xref: /linux/drivers/net/ethernet/freescale/fman/fman.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2008-2015 Freescale Semiconductor Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *       notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *       notice, this list of conditions and the following disclaimer in the
10  *       documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *       names of its contributors may be used to endorse or promote products
13  *       derived from this software without specific prior written permission.
14  *
15  *
16  * ALTERNATIVELY, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL") as published by the Free Software
18  * Foundation, either version 2 of that License or (at your option) any
19  * later version.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
22  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include "fman.h"
36 #include "fman_muram.h"
37 
38 #include <linux/fsl/guts.h>
39 #include <linux/slab.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/of_platform.h>
43 #include <linux/clk.h>
44 #include <linux/of_address.h>
45 #include <linux/of_irq.h>
46 #include <linux/interrupt.h>
47 #include <linux/libfdt_env.h>
48 
49 /* General defines */
50 #define FMAN_LIODN_TBL			64	/* size of LIODN table */
51 #define MAX_NUM_OF_MACS			10
52 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS	4
53 #define BASE_RX_PORTID			0x08
54 #define BASE_TX_PORTID			0x28
55 
56 /* Modules registers offsets */
57 #define BMI_OFFSET		0x00080000
58 #define QMI_OFFSET		0x00080400
59 #define DMA_OFFSET		0x000C2000
60 #define FPM_OFFSET		0x000C3000
61 #define IMEM_OFFSET		0x000C4000
62 #define CGP_OFFSET		0x000DB000
63 
64 /* Exceptions bit map */
65 #define EX_DMA_BUS_ERROR		0x80000000
66 #define EX_DMA_READ_ECC			0x40000000
67 #define EX_DMA_SYSTEM_WRITE_ECC	0x20000000
68 #define EX_DMA_FM_WRITE_ECC		0x10000000
69 #define EX_FPM_STALL_ON_TASKS		0x08000000
70 #define EX_FPM_SINGLE_ECC		0x04000000
71 #define EX_FPM_DOUBLE_ECC		0x02000000
72 #define EX_QMI_SINGLE_ECC		0x01000000
73 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID	0x00800000
74 #define EX_QMI_DOUBLE_ECC		0x00400000
75 #define EX_BMI_LIST_RAM_ECC		0x00200000
76 #define EX_BMI_STORAGE_PROFILE_ECC	0x00100000
77 #define EX_BMI_STATISTICS_RAM_ECC	0x00080000
78 #define EX_IRAM_ECC			0x00040000
79 #define EX_MURAM_ECC			0x00020000
80 #define EX_BMI_DISPATCH_RAM_ECC	0x00010000
81 #define EX_DMA_SINGLE_PORT_ECC		0x00008000
82 
83 /* DMA defines */
84 /* masks */
85 #define DMA_MODE_BER			0x00200000
86 #define DMA_MODE_ECC			0x00000020
87 #define DMA_MODE_SECURE_PROT		0x00000800
88 #define DMA_MODE_AXI_DBG_MASK		0x0F000000
89 
90 #define DMA_TRANSFER_PORTID_MASK	0xFF000000
91 #define DMA_TRANSFER_TNUM_MASK		0x00FF0000
92 #define DMA_TRANSFER_LIODN_MASK	0x00000FFF
93 
94 #define DMA_STATUS_BUS_ERR		0x08000000
95 #define DMA_STATUS_READ_ECC		0x04000000
96 #define DMA_STATUS_SYSTEM_WRITE_ECC	0x02000000
97 #define DMA_STATUS_FM_WRITE_ECC	0x01000000
98 #define DMA_STATUS_FM_SPDAT_ECC	0x00080000
99 
100 #define DMA_MODE_CACHE_OR_SHIFT		30
101 #define DMA_MODE_AXI_DBG_SHIFT			24
102 #define DMA_MODE_CEN_SHIFT			13
103 #define DMA_MODE_CEN_MASK			0x00000007
104 #define DMA_MODE_DBG_SHIFT			7
105 #define DMA_MODE_AID_MODE_SHIFT		4
106 
107 #define DMA_THRESH_COMMQ_SHIFT			24
108 #define DMA_THRESH_READ_INT_BUF_SHIFT		16
109 #define DMA_THRESH_READ_INT_BUF_MASK		0x0000003f
110 #define DMA_THRESH_WRITE_INT_BUF_MASK		0x0000003f
111 
112 #define DMA_TRANSFER_PORTID_SHIFT		24
113 #define DMA_TRANSFER_TNUM_SHIFT		16
114 
115 #define DMA_CAM_SIZEOF_ENTRY			0x40
116 #define DMA_CAM_UNITS				8
117 
118 #define DMA_LIODN_SHIFT		16
119 #define DMA_LIODN_BASE_MASK	0x00000FFF
120 
121 /* FPM defines */
122 #define FPM_EV_MASK_DOUBLE_ECC		0x80000000
123 #define FPM_EV_MASK_STALL		0x40000000
124 #define FPM_EV_MASK_SINGLE_ECC		0x20000000
125 #define FPM_EV_MASK_RELEASE_FM		0x00010000
126 #define FPM_EV_MASK_DOUBLE_ECC_EN	0x00008000
127 #define FPM_EV_MASK_STALL_EN		0x00004000
128 #define FPM_EV_MASK_SINGLE_ECC_EN	0x00002000
129 #define FPM_EV_MASK_EXTERNAL_HALT	0x00000008
130 #define FPM_EV_MASK_ECC_ERR_HALT	0x00000004
131 
132 #define FPM_RAM_MURAM_ECC		0x00008000
133 #define FPM_RAM_IRAM_ECC		0x00004000
134 #define FPM_IRAM_ECC_ERR_EX_EN		0x00020000
135 #define FPM_MURAM_ECC_ERR_EX_EN	0x00040000
136 #define FPM_RAM_IRAM_ECC_EN		0x40000000
137 #define FPM_RAM_RAMS_ECC_EN		0x80000000
138 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL	0x08000000
139 
140 #define FPM_REV1_MAJOR_MASK		0x0000FF00
141 #define FPM_REV1_MINOR_MASK		0x000000FF
142 
143 #define FPM_DISP_LIMIT_SHIFT		24
144 
145 #define FPM_PRT_FM_CTL1			0x00000001
146 #define FPM_PRT_FM_CTL2			0x00000002
147 #define FPM_PORT_FM_CTL_PORTID_SHIFT	24
148 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT	16
149 
150 #define FPM_THR1_PRS_SHIFT		24
151 #define FPM_THR1_KG_SHIFT		16
152 #define FPM_THR1_PLCR_SHIFT		8
153 #define FPM_THR1_BMI_SHIFT		0
154 
155 #define FPM_THR2_QMI_ENQ_SHIFT		24
156 #define FPM_THR2_QMI_DEQ_SHIFT		0
157 #define FPM_THR2_FM_CTL1_SHIFT		16
158 #define FPM_THR2_FM_CTL2_SHIFT		8
159 
160 #define FPM_EV_MASK_CAT_ERR_SHIFT	1
161 #define FPM_EV_MASK_DMA_ERR_SHIFT	0
162 
163 #define FPM_REV1_MAJOR_SHIFT		8
164 
165 #define FPM_RSTC_FM_RESET		0x80000000
166 #define FPM_RSTC_MAC0_RESET		0x40000000
167 #define FPM_RSTC_MAC1_RESET		0x20000000
168 #define FPM_RSTC_MAC2_RESET		0x10000000
169 #define FPM_RSTC_MAC3_RESET		0x08000000
170 #define FPM_RSTC_MAC8_RESET		0x04000000
171 #define FPM_RSTC_MAC4_RESET		0x02000000
172 #define FPM_RSTC_MAC5_RESET		0x01000000
173 #define FPM_RSTC_MAC6_RESET		0x00800000
174 #define FPM_RSTC_MAC7_RESET		0x00400000
175 #define FPM_RSTC_MAC9_RESET		0x00200000
176 
177 #define FPM_TS_INT_SHIFT		16
178 #define FPM_TS_CTL_EN			0x80000000
179 
180 /* BMI defines */
181 #define BMI_INIT_START				0x80000000
182 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC	0x80000000
183 #define BMI_ERR_INTR_EN_LIST_RAM_ECC		0x40000000
184 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC	0x20000000
185 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC	0x10000000
186 #define BMI_NUM_OF_TASKS_MASK			0x3F000000
187 #define BMI_NUM_OF_EXTRA_TASKS_MASK		0x000F0000
188 #define BMI_NUM_OF_DMAS_MASK			0x00000F00
189 #define BMI_NUM_OF_EXTRA_DMAS_MASK		0x0000000F
190 #define BMI_FIFO_SIZE_MASK			0x000003FF
191 #define BMI_EXTRA_FIFO_SIZE_MASK		0x03FF0000
192 #define BMI_CFG2_DMAS_MASK			0x0000003F
193 #define BMI_CFG2_TASKS_MASK			0x0000003F
194 
195 #define BMI_CFG2_TASKS_SHIFT		16
196 #define BMI_CFG2_DMAS_SHIFT		0
197 #define BMI_CFG1_FIFO_SIZE_SHIFT	16
198 #define BMI_NUM_OF_TASKS_SHIFT		24
199 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT	16
200 #define BMI_NUM_OF_DMAS_SHIFT		8
201 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT	0
202 
203 #define BMI_FIFO_ALIGN			0x100
204 
205 #define BMI_EXTRA_FIFO_SIZE_SHIFT	16
206 
207 /* QMI defines */
208 #define QMI_CFG_ENQ_EN			0x80000000
209 #define QMI_CFG_DEQ_EN			0x40000000
210 #define QMI_CFG_EN_COUNTERS		0x10000000
211 #define QMI_CFG_DEQ_MASK		0x0000003F
212 #define QMI_CFG_ENQ_MASK		0x00003F00
213 #define QMI_CFG_ENQ_SHIFT		8
214 
215 #define QMI_ERR_INTR_EN_DOUBLE_ECC	0x80000000
216 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF	0x40000000
217 #define QMI_INTR_EN_SINGLE_ECC		0x80000000
218 
219 #define QMI_GS_HALT_NOT_BUSY		0x00000002
220 
221 /* IRAM defines */
222 #define IRAM_IADD_AIE			0x80000000
223 #define IRAM_READY			0x80000000
224 
225 /* Default values */
226 #define DEFAULT_CATASTROPHIC_ERR		0
227 #define DEFAULT_DMA_ERR				0
228 #define DEFAULT_AID_MODE			FMAN_DMA_AID_OUT_TNUM
229 #define DEFAULT_DMA_COMM_Q_LOW			0x2A
230 #define DEFAULT_DMA_COMM_Q_HIGH		0x3F
231 #define DEFAULT_CACHE_OVERRIDE			0
232 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES		64
233 #define DEFAULT_DMA_DBG_CNT_MODE		0
234 #define DEFAULT_DMA_SOS_EMERGENCY		0
235 #define DEFAULT_DMA_WATCHDOG			0
236 #define DEFAULT_DISP_LIMIT			0
237 #define DEFAULT_PRS_DISP_TH			16
238 #define DEFAULT_PLCR_DISP_TH			16
239 #define DEFAULT_KG_DISP_TH			16
240 #define DEFAULT_BMI_DISP_TH			16
241 #define DEFAULT_QMI_ENQ_DISP_TH		16
242 #define DEFAULT_QMI_DEQ_DISP_TH		16
243 #define DEFAULT_FM_CTL1_DISP_TH		16
244 #define DEFAULT_FM_CTL2_DISP_TH		16
245 
246 #define DFLT_AXI_DBG_NUM_OF_BEATS		1
247 
248 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf)	\
249 	((dma_thresh_max_buf + 1) / 2)
250 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf)	\
251 	((dma_thresh_max_buf + 1) * 3 / 4)
252 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf)	\
253 	((dma_thresh_max_buf + 1) / 2)
254 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\
255 	((dma_thresh_max_buf + 1) * 3 / 4)
256 
257 #define DMA_COMM_Q_LOW_FMAN_V3		0x2A
258 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)		\
259 	((dma_thresh_max_commq + 1) / 2)
260 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq)	\
261 	((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 :		\
262 	DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq))
263 
264 #define DMA_COMM_Q_HIGH_FMAN_V3	0x3f
265 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)		\
266 	((dma_thresh_max_commq + 1) * 3 / 4)
267 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq)	\
268 	((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 :		\
269 	DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq))
270 
271 #define TOTAL_NUM_OF_TASKS_FMAN_V3L	59
272 #define TOTAL_NUM_OF_TASKS_FMAN_V3H	124
273 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks)	\
274 	((major == 6) ? ((minor == 1 || minor == 4) ?			\
275 	TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) :	\
276 	bmi_max_num_of_tasks)
277 
