xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
53 #include <linux/of.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
62 
63 #include <asm/cacheflush.h>
64 
65 #include "fec.h"
66 
67 static void set_multicast_list(struct net_device *ndev);
68 static void fec_enet_itr_coal_init(struct net_device *ndev);
69 
70 #define DRIVER_NAME	"fec"
71 
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
82 
83 static struct platform_device_id fec_devtype[] = {
84 	{
85 		/* keep it for coldfire */
86 		.name = DRIVER_NAME,
87 		.driver_data = 0,
88 	}, {
89 		.name = "imx25-fec",
90 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
91 	}, {
92 		.name = "imx27-fec",
93 		.driver_data = FEC_QUIRK_HAS_RACC,
94 	}, {
95 		.name = "imx28-fec",
96 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
97 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
98 	}, {
99 		.name = "imx6q-fec",
100 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
101 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
102 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
103 				FEC_QUIRK_HAS_RACC,
104 	}, {
105 		.name = "mvf600-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
107 	}, {
108 		.name = "imx6sx-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
112 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
113 				FEC_QUIRK_HAS_RACC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 	IMX6SX_FEC,
127 };
128 
129 static const struct of_device_id fec_dt_ids[] = {
130 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
131 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
132 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
133 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
134 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
135 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
136 	{ /* sentinel */ }
137 };
138 MODULE_DEVICE_TABLE(of, fec_dt_ids);
139 
140 static unsigned char macaddr[ETH_ALEN];
141 module_param_array(macaddr, byte, NULL, 0);
142 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
143 
144 #if defined(CONFIG_M5272)
145 /*
146  * Some hardware gets it MAC address out of local flash memory.
147  * if this is non-zero then assume it is the address to get MAC from.
148  */
149 #if defined(CONFIG_NETtel)
150 #define	FEC_FLASHMAC	0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define	FEC_FLASHMAC	0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define	FEC_FLASHMAC	0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define	FEC_FLASHMAC	(0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC	0xffc0406b
159 #else
160 #define	FEC_FLASHMAC	0
161 #endif
162 #endif /* CONFIG_M5272 */
163 
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
165  */
166 #define PKT_MAXBUF_SIZE		1522
167 #define PKT_MINBUF_SIZE		64
168 #define PKT_MAXBLR_SIZE		1536
169 
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS		(1 << 1)
172 #define FEC_RACC_PRODIS		(1 << 2)
173 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
174 
175 /*
176  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177  * size bits. Other FEC hardware does not, so we need to take that into
178  * account when setting it.
179  */
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
183 #else
184 #define	OPT_FRAME_SIZE	0
185 #endif
186 
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST		(1 << 30)
189 #define FEC_MMFR_OP_READ	(2 << 28)
190 #define FEC_MMFR_OP_WRITE	(1 << 28)
191 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
193 #define FEC_MMFR_TA		(2 << 16)
194 #define FEC_MMFR_DATA(v)	(v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN		(1 << 2)
197 #define FEC_ECR_SLEEP		(1 << 3)
198 
199 #define FEC_MII_TIMEOUT		30000 /* us */
200 
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
203 
204 #define FEC_PAUSE_FLAG_AUTONEG	0x1
205 #define FEC_PAUSE_FLAG_ENABLE	0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
209 
210 #define COPYBREAK_DEFAULT	256
211 
212 #define TSO_HEADER_SIZE		128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS	100
215 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
216 
217 #define IS_TSO_HEADER(txq, addr) \
218 	((addr >= txq->tso_hdrs_dma) && \
219 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
220 
221 static int mii_cnt;
222 
223 static inline
224 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 				      struct fec_enet_private *fep,
226 				      int queue_id)
227 {
228 	struct bufdesc *new_bd = bdp + 1;
229 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
230 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
231 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
232 	struct bufdesc_ex *ex_base;
233 	struct bufdesc *base;
234 	int ring_size;
235 
236 	if (bdp >= txq->tx_bd_base) {
237 		base = txq->tx_bd_base;
238 		ring_size = txq->tx_ring_size;
239 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
240 	} else {
241 		base = rxq->rx_bd_base;
242 		ring_size = rxq->rx_ring_size;
243 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
244 	}
245 
246 	if (fep->bufdesc_ex)
247 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
248 			ex_base : ex_new_bd);
249 	else
250 		return (new_bd >= (base + ring_size)) ?
251 			base : new_bd;
252 }
253 
254 static inline
255 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
256 				      struct fec_enet_private *fep,
257 				      int queue_id)
258 {
259 	struct bufdesc *new_bd = bdp - 1;
260 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
261 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
262 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
263 	struct bufdesc_ex *ex_base;
264 	struct bufdesc *base;
265 	int ring_size;
266 
267 	if (bdp >= txq->tx_bd_base) {
268 		base = txq->tx_bd_base;
269 		ring_size = txq->tx_ring_size;
270 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
271 	} else {
272 		base = rxq->rx_bd_base;
273 		ring_size = rxq->rx_ring_size;
274 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
275 	}
276 
277 	if (fep->bufdesc_ex)
278 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
279 			(ex_new_bd + ring_size) : ex_new_bd);
280 	else
281 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
282 }
283 
284 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
285 				struct fec_enet_private *fep)
286 {
287 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
288 }
289 
290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
291 					struct fec_enet_priv_tx_q *txq)
292 {
293 	int entries;
294 
295 	entries = ((const char *)txq->dirty_tx -
296 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
297 
298 	return entries > 0 ? entries : entries + txq->tx_ring_size;
299 }
300 
301 static void swap_buffer(void *bufaddr, int len)
302 {
303 	int i;
304 	unsigned int *buf = bufaddr;
305 
306 	for (i = 0; i < len; i += 4, buf++)
307 		swab32s(buf);
308 }
309 
310 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
311 {
312 	int i;
313 	unsigned int *src = src_buf;
314 	unsigned int *dst = dst_buf;
315 
316 	for (i = 0; i < len; i += 4, src++, dst++)
317 		*dst = swab32p(src);
318 }
319 
320 static void fec_dump(struct net_device *ndev)
321 {
322 	struct fec_enet_private *fep = netdev_priv(ndev);
323 	struct bufdesc *bdp;
324 	struct fec_enet_priv_tx_q *txq;
325 	int index = 0;
326 
327 	netdev_info(ndev, "TX ring dump\n");
328 	pr_info("Nr     SC     addr       len  SKB\n");
329 
330 	txq = fep->tx_queue[0];
331 	bdp = txq->tx_bd_base;
332 
333 	do {
334 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335 			index,
336 			bdp == txq->cur_tx ? 'S' : ' ',
337 			bdp == txq->dirty_tx ? 'H' : ' ',
338 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339 			txq->tx_skbuff[index]);
340 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
341 		index++;
342 	} while (bdp != txq->tx_bd_base);
343 }
344 
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349 
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353 	/* Only run for packets requiring a checksum. */
354 	if (skb->ip_summed != CHECKSUM_PARTIAL)
355 		return 0;
356 
357 	if (unlikely(skb_cow_head(skb, 0)))
358 		return -1;
359 
360 	if (is_ipv4_pkt(skb))
361 		ip_hdr(skb)->check = 0;
362 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363 
364 	return 0;
365 }
366 
367 static int
368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
369 			     struct sk_buff *skb,
370 			     struct net_device *ndev)
371 {
372 	struct fec_enet_private *fep = netdev_priv(ndev);
373 	struct bufdesc *bdp = txq->cur_tx;
374 	struct bufdesc_ex *ebdp;
375 	int nr_frags = skb_shinfo(skb)->nr_frags;
376 	unsigned short queue = skb_get_queue_mapping(skb);
377 	int frag, frag_len;
378 	unsigned short status;
379 	unsigned int estatus = 0;
380 	skb_frag_t *this_frag;
381 	unsigned int index;
382 	void *bufaddr;
383 	dma_addr_t addr;
