xref: /linux/drivers/net/ethernet/freescale/fec_ptp.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_net.h>
36 
37 #include "fec.h"
38 
39 /* FEC 1588 register bits */
40 #define FEC_T_CTRL_SLAVE                0x00002000
41 #define FEC_T_CTRL_CAPTURE              0x00000800
42 #define FEC_T_CTRL_RESTART              0x00000200
43 #define FEC_T_CTRL_PERIOD_RST           0x00000030
44 #define FEC_T_CTRL_PERIOD_EN		0x00000010
45 #define FEC_T_CTRL_ENABLE               0x00000001
46 
47 #define FEC_T_INC_MASK                  0x0000007f
48 #define FEC_T_INC_OFFSET                0
49 #define FEC_T_INC_CORR_MASK             0x00007f00
50 #define FEC_T_INC_CORR_OFFSET           8
51 
52 #define FEC_T_CTRL_PINPER		0x00000080
53 #define FEC_T_TF0_MASK			0x00000001
54 #define FEC_T_TF0_OFFSET		0
55 #define FEC_T_TF1_MASK			0x00000002
56 #define FEC_T_TF1_OFFSET		1
57 #define FEC_T_TF2_MASK			0x00000004
58 #define FEC_T_TF2_OFFSET		2
59 #define FEC_T_TF3_MASK			0x00000008
60 #define FEC_T_TF3_OFFSET		3
61 #define FEC_T_TDRE_MASK			0x00000001
62 #define FEC_T_TDRE_OFFSET		0
63 #define FEC_T_TMODE_MASK		0x0000003C
64 #define FEC_T_TMODE_OFFSET		2
65 #define FEC_T_TIE_MASK			0x00000040
66 #define FEC_T_TIE_OFFSET		6
67 #define FEC_T_TF_MASK			0x00000080
68 #define FEC_T_TF_OFFSET			7
69 
70 #define FEC_ATIME_CTRL		0x400
71 #define FEC_ATIME		0x404
72 #define FEC_ATIME_EVT_OFFSET	0x408
73 #define FEC_ATIME_EVT_PERIOD	0x40c
74 #define FEC_ATIME_CORR		0x410
75 #define FEC_ATIME_INC		0x414
76 #define FEC_TS_TIMESTAMP	0x418
77 
78 #define FEC_TGSR		0x604
79 #define FEC_TCSR(n)		(0x608 + n * 0x08)
80 #define FEC_TCCR(n)		(0x60C + n * 0x08)
81 #define MAX_TIMER_CHANNEL	3
82 #define FEC_TMODE_TOGGLE	0x05
83 #define FEC_HIGH_PULSE		0x0F
84 
85 #define FEC_CC_MULT	(1 << 31)
86 #define FEC_COUNTER_PERIOD	(1 << 31)
87 #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
88 #define FEC_CHANNLE_0		0
89 #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
90 
91 /**
92  * fec_ptp_enable_pps
93  * @fep: the fec_enet_private structure handle
94  * @enable: enable the channel pps output
95  *
96  * This function enble the PPS ouput on the timer channel.
97  */
98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
99 {
100 	unsigned long flags;
101 	u32 val, tempval;
102 	struct timespec64 ts;
103 	u64 ns;
104 	val = 0;
105 
106 	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
107 		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
108 		return -EINVAL;
109 	}
110 
111 	if (fep->pps_enable == enable)
112 		return 0;
113 
114 	fep->pps_channel = DEFAULT_PPS_CHANNEL;
115 	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
116 
117 	spin_lock_irqsave(&fep->tmreg_lock, flags);
118 
119 	if (enable) {
120 		/* clear capture or output compare interrupt status if have.
121 		 */
122 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
123 
124 		/* It is recommended to double check the TMODE field in the
125 		 * TCSR register to be cleared before the first compare counter
126 		 * is written into TCCR register. Just add a double check.