278 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3		64
279 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2		32
280 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major)			\
281 	(major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 :		\
282 	DMA_CAM_NUM_OF_ENTRIES_FMAN_V2)
283 
284 #define FM_TIMESTAMP_1_USEC_BIT             8
285 
286 /* Defines used for enabling/disabling FMan interrupts */
287 #define ERR_INTR_EN_DMA         0x00010000
288 #define ERR_INTR_EN_FPM         0x80000000
289 #define ERR_INTR_EN_BMI         0x00800000
290 #define ERR_INTR_EN_QMI         0x00400000
291 #define ERR_INTR_EN_MURAM       0x00040000
292 #define ERR_INTR_EN_MAC0        0x00004000
293 #define ERR_INTR_EN_MAC1        0x00002000
294 #define ERR_INTR_EN_MAC2        0x00001000
295 #define ERR_INTR_EN_MAC3        0x00000800
296 #define ERR_INTR_EN_MAC4        0x00000400
297 #define ERR_INTR_EN_MAC5        0x00000200
298 #define ERR_INTR_EN_MAC6        0x00000100
299 #define ERR_INTR_EN_MAC7        0x00000080
300 #define ERR_INTR_EN_MAC8        0x00008000
301 #define ERR_INTR_EN_MAC9        0x00000040
302 
303 #define INTR_EN_QMI             0x40000000
304 #define INTR_EN_MAC0            0x00080000
305 #define INTR_EN_MAC1            0x00040000
306 #define INTR_EN_MAC2            0x00020000
307 #define INTR_EN_MAC3            0x00010000
308 #define INTR_EN_MAC4            0x00000040
309 #define INTR_EN_MAC5            0x00000020
310 #define INTR_EN_MAC6            0x00000008
311 #define INTR_EN_MAC7            0x00000002
312 #define INTR_EN_MAC8            0x00200000
313 #define INTR_EN_MAC9            0x00100000
314 #define INTR_EN_REV0            0x00008000
315 #define INTR_EN_REV1            0x00004000
316 #define INTR_EN_REV2            0x00002000
317 #define INTR_EN_REV3            0x00001000
318 #define INTR_EN_TMR             0x01000000
319 
320 enum fman_dma_aid_mode {
321 	FMAN_DMA_AID_OUT_PORT_ID = 0,		  /* 4 LSB of PORT_ID */
322 	FMAN_DMA_AID_OUT_TNUM			  /* 4 LSB of TNUM */
323 };
324 
325 struct fman_iram_regs {
326 	u32 iadd;	/* FM IRAM instruction address register */
327 	u32 idata;	/* FM IRAM instruction data register */
328 	u32 itcfg;	/* FM IRAM timing config register */
329 	u32 iready;	/* FM IRAM ready register */
330 };
331 
332 struct fman_fpm_regs {
333 	u32 fmfp_tnc;		/* FPM TNUM Control 0x00 */
334 	u32 fmfp_prc;		/* FPM Port_ID FmCtl Association 0x04 */
335 	u32 fmfp_brkc;		/* FPM Breakpoint Control 0x08 */
336 	u32 fmfp_mxd;		/* FPM Flush Control 0x0c */
337 	u32 fmfp_dist1;		/* FPM Dispatch Thresholds1 0x10 */
338 	u32 fmfp_dist2;		/* FPM Dispatch Thresholds2 0x14 */
339 	u32 fm_epi;		/* FM Error Pending Interrupts 0x18 */
340 	u32 fm_rie;		/* FM Error Interrupt Enable 0x1c */
341 	u32 fmfp_fcev[4];	/* FPM FMan-Controller Event 1-4 0x20-0x2f */
342 	u32 res0030[4];		/* res 0x30 - 0x3f */
343 	u32 fmfp_cee[4];	/* PM FMan-Controller Event 1-4 0x40-0x4f */
344 	u32 res0050[4];		/* res 0x50-0x5f */
345 	u32 fmfp_tsc1;		/* FPM TimeStamp Control1 0x60 */
346 	u32 fmfp_tsc2;		/* FPM TimeStamp Control2 0x64 */
347 	u32 fmfp_tsp;		/* FPM Time Stamp 0x68 */
348 	u32 fmfp_tsf;		/* FPM Time Stamp Fraction 0x6c */
349 	u32 fm_rcr;		/* FM Rams Control 0x70 */
350 	u32 fmfp_extc;		/* FPM External Requests Control 0x74 */
351 	u32 fmfp_ext1;		/* FPM External Requests Config1 0x78 */
352 	u32 fmfp_ext2;		/* FPM External Requests Config2 0x7c */
353 	u32 fmfp_drd[16];	/* FPM Data_Ram Data 0-15 0x80 - 0xbf */
354 	u32 fmfp_dra;		/* FPM Data Ram Access 0xc0 */
355 	u32 fm_ip_rev_1;	/* FM IP Block Revision 1 0xc4 */
356 	u32 fm_ip_rev_2;	/* FM IP Block Revision 2 0xc8 */
357 	u32 fm_rstc;		/* FM Reset Command 0xcc */
358 	u32 fm_cld;		/* FM Classifier Debug 0xd0 */
359 	u32 fm_npi;		/* FM Normal Pending Interrupts 0xd4 */
360 	u32 fmfp_exte;		/* FPM External Requests Enable 0xd8 */
361 	u32 fmfp_ee;		/* FPM Event&Mask 0xdc */
362 	u32 fmfp_cev[4];	/* FPM CPU Event 1-4 0xe0-0xef */
363 	u32 res00f0[4];		/* res 0xf0-0xff */
364 	u32 fmfp_ps[50];	/* FPM Port Status 0x100-0x1c7 */
365 	u32 res01c8[14];	/* res 0x1c8-0x1ff */
366 	u32 fmfp_clfabc;	/* FPM CLFABC 0x200 */
367 	u32 fmfp_clfcc;		/* FPM CLFCC 0x204 */
368 	u32 fmfp_clfaval;	/* FPM CLFAVAL 0x208 */
369 	u32 fmfp_clfbval;	/* FPM CLFBVAL 0x20c */
370 	u32 fmfp_clfcval;	/* FPM CLFCVAL 0x210 */
371 	u32 fmfp_clfamsk;	/* FPM CLFAMSK 0x214 */
372 	u32 fmfp_clfbmsk;	/* FPM CLFBMSK 0x218 */
373 	u32 fmfp_clfcmsk;	/* FPM CLFCMSK 0x21c */
374 	u32 fmfp_clfamc;	/* FPM CLFAMC 0x220 */
375 	u32 fmfp_clfbmc;	/* FPM CLFBMC 0x224 */
376 	u32 fmfp_clfcmc;	/* FPM CLFCMC 0x228 */
377 	u32 fmfp_decceh;	/* FPM DECCEH 0x22c */
378 	u32 res0230[116];	/* res 0x230 - 0x3ff */
379 	u32 fmfp_ts[128];	/* 0x400: FPM Task Status 0x400 - 0x5ff */
380 	u32 res0600[0x400 - 384];
381 };
382 
383 struct fman_bmi_regs {
384 	u32 fmbm_init;		/* BMI Initialization 0x00 */
385 	u32 fmbm_cfg1;		/* BMI Configuration 1 0x04 */
386 	u32 fmbm_cfg2;		/* BMI Configuration 2 0x08 */
387 	u32 res000c[5];		/* 0x0c - 0x1f */
388 	u32 fmbm_ievr;		/* Interrupt Event Register 0x20 */
389 	u32 fmbm_ier;		/* Interrupt Enable Register 0x24 */
390 	u32 fmbm_ifr;		/* Interrupt Force Register 0x28 */
391 	u32 res002c[5];		/* 0x2c - 0x3f */
392 	u32 fmbm_arb[8];	/* BMI Arbitration 0x40 - 0x5f */
393 	u32 res0060[12];	/* 0x60 - 0x8f */
394 	u32 fmbm_dtc[3];	/* Debug Trap Counter 0x90 - 0x9b */
395 	u32 res009c;		/* 0x9c */
396 	u32 fmbm_dcv[3][4];	/* Debug Compare val 0xa0-0xcf */
397 	u32 fmbm_dcm[3][4];	/* Debug Compare Mask 0xd0-0xff */
398 	u32 fmbm_gde;		/* BMI Global Debug Enable 0x100 */
399 	u32 fmbm_pp[63];	/* BMI Port Parameters 0x104 - 0x1ff */
400 	u32 res0200;		/* 0x200 */
401 	u32 fmbm_pfs[63];	/* BMI Port FIFO Size 0x204 - 0x2ff */
402 	u32 res0300;		/* 0x300 */
403 	u32 fmbm_spliodn[63];	/* Port Partition ID 0x304 - 0x3ff */
404 };
405 
406 struct fman_qmi_regs {
407 	u32 fmqm_gc;		/* General Configuration Register 0x00 */
408 	u32 res0004;		/* 0x04 */
409 	u32 fmqm_eie;		/* Error Interrupt Event Register 0x08 */
410 	u32 fmqm_eien;		/* Error Interrupt Enable Register 0x0c */
411 	u32 fmqm_eif;		/* Error Interrupt Force Register 0x10 */
412 	u32 fmqm_ie;		/* Interrupt Event Register 0x14 */
413 	u32 fmqm_ien;		/* Interrupt Enable Register 0x18 */
414 	u32 fmqm_if;		/* Interrupt Force Register 0x1c */
415 	u32 fmqm_gs;		/* Global Status Register 0x20 */
416 	u32 fmqm_ts;		/* Task Status Register 0x24 */
417 	u32 fmqm_etfc;		/* Enqueue Total Frame Counter 0x28 */
418 	u32 fmqm_dtfc;		/* Dequeue Total Frame Counter 0x2c */
419 	u32 fmqm_dc0;		/* Dequeue Counter 0 0x30 */
420 	u32 fmqm_dc1;		/* Dequeue Counter 1 0x34 */
421 	u32 fmqm_dc2;		/* Dequeue Counter 2 0x38 */
422 	u32 fmqm_dc3;		/* Dequeue Counter 3 0x3c */
423 	u32 fmqm_dfdc;		/* Dequeue FQID from Default Counter 0x40 */
424 	u32 fmqm_dfcc;		/* Dequeue FQID from Context Counter 0x44 */
425 	u32 fmqm_dffc;		/* Dequeue FQID from FD Counter 0x48 */
426 	u32 fmqm_dcc;		/* Dequeue Confirm Counter 0x4c */
427 	u32 res0050[7];		/* 0x50 - 0x6b */
428 	u32 fmqm_tapc;		/* Tnum Aging Period Control 0x6c */
429 	u32 fmqm_dmcvc;		/* Dequeue MAC Command Valid Counter 0x70 */
430 	u32 fmqm_difdcc;	/* Dequeue Invalid FD Command Counter 0x74 */
431 	u32 fmqm_da1v;		/* Dequeue A1 Valid Counter 0x78 */
432 	u32 res007c;		/* 0x7c */
433 	u32 fmqm_dtc;		/* 0x80 Debug Trap Counter 0x80 */
434 	u32 fmqm_efddd;		/* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */
435 	u32 res0088[2];		/* 0x88 - 0x8f */
436 	struct {
437 		u32 fmqm_dtcfg1;	/* 0x90 dbg trap cfg 1 Register 0x00 */
438 		u32 fmqm_dtval1;	/* Debug Trap Value 1 Register 0x04 */
439 		u32 fmqm_dtm1;		/* Debug Trap Mask 1 Register 0x08 */
440 		u32 fmqm_dtc1;		/* Debug Trap Counter 1 Register 0x0c */
441 		u32 fmqm_dtcfg2;	/* dbg Trap cfg 2 Register 0x10 */
442 		u32 fmqm_dtval2;	/* Debug Trap Value 2 Register 0x14 */
443 		u32 fmqm_dtm2;		/* Debug Trap Mask 2 Register 0x18 */
444 		u32 res001c;		/* 0x1c */
445 	} dbg_traps[3];			/* 0x90 - 0xef */
446 	u8 res00f0[0x400 - 0xf0];	/* 0xf0 - 0x3ff */
447 };
448 
449 struct fman_dma_regs {
450 	u32 fmdmsr;	/* FM DMA status register 0x00 */
451 	u32 fmdmmr;	/* FM DMA mode register 0x04 */
452 	u32 fmdmtr;	/* FM DMA bus threshold register 0x08 */
453 	u32 fmdmhy;	/* FM DMA bus hysteresis register 0x0c */
454 	u32 fmdmsetr;	/* FM DMA SOS emergency Threshold Register 0x10 */
455 	u32 fmdmtah;	/* FM DMA transfer bus address high reg 0x14 */
456 	u32 fmdmtal;	/* FM DMA transfer bus address low reg 0x18 */
457 	u32 fmdmtcid;	/* FM DMA transfer bus communication ID reg 0x1c */
458 	u32 fmdmra;	/* FM DMA bus internal ram address register 0x20 */
459 	u32 fmdmrd;	/* FM DMA bus internal ram data register 0x24 */
460 	u32 fmdmwcr;	/* FM DMA CAM watchdog counter value 0x28 */
461 	u32 fmdmebcr;	/* FM DMA CAM base in MURAM register 0x2c */
462 	u32 fmdmccqdr;	/* FM DMA CAM and CMD Queue Debug reg 0x30 */
463 	u32 fmdmccqvr1;	/* FM DMA CAM and CMD Queue Value reg #1 0x34 */
464 	u32 fmdmccqvr2;	/* FM DMA CAM and CMD Queue Value reg #2 0x38 */
465 	u32 fmdmcqvr3;	/* FM DMA CMD Queue Value register #3 0x3c */
466 	u32 fmdmcqvr4;	/* FM DMA CMD Queue Value register #4 0x40 */
467 	u32 fmdmcqvr5;	/* FM DMA CMD Queue Value register #5 0x44 */
468 	u32 fmdmsefrc;	/* FM DMA Semaphore Entry Full Reject Cntr 0x48 */
469 	u32 fmdmsqfrc;	/* FM DMA Semaphore Queue Full Reject Cntr 0x4c */
470 	u32 fmdmssrc;	/* FM DMA Semaphore SYNC Reject Counter 0x50 */
471 	u32 fmdmdcr;	/* FM DMA Debug Counter 0x54 */
472 	u32 fmdmemsr;	/* FM DMA Emergency Smoother Register 0x58 */
473 	u32 res005c;	/* 0x5c */
474 	u32 fmdmplr[FMAN_LIODN_TBL / 2];	/* DMA LIODN regs 0x60-0xdf */
475 	u32 res00e0[0x400 - 56];
476 };
477 
478 /* Structure that holds current FMan state.
479  * Used for saving run time information.
