xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision f7c595c9d9f4cce9ec335f0d3c5d875bb547f9d5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74 
75 #include "fec.h"
76 
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 				int cpu, struct xdp_buff *xdp,
81 				u32 dma_sync_len);
82 
83 #define DRIVER_NAME	"fec"
84 
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86 
87 #define FEC_ENET_RSEM_V	0x84
88 #define FEC_ENET_RSFL_V	16
89 #define FEC_ENET_RAEM_V	0x8
90 #define FEC_ENET_RAFL_V	0x8
91 #define FEC_ENET_OPD_V	0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
93 
94 #define FEC_ENET_XDP_PASS          0
95 #define FEC_ENET_XDP_CONSUMED      BIT(0)
96 #define FEC_ENET_XDP_TX            BIT(1)
97 #define FEC_ENET_XDP_REDIR         BIT(2)
98 
99 struct fec_devinfo {
100 	u32 quirks;
101 };
102 
103 static const struct fec_devinfo fec_imx25_info = {
104 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107 
108 static const struct fec_devinfo fec_imx27_info = {
109 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 		  FEC_QUIRK_HAS_MDIO_C45,
111 };
112 
113 static const struct fec_devinfo fec_imx28_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119 
120 static const struct fec_devinfo fec_imx6q_info = {
121 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127 
128 static const struct fec_devinfo fec_mvf600_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_MDIO_C45,
131 };
132 
133 static const struct fec_devinfo fec_imx6sx_info = {
134 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 		  FEC_QUIRK_HAS_MDIO_C45,
141 };
142 
143 static const struct fec_devinfo fec_imx6ul_info = {
144 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 		  FEC_QUIRK_HAS_MDIO_C45,
150 };
151 
152 static const struct fec_devinfo fec_imx8mq_info = {
153 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 		  FEC_QUIRK_HAS_MDIO_C45,
161 };
162 
163 static const struct fec_devinfo fec_imx8qm_info = {
164 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
171 };
172 
173 static const struct fec_devinfo fec_s32v234_info = {
174 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
175 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
176 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
177 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
178 		  FEC_QUIRK_HAS_MDIO_C45,
179 };
180 
181 static struct platform_device_id fec_devtype[] = {
182 	{
183 		/* keep it for coldfire */
184 		.name = DRIVER_NAME,
185 		.driver_data = 0,
186 	}, {
187 		/* sentinel */
188 	}
189 };
190 MODULE_DEVICE_TABLE(platform, fec_devtype);
191 
192 static const struct of_device_id fec_dt_ids[] = {
193 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
194 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
195 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
196 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
197 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
198 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
199 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
200 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
201 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
202 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
203 	{ /* sentinel */ }
204 };
205 MODULE_DEVICE_TABLE(of, fec_dt_ids);
206 
207 static unsigned char macaddr[ETH_ALEN];
208 module_param_array(macaddr, byte, NULL, 0);
209 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
210 
211 #if defined(CONFIG_M5272)
212 /*
213  * Some hardware gets it MAC address out of local flash memory.
214  * if this is non-zero then assume it is the address to get MAC from.
215  */
216 #if defined(CONFIG_NETtel)
217 #define	FEC_FLASHMAC	0xf0006006
218 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
219 #define	FEC_FLASHMAC	0xf0006000
220 #elif defined(CONFIG_CANCam)
221 #define	FEC_FLASHMAC	0xf0020000
222 #elif defined (CONFIG_M5272C3)
223 #define	FEC_FLASHMAC	(0xffe04000 + 4)
224 #elif defined(CONFIG_MOD5272)
225 #define FEC_FLASHMAC	0xffc0406b
226 #else
227 #define	FEC_FLASHMAC	0
228 #endif
229 #endif /* CONFIG_M5272 */
230 
231 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
232  *
233  * 2048 byte skbufs are allocated. However, alignment requirements
234  * varies between FEC variants. Worst case is 64, so round down by 64.
235  */
236 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
237 #define PKT_MINBUF_SIZE		64
238 
239 /* FEC receive acceleration */
240 #define FEC_RACC_IPDIS		BIT(1)
241 #define FEC_RACC_PRODIS		BIT(2)
242 #define FEC_RACC_SHIFT16	BIT(7)
243 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
244 
245 /* MIB Control Register */
246 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
247 
248 /*
249  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
250  * size bits. Other FEC hardware does not, so we need to take that into
251  * account when setting it.
252  */
253 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
254     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
255     defined(CONFIG_ARM64)
256 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
257 #else
258 #define	OPT_FRAME_SIZE	0
259 #endif
260 
261 /* FEC MII MMFR bits definition */
262 #define FEC_MMFR_ST		(1 << 30)
263 #define FEC_MMFR_ST_C45		(0)
264 #define FEC_MMFR_OP_READ	(2 << 28)
265 #define FEC_MMFR_OP_READ_C45	(3 << 28)
266 #define FEC_MMFR_OP_WRITE	(1 << 28)
267 #define FEC_MMFR_OP_ADDR_WRITE	(0)
268 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
269 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
270 #define FEC_MMFR_TA		(2 << 16)
271 #define FEC_MMFR_DATA(v)	(v & 0xffff)
272 /* FEC ECR bits definition */
273 #define FEC_ECR_RESET           BIT(0)
274 #define FEC_ECR_ETHEREN         BIT(1)
275 #define FEC_ECR_MAGICEN         BIT(2)
276 #define FEC_ECR_SLEEP           BIT(3)
277 #define FEC_ECR_EN1588          BIT(4)
278 #define FEC_ECR_SPEED           BIT(5)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
718 	    !readl(txq->bd.reg_desc_active) ||
719 	    !readl(txq->bd.reg_desc_active) ||
720 	    !readl(txq->bd.reg_desc_active) ||
721 	    !readl(txq->bd.reg_desc_active))
722 		writel(0, txq->bd.reg_desc_active);
723 
724 	return 0;
725 }
726 
727 static int
728 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
729 			  struct net_device *ndev,
730 			  struct bufdesc *bdp, int index, char *data,
731 			  int size, bool last_tcp, bool is_last)
732 {
733 	struct fec_enet_private *fep = netdev_priv(ndev);
734 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
735 	unsigned short status;
736 	unsigned int estatus = 0;
737 	dma_addr_t addr;
738 
739 	status = fec16_to_cpu(bdp->cbd_sc);
740 	status &= ~BD_ENET_TX_STATS;
741 
742 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
743 
744 	if (((unsigned long) data) & fep->tx_align ||
745 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
746 		memcpy(txq->tx_bounce[index], data, size);
747 		data = txq->tx_bounce[index];
748 
749 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
750 			swap_buffer(data, size);
751 	}
752 
753 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
754 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
755 		dev_kfree_skb_any(skb);
756 		if (net_ratelimit())
757 			netdev_err(ndev, "Tx DMA memory map failed\n");
758 		return NETDEV_TX_OK;
759 	}
760 
761 	bdp->cbd_datlen = cpu_to_fec16(size);
762 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
763 
764 	if (fep->bufdesc_ex) {
765 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
766 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
767 		if (skb->ip_summed == CHECKSUM_PARTIAL)
768 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
769 		ebdp->cbd_bdu = 0;
770 		ebdp->cbd_esc = cpu_to_fec32(estatus);
771 	}
772 
773 	/* Handle the last BD specially */
774 	if (last_tcp)
775 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
776 	if (is_last) {
777 		status |= BD_ENET_TX_INTR;
778 		if (fep->bufdesc_ex)
779 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
780 	}
781 
782 	bdp->cbd_sc = cpu_to_fec16(status);
783 
784 	return 0;
785 }
786 
787 static int
788 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
789 			 struct sk_buff *skb, struct net_device *ndev,
790 			 struct bufdesc *bdp, int index)
791 {
792 	struct fec_enet_private *fep = netdev_priv(ndev);
793 	int hdr_len = skb_tcp_all_headers(skb);
794 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
795 	void *bufaddr;
796 	unsigned long dmabuf;
797 	unsigned short status;
798 	unsigned int estatus = 0;
799 
800 	status = fec16_to_cpu(bdp->cbd_sc);
801 	status &= ~BD_ENET_TX_STATS;
802 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
803 
804 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
805 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
806 	if (((unsigned long)bufaddr) & fep->tx_align ||
807 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
808 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
809 		bufaddr = txq->tx_bounce[index];
810 
811 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
812 			swap_buffer(bufaddr, hdr_len);
813 
814 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
815 					hdr_len, DMA_TO_DEVICE);
816 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
817 			dev_kfree_skb_any(skb);
818 			if (net_ratelimit())
819 				netdev_err(ndev, "Tx DMA memory map failed\n");
820 			return NETDEV_TX_OK;
821 		}
822 	}
823 
824 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
825 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
826 
827 	if (fep->bufdesc_ex) {
828 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
829 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
830 		if (skb->ip_summed == CHECKSUM_PARTIAL)
831 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
832 		ebdp->cbd_bdu = 0;
833 		ebdp->cbd_esc = cpu_to_fec32(estatus);
834 	}
835 
836 	bdp->cbd_sc = cpu_to_fec16(status);
837 
838 	return 0;
839 }
840 
841 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
842 				   struct sk_buff *skb,
843 				   struct net_device *ndev)
844 {
845 	struct fec_enet_private *fep = netdev_priv(ndev);
846 	int hdr_len, total_len, data_left;
847 	struct bufdesc *bdp = txq->bd.cur;
848 	struct bufdesc *tmp_bdp;
849 	struct bufdesc_ex *ebdp;
850 	struct tso_t tso;
851 	unsigned int index = 0;
852 	int ret;
853 
854 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
855 		dev_kfree_skb_any(skb);
856 		if (net_ratelimit())
857 			netdev_err(ndev, "NOT enough BD for TSO!\n");
858 		return NETDEV_TX_OK;
859 	}
860 
861 	/* Protocol checksum off-load for TCP and UDP. */
862 	if (fec_enet_clear_csum(skb, ndev)) {
863 		dev_kfree_skb_any(skb);
864 		return NETDEV_TX_OK;
865 	}
866 
867 	/* Initialize the TSO handler, and prepare the first payload */
868 	hdr_len = tso_start(skb, &tso);
869 
870 	total_len = skb->len - hdr_len;
871 	while (total_len > 0) {
872 		char *hdr;
873 
874 		index = fec_enet_get_bd_index(bdp, &txq->bd);
875 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
876 		total_len -= data_left;
877 
878 		/* prepare packet headers: MAC + IP + TCP */
879 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
880 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
881 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
882 		if (ret)
883 			goto err_release;
884 
885 		while (data_left > 0) {
886 			int size;
887 
888 			size = min_t(int, tso.size, data_left);
889 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
890 			index = fec_enet_get_bd_index(bdp, &txq->bd);
891 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
892 							bdp, index,
893 							tso.data, size,
894 							size == data_left,
895 							total_len == 0);
896 			if (ret)
897 				goto err_release;
898 
899 			data_left -= size;
900 			tso_build_data(skb, &tso, size);
901 		}
902 
903 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
904 	}
905 
906 	/* Save skb pointer */
907 	txq->tx_buf[index].buf_p = skb;
908 
909 	skb_tx_timestamp(skb);
910 	txq->bd.cur = bdp;
911 
912 	/* Trigger transmission start */
913 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
914 	    !readl(txq->bd.reg_desc_active) ||
915 	    !readl(txq->bd.reg_desc_active) ||
916 	    !readl(txq->bd.reg_desc_active) ||
917 	    !readl(txq->bd.reg_desc_active))
918 		writel(0, txq->bd.reg_desc_active);
919 
920 	return 0;
921 
922 err_release:
923 	/* Release all used data descriptors for TSO */
924 	tmp_bdp = txq->bd.cur;
925 
926 	while (tmp_bdp != bdp) {
927 		/* Unmap data buffers */
928 		if (tmp_bdp->cbd_bufaddr &&
929 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
930 			dma_unmap_single(&fep->pdev->dev,
931 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
932 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
933 					 DMA_TO_DEVICE);
934 
935 		/* Clear standard buffer descriptor fields */
936 		tmp_bdp->cbd_sc = 0;
937 		tmp_bdp->cbd_datlen = 0;
938 		tmp_bdp->cbd_bufaddr = 0;
939 
940 		/* Handle extended descriptor if enabled */
941 		if (fep->bufdesc_ex) {
942 			ebdp = (struct bufdesc_ex *)tmp_bdp;
943 			ebdp->cbd_esc = 0;
944 		}
945 
946 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
947 	}
948 
949 	dev_kfree_skb_any(skb);
950 
951 	return ret;
952 }
953 
954 static netdev_tx_t
955 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
956 {
957 	struct fec_enet_private *fep = netdev_priv(ndev);
958 	int entries_free;
959 	unsigned short queue;
960 	struct fec_enet_priv_tx_q *txq;
961 	struct netdev_queue *nq;
962 	int ret;
963 
964 	queue = skb_get_queue_mapping(skb);
965 	txq = fep->tx_queue[queue];
966 	nq = netdev_get_tx_queue(ndev, queue);
967 
968 	if (skb_is_gso(skb))
969 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
970 	else
971 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
972 	if (ret)
973 		return ret;
974 
975 	entries_free = fec_enet_get_free_txdesc_num(txq);
976 	if (entries_free <= txq->tx_stop_threshold)
977 		netif_tx_stop_queue(nq);
978 
979 	return NETDEV_TX_OK;
980 }
981 
982 /* Init RX & TX buffer descriptors
983  */
984 static void fec_enet_bd_init(struct net_device *dev)
985 {
986 	struct fec_enet_private *fep = netdev_priv(dev);
987 	struct fec_enet_priv_tx_q *txq;
988 	struct fec_enet_priv_rx_q *rxq;
989 	struct bufdesc *bdp;
990 	unsigned int i;
991 	unsigned int q;
992 
993 	for (q = 0; q < fep->num_rx_queues; q++) {
994 		/* Initialize the receive buffer descriptors. */
995 		rxq = fep->rx_queue[q];
996 		bdp = rxq->bd.base;
997 
998 		for (i = 0; i < rxq->bd.ring_size; i++) {
999 
1000 			/* Initialize the BD for every fragment in the page. */
1001 			if (bdp->cbd_bufaddr)
1002 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1003 			else
1004 				bdp->cbd_sc = cpu_to_fec16(0);
1005 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1006 		}
1007 
1008 		/* Set the last buffer to wrap */
1009 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1010 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1011 
1012 		rxq->bd.cur = rxq->bd.base;
1013 	}
1014 
1015 	for (q = 0; q < fep->num_tx_queues; q++) {
1016 		/* ...and the same for transmit */
1017 		txq = fep->tx_queue[q];
1018 		bdp = txq->bd.base;
1019 		txq->bd.cur = bdp;
1020 
1021 		for (i = 0; i < txq->bd.ring_size; i++) {
1022 			/* Initialize the BD for every fragment in the page. */
1023 			bdp->cbd_sc = cpu_to_fec16(0);
1024 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1025 				if (bdp->cbd_bufaddr &&
1026 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1027 					dma_unmap_single(&fep->pdev->dev,
1028 							 fec32_to_cpu(bdp->cbd_bufaddr),
1029 							 fec16_to_cpu(bdp->cbd_datlen),
1030 							 DMA_TO_DEVICE);
1031 				if (txq->tx_buf[i].buf_p)
1032 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1033 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1034 				if (bdp->cbd_bufaddr)
1035 					dma_unmap_single(&fep->pdev->dev,
1036 							 fec32_to_cpu(bdp->cbd_bufaddr),
1037 							 fec16_to_cpu(bdp->cbd_datlen),
1038 							 DMA_TO_DEVICE);
1039 
1040 				if (txq->tx_buf[i].buf_p)
1041 					xdp_return_frame(txq->tx_buf[i].buf_p);
1042 			} else {
1043 				struct page *page = txq->tx_buf[i].buf_p;
1044 
1045 				if (page)
1046 					page_pool_put_page(page->pp, page, 0, false);
1047 			}
1048 
1049 			txq->tx_buf[i].buf_p = NULL;
1050 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1051 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1052 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1053 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1054 		}
1055 
1056 		/* Set the last buffer to wrap */
1057 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1058 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1059 		txq->dirty_tx = bdp;
1060 	}
1061 }
1062 
1063 static void fec_enet_active_rxring(struct net_device *ndev)
1064 {
1065 	struct fec_enet_private *fep = netdev_priv(ndev);
1066 	int i;
1067 
1068 	for (i = 0; i < fep->num_rx_queues; i++)
1069 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1070 }
1071 
1072 static void fec_enet_enable_ring(struct net_device *ndev)
1073 {
1074 	struct fec_enet_private *fep = netdev_priv(ndev);
1075 	struct fec_enet_priv_tx_q *txq;
1076 	struct fec_enet_priv_rx_q *rxq;
1077 	int i;
1078 
1079 	for (i = 0; i < fep->num_rx_queues; i++) {
1080 		rxq = fep->rx_queue[i];
1081 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1082 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1083 
1084 		/* enable DMA1/2 */
1085 		if (i)
1086 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1087 			       fep->hwp + FEC_RCMR(i));
1088 	}
1089 
1090 	for (i = 0; i < fep->num_tx_queues; i++) {
1091 		txq = fep->tx_queue[i];
1092 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1093 
1094 		/* enable DMA1/2 */
1095 		if (i)
1096 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1097 			       fep->hwp + FEC_DMA_CFG(i));
1098 	}
1099 }
1100 
1101 /* Whack a reset.  We should wait for this.
