xref: /linux/drivers/net/ethernet/freescale/fec_ptp.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_net.h>
35 
36 #include "fec.h"
37 
38 /* FEC 1588 register bits */
39 #define FEC_T_CTRL_SLAVE                0x00002000
40 #define FEC_T_CTRL_CAPTURE              0x00000800
41 #define FEC_T_CTRL_RESTART              0x00000200
42 #define FEC_T_CTRL_PERIOD_RST           0x00000030
43 #define FEC_T_CTRL_PERIOD_EN		0x00000010
44 #define FEC_T_CTRL_ENABLE               0x00000001
45 
46 #define FEC_T_INC_MASK                  0x0000007f
47 #define FEC_T_INC_OFFSET                0
48 #define FEC_T_INC_CORR_MASK             0x00007f00
49 #define FEC_T_INC_CORR_OFFSET           8
50 
51 #define FEC_T_CTRL_PINPER		0x00000080
52 #define FEC_T_TF0_MASK			0x00000001
53 #define FEC_T_TF0_OFFSET		0
54 #define FEC_T_TF1_MASK			0x00000002
55 #define FEC_T_TF1_OFFSET		1
56 #define FEC_T_TF2_MASK			0x00000004
57 #define FEC_T_TF2_OFFSET		2
58 #define FEC_T_TF3_MASK			0x00000008
59 #define FEC_T_TF3_OFFSET		3
60 #define FEC_T_TDRE_MASK			0x00000001
61 #define FEC_T_TDRE_OFFSET		0
62 #define FEC_T_TMODE_MASK		0x0000003C
63 #define FEC_T_TMODE_OFFSET		2
64 #define FEC_T_TIE_MASK			0x00000040
65 #define FEC_T_TIE_OFFSET		6
66 #define FEC_T_TF_MASK			0x00000080
67 #define FEC_T_TF_OFFSET			7
68 
69 #define FEC_ATIME_CTRL		0x400
70 #define FEC_ATIME		0x404
71 #define FEC_ATIME_EVT_OFFSET	0x408
72 #define FEC_ATIME_EVT_PERIOD	0x40c
73 #define FEC_ATIME_CORR		0x410
74 #define FEC_ATIME_INC		0x414
75 #define FEC_TS_TIMESTAMP	0x418
76 
77 #define FEC_TGSR		0x604
78 #define FEC_TCSR(n)		(0x608 + n * 0x08)
79 #define FEC_TCCR(n)		(0x60C + n * 0x08)
80 #define MAX_TIMER_CHANNEL	3
81 #define FEC_TMODE_TOGGLE	0x05
82 #define FEC_HIGH_PULSE		0x0F
83 
84 #define FEC_CC_MULT	(1 << 31)
85 #define FEC_COUNTER_PERIOD	(1 << 31)
86 #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
87 #define FEC_CHANNLE_0		0
88 #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
89 
90 #define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL
91 #define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL
92 
93 /**
94  * fec_ptp_enable_pps
95  * @fep: the fec_enet_private structure handle
96  * @enable: enable the channel pps output
97  *
98  * This function enble the PPS ouput on the timer channel.
99  */
100 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
101 {
102 	unsigned long flags;
103 	u32 val, tempval;
104 	struct timespec64 ts;
105 	u64 ns;
106 
107 	spin_lock_irqsave(&fep->tmreg_lock, flags);
108 
109 	if (fep->pps_enable == enable) {
110 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
111 		return 0;
112 	}
113 
114 	if (enable) {
115 		/* clear capture or output compare interrupt status if have.
116 		 */
117 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118 
119 		/* It is recommended to double check the TMODE field in the
120 		 * TCSR register to be cleared before the first compare counter
121 		 * is written into TCCR register. Just add a double check.
122 		 */
123 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124 		do {
125 			val &= ~(FEC_T_TMODE_MASK);
126 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128 		} while (val & FEC_T_TMODE_MASK);
129 
130 		/* Dummy read counter to update the counter */
131 		timecounter_read(&fep->tc);
132 		/* We want to find the first compare event in the next
133 		 * second point. So we need to know what the ptp time
134 		 * is now and how many nanoseconds is ahead to get next second.
135 		 * The remaining nanosecond ahead before the next second would be
136 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137 		 * to current timer would be next second.