480  */
481 struct fman_state_struct {
482 	u8 fm_id;
483 	u16 fm_clk_freq;
484 	struct fman_rev_info rev_info;
485 	bool enabled_time_stamp;
486 	u8 count1_micro_bit;
487 	u8 total_num_of_tasks;
488 	u8 accumulated_num_of_tasks;
489 	u32 accumulated_fifo_size;
490 	u8 accumulated_num_of_open_dmas;
491 	u8 accumulated_num_of_deq_tnums;
492 	u32 exceptions;
493 	u32 extra_fifo_pool_size;
494 	u8 extra_tasks_pool_size;
495 	u8 extra_open_dmas_pool_size;
496 	u16 port_mfl[MAX_NUM_OF_MACS];
497 	u16 mac_mfl[MAX_NUM_OF_MACS];
498 
499 	/* SOC specific */
500 	u32 fm_iram_size;
501 	/* DMA */
502 	u32 dma_thresh_max_commq;
503 	u32 dma_thresh_max_buf;
504 	u32 max_num_of_open_dmas;
505 	/* QMI */
506 	u32 qmi_max_num_of_tnums;
507 	u32 qmi_def_tnums_thresh;
508 	/* BMI */
509 	u32 bmi_max_num_of_tasks;
510 	u32 bmi_max_fifo_size;
511 	/* General */
512 	u32 fm_port_num_of_cg;
513 	u32 num_of_rx_ports;
514 	u32 total_fifo_size;
515 
516 	u32 qman_channel_base;
517 	u32 num_of_qman_channels;
518 
519 	struct resource *res;
520 };
521 
522 /* Structure that holds FMan initial configuration */
523 struct fman_cfg {
524 	u8 disp_limit_tsh;
525 	u8 prs_disp_tsh;
526 	u8 plcr_disp_tsh;
527 	u8 kg_disp_tsh;
528 	u8 bmi_disp_tsh;
529 	u8 qmi_enq_disp_tsh;
530 	u8 qmi_deq_disp_tsh;
531 	u8 fm_ctl1_disp_tsh;
532 	u8 fm_ctl2_disp_tsh;
533 	int dma_cache_override;
534 	enum fman_dma_aid_mode dma_aid_mode;
535 	u32 dma_axi_dbg_num_of_beats;
536 	u32 dma_cam_num_of_entries;
537 	u32 dma_watchdog;
538 	u8 dma_comm_qtsh_asrt_emer;
539 	u32 dma_write_buf_tsh_asrt_emer;
540 	u32 dma_read_buf_tsh_asrt_emer;
541 	u8 dma_comm_qtsh_clr_emer;
542 	u32 dma_write_buf_tsh_clr_emer;
543 	u32 dma_read_buf_tsh_clr_emer;
544 	u32 dma_sos_emergency;
545 	int dma_dbg_cnt_mode;
546 	int catastrophic_err;
547 	int dma_err;
548 	u32 exceptions;
549 	u16 clk_freq;
550 	u32 cam_base_addr;
551 	u32 fifo_base_addr;
552 	u32 total_fifo_size;
553 	u32 total_num_of_tasks;
554 	u32 qmi_def_tnums_thresh;
555 };
556 
557 /* Structure that holds information received from device tree */
558 struct fman_dts_params {
559 	void __iomem *base_addr;		/* FMan virtual address */
560 	struct resource *res;			/* FMan memory resource */
561 	u8 id;					/* FMan ID */
562 
563 	int err_irq;				/* FMan Error IRQ */
564 
565 	u16 clk_freq;				/* FMan clock freq (In Mhz) */
566 
567 	u32 qman_channel_base;			/* QMan channels base */
568 	u32 num_of_qman_channels;		/* Number of QMan channels */
569 
570 	struct resource muram_res;		/* MURAM resource */
571 };
572 
573 /** fman_exceptions_cb
574  * fman		- Pointer to FMan
575  * exception	- The exception.
576  *
577  * Exceptions user callback routine, will be called upon an exception
578  * passing the exception identification.
579  *
580  * Return: irq status
581  */
582 typedef irqreturn_t (fman_exceptions_cb)(struct fman *fman,
583 					 enum fman_exceptions exception);
584 
585 /** fman_bus_error_cb
586  * fman		- Pointer to FMan
587  * port_id	- Port id
588  * addr		- Address that caused the error
589  * tnum		- Owner of error
590  * liodn	- Logical IO device number
591  *
592  * Bus error user callback routine, will be called upon bus error,
593  * passing parameters describing the errors and the owner.
594  *
595  * Return: IRQ status
596  */
597 typedef irqreturn_t (fman_bus_error_cb)(struct fman *fman, u8 port_id,
598 					u64 addr, u8 tnum, u16 liodn);
599 
600 struct fman {
601 	struct device *dev;
602 	void __iomem *base_addr;
603 	struct fman_intr_src intr_mng[FMAN_EV_CNT];
604 
605 	struct fman_fpm_regs __iomem *fpm_regs;
606 	struct fman_bmi_regs __iomem *bmi_regs;
607 	struct fman_qmi_regs __iomem *qmi_regs;
608 	struct fman_dma_regs __iomem *dma_regs;
609 	fman_exceptions_cb *exception_cb;
610 	fman_bus_error_cb *bus_error_cb;
611 	/* Spinlock for FMan use */
612 	spinlock_t spinlock;
613 	struct fman_state_struct *state;
614 
615 	struct fman_cfg *cfg;
616 	struct muram_info *muram;
617 	/* cam section in muram */
618 	unsigned long cam_offset;
619 	size_t cam_size;
620 	/* Fifo in MURAM */
621 	int fifo_offset;
622 	size_t fifo_size;
623 
624 	u32 liodn_base[64];
625 	u32 liodn_offset[64];
626 
627 	struct fman_dts_params dts_params;
628 };
629 
630 static irqreturn_t fman_exceptions(struct fman *fman,
631 				   enum fman_exceptions exception)
632 {
633 	dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n",
634 		__func__, fman->state->fm_id, exception);
635 
636 	return IRQ_HANDLED;
637 }
638 
639 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id,
640 				  u64 __maybe_unused addr,
641 				  u8 __maybe_unused tnum,
642 				  u16 __maybe_unused liodn)
643 {
644 	dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n",
645 		__func__, fman->state->fm_id, port_id);
646 
647 	return IRQ_HANDLED;
648 }
649 
650 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id)
651 {
652 	if (fman->intr_mng[id].isr_cb) {
653 		fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle);
654 
655 		return IRQ_HANDLED;
656 	}
657 
658 	return IRQ_NONE;
659 }
660 
661 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id)
662 {
663 	u8 sw_port_id = 0;
664 
665 	if (hw_port_id >= BASE_TX_PORTID)
666 		sw_port_id = hw_port_id - BASE_TX_PORTID;
667 	else if (hw_port_id >= BASE_RX_PORTID)
668 		sw_port_id = hw_port_id - BASE_RX_PORTID;
669 	else
670 		sw_port_id = 0;
671 
672 	return sw_port_id;
673 }
674 
675 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg,
676 				       u8 port_id)
677 {
678 	u32 tmp = 0;
679 
680 	tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT;
681 
682 	tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1;
683 
684 	/* order restoration */
685 	if (port_id % 2)
686 		tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
687 	else
688 		tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
689 
690 	iowrite32be(tmp, &fpm_rg->fmfp_prc);
691 }
692 
693 static void set_port_liodn(struct fman *fman, u8 port_id,
694 			   u32 liodn_base, u32 liodn_ofst)
695 {
696 	u32 tmp;
697 
698 	/* set LIODN base for this port */
699 	tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]);
700 	if (port_id % 2) {
701 		tmp &= ~DMA_LIODN_BASE_MASK;
702 		tmp |= liodn_base;
703 	} else {
704 		tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT);
705 		tmp |= liodn_base << DMA_LIODN_SHIFT;
706 	}
707 	iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]);
708 	iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]);
709 }
710 
711 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
712 {
713 	u32 tmp;
714 
715 	tmp = ioread32be(&fpm_rg->fm_rcr);
716 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
717 		iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
718 	else
719 		iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN |
720 			    FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
721 }
722 
723 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
724 {
725 	u32 tmp;
726 
727 	tmp = ioread32be(&fpm_rg->fm_rcr);
728 	if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
729 		iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
730 	else
731 		iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN),
732 			    &fpm_rg->fm_rcr);
733 }
734 
735 static void fman_defconfig(struct fman_cfg *cfg)
736 {
737 	memset(cfg, 0, sizeof(struct fman_cfg));
738 
739 	cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR;
740 	cfg->dma_err = DEFAULT_DMA_ERR;
741 	cfg->dma_aid_mode = DEFAULT_AID_MODE;
742 	cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW;
743 	cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH;
744 	cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE;
745 	cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES;
746 	cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE;
747 	cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY;
748 	cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG;
749 	cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT;
750 	cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH;
751 	cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH;
752 	cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH;
753 	cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH;
754 	cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH;
755 	cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH;
756 	cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH;
757 	cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH;
758 }
759 
760 static int dma_init(struct fman *fman)
761 {
762 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
763 	struct fman_cfg *cfg = fman->cfg;
764 	u32 tmp_reg;
765 
766 	/* Init DMA Registers */
767 
768 	/* clear status reg events */
769 	tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC |
770 		   DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC);
771 	iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr);
772 
773 	/* configure mode register */
774 	tmp_reg = 0;
775 	tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT;
776 	if (cfg->exceptions & EX_DMA_BUS_ERROR)
777 		tmp_reg |= DMA_MODE_BER;
778 	if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) |
779 	    (cfg->exceptions & EX_DMA_READ_ECC) |
780 	    (cfg->exceptions & EX_DMA_FM_WRITE_ECC))
781 		tmp_reg |= DMA_MODE_ECC;
782 	if (cfg->dma_axi_dbg_num_of_beats)
783 		tmp_reg |= (DMA_MODE_AXI_DBG_MASK &
784 			((cfg->dma_axi_dbg_num_of_beats - 1)
785 			<< DMA_MODE_AXI_DBG_SHIFT));
786 
787 	tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) &
788 		DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT;
789 	tmp_reg |= DMA_MODE_SECURE_PROT;
790 	tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT;
791 	tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT;
792 
793 	iowrite32be(tmp_reg, &dma_rg->fmdmmr);
794 
795 	/* configure thresholds register */
796 	tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer <<
797 		DMA_THRESH_COMMQ_SHIFT);
798 	tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer &
799 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
800 	tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer &
801 		DMA_THRESH_WRITE_INT_BUF_MASK;
802 
803 	iowrite32be(tmp_reg, &dma_rg->fmdmtr);
804 
805 	/* configure hysteresis register */
806 	tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer <<
807 		DMA_THRESH_COMMQ_SHIFT);
808 	tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer &
809 		DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
810 	tmp_reg |= cfg->dma_write_buf_tsh_clr_emer &
811 		DMA_THRESH_WRITE_INT_BUF_MASK;
812 
813 	iowrite32be(tmp_reg, &dma_rg->fmdmhy);
814 
815 	/* configure emergency threshold */
816 	iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr);
817 
818 	/* configure Watchdog */
819 	iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr);
820 
821 	iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr);
822 
823 	/* Allocate MURAM for CAM */
824 	fman->cam_size =
825 		(u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY);
826 	fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size);
827 	if (IS_ERR_VALUE(fman->cam_offset)) {
828 		dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
829 			__func__);
830 		return -ENOMEM;
831 	}
832 
833 	if (fman->state->rev_info.major == 2) {
834 		u32 __iomem *cam_base_addr;
835 
836 		fman_muram_free_mem(fman->muram, fman->cam_offset,
837 				    fman->cam_size);
838 
839 		fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128;
840 		fman->cam_offset = fman_muram_alloc(fman->muram,
841 						    fman->cam_size);
842 		if (IS_ERR_VALUE(fman->cam_offset)) {
843 			dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
844 				__func__);
845 			return -ENOMEM;
846 		}
847 
848 		if (fman->cfg->dma_cam_num_of_entries % 8 ||
849 		    fman->cfg->dma_cam_num_of_entries > 32) {
850 			dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n",
851 				__func__);
852 			return -EINVAL;
853 		}
854 
855 		cam_base_addr = (u32 __iomem *)
856 			fman_muram_offset_to_vbase(fman->muram,
857 						   fman->cam_offset);
858 		iowrite32be(~((1 <<
859 			    (32 - fman->cfg->dma_cam_num_of_entries)) - 1),
860 			    cam_base_addr);
861 	}
862 
863 	fman->cfg->cam_base_addr = fman->cam_offset;
864 
865 	return 0;
866 }
867 
868 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg)
869 {
870 	u32 tmp_reg;
871 	int i;
872 
873 	/* Init FPM Registers */
874 
875 	tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT);
876 	iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd);
877 
878 	tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) |
879 		   ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) |
880 		   ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) |
881 		   ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT));
882 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1);
883 
884 	tmp_reg =
885 		(((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) |
886 		 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) |
887 		 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) |
888 		 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT));
889 	iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2);
890 
891 	/* define exceptions and error behavior */
892 	tmp_reg = 0;
893 	/* Clear events */
894 	tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC |
895 		    FPM_EV_MASK_SINGLE_ECC);
896 	/* enable interrupts */
897 	if (cfg->exceptions & EX_FPM_STALL_ON_TASKS)
898 		tmp_reg |= FPM_EV_MASK_STALL_EN;
899 	if (cfg->exceptions & EX_FPM_SINGLE_ECC)
900 		tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN;
901 	if (cfg->exceptions & EX_FPM_DOUBLE_ECC)
902 		tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN;
903 	tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT);
904 	tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT);
905 	/* FMan is not halted upon external halt activation */
906 	tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT;
907 	/* Man is not halted upon  Unrecoverable ECC error behavior */
908 	tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT;
909 	iowrite32be(tmp_reg, &fpm_rg->fmfp_ee);
910 
911 	/* clear all fmCtls event registers */
912 	for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++)
913 		iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]);
914 
915 	/* RAM ECC -  enable and clear events */
916 	/* first we need to clear all parser memory,
917 	 * as it is uninitialized and may cause ECC errors
918 	 */
919 	/* event bits */
920 	tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC);
921 
922 	iowrite32be(tmp_reg, &fpm_rg->fm_rcr);
923 
924 	tmp_reg = 0;
925 	if (cfg->exceptions & EX_IRAM_ECC) {
926 		tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN;
927 		enable_rams_ecc(fpm_rg);
928 	}
929 	if (cfg->exceptions & EX_MURAM_ECC) {
930 		tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN;
931 		enable_rams_ecc(fpm_rg);
932 	}
933 	iowrite32be(tmp_reg, &fpm_rg->fm_rie);
934 }
935 
936 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg,
937 		     struct fman_cfg *cfg)
938 {
939 	u32 tmp_reg;
940 
941 	/* Init BMI Registers */
942 
943 	/* define common resources */
944 	tmp_reg = cfg->fifo_base_addr;
945 	tmp_reg = tmp_reg / BMI_FIFO_ALIGN;
946 
947 	tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) <<
948 		    BMI_CFG1_FIFO_SIZE_SHIFT);
949 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1);
950 
951 	tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) <<
952 		   BMI_CFG2_TASKS_SHIFT;
953 	/* num of DMA's will be dynamically updated when each port is set */
954 	iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2);
955 
956 	/* define unmaskable exceptions, enable and clear events */
957 	tmp_reg = 0;
958 	iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC |
959 		    BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC |
960 		    BMI_ERR_INTR_EN_STATISTICS_RAM_ECC |
961 		    BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr);
962 
963 	if (cfg->exceptions & EX_BMI_LIST_RAM_ECC)
964 		tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
965 	if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC)
966 		tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
967 	if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC)
968 		tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
969 	if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC)
970 		tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
971 	iowrite32be(tmp_reg, &bmi_rg->fmbm_ier);
972 }
973 
974 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg,
975 		     struct fman_cfg *cfg)
976 {