1102  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1103  * instead of reset MAC itself.
1104  */
1105 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1106 {
1107 	u32 val;
1108 
1109 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1111 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1112 			writel(0, fep->hwp + FEC_ECNTRL);
1113 		} else {
1114 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1115 			udelay(10);
1116 		}
1117 	} else {
1118 		val = readl(fep->hwp + FEC_ECNTRL);
1119 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 		writel(val, fep->hwp + FEC_ECNTRL);
1121 	}
1122 }
1123 
1124 /*
1125  * This function is called to start or restart the FEC during a link
1126  * change, transmit timeout, or to reconfigure the FEC.  The network
1127  * packet processing for this device must be stopped before this call.
1128  */
1129 static void
1130 fec_restart(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 	u32 temp_mac[2];
1134 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1135 	u32 ecntl = FEC_ECR_ETHEREN;
1136 
1137 	if (fep->bufdesc_ex)
1138 		fec_ptp_save_state(fep);
1139 
1140 	fec_ctrl_reset(fep, false);
1141 
1142 	/*
1143 	 * enet-mac reset will reset mac address registers too,
1144 	 * so need to reconfigure it.
1145 	 */
1146 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1147 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1148 	       fep->hwp + FEC_ADDR_LOW);
1149 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1150 	       fep->hwp + FEC_ADDR_HIGH);
1151 
1152 	/* Clear any outstanding interrupt, except MDIO. */
1153 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1154 
1155 	fec_enet_bd_init(ndev);
1156 
1157 	fec_enet_enable_ring(ndev);
1158 
1159 	/* Enable MII mode */
1160 	if (fep->full_duplex == DUPLEX_FULL) {
1161 		/* FD enable */
1162 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1163 	} else {
1164 		/* No Rcv on Xmit */
1165 		rcntl |= 0x02;
1166 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1167 	}
1168 
1169 	/* Set MII speed */
1170 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1171 
1172 #if !defined(CONFIG_M5272)
1173 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1174 		u32 val = readl(fep->hwp + FEC_RACC);
1175 
1176 		/* align IP header */
1177 		val |= FEC_RACC_SHIFT16;
1178 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1179 			/* set RX checksum */
1180 			val |= FEC_RACC_OPTIONS;
1181 		else
1182 			val &= ~FEC_RACC_OPTIONS;
1183 		writel(val, fep->hwp + FEC_RACC);
1184 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1185 	}
1186 #endif
1187 
1188 	/*
1189 	 * The phy interface and speed need to get configured
1190 	 * differently on enet-mac.
1191 	 */
1192 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1193 		/* Enable flow control and length check */
1194 		rcntl |= 0x40000000 | 0x00000020;
1195 
1196 		/* RGMII, RMII or MII */
1197 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1198 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1199 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1200 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1201 			rcntl |= (1 << 6);
1202 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1203 			rcntl |= FEC_RCR_RMII;
1204 		else
1205 			rcntl &= ~FEC_RCR_RMII;
1206 
1207 		/* 1G, 100M or 10M */
1208 		if (ndev->phydev) {
1209 			if (ndev->phydev->speed == SPEED_1000)
1210 				ecntl |= FEC_ECR_SPEED;
1211 			else if (ndev->phydev->speed == SPEED_100)
1212 				rcntl &= ~FEC_RCR_10BASET;
1213 			else
1214 				rcntl |= FEC_RCR_10BASET;
1215 		}
1216 	} else {
1217 #ifdef FEC_MIIGSK_ENR
1218 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1219 			u32 cfgr;
1220 			/* disable the gasket and wait */
1221 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1222 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1223 				udelay(1);
1224 
1225 			/*
1226 			 * configure the gasket:
1227 			 *   RMII, 50 MHz, no loopback, no echo
1228 			 *   MII, 25 MHz, no loopback, no echo
1229 			 */
1230 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1231 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1232 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1233 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1234 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1235 
1236 			/* re-enable the gasket */
1237 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1238 		}
1239 #endif
1240 	}
1241 
1242 #if !defined(CONFIG_M5272)
1243 	/* enable pause frame*/
1244 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1245 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1246 	     ndev->phydev && ndev->phydev->pause)) {
1247 		rcntl |= FEC_RCR_FLOWCTL;
1248 
1249 		/* set FIFO threshold parameter to reduce overrun */
1250 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1251 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1252 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1253 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1254 
1255 		/* OPD */
1256 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1257 	} else {
1258 		rcntl &= ~FEC_RCR_FLOWCTL;
1259 	}
1260 #endif /* !defined(CONFIG_M5272) */
1261 
1262 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1263 
1264 	/* Setup multicast filter. */
1265 	set_multicast_list(ndev);
1266 #ifndef CONFIG_M5272
1267 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1268 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1269 #endif
1270 
1271 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1272 		/* enable ENET endian swap */
1273 		ecntl |= FEC_ECR_BYTESWP;
1274 		/* enable ENET store and forward mode */
1275 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1276 	}
1277 
1278 	if (fep->bufdesc_ex)
1279 		ecntl |= FEC_ECR_EN1588;
1280 
1281 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1282 	    fep->rgmii_txc_dly)
1283 		ecntl |= FEC_ENET_TXC_DLY;
1284 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1285 	    fep->rgmii_rxc_dly)
1286 		ecntl |= FEC_ENET_RXC_DLY;
1287 
1288 #ifndef CONFIG_M5272
1289 	/* Enable the MIB statistic event counters */
1290 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1291 #endif
1292 
1293 	/* And last, enable the transmit and receive processing */
1294 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1295 	fec_enet_active_rxring(ndev);
1296 
1297 	if (fep->bufdesc_ex) {
1298 		fec_ptp_start_cyclecounter(ndev);
1299 		fec_ptp_restore_state(fep);
1300 	}
1301 
1302 	/* Enable interrupts we wish to service */
1303 	if (fep->link)
1304 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1305 	else
1306 		writel(0, fep->hwp + FEC_IMASK);
1307 
1308 	/* Init the interrupt coalescing */
1309 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1310 		fec_enet_itr_coal_set(ndev);
1311 }
1312 
1313 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1314 {
1315 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1316 	      of_machine_is_compatible("fsl,imx8qxp") ||
1317 	      of_machine_is_compatible("fsl,imx8dxl")))
1318 		return 0;
1319 
1320 	return imx_scu_get_handle(&fep->ipc_handle);
1321 }
1322 
1323 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1324 {
1325 	struct device_node *np = fep->pdev->dev.of_node;
1326 	u32 rsrc_id, val;
1327 	int idx;
1328 
1329 	if (!np || !fep->ipc_handle)
1330 		return;
1331 
1332 	idx = of_alias_get_id(np, "ethernet");
1333 	if (idx < 0)
1334 		idx = 0;
1335 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1336 
1337 	val = enabled ? 1 : 0;
1338 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1339 }
1340 
1341 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1342 {
1343 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1344 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1345 
1346 	if (stop_gpr->gpr) {
1347 		if (enabled)
1348 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1349 					   BIT(stop_gpr->bit),
1350 					   BIT(stop_gpr->bit));
1351 		else
1352 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1353 					   BIT(stop_gpr->bit), 0);
1354 	} else if (pdata && pdata->sleep_mode_enable) {
1355 		pdata->sleep_mode_enable(enabled);
1356 	} else {
1357 		fec_enet_ipg_stop_set(fep, enabled);
1358 	}
1359 }
1360 
1361 static void fec_irqs_disable(struct net_device *ndev)
1362 {
1363 	struct fec_enet_private *fep = netdev_priv(ndev);
1364 
1365 	writel(0, fep->hwp + FEC_IMASK);
1366 }
1367 
1368 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1369 {
1370 	struct fec_enet_private *fep = netdev_priv(ndev);
1371 
1372 	writel(0, fep->hwp + FEC_IMASK);
1373 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1374 }
1375 
1376 static void
1377 fec_stop(struct net_device *ndev)
1378 {
1379 	struct fec_enet_private *fep = netdev_priv(ndev);
1380 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1381 	u32 val;
1382 
1383 	/* We cannot expect a graceful transmit stop without link !!! */
1384 	if (fep->link) {
1385 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1386 		udelay(10);
1387 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1388 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1389 	}
1390 
1391 	if (fep->bufdesc_ex)
1392 		fec_ptp_save_state(fep);
1393 
1394 	fec_ctrl_reset(fep, true);
1395 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1396 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1397 
1398 	/* We have to keep ENET enabled to have MII interrupt stay working */
1399 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1400 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1401 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1402 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1403 	}
1404 
1405 	if (fep->bufdesc_ex) {
1406 		val = readl(fep->hwp + FEC_ECNTRL);
1407 		val |= FEC_ECR_EN1588;
1408 		writel(val, fep->hwp + FEC_ECNTRL);
1409 
1410 		fec_ptp_start_cyclecounter(ndev);
1411 		fec_ptp_restore_state(fep);
1412 	}
1413 }
1414 
1415 static void
1416 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1417 {
1418 	struct fec_enet_private *fep = netdev_priv(ndev);
1419 
1420 	fec_dump(ndev);
1421 
1422 	ndev->stats.tx_errors++;
1423 
1424 	schedule_work(&fep->tx_timeout_work);
1425 }
1426 
1427 static void fec_enet_timeout_work(struct work_struct *work)
1428 {
1429 	struct fec_enet_private *fep =
1430 		container_of(work, struct fec_enet_private, tx_timeout_work);
1431 	struct net_device *ndev = fep->netdev;
1432 
1433 	rtnl_lock();
1434 	if (netif_device_present(ndev) || netif_running(ndev)) {
1435 		napi_disable(&fep->napi);
1436 		netif_tx_lock_bh(ndev);
1437 		fec_restart(ndev);
1438 		netif_tx_wake_all_queues(ndev);
1439 		netif_tx_unlock_bh(ndev);
1440 		napi_enable(&fep->napi);
1441 	}
1442 	rtnl_unlock();
1443 }
1444 
1445 static void
1446 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1447 	struct skb_shared_hwtstamps *hwtstamps)
1448 {
1449 	unsigned long flags;
1450 	u64 ns;
1451 
1452 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1453 	ns = timecounter_cyc2time(&fep->tc, ts);
1454 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1455 
1456 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1457 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1458 }
1459 
1460 static void
1461 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1462 {
1463 	struct	fec_enet_private *fep;
1464 	struct xdp_frame *xdpf;
1465 	struct bufdesc *bdp;
1466 	unsigned short status;
1467 	struct	sk_buff	*skb;
1468 	struct fec_enet_priv_tx_q *txq;
1469 	struct netdev_queue *nq;
1470 	int	index = 0;
1471 	int	entries_free;
1472 	struct page *page;
1473 	int frame_len;
1474 
1475 	fep = netdev_priv(ndev);
1476 
1477 	txq = fep->tx_queue[queue_id];
1478 	/* get next bdp of dirty_tx */
1479 	nq = netdev_get_tx_queue(ndev, queue_id);
1480 	bdp = txq->dirty_tx;
1481 
1482 	/* get next bdp of dirty_tx */
1483 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1484 
1485 	while (bdp != READ_ONCE(txq->bd.cur)) {
1486 		/* Order the load of bd.cur and cbd_sc */
1487 		rmb();
1488 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1489 		if (status & BD_ENET_TX_READY)
1490 			break;
1491 
1492 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1493 
1494 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1495 			skb = txq->tx_buf[index].buf_p;
1496 			if (bdp->cbd_bufaddr &&
1497 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1498 				dma_unmap_single(&fep->pdev->dev,
1499 						 fec32_to_cpu(bdp->cbd_bufaddr),
1500 						 fec16_to_cpu(bdp->cbd_datlen),
1501 						 DMA_TO_DEVICE);
1502 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1503 			if (!skb)
1504 				goto tx_buf_done;
1505 		} else {
1506 			/* Tx processing cannot call any XDP (or page pool) APIs if
1507 			 * the "budget" is 0. Because NAPI is called with budget of
1508 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1509 			 * however, we can't use the page pool from IRQ context.
1510 			 */
1511 			if (unlikely(!budget))
1512 				break;
1513 
1514 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1515 				xdpf = txq->tx_buf[index].buf_p;
1516 				if (bdp->cbd_bufaddr)
1517 					dma_unmap_single(&fep->pdev->dev,
1518 							 fec32_to_cpu(bdp->cbd_bufaddr),
1519 							 fec16_to_cpu(bdp->cbd_datlen),
1520 							 DMA_TO_DEVICE);
1521 			} else {
1522 				page = txq->tx_buf[index].buf_p;
1523 			}
1524 
1525 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1526 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1527 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 				goto tx_buf_done;
1529 			}
1530 
1531 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1532 		}
1533 
1534 		/* Check for errors. */
1535 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1536 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1537 				   BD_ENET_TX_CSL)) {
1538 			ndev->stats.tx_errors++;
1539 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1540 				ndev->stats.tx_heartbeat_errors++;
1541 			if (status & BD_ENET_TX_LC)  /* Late collision */
1542 				ndev->stats.tx_window_errors++;
1543 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1544 				ndev->stats.tx_aborted_errors++;
1545 			if (status & BD_ENET_TX_UN)  /* Underrun */
1546 				ndev->stats.tx_fifo_errors++;
1547 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1548 				ndev->stats.tx_carrier_errors++;
1549 		} else {
1550 			ndev->stats.tx_packets++;
1551 
1552 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1553 				ndev->stats.tx_bytes += skb->len;
1554 			else
1555 				ndev->stats.tx_bytes += frame_len;
1556 		}
1557 
1558 		/* Deferred means some collisions occurred during transmit,
1559 		 * but we eventually sent the packet OK.
1560 		 */
1561 		if (status & BD_ENET_TX_DEF)
1562 			ndev->stats.collisions++;
1563 
1564 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1565 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1566 			 * are to time stamp the packet, so we still need to check time
1567 			 * stamping enabled flag.