138 		 */
139 		tempval = fep->cc.read(&fep->cc);
140 		/* Convert the ptp local counter to 1588 timestamp */
141 		ns = timecounter_cyc2time(&fep->tc, tempval);
142 		ts = ns_to_timespec64(ns);
143 
144 		/* The tempval is  less than 3 seconds, and  so val is less than
145 		 * 4 seconds. No overflow for 32bit calculation.
146 		 */
147 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
148 
149 		/* Need to consider the situation that the current time is
150 		 * very close to the second point, which means NSEC_PER_SEC
151 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
152 		 * is still running when we calculate the first compare event, it is
153 		 * possible that the remaining nanoseonds run out before the compare
154 		 * counter is calculated and written into TCCR register. To avoid
155 		 * this possibility, we will set the compare event to be the next
156 		 * of next second. The current setting is 31-bit timer and wrap
157 		 * around over 2 seconds. So it is okay to set the next of next
158 		 * seond for the timer.
159 		 */
160 		val += NSEC_PER_SEC;
161 
162 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
163 		 * ptp counter, which maybe cause 32-bit wrap. Since the
164 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
165 		 * We can ensure the wrap will not cause issue. If the offset
166 		 * is bigger than fep->cc.mask would be a error.
167 		 */
168 		val &= fep->cc.mask;
169 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
170 
171 		/* Calculate the second the compare event timestamp */
172 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
173 
174 		/* * Enable compare event when overflow */
175 		val = readl(fep->hwp + FEC_ATIME_CTRL);
176 		val |= FEC_T_CTRL_PINPER;
177 		writel(val, fep->hwp + FEC_ATIME_CTRL);
178 
179 		/* Compare channel setting. */
180 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
181 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
182 		val &= ~(1 << FEC_T_TDRE_OFFSET);
183 		val &= ~(FEC_T_TMODE_MASK);
184 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
185 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
186 
187 		/* Write the second compare event timestamp and calculate
188 		 * the third timestamp. Refer the TCCR register detail in the spec.
189 		 */
190 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
191 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
192 	} else {
193 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
194 	}
195 
196 	fep->pps_enable = enable;
197 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
198 
199 	return 0;
200 }
201 
202 static int fec_ptp_pps_perout(struct fec_enet_private *fep)
203 {
204 	u32 compare_val, ptp_hc, temp_val;
205 	u64 curr_time;
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&fep->tmreg_lock, flags);
209 
210 	/* Update time counter */
211 	timecounter_read(&fep->tc);
212 
213 	/* Get the current ptp hardware time counter */
214 	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
215 	temp_val |= FEC_T_CTRL_CAPTURE;
216 	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
217 	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
218 		udelay(1);
219 
220 	ptp_hc = readl(fep->hwp + FEC_ATIME);
221 
222 	/* Convert the ptp local counter to 1588 timestamp */
223 	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
224 
225 	/* If the pps start time less than current time add 100ms, just return.
226 	 * Because the software might not able to set the comparison time into
227 	 * the FEC_TCCR register in time and missed the start time.
228 	 */
229 	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
230 		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
231 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
232 		return -1;
233 	}
234 
235 	compare_val = fep->perout_stime - curr_time + ptp_hc;
236 	compare_val &= fep->cc.mask;
237 
238 	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
239 	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
240 
241 	/* Enable compare event when overflow */
242 	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
243 	temp_val |= FEC_T_CTRL_PINPER;
244 	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
245 
246 	/* Compare channel setting. */
247 	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
248 	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
249 	temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
250 	temp_val &= ~(FEC_T_TMODE_MASK);
251 	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
252 	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
253 
254 	/* Write the second compare event timestamp and calculate
255 	 * the third timestamp. Refer the TCCR register detail in the spec.