977 	u32 tmp_reg;
978 
979 	/* Init QMI Registers */
980 
981 	/* Clear error interrupt events */
982 
983 	iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF,
984 		    &qmi_rg->fmqm_eie);
985 	tmp_reg = 0;
986 	if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID)
987 		tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
988 	if (cfg->exceptions & EX_QMI_DOUBLE_ECC)
989 		tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC;
990 	/* enable events */
991 	iowrite32be(tmp_reg, &qmi_rg->fmqm_eien);
992 
993 	tmp_reg = 0;
994 	/* Clear interrupt events */
995 	iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie);
996 	if (cfg->exceptions & EX_QMI_SINGLE_ECC)
997 		tmp_reg |= QMI_INTR_EN_SINGLE_ECC;
998 	/* enable events */
999 	iowrite32be(tmp_reg, &qmi_rg->fmqm_ien);
1000 }
1001 
1002 static int enable(struct fman *fman, struct fman_cfg *cfg)
1003 {
1004 	u32 cfg_reg = 0;
1005 
1006 	/* Enable all modules */
1007 
1008 	/* clear&enable global counters - calculate reg and save for later,
1009 	 * because it's the same reg for QMI enable
1010 	 */
1011 	cfg_reg = QMI_CFG_EN_COUNTERS;
1012 
1013 	/* Set enqueue and dequeue thresholds */
1014 	cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh;
1015 
1016 	iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init);
1017 	iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN,
1018 		    &fman->qmi_regs->fmqm_gc);
1019 
1020 	return 0;
1021 }
1022 
1023 static int set_exception(struct fman *fman,
1024 			 enum fman_exceptions exception, bool enable)
1025 {
1026 	u32 tmp;
1027 
1028 	switch (exception) {
1029 	case FMAN_EX_DMA_BUS_ERROR:
1030 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
1031 		if (enable)
1032 			tmp |= DMA_MODE_BER;
1033 		else
1034 			tmp &= ~DMA_MODE_BER;
1035 		/* disable bus error */
1036 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
1037 		break;
1038 	case FMAN_EX_DMA_READ_ECC:
1039 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1040 	case FMAN_EX_DMA_FM_WRITE_ECC:
1041 		tmp = ioread32be(&fman->dma_regs->fmdmmr);
1042 		if (enable)
1043 			tmp |= DMA_MODE_ECC;
1044 		else
1045 			tmp &= ~DMA_MODE_ECC;
1046 		iowrite32be(tmp, &fman->dma_regs->fmdmmr);
1047 		break;
1048 	case FMAN_EX_FPM_STALL_ON_TASKS:
1049 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1050 		if (enable)
1051 			tmp |= FPM_EV_MASK_STALL_EN;
1052 		else
1053 			tmp &= ~FPM_EV_MASK_STALL_EN;
1054 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1055 		break;
1056 	case FMAN_EX_FPM_SINGLE_ECC:
1057 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1058 		if (enable)
1059 			tmp |= FPM_EV_MASK_SINGLE_ECC_EN;
1060 		else
1061 			tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN;
1062 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1063 		break;
1064 	case FMAN_EX_FPM_DOUBLE_ECC:
1065 		tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1066 		if (enable)
1067 			tmp |= FPM_EV_MASK_DOUBLE_ECC_EN;
1068 		else
1069 			tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN;
1070 		iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1071 		break;
1072 	case FMAN_EX_QMI_SINGLE_ECC:
1073 		tmp = ioread32be(&fman->qmi_regs->fmqm_ien);
1074 		if (enable)
1075 			tmp |= QMI_INTR_EN_SINGLE_ECC;
1076 		else
1077 			tmp &= ~QMI_INTR_EN_SINGLE_ECC;
1078 		iowrite32be(tmp, &fman->qmi_regs->fmqm_ien);
1079 		break;
1080 	case FMAN_EX_QMI_DOUBLE_ECC:
1081 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1082 		if (enable)
1083 			tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC;
1084 		else
1085 			tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC;
1086 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1087 		break;
1088 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1089 		tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1090 		if (enable)
1091 			tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1092 		else
1093 			tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1094 		iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1095 		break;
1096 	case FMAN_EX_BMI_LIST_RAM_ECC:
1097 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1098 		if (enable)
1099 			tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
1100 		else
1101 			tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC;
1102 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1103 		break;
1104 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1105 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1106 		if (enable)
1107 			tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1108 		else
1109 			tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1110 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1111 		break;
1112 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1113 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1114 		if (enable)
1115 			tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1116 		else
1117 			tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1118 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1119 		break;
1120 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1121 		tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1122 		if (enable)
1123 			tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1124 		else
1125 			tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1126 		iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1127 		break;
1128 	case FMAN_EX_IRAM_ECC:
1129 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1130 		if (enable) {
1131 			/* enable ECC if not enabled */
1132 			enable_rams_ecc(fman->fpm_regs);
1133 			/* enable ECC interrupts */
1134 			tmp |= FPM_IRAM_ECC_ERR_EX_EN;
1135 		} else {
1136 			/* ECC mechanism may be disabled,
1137 			 * depending on driver status
1138 			 */
1139 			disable_rams_ecc(fman->fpm_regs);
1140 			tmp &= ~FPM_IRAM_ECC_ERR_EX_EN;
1141 		}
1142 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1143 		break;
1144 	case FMAN_EX_MURAM_ECC:
1145 		tmp = ioread32be(&fman->fpm_regs->fm_rie);
1146 		if (enable) {
1147 			/* enable ECC if not enabled */
1148 			enable_rams_ecc(fman->fpm_regs);
1149 			/* enable ECC interrupts */
1150 			tmp |= FPM_MURAM_ECC_ERR_EX_EN;
1151 		} else {
1152 			/* ECC mechanism may be disabled,
1153 			 * depending on driver status
1154 			 */
1155 			disable_rams_ecc(fman->fpm_regs);
1156 			tmp &= ~FPM_MURAM_ECC_ERR_EX_EN;
1157 		}
1158 		iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1159 		break;
1160 	default:
1161 		return -EINVAL;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static void resume(struct fman_fpm_regs __iomem *fpm_rg)
1167 {
1168 	u32 tmp;
1169 
1170 	tmp = ioread32be(&fpm_rg->fmfp_ee);
1171 	/* clear tmp_reg event bits in order not to clear standing events */
1172 	tmp &= ~(FPM_EV_MASK_DOUBLE_ECC |
1173 		 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC);
1174 	tmp |= FPM_EV_MASK_RELEASE_FM;
1175 
1176 	iowrite32be(tmp, &fpm_rg->fmfp_ee);
1177 }
1178 
1179 static int fill_soc_specific_params(struct fman_state_struct *state)
1180 {
1181 	u8 minor = state->rev_info.minor;
1182 	/* P4080 - Major 2
1183 	 * P2041/P3041/P5020/P5040 - Major 3
1184 	 * Tx/Bx - Major 6
1185 	 */
1186 	switch (state->rev_info.major) {
1187 	case 3:
1188 		state->bmi_max_fifo_size	= 160 * 1024;
1189 		state->fm_iram_size		= 64 * 1024;
1190 		state->dma_thresh_max_commq	= 31;
1191 		state->dma_thresh_max_buf	= 127;
1192 		state->qmi_max_num_of_tnums	= 64;
1193 		state->qmi_def_tnums_thresh	= 48;
1194 		state->bmi_max_num_of_tasks	= 128;
1195 		state->max_num_of_open_dmas	= 32;
1196 		state->fm_port_num_of_cg	= 256;
1197 		state->num_of_rx_ports	= 6;
1198 		state->total_fifo_size	= 122 * 1024;
1199 		break;
1200 
1201 	case 2:
1202 		state->bmi_max_fifo_size	= 160 * 1024;
1203 		state->fm_iram_size		= 64 * 1024;
1204 		state->dma_thresh_max_commq	= 31;
1205 		state->dma_thresh_max_buf	= 127;
1206 		state->qmi_max_num_of_tnums	= 64;
1207 		state->qmi_def_tnums_thresh	= 48;
1208 		state->bmi_max_num_of_tasks	= 128;
1209 		state->max_num_of_open_dmas	= 32;
1210 		state->fm_port_num_of_cg	= 256;
1211 		state->num_of_rx_ports	= 5;
1212 		state->total_fifo_size	= 100 * 1024;
1213 		break;
1214 
1215 	case 6:
1216 		state->dma_thresh_max_commq	= 83;
1217 		state->dma_thresh_max_buf	= 127;
1218 		state->qmi_max_num_of_tnums	= 64;
1219 		state->qmi_def_tnums_thresh	= 32;
1220 		state->fm_port_num_of_cg	= 256;
1221 
1222 		/* FManV3L */
1223 		if (minor == 1 || minor == 4) {
1224 			state->bmi_max_fifo_size	= 192 * 1024;
1225 			state->bmi_max_num_of_tasks	= 64;
1226 			state->max_num_of_open_dmas	= 32;
1227 			state->num_of_rx_ports		= 5;
1228 			if (minor == 1)
1229 				state->fm_iram_size	= 32 * 1024;
1230 			else
1231 				state->fm_iram_size	= 64 * 1024;
1232 			state->total_fifo_size		= 156 * 1024;
1233 		}
1234 		/* FManV3H */
1235 		else if (minor == 0 || minor == 2 || minor == 3) {
1236 			state->bmi_max_fifo_size	= 384 * 1024;
1237 			state->fm_iram_size		= 64 * 1024;
1238 			state->bmi_max_num_of_tasks	= 128;
1239 			state->max_num_of_open_dmas	= 84;
1240 			state->num_of_rx_ports		= 8;
1241 			state->total_fifo_size		= 295 * 1024;
1242 		} else {
1243 			pr_err("Unsupported FManv3 version\n");
1244 			return -EINVAL;
1245 		}
1246 
1247 		break;
1248 	default:
1249 		pr_err("Unsupported FMan version\n");
1250 		return -EINVAL;
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static bool is_init_done(struct fman_cfg *cfg)
1257 {
1258 	/* Checks if FMan driver parameters were initialized */
1259 	if (!cfg)
1260 		return true;
1261 
1262 	return false;
1263 }
1264 
1265 static void free_init_resources(struct fman *fman)
1266 {
1267 	if (fman->cam_offset)
1268 		fman_muram_free_mem(fman->muram, fman->cam_offset,
1269 				    fman->cam_size);
1270 	if (fman->fifo_offset)
1271 		fman_muram_free_mem(fman->muram, fman->fifo_offset,
1272 				    fman->fifo_size);
1273 }
1274 
1275 static irqreturn_t bmi_err_event(struct fman *fman)
1276 {
1277 	u32 event, mask, force;
1278 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1279 	irqreturn_t ret = IRQ_NONE;
1280 
1281 	event = ioread32be(&bmi_rg->fmbm_ievr);
1282 	mask = ioread32be(&bmi_rg->fmbm_ier);
1283 	event &= mask;
1284 	/* clear the forced events */
1285 	force = ioread32be(&bmi_rg->fmbm_ifr);
1286 	if (force & event)
1287 		iowrite32be(force & ~event, &bmi_rg->fmbm_ifr);
1288 	/* clear the acknowledged events */
1289 	iowrite32be(event, &bmi_rg->fmbm_ievr);
1290 
1291 	if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC)
1292 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC);
1293 	if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC)
1294 		ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC);
1295 	if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC)
1296 		ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC);
1297 	if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC)
1298 		ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC);
1299 
1300 	return ret;
1301 }
1302 
1303 static irqreturn_t qmi_err_event(struct fman *fman)
1304 {
1305 	u32 event, mask, force;
1306 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1307 	irqreturn_t ret = IRQ_NONE;
1308 
1309 	event = ioread32be(&qmi_rg->fmqm_eie);
1310 	mask = ioread32be(&qmi_rg->fmqm_eien);
1311 	event &= mask;
1312 
1313 	/* clear the forced events */
1314 	force = ioread32be(&qmi_rg->fmqm_eif);
1315 	if (force & event)
1316 		iowrite32be(force & ~event, &qmi_rg->fmqm_eif);
1317 	/* clear the acknowledged events */
1318 	iowrite32be(event, &qmi_rg->fmqm_eie);
1319 
1320 	if (event & QMI_ERR_INTR_EN_DOUBLE_ECC)
1321 		ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC);
1322 	if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF)
1323 		ret = fman->exception_cb(fman,
1324 					 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID);
1325 
1326 	return ret;
1327 }
1328 
1329 static irqreturn_t dma_err_event(struct fman *fman)
1330 {
1331 	u32 status, mask, com_id;
1332 	u8 tnum, port_id, relative_port_id;
1333 	u16 liodn;
1334 	struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
1335 	irqreturn_t ret = IRQ_NONE;
1336 
1337 	status = ioread32be(&dma_rg->fmdmsr);
1338 	mask = ioread32be(&dma_rg->fmdmmr);
1339 
1340 	/* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */
1341 	if ((mask & DMA_MODE_BER) != DMA_MODE_BER)
1342 		status &= ~DMA_STATUS_BUS_ERR;
1343 
1344 	/* clear relevant bits if mask has no DMA_MODE_ECC */
1345 	if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC)
1346 		status &= ~(DMA_STATUS_FM_SPDAT_ECC |
1347 			    DMA_STATUS_READ_ECC |
1348 			    DMA_STATUS_SYSTEM_WRITE_ECC |
1349 			    DMA_STATUS_FM_WRITE_ECC);
1350 
1351 	/* clear set events */
1352 	iowrite32be(status, &dma_rg->fmdmsr);
1353 
1354 	if (status & DMA_STATUS_BUS_ERR) {
1355 		u64 addr;
1356 
1357 		addr = (u64)ioread32be(&dma_rg->fmdmtal);
1358 		addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32);
1359 
1360 		com_id = ioread32be(&dma_rg->fmdmtcid);
1361 		port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >>
1362 			       DMA_TRANSFER_PORTID_SHIFT));
1363 		relative_port_id =
1364 		hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
1365 		tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >>
1366 			    DMA_TRANSFER_TNUM_SHIFT);
1367 		liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK);
1368 		ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum,
1369 					 liodn);
1370 	}
1371 	if (status & DMA_STATUS_FM_SPDAT_ECC)
1372 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC);
1373 	if (status & DMA_STATUS_READ_ECC)
1374 		ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC);
1375 	if (status & DMA_STATUS_SYSTEM_WRITE_ECC)
1376 		ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC);
1377 	if (status & DMA_STATUS_FM_WRITE_ECC)
1378 		ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC);
1379 
1380 	return ret;
1381 }
1382 
1383 static irqreturn_t fpm_err_event(struct fman *fman)
1384 {
1385 	u32 event;
1386 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1387 	irqreturn_t ret = IRQ_NONE;
1388 
1389 	event = ioread32be(&fpm_rg->fmfp_ee);
1390 	/* clear the all occurred events */
1391 	iowrite32be(event, &fpm_rg->fmfp_ee);
1392 
1393 	if ((event & FPM_EV_MASK_DOUBLE_ECC) &&
1394 	    (event & FPM_EV_MASK_DOUBLE_ECC_EN))
1395 		ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC);
1396 	if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN))
1397 		ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS);
1398 	if ((event & FPM_EV_MASK_SINGLE_ECC) &&
1399 	    (event & FPM_EV_MASK_SINGLE_ECC_EN))
1400 		ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC);
1401 
1402 	return ret;
1403 }
1404 
1405 static irqreturn_t muram_err_intr(struct fman *fman)
1406 {
1407 	u32 event, mask;
1408 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1409 	irqreturn_t ret = IRQ_NONE;
1410 
1411 	event = ioread32be(&fpm_rg->fm_rcr);
1412 	mask = ioread32be(&fpm_rg->fm_rie);
1413 
1414 	/* clear MURAM event bit (do not clear IRAM event) */
1415 	iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr);
1416 
1417 	if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC))
1418 		ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC);
1419 
1420 	return ret;
1421 }
1422 
1423 static irqreturn_t qmi_event(struct fman *fman)
1424 {
1425 	u32 event, mask, force;
1426 	struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1427 	irqreturn_t ret = IRQ_NONE;
1428 
1429 	event = ioread32be(&qmi_rg->fmqm_ie);
1430 	mask = ioread32be(&qmi_rg->fmqm_ien);
1431 	event &= mask;
1432 	/* clear the forced events */
1433 	force = ioread32be(&qmi_rg->fmqm_if);
1434 	if (force & event)
1435 		iowrite32be(force & ~event, &qmi_rg->fmqm_if);
1436 	/* clear the acknowledged events */
1437 	iowrite32be(event, &qmi_rg->fmqm_ie);
1438 
1439 	if (event & QMI_INTR_EN_SINGLE_ECC)
1440 		ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC);
1441 
1442 	return ret;
1443 }
1444 
1445 static void enable_time_stamp(struct fman *fman)
1446 {
1447 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1448 	u16 fm_clk_freq = fman->state->fm_clk_freq;
1449 	u32 tmp, intgr, ts_freq;
1450 	u64 frac;
1451 
1452 	ts_freq = (u32)(1 << fman->state->count1_micro_bit);
1453 	/* configure timestamp so that bit 8 will count 1 microsecond
1454 	 * Find effective count rate at TIMESTAMP least significant bits:
1455 	 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz
1456 	 * Find frequency ratio between effective count rate and the clock:
1457 	 * Effective_Count_Rate / CLK e.g. for 600 MHz clock:
1458 	 * 256/600 = 0.4266666...
