xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6x_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	writel(0, txq->bd.reg_desc_active);
718 
719 	return 0;
720 }
721 
722 static int
723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 			  struct net_device *ndev,
725 			  struct bufdesc *bdp, int index, char *data,
726 			  int size, bool last_tcp, bool is_last)
727 {
728 	struct fec_enet_private *fep = netdev_priv(ndev);
729 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 	unsigned short status;
731 	unsigned int estatus = 0;
732 	dma_addr_t addr;
733 
734 	status = fec16_to_cpu(bdp->cbd_sc);
735 	status &= ~BD_ENET_TX_STATS;
736 
737 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738 
739 	if (((unsigned long) data) & fep->tx_align ||
740 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 		memcpy(txq->tx_bounce[index], data, size);
742 		data = txq->tx_bounce[index];
743 
744 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 			swap_buffer(data, size);
746 	}
747 
748 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 		dev_kfree_skb_any(skb);
751 		if (net_ratelimit())
752 			netdev_err(ndev, "Tx DMA memory map failed\n");
753 		return NETDEV_TX_OK;
754 	}
755 
756 	bdp->cbd_datlen = cpu_to_fec16(size);
757 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
758 
759 	if (fep->bufdesc_ex) {
760 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 		if (skb->ip_summed == CHECKSUM_PARTIAL)
763 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 		ebdp->cbd_bdu = 0;
765 		ebdp->cbd_esc = cpu_to_fec32(estatus);
766 	}
767 
768 	/* Handle the last BD specially */
769 	if (last_tcp)
770 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 	if (is_last) {
772 		status |= BD_ENET_TX_INTR;
773 		if (fep->bufdesc_ex)
774 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 	}
776 
777 	bdp->cbd_sc = cpu_to_fec16(status);
778 
779 	return 0;
780 }
781 
782 static int
783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 			 struct sk_buff *skb, struct net_device *ndev,
785 			 struct bufdesc *bdp, int index)
786 {
787 	struct fec_enet_private *fep = netdev_priv(ndev);
788 	int hdr_len = skb_tcp_all_headers(skb);
789 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 	void *bufaddr;
791 	unsigned long dmabuf;
792 	unsigned short status;
793 	unsigned int estatus = 0;
794 
795 	status = fec16_to_cpu(bdp->cbd_sc);
796 	status &= ~BD_ENET_TX_STATS;
797 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798 
799 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 	if (((unsigned long)bufaddr) & fep->tx_align ||
802 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 		bufaddr = txq->tx_bounce[index];
805 
806 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 			swap_buffer(bufaddr, hdr_len);
808 
809 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 					hdr_len, DMA_TO_DEVICE);
811 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 			dev_kfree_skb_any(skb);
813 			if (net_ratelimit())
814 				netdev_err(ndev, "Tx DMA memory map failed\n");
815 			return NETDEV_TX_OK;
816 		}
817 	}
818 
819 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821 
822 	if (fep->bufdesc_ex) {
823 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 		if (skb->ip_summed == CHECKSUM_PARTIAL)
826 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 		ebdp->cbd_bdu = 0;
828 		ebdp->cbd_esc = cpu_to_fec32(estatus);
829 	}
830 
831 	bdp->cbd_sc = cpu_to_fec16(status);
832 
833 	return 0;
834 }
835 
836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 				   struct sk_buff *skb,
838 				   struct net_device *ndev)
839 {
840 	struct fec_enet_private *fep = netdev_priv(ndev);
841 	int hdr_len, total_len, data_left;
842 	struct bufdesc *bdp = txq->bd.cur;
843 	struct tso_t tso;
844 	unsigned int index = 0;
845 	int ret;
846 
847 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
848 		dev_kfree_skb_any(skb);
849 		if (net_ratelimit())
850 			netdev_err(ndev, "NOT enough BD for TSO!\n");
851 		return NETDEV_TX_OK;
852 	}
853 
854 	/* Protocol checksum off-load for TCP and UDP. */
855 	if (fec_enet_clear_csum(skb, ndev)) {
856 		dev_kfree_skb_any(skb);
857 		return NETDEV_TX_OK;
858 	}
859 
860 	/* Initialize the TSO handler, and prepare the first payload */
861 	hdr_len = tso_start(skb, &tso);
862 
863 	total_len = skb->len - hdr_len;
864 	while (total_len > 0) {
865 		char *hdr;
866 
867 		index = fec_enet_get_bd_index(bdp, &txq->bd);
868 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
869 		total_len -= data_left;
870 
871 		/* prepare packet headers: MAC + IP + TCP */
872 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
873 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
874 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
875 		if (ret)
876 			goto err_release;
877 
878 		while (data_left > 0) {
879 			int size;
880 
881 			size = min_t(int, tso.size, data_left);
882 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
883 			index = fec_enet_get_bd_index(bdp, &txq->bd);
884 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
885 							bdp, index,
886 							tso.data, size,
887 							size == data_left,
888 							total_len == 0);
889 			if (ret)
890 				goto err_release;
891 
892 			data_left -= size;
893 			tso_build_data(skb, &tso, size);
894 		}
895 
896 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
897 	}
898 
899 	/* Save skb pointer */
900 	txq->tx_buf[index].buf_p = skb;
901 
902 	skb_tx_timestamp(skb);
903 	txq->bd.cur = bdp;
904 
905 	/* Trigger transmission start */
906 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
907 	    !readl(txq->bd.reg_desc_active) ||
908 	    !readl(txq->bd.reg_desc_active) ||
909 	    !readl(txq->bd.reg_desc_active) ||
910 	    !readl(txq->bd.reg_desc_active))
911 		writel(0, txq->bd.reg_desc_active);
912 
913 	return 0;
914 
915 err_release:
916 	/* TODO: Release all used data descriptors for TSO */
917 	return ret;
918 }
919 
920 static netdev_tx_t
921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
922 {
923 	struct fec_enet_private *fep = netdev_priv(ndev);
924 	int entries_free;
925 	unsigned short queue;
926 	struct fec_enet_priv_tx_q *txq;
927 	struct netdev_queue *nq;
928 	int ret;
929 
930 	queue = skb_get_queue_mapping(skb);
931 	txq = fep->tx_queue[queue];
932 	nq = netdev_get_tx_queue(ndev, queue);
933 
934 	if (skb_is_gso(skb))
935 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
936 	else
937 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
938 	if (ret)
939 		return ret;
940 
941 	entries_free = fec_enet_get_free_txdesc_num(txq);
942 	if (entries_free <= txq->tx_stop_threshold)
943 		netif_tx_stop_queue(nq);
944 
945 	return NETDEV_TX_OK;
946 }
947 
948 /* Init RX & TX buffer descriptors
949  */
950 static void fec_enet_bd_init(struct net_device *dev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(dev);
953 	struct fec_enet_priv_tx_q *txq;
954 	struct fec_enet_priv_rx_q *rxq;
955 	struct bufdesc *bdp;
956 	unsigned int i;
957 	unsigned int q;
958 
959 	for (q = 0; q < fep->num_rx_queues; q++) {
960 		/* Initialize the receive buffer descriptors. */
961 		rxq = fep->rx_queue[q];
962 		bdp = rxq->bd.base;
963 
964 		for (i = 0; i < rxq->bd.ring_size; i++) {
965 
966 			/* Initialize the BD for every fragment in the page. */
967 			if (bdp->cbd_bufaddr)
968 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
969 			else
970 				bdp->cbd_sc = cpu_to_fec16(0);
971 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
972 		}
973 
974 		/* Set the last buffer to wrap */
975 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
976 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
977 
978 		rxq->bd.cur = rxq->bd.base;
979 	}
980 
981 	for (q = 0; q < fep->num_tx_queues; q++) {
982 		/* ...and the same for transmit */
983 		txq = fep->tx_queue[q];
984 		bdp = txq->bd.base;
985 		txq->bd.cur = bdp;
986 
987 		for (i = 0; i < txq->bd.ring_size; i++) {
988 			/* Initialize the BD for every fragment in the page. */
989 			bdp->cbd_sc = cpu_to_fec16(0);
990 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
991 				if (bdp->cbd_bufaddr &&
992 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
993 					dma_unmap_single(&fep->pdev->dev,
994 							 fec32_to_cpu(bdp->cbd_bufaddr),
995 							 fec16_to_cpu(bdp->cbd_datlen),
996 							 DMA_TO_DEVICE);
997 				if (txq->tx_buf[i].buf_p)
998 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
999 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000 				if (bdp->cbd_bufaddr)
1001 					dma_unmap_single(&fep->pdev->dev,
1002 							 fec32_to_cpu(bdp->cbd_bufaddr),
1003 							 fec16_to_cpu(bdp->cbd_datlen),
1004 							 DMA_TO_DEVICE);
1005 
1006 				if (txq->tx_buf[i].buf_p)
1007 					xdp_return_frame(txq->tx_buf[i].buf_p);
1008 			} else {
1009 				struct page *page = txq->tx_buf[i].buf_p;
1010 
1011 				if (page)
1012 					page_pool_put_page(page->pp, page, 0, false);
1013 			}
1014 
1015 			txq->tx_buf[i].buf_p = NULL;
1016 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1019 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1020 		}
1021 
1022 		/* Set the last buffer to wrap */
1023 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1024 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025 		txq->dirty_tx = bdp;
1026 	}
1027 }
1028 
1029 static void fec_enet_active_rxring(struct net_device *ndev)
1030 {
1031 	struct fec_enet_private *fep = netdev_priv(ndev);
1032 	int i;
1033 
1034 	for (i = 0; i < fep->num_rx_queues; i++)
1035 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1036 }
1037 
1038 static void fec_enet_enable_ring(struct net_device *ndev)
1039 {
1040 	struct fec_enet_private *fep = netdev_priv(ndev);
1041 	struct fec_enet_priv_tx_q *txq;
1042 	struct fec_enet_priv_rx_q *rxq;
1043 	int i;
1044 
1045 	for (i = 0; i < fep->num_rx_queues; i++) {
1046 		rxq = fep->rx_queue[i];
1047 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1048 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1049 
1050 		/* enable DMA1/2 */
1051 		if (i)
1052 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1053 			       fep->hwp + FEC_RCMR(i));
1054 	}
1055 
1056 	for (i = 0; i < fep->num_tx_queues; i++) {
1057 		txq = fep->tx_queue[i];
1058 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1059 
1060 		/* enable DMA1/2 */
1061 		if (i)
1062 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063 			       fep->hwp + FEC_DMA_CFG(i));
1064 	}
1065 }
1066 
1067 /*
1068  * This function is called to start or restart the FEC during a link
1069  * change, transmit timeout, or to reconfigure the FEC.  The network
1070  * packet processing for this device must be stopped before this call.
1071  */
1072 static void
1073 fec_restart(struct net_device *ndev)
1074 {
1075 	struct fec_enet_private *fep = netdev_priv(ndev);
1076 	u32 temp_mac[2];
1077 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078 	u32 ecntl = FEC_ECR_ETHEREN;
1079 
1080 	/* Whack a reset.  We should wait for this.
1081 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1082 	 * instead of reset MAC itself.
1083 	 */
1084 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1085 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1086 		writel(0, fep->hwp + FEC_ECNTRL);
1087 	} else {
1088 		writel(1, fep->hwp + FEC_ECNTRL);
1089 		udelay(10);
1090 	}
1091 
1092 	/*
1093 	 * enet-mac reset will reset mac address registers too,
1094 	 * so need to reconfigure it.
1095 	 */
1096 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1097 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1098 	       fep->hwp + FEC_ADDR_LOW);
1099 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1100 	       fep->hwp + FEC_ADDR_HIGH);
1101 
1102 	/* Clear any outstanding interrupt, except MDIO. */
1103 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1104 
1105 	fec_enet_bd_init(ndev);
1106 
1107 	fec_enet_enable_ring(ndev);
1108 
1109 	/* Enable MII mode */
1110 	if (fep->full_duplex == DUPLEX_FULL) {
1111 		/* FD enable */
1112 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1113 	} else {
1114 		/* No Rcv on Xmit */
1115 		rcntl |= 0x02;
1116 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1117 	}
1118 
1119 	/* Set MII speed */
1120 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1121 
1122 #if !defined(CONFIG_M5272)
1123 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1124 		u32 val = readl(fep->hwp + FEC_RACC);
1125 
1126 		/* align IP header */
1127 		val |= FEC_RACC_SHIFT16;
1128 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1129 			/* set RX checksum */
1130 			val |= FEC_RACC_OPTIONS;
1131 		else
1132 			val &= ~FEC_RACC_OPTIONS;
1133 		writel(val, fep->hwp + FEC_RACC);
1134 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1135 	}
1136 #endif
1137 
1138 	/*
1139 	 * The phy interface and speed need to get configured
1140 	 * differently on enet-mac.