1568 			 */
1569 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1570 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1571 				struct skb_shared_hwtstamps shhwtstamps;
1572 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573 
1574 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1575 				skb_tstamp_tx(skb, &shhwtstamps);
1576 			}
1577 
1578 			/* Free the sk buffer associated with this last transmit */
1579 			napi_consume_skb(skb, budget);
1580 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1581 			xdp_return_frame_rx_napi(xdpf);
1582 		} else { /* recycle pages of XDP_TX frames */
1583 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1584 			page_pool_put_page(page->pp, page, 0, true);
1585 		}
1586 
1587 		txq->tx_buf[index].buf_p = NULL;
1588 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1589 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1590 
1591 tx_buf_done:
1592 		/* Make sure the update to bdp and tx_buf are performed
1593 		 * before dirty_tx
1594 		 */
1595 		wmb();
1596 		txq->dirty_tx = bdp;
1597 
1598 		/* Update pointer to next buffer descriptor to be transmitted */
1599 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1600 
1601 		/* Since we have freed up a buffer, the ring is no longer full
1602 		 */
1603 		if (netif_tx_queue_stopped(nq)) {
1604 			entries_free = fec_enet_get_free_txdesc_num(txq);
1605 			if (entries_free >= txq->tx_wake_threshold)
1606 				netif_tx_wake_queue(nq);
1607 		}
1608 	}
1609 
1610 	/* ERR006358: Keep the transmitter going */
1611 	if (bdp != txq->bd.cur &&
1612 	    readl(txq->bd.reg_desc_active) == 0)
1613 		writel(0, txq->bd.reg_desc_active);
1614 }
1615 
1616 static void fec_enet_tx(struct net_device *ndev, int budget)
1617 {
1618 	struct fec_enet_private *fep = netdev_priv(ndev);
1619 	int i;
1620 
1621 	/* Make sure that AVB queues are processed first. */
1622 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1623 		fec_enet_tx_queue(ndev, i, budget);
1624 }
1625 
1626 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1627 				struct bufdesc *bdp, int index)
1628 {
1629 	struct page *new_page;
1630 	dma_addr_t phys_addr;
1631 
1632 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1633 	if (unlikely(!new_page))
1634 		return -ENOMEM;
1635 
1636 	rxq->rx_skb_info[index].page = new_page;
1637 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1638 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1639 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1640 
1641 	return 0;
1642 }
1643 
1644 static u32
1645 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1646 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1647 {
1648 	unsigned int sync, len = xdp->data_end - xdp->data;
1649 	u32 ret = FEC_ENET_XDP_PASS;
1650 	struct page *page;
1651 	int err;
1652 	u32 act;
1653 
1654 	act = bpf_prog_run_xdp(prog, xdp);
1655 
1656 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1657 	 * max len CPU touch
1658 	 */
1659 	sync = xdp->data_end - xdp->data;
1660 	sync = max(sync, len);
1661 
1662 	switch (act) {
1663 	case XDP_PASS:
1664 		rxq->stats[RX_XDP_PASS]++;
1665 		ret = FEC_ENET_XDP_PASS;
1666 		break;
1667 
1668 	case XDP_REDIRECT:
1669 		rxq->stats[RX_XDP_REDIRECT]++;
1670 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1671 		if (unlikely(err))
1672 			goto xdp_err;
1673 
1674 		ret = FEC_ENET_XDP_REDIR;
1675 		break;
1676 
1677 	case XDP_TX:
1678 		rxq->stats[RX_XDP_TX]++;
1679 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1680 		if (unlikely(err)) {
1681 			rxq->stats[RX_XDP_TX_ERRORS]++;
1682 			goto xdp_err;
1683 		}
1684 
1685 		ret = FEC_ENET_XDP_TX;
1686 		break;
1687 
1688 	default:
1689 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1690 		fallthrough;
1691 
1692 	case XDP_ABORTED:
1693 		fallthrough;    /* handle aborts by dropping packet */
1694 
1695 	case XDP_DROP:
1696 		rxq->stats[RX_XDP_DROP]++;
1697 xdp_err:
1698 		ret = FEC_ENET_XDP_CONSUMED;
1699 		page = virt_to_head_page(xdp->data);
1700 		page_pool_put_page(rxq->page_pool, page, sync, true);
1701 		if (act != XDP_DROP)
1702 			trace_xdp_exception(fep->netdev, prog, act);
1703 		break;
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1710 {
1711 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1712 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1713 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1714 
1715 		/* Push and remove the vlan tag */
1716 
1717 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1718 		skb_pull(skb, VLAN_HLEN);
1719 		__vlan_hwaccel_put_tag(skb,
1720 				       htons(ETH_P_8021Q),
1721 				       vlan_tag);
1722 	}
1723 }
1724 
1725 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1726  * When we update through the ring, if the next incoming buffer has
1727  * not been given to the system, we just set the empty indicator,
1728  * effectively tossing the packet.
1729  */
1730 static int
1731 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1732 {
1733 	struct fec_enet_private *fep = netdev_priv(ndev);
1734 	struct fec_enet_priv_rx_q *rxq;
1735 	struct bufdesc *bdp;
1736 	unsigned short status;
1737 	struct  sk_buff *skb;
1738 	ushort	pkt_len;
1739 	int	pkt_received = 0;
1740 	struct	bufdesc_ex *ebdp = NULL;
1741 	int	index = 0;
1742 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1743 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1744 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1745 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1746 	int cpu = smp_processor_id();
1747 	struct xdp_buff xdp;
1748 	struct page *page;
1749 	__fec32 cbd_bufaddr;
1750 	u32 sub_len = 4;
1751 
1752 #if !defined(CONFIG_M5272)
1753 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1754 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1755 	 */
1756 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1757 		data_start += 2;
1758 		sub_len += 2;
1759 	}
1760 #endif
1761 
1762 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1763 	/*
1764 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1765 	 * headers.
1766 	 */
1767 	flush_cache_all();
1768 #endif
1769 	rxq = fep->rx_queue[queue_id];
1770 
1771 	/* First, grab all of the stats for the incoming packet.
1772 	 * These get messed up if we get called due to a busy condition.
1773 	 */
1774 	bdp = rxq->bd.cur;
1775 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1776 
1777 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1778 
1779 		if (pkt_received >= budget)
1780 			break;
1781 		pkt_received++;
1782 
1783 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1784 
1785 		/* Check for errors. */
1786 		status ^= BD_ENET_RX_LAST;
1787 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1788 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1789 			   BD_ENET_RX_CL)) {
1790 			ndev->stats.rx_errors++;
1791 			if (status & BD_ENET_RX_OV) {
1792 				/* FIFO overrun */
1793 				ndev->stats.rx_fifo_errors++;
1794 				goto rx_processing_done;
1795 			}
1796 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1797 						| BD_ENET_RX_LAST)) {
1798 				/* Frame too long or too short. */
1799 				ndev->stats.rx_length_errors++;
1800 				if (status & BD_ENET_RX_LAST)
1801 					netdev_err(ndev, "rcv is not +last\n");
1802 			}
1803 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1804 				ndev->stats.rx_crc_errors++;
1805 			/* Report late collisions as a frame error. */
1806 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1807 				ndev->stats.rx_frame_errors++;
1808 			goto rx_processing_done;
1809 		}
1810 
1811 		/* Process the incoming frame. */
1812 		ndev->stats.rx_packets++;
1813 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1814 		ndev->stats.rx_bytes += pkt_len;
1815 
1816 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1817 		page = rxq->rx_skb_info[index].page;
1818 		cbd_bufaddr = bdp->cbd_bufaddr;
1819 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1820 			ndev->stats.rx_dropped++;
1821 			goto rx_processing_done;
1822 		}
1823 
1824 		dma_sync_single_for_cpu(&fep->pdev->dev,
1825 					fec32_to_cpu(cbd_bufaddr),
1826 					pkt_len,
1827 					DMA_FROM_DEVICE);
1828 		prefetch(page_address(page));
1829 
1830 		if (xdp_prog) {
1831 			xdp_buff_clear_frags_flag(&xdp);
1832 			/* subtract 16bit shift and FCS */
1833 			xdp_prepare_buff(&xdp, page_address(page),
1834 					 data_start, pkt_len - sub_len, false);
1835 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1836 			xdp_result |= ret;
1837 			if (ret != FEC_ENET_XDP_PASS)
1838 				goto rx_processing_done;
1839 		}
1840 
1841 		/* The packet length includes FCS, but we don't want to
1842 		 * include that when passing upstream as it messes up
1843 		 * bridging applications.
1844 		 */
1845 		skb = build_skb(page_address(page), PAGE_SIZE);
1846 		if (unlikely(!skb)) {
1847 			page_pool_recycle_direct(rxq->page_pool, page);
1848 			ndev->stats.rx_dropped++;
1849 
1850 			netdev_err_once(ndev, "build_skb failed!\n");
1851 			goto rx_processing_done;
1852 		}
1853 
1854 		skb_reserve(skb, data_start);
1855 		skb_put(skb, pkt_len - sub_len);
1856 		skb_mark_for_recycle(skb);
1857 
1858 		if (unlikely(need_swap)) {
1859 			u8 *data;
1860 
1861 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1862 			swap_buffer(data, pkt_len);
1863 		}
1864 
1865 		/* Extract the enhanced buffer descriptor */
1866 		ebdp = NULL;
1867 		if (fep->bufdesc_ex)
1868 			ebdp = (struct bufdesc_ex *)bdp;
1869 
1870 		/* If this is a VLAN packet remove the VLAN Tag */
1871 		if (fep->bufdesc_ex &&
1872 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1873 			fec_enet_rx_vlan(ndev, skb);
1874 
1875 		skb->protocol = eth_type_trans(skb, ndev);
1876 
1877 		/* Get receive timestamp from the skb */
1878 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1879 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1880 					  skb_hwtstamps(skb));
1881 
1882 		if (fep->bufdesc_ex &&
1883 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1884 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1885 				/* don't check it */
1886 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1887 			} else {
1888 				skb_checksum_none_assert(skb);
1889 			}
1890 		}
1891 
1892 		skb_record_rx_queue(skb, queue_id);
1893 		napi_gro_receive(&fep->napi, skb);
1894 
1895 rx_processing_done:
1896 		/* Clear the status flags for this buffer */
1897 		status &= ~BD_ENET_RX_STATS;
1898 
1899 		/* Mark the buffer empty */
1900 		status |= BD_ENET_RX_EMPTY;
1901 
1902 		if (fep->bufdesc_ex) {
1903 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1904 
1905 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1906 			ebdp->cbd_prot = 0;
1907 			ebdp->cbd_bdu = 0;
1908 		}
1909 		/* Make sure the updates to rest of the descriptor are
1910 		 * performed before transferring ownership.
1911 		 */
1912 		wmb();
1913 		bdp->cbd_sc = cpu_to_fec16(status);
1914 
1915 		/* Update BD pointer to next entry */
1916 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1917 
1918 		/* Doing this here will keep the FEC running while we process
1919 		 * incoming frames.  On a heavily loaded network, we should be
1920 		 * able to keep up at the expense of system resources.
1921 		 */
1922 		writel(0, rxq->bd.reg_desc_active);
1923 	}
1924 	rxq->bd.cur = bdp;
1925 
1926 	if (xdp_result & FEC_ENET_XDP_REDIR)
1927 		xdp_do_flush();
1928 
1929 	return pkt_received;
1930 }
1931 
1932 static int fec_enet_rx(struct net_device *ndev, int budget)
1933 {
1934 	struct fec_enet_private *fep = netdev_priv(ndev);
1935 	int i, done = 0;
1936 
1937 	/* Make sure that AVB queues are processed first. */
1938 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1939 		done += fec_enet_rx_queue(ndev, i, budget - done);
1940 
1941 	return done;
1942 }
1943 
1944 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1945 {
1946 	uint int_events;
1947 
1948 	int_events = readl(fep->hwp + FEC_IEVENT);
1949 
1950 	/* Don't clear MDIO events, we poll for those */
1951 	int_events &= ~FEC_ENET_MII;
1952 
1953 	writel(int_events, fep->hwp + FEC_IEVENT);
1954 
1955 	return int_events != 0;
1956 }
1957 
1958 static irqreturn_t
1959 fec_enet_interrupt(int irq, void *dev_id)
1960 {
1961 	struct net_device *ndev = dev_id;
1962 	struct fec_enet_private *fep = netdev_priv(ndev);
1963 	irqreturn_t ret = IRQ_NONE;
1964 
1965 	if (fec_enet_collect_events(fep) && fep->link) {
1966 		ret = IRQ_HANDLED;
1967 
1968 		if (napi_schedule_prep(&fep->napi)) {
1969 			/* Disable interrupts */
1970 			writel(0, fep->hwp + FEC_IMASK);
1971 			__napi_schedule(&fep->napi);
1972 		}
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1979 {
1980 	struct net_device *ndev = napi->dev;
1981 	struct fec_enet_private *fep = netdev_priv(ndev);
1982 	int done = 0;
1983 
1984 	do {
1985 		done += fec_enet_rx(ndev, budget - done);
1986 		fec_enet_tx(ndev, budget);
1987 	} while ((done < budget) && fec_enet_collect_events(fep));
1988 
1989 	if (done < budget) {
1990 		napi_complete_done(napi, done);
1991 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1992 	}
1993 
1994 	return done;
1995 }
1996 
1997 /* ------------------------------------------------------------------------- */
1998 static int fec_get_mac(struct net_device *ndev)
1999 {
2000 	struct fec_enet_private *fep = netdev_priv(ndev);
2001 	unsigned char *iap, tmpaddr[ETH_ALEN];
2002 	int ret;
2003 
2004 	/*
2005 	 * try to get mac address in following order:
2006 	 *
2007 	 * 1) module parameter via kernel command line in form
2008 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2009 	 */
2010 	iap = macaddr;
2011 
2012 	/*
2013 	 * 2) from device tree data
2014 	 */
2015 	if (!is_valid_ether_addr(iap)) {
2016 		struct device_node *np = fep->pdev->dev.of_node;
2017 		if (np) {
2018 			ret = of_get_mac_address(np, tmpaddr);
2019 			if (!ret)
2020 				iap = tmpaddr;
2021 			else if (ret == -EPROBE_DEFER)
2022 				return ret;
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * 3) from flash or fuse (via platform data)
2028 	 */
2029 	if (!is_valid_ether_addr(iap)) {
2030 #ifdef CONFIG_M5272
2031 		if (FEC_FLASHMAC)
2032 			iap = (unsigned char *)FEC_FLASHMAC;
2033 #else
2034 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2035 
2036 		if (pdata)
2037 			iap = (unsigned char *)&pdata->mac;
2038 #endif
2039 	}
2040 
2041 	/*
2042 	 * 4) FEC mac registers set by bootloader
2043 	 */
2044 	if (!is_valid_ether_addr(iap)) {
2045 		*((__be32 *) &tmpaddr[0]) =
2046 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2047 		*((__be16 *) &tmpaddr[4]) =
2048 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2049 		iap = &tmpaddr[0];
2050 	}
2051 
2052 	/*
2053 	 * 5) random mac address
2054 	 */
2055 	if (!is_valid_ether_addr(iap)) {
2056 		/* Report it and use a random ethernet address instead */
2057 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2058 		eth_hw_addr_random(ndev);
2059 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2060 			 ndev->dev_addr);
2061 		return 0;
2062 	}
2063 
2064 	/* Adjust MAC if using macaddr */
2065 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2066 
2067 	return 0;
2068 }
2069 
2070 /* ------------------------------------------------------------------------- */
2071 
2072 /*
2073  * Phy section
2074  */
2075 
2076 /* LPI Sleep Ts count base on tx clk (clk_ref).
2077  * The lpi sleep cnt value = X us / (cycle_ns).
2078  */
2079 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2080 {
2081 	struct fec_enet_private *fep = netdev_priv(ndev);
2082 
2083 	return us * (fep->clk_ref_rate / 1000) / 1000;
2084 }
2085 
2086 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2087 				 bool enable)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 	unsigned int sleep_cycle, wake_cycle;
2091 
2092 	if (enable) {
2093 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2094 		wake_cycle = sleep_cycle;
2095 	} else {
2096 		sleep_cycle = 0;
2097 		wake_cycle = 0;
2098 	}
2099 
2100 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2101 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2102 
2103 	return 0;
2104 }
2105 
2106 static void fec_enet_adjust_link(struct net_device *ndev)
2107 {
2108 	struct fec_enet_private *fep = netdev_priv(ndev);
2109 	struct phy_device *phy_dev = ndev->phydev;
2110 	int status_change = 0;
2111 
2112 	/*
2113 	 * If the netdev is down, or is going down, we're not interested
2114 	 * in link state events, so just mark our idea of the link as down
2115 	 * and ignore the event.