127 		 */
128 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129 		do {
130 			val &= ~(FEC_T_TMODE_MASK);
131 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
132 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
133 		} while (val & FEC_T_TMODE_MASK);
134 
135 		/* Dummy read counter to update the counter */
136 		timecounter_read(&fep->tc);
137 		/* We want to find the first compare event in the next
138 		 * second point. So we need to know what the ptp time
139 		 * is now and how many nanoseconds is ahead to get next second.
140 		 * The remaining nanosecond ahead before the next second would be
141 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
142 		 * to current timer would be next second.
143 		 */
144 		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
145 		tempval |= FEC_T_CTRL_CAPTURE;
146 		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
147 
148 		tempval = readl(fep->hwp + FEC_ATIME);
149 		/* Convert the ptp local counter to 1588 timestamp */
150 		ns = timecounter_cyc2time(&fep->tc, tempval);
151 		ts = ns_to_timespec64(ns);
152 
153 		/* The tempval is  less than 3 seconds, and  so val is less than
154 		 * 4 seconds. No overflow for 32bit calculation.
155 		 */
156 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
157 
158 		/* Need to consider the situation that the current time is
159 		 * very close to the second point, which means NSEC_PER_SEC
160 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
161 		 * is still running when we calculate the first compare event, it is
162 		 * possible that the remaining nanoseonds run out before the compare
163 		 * counter is calculated and written into TCCR register. To avoid
164 		 * this possibility, we will set the compare event to be the next
165 		 * of next second. The current setting is 31-bit timer and wrap
166 		 * around over 2 seconds. So it is okay to set the next of next
167 		 * seond for the timer.
168 		 */
169 		val += NSEC_PER_SEC;
170 
171 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
172 		 * ptp counter, which maybe cause 32-bit wrap. Since the
173 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
174 		 * We can ensure the wrap will not cause issue. If the offset
175 		 * is bigger than fep->cc.mask would be a error.
176 		 */
177 		val &= fep->cc.mask;
178 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
179 
180 		/* Calculate the second the compare event timestamp */
181 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
182 
183 		/* * Enable compare event when overflow */
184 		val = readl(fep->hwp + FEC_ATIME_CTRL);
185 		val |= FEC_T_CTRL_PINPER;
186 		writel(val, fep->hwp + FEC_ATIME_CTRL);
187 
188 		/* Compare channel setting. */
189 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
190 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
191 		val &= ~(1 << FEC_T_TDRE_OFFSET);
192 		val &= ~(FEC_T_TMODE_MASK);
193 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
194 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
195 
196 		/* Write the second compare event timestamp and calculate
197 		 * the third timestamp. Refer the TCCR register detail in the spec.
198 		 */
199 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
200 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
201 	} else {
202 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
203 	}
204 
205 	fep->pps_enable = enable;
206 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
207 
208 	return 0;
209 }
210 
211 /**
212  * fec_ptp_read - read raw cycle counter (to be used by time counter)
213  * @cc: the cyclecounter structure
214  *
215  * this function reads the cyclecounter registers and is called by the
216  * cyclecounter structure used to construct a ns counter from the
217  * arbitrary fixed point registers
218  */
219 static u64 fec_ptp_read(const struct cyclecounter *cc)
220 {
221 	struct fec_enet_private *fep =
222 		container_of(cc, struct fec_enet_private, cc);
223 	const struct platform_device_id *id_entry =
224 		platform_get_device_id(fep->pdev);
225 	u32 tempval;
226 
227 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
228 	tempval |= FEC_T_CTRL_CAPTURE;
229 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
230 
231 	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
232 		udelay(1);
233 
234 	return readl(fep->hwp + FEC_ATIME);
235 }
236 
237 /**
238  * fec_ptp_start_cyclecounter - create the cycle counter from hw
239  * @ndev: network device
240  *
241  * this function initializes the timecounter and cyclecounter
242  * structures for use in generated a ns counter from the arbitrary
243  * fixed point cycles registers in the hardware.