1141 	 */
1142 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1143 		/* Enable flow control and length check */
1144 		rcntl |= 0x40000000 | 0x00000020;
1145 
1146 		/* RGMII, RMII or MII */
1147 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1148 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1149 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1150 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1151 			rcntl |= (1 << 6);
1152 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1153 			rcntl |= FEC_RCR_RMII;
1154 		else
1155 			rcntl &= ~FEC_RCR_RMII;
1156 
1157 		/* 1G, 100M or 10M */
1158 		if (ndev->phydev) {
1159 			if (ndev->phydev->speed == SPEED_1000)
1160 				ecntl |= (1 << 5);
1161 			else if (ndev->phydev->speed == SPEED_100)
1162 				rcntl &= ~FEC_RCR_10BASET;
1163 			else
1164 				rcntl |= FEC_RCR_10BASET;
1165 		}
1166 	} else {
1167 #ifdef FEC_MIIGSK_ENR
1168 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1169 			u32 cfgr;
1170 			/* disable the gasket and wait */
1171 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1172 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1173 				udelay(1);
1174 
1175 			/*
1176 			 * configure the gasket:
1177 			 *   RMII, 50 MHz, no loopback, no echo
1178 			 *   MII, 25 MHz, no loopback, no echo
1179 			 */
1180 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1181 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1182 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1183 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1184 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1185 
1186 			/* re-enable the gasket */
1187 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1188 		}
1189 #endif
1190 	}
1191 
1192 #if !defined(CONFIG_M5272)
1193 	/* enable pause frame*/
1194 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1195 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1196 	     ndev->phydev && ndev->phydev->pause)) {
1197 		rcntl |= FEC_RCR_FLOWCTL;
1198 
1199 		/* set FIFO threshold parameter to reduce overrun */
1200 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1201 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1202 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1203 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1204 
1205 		/* OPD */
1206 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1207 	} else {
1208 		rcntl &= ~FEC_RCR_FLOWCTL;
1209 	}
1210 #endif /* !defined(CONFIG_M5272) */
1211 
1212 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1213 
1214 	/* Setup multicast filter. */
1215 	set_multicast_list(ndev);
1216 #ifndef CONFIG_M5272
1217 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1218 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1219 #endif
1220 
1221 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1222 		/* enable ENET endian swap */
1223 		ecntl |= FEC_ECR_BYTESWP;
1224 		/* enable ENET store and forward mode */
1225 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1226 	}
1227 
1228 	if (fep->bufdesc_ex)
1229 		ecntl |= FEC_ECR_EN1588;
1230 
1231 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1232 	    fep->rgmii_txc_dly)
1233 		ecntl |= FEC_ENET_TXC_DLY;
1234 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235 	    fep->rgmii_rxc_dly)
1236 		ecntl |= FEC_ENET_RXC_DLY;
1237 
1238 #ifndef CONFIG_M5272
1239 	/* Enable the MIB statistic event counters */
1240 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1241 #endif
1242 
1243 	/* And last, enable the transmit and receive processing */
1244 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1245 	fec_enet_active_rxring(ndev);
1246 
1247 	if (fep->bufdesc_ex)
1248 		fec_ptp_start_cyclecounter(ndev);
1249 
1250 	/* Enable interrupts we wish to service */
1251 	if (fep->link)
1252 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1253 	else
1254 		writel(0, fep->hwp + FEC_IMASK);
1255 
1256 	/* Init the interrupt coalescing */
1257 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1258 		fec_enet_itr_coal_set(ndev);
1259 }
1260 
1261 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1262 {
1263 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1264 	      of_machine_is_compatible("fsl,imx8qxp") ||
1265 	      of_machine_is_compatible("fsl,imx8dxl")))
1266 		return 0;
1267 
1268 	return imx_scu_get_handle(&fep->ipc_handle);
1269 }
1270 
1271 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1272 {
1273 	struct device_node *np = fep->pdev->dev.of_node;
1274 	u32 rsrc_id, val;
1275 	int idx;
1276 
1277 	if (!np || !fep->ipc_handle)
1278 		return;
1279 
1280 	idx = of_alias_get_id(np, "ethernet");
1281 	if (idx < 0)
1282 		idx = 0;
1283 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1284 
1285 	val = enabled ? 1 : 0;
1286 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1287 }
1288 
1289 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1290 {
1291 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1292 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1293 
1294 	if (stop_gpr->gpr) {
1295 		if (enabled)
1296 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1297 					   BIT(stop_gpr->bit),
1298 					   BIT(stop_gpr->bit));
1299 		else
1300 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1301 					   BIT(stop_gpr->bit), 0);
1302 	} else if (pdata && pdata->sleep_mode_enable) {
1303 		pdata->sleep_mode_enable(enabled);
1304 	} else {
1305 		fec_enet_ipg_stop_set(fep, enabled);
1306 	}
1307 }
1308 
1309 static void fec_irqs_disable(struct net_device *ndev)
1310 {
1311 	struct fec_enet_private *fep = netdev_priv(ndev);
1312 
1313 	writel(0, fep->hwp + FEC_IMASK);
1314 }
1315 
1316 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1317 {
1318 	struct fec_enet_private *fep = netdev_priv(ndev);
1319 
1320 	writel(0, fep->hwp + FEC_IMASK);
1321 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1322 }
1323 
1324 static void
1325 fec_stop(struct net_device *ndev)
1326 {
1327 	struct fec_enet_private *fep = netdev_priv(ndev);
1328 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1329 	u32 val;
1330 
1331 	/* We cannot expect a graceful transmit stop without link !!! */
1332 	if (fep->link) {
1333 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1334 		udelay(10);
1335 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1336 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1337 	}
1338 
1339 	/* Whack a reset.  We should wait for this.
1340 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1341 	 * instead of reset MAC itself.
1342 	 */
1343 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1344 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1345 			writel(0, fep->hwp + FEC_ECNTRL);
1346 		} else {
1347 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1348 			udelay(10);
1349 		}
1350 	} else {
1351 		val = readl(fep->hwp + FEC_ECNTRL);
1352 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1353 		writel(val, fep->hwp + FEC_ECNTRL);
1354 	}
1355 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1356 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1357 
1358 	/* We have to keep ENET enabled to have MII interrupt stay working */
1359 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1360 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1361 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1362 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1363 	}
1364 }
1365 
1366 static void
1367 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1368 {
1369 	struct fec_enet_private *fep = netdev_priv(ndev);
1370 
1371 	fec_dump(ndev);
1372 
1373 	ndev->stats.tx_errors++;
1374 
1375 	schedule_work(&fep->tx_timeout_work);
1376 }
1377 
1378 static void fec_enet_timeout_work(struct work_struct *work)
1379 {
1380 	struct fec_enet_private *fep =
1381 		container_of(work, struct fec_enet_private, tx_timeout_work);
1382 	struct net_device *ndev = fep->netdev;
1383 
1384 	rtnl_lock();
1385 	if (netif_device_present(ndev) || netif_running(ndev)) {
1386 		napi_disable(&fep->napi);
1387 		netif_tx_lock_bh(ndev);
1388 		fec_restart(ndev);
1389 		netif_tx_wake_all_queues(ndev);
1390 		netif_tx_unlock_bh(ndev);
1391 		napi_enable(&fep->napi);
1392 	}
1393 	rtnl_unlock();
1394 }
1395 
1396 static void
1397 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1398 	struct skb_shared_hwtstamps *hwtstamps)
1399 {
1400 	unsigned long flags;
1401 	u64 ns;
1402 
1403 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1404 	ns = timecounter_cyc2time(&fep->tc, ts);
1405 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1406 
1407 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1408 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1409 }
1410 
1411 static void
1412 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1413 {
1414 	struct	fec_enet_private *fep;
1415 	struct xdp_frame *xdpf;
1416 	struct bufdesc *bdp;
1417 	unsigned short status;
1418 	struct	sk_buff	*skb;
1419 	struct fec_enet_priv_tx_q *txq;
1420 	struct netdev_queue *nq;
1421 	int	index = 0;
1422 	int	entries_free;
1423 	struct page *page;
1424 	int frame_len;
1425 
1426 	fep = netdev_priv(ndev);
1427 
1428 	txq = fep->tx_queue[queue_id];
1429 	/* get next bdp of dirty_tx */
1430 	nq = netdev_get_tx_queue(ndev, queue_id);
1431 	bdp = txq->dirty_tx;
1432 
1433 	/* get next bdp of dirty_tx */
1434 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1435 
1436 	while (bdp != READ_ONCE(txq->bd.cur)) {
1437 		/* Order the load of bd.cur and cbd_sc */
1438 		rmb();
1439 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1440 		if (status & BD_ENET_TX_READY)
1441 			break;
1442 
1443 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1444 
1445 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1446 			skb = txq->tx_buf[index].buf_p;
1447 			if (bdp->cbd_bufaddr &&
1448 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1449 				dma_unmap_single(&fep->pdev->dev,
1450 						 fec32_to_cpu(bdp->cbd_bufaddr),
1451 						 fec16_to_cpu(bdp->cbd_datlen),
1452 						 DMA_TO_DEVICE);
1453 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1454 			if (!skb)
1455 				goto tx_buf_done;
1456 		} else {
1457 			/* Tx processing cannot call any XDP (or page pool) APIs if
1458 			 * the "budget" is 0. Because NAPI is called with budget of
1459 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1460 			 * however, we can't use the page pool from IRQ context.
1461 			 */
1462 			if (unlikely(!budget))
1463 				break;
1464 
1465 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1466 				xdpf = txq->tx_buf[index].buf_p;
1467 				if (bdp->cbd_bufaddr)
1468 					dma_unmap_single(&fep->pdev->dev,
1469 							 fec32_to_cpu(bdp->cbd_bufaddr),
1470 							 fec16_to_cpu(bdp->cbd_datlen),
1471 							 DMA_TO_DEVICE);
1472 			} else {
1473 				page = txq->tx_buf[index].buf_p;
1474 			}
1475 
1476 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1477 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1478 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1479 				goto tx_buf_done;
1480 			}
1481 
1482 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1483 		}
1484 
1485 		/* Check for errors. */
1486 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1487 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1488 				   BD_ENET_TX_CSL)) {
1489 			ndev->stats.tx_errors++;
1490 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1491 				ndev->stats.tx_heartbeat_errors++;
1492 			if (status & BD_ENET_TX_LC)  /* Late collision */
1493 				ndev->stats.tx_window_errors++;
1494 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1495 				ndev->stats.tx_aborted_errors++;
1496 			if (status & BD_ENET_TX_UN)  /* Underrun */
1497 				ndev->stats.tx_fifo_errors++;
1498 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1499 				ndev->stats.tx_carrier_errors++;
1500 		} else {
1501 			ndev->stats.tx_packets++;
1502 
1503 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1504 				ndev->stats.tx_bytes += skb->len;
1505 			else
1506 				ndev->stats.tx_bytes += frame_len;
1507 		}
1508 
1509 		/* Deferred means some collisions occurred during transmit,
1510 		 * but we eventually sent the packet OK.
1511 		 */
1512 		if (status & BD_ENET_TX_DEF)
1513 			ndev->stats.collisions++;
1514 
1515 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1516 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1517 			 * are to time stamp the packet, so we still need to check time
1518 			 * stamping enabled flag.
1519 			 */
1520 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1521 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1522 				struct skb_shared_hwtstamps shhwtstamps;
1523 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1524 
1525 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1526 				skb_tstamp_tx(skb, &shhwtstamps);
1527 			}
1528 
1529 			/* Free the sk buffer associated with this last transmit */
1530 			napi_consume_skb(skb, budget);
1531 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1532 			xdp_return_frame_rx_napi(xdpf);
1533 		} else { /* recycle pages of XDP_TX frames */
1534 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1535 			page_pool_put_page(page->pp, page, 0, true);
1536 		}
1537 
1538 		txq->tx_buf[index].buf_p = NULL;
1539 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1540 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1541 
1542 tx_buf_done:
1543 		/* Make sure the update to bdp and tx_buf are performed
1544 		 * before dirty_tx
1545 		 */
1546 		wmb();
1547 		txq->dirty_tx = bdp;
1548 
1549 		/* Update pointer to next buffer descriptor to be transmitted */
1550 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1551 
1552 		/* Since we have freed up a buffer, the ring is no longer full
1553 		 */
1554 		if (netif_tx_queue_stopped(nq)) {
1555 			entries_free = fec_enet_get_free_txdesc_num(txq);
1556 			if (entries_free >= txq->tx_wake_threshold)
1557 				netif_tx_wake_queue(nq);
1558 		}
1559 	}
1560 
1561 	/* ERR006358: Keep the transmitter going */
1562 	if (bdp != txq->bd.cur &&
1563 	    readl(txq->bd.reg_desc_active) == 0)
1564 		writel(0, txq->bd.reg_desc_active);
1565 }
1566 
1567 static void fec_enet_tx(struct net_device *ndev, int budget)
1568 {
1569 	struct fec_enet_private *fep = netdev_priv(ndev);
1570 	int i;
1571 
1572 	/* Make sure that AVB queues are processed first. */
1573 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1574 		fec_enet_tx_queue(ndev, i, budget);
1575 }
1576 
1577 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1578 				struct bufdesc *bdp, int index)
1579 {
1580 	struct page *new_page;
1581 	dma_addr_t phys_addr;
1582 
1583 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1584 	WARN_ON(!new_page);
1585 	rxq->rx_skb_info[index].page = new_page;
1586 
1587 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1588 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1589 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1590 }
1591 
1592 static u32
1593 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1594 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1595 {
1596 	unsigned int sync, len = xdp->data_end - xdp->data;
1597 	u32 ret = FEC_ENET_XDP_PASS;
1598 	struct page *page;
1599 	int err;
1600 	u32 act;
1601 
1602 	act = bpf_prog_run_xdp(prog, xdp);
1603 
1604 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1605 	 * max len CPU touch
1606 	 */
1607 	sync = xdp->data_end - xdp->data;
1608 	sync = max(sync, len);
1609 
1610 	switch (act) {
1611 	case XDP_PASS:
1612 		rxq->stats[RX_XDP_PASS]++;
1613 		ret = FEC_ENET_XDP_PASS;
1614 		break;
1615 
1616 	case XDP_REDIRECT:
1617 		rxq->stats[RX_XDP_REDIRECT]++;
1618 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1619 		if (unlikely(err))
1620 			goto xdp_err;
1621 
1622 		ret = FEC_ENET_XDP_REDIR;
1623 		break;
1624 
1625 	case XDP_TX:
1626 		rxq->stats[RX_XDP_TX]++;
1627 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1628 		if (unlikely(err)) {
1629 			rxq->stats[RX_XDP_TX_ERRORS]++;
1630 			goto xdp_err;
1631 		}
1632 
1633 		ret = FEC_ENET_XDP_TX;
1634 		break;
1635 
1636 	default:
1637 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1638 		fallthrough;
1639 
1640 	case XDP_ABORTED:
1641 		fallthrough;    /* handle aborts by dropping packet */
1642 
1643 	case XDP_DROP:
1644 		rxq->stats[RX_XDP_DROP]++;
1645 xdp_err:
1646 		ret = FEC_ENET_XDP_CONSUMED;
1647 		page = virt_to_head_page(xdp->data);
1648 		page_pool_put_page(rxq->page_pool, page, sync, true);
1649 		if (act != XDP_DROP)
1650 			trace_xdp_exception(fep->netdev, prog, act);
1651 		break;
1652 	}
1653 
1654 	return ret;
1655 }
1656 
1657 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1658  * When we update through the ring, if the next incoming buffer has
1659  * not been given to the system, we just set the empty indicator,
1660  * effectively tossing the packet.
1661  */
1662 static int
1663 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1664 {
1665 	struct fec_enet_private *fep = netdev_priv(ndev);
1666 	struct fec_enet_priv_rx_q *rxq;
1667 	struct bufdesc *bdp;
1668 	unsigned short status;
1669 	struct  sk_buff *skb;
1670 	ushort	pkt_len;
1671 	__u8 *data;
1672 	int	pkt_received = 0;
1673 	struct	bufdesc_ex *ebdp = NULL;
1674 	bool	vlan_packet_rcvd = false;
1675 	u16	vlan_tag;
1676 	int	index = 0;
1677 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1678 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1679 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1680 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1681 	int cpu = smp_processor_id();
1682 	struct xdp_buff xdp;
1683 	struct page *page;
1684 	u32 sub_len = 4;
1685 
1686 #if !defined(CONFIG_M5272)
1687 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1688 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1689 	 */
1690 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1691 		data_start += 2;
1692 		sub_len += 2;
1693 	}
1694 #endif
1695 
1696 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1697 	/*
1698 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1699 	 * headers.
1700 	 */
1701 	flush_cache_all();
1702 #endif
1703 	rxq = fep->rx_queue[queue_id];
1704 
1705 	/* First, grab all of the stats for the incoming packet.
1706 	 * These get messed up if we get called due to a busy condition.