2116 	 */
2117 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2118 		fep->link = 0;
2119 	} else if (phy_dev->link) {
2120 		if (!fep->link) {
2121 			fep->link = phy_dev->link;
2122 			status_change = 1;
2123 		}
2124 
2125 		if (fep->full_duplex != phy_dev->duplex) {
2126 			fep->full_duplex = phy_dev->duplex;
2127 			status_change = 1;
2128 		}
2129 
2130 		if (phy_dev->speed != fep->speed) {
2131 			fep->speed = phy_dev->speed;
2132 			status_change = 1;
2133 		}
2134 
2135 		/* if any of the above changed restart the FEC */
2136 		if (status_change) {
2137 			netif_stop_queue(ndev);
2138 			napi_disable(&fep->napi);
2139 			netif_tx_lock_bh(ndev);
2140 			fec_restart(ndev);
2141 			netif_tx_wake_all_queues(ndev);
2142 			netif_tx_unlock_bh(ndev);
2143 			napi_enable(&fep->napi);
2144 		}
2145 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2146 			fec_enet_eee_mode_set(ndev,
2147 					      phy_dev->eee_cfg.tx_lpi_timer,
2148 					      phy_dev->enable_tx_lpi);
2149 	} else {
2150 		if (fep->link) {
2151 			netif_stop_queue(ndev);
2152 			napi_disable(&fep->napi);
2153 			netif_tx_lock_bh(ndev);
2154 			fec_stop(ndev);
2155 			netif_tx_unlock_bh(ndev);
2156 			napi_enable(&fep->napi);
2157 			fep->link = phy_dev->link;
2158 			status_change = 1;
2159 		}
2160 	}
2161 
2162 	if (status_change)
2163 		phy_print_status(phy_dev);
2164 }
2165 
2166 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2167 {
2168 	uint ievent;
2169 	int ret;
2170 
2171 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2172 					ievent & FEC_ENET_MII, 2, 30000);
2173 
2174 	if (!ret)
2175 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2176 
2177 	return ret;
2178 }
2179 
2180 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2181 {
2182 	struct fec_enet_private *fep = bus->priv;
2183 	struct device *dev = &fep->pdev->dev;
2184 	int ret = 0, frame_start, frame_addr, frame_op;
2185 
2186 	ret = pm_runtime_resume_and_get(dev);
2187 	if (ret < 0)
2188 		return ret;
2189 
2190 	/* C22 read */
2191 	frame_op = FEC_MMFR_OP_READ;
2192 	frame_start = FEC_MMFR_ST;
2193 	frame_addr = regnum;
2194 
2195 	/* start a read op */
2196 	writel(frame_start | frame_op |
2197 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2198 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2199 
2200 	/* wait for end of transfer */
2201 	ret = fec_enet_mdio_wait(fep);
2202 	if (ret) {
2203 		netdev_err(fep->netdev, "MDIO read timeout\n");
2204 		goto out;
2205 	}
2206 
2207 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2208 
2209 out:
2210 	pm_runtime_mark_last_busy(dev);
2211 	pm_runtime_put_autosuspend(dev);
2212 
2213 	return ret;
2214 }
2215 
2216 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2217 				  int devad, int regnum)
2218 {
2219 	struct fec_enet_private *fep = bus->priv;
2220 	struct device *dev = &fep->pdev->dev;
2221 	int ret = 0, frame_start, frame_op;
2222 
2223 	ret = pm_runtime_resume_and_get(dev);
2224 	if (ret < 0)
2225 		return ret;
2226 
2227 	frame_start = FEC_MMFR_ST_C45;
2228 
2229 	/* write address */
2230 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2231 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2232 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2233 	       fep->hwp + FEC_MII_DATA);
2234 
2235 	/* wait for end of transfer */
2236 	ret = fec_enet_mdio_wait(fep);
2237 	if (ret) {
2238 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2239 		goto out;
2240 	}
2241 
2242 	frame_op = FEC_MMFR_OP_READ_C45;
2243 
2244 	/* start a read op */
2245 	writel(frame_start | frame_op |
2246 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2247 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2248 
2249 	/* wait for end of transfer */
2250 	ret = fec_enet_mdio_wait(fep);
2251 	if (ret) {
2252 		netdev_err(fep->netdev, "MDIO read timeout\n");
2253 		goto out;
2254 	}
2255 
2256 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2257 
2258 out:
2259 	pm_runtime_mark_last_busy(dev);
2260 	pm_runtime_put_autosuspend(dev);
2261 
2262 	return ret;
2263 }
2264 
2265 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2266 				   u16 value)
2267 {
2268 	struct fec_enet_private *fep = bus->priv;
2269 	struct device *dev = &fep->pdev->dev;
2270 	int ret, frame_start, frame_addr;
2271 
2272 	ret = pm_runtime_resume_and_get(dev);
2273 	if (ret < 0)
2274 		return ret;
2275 
2276 	/* C22 write */
2277 	frame_start = FEC_MMFR_ST;
2278 	frame_addr = regnum;
2279 
2280 	/* start a write op */
2281 	writel(frame_start | FEC_MMFR_OP_WRITE |
2282 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2283 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2284 	       fep->hwp + FEC_MII_DATA);
2285 
2286 	/* wait for end of transfer */
2287 	ret = fec_enet_mdio_wait(fep);
2288 	if (ret)
2289 		netdev_err(fep->netdev, "MDIO write timeout\n");
2290 
2291 	pm_runtime_mark_last_busy(dev);
2292 	pm_runtime_put_autosuspend(dev);
2293 
2294 	return ret;
2295 }
2296 
2297 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2298 				   int devad, int regnum, u16 value)
2299 {
2300 	struct fec_enet_private *fep = bus->priv;
2301 	struct device *dev = &fep->pdev->dev;
2302 	int ret, frame_start;
2303 
2304 	ret = pm_runtime_resume_and_get(dev);
2305 	if (ret < 0)
2306 		return ret;
2307 
2308 	frame_start = FEC_MMFR_ST_C45;
2309 
2310 	/* write address */
2311 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2312 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2313 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2314 	       fep->hwp + FEC_MII_DATA);
2315 
2316 	/* wait for end of transfer */
2317 	ret = fec_enet_mdio_wait(fep);
2318 	if (ret) {
2319 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2320 		goto out;
2321 	}
2322 
2323 	/* start a write op */
2324 	writel(frame_start | FEC_MMFR_OP_WRITE |
2325 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2326 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2327 	       fep->hwp + FEC_MII_DATA);
2328 
2329 	/* wait for end of transfer */
2330 	ret = fec_enet_mdio_wait(fep);
2331 	if (ret)
2332 		netdev_err(fep->netdev, "MDIO write timeout\n");
2333 
2334 out:
2335 	pm_runtime_mark_last_busy(dev);
2336 	pm_runtime_put_autosuspend(dev);
2337 
2338 	return ret;
2339 }
2340 
2341 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2342 {
2343 	struct fec_enet_private *fep = netdev_priv(ndev);
2344 	struct phy_device *phy_dev = ndev->phydev;
2345 
2346 	if (phy_dev) {
2347 		phy_reset_after_clk_enable(phy_dev);
2348 	} else if (fep->phy_node) {
2349 		/*
2350 		 * If the PHY still is not bound to the MAC, but there is
2351 		 * OF PHY node and a matching PHY device instance already,
2352 		 * use the OF PHY node to obtain the PHY device instance,
2353 		 * and then use that PHY device instance when triggering
2354 		 * the PHY reset.
2355 		 */
2356 		phy_dev = of_phy_find_device(fep->phy_node);
2357 		phy_reset_after_clk_enable(phy_dev);
2358 		put_device(&phy_dev->mdio.dev);
2359 	}
2360 }
2361 
2362 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2363 {
2364 	struct fec_enet_private *fep = netdev_priv(ndev);
2365 	int ret;
2366 
2367 	if (enable) {
2368 		ret = clk_prepare_enable(fep->clk_enet_out);
2369 		if (ret)
2370 			return ret;
2371 
2372 		if (fep->clk_ptp) {
2373 			mutex_lock(&fep->ptp_clk_mutex);
2374 			ret = clk_prepare_enable(fep->clk_ptp);
2375 			if (ret) {
2376 				mutex_unlock(&fep->ptp_clk_mutex);
2377 				goto failed_clk_ptp;
2378 			} else {
2379 				fep->ptp_clk_on = true;
2380 			}
2381 			mutex_unlock(&fep->ptp_clk_mutex);
2382 		}
2383 
2384 		ret = clk_prepare_enable(fep->clk_ref);
2385 		if (ret)
2386 			goto failed_clk_ref;
2387 
2388 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2389 		if (ret)
2390 			goto failed_clk_2x_txclk;
2391 
2392 		fec_enet_phy_reset_after_clk_enable(ndev);
2393 	} else {
2394 		clk_disable_unprepare(fep->clk_enet_out);
2395 		if (fep->clk_ptp) {
2396 			mutex_lock(&fep->ptp_clk_mutex);
2397 			clk_disable_unprepare(fep->clk_ptp);
2398 			fep->ptp_clk_on = false;
2399 			mutex_unlock(&fep->ptp_clk_mutex);
2400 		}
2401 		clk_disable_unprepare(fep->clk_ref);
2402 		clk_disable_unprepare(fep->clk_2x_txclk);
2403 	}
2404 
2405 	return 0;
2406 
2407 failed_clk_2x_txclk:
2408 	if (fep->clk_ref)
2409 		clk_disable_unprepare(fep->clk_ref);
2410 failed_clk_ref:
2411 	if (fep->clk_ptp) {
2412 		mutex_lock(&fep->ptp_clk_mutex);
2413 		clk_disable_unprepare(fep->clk_ptp);
2414 		fep->ptp_clk_on = false;
2415 		mutex_unlock(&fep->ptp_clk_mutex);
2416 	}
2417 failed_clk_ptp:
2418 	clk_disable_unprepare(fep->clk_enet_out);
2419 
2420 	return ret;
2421 }
2422 
2423 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2424 				      struct device_node *np)
2425 {
2426 	u32 rgmii_tx_delay, rgmii_rx_delay;
2427 
2428 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2429 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2430 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2431 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2432 			return -EINVAL;
2433 		} else if (rgmii_tx_delay == 2000) {
2434 			fep->rgmii_txc_dly = true;
2435 		}
2436 	}
2437 
2438 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2439 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2440 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2441 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2442 			return -EINVAL;
2443 		} else if (rgmii_rx_delay == 2000) {
2444 			fep->rgmii_rxc_dly = true;
2445 		}
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static int fec_enet_mii_probe(struct net_device *ndev)
2452 {
2453 	struct fec_enet_private *fep = netdev_priv(ndev);
2454 	struct phy_device *phy_dev = NULL;
2455 	char mdio_bus_id[MII_BUS_ID_SIZE];
2456 	char phy_name[MII_BUS_ID_SIZE + 3];
2457 	int phy_id;
2458 	int dev_id = fep->dev_id;
2459 
2460 	if (fep->phy_node) {
2461 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2462 					 &fec_enet_adjust_link, 0,
2463 					 fep->phy_interface);
2464 		if (!phy_dev) {
2465 			netdev_err(ndev, "Unable to connect to phy\n");
2466 			return -ENODEV;
2467 		}
2468 	} else {
2469 		/* check for attached phy */
2470 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2471 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2472 				continue;
2473 			if (dev_id--)
2474 				continue;
2475 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2476 			break;
2477 		}
2478 
2479 		if (phy_id >= PHY_MAX_ADDR) {
2480 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2481 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2482 			phy_id = 0;
2483 		}
2484 
2485 		snprintf(phy_name, sizeof(phy_name),
2486 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2487 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2488 				      fep->phy_interface);
2489 	}
2490 
2491 	if (IS_ERR(phy_dev)) {
2492 		netdev_err(ndev, "could not attach to PHY\n");
2493 		return PTR_ERR(phy_dev);
2494 	}
2495 
2496 	/* mask with MAC supported features */
2497 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2498 		phy_set_max_speed(phy_dev, 1000);
2499 		phy_remove_link_mode(phy_dev,
2500 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2501 #if !defined(CONFIG_M5272)
2502 		phy_support_sym_pause(phy_dev);
2503 #endif
2504 	}
2505 	else
2506 		phy_set_max_speed(phy_dev, 100);
2507 
2508 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2509 		phy_support_eee(phy_dev);
2510 
2511 	fep->link = 0;
2512 	fep->full_duplex = 0;
2513 
2514 	phy_attached_info(phy_dev);
2515 
2516 	return 0;
2517 }
2518 
2519 static int fec_enet_mii_init(struct platform_device *pdev)
2520 {
2521 	static struct mii_bus *fec0_mii_bus;
2522 	struct net_device *ndev = platform_get_drvdata(pdev);
2523 	struct fec_enet_private *fep = netdev_priv(ndev);
2524 	bool suppress_preamble = false;
2525 	struct phy_device *phydev;
2526 	struct device_node *node;
2527 	int err = -ENXIO;
2528 	u32 mii_speed, holdtime;
2529 	u32 bus_freq;
2530 	int addr;
2531 
2532 	/*
2533 	 * The i.MX28 dual fec interfaces are not equal.
2534 	 * Here are the differences:
2535 	 *
2536 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2537 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2538 	 *  - external phys can only be configured by fec0
2539 	 *
2540 	 * That is to say fec1 can not work independently. It only works
2541 	 * when fec0 is working. The reason behind this design is that the
2542 	 * second interface is added primarily for Switch mode.
2543 	 *
2544 	 * Because of the last point above, both phys are attached on fec0
2545 	 * mdio interface in board design, and need to be configured by
2546 	 * fec0 mii_bus.
2547 	 */
2548 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2549 		/* fec1 uses fec0 mii_bus */
2550 		if (mii_cnt && fec0_mii_bus) {
2551 			fep->mii_bus = fec0_mii_bus;
2552 			mii_cnt++;
2553 			return 0;
2554 		}
2555 		return -ENOENT;
2556 	}
2557 
2558 	bus_freq = 2500000; /* 2.5MHz by default */
2559 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2560 	if (node) {
2561 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2562 		suppress_preamble = of_property_read_bool(node,
2563 							  "suppress-preamble");
2564 	}
2565 
2566 	/*
2567 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2568 	 *
2569 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2570 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2571 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2572 	 * document.
2573 	 */
2574 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2575 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2576 		mii_speed--;
2577 	if (mii_speed > 63) {
2578 		dev_err(&pdev->dev,
2579 			"fec clock (%lu) too fast to get right mii speed\n",
2580 			clk_get_rate(fep->clk_ipg));
2581 		err = -EINVAL;
2582 		goto err_out;
2583 	}
2584 
2585 	/*
2586 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2587 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2588 	 * versions are RAZ there, so just ignore the difference and write the
2589 	 * register always.
2590 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2591 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2592 	 * output.
2593 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2594 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2595 	 * holdtime cannot result in a value greater than 3.