384 	int i;
385 
386 	for (frag = 0; frag < nr_frags; frag++) {
387 		this_frag = &skb_shinfo(skb)->frags[frag];
388 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
389 		ebdp = (struct bufdesc_ex *)bdp;
390 
391 		status = bdp->cbd_sc;
392 		status &= ~BD_ENET_TX_STATS;
393 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
394 		frag_len = skb_shinfo(skb)->frags[frag].size;
395 
396 		/* Handle the last BD specially */
397 		if (frag == nr_frags - 1) {
398 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
399 			if (fep->bufdesc_ex) {
400 				estatus |= BD_ENET_TX_INT;
401 				if (unlikely(skb_shinfo(skb)->tx_flags &
402 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
403 					estatus |= BD_ENET_TX_TS;
404 			}
405 		}
406 
407 		if (fep->bufdesc_ex) {
408 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
409 				estatus |= FEC_TX_BD_FTYPE(queue);
410 			if (skb->ip_summed == CHECKSUM_PARTIAL)
411 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
412 			ebdp->cbd_bdu = 0;
413 			ebdp->cbd_esc = estatus;
414 		}
415 
416 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
417 
418 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
419 		if (((unsigned long) bufaddr) & fep->tx_align ||
420 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
421 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
422 			bufaddr = txq->tx_bounce[index];
423 
424 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
425 				swap_buffer(bufaddr, frag_len);
426 		}
427 
428 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
429 				      DMA_TO_DEVICE);
430 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
431 			dev_kfree_skb_any(skb);
432 			if (net_ratelimit())
433 				netdev_err(ndev, "Tx DMA memory map failed\n");
434 			goto dma_mapping_error;
435 		}
436 
437 		bdp->cbd_bufaddr = addr;
438 		bdp->cbd_datlen = frag_len;
439 		bdp->cbd_sc = status;
440 	}
441 
442 	txq->cur_tx = bdp;
443 
444 	return 0;
445 
446 dma_mapping_error:
447 	bdp = txq->cur_tx;
448 	for (i = 0; i < frag; i++) {
449 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
450 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
451 				bdp->cbd_datlen, DMA_TO_DEVICE);
452 	}
453 	return NETDEV_TX_OK;
454 }
455 
456 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
457 				   struct sk_buff *skb, struct net_device *ndev)
458 {
459 	struct fec_enet_private *fep = netdev_priv(ndev);
460 	int nr_frags = skb_shinfo(skb)->nr_frags;
461 	struct bufdesc *bdp, *last_bdp;
462 	void *bufaddr;
463 	dma_addr_t addr;
464 	unsigned short status;
465 	unsigned short buflen;
466 	unsigned short queue;
467 	unsigned int estatus = 0;
468 	unsigned int index;
469 	int entries_free;
470 	int ret;
471 
472 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
473 	if (entries_free < MAX_SKB_FRAGS + 1) {
474 		dev_kfree_skb_any(skb);
475 		if (net_ratelimit())
476 			netdev_err(ndev, "NOT enough BD for SG!\n");
477 		return NETDEV_TX_OK;
478 	}
479 
480 	/* Protocol checksum off-load for TCP and UDP. */
481 	if (fec_enet_clear_csum(skb, ndev)) {
482 		dev_kfree_skb_any(skb);
483 		return NETDEV_TX_OK;
484 	}
485 
486 	/* Fill in a Tx ring entry */
487 	bdp = txq->cur_tx;
488 	status = bdp->cbd_sc;
489 	status &= ~BD_ENET_TX_STATS;
490 
491 	/* Set buffer length and buffer pointer */
492 	bufaddr = skb->data;
493 	buflen = skb_headlen(skb);
494 
495 	queue = skb_get_queue_mapping(skb);
496 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
497 	if (((unsigned long) bufaddr) & fep->tx_align ||
498 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
499 		memcpy(txq->tx_bounce[index], skb->data, buflen);
500 		bufaddr = txq->tx_bounce[index];
501 
502 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
503 			swap_buffer(bufaddr, buflen);
504 	}
505 
506 	/* Push the data cache so the CPM does not get stale memory data. */
507 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
508 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
509 		dev_kfree_skb_any(skb);
510 		if (net_ratelimit())
511 			netdev_err(ndev, "Tx DMA memory map failed\n");
512 		return NETDEV_TX_OK;
513 	}
514 
515 	if (nr_frags) {
516 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
517 		if (ret)
518 			return ret;
519 	} else {
520 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
521 		if (fep->bufdesc_ex) {
522 			estatus = BD_ENET_TX_INT;
523 			if (unlikely(skb_shinfo(skb)->tx_flags &
524 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
525 				estatus |= BD_ENET_TX_TS;
526 		}
527 	}
528 
529 	if (fep->bufdesc_ex) {
530 
531 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
532 
533 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
534 			fep->hwts_tx_en))
535 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
536 
537 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
538 			estatus |= FEC_TX_BD_FTYPE(queue);
539 
540 		if (skb->ip_summed == CHECKSUM_PARTIAL)
541 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
542 
543 		ebdp->cbd_bdu = 0;
544 		ebdp->cbd_esc = estatus;
545 	}
546 
547 	last_bdp = txq->cur_tx;
548 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
549 	/* Save skb pointer */
550 	txq->tx_skbuff[index] = skb;
551 
552 	bdp->cbd_datlen = buflen;
553 	bdp->cbd_bufaddr = addr;
554 
555 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
556 	 * it's the last BD of the frame, and to put the CRC on the end.
557 	 */
558 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
559 	bdp->cbd_sc = status;
560 
561 	/* If this was the last BD in the ring, start at the beginning again. */
562 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
563 
564 	skb_tx_timestamp(skb);
565 
566 	txq->cur_tx = bdp;
567 
568 	/* Trigger transmission start */
569 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
570 
571 	return 0;
572 }
573 
574 static int
575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
576 			  struct net_device *ndev,
577 			  struct bufdesc *bdp, int index, char *data,
578 			  int size, bool last_tcp, bool is_last)
579 {
580 	struct fec_enet_private *fep = netdev_priv(ndev);
581 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
582 	unsigned short queue = skb_get_queue_mapping(skb);
583 	unsigned short status;
584 	unsigned int estatus = 0;
585 	dma_addr_t addr;
586 
587 	status = bdp->cbd_sc;
588 	status &= ~BD_ENET_TX_STATS;
589 
590 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
591 
592 	if (((unsigned long) data) & fep->tx_align ||
593 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
594 		memcpy(txq->tx_bounce[index], data, size);
595 		data = txq->tx_bounce[index];
596 
597 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
598 			swap_buffer(data, size);
599 	}
600 
601 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
602 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
603 		dev_kfree_skb_any(skb);
604 		if (net_ratelimit())
605 			netdev_err(ndev, "Tx DMA memory map failed\n");
606 		return NETDEV_TX_BUSY;
607 	}
608 
609 	bdp->cbd_datlen = size;
610 	bdp->cbd_bufaddr = addr;
611 
612 	if (fep->bufdesc_ex) {
613 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
614 			estatus |= FEC_TX_BD_FTYPE(queue);
615 		if (skb->ip_summed == CHECKSUM_PARTIAL)
616 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
617 		ebdp->cbd_bdu = 0;
618 		ebdp->cbd_esc = estatus;
619 	}
620 
621 	/* Handle the last BD specially */
622 	if (last_tcp)
623 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
624 	if (is_last) {
625 		status |= BD_ENET_TX_INTR;
626 		if (fep->bufdesc_ex)
627 			ebdp->cbd_esc |= BD_ENET_TX_INT;
628 	}
629 
630 	bdp->cbd_sc = status;
631 
632 	return 0;
633 }
634 
635 static int
636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
637 			 struct sk_buff *skb, struct net_device *ndev,
638 			 struct bufdesc *bdp, int index)
639 {
640 	struct fec_enet_private *fep = netdev_priv(ndev);
641 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
642 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
643 	unsigned short queue = skb_get_queue_mapping(skb);
644 	void *bufaddr;
645 	unsigned long dmabuf;
646 	unsigned short status;
647 	unsigned int estatus = 0;
648 
649 	status = bdp->cbd_sc;
650 	status &= ~BD_ENET_TX_STATS;
651 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
652 
653 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
654 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
655 	if (((unsigned long)bufaddr) & fep->tx_align ||
656 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
657 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
658 		bufaddr = txq->tx_bounce[index];
659 
660 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
661 			swap_buffer(bufaddr, hdr_len);
662 
663 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
664 					hdr_len, DMA_TO_DEVICE);