1707 	 */
1708 	bdp = rxq->bd.cur;
1709 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1710 
1711 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1712 
1713 		if (pkt_received >= budget)
1714 			break;
1715 		pkt_received++;
1716 
1717 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1718 
1719 		/* Check for errors. */
1720 		status ^= BD_ENET_RX_LAST;
1721 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1722 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1723 			   BD_ENET_RX_CL)) {
1724 			ndev->stats.rx_errors++;
1725 			if (status & BD_ENET_RX_OV) {
1726 				/* FIFO overrun */
1727 				ndev->stats.rx_fifo_errors++;
1728 				goto rx_processing_done;
1729 			}
1730 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1731 						| BD_ENET_RX_LAST)) {
1732 				/* Frame too long or too short. */
1733 				ndev->stats.rx_length_errors++;
1734 				if (status & BD_ENET_RX_LAST)
1735 					netdev_err(ndev, "rcv is not +last\n");
1736 			}
1737 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1738 				ndev->stats.rx_crc_errors++;
1739 			/* Report late collisions as a frame error. */
1740 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1741 				ndev->stats.rx_frame_errors++;
1742 			goto rx_processing_done;
1743 		}
1744 
1745 		/* Process the incoming frame. */
1746 		ndev->stats.rx_packets++;
1747 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1748 		ndev->stats.rx_bytes += pkt_len;
1749 
1750 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1751 		page = rxq->rx_skb_info[index].page;
1752 		dma_sync_single_for_cpu(&fep->pdev->dev,
1753 					fec32_to_cpu(bdp->cbd_bufaddr),
1754 					pkt_len,
1755 					DMA_FROM_DEVICE);
1756 		prefetch(page_address(page));
1757 		fec_enet_update_cbd(rxq, bdp, index);
1758 
1759 		if (xdp_prog) {
1760 			xdp_buff_clear_frags_flag(&xdp);
1761 			/* subtract 16bit shift and FCS */
1762 			xdp_prepare_buff(&xdp, page_address(page),
1763 					 data_start, pkt_len - sub_len, false);
1764 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1765 			xdp_result |= ret;
1766 			if (ret != FEC_ENET_XDP_PASS)
1767 				goto rx_processing_done;
1768 		}
1769 
1770 		/* The packet length includes FCS, but we don't want to
1771 		 * include that when passing upstream as it messes up
1772 		 * bridging applications.
1773 		 */
1774 		skb = build_skb(page_address(page), PAGE_SIZE);
1775 		if (unlikely(!skb)) {
1776 			page_pool_recycle_direct(rxq->page_pool, page);
1777 			ndev->stats.rx_dropped++;
1778 
1779 			netdev_err_once(ndev, "build_skb failed!\n");
1780 			goto rx_processing_done;
1781 		}
1782 
1783 		skb_reserve(skb, data_start);
1784 		skb_put(skb, pkt_len - sub_len);
1785 		skb_mark_for_recycle(skb);
1786 
1787 		if (unlikely(need_swap)) {
1788 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1789 			swap_buffer(data, pkt_len);
1790 		}
1791 		data = skb->data;
1792 
1793 		/* Extract the enhanced buffer descriptor */
1794 		ebdp = NULL;
1795 		if (fep->bufdesc_ex)
1796 			ebdp = (struct bufdesc_ex *)bdp;
1797 
1798 		/* If this is a VLAN packet remove the VLAN Tag */
1799 		vlan_packet_rcvd = false;
1800 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1801 		    fep->bufdesc_ex &&
1802 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1803 			/* Push and remove the vlan tag */
1804 			struct vlan_hdr *vlan_header =
1805 					(struct vlan_hdr *) (data + ETH_HLEN);
1806 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1807 
1808 			vlan_packet_rcvd = true;
1809 
1810 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1811 			skb_pull(skb, VLAN_HLEN);
1812 		}
1813 
1814 		skb->protocol = eth_type_trans(skb, ndev);
1815 
1816 		/* Get receive timestamp from the skb */
1817 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1818 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1819 					  skb_hwtstamps(skb));
1820 
1821 		if (fep->bufdesc_ex &&
1822 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1823 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1824 				/* don't check it */
1825 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1826 			} else {
1827 				skb_checksum_none_assert(skb);
1828 			}
1829 		}
1830 
1831 		/* Handle received VLAN packets */
1832 		if (vlan_packet_rcvd)
1833 			__vlan_hwaccel_put_tag(skb,
1834 					       htons(ETH_P_8021Q),
1835 					       vlan_tag);
1836 
1837 		skb_record_rx_queue(skb, queue_id);
1838 		napi_gro_receive(&fep->napi, skb);
1839 
1840 rx_processing_done:
1841 		/* Clear the status flags for this buffer */
1842 		status &= ~BD_ENET_RX_STATS;
1843 
1844 		/* Mark the buffer empty */
1845 		status |= BD_ENET_RX_EMPTY;
1846 
1847 		if (fep->bufdesc_ex) {
1848 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1849 
1850 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1851 			ebdp->cbd_prot = 0;
1852 			ebdp->cbd_bdu = 0;
1853 		}
1854 		/* Make sure the updates to rest of the descriptor are
1855 		 * performed before transferring ownership.
1856 		 */
1857 		wmb();
1858 		bdp->cbd_sc = cpu_to_fec16(status);
1859 
1860 		/* Update BD pointer to next entry */
1861 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1862 
1863 		/* Doing this here will keep the FEC running while we process
1864 		 * incoming frames.  On a heavily loaded network, we should be
1865 		 * able to keep up at the expense of system resources.
1866 		 */
1867 		writel(0, rxq->bd.reg_desc_active);
1868 	}
1869 	rxq->bd.cur = bdp;
1870 
1871 	if (xdp_result & FEC_ENET_XDP_REDIR)
1872 		xdp_do_flush();
1873 
1874 	return pkt_received;
1875 }
1876 
1877 static int fec_enet_rx(struct net_device *ndev, int budget)
1878 {
1879 	struct fec_enet_private *fep = netdev_priv(ndev);
1880 	int i, done = 0;
1881 
1882 	/* Make sure that AVB queues are processed first. */
1883 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1884 		done += fec_enet_rx_queue(ndev, budget - done, i);
1885 
1886 	return done;
1887 }
1888 
1889 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1890 {
1891 	uint int_events;
1892 
1893 	int_events = readl(fep->hwp + FEC_IEVENT);
1894 
1895 	/* Don't clear MDIO events, we poll for those */
1896 	int_events &= ~FEC_ENET_MII;
1897 
1898 	writel(int_events, fep->hwp + FEC_IEVENT);
1899 
1900 	return int_events != 0;
1901 }
1902 
1903 static irqreturn_t
1904 fec_enet_interrupt(int irq, void *dev_id)
1905 {
1906 	struct net_device *ndev = dev_id;
1907 	struct fec_enet_private *fep = netdev_priv(ndev);
1908 	irqreturn_t ret = IRQ_NONE;
1909 
1910 	if (fec_enet_collect_events(fep) && fep->link) {
1911 		ret = IRQ_HANDLED;
1912 
1913 		if (napi_schedule_prep(&fep->napi)) {
1914 			/* Disable interrupts */
1915 			writel(0, fep->hwp + FEC_IMASK);
1916 			__napi_schedule(&fep->napi);
1917 		}
1918 	}
1919 
1920 	return ret;
1921 }
1922 
1923 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1924 {
1925 	struct net_device *ndev = napi->dev;
1926 	struct fec_enet_private *fep = netdev_priv(ndev);
1927 	int done = 0;
1928 
1929 	do {
1930 		done += fec_enet_rx(ndev, budget - done);
1931 		fec_enet_tx(ndev, budget);
1932 	} while ((done < budget) && fec_enet_collect_events(fep));
1933 
1934 	if (done < budget) {
1935 		napi_complete_done(napi, done);
1936 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1937 	}
1938 
1939 	return done;
1940 }
1941 
1942 /* ------------------------------------------------------------------------- */
1943 static int fec_get_mac(struct net_device *ndev)
1944 {
1945 	struct fec_enet_private *fep = netdev_priv(ndev);
1946 	unsigned char *iap, tmpaddr[ETH_ALEN];
1947 	int ret;
1948 
1949 	/*
1950 	 * try to get mac address in following order:
1951 	 *
1952 	 * 1) module parameter via kernel command line in form
1953 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1954 	 */
1955 	iap = macaddr;
1956 
1957 	/*
1958 	 * 2) from device tree data
1959 	 */
1960 	if (!is_valid_ether_addr(iap)) {
1961 		struct device_node *np = fep->pdev->dev.of_node;
1962 		if (np) {
1963 			ret = of_get_mac_address(np, tmpaddr);
1964 			if (!ret)
1965 				iap = tmpaddr;
1966 			else if (ret == -EPROBE_DEFER)
1967 				return ret;
1968 		}
1969 	}
1970 
1971 	/*
1972 	 * 3) from flash or fuse (via platform data)
1973 	 */
1974 	if (!is_valid_ether_addr(iap)) {
1975 #ifdef CONFIG_M5272
1976 		if (FEC_FLASHMAC)
1977 			iap = (unsigned char *)FEC_FLASHMAC;
1978 #else
1979 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1980 
1981 		if (pdata)
1982 			iap = (unsigned char *)&pdata->mac;
1983 #endif
1984 	}
1985 
1986 	/*
1987 	 * 4) FEC mac registers set by bootloader
1988 	 */
1989 	if (!is_valid_ether_addr(iap)) {
1990 		*((__be32 *) &tmpaddr[0]) =
1991 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1992 		*((__be16 *) &tmpaddr[4]) =
1993 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1994 		iap = &tmpaddr[0];
1995 	}
1996 
1997 	/*
1998 	 * 5) random mac address
1999 	 */
2000 	if (!is_valid_ether_addr(iap)) {
2001 		/* Report it and use a random ethernet address instead */
2002 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2003 		eth_hw_addr_random(ndev);
2004 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2005 			 ndev->dev_addr);
2006 		return 0;
2007 	}
2008 
2009 	/* Adjust MAC if using macaddr */
2010 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2011 
2012 	return 0;
2013 }
2014 
2015 /* ------------------------------------------------------------------------- */
2016 
2017 /*
2018  * Phy section
2019  */
2020 
2021 /* LPI Sleep Ts count base on tx clk (clk_ref).
2022  * The lpi sleep cnt value = X us / (cycle_ns).
2023  */
2024 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2025 {
2026 	struct fec_enet_private *fep = netdev_priv(ndev);
2027 
2028 	return us * (fep->clk_ref_rate / 1000) / 1000;
2029 }
2030 
2031 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2032 {
2033 	struct fec_enet_private *fep = netdev_priv(ndev);
2034 	struct ethtool_keee *p = &fep->eee;
2035 	unsigned int sleep_cycle, wake_cycle;
2036 
2037 	if (enable) {
2038 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2039 		wake_cycle = sleep_cycle;
2040 	} else {
2041 		sleep_cycle = 0;
2042 		wake_cycle = 0;
2043 	}
2044 
2045 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2046 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2047 
2048 	return 0;
2049 }
2050 
2051 static void fec_enet_adjust_link(struct net_device *ndev)
2052 {
2053 	struct fec_enet_private *fep = netdev_priv(ndev);
2054 	struct phy_device *phy_dev = ndev->phydev;
2055 	int status_change = 0;
2056 
2057 	/*
2058 	 * If the netdev is down, or is going down, we're not interested
2059 	 * in link state events, so just mark our idea of the link as down
2060 	 * and ignore the event.
2061 	 */
2062 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2063 		fep->link = 0;
2064 	} else if (phy_dev->link) {
2065 		if (!fep->link) {
2066 			fep->link = phy_dev->link;
2067 			status_change = 1;
2068 		}
2069 
2070 		if (fep->full_duplex != phy_dev->duplex) {
2071 			fep->full_duplex = phy_dev->duplex;
2072 			status_change = 1;
2073 		}
2074 
2075 		if (phy_dev->speed != fep->speed) {
2076 			fep->speed = phy_dev->speed;
2077 			status_change = 1;
2078 		}
2079 
2080 		/* if any of the above changed restart the FEC */
2081 		if (status_change) {
2082 			netif_stop_queue(ndev);
2083 			napi_disable(&fep->napi);
2084 			netif_tx_lock_bh(ndev);
2085 			fec_restart(ndev);
2086 			netif_tx_wake_all_queues(ndev);
2087 			netif_tx_unlock_bh(ndev);
2088 			napi_enable(&fep->napi);
2089 		}
2090 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2091 			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2092 	} else {
2093 		if (fep->link) {
2094 			netif_stop_queue(ndev);
2095 			napi_disable(&fep->napi);
2096 			netif_tx_lock_bh(ndev);
2097 			fec_stop(ndev);
2098 			netif_tx_unlock_bh(ndev);
2099 			napi_enable(&fep->napi);
2100 			fep->link = phy_dev->link;
2101 			status_change = 1;
2102 		}
2103 	}
2104 
2105 	if (status_change)
2106 		phy_print_status(phy_dev);
2107 }
2108 
2109 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2110 {
2111 	uint ievent;
2112 	int ret;
2113 
2114 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2115 					ievent & FEC_ENET_MII, 2, 30000);
2116 
2117 	if (!ret)
2118 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2119 
2120 	return ret;
2121 }
2122 
2123 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2124 {
2125 	struct fec_enet_private *fep = bus->priv;
2126 	struct device *dev = &fep->pdev->dev;
2127 	int ret = 0, frame_start, frame_addr, frame_op;
2128 
2129 	ret = pm_runtime_resume_and_get(dev);
2130 	if (ret < 0)
2131 		return ret;
2132 
2133 	/* C22 read */
2134 	frame_op = FEC_MMFR_OP_READ;
2135 	frame_start = FEC_MMFR_ST;
2136 	frame_addr = regnum;
2137 
2138 	/* start a read op */
2139 	writel(frame_start | frame_op |
2140 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2141 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2142 
2143 	/* wait for end of transfer */
2144 	ret = fec_enet_mdio_wait(fep);
2145 	if (ret) {
2146 		netdev_err(fep->netdev, "MDIO read timeout\n");
2147 		goto out;
2148 	}
2149 
2150 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2151 
2152 out:
2153 	pm_runtime_mark_last_busy(dev);
2154 	pm_runtime_put_autosuspend(dev);
2155 
2156 	return ret;
2157 }
2158 
2159 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2160 				  int devad, int regnum)
2161 {
2162 	struct fec_enet_private *fep = bus->priv;
2163 	struct device *dev = &fep->pdev->dev;
2164 	int ret = 0, frame_start, frame_op;
2165 
2166 	ret = pm_runtime_resume_and_get(dev);
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	frame_start = FEC_MMFR_ST_C45;
2171 
2172 	/* write address */
2173 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2174 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2175 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2176 	       fep->hwp + FEC_MII_DATA);
2177 
2178 	/* wait for end of transfer */
2179 	ret = fec_enet_mdio_wait(fep);
2180 	if (ret) {
2181 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2182 		goto out;
2183 	}
2184 
2185 	frame_op = FEC_MMFR_OP_READ_C45;
2186 
2187 	/* start a read op */
2188 	writel(frame_start | frame_op |
2189 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2190 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2191 
2192 	/* wait for end of transfer */
2193 	ret = fec_enet_mdio_wait(fep);
2194 	if (ret) {
2195 		netdev_err(fep->netdev, "MDIO read timeout\n");
2196 		goto out;
2197 	}
2198 
2199 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2200 
2201 out:
2202 	pm_runtime_mark_last_busy(dev);
2203 	pm_runtime_put_autosuspend(dev);
2204 
2205 	return ret;
2206 }
2207 
2208 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2209 				   u16 value)
2210 {
2211 	struct fec_enet_private *fep = bus->priv;
2212 	struct device *dev = &fep->pdev->dev;
2213 	int ret, frame_start, frame_addr;
2214 
2215 	ret = pm_runtime_resume_and_get(dev);
2216 	if (ret < 0)
2217 		return ret;
2218 
2219 	/* C22 write */
2220 	frame_start = FEC_MMFR_ST;
2221 	frame_addr = regnum;
2222 
2223 	/* start a write op */
2224 	writel(frame_start | FEC_MMFR_OP_WRITE |
2225 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2226 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2227 	       fep->hwp + FEC_MII_DATA);
2228 
2229 	/* wait for end of transfer */
2230 	ret = fec_enet_mdio_wait(fep);
2231 	if (ret)
2232 		netdev_err(fep->netdev, "MDIO write timeout\n");
2233 
2234 	pm_runtime_mark_last_busy(dev);
2235 	pm_runtime_put_autosuspend(dev);
2236 
2237 	return ret;
2238 }
2239 
2240 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2241 				   int devad, int regnum, u16 value)
2242 {
2243 	struct fec_enet_private *fep = bus->priv;
2244 	struct device *dev = &fep->pdev->dev;
2245 	int ret, frame_start;
2246 
2247 	ret = pm_runtime_resume_and_get(dev);
2248 	if (ret < 0)
2249 		return ret;
2250 
2251 	frame_start = FEC_MMFR_ST_C45;
2252 
2253 	/* write address */
2254 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2255 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2256 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2257 	       fep->hwp + FEC_MII_DATA);
2258 
2259 	/* wait for end of transfer */
2260 	ret = fec_enet_mdio_wait(fep);
2261 	if (ret) {
2262 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2263 		goto out;
2264 	}
2265 
2266 	/* start a write op */
2267 	writel(frame_start | FEC_MMFR_OP_WRITE |
2268 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2269 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2270 	       fep->hwp + FEC_MII_DATA);
2271 
2272 	/* wait for end of transfer */
2273 	ret = fec_enet_mdio_wait(fep);
2274 	if (ret)
2275 		netdev_err(fep->netdev, "MDIO write timeout\n");
2276 
2277 out:
2278 	pm_runtime_mark_last_busy(dev);
2279 	pm_runtime_put_autosuspend(dev);
2280 
2281 	return ret;
2282 }
2283 
2284 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2285 {
2286 	struct fec_enet_private *fep = netdev_priv(ndev);
2287 	struct phy_device *phy_dev = ndev->phydev;
2288 
2289 	if (phy_dev) {
2290 		phy_reset_after_clk_enable(phy_dev);
2291 	} else if (fep->phy_node) {
2292 		/*
2293 		 * If the PHY still is not bound to the MAC, but there is
2294 		 * OF PHY node and a matching PHY device instance already,
2295 		 * use the OF PHY node to obtain the PHY device instance,
2296 		 * and then use that PHY device instance when triggering
2297 		 * the PHY reset.