256 	 */
257 	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
258 	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
259 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
260 
261 	return 0;
262 }
263 
264 static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
265 {
266 	struct fec_enet_private *fep = container_of(timer,
267 					struct fec_enet_private, perout_timer);
268 
269 	fec_ptp_pps_perout(fep);
270 
271 	return HRTIMER_NORESTART;
272 }
273 
274 /**
275  * fec_ptp_read - read raw cycle counter (to be used by time counter)
276  * @cc: the cyclecounter structure
277  *
278  * this function reads the cyclecounter registers and is called by the
279  * cyclecounter structure used to construct a ns counter from the
280  * arbitrary fixed point registers
281  */
282 static u64 fec_ptp_read(const struct cyclecounter *cc)
283 {
284 	struct fec_enet_private *fep =
285 		container_of(cc, struct fec_enet_private, cc);
286 	u32 tempval;
287 
288 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
289 	tempval |= FEC_T_CTRL_CAPTURE;
290 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
291 
292 	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
293 		udelay(1);
294 
295 	return readl(fep->hwp + FEC_ATIME);
296 }
297 
298 /**
299  * fec_ptp_start_cyclecounter - create the cycle counter from hw
300  * @ndev: network device
301  *
302  * this function initializes the timecounter and cyclecounter
303  * structures for use in generated a ns counter from the arbitrary
304  * fixed point cycles registers in the hardware.
305  */
306 void fec_ptp_start_cyclecounter(struct net_device *ndev)
307 {
308 	struct fec_enet_private *fep = netdev_priv(ndev);
309 	unsigned long flags;
310 	int inc;
311 
312 	inc = 1000000000 / fep->cycle_speed;
313 
314 	/* grab the ptp lock */
315 	spin_lock_irqsave(&fep->tmreg_lock, flags);
316 
317 	/* 1ns counter */
318 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
319 
320 	/* use 31-bit timer counter */
321 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
322 
323 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
324 		fep->hwp + FEC_ATIME_CTRL);
325 
326 	memset(&fep->cc, 0, sizeof(fep->cc));
327 	fep->cc.read = fec_ptp_read;
328 	fep->cc.mask = CLOCKSOURCE_MASK(31);
329 	fep->cc.shift = 31;
330 	fep->cc.mult = FEC_CC_MULT;
331 
332 	/* reset the ns time counter */
333 	timecounter_init(&fep->tc, &fep->cc, 0);
334 
335 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
336 }
337 
338 /**
339  * fec_ptp_adjfine - adjust ptp cycle frequency
340  * @ptp: the ptp clock structure
341  * @scaled_ppm: scaled parts per million adjustment from base
342  *
343  * Adjust the frequency of the ptp cycle counter by the
344  * indicated amount from the base frequency.
345  *
346  * Scaled parts per million is ppm with a 16-bit binary fractional field.
347  *
348  * Because ENET hardware frequency adjust is complex,
349  * using software method to do that.
350  */
351 static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
352 {
353 	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
354 	unsigned long flags;
355 	int neg_adj = 0;
356 	u32 i, tmp;
357 	u32 corr_inc, corr_period;
358 	u32 corr_ns;
359 	u64 lhs, rhs;
360 
361 	struct fec_enet_private *fep =
362 	    container_of(ptp, struct fec_enet_private, ptp_caps);
363 
364 	if (ppb == 0)
365 		return 0;
366 
367 	if (ppb < 0) {
368 		ppb = -ppb;
369 		neg_adj = 1;
370 	}
371 
372 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
373 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
374 	 * meet adjustment requirement.
375 	 */
376 	lhs = NSEC_PER_SEC;
377 	rhs = (u64)ppb * (u64)fep->ptp_inc;
378 	for (i = 1; i <= fep->ptp_inc; i++) {
379 		if (lhs >= rhs) {
380 			corr_inc = i;
381 			corr_period = div_u64(lhs, rhs);
382 			break;
383 		}
384 		lhs += NSEC_PER_SEC;
385 	}
386 	/* Not found? Set it to high value - double speed
387 	 * correct in every clock step.
388 	 */
389 	if (i > fep->ptp_inc) {
390 		corr_inc = fep->ptp_inc;
391 		corr_period = 1;
392 	}
393 
394 	if (neg_adj)
395 		corr_ns = fep->ptp_inc - corr_inc;
396 	else
397 		corr_ns = fep->ptp_inc + corr_inc;
398 
399 	spin_lock_irqsave(&fep->tmreg_lock, flags);
400 
401 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
402 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
403 	writel(tmp, fep->hwp + FEC_ATIME_INC);
404 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
405 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
406 	/* dummy read to update the timer. */
407 	timecounter_read(&fep->tc);
408 
409 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
410 
411 	return 0;
412 }
413 
414 /**
415  * fec_ptp_adjtime
416  * @ptp: the ptp clock structure
417  * @delta: offset to adjust the cycle counter by
418  *
419  * adjust the timer by resetting the timecounter structure.