244  */
245 void fec_ptp_start_cyclecounter(struct net_device *ndev)
246 {
247 	struct fec_enet_private *fep = netdev_priv(ndev);
248 	unsigned long flags;
249 	int inc;
250 
251 	inc = 1000000000 / fep->cycle_speed;
252 
253 	/* grab the ptp lock */
254 	spin_lock_irqsave(&fep->tmreg_lock, flags);
255 
256 	/* 1ns counter */
257 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
258 
259 	/* use 31-bit timer counter */
260 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
261 
262 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
263 		fep->hwp + FEC_ATIME_CTRL);
264 
265 	memset(&fep->cc, 0, sizeof(fep->cc));
266 	fep->cc.read = fec_ptp_read;
267 	fep->cc.mask = CLOCKSOURCE_MASK(31);
268 	fep->cc.shift = 31;
269 	fep->cc.mult = FEC_CC_MULT;
270 
271 	/* reset the ns time counter */
272 	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
273 
274 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
275 }
276 
277 /**
278  * fec_ptp_adjfreq - adjust ptp cycle frequency
279  * @ptp: the ptp clock structure
280  * @ppb: parts per billion adjustment from base
281  *
282  * Adjust the frequency of the ptp cycle counter by the
283  * indicated ppb from the base frequency.
284  *
285  * Because ENET hardware frequency adjust is complex,
286  * using software method to do that.
287  */
288 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
289 {
290 	unsigned long flags;
291 	int neg_adj = 0;
292 	u32 i, tmp;
293 	u32 corr_inc, corr_period;
294 	u32 corr_ns;
295 	u64 lhs, rhs;
296 
297 	struct fec_enet_private *fep =
298 	    container_of(ptp, struct fec_enet_private, ptp_caps);
299 
300 	if (ppb == 0)
301 		return 0;
302 
303 	if (ppb < 0) {
304 		ppb = -ppb;
305 		neg_adj = 1;
306 	}
307 
308 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
309 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
310 	 * meet adjustment requirement.
311 	 */
312 	lhs = NSEC_PER_SEC;
313 	rhs = (u64)ppb * (u64)fep->ptp_inc;
314 	for (i = 1; i <= fep->ptp_inc; i++) {
315 		if (lhs >= rhs) {
316 			corr_inc = i;
317 			corr_period = div_u64(lhs, rhs);
318 			break;
319 		}
320 		lhs += NSEC_PER_SEC;
321 	}
322 	/* Not found? Set it to high value - double speed
323 	 * correct in every clock step.
324 	 */
325 	if (i > fep->ptp_inc) {
326 		corr_inc = fep->ptp_inc;
327 		corr_period = 1;
328 	}
329 
330 	if (neg_adj)
331 		corr_ns = fep->ptp_inc - corr_inc;
332 	else
333 		corr_ns = fep->ptp_inc + corr_inc;
334 
335 	spin_lock_irqsave(&fep->tmreg_lock, flags);
336 
337 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
338 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
339 	writel(tmp, fep->hwp + FEC_ATIME_INC);
340 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
341 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
342 	/* dummy read to update the timer. */
343 	timecounter_read(&fep->tc);
344 
345 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
346 
347 	return 0;
348 }
349 
350 /**
351  * fec_ptp_adjtime
352  * @ptp: the ptp clock structure
353  * @delta: offset to adjust the cycle counter by
354  *
355  * adjust the timer by resetting the timecounter structure.
356  */
357 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
358 {
359 	struct fec_enet_private *fep =
360 	    container_of(ptp, struct fec_enet_private, ptp_caps);
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(&fep->tmreg_lock, flags);
364 	timecounter_adjtime(&fep->tc, delta);
365 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
366 
367 	return 0;
368 }
369 
370 /**
371  * fec_ptp_gettime
372  * @ptp: the ptp clock structure
373  * @ts: timespec structure to hold the current time value
374  *
375  * read the timecounter and return the correct value on ns,
376  * after converting it into a struct timespec.