2298 		 */
2299 		phy_dev = of_phy_find_device(fep->phy_node);
2300 		phy_reset_after_clk_enable(phy_dev);
2301 		put_device(&phy_dev->mdio.dev);
2302 	}
2303 }
2304 
2305 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2306 {
2307 	struct fec_enet_private *fep = netdev_priv(ndev);
2308 	int ret;
2309 
2310 	if (enable) {
2311 		ret = clk_prepare_enable(fep->clk_enet_out);
2312 		if (ret)
2313 			return ret;
2314 
2315 		if (fep->clk_ptp) {
2316 			mutex_lock(&fep->ptp_clk_mutex);
2317 			ret = clk_prepare_enable(fep->clk_ptp);
2318 			if (ret) {
2319 				mutex_unlock(&fep->ptp_clk_mutex);
2320 				goto failed_clk_ptp;
2321 			} else {
2322 				fep->ptp_clk_on = true;
2323 			}
2324 			mutex_unlock(&fep->ptp_clk_mutex);
2325 		}
2326 
2327 		ret = clk_prepare_enable(fep->clk_ref);
2328 		if (ret)
2329 			goto failed_clk_ref;
2330 
2331 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2332 		if (ret)
2333 			goto failed_clk_2x_txclk;
2334 
2335 		fec_enet_phy_reset_after_clk_enable(ndev);
2336 	} else {
2337 		clk_disable_unprepare(fep->clk_enet_out);
2338 		if (fep->clk_ptp) {
2339 			mutex_lock(&fep->ptp_clk_mutex);
2340 			clk_disable_unprepare(fep->clk_ptp);
2341 			fep->ptp_clk_on = false;
2342 			mutex_unlock(&fep->ptp_clk_mutex);
2343 		}
2344 		clk_disable_unprepare(fep->clk_ref);
2345 		clk_disable_unprepare(fep->clk_2x_txclk);
2346 	}
2347 
2348 	return 0;
2349 
2350 failed_clk_2x_txclk:
2351 	if (fep->clk_ref)
2352 		clk_disable_unprepare(fep->clk_ref);
2353 failed_clk_ref:
2354 	if (fep->clk_ptp) {
2355 		mutex_lock(&fep->ptp_clk_mutex);
2356 		clk_disable_unprepare(fep->clk_ptp);
2357 		fep->ptp_clk_on = false;
2358 		mutex_unlock(&fep->ptp_clk_mutex);
2359 	}
2360 failed_clk_ptp:
2361 	clk_disable_unprepare(fep->clk_enet_out);
2362 
2363 	return ret;
2364 }
2365 
2366 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2367 				      struct device_node *np)
2368 {
2369 	u32 rgmii_tx_delay, rgmii_rx_delay;
2370 
2371 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2372 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2373 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2374 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2375 			return -EINVAL;
2376 		} else if (rgmii_tx_delay == 2000) {
2377 			fep->rgmii_txc_dly = true;
2378 		}
2379 	}
2380 
2381 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2382 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2383 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2384 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2385 			return -EINVAL;
2386 		} else if (rgmii_rx_delay == 2000) {
2387 			fep->rgmii_rxc_dly = true;
2388 		}
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 static int fec_enet_mii_probe(struct net_device *ndev)
2395 {
2396 	struct fec_enet_private *fep = netdev_priv(ndev);
2397 	struct phy_device *phy_dev = NULL;
2398 	char mdio_bus_id[MII_BUS_ID_SIZE];
2399 	char phy_name[MII_BUS_ID_SIZE + 3];
2400 	int phy_id;
2401 	int dev_id = fep->dev_id;
2402 
2403 	if (fep->phy_node) {
2404 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2405 					 &fec_enet_adjust_link, 0,
2406 					 fep->phy_interface);
2407 		if (!phy_dev) {
2408 			netdev_err(ndev, "Unable to connect to phy\n");
2409 			return -ENODEV;
2410 		}
2411 	} else {
2412 		/* check for attached phy */
2413 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2414 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2415 				continue;
2416 			if (dev_id--)
2417 				continue;
2418 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2419 			break;
2420 		}
2421 
2422 		if (phy_id >= PHY_MAX_ADDR) {
2423 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2424 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2425 			phy_id = 0;
2426 		}
2427 
2428 		snprintf(phy_name, sizeof(phy_name),
2429 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2430 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2431 				      fep->phy_interface);
2432 	}
2433 
2434 	if (IS_ERR(phy_dev)) {
2435 		netdev_err(ndev, "could not attach to PHY\n");
2436 		return PTR_ERR(phy_dev);
2437 	}
2438 
2439 	/* mask with MAC supported features */
2440 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2441 		phy_set_max_speed(phy_dev, 1000);
2442 		phy_remove_link_mode(phy_dev,
2443 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2444 #if !defined(CONFIG_M5272)
2445 		phy_support_sym_pause(phy_dev);
2446 #endif
2447 	}
2448 	else
2449 		phy_set_max_speed(phy_dev, 100);
2450 
2451 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2452 		phy_support_eee(phy_dev);
2453 
2454 	fep->link = 0;
2455 	fep->full_duplex = 0;
2456 
2457 	phy_dev->mac_managed_pm = true;
2458 
2459 	phy_attached_info(phy_dev);
2460 
2461 	return 0;
2462 }
2463 
2464 static int fec_enet_mii_init(struct platform_device *pdev)
2465 {
2466 	static struct mii_bus *fec0_mii_bus;
2467 	struct net_device *ndev = platform_get_drvdata(pdev);
2468 	struct fec_enet_private *fep = netdev_priv(ndev);
2469 	bool suppress_preamble = false;
2470 	struct device_node *node;
2471 	int err = -ENXIO;
2472 	u32 mii_speed, holdtime;
2473 	u32 bus_freq;
2474 
2475 	/*
2476 	 * The i.MX28 dual fec interfaces are not equal.
2477 	 * Here are the differences:
2478 	 *
2479 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2480 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2481 	 *  - external phys can only be configured by fec0
2482 	 *
2483 	 * That is to say fec1 can not work independently. It only works
2484 	 * when fec0 is working. The reason behind this design is that the
2485 	 * second interface is added primarily for Switch mode.
2486 	 *
2487 	 * Because of the last point above, both phys are attached on fec0
2488 	 * mdio interface in board design, and need to be configured by
2489 	 * fec0 mii_bus.
2490 	 */
2491 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2492 		/* fec1 uses fec0 mii_bus */
2493 		if (mii_cnt && fec0_mii_bus) {
2494 			fep->mii_bus = fec0_mii_bus;
2495 			mii_cnt++;
2496 			return 0;
2497 		}
2498 		return -ENOENT;
2499 	}
2500 
2501 	bus_freq = 2500000; /* 2.5MHz by default */
2502 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2503 	if (node) {
2504 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2505 		suppress_preamble = of_property_read_bool(node,
2506 							  "suppress-preamble");
2507 	}
2508 
2509 	/*
2510 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2511 	 *
2512 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2513 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2514 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2515 	 * document.
2516 	 */
2517 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2518 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2519 		mii_speed--;
2520 	if (mii_speed > 63) {
2521 		dev_err(&pdev->dev,
2522 			"fec clock (%lu) too fast to get right mii speed\n",
2523 			clk_get_rate(fep->clk_ipg));
2524 		err = -EINVAL;
2525 		goto err_out;
2526 	}
2527 
2528 	/*
2529 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2530 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2531 	 * versions are RAZ there, so just ignore the difference and write the
2532 	 * register always.
2533 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2534 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2535 	 * output.
2536 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2537 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2538 	 * holdtime cannot result in a value greater than 3.
2539 	 */
2540 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2541 
2542 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2543 
2544 	if (suppress_preamble)
2545 		fep->phy_speed |= BIT(7);
2546 
2547 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2548 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2549 		 * MII event generation condition:
2550 		 * - writing MSCR:
2551 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2552 		 *	  mscr_reg_data_in[7:0] != 0
2553 		 * - writing MMFR:
2554 		 *	- mscr[7:0]_not_zero
2555 		 */
2556 		writel(0, fep->hwp + FEC_MII_DATA);
2557 	}
2558 
2559 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2560 
2561 	/* Clear any pending transaction complete indication */
2562 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2563 
2564 	fep->mii_bus = mdiobus_alloc();
2565 	if (fep->mii_bus == NULL) {
2566 		err = -ENOMEM;
2567 		goto err_out;
2568 	}
2569 
2570 	fep->mii_bus->name = "fec_enet_mii_bus";
2571 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2572 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2573 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2574 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2575 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2576 	}
2577 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2578 		pdev->name, fep->dev_id + 1);
2579 	fep->mii_bus->priv = fep;
2580 	fep->mii_bus->parent = &pdev->dev;
2581 
2582 	err = of_mdiobus_register(fep->mii_bus, node);
2583 	if (err)
2584 		goto err_out_free_mdiobus;
2585 	of_node_put(node);
2586 
2587 	mii_cnt++;
2588 
2589 	/* save fec0 mii_bus */
2590 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2591 		fec0_mii_bus = fep->mii_bus;
2592 
2593 	return 0;
2594 
2595 err_out_free_mdiobus:
2596 	mdiobus_free(fep->mii_bus);
2597 err_out:
2598 	of_node_put(node);
2599 	return err;
2600 }
2601 
2602 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2603 {
2604 	if (--mii_cnt == 0) {
2605 		mdiobus_unregister(fep->mii_bus);
2606 		mdiobus_free(fep->mii_bus);
2607 	}
2608 }
2609 
2610 static void fec_enet_get_drvinfo(struct net_device *ndev,
2611 				 struct ethtool_drvinfo *info)
2612 {
2613 	struct fec_enet_private *fep = netdev_priv(ndev);
2614 
2615 	strscpy(info->driver, fep->pdev->dev.driver->name,
2616 		sizeof(info->driver));
2617 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2618 }
2619 
2620 static int fec_enet_get_regs_len(struct net_device *ndev)
2621 {
2622 	struct fec_enet_private *fep = netdev_priv(ndev);
2623 	struct resource *r;
2624 	int s = 0;
2625 
2626 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2627 	if (r)
2628 		s = resource_size(r);
2629 
2630 	return s;
2631 }
2632 
2633 /* List of registers that can be safety be read to dump them with ethtool */
2634 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2635 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2636 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2637 static __u32 fec_enet_register_version = 2;
2638 static u32 fec_enet_register_offset[] = {
2639 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2640 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2641 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2642 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2643 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2644 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2645 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2646 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2647 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2648 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2649 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2650 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2651 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2652 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2653 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2654 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2655 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2656 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2657 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2658 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2659 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2660 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2661 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2662 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2663 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2664 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2665 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2666 };
2667 /* for i.MX6ul */
2668 static u32 fec_enet_register_offset_6ul[] = {
2669 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2670 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2671 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2672 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2673 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2674 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2675 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2676 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2677 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2678 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2679 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2680 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2681 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2682 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2683 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2684 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2685 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2686 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2687 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2688 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2689 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2690 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2691 };
2692 #else
2693 static __u32 fec_enet_register_version = 1;
2694 static u32 fec_enet_register_offset[] = {
2695 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2696 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2697 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2698 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2699 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2700 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2701 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2702 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2703 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2704 };
2705 #endif
2706 
2707 static void fec_enet_get_regs(struct net_device *ndev,
2708 			      struct ethtool_regs *regs, void *regbuf)
2709 {
2710 	struct fec_enet_private *fep = netdev_priv(ndev);
2711 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2712 	struct device *dev = &fep->pdev->dev;
2713 	u32 *buf = (u32 *)regbuf;
2714 	u32 i, off;
2715 	int ret;
2716 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2717 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2718 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2719 	u32 *reg_list;
2720 	u32 reg_cnt;
2721 
2722 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2723 		reg_list = fec_enet_register_offset;
2724 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2725 	} else {
2726 		reg_list = fec_enet_register_offset_6ul;
2727 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2728 	}
2729 #else
2730 	/* coldfire */
2731 	static u32 *reg_list = fec_enet_register_offset;
2732 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2733 #endif
2734 	ret = pm_runtime_resume_and_get(dev);
2735 	if (ret < 0)
2736 		return;
2737 
2738 	regs->version = fec_enet_register_version;
2739 
2740 	memset(buf, 0, regs->len);
2741 
2742 	for (i = 0; i < reg_cnt; i++) {
2743 		off = reg_list[i];
2744 
2745 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2746 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2747 			continue;
2748 
2749 		off >>= 2;
2750 		buf[off] = readl(&theregs[off]);
2751 	}
2752 
2753 	pm_runtime_mark_last_busy(dev);
2754 	pm_runtime_put_autosuspend(dev);
2755 }
2756 
2757 static int fec_enet_get_ts_info(struct net_device *ndev,
2758 				struct ethtool_ts_info *info)