420  */
421 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
422 {
423 	struct fec_enet_private *fep =
424 	    container_of(ptp, struct fec_enet_private, ptp_caps);
425 	unsigned long flags;
426 
427 	spin_lock_irqsave(&fep->tmreg_lock, flags);
428 	timecounter_adjtime(&fep->tc, delta);
429 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
430 
431 	return 0;
432 }
433 
434 /**
435  * fec_ptp_gettime
436  * @ptp: the ptp clock structure
437  * @ts: timespec structure to hold the current time value
438  *
439  * read the timecounter and return the correct value on ns,
440  * after converting it into a struct timespec.
441  */
442 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
443 {
444 	struct fec_enet_private *fep =
445 	    container_of(ptp, struct fec_enet_private, ptp_caps);
446 	u64 ns;
447 	unsigned long flags;
448 
449 	mutex_lock(&fep->ptp_clk_mutex);
450 	/* Check the ptp clock */
451 	if (!fep->ptp_clk_on) {
452 		mutex_unlock(&fep->ptp_clk_mutex);
453 		return -EINVAL;
454 	}
455 	spin_lock_irqsave(&fep->tmreg_lock, flags);
456 	ns = timecounter_read(&fep->tc);
457 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
458 	mutex_unlock(&fep->ptp_clk_mutex);
459 
460 	*ts = ns_to_timespec64(ns);
461 
462 	return 0;
463 }
464 
465 /**
466  * fec_ptp_settime
467  * @ptp: the ptp clock structure
468  * @ts: the timespec containing the new time for the cycle counter
469  *
470  * reset the timecounter to use a new base value instead of the kernel
471  * wall timer value.
472  */
473 static int fec_ptp_settime(struct ptp_clock_info *ptp,
474 			   const struct timespec64 *ts)
475 {
476 	struct fec_enet_private *fep =
477 	    container_of(ptp, struct fec_enet_private, ptp_caps);
478 
479 	u64 ns;
480 	unsigned long flags;
481 	u32 counter;
482 
483 	mutex_lock(&fep->ptp_clk_mutex);
484 	/* Check the ptp clock */
485 	if (!fep->ptp_clk_on) {
486 		mutex_unlock(&fep->ptp_clk_mutex);
487 		return -EINVAL;
488 	}
489 
490 	ns = timespec64_to_ns(ts);
491 	/* Get the timer value based on timestamp.
492 	 * Update the counter with the masked value.
493 	 */
494 	counter = ns & fep->cc.mask;
495 
496 	spin_lock_irqsave(&fep->tmreg_lock, flags);
497 	writel(counter, fep->hwp + FEC_ATIME);
498 	timecounter_init(&fep->tc, &fep->cc, ns);
499 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
500 	mutex_unlock(&fep->ptp_clk_mutex);
501 	return 0;
502 }
503 
504 static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
505 {
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&fep->tmreg_lock, flags);
509 	writel(0, fep->hwp + FEC_TCSR(channel));
510 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
511 
512 	return 0;
513 }
514 
515 /**
516  * fec_ptp_enable
517  * @ptp: the ptp clock structure
518  * @rq: the requested feature to change
519  * @on: whether to enable or disable the feature
520  *
521  */
522 static int fec_ptp_enable(struct ptp_clock_info *ptp,
523 			  struct ptp_clock_request *rq, int on)
524 {
525 	struct fec_enet_private *fep =
526 	    container_of(ptp, struct fec_enet_private, ptp_caps);
527 	ktime_t timeout;
528 	struct timespec64 start_time, period;
529 	u64 curr_time, delta, period_ns;
530 	unsigned long flags;
531 	int ret = 0;
532 
533 	if (rq->type == PTP_CLK_REQ_PPS) {
534 		fep->pps_channel = DEFAULT_PPS_CHANNEL;
535 		fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
536 
537 		ret = fec_ptp_enable_pps(fep, on);
538 
539 		return ret;
540 	} else if (rq->type == PTP_CLK_REQ_PEROUT) {
541 		/* Reject requests with unsupported flags */
542 		if (rq->perout.flags)
543 			return -EOPNOTSUPP;
544 
545 		if (rq->perout.index != DEFAULT_PPS_CHANNEL)
546 			return -EOPNOTSUPP;
547 
548 		fep->pps_channel = DEFAULT_PPS_CHANNEL;
549 		period.tv_sec = rq->perout.period.sec;
550 		period.tv_nsec = rq->perout.period.nsec;
551 		period_ns = timespec64_to_ns(&period);
552 
553 		/* FEC PTP timer only has 31 bits, so if the period exceed
554 		 * 4s is not supported.