377  */
378 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
379 {
380 	struct fec_enet_private *adapter =
381 	    container_of(ptp, struct fec_enet_private, ptp_caps);
382 	u64 ns;
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
386 	ns = timecounter_read(&adapter->tc);
387 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
388 
389 	*ts = ns_to_timespec64(ns);
390 
391 	return 0;
392 }
393 
394 /**
395  * fec_ptp_settime
396  * @ptp: the ptp clock structure
397  * @ts: the timespec containing the new time for the cycle counter
398  *
399  * reset the timecounter to use a new base value instead of the kernel
400  * wall timer value.
401  */
402 static int fec_ptp_settime(struct ptp_clock_info *ptp,
403 			   const struct timespec64 *ts)
404 {
405 	struct fec_enet_private *fep =
406 	    container_of(ptp, struct fec_enet_private, ptp_caps);
407 
408 	u64 ns;
409 	unsigned long flags;
410 	u32 counter;
411 
412 	mutex_lock(&fep->ptp_clk_mutex);
413 	/* Check the ptp clock */
414 	if (!fep->ptp_clk_on) {
415 		mutex_unlock(&fep->ptp_clk_mutex);
416 		return -EINVAL;
417 	}
418 
419 	ns = timespec64_to_ns(ts);
420 	/* Get the timer value based on timestamp.
421 	 * Update the counter with the masked value.
422 	 */
423 	counter = ns & fep->cc.mask;
424 
425 	spin_lock_irqsave(&fep->tmreg_lock, flags);
426 	writel(counter, fep->hwp + FEC_ATIME);
427 	timecounter_init(&fep->tc, &fep->cc, ns);
428 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
429 	mutex_unlock(&fep->ptp_clk_mutex);
430 	return 0;
431 }
432 
433 /**
434  * fec_ptp_enable
435  * @ptp: the ptp clock structure
436  * @rq: the requested feature to change
437  * @on: whether to enable or disable the feature
438  *
439  */
440 static int fec_ptp_enable(struct ptp_clock_info *ptp,
441 			  struct ptp_clock_request *rq, int on)
442 {
443 	struct fec_enet_private *fep =
444 	    container_of(ptp, struct fec_enet_private, ptp_caps);
445 	int ret = 0;
446 
447 	if (rq->type == PTP_CLK_REQ_PPS) {
448 		ret = fec_ptp_enable_pps(fep, on);
449 
450 		return ret;
451 	}
452 	return -EOPNOTSUPP;
453 }
454 
455 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
456 {
457 	struct fec_enet_private *fep = netdev_priv(ndev);
458 
459 	struct hwtstamp_config config;
460 
461 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
462 		return -EFAULT;
463 
464 	/* reserved for future extensions */
465 	if (config.flags)
466 		return -EINVAL;
467 
468 	switch (config.tx_type) {
469 	case HWTSTAMP_TX_OFF:
470 		fep->hwts_tx_en = 0;
471 		break;
472 	case HWTSTAMP_TX_ON:
473 		fep->hwts_tx_en = 1;
474 		break;
475 	default:
476 		return -ERANGE;
477 	}
478 
479 	switch (config.rx_filter) {
480 	case HWTSTAMP_FILTER_NONE:
481 		if (fep->hwts_rx_en)
482 			fep->hwts_rx_en = 0;
483 		config.rx_filter = HWTSTAMP_FILTER_NONE;
484 		break;
485 
486 	default:
487 		fep->hwts_rx_en = 1;
488 		config.rx_filter = HWTSTAMP_FILTER_ALL;
489 		break;
490 	}
491 
492 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
493 	    -EFAULT : 0;
494 }
495 
496 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
497 {
498 	struct fec_enet_private *fep = netdev_priv(ndev);
499 	struct hwtstamp_config config;
500 
501 	config.flags = 0;
502 	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
503 	config.rx_filter = (fep->hwts_rx_en ?