2759 {
2760 	struct fec_enet_private *fep = netdev_priv(ndev);
2761 
2762 	if (fep->bufdesc_ex) {
2763 
2764 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2765 					SOF_TIMESTAMPING_RX_SOFTWARE |
2766 					SOF_TIMESTAMPING_SOFTWARE |
2767 					SOF_TIMESTAMPING_TX_HARDWARE |
2768 					SOF_TIMESTAMPING_RX_HARDWARE |
2769 					SOF_TIMESTAMPING_RAW_HARDWARE;
2770 		if (fep->ptp_clock)
2771 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2772 		else
2773 			info->phc_index = -1;
2774 
2775 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2776 				 (1 << HWTSTAMP_TX_ON);
2777 
2778 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2779 				   (1 << HWTSTAMP_FILTER_ALL);
2780 		return 0;
2781 	} else {
2782 		return ethtool_op_get_ts_info(ndev, info);
2783 	}
2784 }
2785 
2786 #if !defined(CONFIG_M5272)
2787 
2788 static void fec_enet_get_pauseparam(struct net_device *ndev,
2789 				    struct ethtool_pauseparam *pause)
2790 {
2791 	struct fec_enet_private *fep = netdev_priv(ndev);
2792 
2793 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2794 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2795 	pause->rx_pause = pause->tx_pause;
2796 }
2797 
2798 static int fec_enet_set_pauseparam(struct net_device *ndev,
2799 				   struct ethtool_pauseparam *pause)
2800 {
2801 	struct fec_enet_private *fep = netdev_priv(ndev);
2802 
2803 	if (!ndev->phydev)
2804 		return -ENODEV;
2805 
2806 	if (pause->tx_pause != pause->rx_pause) {
2807 		netdev_info(ndev,
2808 			"hardware only support enable/disable both tx and rx");
2809 		return -EINVAL;
2810 	}
2811 
2812 	fep->pause_flag = 0;
2813 
2814 	/* tx pause must be same as rx pause */
2815 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2816 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2817 
2818 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2819 			  pause->autoneg);
2820 
2821 	if (pause->autoneg) {
2822 		if (netif_running(ndev))
2823 			fec_stop(ndev);
2824 		phy_start_aneg(ndev->phydev);
2825 	}
2826 	if (netif_running(ndev)) {
2827 		napi_disable(&fep->napi);
2828 		netif_tx_lock_bh(ndev);
2829 		fec_restart(ndev);
2830 		netif_tx_wake_all_queues(ndev);
2831 		netif_tx_unlock_bh(ndev);
2832 		napi_enable(&fep->napi);
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static const struct fec_stat {
2839 	char name[ETH_GSTRING_LEN];
2840 	u16 offset;
2841 } fec_stats[] = {
2842 	/* RMON TX */
2843 	{ "tx_dropped", RMON_T_DROP },
2844 	{ "tx_packets", RMON_T_PACKETS },
2845 	{ "tx_broadcast", RMON_T_BC_PKT },
2846 	{ "tx_multicast", RMON_T_MC_PKT },
2847 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2848 	{ "tx_undersize", RMON_T_UNDERSIZE },
2849 	{ "tx_oversize", RMON_T_OVERSIZE },
2850 	{ "tx_fragment", RMON_T_FRAG },
2851 	{ "tx_jabber", RMON_T_JAB },
2852 	{ "tx_collision", RMON_T_COL },
2853 	{ "tx_64byte", RMON_T_P64 },
2854 	{ "tx_65to127byte", RMON_T_P65TO127 },
2855 	{ "tx_128to255byte", RMON_T_P128TO255 },
2856 	{ "tx_256to511byte", RMON_T_P256TO511 },
2857 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2858 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2859 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2860 	{ "tx_octets", RMON_T_OCTETS },
2861 
2862 	/* IEEE TX */
2863 	{ "IEEE_tx_drop", IEEE_T_DROP },
2864 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2865 	{ "IEEE_tx_1col", IEEE_T_1COL },
2866 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2867 	{ "IEEE_tx_def", IEEE_T_DEF },
2868 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2869 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2870 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2871 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2872 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2873 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2874 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2875 
2876 	/* RMON RX */
2877 	{ "rx_packets", RMON_R_PACKETS },
2878 	{ "rx_broadcast", RMON_R_BC_PKT },
2879 	{ "rx_multicast", RMON_R_MC_PKT },
2880 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2881 	{ "rx_undersize", RMON_R_UNDERSIZE },
2882 	{ "rx_oversize", RMON_R_OVERSIZE },
2883 	{ "rx_fragment", RMON_R_FRAG },
2884 	{ "rx_jabber", RMON_R_JAB },
2885 	{ "rx_64byte", RMON_R_P64 },
2886 	{ "rx_65to127byte", RMON_R_P65TO127 },
2887 	{ "rx_128to255byte", RMON_R_P128TO255 },
2888 	{ "rx_256to511byte", RMON_R_P256TO511 },
2889 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2890 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2891 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2892 	{ "rx_octets", RMON_R_OCTETS },
2893 
2894 	/* IEEE RX */
2895 	{ "IEEE_rx_drop", IEEE_R_DROP },
2896 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2897 	{ "IEEE_rx_crc", IEEE_R_CRC },
2898 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2899 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2900 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2901 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2902 };
2903 
2904 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2905 
2906 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2907 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2908 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2909 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2910 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2911 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2912 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2913 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2914 };
2915 
2916 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2917 {
2918 	struct fec_enet_private *fep = netdev_priv(dev);
2919 	int i;
2920 
2921 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2922 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2923 }
2924 
2925 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2926 {
2927 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2928 	struct fec_enet_priv_rx_q *rxq;
2929 	int i, j;
2930 
2931 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2932 		rxq = fep->rx_queue[i];
2933 
2934 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2935 			xdp_stats[j] += rxq->stats[j];
2936 	}
2937 
2938 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2939 }
2940 
2941 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2942 {
2943 #ifdef CONFIG_PAGE_POOL_STATS
2944 	struct page_pool_stats stats = {};
2945 	struct fec_enet_priv_rx_q *rxq;
2946 	int i;
2947 
2948 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2949 		rxq = fep->rx_queue[i];
2950 
2951 		if (!rxq->page_pool)
2952 			continue;
2953 
2954 		page_pool_get_stats(rxq->page_pool, &stats);
2955 	}
2956 
2957 	page_pool_ethtool_stats_get(data, &stats);
2958 #endif
2959 }
2960 
2961 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2962 				       struct ethtool_stats *stats, u64 *data)
2963 {
2964 	struct fec_enet_private *fep = netdev_priv(dev);
2965 
2966 	if (netif_running(dev))
2967 		fec_enet_update_ethtool_stats(dev);
2968 
2969 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2970 	data += FEC_STATS_SIZE / sizeof(u64);
2971 
2972 	fec_enet_get_xdp_stats(fep, data);
2973 	data += XDP_STATS_TOTAL;
2974 
2975 	fec_enet_page_pool_stats(fep, data);
2976 }
2977 
2978 static void fec_enet_get_strings(struct net_device *netdev,
2979 	u32 stringset, u8 *data)
2980 {
2981 	int i;
2982 	switch (stringset) {
2983 	case ETH_SS_STATS:
2984 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2985 			ethtool_puts(&data, fec_stats[i].name);
2986 		}
2987 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2988 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2989 		}
2990 		page_pool_ethtool_stats_get_strings(data);
2991 
2992 		break;
2993 	case ETH_SS_TEST:
2994 		net_selftest_get_strings(data);
2995 		break;
2996 	}
2997 }
2998 
2999 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3000 {
3001 	int count;
3002 
3003 	switch (sset) {
3004 	case ETH_SS_STATS:
3005 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3006 		count += page_pool_ethtool_stats_get_count();
3007 		return count;
3008 
3009 	case ETH_SS_TEST:
3010 		return net_selftest_get_count();
3011 	default:
3012 		return -EOPNOTSUPP;
3013 	}
3014 }
3015 
3016 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3017 {
3018 	struct fec_enet_private *fep = netdev_priv(dev);
3019 	struct fec_enet_priv_rx_q *rxq;
3020 	int i, j;
3021 
3022 	/* Disable MIB statistics counters */
3023 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3024 
3025 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3026 		writel(0, fep->hwp + fec_stats[i].offset);
3027 
3028 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3029 		rxq = fep->rx_queue[i];
3030 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3031 			rxq->stats[j] = 0;
3032 	}
3033 
3034 	/* Don't disable MIB statistics counters */
3035 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3036 }
3037 
3038 #else	/* !defined(CONFIG_M5272) */
3039 #define FEC_STATS_SIZE	0
3040 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3041 {
3042 }
3043 
3044 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3045 {
3046 }
3047 #endif /* !defined(CONFIG_M5272) */
3048 
3049 /* ITR clock source is enet system clock (clk_ahb).
3050  * TCTT unit is cycle_ns * 64 cycle
3051  * So, the ICTT value = X us / (cycle_ns * 64)
3052  */
3053 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3054 {
3055 	struct fec_enet_private *fep = netdev_priv(ndev);
3056 
3057 	return us * (fep->itr_clk_rate / 64000) / 1000;
3058 }
3059 
3060 /* Set threshold for interrupt coalescing */
3061 static void fec_enet_itr_coal_set(struct net_device *ndev)
3062 {
3063 	struct fec_enet_private *fep = netdev_priv(ndev);
3064 	int rx_itr, tx_itr;
3065 
3066 	/* Must be greater than zero to avoid unpredictable behavior */
3067 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3068 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3069 		return;
3070 
3071 	/* Select enet system clock as Interrupt Coalescing
3072 	 * timer Clock Source
3073 	 */
3074 	rx_itr = FEC_ITR_CLK_SEL;
3075 	tx_itr = FEC_ITR_CLK_SEL;
3076 
3077 	/* set ICFT and ICTT */
3078 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3079 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3080 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3081 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3082 
3083 	rx_itr |= FEC_ITR_EN;
3084 	tx_itr |= FEC_ITR_EN;
3085 
3086 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3087 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3088 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3089 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3090 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3091 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3092 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3093 	}
3094 }
3095 
3096 static int fec_enet_get_coalesce(struct net_device *ndev,
3097 				 struct ethtool_coalesce *ec,
3098 				 struct kernel_ethtool_coalesce *kernel_coal,
3099 				 struct netlink_ext_ack *extack)
3100 {
3101 	struct fec_enet_private *fep = netdev_priv(ndev);
3102 
3103 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3104 		return -EOPNOTSUPP;
3105 
3106 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3107 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3108 
3109 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3110 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3111 
3112 	return 0;
3113 }
3114 
3115 static int fec_enet_set_coalesce(struct net_device *ndev,
3116 				 struct ethtool_coalesce *ec,
3117 				 struct kernel_ethtool_coalesce *kernel_coal,
3118 				 struct netlink_ext_ack *extack)
3119 {
3120 	struct fec_enet_private *fep = netdev_priv(ndev);
3121 	struct device *dev = &fep->pdev->dev;
3122 	unsigned int cycle;
3123 
3124 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3125 		return -EOPNOTSUPP;
3126 
3127 	if (ec->rx_max_coalesced_frames > 255) {
3128 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3129 		return -EINVAL;
3130 	}
3131 
3132 	if (ec->tx_max_coalesced_frames > 255) {
3133 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3134 		return -EINVAL;
3135 	}
3136 
3137 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3138 	if (cycle > 0xFFFF) {
3139 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3140 		return -EINVAL;
3141 	}
3142 
3143 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3144 	if (cycle > 0xFFFF) {
3145 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3146 		return -EINVAL;
3147 	}
3148 
3149 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3150 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3151 
3152 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3153 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3154 
3155 	fec_enet_itr_coal_set(ndev);
3156 
3157 	return 0;
3158 }
3159 
3160 static int
3161 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3162 {
3163 	struct fec_enet_private *fep = netdev_priv(ndev);
3164 	struct ethtool_keee *p = &fep->eee;
3165 
3166 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3167 		return -EOPNOTSUPP;
3168 
3169 	if (!netif_running(ndev))
3170 		return -ENETDOWN;
3171 
3172 	edata->tx_lpi_timer = p->tx_lpi_timer;
3173 
3174 	return phy_ethtool_get_eee(ndev->phydev, edata);
3175 }
3176 
3177 static int
3178 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3179 {
3180 	struct fec_enet_private *fep = netdev_priv(ndev);
3181 	struct ethtool_keee *p = &fep->eee;
3182 
3183 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3184 		return -EOPNOTSUPP;
3185 
3186 	if (!netif_running(ndev))
3187 		return -ENETDOWN;
3188 
3189 	p->tx_lpi_timer = edata->tx_lpi_timer;
3190 
3191 	return phy_ethtool_set_eee(ndev->phydev, edata);
3192 }
3193 
3194 static void
3195 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3196 {
3197 	struct fec_enet_private *fep = netdev_priv(ndev);
3198 
3199 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3200 		wol->supported = WAKE_MAGIC;
3201 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3202 	} else {
3203 		wol->supported = wol->wolopts = 0;
3204 	}
3205 }
3206 
3207 static int
3208 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3209 {
3210 	struct fec_enet_private *fep = netdev_priv(ndev);
3211 
3212 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3213 		return -EINVAL;
3214 
3215 	if (wol->wolopts & ~WAKE_MAGIC)
3216 		return -EINVAL;
3217 
3218 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3219 	if (device_may_wakeup(&ndev->dev))
3220 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3221 	else
3222 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3223 
3224 	return 0;
3225 }
3226 
3227 static const struct ethtool_ops fec_enet_ethtool_ops = {
3228 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3229 				     ETHTOOL_COALESCE_MAX_FRAMES,
3230 	.get_drvinfo		= fec_enet_get_drvinfo,
3231 	.get_regs_len		= fec_enet_get_regs_len,
3232 	.get_regs		= fec_enet_get_regs,
3233 	.nway_reset		= phy_ethtool_nway_reset,
3234 	.get_link		= ethtool_op_get_link,
3235 	.get_coalesce		= fec_enet_get_coalesce,
3236 	.set_coalesce		= fec_enet_set_coalesce,
3237 #ifndef CONFIG_M5272
3238 	.get_pauseparam		= fec_enet_get_pauseparam,
3239 	.set_pauseparam		= fec_enet_set_pauseparam,
3240 	.get_strings		= fec_enet_get_strings,
3241 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3242 	.get_sset_count		= fec_enet_get_sset_count,
3243 #endif
3244 	.get_ts_info		= fec_enet_get_ts_info,
3245 	.get_wol		= fec_enet_get_wol,
3246 	.set_wol		= fec_enet_set_wol,
3247 	.get_eee		= fec_enet_get_eee,
3248 	.set_eee		= fec_enet_set_eee,
3249 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3250 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3251 	.self_test		= net_selftest,