1459 	 */
1460 
1461 	intgr = ts_freq / fm_clk_freq;
1462 	/* we multiply by 2^16 to keep the fraction of the division
1463 	 * we do not div back, since we write this value as a fraction
1464 	 * see spec
1465 	 */
1466 
1467 	frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq;
1468 	/* we check remainder of the division in order to round up if not int */
1469 	if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq)
1470 		frac++;
1471 
1472 	tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac;
1473 	iowrite32be(tmp, &fpm_rg->fmfp_tsc2);
1474 
1475 	/* enable timestamp with original clock */
1476 	iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1);
1477 	fman->state->enabled_time_stamp = true;
1478 }
1479 
1480 static int clear_iram(struct fman *fman)
1481 {
1482 	struct fman_iram_regs __iomem *iram;
1483 	int i, count;
1484 
1485 	iram = fman->base_addr + IMEM_OFFSET;
1486 
1487 	/* Enable the auto-increment */
1488 	iowrite32be(IRAM_IADD_AIE, &iram->iadd);
1489 	count = 100;
1490 	do {
1491 		udelay(1);
1492 	} while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count);
1493 	if (count == 0)
1494 		return -EBUSY;
1495 
1496 	for (i = 0; i < (fman->state->fm_iram_size / 4); i++)
1497 		iowrite32be(0xffffffff, &iram->idata);
1498 
1499 	iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd);
1500 	count = 100;
1501 	do {
1502 		udelay(1);
1503 	} while ((ioread32be(&iram->idata) != 0xffffffff) && --count);
1504 	if (count == 0)
1505 		return -EBUSY;
1506 
1507 	return 0;
1508 }
1509 
1510 static u32 get_exception_flag(enum fman_exceptions exception)
1511 {
1512 	u32 bit_mask;
1513 
1514 	switch (exception) {
1515 	case FMAN_EX_DMA_BUS_ERROR:
1516 		bit_mask = EX_DMA_BUS_ERROR;
1517 		break;
1518 	case FMAN_EX_DMA_SINGLE_PORT_ECC:
1519 		bit_mask = EX_DMA_SINGLE_PORT_ECC;
1520 		break;
1521 	case FMAN_EX_DMA_READ_ECC:
1522 		bit_mask = EX_DMA_READ_ECC;
1523 		break;
1524 	case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1525 		bit_mask = EX_DMA_SYSTEM_WRITE_ECC;
1526 		break;
1527 	case FMAN_EX_DMA_FM_WRITE_ECC:
1528 		bit_mask = EX_DMA_FM_WRITE_ECC;
1529 		break;
1530 	case FMAN_EX_FPM_STALL_ON_TASKS:
1531 		bit_mask = EX_FPM_STALL_ON_TASKS;
1532 		break;
1533 	case FMAN_EX_FPM_SINGLE_ECC:
1534 		bit_mask = EX_FPM_SINGLE_ECC;
1535 		break;
1536 	case FMAN_EX_FPM_DOUBLE_ECC:
1537 		bit_mask = EX_FPM_DOUBLE_ECC;
1538 		break;
1539 	case FMAN_EX_QMI_SINGLE_ECC:
1540 		bit_mask = EX_QMI_SINGLE_ECC;
1541 		break;
1542 	case FMAN_EX_QMI_DOUBLE_ECC:
1543 		bit_mask = EX_QMI_DOUBLE_ECC;
1544 		break;
1545 	case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1546 		bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID;
1547 		break;
1548 	case FMAN_EX_BMI_LIST_RAM_ECC:
1549 		bit_mask = EX_BMI_LIST_RAM_ECC;
1550 		break;
1551 	case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1552 		bit_mask = EX_BMI_STORAGE_PROFILE_ECC;
1553 		break;
1554 	case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1555 		bit_mask = EX_BMI_STATISTICS_RAM_ECC;
1556 		break;
1557 	case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1558 		bit_mask = EX_BMI_DISPATCH_RAM_ECC;
1559 		break;
1560 	case FMAN_EX_MURAM_ECC:
1561 		bit_mask = EX_MURAM_ECC;
1562 		break;
1563 	default:
1564 		bit_mask = 0;
1565 		break;
1566 	}
1567 
1568 	return bit_mask;
1569 }
1570 
1571 static int get_module_event(enum fman_event_modules module, u8 mod_id,
1572 			    enum fman_intr_type intr_type)
1573 {
1574 	int event;
1575 
1576 	switch (module) {
1577 	case FMAN_MOD_MAC:
1578 		if (intr_type == FMAN_INTR_TYPE_ERR)
1579 			event = FMAN_EV_ERR_MAC0 + mod_id;
1580 		else
1581 			event = FMAN_EV_MAC0 + mod_id;
1582 		break;
1583 	case FMAN_MOD_FMAN_CTRL:
1584 		if (intr_type == FMAN_INTR_TYPE_ERR)
1585 			event = FMAN_EV_CNT;
1586 		else
1587 			event = (FMAN_EV_FMAN_CTRL_0 + mod_id);
1588 		break;
1589 	case FMAN_MOD_DUMMY_LAST:
1590 		event = FMAN_EV_CNT;
1591 		break;
1592 	default:
1593 		event = FMAN_EV_CNT;
1594 		break;
1595 	}
1596 
1597 	return event;
1598 }
1599 
1600 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo,
1601 			    u32 *extra_size_of_fifo)
1602 {
1603 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1604 	u32 fifo = *size_of_fifo;
1605 	u32 extra_fifo = *extra_size_of_fifo;
1606 	u32 tmp;
1607 
1608 	/* if this is the first time a port requires extra_fifo_pool_size,
1609 	 * the total extra_fifo_pool_size must be initialized to 1 buffer per
1610 	 * port
1611 	 */
1612 	if (extra_fifo && !fman->state->extra_fifo_pool_size)
1613 		fman->state->extra_fifo_pool_size =
1614 			fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS;
1615 
1616 	fman->state->extra_fifo_pool_size =
1617 		max(fman->state->extra_fifo_pool_size, extra_fifo);
1618 
1619 	/* check that there are enough uncommitted fifo size */
1620 	if ((fman->state->accumulated_fifo_size + fifo) >
1621 	    (fman->state->total_fifo_size -
1622 	    fman->state->extra_fifo_pool_size)) {
1623 		dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n",
1624 			__func__);
1625 		return -EAGAIN;
1626 	}
1627 
1628 	/* Read, modify and write to HW */
1629 	tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) |
1630 	       ((extra_fifo / FMAN_BMI_FIFO_UNITS) <<
1631 	       BMI_EXTRA_FIFO_SIZE_SHIFT);
1632 	iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]);
1633 
1634 	/* update accumulated */
1635 	fman->state->accumulated_fifo_size += fifo;
1636 
1637 	return 0;
1638 }
1639 
1640 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks,
1641 			    u8 *num_of_extra_tasks)
1642 {
1643 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1644 	u8 tasks = *num_of_tasks;
1645 	u8 extra_tasks = *num_of_extra_tasks;
1646 	u32 tmp;
1647 
1648 	if (extra_tasks)
1649 		fman->state->extra_tasks_pool_size =
1650 		max(fman->state->extra_tasks_pool_size, extra_tasks);
1651 
1652 	/* check that there are enough uncommitted tasks */
1653 	if ((fman->state->accumulated_num_of_tasks + tasks) >
1654 	    (fman->state->total_num_of_tasks -
1655 	     fman->state->extra_tasks_pool_size)) {
1656 		dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n",
1657 			__func__, fman->state->fm_id);
1658 		return -EAGAIN;
1659 	}
1660 	/* update accumulated */
1661 	fman->state->accumulated_num_of_tasks += tasks;
1662 
1663 	/* Write to HW */
1664 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1665 	    ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK);
1666 	tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) |
1667 		(u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT));
1668 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1669 
1670 	return 0;
1671 }
1672 
1673 static int set_num_of_open_dmas(struct fman *fman, u8 port_id,
1674 				u8 *num_of_open_dmas,
1675 				u8 *num_of_extra_open_dmas)
1676 {
1677 	struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1678 	u8 open_dmas = *num_of_open_dmas;
1679 	u8 extra_open_dmas = *num_of_extra_open_dmas;
1680 	u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0;
1681 	u32 tmp;
1682 
1683 	if (!open_dmas) {
1684 		/* Configuration according to values in the HW.
1685 		 * read the current number of open Dma's
1686 		 */
1687 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1688 		current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >>
1689 					 BMI_EXTRA_NUM_OF_DMAS_SHIFT);
1690 
1691 		tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1692 		current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >>
1693 				   BMI_NUM_OF_DMAS_SHIFT) + 1);
1694 
1695 		/* This is the first configuration and user did not
1696 		 * specify value (!open_dmas), reset values will be used
1697 		 * and we just save these values for resource management
1698 		 */
1699 		fman->state->extra_open_dmas_pool_size =
1700 			(u8)max(fman->state->extra_open_dmas_pool_size,
1701 				current_extra_val);
1702 		fman->state->accumulated_num_of_open_dmas += current_val;
1703 		*num_of_open_dmas = current_val;
1704 		*num_of_extra_open_dmas = current_extra_val;
1705 		return 0;
1706 	}
1707 
1708 	if (extra_open_dmas > current_extra_val)
1709 		fman->state->extra_open_dmas_pool_size =
1710 		    (u8)max(fman->state->extra_open_dmas_pool_size,
1711 			    extra_open_dmas);
1712 
1713 	if ((fman->state->rev_info.major < 6) &&
1714 	    (fman->state->accumulated_num_of_open_dmas - current_val +
1715 	     open_dmas > fman->state->max_num_of_open_dmas)) {
1716 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n",
1717 			__func__, fman->state->fm_id);
1718 		return -EAGAIN;
1719 	} else if ((fman->state->rev_info.major >= 6) &&
1720 		   !((fman->state->rev_info.major == 6) &&
1721 		   (fman->state->rev_info.minor == 0)) &&
1722 		   (fman->state->accumulated_num_of_open_dmas -
1723 		   current_val + open_dmas >
1724 		   fman->state->dma_thresh_max_commq + 1)) {
1725 		dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n",
1726 			__func__, fman->state->fm_id,
1727 		       fman->state->dma_thresh_max_commq + 1);
1728 		return -EAGAIN;
1729 	}
1730 
1731 	WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val);
1732 	/* update acummulated */
1733 	fman->state->accumulated_num_of_open_dmas -= current_val;
1734 	fman->state->accumulated_num_of_open_dmas += open_dmas;
1735 
1736 	if (fman->state->rev_info.major < 6)
1737 		total_num_dmas =
1738 		    (u8)(fman->state->accumulated_num_of_open_dmas +
1739 		    fman->state->extra_open_dmas_pool_size);
1740 
1741 	/* calculate reg */
1742 	tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1743 	    ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK);
1744 	tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) |
1745 			   (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT));
1746 	iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1747 
1748 	/* update total num of DMA's with committed number of open DMAS,
1749 	 * and max uncommitted pool.