504 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
505 
506 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
507 		-EFAULT : 0;
508 }
509 
510 /**
511  * fec_time_keep - call timecounter_read every second to avoid timer overrun
512  *                 because ENET just support 32bit counter, will timeout in 4s
513  */
514 static void fec_time_keep(struct work_struct *work)
515 {
516 	struct delayed_work *dwork = to_delayed_work(work);
517 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
518 	u64 ns;
519 	unsigned long flags;
520 
521 	mutex_lock(&fep->ptp_clk_mutex);
522 	if (fep->ptp_clk_on) {
523 		spin_lock_irqsave(&fep->tmreg_lock, flags);
524 		ns = timecounter_read(&fep->tc);
525 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
526 	}
527 	mutex_unlock(&fep->ptp_clk_mutex);
528 
529 	schedule_delayed_work(&fep->time_keep, HZ);
530 }
531 
532 /* This function checks the pps event and reloads the timer compare counter. */
533 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
534 {
535 	struct net_device *ndev = dev_id;
536 	struct fec_enet_private *fep = netdev_priv(ndev);
537 	u32 val;
538 	u8 channel = fep->pps_channel;
539 	struct ptp_clock_event event;
540 
541 	val = readl(fep->hwp + FEC_TCSR(channel));
542 	if (val & FEC_T_TF_MASK) {
543 		/* Write the next next compare(not the next according the spec)
544 		 * value to the register
545 		 */
546 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
547 		do {
548 			writel(val, fep->hwp + FEC_TCSR(channel));
549 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
550 
551 		/* Update the counter; */
552 		fep->next_counter = (fep->next_counter + fep->reload_period) &
553 				fep->cc.mask;
554 
555 		event.type = PTP_CLOCK_PPS;
556 		ptp_clock_event(fep->ptp_clock, &event);
557 		return IRQ_HANDLED;
558 	}
559 
560 	return IRQ_NONE;
561 }
562 
563 /**
564  * fec_ptp_init
565  * @ndev: The FEC network adapter
566  *
567  * This function performs the required steps for enabling ptp
568  * support. If ptp support has already been loaded it simply calls the
569  * cyclecounter init routine and exits.
570  */
571 
572 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
573 {
574 	struct net_device *ndev = platform_get_drvdata(pdev);
575 	struct fec_enet_private *fep = netdev_priv(ndev);
576 	int irq;
577 	int ret;
578 
579 	fep->ptp_caps.owner = THIS_MODULE;
580 	snprintf(fep->ptp_caps.name, 16, "fec ptp");
581 
582 	fep->ptp_caps.max_adj = 250000000;
583 	fep->ptp_caps.n_alarm = 0;
584 	fep->ptp_caps.n_ext_ts = 0;
585 	fep->ptp_caps.n_per_out = 0;
586 	fep->ptp_caps.n_pins = 0;
587 	fep->ptp_caps.pps = 1;
588 	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
589 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
590 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
591 	fep->ptp_caps.settime64 = fec_ptp_settime;
592 	fep->ptp_caps.enable = fec_ptp_enable;
593 
594 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
595 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
596 
597 	spin_lock_init(&fep->tmreg_lock);
598 
599 	fec_ptp_start_cyclecounter(ndev);
600 
601 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
602 
603 	irq = platform_get_irq_byname(pdev, "pps");
604 	if (irq < 0)
605 		irq = platform_get_irq(pdev, irq_idx);
606 	/* Failure to get an irq is not fatal,
607 	 * only the PTP_CLOCK_PPS clock events should stop
608 	 */
609 	if (irq >= 0) {
610 		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
611 				       0, pdev->name, ndev);
612 		if (ret < 0)
613 			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
614 				 ret);
615 	}
616 
617 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
618 	if (IS_ERR(fep->ptp_clock)) {
619 		fep->ptp_clock = NULL;
620 		dev_err(&pdev->dev, "ptp_clock_register failed\n");
621 	}
622 
623 	schedule_delayed_work(&fep->time_keep, HZ);
624 }
625 
626 void fec_ptp_stop(struct platform_device *pdev)
627 {
628 	struct net_device *ndev = platform_get_drvdata(pdev);
629 	struct fec_enet_private *fep = netdev_priv(ndev);
630 
631 	cancel_delayed_work_sync(&fep->time_keep);
632 	if (fep->ptp_clock)
633 		ptp_clock_unregister(fep->ptp_clock);
634 }
635