3252 };
3253 
3254 static void fec_enet_free_buffers(struct net_device *ndev)
3255 {
3256 	struct fec_enet_private *fep = netdev_priv(ndev);
3257 	unsigned int i;
3258 	struct fec_enet_priv_tx_q *txq;
3259 	struct fec_enet_priv_rx_q *rxq;
3260 	unsigned int q;
3261 
3262 	for (q = 0; q < fep->num_rx_queues; q++) {
3263 		rxq = fep->rx_queue[q];
3264 		for (i = 0; i < rxq->bd.ring_size; i++)
3265 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3266 
3267 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3268 			rxq->stats[i] = 0;
3269 
3270 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3271 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3272 		page_pool_destroy(rxq->page_pool);
3273 		rxq->page_pool = NULL;
3274 	}
3275 
3276 	for (q = 0; q < fep->num_tx_queues; q++) {
3277 		txq = fep->tx_queue[q];
3278 		for (i = 0; i < txq->bd.ring_size; i++) {
3279 			kfree(txq->tx_bounce[i]);
3280 			txq->tx_bounce[i] = NULL;
3281 
3282 			if (!txq->tx_buf[i].buf_p) {
3283 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3284 				continue;
3285 			}
3286 
3287 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3288 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3289 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3290 				xdp_return_frame(txq->tx_buf[i].buf_p);
3291 			} else {
3292 				struct page *page = txq->tx_buf[i].buf_p;
3293 
3294 				page_pool_put_page(page->pp, page, 0, false);
3295 			}
3296 
3297 			txq->tx_buf[i].buf_p = NULL;
3298 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3299 		}
3300 	}
3301 }
3302 
3303 static void fec_enet_free_queue(struct net_device *ndev)
3304 {
3305 	struct fec_enet_private *fep = netdev_priv(ndev);
3306 	int i;
3307 	struct fec_enet_priv_tx_q *txq;
3308 
3309 	for (i = 0; i < fep->num_tx_queues; i++)
3310 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3311 			txq = fep->tx_queue[i];
3312 			fec_dma_free(&fep->pdev->dev,
3313 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3314 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3315 		}
3316 
3317 	for (i = 0; i < fep->num_rx_queues; i++)
3318 		kfree(fep->rx_queue[i]);
3319 	for (i = 0; i < fep->num_tx_queues; i++)
3320 		kfree(fep->tx_queue[i]);
3321 }
3322 
3323 static int fec_enet_alloc_queue(struct net_device *ndev)
3324 {
3325 	struct fec_enet_private *fep = netdev_priv(ndev);
3326 	int i;
3327 	int ret = 0;
3328 	struct fec_enet_priv_tx_q *txq;
3329 
3330 	for (i = 0; i < fep->num_tx_queues; i++) {
3331 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3332 		if (!txq) {
3333 			ret = -ENOMEM;
3334 			goto alloc_failed;
3335 		}
3336 
3337 		fep->tx_queue[i] = txq;
3338 		txq->bd.ring_size = TX_RING_SIZE;
3339 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3340 
3341 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3342 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3343 
3344 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3345 					txq->bd.ring_size * TSO_HEADER_SIZE,
3346 					&txq->tso_hdrs_dma, GFP_KERNEL);
3347 		if (!txq->tso_hdrs) {
3348 			ret = -ENOMEM;
3349 			goto alloc_failed;
3350 		}
3351 	}
3352 
3353 	for (i = 0; i < fep->num_rx_queues; i++) {
3354 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3355 					   GFP_KERNEL);
3356 		if (!fep->rx_queue[i]) {
3357 			ret = -ENOMEM;
3358 			goto alloc_failed;
3359 		}
3360 
3361 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3362 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3363 	}
3364 	return ret;
3365 
3366 alloc_failed:
3367 	fec_enet_free_queue(ndev);
3368 	return ret;
3369 }
3370 
3371 static int
3372 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3373 {
3374 	struct fec_enet_private *fep = netdev_priv(ndev);
3375 	struct fec_enet_priv_rx_q *rxq;
3376 	dma_addr_t phys_addr;
3377 	struct bufdesc	*bdp;
3378 	struct page *page;
3379 	int i, err;
3380 
3381 	rxq = fep->rx_queue[queue];
3382 	bdp = rxq->bd.base;
3383 
3384 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3385 	if (err < 0) {
3386 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3387 		return err;
3388 	}
3389 
3390 	for (i = 0; i < rxq->bd.ring_size; i++) {
3391 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3392 		if (!page)
3393 			goto err_alloc;
3394 
3395 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3396 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3397 
3398 		rxq->rx_skb_info[i].page = page;
3399 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3400 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3401 
3402 		if (fep->bufdesc_ex) {
3403 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3404 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3405 		}
3406 
3407 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3408 	}
3409 
3410 	/* Set the last buffer to wrap. */
3411 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3412 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3413 	return 0;
3414 
3415  err_alloc:
3416 	fec_enet_free_buffers(ndev);
3417 	return -ENOMEM;
3418 }
3419 
3420 static int
3421 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3422 {
3423 	struct fec_enet_private *fep = netdev_priv(ndev);
3424 	unsigned int i;
3425 	struct bufdesc  *bdp;
3426 	struct fec_enet_priv_tx_q *txq;
3427 
3428 	txq = fep->tx_queue[queue];
3429 	bdp = txq->bd.base;
3430 	for (i = 0; i < txq->bd.ring_size; i++) {
3431 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3432 		if (!txq->tx_bounce[i])
3433 			goto err_alloc;
3434 
3435 		bdp->cbd_sc = cpu_to_fec16(0);
3436 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3437 
3438 		if (fep->bufdesc_ex) {
3439 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3440 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3441 		}
3442 
3443 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3444 	}
3445 
3446 	/* Set the last buffer to wrap. */
3447 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3448 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3449 
3450 	return 0;
3451 
3452  err_alloc:
3453 	fec_enet_free_buffers(ndev);
3454 	return -ENOMEM;
3455 }
3456 
3457 static int fec_enet_alloc_buffers(struct net_device *ndev)
3458 {
3459 	struct fec_enet_private *fep = netdev_priv(ndev);
3460 	unsigned int i;
3461 
3462 	for (i = 0; i < fep->num_rx_queues; i++)
3463 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3464 			return -ENOMEM;
3465 
3466 	for (i = 0; i < fep->num_tx_queues; i++)
3467 		if (fec_enet_alloc_txq_buffers(ndev, i))
3468 			return -ENOMEM;
3469 	return 0;
3470 }
3471 
3472 static int
3473 fec_enet_open(struct net_device *ndev)
3474 {
3475 	struct fec_enet_private *fep = netdev_priv(ndev);
3476 	int ret;
3477 	bool reset_again;
3478 
3479 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3480 	if (ret < 0)
3481 		return ret;
3482 
3483 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3484 	ret = fec_enet_clk_enable(ndev, true);
3485 	if (ret)
3486 		goto clk_enable;
3487 
3488 	/* During the first fec_enet_open call the PHY isn't probed at this
3489 	 * point. Therefore the phy_reset_after_clk_enable() call within
3490 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3491 	 * sure the PHY is working correctly we check if we need to reset again
3492 	 * later when the PHY is probed
3493 	 */
3494 	if (ndev->phydev && ndev->phydev->drv)
3495 		reset_again = false;
3496 	else
3497 		reset_again = true;
3498 
3499 	/* I should reset the ring buffers here, but I don't yet know
3500 	 * a simple way to do that.
3501 	 */
3502 
3503 	ret = fec_enet_alloc_buffers(ndev);
3504 	if (ret)
3505 		goto err_enet_alloc;
3506 
3507 	/* Init MAC prior to mii bus probe */
3508 	fec_restart(ndev);
3509 
3510 	/* Call phy_reset_after_clk_enable() again if it failed during
3511 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3512 	 */
3513 	if (reset_again)
3514 		fec_enet_phy_reset_after_clk_enable(ndev);
3515 
3516 	/* Probe and connect to PHY when open the interface */
3517 	ret = fec_enet_mii_probe(ndev);
3518 	if (ret)
3519 		goto err_enet_mii_probe;
3520 
3521 	if (fep->quirks & FEC_QUIRK_ERR006687)
3522 		imx6q_cpuidle_fec_irqs_used();
3523 
3524 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3525 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3526 
3527 	napi_enable(&fep->napi);
3528 	phy_start(ndev->phydev);
3529 	netif_tx_start_all_queues(ndev);
3530 
3531 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3532 				 FEC_WOL_FLAG_ENABLE);
3533 
3534 	return 0;
3535 
3536 err_enet_mii_probe:
3537 	fec_enet_free_buffers(ndev);
3538 err_enet_alloc:
3539 	fec_enet_clk_enable(ndev, false);
3540 clk_enable:
3541 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3542 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3543 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3544 	return ret;
3545 }
3546 
3547 static int
3548 fec_enet_close(struct net_device *ndev)
3549 {
3550 	struct fec_enet_private *fep = netdev_priv(ndev);
3551 
3552 	phy_stop(ndev->phydev);
3553 
3554 	if (netif_device_present(ndev)) {
3555 		napi_disable(&fep->napi);
3556 		netif_tx_disable(ndev);
3557 		fec_stop(ndev);
3558 	}
3559 
3560 	phy_disconnect(ndev->phydev);
3561 
3562 	if (fep->quirks & FEC_QUIRK_ERR006687)
3563 		imx6q_cpuidle_fec_irqs_unused();
3564 
3565 	fec_enet_update_ethtool_stats(ndev);
3566 
3567 	fec_enet_clk_enable(ndev, false);
3568 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3569 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3570 
3571 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3572 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3573 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3574 
3575 	fec_enet_free_buffers(ndev);
3576 
3577 	return 0;
3578 }
3579 
3580 /* Set or clear the multicast filter for this adaptor.
3581  * Skeleton taken from sunlance driver.
3582  * The CPM Ethernet implementation allows Multicast as well as individual
3583  * MAC address filtering.  Some of the drivers check to make sure it is
3584  * a group multicast address, and discard those that are not.  I guess I
3585  * will do the same for now, but just remove the test if you want
3586  * individual filtering as well (do the upper net layers want or support
3587  * this kind of feature?).
3588  */
3589 
3590 #define FEC_HASH_BITS	6		/* #bits in hash */
3591 
3592 static void set_multicast_list(struct net_device *ndev)
3593 {
3594 	struct fec_enet_private *fep = netdev_priv(ndev);
3595 	struct netdev_hw_addr *ha;
3596 	unsigned int crc, tmp;
3597 	unsigned char hash;
3598 	unsigned int hash_high = 0, hash_low = 0;
3599 
3600 	if (ndev->flags & IFF_PROMISC) {
3601 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3602 		tmp |= 0x8;
3603 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3604 		return;
3605 	}
3606 
3607 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3608 	tmp &= ~0x8;
3609 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3610 
3611 	if (ndev->flags & IFF_ALLMULTI) {
3612 		/* Catch all multicast addresses, so set the
3613 		 * filter to all 1's
3614 		 */
3615 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3616 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3617 
3618 		return;
3619 	}
3620 
3621 	/* Add the addresses in hash register */
3622 	netdev_for_each_mc_addr(ha, ndev) {
3623 		/* calculate crc32 value of mac address */
3624 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3625 
3626 		/* only upper 6 bits (FEC_HASH_BITS) are used
3627 		 * which point to specific bit in the hash registers
3628 		 */
3629 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3630 
3631 		if (hash > 31)
3632 			hash_high |= 1 << (hash - 32);
3633 		else
3634 			hash_low |= 1 << hash;
3635 	}
3636 
3637 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3638 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3639 }
3640 
3641 /* Set a MAC change in hardware. */
3642 static int
3643 fec_set_mac_address(struct net_device *ndev, void *p)
3644 {
3645 	struct fec_enet_private *fep = netdev_priv(ndev);
3646 	struct sockaddr *addr = p;
3647 
3648 	if (addr) {
3649 		if (!is_valid_ether_addr(addr->sa_data))
3650 			return -EADDRNOTAVAIL;
3651 		eth_hw_addr_set(ndev, addr->sa_data);
3652 	}
3653 
3654 	/* Add netif status check here to avoid system hang in below case:
3655 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3656 	 * After ethx down, fec all clocks are gated off and then register
3657 	 * access causes system hang.
3658 	 */
3659 	if (!netif_running(ndev))
3660 		return 0;
3661 
3662 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3663 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3664 		fep->hwp + FEC_ADDR_LOW);
3665 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3666 		fep->hwp + FEC_ADDR_HIGH);
3667 	return 0;
3668 }
3669 
3670 #ifdef CONFIG_NET_POLL_CONTROLLER
3671 /**
3672  * fec_poll_controller - FEC Poll controller function
3673  * @dev: The FEC network adapter
3674  *
3675  * Polled functionality used by netconsole and others in non interrupt mode
3676  *
3677  */
3678 static void fec_poll_controller(struct net_device *dev)
3679 {
3680 	int i;
3681 	struct fec_enet_private *fep = netdev_priv(dev);
3682 
3683 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3684 		if (fep->irq[i] > 0) {
3685 			disable_irq(fep->irq[i]);
3686 			fec_enet_interrupt(fep->irq[i], dev);
3687 			enable_irq(fep->irq[i]);
3688 		}
3689 	}
3690 }
3691 #endif
3692 
3693 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3694 	netdev_features_t features)
3695 {
3696 	struct fec_enet_private *fep = netdev_priv(netdev);
3697 	netdev_features_t changed = features ^ netdev->features;
3698 
3699 	netdev->features = features;
3700 
3701 	/* Receive checksum has been changed */
3702 	if (changed & NETIF_F_RXCSUM) {
3703 		if (features & NETIF_F_RXCSUM)
3704 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3705 		else
3706 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3707 	}
3708 }
3709 
3710 static int fec_set_features(struct net_device *netdev,
3711 	netdev_features_t features)
3712 {
3713 	struct fec_enet_private *fep = netdev_priv(netdev);
3714 	netdev_features_t changed = features ^ netdev->features;
3715 
3716 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3717 		napi_disable(&fep->napi);
3718 		netif_tx_lock_bh(netdev);
3719 		fec_stop(netdev);
3720 		fec_enet_set_netdev_features(netdev, features);
3721 		fec_restart(netdev);
3722 		netif_tx_wake_all_queues(netdev);
3723 		netif_tx_unlock_bh(netdev);
3724 		napi_enable(&fep->napi);
3725 	} else {
3726 		fec_enet_set_netdev_features(netdev, features);
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3733 				 struct net_device *sb_dev)
3734 {
3735 	struct fec_enet_private *fep = netdev_priv(ndev);
3736 	u16 vlan_tag = 0;
3737 
3738 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3739 		return netdev_pick_tx(ndev, skb, NULL);
3740 
3741 	/* VLAN is present in the payload.*/
3742 	if (eth_type_vlan(skb->protocol)) {
3743 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3744 
3745 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3746 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3747 	} else if (skb_vlan_tag_present(skb)) {
3748 		vlan_tag = skb->vlan_tci;
3749 	} else {
3750 		return vlan_tag;
3751 	}
3752 
3753 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3754 }
3755 
3756 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3757 {
3758 	struct fec_enet_private *fep = netdev_priv(dev);
3759 	bool is_run = netif_running(dev);
3760 	struct bpf_prog *old_prog;
3761 
3762 	switch (bpf->command) {
3763 	case XDP_SETUP_PROG:
3764 		/* No need to support the SoCs that require to
3765 		 * do the frame swap because the performance wouldn't be
3766 		 * better than the skb mode.