1750 	 */
1751 	if (total_num_dmas) {
1752 		tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK;
1753 		tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT;
1754 		iowrite32be(tmp, &bmi_rg->fmbm_cfg2);
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 static int fman_config(struct fman *fman)
1761 {
1762 	void __iomem *base_addr;
1763 	int err;
1764 
1765 	base_addr = fman->dts_params.base_addr;
1766 
1767 	fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL);
1768 	if (!fman->state)
1769 		goto err_fm_state;
1770 
1771 	/* Allocate the FM driver's parameters structure */
1772 	fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL);
1773 	if (!fman->cfg)
1774 		goto err_fm_drv;
1775 
1776 	/* Initialize MURAM block */
1777 	fman->muram =
1778 		fman_muram_init(fman->dts_params.muram_res.start,
1779 				resource_size(&fman->dts_params.muram_res));
1780 	if (!fman->muram)
1781 		goto err_fm_soc_specific;
1782 
1783 	/* Initialize FM parameters which will be kept by the driver */
1784 	fman->state->fm_id = fman->dts_params.id;
1785 	fman->state->fm_clk_freq = fman->dts_params.clk_freq;
1786 	fman->state->qman_channel_base = fman->dts_params.qman_channel_base;
1787 	fman->state->num_of_qman_channels =
1788 		fman->dts_params.num_of_qman_channels;
1789 	fman->state->res = fman->dts_params.res;
1790 	fman->exception_cb = fman_exceptions;
1791 	fman->bus_error_cb = fman_bus_error;
1792 	fman->fpm_regs = base_addr + FPM_OFFSET;
1793 	fman->bmi_regs = base_addr + BMI_OFFSET;
1794 	fman->qmi_regs = base_addr + QMI_OFFSET;
1795 	fman->dma_regs = base_addr + DMA_OFFSET;
1796 	fman->base_addr = base_addr;
1797 
1798 	spin_lock_init(&fman->spinlock);
1799 	fman_defconfig(fman->cfg);
1800 
1801 	fman->state->extra_fifo_pool_size = 0;
1802 	fman->state->exceptions = (EX_DMA_BUS_ERROR                 |
1803 					EX_DMA_READ_ECC              |
1804 					EX_DMA_SYSTEM_WRITE_ECC      |
1805 					EX_DMA_FM_WRITE_ECC          |
1806 					EX_FPM_STALL_ON_TASKS        |
1807 					EX_FPM_SINGLE_ECC            |
1808 					EX_FPM_DOUBLE_ECC            |
1809 					EX_QMI_DEQ_FROM_UNKNOWN_PORTID |
1810 					EX_BMI_LIST_RAM_ECC          |
1811 					EX_BMI_STORAGE_PROFILE_ECC   |
1812 					EX_BMI_STATISTICS_RAM_ECC    |
1813 					EX_MURAM_ECC                 |
1814 					EX_BMI_DISPATCH_RAM_ECC      |
1815 					EX_QMI_DOUBLE_ECC            |
1816 					EX_QMI_SINGLE_ECC);
1817 
1818 	/* Read FMan revision for future use*/
1819 	fman_get_revision(fman, &fman->state->rev_info);
1820 
1821 	err = fill_soc_specific_params(fman->state);
1822 	if (err)
1823 		goto err_fm_soc_specific;
1824 
1825 	/* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */
1826 	if (fman->state->rev_info.major >= 6)
1827 		fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID;
1828 
1829 	fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh;
1830 
1831 	fman->state->total_num_of_tasks =
1832 	(u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major,
1833 				    fman->state->rev_info.minor,
1834 				    fman->state->bmi_max_num_of_tasks);
1835 
1836 	if (fman->state->rev_info.major < 6) {
1837 		fman->cfg->dma_comm_qtsh_clr_emer =
1838 		(u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major,
1839 					fman->state->dma_thresh_max_commq);
1840 
1841 		fman->cfg->dma_comm_qtsh_asrt_emer =
1842 		(u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major,
1843 					 fman->state->dma_thresh_max_commq);
1844 
1845 		fman->cfg->dma_cam_num_of_entries =
1846 		DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major);
1847 
1848 		fman->cfg->dma_read_buf_tsh_clr_emer =
1849 		DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1850 
1851 		fman->cfg->dma_read_buf_tsh_asrt_emer =
1852 		DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1853 
1854 		fman->cfg->dma_write_buf_tsh_clr_emer =
1855 		DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1856 
1857 		fman->cfg->dma_write_buf_tsh_asrt_emer =
1858 		DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1859 
1860 		fman->cfg->dma_axi_dbg_num_of_beats =
1861 		DFLT_AXI_DBG_NUM_OF_BEATS;
1862 	}
1863 
1864 	return 0;
1865 
1866 err_fm_soc_specific:
1867 	kfree(fman->cfg);
1868 err_fm_drv:
1869 	kfree(fman->state);
1870 err_fm_state:
1871 	kfree(fman);
1872 	return -EINVAL;
1873 }
1874 
1875 static int fman_reset(struct fman *fman)
1876 {
1877 	u32 count;
1878 	int err = 0;
1879 
1880 	if (fman->state->rev_info.major < 6) {
1881 		iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1882 		/* Wait for reset completion */
1883 		count = 100;
1884 		do {
1885 			udelay(1);
1886 		} while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1887 			 FPM_RSTC_FM_RESET) && --count);
1888 		if (count == 0)
1889 			err = -EBUSY;
1890 
1891 		goto _return;
1892 	} else {
1893 		struct device_node *guts_node;
1894 		struct ccsr_guts __iomem *guts_regs;
1895 		u32 devdisr2, reg;
1896 
1897 		/* Errata A007273 */
1898 		guts_node =
1899 			of_find_compatible_node(NULL, NULL,
1900 						"fsl,qoriq-device-config-2.0");
1901 		if (!guts_node) {
1902 			dev_err(fman->dev, "%s: Couldn't find guts node\n",
1903 				__func__);
1904 			goto guts_node;
1905 		}
1906 
1907 		guts_regs = of_iomap(guts_node, 0);
1908 		if (!guts_regs) {
1909 			dev_err(fman->dev, "%s: Couldn't map %s regs\n",
1910 				__func__, guts_node->full_name);
1911 			goto guts_regs;
1912 		}
1913 #define FMAN1_ALL_MACS_MASK	0xFCC00000
1914 #define FMAN2_ALL_MACS_MASK	0x000FCC00
1915 		/* Read current state */
1916 		devdisr2 = ioread32be(&guts_regs->devdisr2);
1917 		if (fman->dts_params.id == 0)
1918 			reg = devdisr2 & ~FMAN1_ALL_MACS_MASK;
1919 		else
1920 			reg = devdisr2 & ~FMAN2_ALL_MACS_MASK;
1921 
1922 		/* Enable all MACs */
1923 		iowrite32be(reg, &guts_regs->devdisr2);
1924 
1925 		/* Perform FMan reset */
1926 		iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1927 
1928 		/* Wait for reset completion */
1929 		count = 100;
1930 		do {
1931 			udelay(1);
1932 		} while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1933 			 FPM_RSTC_FM_RESET) && --count);
1934 		if (count == 0) {
1935 			iounmap(guts_regs);
1936 			of_node_put(guts_node);
1937 			err = -EBUSY;
1938 			goto _return;
1939 		}
1940 
1941 		/* Restore devdisr2 value */
1942 		iowrite32be(devdisr2, &guts_regs->devdisr2);
1943 
1944 		iounmap(guts_regs);
1945 		of_node_put(guts_node);
1946 
1947 		goto _return;
1948 
1949 guts_regs:
1950 		of_node_put(guts_node);
1951 guts_node:
1952 		dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n",
1953 			__func__);
1954 	}
1955 _return:
1956 	return err;
1957 }
1958 
1959 static int fman_init(struct fman *fman)
1960 {
1961 	struct fman_cfg *cfg = NULL;
1962 	int err = 0, i, count;
1963 
1964 	if (is_init_done(fman->cfg))
1965 		return -EINVAL;
1966 
1967 	fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT;
1968 
1969 	cfg = fman->cfg;
1970 
1971 	/* clear revision-dependent non existing exception */
1972 	if (fman->state->rev_info.major < 6)
1973 		fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC;
1974 
1975 	if (fman->state->rev_info.major >= 6)
1976 		fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC;
1977 
1978 	/* clear CPG */
1979 	memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0,
1980 		  fman->state->fm_port_num_of_cg);
1981 
1982 	/* Save LIODN info before FMan reset
1983 	 * Skipping non-existent port 0 (i = 1)
1984 	 */
1985 	for (i = 1; i < FMAN_LIODN_TBL; i++) {
1986 		u32 liodn_base;
1987 
1988 		fman->liodn_offset[i] =
1989 			ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]);
1990 		liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]);
1991 		if (i % 2) {
1992 			/* FMDM_PLR LSB holds LIODN base for odd ports */
1993 			liodn_base &= DMA_LIODN_BASE_MASK;
1994 		} else {
1995 			/* FMDM_PLR MSB holds LIODN base for even ports */
1996 			liodn_base >>= DMA_LIODN_SHIFT;
1997 			liodn_base &= DMA_LIODN_BASE_MASK;
1998 		}
1999 		fman->liodn_base[i] = liodn_base;
2000 	}
2001 
2002 	err = fman_reset(fman);
2003 	if (err)
2004 		return err;
2005 
2006 	if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) {
2007 		resume(fman->fpm_regs);
2008 		/* Wait until QMI is not in halt not busy state */
2009 		count = 100;
2010 		do {
2011 			udelay(1);
2012 		} while (((ioread32be(&fman->qmi_regs->fmqm_gs)) &
2013 			 QMI_GS_HALT_NOT_BUSY) && --count);
2014 		if (count == 0)
2015 			dev_warn(fman->dev, "%s: QMI is in halt not busy state\n",
2016 				 __func__);
2017 	}
2018 
2019 	if (clear_iram(fman) != 0)
2020 		return -EINVAL;
2021 
2022 	cfg->exceptions = fman->state->exceptions;
2023 
2024 	/* Init DMA Registers */
2025 
2026 	err = dma_init(fman);
2027 	if (err != 0) {
2028 		free_init_resources(fman);
2029 		return err;
2030 	}
2031 
2032 	/* Init FPM Registers */
2033 	fpm_init(fman->fpm_regs, fman->cfg);
2034 
2035 	/* define common resources */
2036 	/* allocate MURAM for FIFO according to total size */
2037 	fman->fifo_offset = fman_muram_alloc(fman->muram,
2038 					     fman->state->total_fifo_size);
2039 	if (IS_ERR_VALUE(fman->cam_offset)) {
2040 		free_init_resources(fman);
2041 		dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n",
2042 			__func__);
2043 		return -ENOMEM;
2044 	}
2045 
2046 	cfg->fifo_base_addr = fman->fifo_offset;
2047 	cfg->total_fifo_size = fman->state->total_fifo_size;
2048 	cfg->total_num_of_tasks = fman->state->total_num_of_tasks;
2049 	cfg->clk_freq = fman->state->fm_clk_freq;
2050 
2051 	/* Init BMI Registers */
2052 	bmi_init(fman->bmi_regs, fman->cfg);
2053 
2054 	/* Init QMI Registers */
2055 	qmi_init(fman->qmi_regs, fman->cfg);
2056 
2057 	err = enable(fman, cfg);
2058 	if (err != 0)
2059 		return err;
2060 
2061 	enable_time_stamp(fman);
2062 
2063 	kfree(fman->cfg);
2064 	fman->cfg = NULL;
2065 
2066 	return 0;
2067 }
2068 
2069 static int fman_set_exception(struct fman *fman,
2070 			      enum fman_exceptions exception, bool enable)
2071 {
2072 	u32 bit_mask = 0;
2073 
2074 	if (!is_init_done(fman->cfg))
2075 		return -EINVAL;
2076 
2077 	bit_mask = get_exception_flag(exception);
2078 	if (bit_mask) {
2079 		if (enable)
2080 			fman->state->exceptions |= bit_mask;
2081 		else
2082 			fman->state->exceptions &= ~bit_mask;
2083 	} else {
2084 		dev_err(fman->dev, "%s: Undefined exception (%d)\n",
2085 			__func__, exception);
2086 		return -EINVAL;
2087 	}
2088 
2089 	return set_exception(fman, exception, enable);
2090 }
2091 
2092 /**
2093  * fman_register_intr
2094  * @fman:	A Pointer to FMan device
2095  * @mod:	Calling module
2096  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2097  * @intr_type:	Interrupt type (error/normal) selection.
2098  * @f_isr:	The interrupt service routine.
2099  * @h_src_arg:	Argument to be passed to f_isr.
2100  *
2101  * Used to register an event handler to be processed by FMan
2102  *
2103  * Return: 0 on success; Error code otherwise.
2104  */
2105 void fman_register_intr(struct fman *fman, enum fman_event_modules module,
2106 			u8 mod_id, enum fman_intr_type intr_type,
2107 			void (*isr_cb)(void *src_arg), void *src_arg)
2108 {
2109 	int event = 0;
2110 
2111 	event = get_module_event(module, mod_id, intr_type);
2112 	WARN_ON(event >= FMAN_EV_CNT);
2113 
2114 	/* register in local FM structure */
2115 	fman->intr_mng[event].isr_cb = isr_cb;
2116 	fman->intr_mng[event].src_handle = src_arg;
2117 }
2118 
2119 /**
2120  * fman_unregister_intr
2121  * @fman:	A Pointer to FMan device
2122  * @mod:	Calling module
2123  * @mod_id:	Module id (if more than 1 exists, '0' if not)
2124  * @intr_type:	Interrupt type (error/normal) selection.