665 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
666 			dev_kfree_skb_any(skb);
667 			if (net_ratelimit())
668 				netdev_err(ndev, "Tx DMA memory map failed\n");
669 			return NETDEV_TX_BUSY;
670 		}
671 	}
672 
673 	bdp->cbd_bufaddr = dmabuf;
674 	bdp->cbd_datlen = hdr_len;
675 
676 	if (fep->bufdesc_ex) {
677 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
678 			estatus |= FEC_TX_BD_FTYPE(queue);
679 		if (skb->ip_summed == CHECKSUM_PARTIAL)
680 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
681 		ebdp->cbd_bdu = 0;
682 		ebdp->cbd_esc = estatus;
683 	}
684 
685 	bdp->cbd_sc = status;
686 
687 	return 0;
688 }
689 
690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
691 				   struct sk_buff *skb,
692 				   struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
696 	int total_len, data_left;
697 	struct bufdesc *bdp = txq->cur_tx;
698 	unsigned short queue = skb_get_queue_mapping(skb);
699 	struct tso_t tso;
700 	unsigned int index = 0;
701 	int ret;
702 
703 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
704 		dev_kfree_skb_any(skb);
705 		if (net_ratelimit())
706 			netdev_err(ndev, "NOT enough BD for TSO!\n");
707 		return NETDEV_TX_OK;
708 	}
709 
710 	/* Protocol checksum off-load for TCP and UDP. */
711 	if (fec_enet_clear_csum(skb, ndev)) {
712 		dev_kfree_skb_any(skb);
713 		return NETDEV_TX_OK;
714 	}
715 
716 	/* Initialize the TSO handler, and prepare the first payload */
717 	tso_start(skb, &tso);
718 
719 	total_len = skb->len - hdr_len;
720 	while (total_len > 0) {
721 		char *hdr;
722 
723 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
724 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
725 		total_len -= data_left;
726 
727 		/* prepare packet headers: MAC + IP + TCP */
728 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
729 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
730 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
731 		if (ret)
732 			goto err_release;
733 
734 		while (data_left > 0) {
735 			int size;
736 
737 			size = min_t(int, tso.size, data_left);
738 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
739 			index = fec_enet_get_bd_index(txq->tx_bd_base,
740 						      bdp, fep);
741 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
742 							bdp, index,
743 							tso.data, size,
744 							size == data_left,
745 							total_len == 0);
746 			if (ret)
747 				goto err_release;
748 
749 			data_left -= size;
750 			tso_build_data(skb, &tso, size);
751 		}
752 
753 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
754 	}
755 
756 	/* Save skb pointer */
757 	txq->tx_skbuff[index] = skb;
758 
759 	skb_tx_timestamp(skb);
760 	txq->cur_tx = bdp;
761 
762 	/* Trigger transmission start */
763 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
764 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
768 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
769 
770 	return 0;
771 
772 err_release:
773 	/* TODO: Release all used data descriptors for TSO */
774 	return ret;
775 }
776 
777 static netdev_tx_t
778 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(ndev);
781 	int entries_free;
782 	unsigned short queue;
783 	struct fec_enet_priv_tx_q *txq;
784 	struct netdev_queue *nq;
785 	int ret;
786 
787 	queue = skb_get_queue_mapping(skb);
788 	txq = fep->tx_queue[queue];
789 	nq = netdev_get_tx_queue(ndev, queue);
790 
791 	if (skb_is_gso(skb))
792 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
793 	else
794 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
795 	if (ret)
796 		return ret;
797 
798 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
799 	if (entries_free <= txq->tx_stop_threshold)
800 		netif_tx_stop_queue(nq);
801 
802 	return NETDEV_TX_OK;
803 }
804 
805 /* Init RX & TX buffer descriptors
806  */
807 static void fec_enet_bd_init(struct net_device *dev)
808 {
809 	struct fec_enet_private *fep = netdev_priv(dev);
810 	struct fec_enet_priv_tx_q *txq;
811 	struct fec_enet_priv_rx_q *rxq;
812 	struct bufdesc *bdp;
813 	unsigned int i;
814 	unsigned int q;
815 
816 	for (q = 0; q < fep->num_rx_queues; q++) {
817 		/* Initialize the receive buffer descriptors. */
818 		rxq = fep->rx_queue[q];
819 		bdp = rxq->rx_bd_base;
820 
821 		for (i = 0; i < rxq->rx_ring_size; i++) {
822 
823 			/* Initialize the BD for every fragment in the page. */
824 			if (bdp->cbd_bufaddr)
825 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
826 			else
827 				bdp->cbd_sc = 0;
828 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
829 		}
830 
831 		/* Set the last buffer to wrap */
832 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
833 		bdp->cbd_sc |= BD_SC_WRAP;
834 
835 		rxq->cur_rx = rxq->rx_bd_base;
836 	}
837 
838 	for (q = 0; q < fep->num_tx_queues; q++) {
839 		/* ...and the same for transmit */
840 		txq = fep->tx_queue[q];
841 		bdp = txq->tx_bd_base;
842 		txq->cur_tx = bdp;
843 
844 		for (i = 0; i < txq->tx_ring_size; i++) {
845 			/* Initialize the BD for every fragment in the page. */
846 			bdp->cbd_sc = 0;
847 			if (txq->tx_skbuff[i]) {
848 				dev_kfree_skb_any(txq->tx_skbuff[i]);
849 				txq->tx_skbuff[i] = NULL;
850 			}
851 			bdp->cbd_bufaddr = 0;
852 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
853 		}
854 
855 		/* Set the last buffer to wrap */
856 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
857 		bdp->cbd_sc |= BD_SC_WRAP;
858 		txq->dirty_tx = bdp;
859 	}
860 }
861 
862 static void fec_enet_active_rxring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	int i;
866 
867 	for (i = 0; i < fep->num_rx_queues; i++)
868 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
869 }
870 
871 static void fec_enet_enable_ring(struct net_device *ndev)
872 {
873 	struct fec_enet_private *fep = netdev_priv(ndev);
874 	struct fec_enet_priv_tx_q *txq;
875 	struct fec_enet_priv_rx_q *rxq;
876 	int i;
877 
878 	for (i = 0; i < fep->num_rx_queues; i++) {
879 		rxq = fep->rx_queue[i];
880 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
881 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(RCMR_MATCHEN | RCMR_CMP(i),
886 			       fep->hwp + FEC_RCMR(i));
887 	}
888 
889 	for (i = 0; i < fep->num_tx_queues; i++) {
890 		txq = fep->tx_queue[i];
891 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893 		/* enable DMA1/2 */
894 		if (i)
895 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896 			       fep->hwp + FEC_DMA_CFG(i));
897 	}
898 }
899 
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902 	struct fec_enet_private *fep = netdev_priv(ndev);
903 	struct fec_enet_priv_tx_q *txq;
904 	int i, j;
905 
906 	for (i = 0; i < fep->num_tx_queues; i++) {
907 		txq = fep->tx_queue[i];
908 
909 		for (j = 0; j < txq->tx_ring_size; j++) {
910 			if (txq->tx_skbuff[j]) {
911 				dev_kfree_skb_any(txq->tx_skbuff[j]);
912 				txq->tx_skbuff[j] = NULL;
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926 	struct fec_enet_private *fep = netdev_priv(ndev);
927 	u32 val;
928 	u32 temp_mac[2];
929 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
930 	u32 ecntl = 0x2; /* ETHEREN */
931 
932 	/* Whack a reset.  We should wait for this.
933 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934 	 * instead of reset MAC itself.
935 	 */
936 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
937 		writel(0, fep->hwp + FEC_ECNTRL);
938 	} else {
939 		writel(1, fep->hwp + FEC_ECNTRL);
940 		udelay(10);
941 	}
942 
943 	/*
944 	 * enet-mac reset will reset mac address registers too,
945 	 * so need to reconfigure it.
946 	 */
947 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
948 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
949 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
950 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
951 	}
952 
953 	/* Clear any outstanding interrupt. */
954 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
955 
956 	fec_enet_bd_init(ndev);
957 
958 	fec_enet_enable_ring(ndev);
959 
960 	/* Reset tx SKB buffers. */
961 	fec_enet_reset_skb(ndev);
962 
963 	/* Enable MII mode */
964 	if (fep->full_duplex == DUPLEX_FULL) {
965 		/* FD enable */
966 		writel(0x04, fep->hwp + FEC_X_CNTRL);
967 	} else {
968 		/* No Rcv on Xmit */
969 		rcntl |= 0x02;
970 		writel(0x0, fep->hwp + FEC_X_CNTRL);
971 	}
972 
973 	/* Set MII speed */
974 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
975 
976 #if !defined(CONFIG_M5272)
977 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
978 		/* set RX checksum */
979 		val = readl(fep->hwp + FEC_RACC);
980 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
981 			val |= FEC_RACC_OPTIONS;
982 		else
983 			val &= ~FEC_RACC_OPTIONS;
984 		writel(val, fep->hwp + FEC_RACC);
985 	}
986 #endif
987 
988 	/*
989 	 * The phy interface and speed need to get configured
990 	 * differently on enet-mac.