555 		 */
556 		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
557 			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
558 			return -EOPNOTSUPP;
559 		}
560 
561 		fep->reload_period = div_u64(period_ns, 2);
562 		if (on && fep->reload_period) {
563 			/* Convert 1588 timestamp to ns*/
564 			start_time.tv_sec = rq->perout.start.sec;
565 			start_time.tv_nsec = rq->perout.start.nsec;
566 			fep->perout_stime = timespec64_to_ns(&start_time);
567 
568 			mutex_lock(&fep->ptp_clk_mutex);
569 			if (!fep->ptp_clk_on) {
570 				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
571 				mutex_unlock(&fep->ptp_clk_mutex);
572 				return -EOPNOTSUPP;
573 			}
574 			spin_lock_irqsave(&fep->tmreg_lock, flags);
575 			/* Read current timestamp */
576 			curr_time = timecounter_read(&fep->tc);
577 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
578 			mutex_unlock(&fep->ptp_clk_mutex);
579 
580 			/* Calculate time difference */
581 			delta = fep->perout_stime - curr_time;
582 
583 			if (fep->perout_stime <= curr_time) {
584 				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
585 				return -EINVAL;
586 			}
587 
588 			/* Because the timer counter of FEC only has 31-bits, correspondingly,
589 			 * the time comparison register FEC_TCCR also only low 31 bits can be
590 			 * set. If the start time of pps signal exceeds current time more than
591 			 * 0x80000000 ns, a software timer is used and the timer expires about
592 			 * 1 second before the start time to be able to set FEC_TCCR.
593 			 */
594 			if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
595 				timeout = ns_to_ktime(delta - NSEC_PER_SEC);
596 				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
597 			} else {
598 				return fec_ptp_pps_perout(fep);
599 			}
600 		} else {
601 			fec_ptp_pps_disable(fep, fep->pps_channel);
602 		}
603 
604 		return 0;
605 	} else {
606 		return -EOPNOTSUPP;
607 	}
608 }
609 
610 int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
611 		struct netlink_ext_ack *extack)
612 {
613 	struct fec_enet_private *fep = netdev_priv(ndev);
614 
615 	switch (config->tx_type) {
616 	case HWTSTAMP_TX_OFF:
617 		fep->hwts_tx_en = 0;
618 		break;
619 	case HWTSTAMP_TX_ON:
620 		fep->hwts_tx_en = 1;
621 		break;
622 	default:
623 		return -ERANGE;
624 	}
625 
626 	switch (config->rx_filter) {
627 	case HWTSTAMP_FILTER_NONE:
628 		fep->hwts_rx_en = 0;
629 		break;
630 
631 	default:
632 		fep->hwts_rx_en = 1;
633 		config->rx_filter = HWTSTAMP_FILTER_ALL;
634 		break;
635 	}
636 
637 	return 0;
638 }
639 
640 void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
641 {
642 	struct fec_enet_private *fep = netdev_priv(ndev);
643 
644 	config->flags = 0;
645 	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
646 	config->rx_filter = (fep->hwts_rx_en ?