2596 	 */
2597 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2598 
2599 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2600 
2601 	if (suppress_preamble)
2602 		fep->phy_speed |= BIT(7);
2603 
2604 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2605 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2606 		 * MII event generation condition:
2607 		 * - writing MSCR:
2608 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2609 		 *	  mscr_reg_data_in[7:0] != 0
2610 		 * - writing MMFR:
2611 		 *	- mscr[7:0]_not_zero
2612 		 */
2613 		writel(0, fep->hwp + FEC_MII_DATA);
2614 	}
2615 
2616 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2617 
2618 	/* Clear any pending transaction complete indication */
2619 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2620 
2621 	fep->mii_bus = mdiobus_alloc();
2622 	if (fep->mii_bus == NULL) {
2623 		err = -ENOMEM;
2624 		goto err_out;
2625 	}
2626 
2627 	fep->mii_bus->name = "fec_enet_mii_bus";
2628 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2629 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2630 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2631 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2632 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2633 	}
2634 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2635 		pdev->name, fep->dev_id + 1);
2636 	fep->mii_bus->priv = fep;
2637 	fep->mii_bus->parent = &pdev->dev;
2638 
2639 	err = of_mdiobus_register(fep->mii_bus, node);
2640 	if (err)
2641 		goto err_out_free_mdiobus;
2642 	of_node_put(node);
2643 
2644 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2645 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2646 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2647 		if (phydev)
2648 			phydev->mac_managed_pm = true;
2649 	}
2650 
2651 	mii_cnt++;
2652 
2653 	/* save fec0 mii_bus */
2654 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2655 		fec0_mii_bus = fep->mii_bus;
2656 
2657 	return 0;
2658 
2659 err_out_free_mdiobus:
2660 	mdiobus_free(fep->mii_bus);
2661 err_out:
2662 	of_node_put(node);
2663 	return err;
2664 }
2665 
2666 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2667 {
2668 	if (--mii_cnt == 0) {
2669 		mdiobus_unregister(fep->mii_bus);
2670 		mdiobus_free(fep->mii_bus);
2671 	}
2672 }
2673 
2674 static void fec_enet_get_drvinfo(struct net_device *ndev,
2675 				 struct ethtool_drvinfo *info)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 
2679 	strscpy(info->driver, fep->pdev->dev.driver->name,
2680 		sizeof(info->driver));
2681 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2682 }
2683 
2684 static int fec_enet_get_regs_len(struct net_device *ndev)
2685 {
2686 	struct fec_enet_private *fep = netdev_priv(ndev);
2687 	struct resource *r;
2688 	int s = 0;
2689 
2690 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2691 	if (r)
2692 		s = resource_size(r);
2693 
2694 	return s;
2695 }
2696 
2697 /* List of registers that can be safety be read to dump them with ethtool */
2698 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2699 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2700 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2701 static __u32 fec_enet_register_version = 2;
2702 static u32 fec_enet_register_offset[] = {
2703 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2704 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2705 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2706 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2707 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2708 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2709 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2710 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2711 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2712 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2713 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2714 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2715 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2716 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2717 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2718 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2719 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2720 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2721 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2722 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2723 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2724 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2725 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2726 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2727 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2728 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2729 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2730 };
2731 /* for i.MX6ul */
2732 static u32 fec_enet_register_offset_6ul[] = {
2733 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2734 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2735 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2736 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2737 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2738 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2739 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2740 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2741 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2742 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2743 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2744 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2745 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2746 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2747 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2748 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2749 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2750 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2751 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2752 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2753 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2754 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2755 };
2756 #else
2757 static __u32 fec_enet_register_version = 1;
2758 static u32 fec_enet_register_offset[] = {
2759 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2760 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2761 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2762 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2763 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2764 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2765 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2766 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2767 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2768 };
2769 #endif
2770 
2771 static void fec_enet_get_regs(struct net_device *ndev,
2772 			      struct ethtool_regs *regs, void *regbuf)
2773 {
2774 	struct fec_enet_private *fep = netdev_priv(ndev);
2775 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2776 	struct device *dev = &fep->pdev->dev;
2777 	u32 *buf = (u32 *)regbuf;
2778 	u32 i, off;
2779 	int ret;
2780 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2781 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2782 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2783 	u32 *reg_list;
2784 	u32 reg_cnt;
2785 
2786 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2787 		reg_list = fec_enet_register_offset;
2788 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2789 	} else {
2790 		reg_list = fec_enet_register_offset_6ul;
2791 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2792 	}
2793 #else
2794 	/* coldfire */
2795 	static u32 *reg_list = fec_enet_register_offset;
2796 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2797 #endif
2798 	ret = pm_runtime_resume_and_get(dev);
2799 	if (ret < 0)
2800 		return;
2801 
2802 	regs->version = fec_enet_register_version;
2803 
2804 	memset(buf, 0, regs->len);
2805 
2806 	for (i = 0; i < reg_cnt; i++) {
2807 		off = reg_list[i];
2808 
2809 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2810 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2811 			continue;
2812 
2813 		off >>= 2;
2814 		buf[off] = readl(&theregs[off]);
2815 	}
2816 
2817 	pm_runtime_mark_last_busy(dev);
2818 	pm_runtime_put_autosuspend(dev);
2819 }
2820 
2821 static int fec_enet_get_ts_info(struct net_device *ndev,
2822 				struct kernel_ethtool_ts_info *info)
2823 {
2824 	struct fec_enet_private *fep = netdev_priv(ndev);
2825 
2826 	if (fep->bufdesc_ex) {
2827 
2828 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2829 					SOF_TIMESTAMPING_TX_HARDWARE |
2830 					SOF_TIMESTAMPING_RX_HARDWARE |
2831 					SOF_TIMESTAMPING_RAW_HARDWARE;
2832 		if (fep->ptp_clock)
2833 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2834 
2835 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2836 				 (1 << HWTSTAMP_TX_ON);
2837 
2838 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2839 				   (1 << HWTSTAMP_FILTER_ALL);
2840 		return 0;
2841 	} else {
2842 		return ethtool_op_get_ts_info(ndev, info);
2843 	}
2844 }
2845 
2846 #if !defined(CONFIG_M5272)
2847 
2848 static void fec_enet_get_pauseparam(struct net_device *ndev,
2849 				    struct ethtool_pauseparam *pause)
2850 {
2851 	struct fec_enet_private *fep = netdev_priv(ndev);
2852 
2853 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2854 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2855 	pause->rx_pause = pause->tx_pause;
2856 }
2857 
2858 static int fec_enet_set_pauseparam(struct net_device *ndev,
2859 				   struct ethtool_pauseparam *pause)
2860 {
2861 	struct fec_enet_private *fep = netdev_priv(ndev);
2862 
2863 	if (!ndev->phydev)
2864 		return -ENODEV;
2865 
2866 	if (pause->tx_pause != pause->rx_pause) {
2867 		netdev_info(ndev,
2868 			"hardware only support enable/disable both tx and rx");
2869 		return -EINVAL;
2870 	}
2871 
2872 	fep->pause_flag = 0;
2873 
2874 	/* tx pause must be same as rx pause */
2875 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2876 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2877 
2878 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2879 			  pause->autoneg);
2880 
2881 	if (pause->autoneg) {
2882 		if (netif_running(ndev))
2883 			fec_stop(ndev);
2884 		phy_start_aneg(ndev->phydev);
2885 	}
2886 	if (netif_running(ndev)) {
2887 		napi_disable(&fep->napi);
2888 		netif_tx_lock_bh(ndev);
2889 		fec_restart(ndev);
2890 		netif_tx_wake_all_queues(ndev);
2891 		netif_tx_unlock_bh(ndev);
2892 		napi_enable(&fep->napi);
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static const struct fec_stat {
2899 	char name[ETH_GSTRING_LEN];
2900 	u16 offset;
2901 } fec_stats[] = {
2902 	/* RMON TX */
2903 	{ "tx_dropped", RMON_T_DROP },
2904 	{ "tx_packets", RMON_T_PACKETS },
2905 	{ "tx_broadcast", RMON_T_BC_PKT },
2906 	{ "tx_multicast", RMON_T_MC_PKT },
2907 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2908 	{ "tx_undersize", RMON_T_UNDERSIZE },
2909 	{ "tx_oversize", RMON_T_OVERSIZE },
2910 	{ "tx_fragment", RMON_T_FRAG },
2911 	{ "tx_jabber", RMON_T_JAB },
2912 	{ "tx_collision", RMON_T_COL },
2913 	{ "tx_64byte", RMON_T_P64 },
2914 	{ "tx_65to127byte", RMON_T_P65TO127 },
2915 	{ "tx_128to255byte", RMON_T_P128TO255 },
2916 	{ "tx_256to511byte", RMON_T_P256TO511 },
2917 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2918 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2919 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2920 	{ "tx_octets", RMON_T_OCTETS },
2921 
2922 	/* IEEE TX */
2923 	{ "IEEE_tx_drop", IEEE_T_DROP },
2924 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2925 	{ "IEEE_tx_1col", IEEE_T_1COL },
2926 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2927 	{ "IEEE_tx_def", IEEE_T_DEF },
2928 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2929 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2930 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2931 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2932 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2933 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2934 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2935 
2936 	/* RMON RX */
2937 	{ "rx_packets", RMON_R_PACKETS },
2938 	{ "rx_broadcast", RMON_R_BC_PKT },
2939 	{ "rx_multicast", RMON_R_MC_PKT },
2940 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2941 	{ "rx_undersize", RMON_R_UNDERSIZE },
2942 	{ "rx_oversize", RMON_R_OVERSIZE },
2943 	{ "rx_fragment", RMON_R_FRAG },
2944 	{ "rx_jabber", RMON_R_JAB },
2945 	{ "rx_64byte", RMON_R_P64 },
2946 	{ "rx_65to127byte", RMON_R_P65TO127 },
2947 	{ "rx_128to255byte", RMON_R_P128TO255 },
2948 	{ "rx_256to511byte", RMON_R_P256TO511 },
2949 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2950 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2951 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2952 	{ "rx_octets", RMON_R_OCTETS },
2953 
2954 	/* IEEE RX */
2955 	{ "IEEE_rx_drop", IEEE_R_DROP },
2956 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2957 	{ "IEEE_rx_crc", IEEE_R_CRC },
2958 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2959 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2960 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2961 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2962 };
2963 
2964 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2965 
2966 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2967 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2968 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2969 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2970 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2971 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2972 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2973 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2974 };
2975 
2976 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2977 {
2978 	struct fec_enet_private *fep = netdev_priv(dev);
2979 	int i;
2980 
2981 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2982 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2983 }
2984 
2985 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2986 {
2987 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2988 	struct fec_enet_priv_rx_q *rxq;
2989 	int i, j;
2990 
2991 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2992 		rxq = fep->rx_queue[i];
2993 
2994 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2995 			xdp_stats[j] += rxq->stats[j];
2996 	}
2997 
2998 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2999 }
3000 
3001 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3002 {
3003 #ifdef CONFIG_PAGE_POOL_STATS
3004 	struct page_pool_stats stats = {};
3005 	struct fec_enet_priv_rx_q *rxq;
3006 	int i;
3007 
3008 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3009 		rxq = fep->rx_queue[i];
3010 
3011 		if (!rxq->page_pool)
3012 			continue;
3013 
3014 		page_pool_get_stats(rxq->page_pool, &stats);
3015 	}
3016 
3017 	page_pool_ethtool_stats_get(data, &stats);
3018 #endif
3019 }
3020 
3021 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3022 				       struct ethtool_stats *stats, u64 *data)
3023 {
3024 	struct fec_enet_private *fep = netdev_priv(dev);
3025 
3026 	if (netif_running(dev))
3027 		fec_enet_update_ethtool_stats(dev);
3028 
3029 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3030 	data += FEC_STATS_SIZE / sizeof(u64);
3031 
3032 	fec_enet_get_xdp_stats(fep, data);
3033 	data += XDP_STATS_TOTAL;
3034 
3035 	fec_enet_page_pool_stats(fep, data);
3036 }
3037 
3038 static void fec_enet_get_strings(struct net_device *netdev,
3039 	u32 stringset, u8 *data)
3040 {
3041 	int i;
3042 	switch (stringset) {
3043 	case ETH_SS_STATS:
3044 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3045 			ethtool_puts(&data, fec_stats[i].name);
3046 		}
3047 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3048 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3049 		}
3050 		page_pool_ethtool_stats_get_strings(data);
3051 
3052 		break;
3053 	case ETH_SS_TEST:
3054 		net_selftest_get_strings(data);
3055 		break;
3056 	}
3057 }
3058 
3059 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3060 {
3061 	int count;
3062 
3063 	switch (sset) {
3064 	case ETH_SS_STATS:
3065 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3066 		count += page_pool_ethtool_stats_get_count();
3067 		return count;
3068 
3069 	case ETH_SS_TEST:
3070 		return net_selftest_get_count();
3071 	default:
3072 		return -EOPNOTSUPP;
3073 	}
3074 }
3075 
3076 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3077 {
3078 	struct fec_enet_private *fep = netdev_priv(dev);
3079 	struct fec_enet_priv_rx_q *rxq;
3080 	int i, j;
3081 
3082 	/* Disable MIB statistics counters */
3083 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3084 
3085 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3086 		writel(0, fep->hwp + fec_stats[i].offset);
3087 
3088 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3089 		rxq = fep->rx_queue[i];
3090 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3091 			rxq->stats[j] = 0;
3092 	}
3093 
3094 	/* Don't disable MIB statistics counters */
3095 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3096 }
3097 
3098 #else	/* !defined(CONFIG_M5272) */
3099 #define FEC_STATS_SIZE	0
3100 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3101 {
3102 }
3103 
3104 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3105 {
3106 }
3107 #endif /* !defined(CONFIG_M5272) */
3108 
3109 /* ITR clock source is enet system clock (clk_ahb).