991 	 */
992 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
993 		/* Enable flow control and length check */
994 		rcntl |= 0x40000000 | 0x00000020;
995 
996 		/* RGMII, RMII or MII */
997 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
998 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
999 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1000 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1001 			rcntl |= (1 << 6);
1002 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 			rcntl |= (1 << 8);
1004 		else
1005 			rcntl &= ~(1 << 8);
1006 
1007 		/* 1G, 100M or 10M */
1008 		if (fep->phy_dev) {
1009 			if (fep->phy_dev->speed == SPEED_1000)
1010 				ecntl |= (1 << 5);
1011 			else if (fep->phy_dev->speed == SPEED_100)
1012 				rcntl &= ~(1 << 9);
1013 			else
1014 				rcntl |= (1 << 9);
1015 		}
1016 	} else {
1017 #ifdef FEC_MIIGSK_ENR
1018 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1019 			u32 cfgr;
1020 			/* disable the gasket and wait */
1021 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023 				udelay(1);
1024 
1025 			/*
1026 			 * configure the gasket:
1027 			 *   RMII, 50 MHz, no loopback, no echo
1028 			 *   MII, 25 MHz, no loopback, no echo
1029 			 */
1030 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036 			/* re-enable the gasket */
1037 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038 		}
1039 #endif
1040 	}
1041 
1042 #if !defined(CONFIG_M5272)
1043 	/* enable pause frame*/
1044 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046 	     fep->phy_dev && fep->phy_dev->pause)) {
1047 		rcntl |= FEC_ENET_FCE;
1048 
1049 		/* set FIFO threshold parameter to reduce overrun */
1050 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055 		/* OPD */
1056 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057 	} else {
1058 		rcntl &= ~FEC_ENET_FCE;
1059 	}
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064 	/* Setup multicast filter. */
1065 	set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1072 		/* enable ENET endian swap */
1073 		ecntl |= (1 << 8);
1074 		/* enable ENET store and forward mode */
1075 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076 	}
1077 
1078 	if (fep->bufdesc_ex)
1079 		ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082 	/* Enable the MIB statistic event counters */
1083 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086 	/* And last, enable the transmit and receive processing */
1087 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088 	fec_enet_active_rxring(ndev);
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_start_cyclecounter(ndev);
1092 
1093 	/* Enable interrupts we wish to service */
1094 	if (fep->link)
1095 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1096 	else
1097 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1098 
1099 	/* Init the interrupt coalescing */
1100 	fec_enet_itr_coal_init(ndev);
1101 
1102 }
1103 
1104 static void
1105 fec_stop(struct net_device *ndev)
1106 {
1107 	struct fec_enet_private *fep = netdev_priv(ndev);
1108 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1109 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1110 	u32 val;
1111 
1112 	/* We cannot expect a graceful transmit stop without link !!! */
1113 	if (fep->link) {
1114 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1115 		udelay(10);
1116 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1117 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1118 	}
1119 
1120 	/* Whack a reset.  We should wait for this.
1121 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122 	 * instead of reset MAC itself.
1123 	 */
1124 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1125 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1126 			writel(0, fep->hwp + FEC_ECNTRL);
1127 		} else {
1128 			writel(1, fep->hwp + FEC_ECNTRL);
1129 			udelay(10);
1130 		}
1131 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1132 	} else {
1133 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1134 		val = readl(fep->hwp + FEC_ECNTRL);
1135 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1136 		writel(val, fep->hwp + FEC_ECNTRL);
1137 
1138 		if (pdata && pdata->sleep_mode_enable)
1139 			pdata->sleep_mode_enable(true);
1140 	}
1141 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1142 
1143 	/* We have to keep ENET enabled to have MII interrupt stay working */
1144 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1145 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1146 		writel(2, fep->hwp + FEC_ECNTRL);
1147 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1148 	}
1149 }
1150 
1151 
1152 static void
1153 fec_timeout(struct net_device *ndev)
1154 {
1155 	struct fec_enet_private *fep = netdev_priv(ndev);
1156 
1157 	fec_dump(ndev);
1158 
1159 	ndev->stats.tx_errors++;
1160 
1161 	schedule_work(&fep->tx_timeout_work);
1162 }
1163 
1164 static void fec_enet_timeout_work(struct work_struct *work)
1165 {
1166 	struct fec_enet_private *fep =
1167 		container_of(work, struct fec_enet_private, tx_timeout_work);
1168 	struct net_device *ndev = fep->netdev;
1169 
1170 	rtnl_lock();
1171 	if (netif_device_present(ndev) || netif_running(ndev)) {
1172 		napi_disable(&fep->napi);
1173 		netif_tx_lock_bh(ndev);
1174 		fec_restart(ndev);
1175 		netif_wake_queue(ndev);
1176 		netif_tx_unlock_bh(ndev);
1177 		napi_enable(&fep->napi);
1178 	}
1179 	rtnl_unlock();
1180 }
1181 
1182 static void
1183 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1184 	struct skb_shared_hwtstamps *hwtstamps)
1185 {
1186 	unsigned long flags;
1187 	u64 ns;
1188 
1189 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1190 	ns = timecounter_cyc2time(&fep->tc, ts);
1191 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1192 
1193 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1194 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1195 }
1196 
1197 static void
1198 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1199 {
1200 	struct	fec_enet_private *fep;
1201 	struct bufdesc *bdp;
1202 	unsigned short status;
1203 	struct	sk_buff	*skb;
1204 	struct fec_enet_priv_tx_q *txq;
1205 	struct netdev_queue *nq;
1206 	int	index = 0;
1207 	int	entries_free;
1208 
1209 	fep = netdev_priv(ndev);
1210 
1211 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1212 
1213 	txq = fep->tx_queue[queue_id];
1214 	/* get next bdp of dirty_tx */
1215 	nq = netdev_get_tx_queue(ndev, queue_id);
1216 	bdp = txq->dirty_tx;
1217 
1218 	/* get next bdp of dirty_tx */
1219 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1220 
1221 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1222 
1223 		/* current queue is empty */
1224 		if (bdp == txq->cur_tx)
1225 			break;
1226 
1227 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1228 
1229 		skb = txq->tx_skbuff[index];
1230 		txq->tx_skbuff[index] = NULL;
1231 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1232 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1233 					bdp->cbd_datlen, DMA_TO_DEVICE);
1234 		bdp->cbd_bufaddr = 0;
1235 		if (!skb) {
1236 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1237 			continue;
1238 		}
1239 
1240 		/* Check for errors. */
1241 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1242 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1243 				   BD_ENET_TX_CSL)) {
1244 			ndev->stats.tx_errors++;
1245 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1246 				ndev->stats.tx_heartbeat_errors++;
1247 			if (status & BD_ENET_TX_LC)  /* Late collision */
1248 				ndev->stats.tx_window_errors++;
1249 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1250 				ndev->stats.tx_aborted_errors++;
1251 			if (status & BD_ENET_TX_UN)  /* Underrun */
1252 				ndev->stats.tx_fifo_errors++;
1253 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1254 				ndev->stats.tx_carrier_errors++;
1255 		} else {
1256 			ndev->stats.tx_packets++;
1257 			ndev->stats.tx_bytes += skb->len;
1258 		}
1259 
1260 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1261 			fep->bufdesc_ex) {
1262 			struct skb_shared_hwtstamps shhwtstamps;
1263 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1264 
1265 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1266 			skb_tstamp_tx(skb, &shhwtstamps);
1267 		}
1268 
1269 		/* Deferred means some collisions occurred during transmit,
1270 		 * but we eventually sent the packet OK.
1271 		 */
1272 		if (status & BD_ENET_TX_DEF)
1273 			ndev->stats.collisions++;
1274 
1275 		/* Free the sk buffer associated with this last transmit */
1276 		dev_kfree_skb_any(skb);
1277 
1278 		txq->dirty_tx = bdp;
1279 
1280 		/* Update pointer to next buffer descriptor to be transmitted */
1281 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1282 
1283 		/* Since we have freed up a buffer, the ring is no longer full
1284 		 */
1285 		if (netif_queue_stopped(ndev)) {
1286 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1287 			if (entries_free >= txq->tx_wake_threshold)
1288 				netif_tx_wake_queue(nq);
1289 		}
1290 	}
1291 
1292 	/* ERR006538: Keep the transmitter going */
1293 	if (bdp != txq->cur_tx &&
1294 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1295 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1296 }
1297 
1298 static void
1299 fec_enet_tx(struct net_device *ndev)
1300 {
1301 	struct fec_enet_private *fep = netdev_priv(ndev);
1302 	u16 queue_id;
1303 	/* First process class A queue, then Class B and Best Effort queue */
1304 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1305 		clear_bit(queue_id, &fep->work_tx);
1306 		fec_enet_tx_queue(ndev, queue_id);
1307 	}
1308 	return;
1309 }
1310 
1311 static int
1312 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1313 {
1314 	struct  fec_enet_private *fep = netdev_priv(ndev);
1315 	int off;
1316 
1317 	off = ((unsigned long)skb->data) & fep->rx_align;
1318 	if (off)
1319 		skb_reserve(skb, fep->rx_align + 1 - off);
1320 
1321 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1322 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1323 					  DMA_FROM_DEVICE);
1324 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1325 		if (net_ratelimit())
1326 			netdev_err(ndev, "Rx DMA memory map failed\n");
1327 		return -ENOMEM;
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1334 			       struct bufdesc *bdp, u32 length, bool swap)
1335 {
1336 	struct  fec_enet_private *fep = netdev_priv(ndev);
1337 	struct sk_buff *new_skb;
1338 
1339 	if (length > fep->rx_copybreak)
1340 		return false;
1341 
1342 	new_skb = netdev_alloc_skb(ndev, length);
1343 	if (!new_skb)
1344 		return false;
1345 
1346 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1347 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1348 				DMA_FROM_DEVICE);
1349 	if (!swap)
1350 		memcpy(new_skb->data, (*skb)->data, length);
1351 	else
1352 		swap_buffer2(new_skb->data, (*skb)->data, length);
1353 	*skb = new_skb;
1354 
1355 	return true;
1356 }
1357 
1358 /* During a receive, the cur_rx points to the current incoming buffer.