647 			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
648 }
649 
650 /*
651  * fec_time_keep - call timecounter_read every second to avoid timer overrun
652  *                 because ENET just support 32bit counter, will timeout in 4s
653  */
654 static void fec_time_keep(struct work_struct *work)
655 {
656 	struct delayed_work *dwork = to_delayed_work(work);
657 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
658 	unsigned long flags;
659 
660 	mutex_lock(&fep->ptp_clk_mutex);
661 	if (fep->ptp_clk_on) {
662 		spin_lock_irqsave(&fep->tmreg_lock, flags);
663 		timecounter_read(&fep->tc);
664 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
665 	}
666 	mutex_unlock(&fep->ptp_clk_mutex);
667 
668 	schedule_delayed_work(&fep->time_keep, HZ);
669 }
670 
671 /* This function checks the pps event and reloads the timer compare counter. */
672 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
673 {
674 	struct net_device *ndev = dev_id;
675 	struct fec_enet_private *fep = netdev_priv(ndev);
676 	u32 val;
677 	u8 channel = fep->pps_channel;
678 	struct ptp_clock_event event;
679 
680 	val = readl(fep->hwp + FEC_TCSR(channel));
681 	if (val & FEC_T_TF_MASK) {
682 		/* Write the next next compare(not the next according the spec)
683 		 * value to the register
684 		 */
685 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
686 		do {
687 			writel(val, fep->hwp + FEC_TCSR(channel));
688 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
689 
690 		/* Update the counter; */
691 		fep->next_counter = (fep->next_counter + fep->reload_period) &
692 				fep->cc.mask;
693 
694 		event.type = PTP_CLOCK_PPS;
695 		ptp_clock_event(fep->ptp_clock, &event);
696 		return IRQ_HANDLED;
697 	}
698 
699 	return IRQ_NONE;
700 }
701 
702 /**
703  * fec_ptp_init
704  * @pdev: The FEC network adapter
705  * @irq_idx: the interrupt index
706  *
707  * This function performs the required steps for enabling ptp
708  * support. If ptp support has already been loaded it simply calls the
709  * cyclecounter init routine and exits.
710  */
711 
712 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
713 {
714 	struct net_device *ndev = platform_get_drvdata(pdev);
715 	struct fec_enet_private *fep = netdev_priv(ndev);
716 	int irq;
717 	int ret;
718 
719 	fep->ptp_caps.owner = THIS_MODULE;
720 	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
721 
722 	fep->ptp_caps.max_adj = 250000000;
723 	fep->ptp_caps.n_alarm = 0;
724 	fep->ptp_caps.n_ext_ts = 0;
725 	fep->ptp_caps.n_per_out = 1;
726 	fep->ptp_caps.n_pins = 0;
727 	fep->ptp_caps.pps = 1;
728 	fep->ptp_caps.adjfine = fec_ptp_adjfine;
729 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
730 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
731 	fep->ptp_caps.settime64 = fec_ptp_settime;
732 	fep->ptp_caps.enable = fec_ptp_enable;
733 
734 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
735 	if (!fep->cycle_speed) {
736 		fep->cycle_speed = NSEC_PER_SEC;
737 		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
738 	}
739 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
740 
741 	spin_lock_init(&fep->tmreg_lock);
742 
743 	fec_ptp_start_cyclecounter(ndev);
744 
745 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
746 
747 	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
748 	fep->perout_timer.function = fec_ptp_pps_perout_handler;
749 
750 	irq = platform_get_irq_byname_optional(pdev, "pps");
751 	if (irq < 0)
752 		irq = platform_get_irq_optional(pdev, irq_idx);
753 	/* Failure to get an irq is not fatal,
754 	 * only the PTP_CLOCK_PPS clock events should stop
755 	 */
756 	if (irq >= 0) {
757 		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
758 				       0, pdev->name, ndev);
759 		if (ret < 0)
760 			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
761 				 ret);
762 	}
763 
764 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
765 	if (IS_ERR(fep->ptp_clock)) {
766 		fep->ptp_clock = NULL;
767 		dev_err(&pdev->dev, "ptp_clock_register failed\n");
768 	}
769 
770 	schedule_delayed_work(&fep->time_keep, HZ);
771 }
772 
773 void fec_ptp_stop(struct platform_device *pdev)
774 {
775 	struct net_device *ndev = platform_get_drvdata(pdev);
776 	struct fec_enet_private *fep = netdev_priv(ndev);
777 
778 	cancel_delayed_work_sync(&fep->time_keep);
779 	hrtimer_cancel(&fep->perout_timer);
780 	if (fep->ptp_clock)
781 		ptp_clock_unregister(fep->ptp_clock);
782 }
783