2125  *
2126  * Used to unregister an event handler to be processed by FMan
2127  *
2128  * Return: 0 on success; Error code otherwise.
2129  */
2130 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module,
2131 			  u8 mod_id, enum fman_intr_type intr_type)
2132 {
2133 	int event = 0;
2134 
2135 	event = get_module_event(module, mod_id, intr_type);
2136 	WARN_ON(event >= FMAN_EV_CNT);
2137 
2138 	fman->intr_mng[event].isr_cb = NULL;
2139 	fman->intr_mng[event].src_handle = NULL;
2140 }
2141 
2142 /**
2143  * fman_set_port_params
2144  * @fman:		A Pointer to FMan device
2145  * @port_params:	Port parameters
2146  *
2147  * Used by FMan Port to pass parameters to the FMan
2148  *
2149  * Return: 0 on success; Error code otherwise.
2150  */
2151 int fman_set_port_params(struct fman *fman,
2152 			 struct fman_port_init_params *port_params)
2153 {
2154 	int err;
2155 	unsigned long flags;
2156 	u8 port_id = port_params->port_id, mac_id;
2157 
2158 	spin_lock_irqsave(&fman->spinlock, flags);
2159 
2160 	err = set_num_of_tasks(fman, port_params->port_id,
2161 			       &port_params->num_of_tasks,
2162 			       &port_params->num_of_extra_tasks);
2163 	if (err)
2164 		goto return_err;
2165 
2166 	/* TX Ports */
2167 	if (port_params->port_type != FMAN_PORT_TYPE_RX) {
2168 		u32 enq_th, deq_th, reg;
2169 
2170 		/* update qmi ENQ/DEQ threshold */
2171 		fman->state->accumulated_num_of_deq_tnums +=
2172 			port_params->deq_pipeline_depth;
2173 		enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) &
2174 			  QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT;
2175 		/* if enq_th is too big, we reduce it to the max value
2176 		 * that is still 0
2177 		 */
2178 		if (enq_th >= (fman->state->qmi_max_num_of_tnums -
2179 		    fman->state->accumulated_num_of_deq_tnums)) {
2180 			enq_th =
2181 			fman->state->qmi_max_num_of_tnums -
2182 			fman->state->accumulated_num_of_deq_tnums - 1;
2183 
2184 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2185 			reg &= ~QMI_CFG_ENQ_MASK;
2186 			reg |= (enq_th << QMI_CFG_ENQ_SHIFT);
2187 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2188 		}
2189 
2190 		deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) &
2191 				    QMI_CFG_DEQ_MASK;
2192 		/* if deq_th is too small, we enlarge it to the min
2193 		 * value that is still 0.
2194 		 * depTh may not be larger than 63
2195 		 * (fman->state->qmi_max_num_of_tnums-1).
2196 		 */
2197 		if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) &&
2198 		    (deq_th < fman->state->qmi_max_num_of_tnums - 1)) {
2199 			deq_th = fman->state->accumulated_num_of_deq_tnums + 1;
2200 			reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2201 			reg &= ~QMI_CFG_DEQ_MASK;
2202 			reg |= deq_th;
2203 			iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2204 		}
2205 	}
2206 
2207 	err = set_size_of_fifo(fman, port_params->port_id,
2208 			       &port_params->size_of_fifo,
2209 			       &port_params->extra_size_of_fifo);
2210 	if (err)
2211 		goto return_err;
2212 
2213 	err = set_num_of_open_dmas(fman, port_params->port_id,
2214 				   &port_params->num_of_open_dmas,
2215 				   &port_params->num_of_extra_open_dmas);
2216 	if (err)
2217 		goto return_err;
2218 
2219 	set_port_liodn(fman, port_id, fman->liodn_base[port_id],
2220 		       fman->liodn_offset[port_id]);
2221 
2222 	if (fman->state->rev_info.major < 6)
2223 		set_port_order_restoration(fman->fpm_regs, port_id);
2224 
2225 	mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
2226 
2227 	if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) {
2228 		fman->state->port_mfl[mac_id] = port_params->max_frame_length;
2229 	} else {
2230 		dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n",
2231 			 __func__, port_id, mac_id);
2232 		err = -EINVAL;
2233 		goto return_err;
2234 	}
2235 
2236 	spin_unlock_irqrestore(&fman->spinlock, flags);
2237 
2238 	return 0;
2239 
2240 return_err:
2241 	spin_unlock_irqrestore(&fman->spinlock, flags);
2242 	return err;
2243 }
2244 
2245 /**
2246  * fman_reset_mac
2247  * @fman:	A Pointer to FMan device
2248  * @mac_id:	MAC id to be reset
2249  *
2250  * Reset a specific MAC
2251  *
2252  * Return: 0 on success; Error code otherwise.
2253  */
2254 int fman_reset_mac(struct fman *fman, u8 mac_id)
2255 {
2256 	struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
2257 	u32 msk, timeout = 100;
2258 
2259 	if (fman->state->rev_info.major >= 6) {
2260 		dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n",
2261 			__func__);
2262 		return -EINVAL;
2263 	}
2264 
2265 	/* Get the relevant bit mask */
2266 	switch (mac_id) {
2267 	case 0:
2268 		msk = FPM_RSTC_MAC0_RESET;
2269 		break;
2270 	case 1:
2271 		msk = FPM_RSTC_MAC1_RESET;
2272 		break;
2273 	case 2:
2274 		msk = FPM_RSTC_MAC2_RESET;
2275 		break;
2276 	case 3:
2277 		msk = FPM_RSTC_MAC3_RESET;
2278 		break;
2279 	case 4:
2280 		msk = FPM_RSTC_MAC4_RESET;
2281 		break;
2282 	case 5:
2283 		msk = FPM_RSTC_MAC5_RESET;
2284 		break;
2285 	case 6:
2286 		msk = FPM_RSTC_MAC6_RESET;
2287 		break;
2288 	case 7:
2289 		msk = FPM_RSTC_MAC7_RESET;
2290 		break;
2291 	case 8:
2292 		msk = FPM_RSTC_MAC8_RESET;
2293 		break;
2294 	case 9:
2295 		msk = FPM_RSTC_MAC9_RESET;
2296 		break;
2297 	default:
2298 		dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n",
2299 			 __func__, mac_id);
2300 		return -EINVAL;
2301 	}
2302 
2303 	/* reset */
2304 	iowrite32be(msk, &fpm_rg->fm_rstc);
2305 	while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout)
2306 		udelay(10);
2307 
2308 	if (!timeout)
2309 		return -EIO;
2310 
2311 	return 0;
2312 }
2313 
2314 /**
2315  * fman_set_mac_max_frame
2316  * @fman:	A Pointer to FMan device
2317  * @mac_id:	MAC id
2318  * @mfl:	Maximum frame length
2319  *
2320  * Set maximum frame length of specific MAC in FMan driver
2321  *
2322  * Return: 0 on success; Error code otherwise.
2323  */
2324 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl)
2325 {
2326 	/* if port is already initialized, check that MaxFrameLength is smaller
2327 	 * or equal to the port's max
2328 	 */
2329 	if ((!fman->state->port_mfl[mac_id]) ||
2330 	    (fman->state->port_mfl[mac_id] &&
2331 	    (mfl <= fman->state->port_mfl[mac_id]))) {
2332 		fman->state->mac_mfl[mac_id] = mfl;
2333 	} else {
2334 		dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n",
2335 			 __func__);
2336 		return -EINVAL;
2337 	}
2338 	return 0;
2339 }
2340 
2341 /**
2342  * fman_get_clock_freq
2343  * @fman:	A Pointer to FMan device
2344  *
2345  * Get FMan clock frequency
2346  *
2347  * Return: FMan clock frequency
2348  */
2349 u16 fman_get_clock_freq(struct fman *fman)
2350 {
2351 	return fman->state->fm_clk_freq;
2352 }
2353 
2354 /**
2355  * fman_get_bmi_max_fifo_size
2356  * @fman:	A Pointer to FMan device
2357  *
2358  * Get FMan maximum FIFO size
2359  *
2360  * Return: FMan Maximum FIFO size
2361  */
2362 u32 fman_get_bmi_max_fifo_size(struct fman *fman)
2363 {
2364 	return fman->state->bmi_max_fifo_size;
2365 }
2366 
2367 /**
2368  * fman_get_revision
2369  * @fman		- Pointer to the FMan module
2370  * @rev_info		- A structure of revision information parameters.
2371  *
2372  * Returns the FM revision
2373  *
2374  * Allowed only following fman_init().
2375  *
2376  * Return: 0 on success; Error code otherwise.
2377  */
2378 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info)
2379 {
2380 	u32 tmp;
2381 
2382 	tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1);
2383 	rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >>
2384 				FPM_REV1_MAJOR_SHIFT);
2385 	rev_info->minor = tmp & FPM_REV1_MINOR_MASK;
2386 }
2387 
2388 /**
2389  * fman_get_qman_channel_id
2390  * @fman:	A Pointer to FMan device
2391  * @port_id:	Port id
2392  *
2393  * Get QMan channel ID associated to the Port id
2394  *
2395  * Return: QMan channel ID
2396  */
2397 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id)
2398 {
2399 	int i;
2400 
2401 	if (fman->state->rev_info.major >= 6) {
2402 		u32 port_ids[] = {0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b,
2403 				  0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7};
2404 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2405 			if (port_ids[i] == port_id)
2406 				break;
2407 		}
2408 	} else {
2409 		u32 port_ids[] = {0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1,
2410 				  0x2, 0x3, 0x4, 0x5, 0x7, 0x7};
2411 		for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2412 			if (port_ids[i] == port_id)
2413 				break;
2414 		}
2415 	}
2416 
2417 	if (i == fman->state->num_of_qman_channels)
2418 		return 0;
2419 
2420 	return fman->state->qman_channel_base + i;
2421 }
2422 
2423 /**
2424  * fman_get_mem_region
2425  * @fman:	A Pointer to FMan device
2426  *
2427  * Get FMan memory region
2428  *
2429  * Return: A structure with FMan memory region information
2430  */
2431 struct resource *fman_get_mem_region(struct fman *fman)
2432 {
2433 	return fman->state->res;
2434 }
2435 
2436 /* Bootargs defines */
2437 /* Extra headroom for RX buffers - Default, min and max */
2438 #define FSL_FM_RX_EXTRA_HEADROOM	64
2439 #define FSL_FM_RX_EXTRA_HEADROOM_MIN	16
2440 #define FSL_FM_RX_EXTRA_HEADROOM_MAX	384
2441 
2442 /* Maximum frame length */
2443 #define FSL_FM_MAX_FRAME_SIZE			1522
2444 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE		9600
2445 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE		64
2446 
2447 /* Extra headroom for Rx buffers.
2448  * FMan is instructed to allocate, on the Rx path, this amount of
2449  * space at the beginning of a data buffer, beside the DPA private
2450  * data area and the IC fields.
2451  * Does not impact Tx buffer layout.
2452  * Configurable from bootargs. 64 by default, it's needed on
2453  * particular forwarding scenarios that add extra headers to the
2454  * forwarded frame.
2455  */
2456 int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2457 module_param(fsl_fm_rx_extra_headroom, int, 0);
2458 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers");
2459 
2460 /* Max frame size, across all interfaces.
2461  * Configurable from bootargs, to avoid allocating oversized (socket)
2462  * buffers when not using jumbo frames.
2463  * Must be large enough to accommodate the network MTU, but small enough
2464  * to avoid wasting skb memory.
2465  *
2466  * Could be overridden once, at boot-time, via the
2467  * fm_set_max_frm() callback.
2468  */
2469 int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2470 module_param(fsl_fm_max_frm, int, 0);
2471 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces");
2472 
2473 /**
2474  * fman_get_max_frm
2475  *
2476  * Return: Max frame length configured in the FM driver
2477  */
2478 u16 fman_get_max_frm(void)
2479 {
2480 	static bool fm_check_mfl;
2481 
2482 	if (!fm_check_mfl) {
2483 		if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE ||
2484 		    fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) {
2485 			pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2486 				fsl_fm_max_frm,
2487 				FSL_FM_MIN_POSSIBLE_FRAME_SIZE,
2488 				FSL_FM_MAX_POSSIBLE_FRAME_SIZE,
2489 				FSL_FM_MAX_FRAME_SIZE);
2490 			fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2491 		}
2492 		fm_check_mfl = true;
2493 	}
2494 
2495 	return fsl_fm_max_frm;
2496 }
2497 EXPORT_SYMBOL(fman_get_max_frm);
2498 
2499 /**
2500  * fman_get_rx_extra_headroom
2501  *
2502  * Return: Extra headroom size configured in the FM driver
2503  */
2504 int fman_get_rx_extra_headroom(void)
2505 {
2506 	static bool fm_check_rx_extra_headroom;
2507 
2508 	if (!fm_check_rx_extra_headroom) {
2509 		if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX ||
2510 		    fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) {
2511 			pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2512 				fsl_fm_rx_extra_headroom,
2513 				FSL_FM_RX_EXTRA_HEADROOM_MIN,
2514 				FSL_FM_RX_EXTRA_HEADROOM_MAX,
2515 				FSL_FM_RX_EXTRA_HEADROOM);
2516 			fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2517 		}
2518 
2519 		fm_check_rx_extra_headroom = true;
2520 		fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16);
2521 	}
2522 
2523 	return fsl_fm_rx_extra_headroom;
2524 }
2525 EXPORT_SYMBOL(fman_get_rx_extra_headroom);
2526 
2527 /**
2528  * fman_bind
2529  * @dev:	FMan OF device pointer
2530  *
2531  * Bind to a specific FMan device.
2532  *
2533  * Allowed only after the port was created.