1359  * When we update through the ring, if the next incoming buffer has
1360  * not been given to the system, we just set the empty indicator,
1361  * effectively tossing the packet.
1362  */
1363 static int
1364 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1365 {
1366 	struct fec_enet_private *fep = netdev_priv(ndev);
1367 	struct fec_enet_priv_rx_q *rxq;
1368 	struct bufdesc *bdp;
1369 	unsigned short status;
1370 	struct  sk_buff *skb_new = NULL;
1371 	struct  sk_buff *skb;
1372 	ushort	pkt_len;
1373 	__u8 *data;
1374 	int	pkt_received = 0;
1375 	struct	bufdesc_ex *ebdp = NULL;
1376 	bool	vlan_packet_rcvd = false;
1377 	u16	vlan_tag;
1378 	int	index = 0;
1379 	bool	is_copybreak;
1380 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1381 
1382 #ifdef CONFIG_M532x
1383 	flush_cache_all();
1384 #endif
1385 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1386 	rxq = fep->rx_queue[queue_id];
1387 
1388 	/* First, grab all of the stats for the incoming packet.
1389 	 * These get messed up if we get called due to a busy condition.
1390 	 */
1391 	bdp = rxq->cur_rx;
1392 
1393 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1394 
1395 		if (pkt_received >= budget)
1396 			break;
1397 		pkt_received++;
1398 
1399 		/* Since we have allocated space to hold a complete frame,
1400 		 * the last indicator should be set.
1401 		 */
1402 		if ((status & BD_ENET_RX_LAST) == 0)
1403 			netdev_err(ndev, "rcv is not +last\n");
1404 
1405 
1406 		/* Check for errors. */
1407 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1408 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1409 			ndev->stats.rx_errors++;
1410 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1411 				/* Frame too long or too short. */
1412 				ndev->stats.rx_length_errors++;
1413 			}
1414 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1415 				ndev->stats.rx_frame_errors++;
1416 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1417 				ndev->stats.rx_crc_errors++;
1418 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1419 				ndev->stats.rx_fifo_errors++;
1420 		}
1421 
1422 		/* Report late collisions as a frame error.
1423 		 * On this error, the BD is closed, but we don't know what we
1424 		 * have in the buffer.  So, just drop this frame on the floor.
1425 		 */
1426 		if (status & BD_ENET_RX_CL) {
1427 			ndev->stats.rx_errors++;
1428 			ndev->stats.rx_frame_errors++;
1429 			goto rx_processing_done;
1430 		}
1431 
1432 		/* Process the incoming frame. */
1433 		ndev->stats.rx_packets++;
1434 		pkt_len = bdp->cbd_datlen;
1435 		ndev->stats.rx_bytes += pkt_len;
1436 
1437 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1438 		skb = rxq->rx_skbuff[index];
1439 
1440 		/* The packet length includes FCS, but we don't want to
1441 		 * include that when passing upstream as it messes up
1442 		 * bridging applications.
1443 		 */
1444 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1445 						  need_swap);
1446 		if (!is_copybreak) {
1447 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1448 			if (unlikely(!skb_new)) {
1449 				ndev->stats.rx_dropped++;
1450 				goto rx_processing_done;
1451 			}
1452 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1453 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1454 					 DMA_FROM_DEVICE);
1455 		}
1456 
1457 		prefetch(skb->data - NET_IP_ALIGN);
1458 		skb_put(skb, pkt_len - 4);
1459 		data = skb->data;
1460 		if (!is_copybreak && need_swap)
1461 			swap_buffer(data, pkt_len);
1462 
1463 		/* Extract the enhanced buffer descriptor */
1464 		ebdp = NULL;
1465 		if (fep->bufdesc_ex)
1466 			ebdp = (struct bufdesc_ex *)bdp;
1467 
1468 		/* If this is a VLAN packet remove the VLAN Tag */
1469 		vlan_packet_rcvd = false;
1470 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1471 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1472 			/* Push and remove the vlan tag */
1473 			struct vlan_hdr *vlan_header =
1474 					(struct vlan_hdr *) (data + ETH_HLEN);
1475 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1476 
1477 			vlan_packet_rcvd = true;
1478 
1479 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1480 			skb_pull(skb, VLAN_HLEN);
1481 		}
1482 
1483 		skb->protocol = eth_type_trans(skb, ndev);
1484 
1485 		/* Get receive timestamp from the skb */
1486 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1487 			fec_enet_hwtstamp(fep, ebdp->ts,
1488 					  skb_hwtstamps(skb));
1489 
1490 		if (fep->bufdesc_ex &&
1491 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1492 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1493 				/* don't check it */
1494 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1495 			} else {
1496 				skb_checksum_none_assert(skb);
1497 			}
1498 		}
1499 
1500 		/* Handle received VLAN packets */
1501 		if (vlan_packet_rcvd)
1502 			__vlan_hwaccel_put_tag(skb,
1503 					       htons(ETH_P_8021Q),
1504 					       vlan_tag);
1505 
1506 		napi_gro_receive(&fep->napi, skb);
1507 
1508 		if (is_copybreak) {
1509 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1510 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1511 						   DMA_FROM_DEVICE);
1512 		} else {
1513 			rxq->rx_skbuff[index] = skb_new;
1514 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1515 		}
1516 
1517 rx_processing_done:
1518 		/* Clear the status flags for this buffer */
1519 		status &= ~BD_ENET_RX_STATS;
1520 
1521 		/* Mark the buffer empty */
1522 		status |= BD_ENET_RX_EMPTY;
1523 		bdp->cbd_sc = status;
1524 
1525 		if (fep->bufdesc_ex) {
1526 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1527 
1528 			ebdp->cbd_esc = BD_ENET_RX_INT;
1529 			ebdp->cbd_prot = 0;
1530 			ebdp->cbd_bdu = 0;
1531 		}
1532 
1533 		/* Update BD pointer to next entry */
1534 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1535 
1536 		/* Doing this here will keep the FEC running while we process
1537 		 * incoming frames.  On a heavily loaded network, we should be
1538 		 * able to keep up at the expense of system resources.
