IRQ_HANDLED; 2600 } 2601 if (pending & ERR_INTR_EN_MAC8) { 2602 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8); 2603 if (single_ret == IRQ_HANDLED) 2604 ret = IRQ_HANDLED; 2605 } 2606 if (pending & ERR_INTR_EN_MAC9) { 2607 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9); 2608 if (single_ret == IRQ_HANDLED) 2609 ret = IRQ_HANDLED; 2610 } 2611 2612 return ret; 2613 } 2614 2615 static irqreturn_t fman_irq(int irq, void *handle) 2616 { 2617 struct fman *fman = (struct fman *)handle; 2618 u32 pending; 2619 struct fman_fpm_regs __iomem *fpm_rg; 2620 irqreturn_t single_ret, ret = IRQ_NONE; 2621 2622 if (!is_init_done(fman->cfg)) 2623 return IRQ_NONE; 2624 2625 fpm_rg = fman->fpm_regs; 2626 2627 /* normal interrupts */ 2628 pending = ioread32be(&fpm_rg->fm_npi); 2629 if (!pending) 2630 return IRQ_NONE; 2631 2632 if (pending & INTR_EN_QMI) { 2633 single_ret = qmi_event(fman); 2634 if (single_ret == IRQ_HANDLED) 2635 ret = IRQ_HANDLED; 2636 } 2637 2638 /* MAC interrupts */ 2639 if (pending & INTR_EN_MAC0) { 2640 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0); 2641 if (single_ret == IRQ_HANDLED) 2642 ret = IRQ_HANDLED; 2643 } 2644 if (pending & INTR_EN_MAC1) { 2645 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1); 2646 if (single_ret == IRQ_HANDLED) 2647 ret = IRQ_HANDLED; 2648 } 2649 if (pending & INTR_EN_MAC2) { 2650 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2); 2651 if (single_ret == IRQ_HANDLED) 2652 ret = IRQ_HANDLED; 2653 } 2654 if (pending & INTR_EN_MAC3) { 2655 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3); 2656 if (single_ret == IRQ_HANDLED) 2657 ret = IRQ_HANDLED; 2658 } 2659 if (pending & INTR_EN_MAC4) { 2660 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4); 2661 if (single_ret == IRQ_HANDLED) 2662 ret = IRQ_HANDLED; 2663 } 2664 if (pending & INTR_EN_MAC5) { 2665 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5); 2666 if (single_ret == IRQ_HANDLED) 2667 ret = IRQ_HANDLED; 2668 } 2669 if (pending & INTR_EN_MAC6) { 2670 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6); 2671 if (single_ret == IRQ_HANDLED) 2672 ret = IRQ_HANDLED; 2673 } 2674 if (pending & INTR_EN_MAC7) { 2675 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7); 2676 if (single_ret == IRQ_HANDLED) 2677 ret = IRQ_HANDLED; 2678 } 2679 if (pending & INTR_EN_MAC8) { 2680 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8); 2681 if (single_ret == IRQ_HANDLED) 2682 ret = IRQ_HANDLED; 2683 } 2684 if (pending & INTR_EN_MAC9) { 2685 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9); 2686 if (single_ret == IRQ_HANDLED) 2687 ret = IRQ_HANDLED; 2688 } 2689 2690 return ret; 2691 } 2692 2693 static const struct of_device_id fman_muram_match[] = { 2694 { 2695 .compatible = "fsl,fman-muram"}, 2696 {} 2697 }; 2698 MODULE_DEVICE_TABLE(of, fman_muram_match); 2699 2700 static struct fman *read_dts_node(struct platform_device *of_dev) 2701 { 2702 struct fman *fman; 2703 struct device_node *fm_node, *muram_node; 2704 struct resource *res; 2705 u32 val, range[2]; 2706 int err, irq; 2707 struct clk *clk; 2708 u32 clk_rate; 2709 phys_addr_t phys_base_addr; 2710 resource_size_t mem_size; 2711 2712 fman = kzalloc(sizeof(*fman), GFP_KERNEL); 2713 if (!fman) 2714 return NULL; 2715 2716 fm_node = of_node_get(of_dev->dev.of_node); 2717 2718 err = of_property_read_u32(fm_node, "cell-index", &val); 2719 if (err) { 2720 dev_err(&of_dev->dev, "%s: failed to read cell-index for %pOF\n", 2721 __func__, fm_node); 2722 goto fman_node_put; 2723 } 2724 fman->dts_params.id = (u8)val; 2725 2726 /* Get the FM interrupt */ 2727 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0); 2728 if (!res) { 2729 dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n", 2730 __func__); 2731 goto fman_node_put; 2732 } 2733 irq = res->start; 2734 2735 /* Get the FM error interrupt */ 2736 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1); 2737 if (!res) { 2738 dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n", 2739 __func__); 2740 goto fman_node_put; 2741 } 2742 fman->dts_params.err_irq = res->start; 2743 2744 /* Get the FM address */ 2745 res = platform_get_resource(of_dev, IORESOURCE_MEM, 0); 2746 if (!res) { 2747 dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n", 2748 __func__); 2749 goto fman_node_put; 2750 } 2751 2752 phys_base_addr = res->start; 2753 mem_size = resource_size(res); 2754 2755 clk = of_clk_get(fm_node, 0); 2756 if (IS_ERR(clk)) { 2757 dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n", 2758 __func__, fman->dts_params.id); 2759 goto fman_node_put; 2760 } 2761 2762 clk_rate = clk_get_rate(clk); 2763 if (!clk_rate) { 2764 dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n", 2765 __func__, fman->dts_params.id); 2766 goto fman_node_put; 2767 } 2768 /* Rounding to MHz */ 2769 fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000); 2770 2771 err = of_property_read_u32_array(fm_node, "fsl,qman-channel-range", 2772 &range[0], 2); 2773 if (err) { 2774 dev_err(&of_dev->dev, "%s: failed to read fsl,qman-channel-range for %pOF\n", 2775 __func__, fm_node); 2776 goto fman_node_put; 2777 } 2778 fman->dts_params.qman_channel_base = range[0]; 2779 fman->dts_params.num_of_qman_channels = range[1]; 2780 2781 /* Get the MURAM base address and size */ 2782 muram_node = of_find_matching_node(fm_node, fman_muram_match); 2783 if (!muram_node) { 2784 dev_err(&of_dev->dev, "%s: could not find MURAM node\n", 2785 __func__); 2786 goto fman_free; 2787 } 2788 2789 err = of_address_to_resource(muram_node, 0, 2790 &fman->dts_params.muram_res); 2791 if (err) { 2792 of_node_put(muram_node); 2793 dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n", 2794 __func__, err); 2795 goto fman_free; 2796 } 2797 2798 of_node_put(muram_node); 2799 2800 err = devm_request_irq(&of_dev->dev, irq, fman_irq, IRQF_SHARED, 2801 "fman", fman); 2802 if (err < 0) { 2803 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", 2804 __func__, irq, err); 2805 goto fman_free; 2806 } 2807 2808 if (fman->dts_params.err_irq != 0) { 2809 err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq, 2810 fman_err_irq, IRQF_SHARED, 2811 "fman-err", fman); 2812 if (err < 0) { 2813 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", 2814 __func__, fman->dts_params.err_irq, err); 2815 goto fman_free; 2816 } 2817 } 2818 2819 fman->dts_params.res = 2820 devm_request_mem_region(&of_dev->dev, phys_base_addr, 2821 mem_size, "fman"); 2822 if (!fman->dts_params.res) { 2823 dev_err(&of_dev->dev, "%s: request_mem_region() failed\n", 2824 __func__); 2825 goto fman_free; 2826 } 2827 2828 fman->dts_params.base_addr = 2829 devm_ioremap(&of_dev->dev, phys_base_addr, mem_size); 2830 if (!fman->dts_params.base_addr) { 2831 dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__); 2832 goto fman_free; 2833 } 2834 2835 fman->dev = &of_dev->dev; 2836 2837 err = of_platform_populate(fm_node, NULL, NULL, &of_dev->dev); 2838 if (err) { 2839 dev_err(&of_dev->dev, "%s: of_platform_populate() failed\n", 2840 __func__); 2841 goto fman_free; 2842 } 2843 2844 return fman; 2845 2846 fman_node_put: 2847 of_node_put(fm_node); 2848 fman_free: 2849 kfree(fman); 2850 return NULL; 2851 } 2852 2853 static int fman_probe(struct platform_device *of_dev) 2854 { 2855 struct fman *fman; 2856 struct device *dev; 2857 int err; 2858 2859 dev = &of_dev->dev; 2860 2861 fman = read_dts_node(of_dev); 2862 if (!fman) 2863 return -EIO; 2864 2865 err = fman_config(fman); 2866 if (err) { 2867 dev_err(dev, "%s: FMan config failed\n", __func__); 2868 return -EINVAL; 2869 } 2870 2871 if (fman_init(fman) != 0) { 2872 dev_err(dev, "%s: FMan init failed\n", __func__); 2873 return -EINVAL; 2874 } 2875 2876 if (fman->dts_params.err_irq == 0) { 2877 fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false); 2878 fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false); 2879 fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false); 2880 fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false); 2881 fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false); 2882 fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false); 2883 fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false); 2884 fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false); 2885 fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false); 2886 fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false); 2887 fman_set_exception(fman, 2888 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false); 2889 fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false); 2890 fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC, 2891 false); 2892 fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false); 2893 fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false); 2894 } 2895 2896 dev_set_drvdata(dev, fman); 2897 2898 dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id); 2899 2900 return 0; 2901 } 2902 2903 static const struct of_device_id fman_match[] = { 2904 { 2905 .compatible = "fsl,fman"}, 2906 {} 2907 }; 2908 2909 MODULE_DEVICE_TABLE(of, fman_match); 2910 2911 static struct platform_driver fman_driver = { 2912 .driver = { 2913 .name = "fsl-fman", 2914 .of_match_table = fman_match, 2915 }, 2916 .probe = fman_probe, 2917 }; 2918 2919 static int __init fman_load(void) 2920 { 2921 int err; 2922 2923 pr_debug("FSL DPAA FMan driver\n"); 2924 2925 err = platform_driver_register(&fman_driver); 2926 if (err < 0) 2927 pr_err("Error, platform_driver_register() = %d\n", err); 2928 2929 return err; 2930 } 2931 module_init(fman_load); 2932 2933 static void __exit fman_unload(void) 2934 { 2935 platform_driver_unregister(&fman_driver); 2936 } 2937 module_exit(fman_unload); 2938 2939 MODULE_LICENSE("Dual BSD/GPL"); 2940 MODULE_DESCRIPTION("Freescale DPAA Frame Manager driver"); 2941