2534  *
2535  * Return: A pointer to the FMan device
2536  */
2537 struct fman *fman_bind(struct device *fm_dev)
2538 {
2539 	return (struct fman *)(dev_get_drvdata(get_device(fm_dev)));
2540 }
2541 
2542 static irqreturn_t fman_err_irq(int irq, void *handle)
2543 {
2544 	struct fman *fman = (struct fman *)handle;
2545 	u32 pending;
2546 	struct fman_fpm_regs __iomem *fpm_rg;
2547 	irqreturn_t single_ret, ret = IRQ_NONE;
2548 
2549 	if (!is_init_done(fman->cfg))
2550 		return IRQ_NONE;
2551 
2552 	fpm_rg = fman->fpm_regs;
2553 
2554 	/* error interrupts */
2555 	pending = ioread32be(&fpm_rg->fm_epi);
2556 	if (!pending)
2557 		return IRQ_NONE;
2558 
2559 	if (pending & ERR_INTR_EN_BMI) {
2560 		single_ret = bmi_err_event(fman);
2561 		if (single_ret == IRQ_HANDLED)
2562 			ret = IRQ_HANDLED;
2563 	}
2564 	if (pending & ERR_INTR_EN_QMI) {
2565 		single_ret = qmi_err_event(fman);
2566 		if (single_ret == IRQ_HANDLED)
2567 			ret = IRQ_HANDLED;
2568 	}
2569 	if (pending & ERR_INTR_EN_FPM) {
2570 		single_ret = fpm_err_event(fman);
2571 		if (single_ret == IRQ_HANDLED)
2572 			ret = IRQ_HANDLED;
2573 	}
2574 	if (pending & ERR_INTR_EN_DMA) {
2575 		single_ret = dma_err_event(fman);
2576 		if (single_ret == IRQ_HANDLED)
2577 			ret = IRQ_HANDLED;
2578 	}
2579 	if (pending & ERR_INTR_EN_MURAM) {
2580 		single_ret = muram_err_intr(fman);
2581 		if (single_ret == IRQ_HANDLED)
2582 			ret = IRQ_HANDLED;
2583 	}
2584 
2585 	/* MAC error interrupts */
2586 	if (pending & ERR_INTR_EN_MAC0) {
2587 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0);
2588 		if (single_ret == IRQ_HANDLED)
2589 			ret = IRQ_HANDLED;
2590 	}
2591 	if (pending & ERR_INTR_EN_MAC1) {
2592 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1);
2593 		if (single_ret == IRQ_HANDLED)
2594 			ret = IRQ_HANDLED;
2595 	}
2596 	if (pending & ERR_INTR_EN_MAC2) {
2597 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2);
2598 		if (single_ret == IRQ_HANDLED)
2599 			ret = IRQ_HANDLED;
2600 	}
2601 	if (pending & ERR_INTR_EN_MAC3) {
2602 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3);
2603 		if (single_ret == IRQ_HANDLED)
2604 			ret = IRQ_HANDLED;
2605 	}
2606 	if (pending & ERR_INTR_EN_MAC4) {
2607 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4);
2608 		if (single_ret == IRQ_HANDLED)
2609 			ret = IRQ_HANDLED;
2610 	}
2611 	if (pending & ERR_INTR_EN_MAC5) {
2612 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5);
2613 		if (single_ret == IRQ_HANDLED)
2614 			ret = IRQ_HANDLED;
2615 	}
2616 	if (pending & ERR_INTR_EN_MAC6) {
2617 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6);
2618 		if (single_ret == IRQ_HANDLED)
2619 			ret = IRQ_HANDLED;
2620 	}
2621 	if (pending & ERR_INTR_EN_MAC7) {
2622 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7);
2623 		if (single_ret == IRQ_HANDLED)
2624 			ret = IRQ_HANDLED;
2625 	}
2626 	if (pending & ERR_INTR_EN_MAC8) {
2627 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8);
2628 		if (single_ret == IRQ_HANDLED)
2629 			ret = IRQ_HANDLED;
2630 	}
2631 	if (pending & ERR_INTR_EN_MAC9) {
2632 		single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9);
2633 		if (single_ret == IRQ_HANDLED)
2634 			ret = IRQ_HANDLED;
2635 	}
2636 
2637 	return ret;
2638 }
2639 
2640 static irqreturn_t fman_irq(int irq, void *handle)
2641 {
2642 	struct fman *fman = (struct fman *)handle;
2643 	u32 pending;
2644 	struct fman_fpm_regs __iomem *fpm_rg;
2645 	irqreturn_t single_ret, ret = IRQ_NONE;
2646 
2647 	if (!is_init_done(fman->cfg))
2648 		return IRQ_NONE;
2649 
2650 	fpm_rg = fman->fpm_regs;
2651 
2652 	/* normal interrupts */
2653 	pending = ioread32be(&fpm_rg->fm_npi);
2654 	if (!pending)
2655 		return IRQ_NONE;
2656 
2657 	if (pending & INTR_EN_QMI) {
2658 		single_ret = qmi_event(fman);
2659 		if (single_ret == IRQ_HANDLED)
2660 			ret = IRQ_HANDLED;
2661 	}
2662 
2663 	/* MAC interrupts */
2664 	if (pending & INTR_EN_MAC0) {
2665 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0);
2666 		if (single_ret == IRQ_HANDLED)
2667 			ret = IRQ_HANDLED;
2668 	}
2669 	if (pending & INTR_EN_MAC1) {
2670 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1);
2671 		if (single_ret == IRQ_HANDLED)
2672 			ret = IRQ_HANDLED;
2673 	}
2674 	if (pending & INTR_EN_MAC2) {
2675 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2);
2676 		if (single_ret == IRQ_HANDLED)
2677 			ret = IRQ_HANDLED;
2678 	}
2679 	if (pending & INTR_EN_MAC3) {
2680 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3);
2681 		if (single_ret == IRQ_HANDLED)
2682 			ret = IRQ_HANDLED;
2683 	}
2684 	if (pending & INTR_EN_MAC4) {
2685 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4);
2686 		if (single_ret == IRQ_HANDLED)
2687 			ret = IRQ_HANDLED;
2688 	}
2689 	if (pending & INTR_EN_MAC5) {
2690 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5);
2691 		if (single_ret == IRQ_HANDLED)
2692 			ret = IRQ_HANDLED;
2693 	}
2694 	if (pending & INTR_EN_MAC6) {
2695 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6);
2696 		if (single_ret == IRQ_HANDLED)
2697 			ret = IRQ_HANDLED;
2698 	}
2699 	if (pending & INTR_EN_MAC7) {
2700 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7);
2701 		if (single_ret == IRQ_HANDLED)
2702 			ret = IRQ_HANDLED;
2703 	}
2704 	if (pending & INTR_EN_MAC8) {
2705 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8);
2706 		if (single_ret == IRQ_HANDLED)
2707 			ret = IRQ_HANDLED;
2708 	}
2709 	if (pending & INTR_EN_MAC9) {
2710 		single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9);
2711 		if (single_ret == IRQ_HANDLED)
2712 			ret = IRQ_HANDLED;
2713 	}
2714 
2715 	return ret;
2716 }
2717 
2718 static const struct of_device_id fman_muram_match[] = {
2719 	{
2720 		.compatible = "fsl,fman-muram"},
2721 	{}
2722 };
2723 MODULE_DEVICE_TABLE(of, fman_muram_match);
2724 
2725 static struct fman *read_dts_node(struct platform_device *of_dev)
2726 {
2727 	struct fman *fman;
2728 	struct device_node *fm_node, *muram_node;
2729 	struct resource *res;
2730 	const u32 *u32_prop;
2731 	int lenp, err, irq;
2732 	struct clk *clk;
2733 	u32 clk_rate;
2734 	phys_addr_t phys_base_addr;
2735 	resource_size_t mem_size;
2736 
2737 	fman = kzalloc(sizeof(*fman), GFP_KERNEL);
2738 	if (!fman)
2739 		return NULL;
2740 
2741 	fm_node = of_node_get(of_dev->dev.of_node);
2742 
2743 	u32_prop = (const u32 *)of_get_property(fm_node, "cell-index", &lenp);
2744 	if (!u32_prop) {
2745 		dev_err(&of_dev->dev, "%s: of_get_property(%s, cell-index) failed\n",
2746 			__func__, fm_node->full_name);
2747 		goto fman_node_put;
2748 	}
2749 	if (WARN_ON(lenp != sizeof(u32)))
2750 		goto fman_node_put;
2751 
2752 	fman->dts_params.id = (u8)fdt32_to_cpu(u32_prop[0]);
2753 
2754 	/* Get the FM interrupt */
2755 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0);
2756 	if (!res) {
2757 		dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n",
2758 			__func__);
2759 		goto fman_node_put;
2760 	}
2761 	irq = res->start;
2762 
2763 	/* Get the FM error interrupt */
2764 	res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1);
2765 	if (!res) {
2766 		dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n",
2767 			__func__);
2768 		goto fman_node_put;
2769 	}
2770 	fman->dts_params.err_irq = res->start;
2771 
2772 	/* Get the FM address */
2773 	res = platform_get_resource(of_dev, IORESOURCE_MEM, 0);
2774 	if (!res) {
2775 		dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n",
2776 			__func__);
2777 		goto fman_node_put;
2778 	}
2779 
2780 	phys_base_addr = res->start;
2781 	mem_size = resource_size(res);
2782 
2783 	clk = of_clk_get(fm_node, 0);
2784 	if (IS_ERR(clk)) {
2785 		dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n",
2786 			__func__, fman->dts_params.id);
2787 		goto fman_node_put;
2788 	}
2789 
2790 	clk_rate = clk_get_rate(clk);
2791 	if (!clk_rate) {
2792 		dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n",
2793 			__func__, fman->dts_params.id);
2794 		goto fman_node_put;
2795 	}
2796 	/* Rounding to MHz */
2797 	fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000);
2798 
2799 	u32_prop = (const u32 *)of_get_property(fm_node,
2800 						"fsl,qman-channel-range",
2801 						&lenp);
2802 	if (!u32_prop) {
2803 		dev_err(&of_dev->dev, "%s: of_get_property(%s, fsl,qman-channel-range) failed\n",
2804 			__func__, fm_node->full_name);
2805 		goto fman_node_put;
2806 	}
2807 	if (WARN_ON(lenp != sizeof(u32) * 2))
2808 		goto fman_node_put;
2809 	fman->dts_params.qman_channel_base = fdt32_to_cpu(u32_prop[0]);
2810 	fman->dts_params.num_of_qman_channels = fdt32_to_cpu(u32_prop[1]);
2811 
2812 	/* Get the MURAM base address and size */
2813 	muram_node = of_find_matching_node(fm_node, fman_muram_match);
2814 	if (!muram_node) {
2815 		dev_err(&of_dev->dev, "%s: could not find MURAM node\n",
2816 			__func__);
2817 		goto fman_node_put;
2818 	}
2819 
2820 	err = of_address_to_resource(muram_node, 0,
2821 				     &fman->dts_params.muram_res);
2822 	if (err) {
2823 		of_node_put(muram_node);
2824 		dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n",
2825 			__func__, err);
2826 		goto fman_node_put;
2827 	}
2828 
2829 	of_node_put(muram_node);
2830 	of_node_put(fm_node);
2831 
2832 	err = devm_request_irq(&of_dev->dev, irq, fman_irq, 0, "fman", fman);
2833 	if (err < 0) {
2834 		dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2835 			__func__, irq, err);
2836 		goto fman_free;
2837 	}
2838 
2839 	if (fman->dts_params.err_irq != 0) {
2840 		err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq,
2841 				       fman_err_irq, IRQF_SHARED,
2842 				       "fman-err", fman);
2843 		if (err < 0) {
2844 			dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2845 				__func__, fman->dts_params.err_irq, err);
2846 			goto fman_free;
2847 		}
2848 	}
2849 
2850 	fman->dts_params.res =
2851 		devm_request_mem_region(&of_dev->dev, phys_base_addr,
2852 					mem_size, "fman");
2853 	if (!fman->dts_params.res) {
2854 		dev_err(&of_dev->dev, "%s: request_mem_region() failed\n",
2855 			__func__);
2856 		goto fman_free;
2857 	}
2858 
2859 	fman->dts_params.base_addr =
2860 		devm_ioremap(&of_dev->dev, phys_base_addr, mem_size);
2861 	if (fman->dts_params.base_addr == 0) {
2862 		dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__);
2863 		goto fman_free;
2864 	}
2865 
2866 	fman->dev = &of_dev->dev;
2867 
2868 	return fman;
2869 
2870 fman_node_put:
2871 	of_node_put(fm_node);
2872 fman_free:
2873 	kfree(fman);
2874 	return NULL;
2875 }
2876 
2877 static int fman_probe(struct platform_device *of_dev)
2878 {
2879 	struct fman *fman;
2880 	struct device *dev;
2881 	int err;
2882 
2883 	dev = &of_dev->dev;
2884 
2885 	fman = read_dts_node(of_dev);
2886 	if (!fman)
2887 		return -EIO;
2888 
2889 	err = fman_config(fman);
2890 	if (err) {
2891 		dev_err(dev, "%s: FMan config failed\n", __func__);
2892 		return -EINVAL;
2893 	}
2894 
2895 	if (fman_init(fman) != 0) {
2896 		dev_err(dev, "%s: FMan init failed\n", __func__);
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (fman->dts_params.err_irq == 0) {
2901 		fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false);
2902 		fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false);
2903 		fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false);
2904 		fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false);
2905 		fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false);
2906 		fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false);
2907 		fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false);
2908 		fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false);
2909 		fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false);
2910 		fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false);
2911 		fman_set_exception(fman,
2912 				   FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false);
2913 		fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false);
2914 		fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC,
2915 				   false);
2916 		fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false);
2917 		fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false);
2918 	}
2919 
2920 	dev_set_drvdata(dev, fman);
2921 
2922 	dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id);
2923 
2924 	return 0;
2925 }
2926 
2927 static const struct of_device_id fman_match[] = {
2928 	{
2929 		.compatible = "fsl,fman"},
2930 	{}
2931 };
2932 
2933 MODULE_DEVICE_TABLE(of, fm_match);
2934 
2935 static struct platform_driver fman_driver = {
2936 	.driver = {
2937 		.name = "fsl-fman",
2938 		.of_match_table = fman_match,
2939 	},
2940 	.probe = fman_probe,
2941 };
2942 
2943 builtin_platform_driver(fman_driver);
2944