1539 		 */
1540 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1541 	}
1542 	rxq->cur_rx = bdp;
1543 	return pkt_received;
1544 }
1545 
1546 static int
1547 fec_enet_rx(struct net_device *ndev, int budget)
1548 {
1549 	int     pkt_received = 0;
1550 	u16	queue_id;
1551 	struct fec_enet_private *fep = netdev_priv(ndev);
1552 
1553 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1554 		clear_bit(queue_id, &fep->work_rx);
1555 		pkt_received += fec_enet_rx_queue(ndev,
1556 					budget - pkt_received, queue_id);
1557 	}
1558 	return pkt_received;
1559 }
1560 
1561 static bool
1562 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1563 {
1564 	if (int_events == 0)
1565 		return false;
1566 
1567 	if (int_events & FEC_ENET_RXF)
1568 		fep->work_rx |= (1 << 2);
1569 	if (int_events & FEC_ENET_RXF_1)
1570 		fep->work_rx |= (1 << 0);
1571 	if (int_events & FEC_ENET_RXF_2)
1572 		fep->work_rx |= (1 << 1);
1573 
1574 	if (int_events & FEC_ENET_TXF)
1575 		fep->work_tx |= (1 << 2);
1576 	if (int_events & FEC_ENET_TXF_1)
1577 		fep->work_tx |= (1 << 0);
1578 	if (int_events & FEC_ENET_TXF_2)
1579 		fep->work_tx |= (1 << 1);
1580 
1581 	return true;
1582 }
1583 
1584 static irqreturn_t
1585 fec_enet_interrupt(int irq, void *dev_id)
1586 {
1587 	struct net_device *ndev = dev_id;
1588 	struct fec_enet_private *fep = netdev_priv(ndev);
1589 	uint int_events;
1590 	irqreturn_t ret = IRQ_NONE;
1591 
1592 	int_events = readl(fep->hwp + FEC_IEVENT);
1593 	writel(int_events, fep->hwp + FEC_IEVENT);
1594 	fec_enet_collect_events(fep, int_events);
1595 
1596 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1597 		ret = IRQ_HANDLED;
1598 
1599 		if (napi_schedule_prep(&fep->napi)) {
1600 			/* Disable the NAPI interrupts */
1601 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1602 			__napi_schedule(&fep->napi);
1603 		}
1604 	}
1605 
1606 	if (int_events & FEC_ENET_MII) {
1607 		ret = IRQ_HANDLED;
1608 		complete(&fep->mdio_done);
1609 	}
1610 
1611 	if (fep->ptp_clock)
1612 		fec_ptp_check_pps_event(fep);
1613 
1614 	return ret;
1615 }
1616 
1617 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1618 {
1619 	struct net_device *ndev = napi->dev;
1620 	struct fec_enet_private *fep = netdev_priv(ndev);
1621 	int pkts;
1622 
1623 	pkts = fec_enet_rx(ndev, budget);
1624 
1625 	fec_enet_tx(ndev);
1626 
1627 	if (pkts < budget) {
1628 		napi_complete(napi);
1629 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1630 	}
1631 	return pkts;
1632 }
1633 
1634 /* ------------------------------------------------------------------------- */
1635 static void fec_get_mac(struct net_device *ndev)
1636 {
1637 	struct fec_enet_private *fep = netdev_priv(ndev);
1638 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1639 	unsigned char *iap, tmpaddr[ETH_ALEN];
1640 
1641 	/*
1642 	 * try to get mac address in following order:
1643 	 *
1644 	 * 1) module parameter via kernel command line in form
1645 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1646 	 */
1647 	iap = macaddr;
1648 
1649 	/*
1650 	 * 2) from device tree data
1651 	 */
1652 	if (!is_valid_ether_addr(iap)) {
1653 		struct device_node *np = fep->pdev->dev.of_node;
1654 		if (np) {
1655 			const char *mac = of_get_mac_address(np);
1656 			if (mac)
1657 				iap = (unsigned char *) mac;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * 3) from flash or fuse (via platform data)
1663 	 */
1664 	if (!is_valid_ether_addr(iap)) {
1665 #ifdef CONFIG_M5272
1666 		if (FEC_FLASHMAC)
1667 			iap = (unsigned char *)FEC_FLASHMAC;
1668 #else
1669 		if (pdata)
1670 			iap = (unsigned char *)&pdata->mac;
1671 #endif
1672 	}
1673 
1674 	/*
1675 	 * 4) FEC mac registers set by bootloader
1676 	 */
1677 	if (!is_valid_ether_addr(iap)) {
1678 		*((__be32 *) &tmpaddr[0]) =
1679 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1680 		*((__be16 *) &tmpaddr[4]) =
1681 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1682 		iap = &tmpaddr[0];
1683 	}
1684 
1685 	/*
1686 	 * 5) random mac address
1687 	 */
1688 	if (!is_valid_ether_addr(iap)) {
1689 		/* Report it and use a random ethernet address instead */
1690 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1691 		eth_hw_addr_random(ndev);
1692 		netdev_info(ndev, "Using random MAC address: %pM\n",
1693 			    ndev->dev_addr);
1694 		return;
1695 	}
1696 
1697 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1698 
1699 	/* Adjust MAC if using macaddr */
1700 	if (iap == macaddr)
1701 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1702 }
1703 
1704 /* ------------------------------------------------------------------------- */
1705 
1706 /*
1707  * Phy section
1708  */
1709 static void fec_enet_adjust_link(struct net_device *ndev)
1710 {
1711 	struct fec_enet_private *fep = netdev_priv(ndev);
1712 	struct phy_device *phy_dev = fep->phy_dev;
1713 	int status_change = 0;
1714 
1715 	/* Prevent a state halted on mii error */
1716 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1717 		phy_dev->state = PHY_RESUMING;
1718 		return;
1719 	}
1720 
1721 	/*
1722 	 * If the netdev is down, or is going down, we're not interested
1723 	 * in link state events, so just mark our idea of the link as down
1724 	 * and ignore the event.
1725 	 */
1726 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1727 		fep->link = 0;
1728 	} else if (phy_dev->link) {
1729 		if (!fep->link) {
1730 			fep->link = phy_dev->link;
1731 			status_change = 1;
1732 		}
1733 
1734 		if (fep->full_duplex != phy_dev->duplex) {
1735 			fep->full_duplex = phy_dev->duplex;
1736 			status_change = 1;
1737 		}
1738 
1739 		if (phy_dev->speed != fep->speed) {
1740 			fep->speed = phy_dev->speed;
1741 			status_change = 1;
1742 		}
1743 
1744 		/* if any of the above changed restart the FEC */
1745 		if (status_change) {
1746 			napi_disable(&fep->napi);
1747 			netif_tx_lock_bh(ndev);
1748 			fec_restart(ndev);
1749 			netif_wake_queue(ndev);
1750 			netif_tx_unlock_bh(ndev);
1751 			napi_enable(&fep->napi);
1752 		}
1753 	} else {
1754 		if (fep->link) {
1755 			napi_disable(&fep->napi);
1756 			netif_tx_lock_bh(ndev);
1757 			fec_stop(ndev);
1758 			netif_tx_unlock_bh(ndev);
1759 			napi_enable(&fep->napi);
1760 			fep->link = phy_dev->link;
1761 			status_change = 1;
1762 		}
1763 	}
1764 
1765 	if (status_change)
1766 		phy_print_status(phy_dev);
1767 }
1768 
1769 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1770 {
1771 	struct fec_enet_private *fep = bus->priv;
1772 	struct device *dev = &fep->pdev->dev;
1773 	unsigned long time_left;
1774 	int ret = 0;
1775 
1776 	ret = pm_runtime_get_sync(dev);
1777 	if (IS_ERR_VALUE(ret))
1778 		return ret;
1779 
1780 	fep->mii_timeout = 0;
1781 	reinit_completion(&fep->mdio_done);
1782 
1783 	/* start a read op */
1784 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1785 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1786 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1787 
1788 	/* wait for end of transfer */
1789 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1790 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1791 	if (time_left == 0) {
1792 		fep->mii_timeout = 1;
1793 		netdev_err(fep->netdev, "MDIO read timeout\n");
1794 		ret = -ETIMEDOUT;
1795 		goto out;
1796 	}
1797 
1798 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1799 
1800 out:
1801 	pm_runtime_mark_last_busy(dev);
1802 	pm_runtime_put_autosuspend(dev);
1803 
1804 	return ret;
1805 }
1806 
1807 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1808 			   u16 value)
1809 {
1810 	struct fec_enet_private *fep = bus->priv;
1811 	struct device *dev = &fep->pdev->dev;
1812 	unsigned long time_left;
1813 	int ret = 0;
1814 
1815 	ret = pm_runtime_get_sync(dev);
1816 	if (IS_ERR_VALUE(ret))
1817 		return ret;
1818 
1819 	fep->mii_timeout = 0;
1820 	reinit_completion(&fep->mdio_done);
1821 
1822 	/* start a write op */
1823 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1824 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1825 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1826 		fep->hwp + FEC_MII_DATA);
1827 
1828 	/* wait for end of transfer */
1829 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1830 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1831 	if (time_left == 0) {
1832 		fep->mii_timeout = 1;
1833 		netdev_err(fep->netdev, "MDIO write timeout\n");
1834 		ret  = -ETIMEDOUT;
1835 	}
1836 
1837 	pm_runtime_mark_last_busy(dev);
1838 	pm_runtime_put_autosuspend(dev);
1839 
1840 	return ret;
1841 }
1842 
1843 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1844 {
1845 	struct fec_enet_private *fep = netdev_priv(ndev);
1846 	int ret;
1847 
1848 	if (enable) {
1849 		ret = clk_prepare_enable(fep->clk_ahb);
1850 		if (ret)
1851 			return ret;
1852 		if (fep->clk_enet_out) {
1853 			ret = clk_prepare_enable(fep->clk_enet_out);
1854 			if (ret)
1855 				goto failed_clk_enet_out;
1856 		}
1857 		if (fep->clk_ptp) {
1858 			mutex_lock(&fep->ptp_clk_mutex);
1859 			ret = clk_prepare_enable(fep->clk_ptp);
1860 			if (ret) {
1861 				mutex_unlock(&fep->ptp_clk_mutex);
1862 				goto failed_clk_ptp;
1863 			} else {
1864 				fep->ptp_clk_on = true;
1865 			}
1866 			mutex_unlock(&fep->ptp_clk_mutex);