3110  * TCTT unit is cycle_ns * 64 cycle
3111  * So, the ICTT value = X us / (cycle_ns * 64)
3112  */
3113 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3114 {
3115 	struct fec_enet_private *fep = netdev_priv(ndev);
3116 
3117 	return us * (fep->itr_clk_rate / 64000) / 1000;
3118 }
3119 
3120 /* Set threshold for interrupt coalescing */
3121 static void fec_enet_itr_coal_set(struct net_device *ndev)
3122 {
3123 	struct fec_enet_private *fep = netdev_priv(ndev);
3124 	u32 rx_itr = 0, tx_itr = 0;
3125 	int rx_ictt, tx_ictt;
3126 
3127 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3128 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3129 
3130 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3131 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3132 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3133 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3134 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3135 	}
3136 
3137 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3138 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3139 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3140 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3141 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3142 	}
3143 
3144 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3145 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3146 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3147 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3148 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3149 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3150 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3151 	}
3152 }
3153 
3154 static int fec_enet_get_coalesce(struct net_device *ndev,
3155 				 struct ethtool_coalesce *ec,
3156 				 struct kernel_ethtool_coalesce *kernel_coal,
3157 				 struct netlink_ext_ack *extack)
3158 {
3159 	struct fec_enet_private *fep = netdev_priv(ndev);
3160 
3161 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3162 		return -EOPNOTSUPP;
3163 
3164 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3165 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3166 
3167 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3168 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3169 
3170 	return 0;
3171 }
3172 
3173 static int fec_enet_set_coalesce(struct net_device *ndev,
3174 				 struct ethtool_coalesce *ec,
3175 				 struct kernel_ethtool_coalesce *kernel_coal,
3176 				 struct netlink_ext_ack *extack)
3177 {
3178 	struct fec_enet_private *fep = netdev_priv(ndev);
3179 	struct device *dev = &fep->pdev->dev;
3180 	unsigned int cycle;
3181 
3182 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3183 		return -EOPNOTSUPP;
3184 
3185 	if (ec->rx_max_coalesced_frames > 255) {
3186 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3187 		return -EINVAL;
3188 	}
3189 
3190 	if (ec->tx_max_coalesced_frames > 255) {
3191 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3192 		return -EINVAL;
3193 	}
3194 
3195 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3196 	if (cycle > 0xFFFF) {
3197 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3198 		return -EINVAL;
3199 	}
3200 
3201 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3202 	if (cycle > 0xFFFF) {
3203 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3204 		return -EINVAL;
3205 	}
3206 
3207 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3208 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3209 
3210 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3211 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3212 
3213 	fec_enet_itr_coal_set(ndev);
3214 
3215 	return 0;
3216 }
3217 
3218 static int
3219 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3220 {
3221 	struct fec_enet_private *fep = netdev_priv(ndev);
3222 
3223 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3224 		return -EOPNOTSUPP;
3225 
3226 	if (!netif_running(ndev))
3227 		return -ENETDOWN;
3228 
3229 	return phy_ethtool_get_eee(ndev->phydev, edata);
3230 }
3231 
3232 static int
3233 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3234 {
3235 	struct fec_enet_private *fep = netdev_priv(ndev);
3236 
3237 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3238 		return -EOPNOTSUPP;
3239 
3240 	if (!netif_running(ndev))
3241 		return -ENETDOWN;
3242 
3243 	return phy_ethtool_set_eee(ndev->phydev, edata);
3244 }
3245 
3246 static void
3247 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3248 {
3249 	struct fec_enet_private *fep = netdev_priv(ndev);
3250 
3251 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3252 		wol->supported = WAKE_MAGIC;
3253 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3254 	} else {
3255 		wol->supported = wol->wolopts = 0;
3256 	}
3257 }
3258 
3259 static int
3260 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3261 {
3262 	struct fec_enet_private *fep = netdev_priv(ndev);
3263 
3264 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3265 		return -EINVAL;
3266 
3267 	if (wol->wolopts & ~WAKE_MAGIC)
3268 		return -EINVAL;
3269 
3270 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3271 	if (device_may_wakeup(&ndev->dev))
3272 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3273 	else
3274 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3275 
3276 	return 0;
3277 }
3278 
3279 static const struct ethtool_ops fec_enet_ethtool_ops = {
3280 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3281 				     ETHTOOL_COALESCE_MAX_FRAMES,
3282 	.get_drvinfo		= fec_enet_get_drvinfo,
3283 	.get_regs_len		= fec_enet_get_regs_len,
3284 	.get_regs		= fec_enet_get_regs,
3285 	.nway_reset		= phy_ethtool_nway_reset,
3286 	.get_link		= ethtool_op_get_link,
3287 	.get_coalesce		= fec_enet_get_coalesce,
3288 	.set_coalesce		= fec_enet_set_coalesce,
3289 #ifndef CONFIG_M5272
3290 	.get_pauseparam		= fec_enet_get_pauseparam,
3291 	.set_pauseparam		= fec_enet_set_pauseparam,
3292 	.get_strings		= fec_enet_get_strings,
3293 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3294 	.get_sset_count		= fec_enet_get_sset_count,
3295 #endif
3296 	.get_ts_info		= fec_enet_get_ts_info,
3297 	.get_wol		= fec_enet_get_wol,
3298 	.set_wol		= fec_enet_set_wol,
3299 	.get_eee		= fec_enet_get_eee,
3300 	.set_eee		= fec_enet_set_eee,
3301 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3302 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3303 	.self_test		= net_selftest,
3304 };
3305 
3306 static void fec_enet_free_buffers(struct net_device *ndev)
3307 {
3308 	struct fec_enet_private *fep = netdev_priv(ndev);
3309 	unsigned int i;
3310 	struct fec_enet_priv_tx_q *txq;
3311 	struct fec_enet_priv_rx_q *rxq;
3312 	unsigned int q;
3313 
3314 	for (q = 0; q < fep->num_rx_queues; q++) {
3315 		rxq = fep->rx_queue[q];
3316 		for (i = 0; i < rxq->bd.ring_size; i++)
3317 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3318 
3319 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3320 			rxq->stats[i] = 0;
3321 
3322 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3323 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3324 		page_pool_destroy(rxq->page_pool);
3325 		rxq->page_pool = NULL;
3326 	}
3327 
3328 	for (q = 0; q < fep->num_tx_queues; q++) {
3329 		txq = fep->tx_queue[q];
3330 		for (i = 0; i < txq->bd.ring_size; i++) {
3331 			kfree(txq->tx_bounce[i]);
3332 			txq->tx_bounce[i] = NULL;
3333 
3334 			if (!txq->tx_buf[i].buf_p) {
3335 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3336 				continue;
3337 			}
3338 
3339 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3340 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3341 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3342 				xdp_return_frame(txq->tx_buf[i].buf_p);
3343 			} else {
3344 				struct page *page = txq->tx_buf[i].buf_p;
3345 
3346 				page_pool_put_page(page->pp, page, 0, false);
3347 			}
3348 
3349 			txq->tx_buf[i].buf_p = NULL;
3350 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3351 		}
3352 	}
3353 }
3354 
3355 static void fec_enet_free_queue(struct net_device *ndev)
3356 {
3357 	struct fec_enet_private *fep = netdev_priv(ndev);
3358 	int i;
3359 	struct fec_enet_priv_tx_q *txq;
3360 
3361 	for (i = 0; i < fep->num_tx_queues; i++)
3362 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3363 			txq = fep->tx_queue[i];
3364 			fec_dma_free(&fep->pdev->dev,
3365 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3366 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3367 		}
3368 
3369 	for (i = 0; i < fep->num_rx_queues; i++)
3370 		kfree(fep->rx_queue[i]);
3371 	for (i = 0; i < fep->num_tx_queues; i++)
3372 		kfree(fep->tx_queue[i]);
3373 }
3374 
3375 static int fec_enet_alloc_queue(struct net_device *ndev)
3376 {
3377 	struct fec_enet_private *fep = netdev_priv(ndev);
3378 	int i;
3379 	int ret = 0;
3380 	struct fec_enet_priv_tx_q *txq;
3381 
3382 	for (i = 0; i < fep->num_tx_queues; i++) {
3383 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3384 		if (!txq) {
3385 			ret = -ENOMEM;
3386 			goto alloc_failed;
3387 		}
3388 
3389 		fep->tx_queue[i] = txq;
3390 		txq->bd.ring_size = TX_RING_SIZE;
3391 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3392 
3393 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3394 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3395 
3396 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3397 					txq->bd.ring_size * TSO_HEADER_SIZE,
3398 					&txq->tso_hdrs_dma, GFP_KERNEL);
3399 		if (!txq->tso_hdrs) {
3400 			ret = -ENOMEM;
3401 			goto alloc_failed;
3402 		}
3403 	}
3404 
3405 	for (i = 0; i < fep->num_rx_queues; i++) {
3406 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3407 					   GFP_KERNEL);
3408 		if (!fep->rx_queue[i]) {
3409 			ret = -ENOMEM;
3410 			goto alloc_failed;
3411 		}
3412 
3413 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3414 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3415 	}
3416 	return ret;
3417 
3418 alloc_failed:
3419 	fec_enet_free_queue(ndev);
3420 	return ret;
3421 }
3422 
3423 static int
3424 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3425 {
3426 	struct fec_enet_private *fep = netdev_priv(ndev);
3427 	struct fec_enet_priv_rx_q *rxq;
3428 	dma_addr_t phys_addr;
3429 	struct bufdesc	*bdp;
3430 	struct page *page;
3431 	int i, err;
3432 
3433 	rxq = fep->rx_queue[queue];
3434 	bdp = rxq->bd.base;
3435 
3436 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3437 	if (err < 0) {
3438 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3439 		return err;
3440 	}
3441 
3442 	for (i = 0; i < rxq->bd.ring_size; i++) {
3443 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3444 		if (!page)
3445 			goto err_alloc;
3446 
3447 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3448 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3449 
3450 		rxq->rx_skb_info[i].page = page;
3451 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3452 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3453 
3454 		if (fep->bufdesc_ex) {
3455 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3456 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3457 		}
3458 
3459 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3460 	}
3461 
3462 	/* Set the last buffer to wrap. */
3463 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3464 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3465 	return 0;
3466 
3467  err_alloc:
3468 	fec_enet_free_buffers(ndev);
3469 	return -ENOMEM;
3470 }
3471 
3472 static int
3473 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3474 {
3475 	struct fec_enet_private *fep = netdev_priv(ndev);
3476 	unsigned int i;
3477 	struct bufdesc  *bdp;
3478 	struct fec_enet_priv_tx_q *txq;
3479 
3480 	txq = fep->tx_queue[queue];
3481 	bdp = txq->bd.base;
3482 	for (i = 0; i < txq->bd.ring_size; i++) {
3483 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3484 		if (!txq->tx_bounce[i])
3485 			goto err_alloc;
3486 
3487 		bdp->cbd_sc = cpu_to_fec16(0);
3488 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3489 
3490 		if (fep->bufdesc_ex) {
3491 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3492 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3493 		}
3494 
3495 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3496 	}
3497 
3498 	/* Set the last buffer to wrap. */
3499 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3500 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3501 
3502 	return 0;
3503 
3504  err_alloc:
3505 	fec_enet_free_buffers(ndev);
3506 	return -ENOMEM;
3507 }
3508 
3509 static int fec_enet_alloc_buffers(struct net_device *ndev)
3510 {
3511 	struct fec_enet_private *fep = netdev_priv(ndev);
3512 	unsigned int i;
3513 
3514 	for (i = 0; i < fep->num_rx_queues; i++)
3515 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3516 			return -ENOMEM;
3517 
3518 	for (i = 0; i < fep->num_tx_queues; i++)
3519 		if (fec_enet_alloc_txq_buffers(ndev, i))
3520 			return -ENOMEM;
3521 	return 0;
3522 }
3523 
3524 static int
3525 fec_enet_open(struct net_device *ndev)
3526 {
3527 	struct fec_enet_private *fep = netdev_priv(ndev);
3528 	int ret;
3529 	bool reset_again;
3530 
3531 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3532 	if (ret < 0)
3533 		return ret;
3534 
3535 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3536 	ret = fec_enet_clk_enable(ndev, true);
3537 	if (ret)
3538 		goto clk_enable;
3539 
3540 	/* During the first fec_enet_open call the PHY isn't probed at this
3541 	 * point. Therefore the phy_reset_after_clk_enable() call within
3542 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3543 	 * sure the PHY is working correctly we check if we need to reset again
3544 	 * later when the PHY is probed
3545 	 */
3546 	if (ndev->phydev && ndev->phydev->drv)
3547 		reset_again = false;
3548 	else
3549 		reset_again = true;
3550 
3551 	/* I should reset the ring buffers here, but I don't yet know
3552 	 * a simple way to do that.
3553 	 */
3554 
3555 	ret = fec_enet_alloc_buffers(ndev);
3556 	if (ret)
3557 		goto err_enet_alloc;
3558 
3559 	/* Init MAC prior to mii bus probe */
3560 	fec_restart(ndev);
3561 
3562 	/* Call phy_reset_after_clk_enable() again if it failed during
3563 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3564 	 */
3565 	if (reset_again)
3566 		fec_enet_phy_reset_after_clk_enable(ndev);
3567 
3568 	/* Probe and connect to PHY when open the interface */
3569 	ret = fec_enet_mii_probe(ndev);
3570 	if (ret)
3571 		goto err_enet_mii_probe;
3572 
3573 	if (fep->quirks & FEC_QUIRK_ERR006687)
3574 		imx6q_cpuidle_fec_irqs_used();
3575 
3576 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3577 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3578 
3579 	napi_enable(&fep->napi);
3580 	phy_start(ndev->phydev);
3581 	netif_tx_start_all_queues(ndev);
3582 
3583 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3584 				 FEC_WOL_FLAG_ENABLE);
3585 
3586 	return 0;
3587 
3588 err_enet_mii_probe:
3589 	fec_enet_free_buffers(ndev);
3590 err_enet_alloc:
3591 	fec_enet_clk_enable(ndev, false);
3592 clk_enable:
3593 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3594 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3595 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3596 	return ret;
3597 }
3598 
3599 static int
3600 fec_enet_close(struct net_device *ndev)
3601 {
3602 	struct fec_enet_private *fep = netdev_priv(ndev);
3603 
3604 	phy_stop(ndev->phydev);
3605 
3606 	if (netif_device_present(ndev)) {
3607 		napi_disable(&fep->napi);
3608 		netif_tx_disable(ndev);
3609 		fec_stop(ndev);
3610 	}
3611 
3612 	phy_disconnect(ndev->phydev);
3613 
3614 	if (fep->quirks & FEC_QUIRK_ERR006687)
3615 		imx6q_cpuidle_fec_irqs_unused();
3616 
3617 	fec_enet_update_ethtool_stats(ndev);
3618 
3619 	fec_enet_clk_enable(ndev, false);
3620 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3621 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3622 
3623 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3624 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3625 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3626 
3627 	fec_enet_free_buffers(ndev);
3628 
3629 	return 0;
3630 }
3631 
3632 /* Set or clear the multicast filter for this adaptor.
3633  * Skeleton taken from sunlance driver.
3634  * The CPM Ethernet implementation allows Multicast as well as individual
3635  * MAC address filtering.  Some of the drivers check to make sure it is
3636  * a group multicast address, and discard those that are not.  I guess I
3637  * will do the same for now, but just remove the test if you want
3638  * individual filtering as well (do the upper net layers want or support
3639  * this kind of feature?).
3640  */
3641 
3642 #define FEC_HASH_BITS	6		/* #bits in hash */
3643 
3644 static void set_multicast_list(struct net_device *ndev)
3645 {
3646 	struct fec_enet_private *fep = netdev_priv(ndev);
3647 	struct netdev_hw_addr *ha;
3648 	unsigned int crc, tmp;
3649 	unsigned char hash;
3650 	unsigned int hash_high = 0, hash_low = 0;
3651 
3652 	if (ndev->flags & IFF_PROMISC) {
3653 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3654 		tmp |= 0x8;
3655 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3656 		return;
3657 	}
3658 
3659 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3660 	tmp &= ~0x8;
3661 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3662 
3663 	if (ndev->flags & IFF_ALLMULTI) {
3664 		/* Catch all multicast addresses, so set the
3665 		 * filter to all 1's
3666 		 */
3667 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3668 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3669 
3670 		return;
3671 	}
3672 
3673 	/* Add the addresses in hash register */
3674 	netdev_for_each_mc_addr(ha, ndev) {
3675 		/* calculate crc32 value of mac address */
3676 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3677 
3678 		/* only upper 6 bits (FEC_HASH_BITS) are used
3679 		 * which point to specific bit in the hash registers
3680 		 */
3681 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3682 
3683 		if (hash > 31)
3684 			hash_high |= 1 << (hash - 32);
3685 		else
3686 			hash_low |= 1 << hash;
3687 	}
3688 
3689 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3690 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3691 }
3692 
3693 /* Set a MAC change in hardware. */
3694 static int
3695 fec_set_mac_address(struct net_device *ndev, void *p)
3696 {
3697 	struct fec_enet_private *fep = netdev_priv(ndev);
3698 	struct sockaddr *addr = p;
3699 
3700 	if (addr) {
3701 		if (!is_valid_ether_addr(addr->sa_data))
3702 			return -EADDRNOTAVAIL;
3703 		eth_hw_addr_set(ndev, addr->sa_data);
3704 	}
3705 
3706 	/* Add netif status check here to avoid system hang in below case:
3707 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3708 	 * After ethx down, fec all clocks are gated off and then register
3709 	 * access causes system hang.
3710 	 */
3711 	if (!netif_running(ndev))
3712 		return 0;
3713 
3714 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3715 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3716 		fep->hwp + FEC_ADDR_LOW);
3717 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3718 		fep->hwp + FEC_ADDR_HIGH);
3719 	return 0;
3720 }
3721 
3722 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3723 	netdev_features_t features)
3724 {
3725 	struct fec_enet_private *fep = netdev_priv(netdev);
3726 	netdev_features_t changed = features ^ netdev->features;
3727 
3728 	netdev->features = features;
3729 
3730 	/* Receive checksum has been changed */
3731 	if (changed & NETIF_F_RXCSUM) {
3732 		if (features & NETIF_F_RXCSUM)
3733 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3734 		else
3735 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3736 	}
3737 }
3738 
3739 static int fec_set_features(struct net_device *netdev,
3740 	netdev_features_t features)
3741 {
3742 	struct fec_enet_private *fep = netdev_priv(netdev);
3743 	netdev_features_t changed = features ^ netdev->features;
3744 
3745 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3746 		napi_disable(&fep->napi);
3747 		netif_tx_lock_bh(netdev);
3748 		fec_stop(netdev);
3749 		fec_enet_set_netdev_features(netdev, features);
3750 		fec_restart(netdev);
3751 		netif_tx_wake_all_queues(netdev);
3752 		netif_tx_unlock_bh(netdev);
3753 		napi_enable(&fep->napi);
3754 	} else {
3755 		fec_enet_set_netdev_features(netdev, features);
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3762 				 struct net_device *sb_dev)
3763 {
3764 	struct fec_enet_private *fep = netdev_priv(ndev);
3765 	u16 vlan_tag = 0;
3766 
3767 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3768 		return netdev_pick_tx(ndev, skb, NULL);
3769 
3770 	/* VLAN is present in the payload.*/
3771 	if (eth_type_vlan(skb->protocol)) {
3772 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3773 
3774 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3775 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3776 	} else if (skb_vlan_tag_present(skb)) {
3777 		vlan_tag = skb->vlan_tci;
3778 	} else {
3779 		return vlan_tag;
3780 	}
3781 
3782 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3783 }
3784 
3785 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3786 {
3787 	struct fec_enet_private *fep = netdev_priv(dev);
3788 	bool is_run = netif_running(dev);
3789 	struct bpf_prog *old_prog;
3790 
3791 	switch (bpf->command) {
3792 	case XDP_SETUP_PROG:
3793 		/* No need to support the SoCs that require to
3794 		 * do the frame swap because the performance wouldn't be
3795 		 * better than the skb mode.