3767 		 */
3768 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3769 			return -EOPNOTSUPP;
3770 
3771 		if (!bpf->prog)
3772 			xdp_features_clear_redirect_target(dev);
3773 
3774 		if (is_run) {
3775 			napi_disable(&fep->napi);
3776 			netif_tx_disable(dev);
3777 		}
3778 
3779 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3780 		if (old_prog)
3781 			bpf_prog_put(old_prog);
3782 
3783 		fec_restart(dev);
3784 
3785 		if (is_run) {
3786 			napi_enable(&fep->napi);
3787 			netif_tx_start_all_queues(dev);
3788 		}
3789 
3790 		if (bpf->prog)
3791 			xdp_features_set_redirect_target(dev, false);
3792 
3793 		return 0;
3794 
3795 	case XDP_SETUP_XSK_POOL:
3796 		return -EOPNOTSUPP;
3797 
3798 	default:
3799 		return -EOPNOTSUPP;
3800 	}
3801 }
3802 
3803 static int
3804 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3805 {
3806 	if (unlikely(index < 0))
3807 		return 0;
3808 
3809 	return (index % fep->num_tx_queues);
3810 }
3811 
3812 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3813 				   struct fec_enet_priv_tx_q *txq,
3814 				   void *frame, u32 dma_sync_len,
3815 				   bool ndo_xmit)
3816 {
3817 	unsigned int index, status, estatus;
3818 	struct bufdesc *bdp;
3819 	dma_addr_t dma_addr;
3820 	int entries_free;
3821 	u16 frame_len;
3822 
3823 	entries_free = fec_enet_get_free_txdesc_num(txq);
3824 	if (entries_free < MAX_SKB_FRAGS + 1) {
3825 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3826 		return -EBUSY;
3827 	}
3828 
3829 	/* Fill in a Tx ring entry */
3830 	bdp = txq->bd.cur;
3831 	status = fec16_to_cpu(bdp->cbd_sc);
3832 	status &= ~BD_ENET_TX_STATS;
3833 
3834 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3835 
3836 	if (ndo_xmit) {
3837 		struct xdp_frame *xdpf = frame;
3838 
3839 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3840 					  xdpf->len, DMA_TO_DEVICE);
3841 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3842 			return -ENOMEM;
3843 
3844 		frame_len = xdpf->len;
3845 		txq->tx_buf[index].buf_p = xdpf;
3846 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3847 	} else {
3848 		struct xdp_buff *xdpb = frame;
3849 		struct page *page;
3850 
3851 		page = virt_to_page(xdpb->data);
3852 		dma_addr = page_pool_get_dma_addr(page) +
3853 			   (xdpb->data - xdpb->data_hard_start);
3854 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3855 					   dma_sync_len, DMA_BIDIRECTIONAL);
3856 		frame_len = xdpb->data_end - xdpb->data;
3857 		txq->tx_buf[index].buf_p = page;
3858 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3859 	}
3860 
3861 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3862 	if (fep->bufdesc_ex)
3863 		estatus = BD_ENET_TX_INT;
3864 
3865 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3866 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3867 
3868 	if (fep->bufdesc_ex) {
3869 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3870 
3871 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3872 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3873 
3874 		ebdp->cbd_bdu = 0;
3875 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3876 	}
3877 
3878 	/* Make sure the updates to rest of the descriptor are performed before
3879 	 * transferring ownership.
3880 	 */
3881 	dma_wmb();
3882 
3883 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3884 	 * it's the last BD of the frame, and to put the CRC on the end.
3885 	 */
3886 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3887 	bdp->cbd_sc = cpu_to_fec16(status);
3888 
3889 	/* If this was the last BD in the ring, start at the beginning again. */
3890 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3891 
3892 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3893 	dma_wmb();
3894 
3895 	txq->bd.cur = bdp;
3896 
3897 	/* Trigger transmission start */
3898 	writel(0, txq->bd.reg_desc_active);
3899 
3900 	return 0;
3901 }
3902 
3903 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3904 				int cpu, struct xdp_buff *xdp,
3905 				u32 dma_sync_len)
3906 {
3907 	struct fec_enet_priv_tx_q *txq;
3908 	struct netdev_queue *nq;
3909 	int queue, ret;
3910 
3911 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3912 	txq = fep->tx_queue[queue];
3913 	nq = netdev_get_tx_queue(fep->netdev, queue);
3914 
3915 	__netif_tx_lock(nq, cpu);
3916 
3917 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3918 	txq_trans_cond_update(nq);
3919 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3920 
3921 	__netif_tx_unlock(nq);
3922 
3923 	return ret;
3924 }
3925 
3926 static int fec_enet_xdp_xmit(struct net_device *dev,
3927 			     int num_frames,
3928 			     struct xdp_frame **frames,
3929 			     u32 flags)
3930 {
3931 	struct fec_enet_private *fep = netdev_priv(dev);
3932 	struct fec_enet_priv_tx_q *txq;
3933 	int cpu = smp_processor_id();
3934 	unsigned int sent_frames = 0;
3935 	struct netdev_queue *nq;
3936 	unsigned int queue;
3937 	int i;
3938 
3939 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3940 	txq = fep->tx_queue[queue];
3941 	nq = netdev_get_tx_queue(fep->netdev, queue);
3942 
3943 	__netif_tx_lock(nq, cpu);
3944 
3945 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3946 	txq_trans_cond_update(nq);
3947 	for (i = 0; i < num_frames; i++) {
3948 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3949 			break;
3950 		sent_frames++;
3951 	}
3952 
3953 	__netif_tx_unlock(nq);
3954 
3955 	return sent_frames;
3956 }
3957 
3958 static int fec_hwtstamp_get(struct net_device *ndev,
3959 			    struct kernel_hwtstamp_config *config)
3960 {
3961 	struct fec_enet_private *fep = netdev_priv(ndev);
3962 
3963 	if (!netif_running(ndev))
3964 		return -EINVAL;
3965 
3966 	if (!fep->bufdesc_ex)
3967 		return -EOPNOTSUPP;
3968 
3969 	fec_ptp_get(ndev, config);
3970 
3971 	return 0;
3972 }
3973 
3974 static int fec_hwtstamp_set(struct net_device *ndev,
3975 			    struct kernel_hwtstamp_config *config,
3976 			    struct netlink_ext_ack *extack)
3977 {
3978 	struct fec_enet_private *fep = netdev_priv(ndev);
3979 
3980 	if (!netif_running(ndev))
3981 		return -EINVAL;
3982 
3983 	if (!fep->bufdesc_ex)
3984 		return -EOPNOTSUPP;
3985 
3986 	return fec_ptp_set(ndev, config, extack);
3987 }
3988 
3989 static const struct net_device_ops fec_netdev_ops = {
3990 	.ndo_open		= fec_enet_open,
3991 	.ndo_stop		= fec_enet_close,
3992 	.ndo_start_xmit		= fec_enet_start_xmit,
3993 	.ndo_select_queue       = fec_enet_select_queue,
3994 	.ndo_set_rx_mode	= set_multicast_list,
3995 	.ndo_validate_addr	= eth_validate_addr,
3996 	.ndo_tx_timeout		= fec_timeout,
3997 	.ndo_set_mac_address	= fec_set_mac_address,
3998 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3999 #ifdef CONFIG_NET_POLL_CONTROLLER
4000 	.ndo_poll_controller	= fec_poll_controller,
4001 #endif
4002 	.ndo_set_features	= fec_set_features,
4003 	.ndo_bpf		= fec_enet_bpf,
4004 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4005 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4006 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4007 };
4008 
4009 static const unsigned short offset_des_active_rxq[] = {
4010 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4011 };
4012 
4013 static const unsigned short offset_des_active_txq[] = {
4014 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4015 };
4016 
4017  /*
4018   * XXX:  We need to clean up on failure exits here.
4019   *
4020   */
4021 static int fec_enet_init(struct net_device *ndev)
4022 {
4023 	struct fec_enet_private *fep = netdev_priv(ndev);
4024 	struct bufdesc *cbd_base;
4025 	dma_addr_t bd_dma;
4026 	int bd_size;
4027 	unsigned int i;
4028 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4029 			sizeof(struct bufdesc);
4030 	unsigned dsize_log2 = __fls(dsize);
4031 	int ret;
4032 
4033 	WARN_ON(dsize != (1 << dsize_log2));
4034 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4035 	fep->rx_align = 0xf;
4036 	fep->tx_align = 0xf;
4037 #else
4038 	fep->rx_align = 0x3;
4039 	fep->tx_align = 0x3;
4040 #endif
4041 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4042 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4043 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4044 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4045 
4046 	/* Check mask of the streaming and coherent API */
4047 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4048 	if (ret < 0) {
4049 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4050 		return ret;
4051 	}
4052 
4053 	ret = fec_enet_alloc_queue(ndev);
4054 	if (ret)
4055 		return ret;
4056 
4057 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4058 
4059 	/* Allocate memory for buffer descriptors. */
4060 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4061 				  GFP_KERNEL);
4062 	if (!cbd_base) {
4063 		ret = -ENOMEM;
4064 		goto free_queue_mem;
4065 	}
4066 
4067 	/* Get the Ethernet address */
4068 	ret = fec_get_mac(ndev);
4069 	if (ret)
4070 		goto free_queue_mem;
4071 
4072 	/* Set receive and transmit descriptor base. */
4073 	for (i = 0; i < fep->num_rx_queues; i++) {
4074 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4075 		unsigned size = dsize * rxq->bd.ring_size;
4076 
4077 		rxq->bd.qid = i;
4078 		rxq->bd.base = cbd_base;
4079 		rxq->bd.cur = cbd_base;
4080 		rxq->bd.dma = bd_dma;
4081 		rxq->bd.dsize = dsize;
4082 		rxq->bd.dsize_log2 = dsize_log2;
4083 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4084 		bd_dma += size;
4085 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4086 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4087 	}
4088 
4089 	for (i = 0; i < fep->num_tx_queues; i++) {
4090 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4091 		unsigned size = dsize * txq->bd.ring_size;
4092 
4093 		txq->bd.qid = i;
4094 		txq->bd.base = cbd_base;
4095 		txq->bd.cur = cbd_base;
4096 		txq->bd.dma = bd_dma;
4097 		txq->bd.dsize = dsize;
4098 		txq->bd.dsize_log2 = dsize_log2;
4099 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4100 		bd_dma += size;
4101 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4102 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4103 	}
4104 
4105 
4106 	/* The FEC Ethernet specific entries in the device structure */
4107 	ndev->watchdog_timeo = TX_TIMEOUT;
4108 	ndev->netdev_ops = &fec_netdev_ops;
4109 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4110 
4111 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4112 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4113 
4114 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4115 		/* enable hw VLAN support */
4116 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4117 
4118 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4119 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4120 
4121 		/* enable hw accelerator */
4122 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4123 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4124 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4125 	}
4126 
4127 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4128 		fep->tx_align = 0;
4129 		fep->rx_align = 0x3f;
4130 	}
4131 
4132 	ndev->hw_features = ndev->features;
4133 
4134 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4135 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4136 				     NETDEV_XDP_ACT_REDIRECT;
4137 
4138 	fec_restart(ndev);
4139 
4140 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4141 		fec_enet_clear_ethtool_stats(ndev);
4142 	else
4143 		fec_enet_update_ethtool_stats(ndev);
4144 
4145 	return 0;
4146 
4147 free_queue_mem:
4148 	fec_enet_free_queue(ndev);
4149 	return ret;
4150 }
4151 
4152 #ifdef CONFIG_OF
4153 static int fec_reset_phy(struct platform_device *pdev)
4154 {
4155 	struct gpio_desc *phy_reset;
4156 	int msec = 1, phy_post_delay = 0;
4157 	struct device_node *np = pdev->dev.of_node;
4158 	int err;
4159 
4160 	if (!np)
4161 		return 0;
4162 
4163 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4164 	/* A sane reset duration should not be longer than 1s */
4165 	if (!err && msec > 1000)
4166 		msec = 1;
4167 
4168 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4169 	/* valid reset duration should be less than 1s */
4170 	if (!err && phy_post_delay > 1000)
4171 		return -EINVAL;
4172 
4173 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4174 					    GPIOD_OUT_HIGH);
4175 	if (IS_ERR(phy_reset))
4176 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4177 				     "failed to get phy-reset-gpios\n");
4178 
4179 	if (!phy_reset)
4180 		return 0;
4181 
4182 	if (msec > 20)
4183 		msleep(msec);
4184 	else
4185 		usleep_range(msec * 1000, msec * 1000 + 1000);
4186 
4187 	gpiod_set_value_cansleep(phy_reset, 0);
4188 
4189 	if (!phy_post_delay)
4190 		return 0;
4191 
4192 	if (phy_post_delay > 20)
4193 		msleep(phy_post_delay);
4194 	else
4195 		usleep_range(phy_post_delay * 1000,
4196 			     phy_post_delay * 1000 + 1000);
4197 
4198 	return 0;
4199 }
4200 #else /* CONFIG_OF */
4201 static int fec_reset_phy(struct platform_device *pdev)
4202 {
4203 	/*
4204 	 * In case of platform probe, the reset has been done
4205 	 * by machine code.