1867 		}
1868 		if (fep->clk_ref) {
1869 			ret = clk_prepare_enable(fep->clk_ref);
1870 			if (ret)
1871 				goto failed_clk_ref;
1872 		}
1873 	} else {
1874 		clk_disable_unprepare(fep->clk_ahb);
1875 		if (fep->clk_enet_out)
1876 			clk_disable_unprepare(fep->clk_enet_out);
1877 		if (fep->clk_ptp) {
1878 			mutex_lock(&fep->ptp_clk_mutex);
1879 			clk_disable_unprepare(fep->clk_ptp);
1880 			fep->ptp_clk_on = false;
1881 			mutex_unlock(&fep->ptp_clk_mutex);
1882 		}
1883 		if (fep->clk_ref)
1884 			clk_disable_unprepare(fep->clk_ref);
1885 	}
1886 
1887 	return 0;
1888 
1889 failed_clk_ref:
1890 	if (fep->clk_ref)
1891 		clk_disable_unprepare(fep->clk_ref);
1892 failed_clk_ptp:
1893 	if (fep->clk_enet_out)
1894 		clk_disable_unprepare(fep->clk_enet_out);
1895 failed_clk_enet_out:
1896 		clk_disable_unprepare(fep->clk_ahb);
1897 
1898 	return ret;
1899 }
1900 
1901 static int fec_enet_mii_probe(struct net_device *ndev)
1902 {
1903 	struct fec_enet_private *fep = netdev_priv(ndev);
1904 	struct phy_device *phy_dev = NULL;
1905 	char mdio_bus_id[MII_BUS_ID_SIZE];
1906 	char phy_name[MII_BUS_ID_SIZE + 3];
1907 	int phy_id;
1908 	int dev_id = fep->dev_id;
1909 
1910 	fep->phy_dev = NULL;
1911 
1912 	if (fep->phy_node) {
1913 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1914 					 &fec_enet_adjust_link, 0,
1915 					 fep->phy_interface);
1916 		if (!phy_dev)
1917 			return -ENODEV;
1918 	} else {
1919 		/* check for attached phy */
1920 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1922 				continue;
1923 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1924 				continue;
1925 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1926 				continue;
1927 			if (dev_id--)
1928 				continue;
1929 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1930 			break;
1931 		}
1932 
1933 		if (phy_id >= PHY_MAX_ADDR) {
1934 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1935 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1936 			phy_id = 0;
1937 		}
1938 
1939 		snprintf(phy_name, sizeof(phy_name),
1940 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1941 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1942 				      fep->phy_interface);
1943 	}
1944 
1945 	if (IS_ERR(phy_dev)) {
1946 		netdev_err(ndev, "could not attach to PHY\n");
1947 		return PTR_ERR(phy_dev);
1948 	}
1949 
1950 	/* mask with MAC supported features */
1951 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1952 		phy_dev->supported &= PHY_GBIT_FEATURES;
1953 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1954 #if !defined(CONFIG_M5272)
1955 		phy_dev->supported |= SUPPORTED_Pause;
1956 #endif
1957 	}
1958 	else
1959 		phy_dev->supported &= PHY_BASIC_FEATURES;
1960 
1961 	phy_dev->advertising = phy_dev->supported;
1962 
1963 	fep->phy_dev = phy_dev;
1964 	fep->link = 0;
1965 	fep->full_duplex = 0;
1966 
1967 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1968 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1969 		    fep->phy_dev->irq);
1970 
1971 	return 0;
1972 }
1973 
1974 static int fec_enet_mii_init(struct platform_device *pdev)
1975 {
1976 	static struct mii_bus *fec0_mii_bus;
1977 	struct net_device *ndev = platform_get_drvdata(pdev);
1978 	struct fec_enet_private *fep = netdev_priv(ndev);
1979 	struct device_node *node;
1980 	int err = -ENXIO, i;
1981 	u32 mii_speed, holdtime;
1982 
1983 	/*
1984 	 * The i.MX28 dual fec interfaces are not equal.
1985 	 * Here are the differences:
1986 	 *
1987 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1988 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1989 	 *  - external phys can only be configured by fec0
1990 	 *
1991 	 * That is to say fec1 can not work independently. It only works
1992 	 * when fec0 is working. The reason behind this design is that the
1993 	 * second interface is added primarily for Switch mode.
1994 	 *
1995 	 * Because of the last point above, both phys are attached on fec0
1996 	 * mdio interface in board design, and need to be configured by
1997 	 * fec0 mii_bus.
1998 	 */
1999 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2000 		/* fec1 uses fec0 mii_bus */
2001 		if (mii_cnt && fec0_mii_bus) {
2002 			fep->mii_bus = fec0_mii_bus;
2003 			mii_cnt++;
2004 			return 0;
2005 		}
2006 		return -ENOENT;
2007 	}
2008 
2009 	fep->mii_timeout = 0;
2010 
2011 	/*
2012 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2013 	 *
2014 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2015 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2016 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2017 	 * document.
2018 	 */
2019 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2020 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2021 		mii_speed--;
2022 	if (mii_speed > 63) {
2023 		dev_err(&pdev->dev,
2024 			"fec clock (%lu) to fast to get right mii speed\n",
2025 			clk_get_rate(fep->clk_ipg));
2026 		err = -EINVAL;
2027 		goto err_out;
2028 	}
2029 
2030 	/*
2031 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2032 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2033 	 * versions are RAZ there, so just ignore the difference and write the
2034 	 * register always.
2035 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2036 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2037 	 * output.
2038 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2039 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2040 	 * holdtime cannot result in a value greater than 3.
2041 	 */
2042 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2043 
2044 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2045 
2046 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2047 
2048 	fep->mii_bus = mdiobus_alloc();
2049 	if (fep->mii_bus == NULL) {
2050 		err = -ENOMEM;
2051 		goto err_out;
2052 	}
2053 
2054 	fep->mii_bus->name = "fec_enet_mii_bus";
2055 	fep->mii_bus->read = fec_enet_mdio_read;
2056 	fep->mii_bus->write = fec_enet_mdio_write;
2057 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2058 		pdev->name, fep->dev_id + 1);
2059 	fep->mii_bus->priv = fep;
2060 	fep->mii_bus->parent = &pdev->dev;
2061 
2062 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2063 	if (!fep->mii_bus->irq) {
2064 		err = -ENOMEM;
2065 		goto err_out_free_mdiobus;
2066 	}
2067 
2068 	for (i = 0; i < PHY_MAX_ADDR; i++)
2069 		fep->mii_bus->irq[i] = PHY_POLL;
2070 
2071 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2072 	if (node) {
2073 		err = of_mdiobus_register(fep->mii_bus, node);
2074 		of_node_put(node);
2075 	} else {
2076 		err = mdiobus_register(fep->mii_bus);
2077 	}
2078 
2079 	if (err)
2080 		goto err_out_free_mdio_irq;
2081 
2082 	mii_cnt++;
2083 
2084 	/* save fec0 mii_bus */
2085 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2086 		fec0_mii_bus = fep->mii_bus;
2087 
2088 	return 0;
2089 
2090 err_out_free_mdio_irq:
2091 	kfree(fep->mii_bus->irq);
2092 err_out_free_mdiobus:
2093 	mdiobus_free(fep->mii_bus);
2094 err_out:
2095 	return err;
2096 }
2097 
2098 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2099 {
2100 	if (--mii_cnt == 0) {
2101 		mdiobus_unregister(fep->mii_bus);
2102 		kfree(fep->mii_bus->irq);
2103 		mdiobus_free(fep->mii_bus);
2104 	}
2105 }
2106 
2107 static int fec_enet_get_settings(struct net_device *ndev,
2108 				  struct ethtool_cmd *cmd)
2109 {
2110 	struct fec_enet_private *fep = netdev_priv(ndev);
2111 	struct phy_device *phydev = fep->phy_dev;
2112 
2113 	if (!phydev)
2114 		return -ENODEV;
2115 
2116 	return phy_ethtool_gset(phydev, cmd);
2117 }
2118 
2119 static int fec_enet_set_settings(struct net_device *ndev,
2120 				 struct ethtool_cmd *cmd)
2121 {
2122 	struct fec_enet_private *fep = netdev_priv(ndev);
2123 	struct phy_device *phydev = fep->phy_dev;
2124 
2125 	if (!phydev)
2126 		return -ENODEV;
2127 
2128 	return phy_ethtool_sset(phydev, cmd);
2129 }
2130 
2131 static void fec_enet_get_drvinfo(struct net_device *ndev,
2132 				 struct ethtool_drvinfo *info)
2133 {
2134 	struct fec_enet_private *fep = netdev_priv(ndev);
2135 
2136 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2137 		sizeof(info->driver));
2138 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2139 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2140 }
2141 
2142 static int fec_enet_get_regs_len(struct net_device *ndev)
2143 {
2144 	struct fec_enet_private *fep = netdev_priv(ndev);
2145 	struct resource *r;
2146 	int s = 0;
2147 
2148 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2149 	if (r)
2150 		s = resource_size(r);
2151 
2152 	return s;
2153 }
2154 
2155 /* List of registers that can be safety be read to dump them with ethtool */
2156 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2157 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2158 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2159 static u32 fec_enet_register_offset[] = {