3796 		 */
3797 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3798 			return -EOPNOTSUPP;
3799 
3800 		if (!bpf->prog)
3801 			xdp_features_clear_redirect_target(dev);
3802 
3803 		if (is_run) {
3804 			napi_disable(&fep->napi);
3805 			netif_tx_disable(dev);
3806 		}
3807 
3808 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3809 		if (old_prog)
3810 			bpf_prog_put(old_prog);
3811 
3812 		fec_restart(dev);
3813 
3814 		if (is_run) {
3815 			napi_enable(&fep->napi);
3816 			netif_tx_start_all_queues(dev);
3817 		}
3818 
3819 		if (bpf->prog)
3820 			xdp_features_set_redirect_target(dev, false);
3821 
3822 		return 0;
3823 
3824 	case XDP_SETUP_XSK_POOL:
3825 		return -EOPNOTSUPP;
3826 
3827 	default:
3828 		return -EOPNOTSUPP;
3829 	}
3830 }
3831 
3832 static int
3833 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3834 {
3835 	if (unlikely(index < 0))
3836 		return 0;
3837 
3838 	return (index % fep->num_tx_queues);
3839 }
3840 
3841 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3842 				   struct fec_enet_priv_tx_q *txq,
3843 				   void *frame, u32 dma_sync_len,
3844 				   bool ndo_xmit)
3845 {
3846 	unsigned int index, status, estatus;
3847 	struct bufdesc *bdp;
3848 	dma_addr_t dma_addr;
3849 	int entries_free;
3850 	u16 frame_len;
3851 
3852 	entries_free = fec_enet_get_free_txdesc_num(txq);
3853 	if (entries_free < MAX_SKB_FRAGS + 1) {
3854 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3855 		return -EBUSY;
3856 	}
3857 
3858 	/* Fill in a Tx ring entry */
3859 	bdp = txq->bd.cur;
3860 	status = fec16_to_cpu(bdp->cbd_sc);
3861 	status &= ~BD_ENET_TX_STATS;
3862 
3863 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3864 
3865 	if (ndo_xmit) {
3866 		struct xdp_frame *xdpf = frame;
3867 
3868 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3869 					  xdpf->len, DMA_TO_DEVICE);
3870 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3871 			return -ENOMEM;
3872 
3873 		frame_len = xdpf->len;
3874 		txq->tx_buf[index].buf_p = xdpf;
3875 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3876 	} else {
3877 		struct xdp_buff *xdpb = frame;
3878 		struct page *page;
3879 
3880 		page = virt_to_page(xdpb->data);
3881 		dma_addr = page_pool_get_dma_addr(page) +
3882 			   (xdpb->data - xdpb->data_hard_start);
3883 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3884 					   dma_sync_len, DMA_BIDIRECTIONAL);
3885 		frame_len = xdpb->data_end - xdpb->data;
3886 		txq->tx_buf[index].buf_p = page;
3887 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3888 	}
3889 
3890 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3891 	if (fep->bufdesc_ex)
3892 		estatus = BD_ENET_TX_INT;
3893 
3894 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3895 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3896 
3897 	if (fep->bufdesc_ex) {
3898 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3899 
3900 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3901 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3902 
3903 		ebdp->cbd_bdu = 0;
3904 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3905 	}
3906 
3907 	/* Make sure the updates to rest of the descriptor are performed before
3908 	 * transferring ownership.
3909 	 */
3910 	dma_wmb();
3911 
3912 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3913 	 * it's the last BD of the frame, and to put the CRC on the end.
3914 	 */
3915 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3916 	bdp->cbd_sc = cpu_to_fec16(status);
3917 
3918 	/* If this was the last BD in the ring, start at the beginning again. */
3919 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3920 
3921 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3922 	dma_wmb();
3923 
3924 	txq->bd.cur = bdp;
3925 
3926 	/* Trigger transmission start */
3927 	writel(0, txq->bd.reg_desc_active);
3928 
3929 	return 0;
3930 }
3931 
3932 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3933 				int cpu, struct xdp_buff *xdp,
3934 				u32 dma_sync_len)
3935 {
3936 	struct fec_enet_priv_tx_q *txq;
3937 	struct netdev_queue *nq;
3938 	int queue, ret;
3939 
3940 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3941 	txq = fep->tx_queue[queue];
3942 	nq = netdev_get_tx_queue(fep->netdev, queue);
3943 
3944 	__netif_tx_lock(nq, cpu);
3945 
3946 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3947 	txq_trans_cond_update(nq);
3948 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3949 
3950 	__netif_tx_unlock(nq);
3951 
3952 	return ret;
3953 }
3954 
3955 static int fec_enet_xdp_xmit(struct net_device *dev,
3956 			     int num_frames,
3957 			     struct xdp_frame **frames,
3958 			     u32 flags)
3959 {
3960 	struct fec_enet_private *fep = netdev_priv(dev);
3961 	struct fec_enet_priv_tx_q *txq;
3962 	int cpu = smp_processor_id();
3963 	unsigned int sent_frames = 0;
3964 	struct netdev_queue *nq;
3965 	unsigned int queue;
3966 	int i;
3967 
3968 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3969 	txq = fep->tx_queue[queue];
3970 	nq = netdev_get_tx_queue(fep->netdev, queue);
3971 
3972 	__netif_tx_lock(nq, cpu);
3973 
3974 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3975 	txq_trans_cond_update(nq);
3976 	for (i = 0; i < num_frames; i++) {
3977 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3978 			break;
3979 		sent_frames++;
3980 	}
3981 
3982 	__netif_tx_unlock(nq);
3983 
3984 	return sent_frames;
3985 }
3986 
3987 static int fec_hwtstamp_get(struct net_device *ndev,
3988 			    struct kernel_hwtstamp_config *config)
3989 {
3990 	struct fec_enet_private *fep = netdev_priv(ndev);
3991 
3992 	if (!netif_running(ndev))
3993 		return -EINVAL;
3994 
3995 	if (!fep->bufdesc_ex)
3996 		return -EOPNOTSUPP;
3997 
3998 	fec_ptp_get(ndev, config);
3999 
4000 	return 0;
4001 }
4002 
4003 static int fec_hwtstamp_set(struct net_device *ndev,
4004 			    struct kernel_hwtstamp_config *config,
4005 			    struct netlink_ext_ack *extack)
4006 {
4007 	struct fec_enet_private *fep = netdev_priv(ndev);
4008 
4009 	if (!netif_running(ndev))
4010 		return -EINVAL;
4011 
4012 	if (!fep->bufdesc_ex)
4013 		return -EOPNOTSUPP;
4014 
4015 	return fec_ptp_set(ndev, config, extack);
4016 }
4017 
4018 static const struct net_device_ops fec_netdev_ops = {
4019 	.ndo_open		= fec_enet_open,
4020 	.ndo_stop		= fec_enet_close,
4021 	.ndo_start_xmit		= fec_enet_start_xmit,
4022 	.ndo_select_queue       = fec_enet_select_queue,
4023 	.ndo_set_rx_mode	= set_multicast_list,
4024 	.ndo_validate_addr	= eth_validate_addr,
4025 	.ndo_tx_timeout		= fec_timeout,
4026 	.ndo_set_mac_address	= fec_set_mac_address,
4027 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4028 	.ndo_set_features	= fec_set_features,
4029 	.ndo_bpf		= fec_enet_bpf,
4030 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4031 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4032 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4033 };
4034 
4035 static const unsigned short offset_des_active_rxq[] = {
4036 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4037 };
4038 
4039 static const unsigned short offset_des_active_txq[] = {
4040 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4041 };
4042 
4043  /*
4044   * XXX:  We need to clean up on failure exits here.
4045   *
4046   */
4047 static int fec_enet_init(struct net_device *ndev)
4048 {
4049 	struct fec_enet_private *fep = netdev_priv(ndev);
4050 	struct bufdesc *cbd_base;
4051 	dma_addr_t bd_dma;
4052 	int bd_size;
4053 	unsigned int i;
4054 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4055 			sizeof(struct bufdesc);
4056 	unsigned dsize_log2 = __fls(dsize);
4057 	int ret;
4058 
4059 	WARN_ON(dsize != (1 << dsize_log2));
4060 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4061 	fep->rx_align = 0xf;
4062 	fep->tx_align = 0xf;
4063 #else
4064 	fep->rx_align = 0x3;
4065 	fep->tx_align = 0x3;
4066 #endif
4067 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4068 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4069 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4070 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4071 
4072 	/* Check mask of the streaming and coherent API */
4073 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4074 	if (ret < 0) {
4075 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4076 		return ret;
4077 	}
4078 
4079 	ret = fec_enet_alloc_queue(ndev);
4080 	if (ret)
4081 		return ret;
4082 
4083 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4084 
4085 	/* Allocate memory for buffer descriptors. */
4086 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4087 				  GFP_KERNEL);
4088 	if (!cbd_base) {
4089 		ret = -ENOMEM;
4090 		goto free_queue_mem;
4091 	}
4092 
4093 	/* Get the Ethernet address */
4094 	ret = fec_get_mac(ndev);
4095 	if (ret)
4096 		goto free_queue_mem;
4097 
4098 	/* Set receive and transmit descriptor base. */
4099 	for (i = 0; i < fep->num_rx_queues; i++) {
4100 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4101 		unsigned size = dsize * rxq->bd.ring_size;
4102 
4103 		rxq->bd.qid = i;
4104 		rxq->bd.base = cbd_base;
4105 		rxq->bd.cur = cbd_base;
4106 		rxq->bd.dma = bd_dma;
4107 		rxq->bd.dsize = dsize;
4108 		rxq->bd.dsize_log2 = dsize_log2;
4109 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4110 		bd_dma += size;
4111 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4112 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4113 	}
4114 
4115 	for (i = 0; i < fep->num_tx_queues; i++) {
4116 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4117 		unsigned size = dsize * txq->bd.ring_size;
4118 
4119 		txq->bd.qid = i;
4120 		txq->bd.base = cbd_base;
4121 		txq->bd.cur = cbd_base;
4122 		txq->bd.dma = bd_dma;
4123 		txq->bd.dsize = dsize;
4124 		txq->bd.dsize_log2 = dsize_log2;
4125 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4126 		bd_dma += size;
4127 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4128 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4129 	}
4130 
4131 
4132 	/* The FEC Ethernet specific entries in the device structure */
4133 	ndev->watchdog_timeo = TX_TIMEOUT;
4134 	ndev->netdev_ops = &fec_netdev_ops;
4135 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4136 
4137 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4138 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4139 
4140 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4141 		/* enable hw VLAN support */
4142 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4143 
4144 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4145 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4146 
4147 		/* enable hw accelerator */
4148 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4149 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4150 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4151 	}
4152 
4153 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4154 		fep->tx_align = 0;
4155 		fep->rx_align = 0x3f;
4156 	}
4157 
4158 	ndev->hw_features = ndev->features;
4159 
4160 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4161 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4162 				     NETDEV_XDP_ACT_REDIRECT;
4163 
4164 	fec_restart(ndev);
4165 
4166 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4167 		fec_enet_clear_ethtool_stats(ndev);
4168 	else
4169 		fec_enet_update_ethtool_stats(ndev);
4170 
4171 	return 0;
4172 
4173 free_queue_mem:
4174 	fec_enet_free_queue(ndev);
4175 	return ret;
4176 }
4177 
4178 static void fec_enet_deinit(struct net_device *ndev)
4179 {
4180 	struct fec_enet_private *fep = netdev_priv(ndev);
4181 
4182 	netif_napi_del(&fep->napi);
4183 	fec_enet_free_queue(ndev);
4184 }
4185 
4186 #ifdef CONFIG_OF
4187 static int fec_reset_phy(struct platform_device *pdev)
4188 {
4189 	struct gpio_desc *phy_reset;
4190 	int msec = 1, phy_post_delay = 0;
4191 	struct device_node *np = pdev->dev.of_node;
4192 	int err;
4193 
4194 	if (!np)
4195 		return 0;
4196 
4197 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4198 	/* A sane reset duration should not be longer than 1s */
4199 	if (!err && msec > 1000)
4200 		msec = 1;
4201 
4202 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4203 	/* valid reset duration should be less than 1s */
4204 	if (!err && phy_post_delay > 1000)
4205 		return -EINVAL;
4206 
4207 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4208 					    GPIOD_OUT_HIGH);
4209 	if (IS_ERR(phy_reset))
4210 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4211 				     "failed to get phy-reset-gpios\n");
4212 
4213 	if (!phy_reset)
4214 		return 0;
4215 
4216 	if (msec > 20)
4217 		msleep(msec);
4218 	else
4219 		usleep_range(msec * 1000, msec * 1000 + 1000);
4220 
4221 	gpiod_set_value_cansleep(phy_reset, 0);
4222 
4223 	if (!phy_post_delay)
4224 		return 0;
4225 
4226 	if (phy_post_delay > 20)
4227 		msleep(phy_post_delay);
4228 	else
4229 		usleep_range(phy_post_delay * 1000,
4230 			     phy_post_delay * 1000 + 1000);
4231 
4232 	return 0;
4233 }
4234 #else /* CONFIG_OF */
4235 static int fec_reset_phy(struct platform_device *pdev)
4236 {
4237 	/*
4238 	 * In case of platform probe, the reset has been done
4239 	 * by machine code.