4206 	 */
4207 	return 0;
4208 }
4209 #endif /* CONFIG_OF */
4210 
4211 static void
4212 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4213 {
4214 	struct device_node *np = pdev->dev.of_node;
4215 
4216 	*num_tx = *num_rx = 1;
4217 
4218 	if (!np || !of_device_is_available(np))
4219 		return;
4220 
4221 	/* parse the num of tx and rx queues */
4222 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4223 
4224 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4225 
4226 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4227 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4228 			 *num_tx);
4229 		*num_tx = 1;
4230 		return;
4231 	}
4232 
4233 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4234 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4235 			 *num_rx);
4236 		*num_rx = 1;
4237 		return;
4238 	}
4239 
4240 }
4241 
4242 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4243 {
4244 	int irq_cnt = platform_irq_count(pdev);
4245 
4246 	if (irq_cnt > FEC_IRQ_NUM)
4247 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4248 	else if (irq_cnt == 2)
4249 		irq_cnt = 1;	/* last for pps */
4250 	else if (irq_cnt <= 0)
4251 		irq_cnt = 1;	/* At least 1 irq is needed */
4252 	return irq_cnt;
4253 }
4254 
4255 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4256 {
4257 	struct net_device *ndev = platform_get_drvdata(pdev);
4258 	struct fec_enet_private *fep = netdev_priv(ndev);
4259 
4260 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4261 		fep->wake_irq = fep->irq[2];
4262 	else
4263 		fep->wake_irq = fep->irq[0];
4264 }
4265 
4266 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4267 				   struct device_node *np)
4268 {
4269 	struct device_node *gpr_np;
4270 	u32 out_val[3];
4271 	int ret = 0;
4272 
4273 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4274 	if (!gpr_np)
4275 		return 0;
4276 
4277 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4278 					 ARRAY_SIZE(out_val));
4279 	if (ret) {
4280 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4281 		goto out;
4282 	}
4283 
4284 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4285 	if (IS_ERR(fep->stop_gpr.gpr)) {
4286 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4287 		ret = PTR_ERR(fep->stop_gpr.gpr);
4288 		fep->stop_gpr.gpr = NULL;
4289 		goto out;
4290 	}
4291 
4292 	fep->stop_gpr.reg = out_val[1];
4293 	fep->stop_gpr.bit = out_val[2];
4294 
4295 out:
4296 	of_node_put(gpr_np);
4297 
4298 	return ret;
4299 }
4300 
4301 static int
4302 fec_probe(struct platform_device *pdev)
4303 {
4304 	struct fec_enet_private *fep;
4305 	struct fec_platform_data *pdata;
4306 	phy_interface_t interface;
4307 	struct net_device *ndev;
4308 	int i, irq, ret = 0;
4309 	static int dev_id;
4310 	struct device_node *np = pdev->dev.of_node, *phy_node;
4311 	int num_tx_qs;
4312 	int num_rx_qs;
4313 	char irq_name[8];
4314 	int irq_cnt;
4315 	const struct fec_devinfo *dev_info;
4316 
4317 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4318 
4319 	/* Init network device */
4320 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4321 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4322 	if (!ndev)
4323 		return -ENOMEM;
4324 
4325 	SET_NETDEV_DEV(ndev, &pdev->dev);
4326 
4327 	/* setup board info structure */
4328 	fep = netdev_priv(ndev);
4329 
4330 	dev_info = device_get_match_data(&pdev->dev);
4331 	if (!dev_info)
4332 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4333 	if (dev_info)
4334 		fep->quirks = dev_info->quirks;
4335 
4336 	fep->netdev = ndev;
4337 	fep->num_rx_queues = num_rx_qs;
4338 	fep->num_tx_queues = num_tx_qs;
4339 
4340 #if !defined(CONFIG_M5272)
4341 	/* default enable pause frame auto negotiation */
4342 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4343 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4344 #endif
4345 
4346 	/* Select default pin state */
4347 	pinctrl_pm_select_default_state(&pdev->dev);
4348 
4349 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4350 	if (IS_ERR(fep->hwp)) {
4351 		ret = PTR_ERR(fep->hwp);
4352 		goto failed_ioremap;
4353 	}
4354 
4355 	fep->pdev = pdev;
4356 	fep->dev_id = dev_id++;
4357 
4358 	platform_set_drvdata(pdev, ndev);
4359 
4360 	if ((of_machine_is_compatible("fsl,imx6q") ||
4361 	     of_machine_is_compatible("fsl,imx6dl")) &&
4362 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4363 		fep->quirks |= FEC_QUIRK_ERR006687;
4364 
4365 	ret = fec_enet_ipc_handle_init(fep);
4366 	if (ret)
4367 		goto failed_ipc_init;
4368 
4369 	if (of_property_read_bool(np, "fsl,magic-packet"))
4370 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4371 
4372 	ret = fec_enet_init_stop_mode(fep, np);
4373 	if (ret)
4374 		goto failed_stop_mode;
4375 
4376 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4377 	if (!phy_node && of_phy_is_fixed_link(np)) {
4378 		ret = of_phy_register_fixed_link(np);
4379 		if (ret < 0) {
4380 			dev_err(&pdev->dev,
4381 				"broken fixed-link specification\n");
4382 			goto failed_phy;
4383 		}
4384 		phy_node = of_node_get(np);
4385 	}
4386 	fep->phy_node = phy_node;
4387 
4388 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4389 	if (ret) {
4390 		pdata = dev_get_platdata(&pdev->dev);
4391 		if (pdata)
4392 			fep->phy_interface = pdata->phy;
4393 		else
4394 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4395 	} else {
4396 		fep->phy_interface = interface;
4397 	}
4398 
4399 	ret = fec_enet_parse_rgmii_delay(fep, np);
4400 	if (ret)
4401 		goto failed_rgmii_delay;
4402 
4403 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4404 	if (IS_ERR(fep->clk_ipg)) {
4405 		ret = PTR_ERR(fep->clk_ipg);
4406 		goto failed_clk;
4407 	}
4408 
4409 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4410 	if (IS_ERR(fep->clk_ahb)) {
4411 		ret = PTR_ERR(fep->clk_ahb);
4412 		goto failed_clk;
4413 	}
4414 
4415 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4416 
4417 	/* enet_out is optional, depends on board */
4418 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4419 	if (IS_ERR(fep->clk_enet_out)) {
4420 		ret = PTR_ERR(fep->clk_enet_out);
4421 		goto failed_clk;
4422 	}
4423 
4424 	fep->ptp_clk_on = false;
4425 	mutex_init(&fep->ptp_clk_mutex);
4426 
4427 	/* clk_ref is optional, depends on board */
4428 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4429 	if (IS_ERR(fep->clk_ref)) {
4430 		ret = PTR_ERR(fep->clk_ref);
4431 		goto failed_clk;
4432 	}
4433 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4434 
4435 	/* clk_2x_txclk is optional, depends on board */
4436 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4437 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4438 		if (IS_ERR(fep->clk_2x_txclk))
4439 			fep->clk_2x_txclk = NULL;
4440 	}
4441 
4442 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4443 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4444 	if (IS_ERR(fep->clk_ptp)) {
4445 		fep->clk_ptp = NULL;
4446 		fep->bufdesc_ex = false;
4447 	}
4448 
4449 	ret = fec_enet_clk_enable(ndev, true);
4450 	if (ret)
4451 		goto failed_clk;
4452 
4453 	ret = clk_prepare_enable(fep->clk_ipg);
4454 	if (ret)
4455 		goto failed_clk_ipg;
4456 	ret = clk_prepare_enable(fep->clk_ahb);
4457 	if (ret)
4458 		goto failed_clk_ahb;
4459 
4460 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4461 	if (!IS_ERR(fep->reg_phy)) {
4462 		ret = regulator_enable(fep->reg_phy);
4463 		if (ret) {
4464 			dev_err(&pdev->dev,
4465 				"Failed to enable phy regulator: %d\n", ret);
4466 			goto failed_regulator;
4467 		}
4468 	} else {
4469 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4470 			ret = -EPROBE_DEFER;
4471 			goto failed_regulator;
4472 		}
4473 		fep->reg_phy = NULL;
4474 	}
4475 
4476 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4477 	pm_runtime_use_autosuspend(&pdev->dev);
4478 	pm_runtime_get_noresume(&pdev->dev);
4479 	pm_runtime_set_active(&pdev->dev);
4480 	pm_runtime_enable(&pdev->dev);
4481 
4482 	ret = fec_reset_phy(pdev);
4483 	if (ret)
4484 		goto failed_reset;
4485 
4486 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4487 	if (fep->bufdesc_ex)
4488 		fec_ptp_init(pdev, irq_cnt);
4489 
4490 	ret = fec_enet_init(ndev);
4491 	if (ret)
4492 		goto failed_init;
4493 
4494 	for (i = 0; i < irq_cnt; i++) {
4495 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4496 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4497 		if (irq < 0)
4498 			irq = platform_get_irq(pdev, i);
4499 		if (irq < 0) {
4500 			ret = irq;
4501 			goto failed_irq;
4502 		}
4503 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4504 				       0, pdev->name, ndev);
4505 		if (ret)
4506 			goto failed_irq;
4507 
4508 		fep->irq[i] = irq;
4509 	}
4510 
4511 	/* Decide which interrupt line is wakeup capable */
4512 	fec_enet_get_wakeup_irq(pdev);
4513 
4514 	ret = fec_enet_mii_init(pdev);
4515 	if (ret)
4516 		goto failed_mii_init;
4517 
4518 	/* Carrier starts down, phylib will bring it up */
4519 	netif_carrier_off(ndev);
4520 	fec_enet_clk_enable(ndev, false);
4521 	pinctrl_pm_select_sleep_state(&pdev->dev);
4522 
4523 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4524 
4525 	ret = register_netdev(ndev);
4526 	if (ret)
4527 		goto failed_register;
4528 
4529 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4530 			   FEC_WOL_HAS_MAGIC_PACKET);
4531 
4532 	if (fep->bufdesc_ex && fep->ptp_clock)
4533 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4534 
4535 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4536 
4537 	pm_runtime_mark_last_busy(&pdev->dev);
4538 	pm_runtime_put_autosuspend(&pdev->dev);
4539 
4540 	return 0;
4541 
4542 failed_register:
4543 	fec_enet_mii_remove(fep);
4544 failed_mii_init:
4545 failed_irq:
4546 failed_init:
4547 	fec_ptp_stop(pdev);
4548 failed_reset:
4549 	pm_runtime_put_noidle(&pdev->dev);
4550 	pm_runtime_disable(&pdev->dev);
4551 	if (fep->reg_phy)
4552 		regulator_disable(fep->reg_phy);
4553 failed_regulator:
4554 	clk_disable_unprepare(fep->clk_ahb);
4555 failed_clk_ahb:
4556 	clk_disable_unprepare(fep->clk_ipg);
4557 failed_clk_ipg:
4558 	fec_enet_clk_enable(ndev, false);
4559 failed_clk:
4560 failed_rgmii_delay:
4561 	if (of_phy_is_fixed_link(np))
4562 		of_phy_deregister_fixed_link(np);
4563 	of_node_put(phy_node);
4564 failed_stop_mode:
4565 failed_ipc_init:
4566 failed_phy:
4567 	dev_id--;
4568 failed_ioremap:
4569 	free_netdev(ndev);
4570 
4571 	return ret;
4572 }
4573 
4574 static void
4575 fec_drv_remove(struct platform_device *pdev)
4576 {
4577 	struct net_device *ndev = platform_get_drvdata(pdev);
4578 	struct fec_enet_private *fep = netdev_priv(ndev);
4579 	struct device_node *np = pdev->dev.of_node;
4580 	int ret;
4581 
4582 	ret = pm_runtime_get_sync(&pdev->dev);
4583 	if (ret < 0)
4584 		dev_err(&pdev->dev,
4585 			"Failed to resume device in remove callback (%pe)\n",
4586 			ERR_PTR(ret));
4587 
4588 	cancel_work_sync(&fep->tx_timeout_work);
4589 	fec_ptp_stop(pdev);
4590 	unregister_netdev(ndev);
4591 	fec_enet_mii_remove(fep);
4592 	if (fep->reg_phy)
4593 		regulator_disable(fep->reg_phy);
4594 
4595 	if (of_phy_is_fixed_link(np))
4596 		of_phy_deregister_fixed_link(np);
4597 	of_node_put(fep->phy_node);
4598 
4599 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4600 	 * disabling them again.
4601 	 */
4602 	if (ret >= 0) {
4603 		clk_disable_unprepare(fep->clk_ahb);
4604 		clk_disable_unprepare(fep->clk_ipg);
4605 	}
4606 	pm_runtime_put_noidle(&pdev->dev);
4607 	pm_runtime_disable(&pdev->dev);
4608 
4609 	free_netdev(ndev);
4610 }
4611 
4612 static int __maybe_unused fec_suspend(struct device *dev)
4613 {
4614 	struct net_device *ndev = dev_get_drvdata(dev);
4615 	struct fec_enet_private *fep = netdev_priv(ndev);
4616 	int ret;
4617 
4618 	rtnl_lock();
4619 	if (netif_running(ndev)) {
4620 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4621 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4622 		phy_stop(ndev->phydev);
4623 		napi_disable(&fep->napi);
4624 		netif_tx_lock_bh(ndev);
4625 		netif_device_detach(ndev);
4626 		netif_tx_unlock_bh(ndev);
4627 		fec_stop(ndev);
4628 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4629 			fec_irqs_disable(ndev);
4630 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4631 		} else {
4632 			fec_irqs_disable_except_wakeup(ndev);
4633 			if (fep->wake_irq > 0) {
4634 				disable_irq(fep->wake_irq);
4635 				enable_irq_wake(fep->wake_irq);
4636 			}
4637 			fec_enet_stop_mode(fep, true);
4638 		}
4639 		/* It's safe to disable clocks since interrupts are masked */
4640 		fec_enet_clk_enable(ndev, false);
4641 
4642 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4643 		if (fep->rpm_active) {
4644 			ret = pm_runtime_force_suspend(dev);
4645 			if (ret < 0) {
4646 				rtnl_unlock();
4647 				return ret;
4648 			}
4649 		}
4650 	}
4651 	rtnl_unlock();
4652 
4653 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4654 		regulator_disable(fep->reg_phy);
4655 
4656 	/* SOC supply clock to phy, when clock is disabled, phy link down
4657 	 * SOC control phy regulator, when regulator is disabled, phy link down
4658 	 */
4659 	if (fep->clk_enet_out || fep->reg_phy)
4660 		fep->link = 0;
4661 
4662 	return 0;
4663 }
4664 
4665 static int __maybe_unused fec_resume(struct device *dev)
4666 {
4667 	struct net_device *ndev = dev_get_drvdata(dev);
4668 	struct fec_enet_private *fep = netdev_priv(ndev);
4669 	int ret;
4670 	int val;
4671 
4672 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4673 		ret = regulator_enable(fep->reg_phy);
4674 		if (ret)
4675 			return ret;
4676 	}
4677 
4678 	rtnl_lock();
4679 	if (netif_running(ndev)) {
4680 		if (fep->rpm_active)
4681 			pm_runtime_force_resume(dev);
4682 
4683 		ret = fec_enet_clk_enable(ndev, true);
4684 		if (ret) {
4685 			rtnl_unlock();
4686 			goto failed_clk;
4687 		}
4688 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4689 			fec_enet_stop_mode(fep, false);
4690 			if (fep->wake_irq) {
4691 				disable_irq_wake(fep->wake_irq);
4692 				enable_irq(fep->wake_irq);
4693 			}
4694 
4695 			val = readl(fep->hwp + FEC_ECNTRL);
4696 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4697 			writel(val, fep->hwp + FEC_ECNTRL);
4698 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4699 		} else {
4700 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4701 		}
4702 		fec_restart(ndev);
4703 		netif_tx_lock_bh(ndev);
4704 		netif_device_attach(ndev);
4705 		netif_tx_unlock_bh(ndev);
4706 		napi_enable(&fep->napi);
4707 		phy_init_hw(ndev->phydev);
4708 		phy_start(ndev->phydev);
4709 	}
4710 	rtnl_unlock();
4711 
4712 	return 0;
4713 
4714 failed_clk:
4715 	if (fep->reg_phy)
4716 		regulator_disable(fep->reg_phy);
4717 	return ret;
4718 }
4719 
4720 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4721 {
4722 	struct net_device *ndev = dev_get_drvdata(dev);
4723 	struct fec_enet_private *fep = netdev_priv(ndev);
4724 
4725 	clk_disable_unprepare(fep->clk_ahb);
4726 	clk_disable_unprepare(fep->clk_ipg);
4727 
4728 	return 0;
4729 }
4730 
4731 static int __maybe_unused fec_runtime_resume(struct device *dev)
4732 {
4733 	struct net_device *ndev = dev_get_drvdata(dev);
4734 	struct fec_enet_private *fep = netdev_priv(ndev);
4735 	int ret;
4736 
4737 	ret = clk_prepare_enable(fep->clk_ahb);
4738 	if (ret)
4739 		return ret;
4740 	ret = clk_prepare_enable(fep->clk_ipg);
4741 	if (ret)
4742 		goto failed_clk_ipg;
4743 
4744 	return 0;
4745 
4746 failed_clk_ipg:
4747 	clk_disable_unprepare(fep->clk_ahb);
4748 	return ret;
4749 }
4750 
4751 static const struct dev_pm_ops fec_pm_ops = {
4752 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4753 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4754 };
4755 
4756 static struct platform_driver fec_driver = {
4757 	.driver	= {
4758 		.name	= DRIVER_NAME,
4759 		.pm	= &fec_pm_ops,
4760 		.of_match_table = fec_dt_ids,
4761 		.suppress_bind_attrs = true,
4762 	},
4763 	.id_table = fec_devtype,
4764 	.probe	= fec_probe,
4765 	.remove_new = fec_drv_remove,
4766 };
4767 
4768 module_platform_driver(fec_driver);
4769 
4770 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4771 MODULE_LICENSE("GPL");
4772