4240 	 */
4241 	return 0;
4242 }
4243 #endif /* CONFIG_OF */
4244 
4245 static void
4246 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4247 {
4248 	struct device_node *np = pdev->dev.of_node;
4249 
4250 	*num_tx = *num_rx = 1;
4251 
4252 	if (!np || !of_device_is_available(np))
4253 		return;
4254 
4255 	/* parse the num of tx and rx queues */
4256 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4257 
4258 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4259 
4260 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4261 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4262 			 *num_tx);
4263 		*num_tx = 1;
4264 		return;
4265 	}
4266 
4267 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4268 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4269 			 *num_rx);
4270 		*num_rx = 1;
4271 		return;
4272 	}
4273 
4274 }
4275 
4276 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4277 {
4278 	int irq_cnt = platform_irq_count(pdev);
4279 
4280 	if (irq_cnt > FEC_IRQ_NUM)
4281 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4282 	else if (irq_cnt == 2)
4283 		irq_cnt = 1;	/* last for pps */
4284 	else if (irq_cnt <= 0)
4285 		irq_cnt = 1;	/* At least 1 irq is needed */
4286 	return irq_cnt;
4287 }
4288 
4289 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4290 {
4291 	struct net_device *ndev = platform_get_drvdata(pdev);
4292 	struct fec_enet_private *fep = netdev_priv(ndev);
4293 
4294 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4295 		fep->wake_irq = fep->irq[2];
4296 	else
4297 		fep->wake_irq = fep->irq[0];
4298 }
4299 
4300 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4301 				   struct device_node *np)
4302 {
4303 	struct device_node *gpr_np;
4304 	u32 out_val[3];
4305 	int ret = 0;
4306 
4307 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4308 	if (!gpr_np)
4309 		return 0;
4310 
4311 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4312 					 ARRAY_SIZE(out_val));
4313 	if (ret) {
4314 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4315 		goto out;
4316 	}
4317 
4318 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4319 	if (IS_ERR(fep->stop_gpr.gpr)) {
4320 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4321 		ret = PTR_ERR(fep->stop_gpr.gpr);
4322 		fep->stop_gpr.gpr = NULL;
4323 		goto out;
4324 	}
4325 
4326 	fep->stop_gpr.reg = out_val[1];
4327 	fep->stop_gpr.bit = out_val[2];
4328 
4329 out:
4330 	of_node_put(gpr_np);
4331 
4332 	return ret;
4333 }
4334 
4335 static int
4336 fec_probe(struct platform_device *pdev)
4337 {
4338 	struct fec_enet_private *fep;
4339 	struct fec_platform_data *pdata;
4340 	phy_interface_t interface;
4341 	struct net_device *ndev;
4342 	int i, irq, ret = 0;
4343 	static int dev_id;
4344 	struct device_node *np = pdev->dev.of_node, *phy_node;
4345 	int num_tx_qs;
4346 	int num_rx_qs;
4347 	char irq_name[8];
4348 	int irq_cnt;
4349 	const struct fec_devinfo *dev_info;
4350 
4351 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4352 
4353 	/* Init network device */
4354 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4355 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4356 	if (!ndev)
4357 		return -ENOMEM;
4358 
4359 	SET_NETDEV_DEV(ndev, &pdev->dev);
4360 
4361 	/* setup board info structure */
4362 	fep = netdev_priv(ndev);
4363 
4364 	dev_info = device_get_match_data(&pdev->dev);
4365 	if (!dev_info)
4366 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4367 	if (dev_info)
4368 		fep->quirks = dev_info->quirks;
4369 
4370 	fep->netdev = ndev;
4371 	fep->num_rx_queues = num_rx_qs;
4372 	fep->num_tx_queues = num_tx_qs;
4373 
4374 #if !defined(CONFIG_M5272)
4375 	/* default enable pause frame auto negotiation */
4376 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4377 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4378 #endif
4379 
4380 	/* Select default pin state */
4381 	pinctrl_pm_select_default_state(&pdev->dev);
4382 
4383 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4384 	if (IS_ERR(fep->hwp)) {
4385 		ret = PTR_ERR(fep->hwp);
4386 		goto failed_ioremap;
4387 	}
4388 
4389 	fep->pdev = pdev;
4390 	fep->dev_id = dev_id++;
4391 
4392 	platform_set_drvdata(pdev, ndev);
4393 
4394 	if ((of_machine_is_compatible("fsl,imx6q") ||
4395 	     of_machine_is_compatible("fsl,imx6dl")) &&
4396 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4397 		fep->quirks |= FEC_QUIRK_ERR006687;
4398 
4399 	ret = fec_enet_ipc_handle_init(fep);
4400 	if (ret)
4401 		goto failed_ipc_init;
4402 
4403 	if (of_property_read_bool(np, "fsl,magic-packet"))
4404 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4405 
4406 	ret = fec_enet_init_stop_mode(fep, np);
4407 	if (ret)
4408 		goto failed_stop_mode;
4409 
4410 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4411 	if (!phy_node && of_phy_is_fixed_link(np)) {
4412 		ret = of_phy_register_fixed_link(np);
4413 		if (ret < 0) {
4414 			dev_err(&pdev->dev,
4415 				"broken fixed-link specification\n");
4416 			goto failed_phy;
4417 		}
4418 		phy_node = of_node_get(np);
4419 	}
4420 	fep->phy_node = phy_node;
4421 
4422 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4423 	if (ret) {
4424 		pdata = dev_get_platdata(&pdev->dev);
4425 		if (pdata)
4426 			fep->phy_interface = pdata->phy;
4427 		else
4428 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4429 	} else {
4430 		fep->phy_interface = interface;
4431 	}
4432 
4433 	ret = fec_enet_parse_rgmii_delay(fep, np);
4434 	if (ret)
4435 		goto failed_rgmii_delay;
4436 
4437 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4438 	if (IS_ERR(fep->clk_ipg)) {
4439 		ret = PTR_ERR(fep->clk_ipg);
4440 		goto failed_clk;
4441 	}
4442 
4443 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4444 	if (IS_ERR(fep->clk_ahb)) {
4445 		ret = PTR_ERR(fep->clk_ahb);
4446 		goto failed_clk;
4447 	}
4448 
4449 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4450 
4451 	/* enet_out is optional, depends on board */
4452 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4453 	if (IS_ERR(fep->clk_enet_out)) {
4454 		ret = PTR_ERR(fep->clk_enet_out);
4455 		goto failed_clk;
4456 	}
4457 
4458 	fep->ptp_clk_on = false;
4459 	mutex_init(&fep->ptp_clk_mutex);
4460 
4461 	/* clk_ref is optional, depends on board */
4462 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4463 	if (IS_ERR(fep->clk_ref)) {
4464 		ret = PTR_ERR(fep->clk_ref);
4465 		goto failed_clk;
4466 	}
4467 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4468 
4469 	/* clk_2x_txclk is optional, depends on board */
4470 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4471 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4472 		if (IS_ERR(fep->clk_2x_txclk))
4473 			fep->clk_2x_txclk = NULL;
4474 	}
4475 
4476 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4477 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4478 	if (IS_ERR(fep->clk_ptp)) {
4479 		fep->clk_ptp = NULL;
4480 		fep->bufdesc_ex = false;
4481 	}
4482 
4483 	ret = fec_enet_clk_enable(ndev, true);
4484 	if (ret)
4485 		goto failed_clk;
4486 
4487 	ret = clk_prepare_enable(fep->clk_ipg);
4488 	if (ret)
4489 		goto failed_clk_ipg;
4490 	ret = clk_prepare_enable(fep->clk_ahb);
4491 	if (ret)
4492 		goto failed_clk_ahb;
4493 
4494 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4495 	if (!IS_ERR(fep->reg_phy)) {
4496 		ret = regulator_enable(fep->reg_phy);
4497 		if (ret) {
4498 			dev_err(&pdev->dev,
4499 				"Failed to enable phy regulator: %d\n", ret);
4500 			goto failed_regulator;
4501 		}
4502 	} else {
4503 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4504 			ret = -EPROBE_DEFER;
4505 			goto failed_regulator;
4506 		}
4507 		fep->reg_phy = NULL;
4508 	}
4509 
4510 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4511 	pm_runtime_use_autosuspend(&pdev->dev);
4512 	pm_runtime_get_noresume(&pdev->dev);
4513 	pm_runtime_set_active(&pdev->dev);
4514 	pm_runtime_enable(&pdev->dev);
4515 
4516 	ret = fec_reset_phy(pdev);
4517 	if (ret)
4518 		goto failed_reset;
4519 
4520 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4521 	if (fep->bufdesc_ex)
4522 		fec_ptp_init(pdev, irq_cnt);
4523 
4524 	ret = fec_enet_init(ndev);
4525 	if (ret)
4526 		goto failed_init;
4527 
4528 	for (i = 0; i < irq_cnt; i++) {
4529 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4530 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4531 		if (irq < 0)
4532 			irq = platform_get_irq(pdev, i);
4533 		if (irq < 0) {
4534 			ret = irq;
4535 			goto failed_irq;
4536 		}
4537 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4538 				       0, pdev->name, ndev);
4539 		if (ret)
4540 			goto failed_irq;
4541 
4542 		fep->irq[i] = irq;
4543 	}
4544 
4545 	/* Decide which interrupt line is wakeup capable */
4546 	fec_enet_get_wakeup_irq(pdev);
4547 
4548 	ret = fec_enet_mii_init(pdev);
4549 	if (ret)
4550 		goto failed_mii_init;
4551 
4552 	/* Carrier starts down, phylib will bring it up */
4553 	netif_carrier_off(ndev);
4554 	fec_enet_clk_enable(ndev, false);
4555 	pinctrl_pm_select_sleep_state(&pdev->dev);
4556 
4557 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4558 
4559 	ret = register_netdev(ndev);
4560 	if (ret)
4561 		goto failed_register;
4562 
4563 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4564 			   FEC_WOL_HAS_MAGIC_PACKET);
4565 
4566 	if (fep->bufdesc_ex && fep->ptp_clock)
4567 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4568 
4569 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4570 
4571 	pm_runtime_mark_last_busy(&pdev->dev);
4572 	pm_runtime_put_autosuspend(&pdev->dev);
4573 
4574 	return 0;
4575 
4576 failed_register:
4577 	fec_enet_mii_remove(fep);
4578 failed_mii_init:
4579 failed_irq:
4580 	fec_enet_deinit(ndev);
4581 failed_init:
4582 	fec_ptp_stop(pdev);
4583 failed_reset:
4584 	pm_runtime_put_noidle(&pdev->dev);
4585 	pm_runtime_disable(&pdev->dev);
4586 	if (fep->reg_phy)
4587 		regulator_disable(fep->reg_phy);
4588 failed_regulator:
4589 	clk_disable_unprepare(fep->clk_ahb);
4590 failed_clk_ahb:
4591 	clk_disable_unprepare(fep->clk_ipg);
4592 failed_clk_ipg:
4593 	fec_enet_clk_enable(ndev, false);
4594 failed_clk:
4595 failed_rgmii_delay:
4596 	if (of_phy_is_fixed_link(np))
4597 		of_phy_deregister_fixed_link(np);
4598 	of_node_put(phy_node);
4599 failed_stop_mode:
4600 failed_ipc_init:
4601 failed_phy:
4602 	dev_id--;
4603 failed_ioremap:
4604 	free_netdev(ndev);
4605 
4606 	return ret;
4607 }
4608 
4609 static void
4610 fec_drv_remove(struct platform_device *pdev)
4611 {
4612 	struct net_device *ndev = platform_get_drvdata(pdev);
4613 	struct fec_enet_private *fep = netdev_priv(ndev);
4614 	struct device_node *np = pdev->dev.of_node;
4615 	int ret;
4616 
4617 	ret = pm_runtime_get_sync(&pdev->dev);
4618 	if (ret < 0)
4619 		dev_err(&pdev->dev,
4620 			"Failed to resume device in remove callback (%pe)\n",
4621 			ERR_PTR(ret));
4622 
4623 	cancel_work_sync(&fep->tx_timeout_work);
4624 	fec_ptp_stop(pdev);
4625 	unregister_netdev(ndev);
4626 	fec_enet_mii_remove(fep);
4627 	if (fep->reg_phy)
4628 		regulator_disable(fep->reg_phy);
4629 
4630 	if (of_phy_is_fixed_link(np))
4631 		of_phy_deregister_fixed_link(np);
4632 	of_node_put(fep->phy_node);
4633 
4634 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4635 	 * disabling them again.
4636 	 */
4637 	if (ret >= 0) {
4638 		clk_disable_unprepare(fep->clk_ahb);
4639 		clk_disable_unprepare(fep->clk_ipg);
4640 	}
4641 	pm_runtime_put_noidle(&pdev->dev);
4642 	pm_runtime_disable(&pdev->dev);
4643 
4644 	fec_enet_deinit(ndev);
4645 	free_netdev(ndev);
4646 }
4647 
4648 static int fec_suspend(struct device *dev)
4649 {
4650 	struct net_device *ndev = dev_get_drvdata(dev);
4651 	struct fec_enet_private *fep = netdev_priv(ndev);
4652 	int ret;
4653 
4654 	rtnl_lock();
4655 	if (netif_running(ndev)) {
4656 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4657 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4658 		phy_stop(ndev->phydev);
4659 		napi_disable(&fep->napi);
4660 		netif_tx_lock_bh(ndev);
4661 		netif_device_detach(ndev);
4662 		netif_tx_unlock_bh(ndev);
4663 		fec_stop(ndev);
4664 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4665 			fec_irqs_disable(ndev);
4666 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4667 		} else {
4668 			fec_irqs_disable_except_wakeup(ndev);
4669 			if (fep->wake_irq > 0) {
4670 				disable_irq(fep->wake_irq);
4671 				enable_irq_wake(fep->wake_irq);
4672 			}
4673 			fec_enet_stop_mode(fep, true);
4674 		}
4675 		/* It's safe to disable clocks since interrupts are masked */
4676 		fec_enet_clk_enable(ndev, false);
4677 
4678 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4679 		if (fep->rpm_active) {
4680 			ret = pm_runtime_force_suspend(dev);
4681 			if (ret < 0) {
4682 				rtnl_unlock();
4683 				return ret;
4684 			}
4685 		}
4686 	}
4687 	rtnl_unlock();
4688 
4689 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4690 		regulator_disable(fep->reg_phy);
4691 
4692 	/* SOC supply clock to phy, when clock is disabled, phy link down
4693 	 * SOC control phy regulator, when regulator is disabled, phy link down
4694 	 */
4695 	if (fep->clk_enet_out || fep->reg_phy)
4696 		fep->link = 0;
4697 
4698 	return 0;
4699 }
4700 
4701 static int fec_resume(struct device *dev)
4702 {
4703 	struct net_device *ndev = dev_get_drvdata(dev);
4704 	struct fec_enet_private *fep = netdev_priv(ndev);
4705 	int ret;
4706 	int val;
4707 
4708 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4709 		ret = regulator_enable(fep->reg_phy);
4710 		if (ret)
4711 			return ret;
4712 	}
4713 
4714 	rtnl_lock();
4715 	if (netif_running(ndev)) {
4716 		if (fep->rpm_active)
4717 			pm_runtime_force_resume(dev);
4718 
4719 		ret = fec_enet_clk_enable(ndev, true);
4720 		if (ret) {
4721 			rtnl_unlock();
4722 			goto failed_clk;
4723 		}
4724 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4725 			fec_enet_stop_mode(fep, false);
4726 			if (fep->wake_irq) {
4727 				disable_irq_wake(fep->wake_irq);
4728 				enable_irq(fep->wake_irq);
4729 			}
4730 
4731 			val = readl(fep->hwp + FEC_ECNTRL);
4732 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4733 			writel(val, fep->hwp + FEC_ECNTRL);
4734 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4735 		} else {
4736 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4737 		}
4738 		fec_restart(ndev);
4739 		netif_tx_lock_bh(ndev);
4740 		netif_device_attach(ndev);
4741 		netif_tx_unlock_bh(ndev);
4742 		napi_enable(&fep->napi);
4743 		phy_init_hw(ndev->phydev);
4744 		phy_start(ndev->phydev);
4745 	}
4746 	rtnl_unlock();
4747 
4748 	return 0;
4749 
4750 failed_clk:
4751 	if (fep->reg_phy)
4752 		regulator_disable(fep->reg_phy);
4753 	return ret;
4754 }
4755 
4756 static int fec_runtime_suspend(struct device *dev)
4757 {
4758 	struct net_device *ndev = dev_get_drvdata(dev);
4759 	struct fec_enet_private *fep = netdev_priv(ndev);
4760 
4761 	clk_disable_unprepare(fep->clk_ahb);
4762 	clk_disable_unprepare(fep->clk_ipg);
4763 
4764 	return 0;
4765 }
4766 
4767 static int fec_runtime_resume(struct device *dev)
4768 {
4769 	struct net_device *ndev = dev_get_drvdata(dev);
4770 	struct fec_enet_private *fep = netdev_priv(ndev);
4771 	int ret;
4772 
4773 	ret = clk_prepare_enable(fep->clk_ahb);
4774 	if (ret)
4775 		return ret;
4776 	ret = clk_prepare_enable(fep->clk_ipg);
4777 	if (ret)
4778 		goto failed_clk_ipg;
4779 
4780 	return 0;
4781 
4782 failed_clk_ipg:
4783 	clk_disable_unprepare(fep->clk_ahb);
4784 	return ret;
4785 }
4786 
4787 static const struct dev_pm_ops fec_pm_ops = {
4788 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4789 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4790 };
4791 
4792 static struct platform_driver fec_driver = {
4793 	.driver	= {
4794 		.name	= DRIVER_NAME,
4795 		.pm	= pm_ptr(&fec_pm_ops),
4796 		.of_match_table = fec_dt_ids,
4797 		.suppress_bind_attrs = true,
4798 	},
4799 	.id_table = fec_devtype,
4800 	.probe	= fec_probe,
4801 	.remove = fec_drv_remove,
4802 };
4803 
4804 module_platform_driver(fec_driver);
4805 
4806 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4807 MODULE_LICENSE("GPL");
4808