2160 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2161 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2162 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2163 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2164 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2165 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2166 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2167 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2168 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2169 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2170 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2171 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2172 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2173 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2174 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2175 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2176 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2177 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2178 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2179 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2180 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2181 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2182 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2183 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2184 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2185 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2186 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2187 };
2188 #else
2189 static u32 fec_enet_register_offset[] = {
2190 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2191 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2192 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2193 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2194 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2195 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2196 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2197 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2198 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2199 };
2200 #endif
2201 
2202 static void fec_enet_get_regs(struct net_device *ndev,
2203 			      struct ethtool_regs *regs, void *regbuf)
2204 {
2205 	struct fec_enet_private *fep = netdev_priv(ndev);
2206 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2207 	u32 *buf = (u32 *)regbuf;
2208 	u32 i, off;
2209 
2210 	memset(buf, 0, regs->len);
2211 
2212 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2213 		off = fec_enet_register_offset[i] / 4;
2214 		buf[off] = readl(&theregs[off]);
2215 	}
2216 }
2217 
2218 static int fec_enet_get_ts_info(struct net_device *ndev,
2219 				struct ethtool_ts_info *info)
2220 {
2221 	struct fec_enet_private *fep = netdev_priv(ndev);
2222 
2223 	if (fep->bufdesc_ex) {
2224 
2225 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2226 					SOF_TIMESTAMPING_RX_SOFTWARE |
2227 					SOF_TIMESTAMPING_SOFTWARE |
2228 					SOF_TIMESTAMPING_TX_HARDWARE |
2229 					SOF_TIMESTAMPING_RX_HARDWARE |
2230 					SOF_TIMESTAMPING_RAW_HARDWARE;
2231 		if (fep->ptp_clock)
2232 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2233 		else
2234 			info->phc_index = -1;
2235 
2236 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2237 				 (1 << HWTSTAMP_TX_ON);
2238 
2239 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2240 				   (1 << HWTSTAMP_FILTER_ALL);
2241 		return 0;
2242 	} else {
2243 		return ethtool_op_get_ts_info(ndev, info);
2244 	}
2245 }
2246 
2247 #if !defined(CONFIG_M5272)
2248 
2249 static void fec_enet_get_pauseparam(struct net_device *ndev,
2250 				    struct ethtool_pauseparam *pause)
2251 {
2252 	struct fec_enet_private *fep = netdev_priv(ndev);
2253 
2254 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2255 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2256 	pause->rx_pause = pause->tx_pause;
2257 }
2258 
2259 static int fec_enet_set_pauseparam(struct net_device *ndev,
2260 				   struct ethtool_pauseparam *pause)
2261 {
2262 	struct fec_enet_private *fep = netdev_priv(ndev);
2263 
2264 	if (!fep->phy_dev)
2265 		return -ENODEV;
2266 
2267 	if (pause->tx_pause != pause->rx_pause) {
2268 		netdev_info(ndev,
2269 			"hardware only support enable/disable both tx and rx");
2270 		return -EINVAL;
2271 	}
2272 
2273 	fep->pause_flag = 0;
2274 
2275 	/* tx pause must be same as rx pause */
2276 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2277 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2278 
2279 	if (pause->rx_pause || pause->autoneg) {
2280 		fep->phy_dev->supported |= ADVERTISED_Pause;
2281 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2282 	} else {
2283 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2284 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2285 	}
2286 
2287 	if (pause->autoneg) {
2288 		if (netif_running(ndev))
2289 			fec_stop(ndev);
2290 		phy_start_aneg(fep->phy_dev);
2291 	}
2292 	if (netif_running(ndev)) {
2293 		napi_disable(&fep->napi);
2294 		netif_tx_lock_bh(ndev);
2295 		fec_restart(ndev);
2296 		netif_wake_queue(ndev);
2297 		netif_tx_unlock_bh(ndev);
2298 		napi_enable(&fep->napi);
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 static const struct fec_stat {
2305 	char name[ETH_GSTRING_LEN];
2306 	u16 offset;
2307 } fec_stats[] = {
2308 	/* RMON TX */
2309 	{ "tx_dropped", RMON_T_DROP },
2310 	{ "tx_packets", RMON_T_PACKETS },
2311 	{ "tx_broadcast", RMON_T_BC_PKT },
2312 	{ "tx_multicast", RMON_T_MC_PKT },
2313 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2314 	{ "tx_undersize", RMON_T_UNDERSIZE },
2315 	{ "tx_oversize", RMON_T_OVERSIZE },
2316 	{ "tx_fragment", RMON_T_FRAG },
2317 	{ "tx_jabber", RMON_T_JAB },
2318 	{ "tx_collision", RMON_T_COL },
2319 	{ "tx_64byte", RMON_T_P64 },
2320 	{ "tx_65to127byte", RMON_T_P65TO127 },
2321 	{ "tx_128to255byte", RMON_T_P128TO255 },
2322 	{ "tx_256to511byte", RMON_T_P256TO511 },
2323 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2324 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2325 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2326 	{ "tx_octets", RMON_T_OCTETS },
2327 
2328 	/* IEEE TX */
2329 	{ "IEEE_tx_drop", IEEE_T_DROP },
2330 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2331 	{ "IEEE_tx_1col", IEEE_T_1COL },
2332 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2333 	{ "IEEE_tx_def", IEEE_T_DEF },
2334 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2335 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2336 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2337 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2338 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2339 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2340 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2341 
2342 	/* RMON RX */
2343 	{ "rx_packets", RMON_R_PACKETS },
2344 	{ "rx_broadcast", RMON_R_BC_PKT },
2345 	{ "rx_multicast", RMON_R_MC_PKT },
2346 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2347 	{ "rx_undersize", RMON_R_UNDERSIZE },
2348 	{ "rx_oversize", RMON_R_OVERSIZE },
2349 	{ "rx_fragment", RMON_R_FRAG },
2350 	{ "rx_jabber", RMON_R_JAB },
2351 	{ "rx_64byte", RMON_R_P64 },
2352 	{ "rx_65to127byte", RMON_R_P65TO127 },
2353 	{ "rx_128to255byte", RMON_R_P128TO255 },
2354 	{ "rx_256to511byte", RMON_R_P256TO511 },
2355 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2356 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2357 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2358 	{ "rx_octets", RMON_R_OCTETS },
2359 
2360 	/* IEEE RX */
2361 	{ "IEEE_rx_drop", IEEE_R_DROP },
2362 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2363 	{ "IEEE_rx_crc", IEEE_R_CRC },
2364 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2365 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2366 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2367 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2368 };
2369 
2370 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2371 	struct ethtool_stats *stats, u64 *data)
2372 {
2373 	struct fec_enet_private *fep = netdev_priv(dev);
2374 	int i;
2375 
2376 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2377 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2378 }
2379 
2380 static void fec_enet_get_strings(struct net_device *netdev,
2381 	u32 stringset, u8 *data)
2382 {
2383 	int i;
2384 	switch (stringset) {
2385 	case ETH_SS_STATS:
2386 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2387 			memcpy(data + i * ETH_GSTRING_LEN,
2388 				fec_stats[i].name, ETH_GSTRING_LEN);
2389 		break;
2390 	}
2391 }
2392 
2393 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2394 {
2395 	switch (sset) {
2396 	case ETH_SS_STATS:
2397 		return ARRAY_SIZE(fec_stats);
2398 	default:
2399 		return -EOPNOTSUPP;
2400 	}
2401 }
2402 #endif /* !defined(CONFIG_M5272) */
2403 
2404 static int fec_enet_nway_reset(struct net_device *dev)
2405 {
2406 	struct fec_enet_private *fep = netdev_priv(dev);
2407 	struct phy_device *phydev = fep->phy_dev;
2408 
2409 	if (!phydev)
2410 		return -ENODEV;
2411 
2412 	return genphy_restart_aneg(phydev);
2413 }
2414 
2415 /* ITR clock source is enet system clock (clk_ahb).
2416  * TCTT unit is cycle_ns * 64 cycle
2417  * So, the ICTT value = X us / (cycle_ns * 64)
2418  */
2419 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2420 {
2421 	struct fec_enet_private *fep = netdev_priv(ndev);
2422 
2423 	return us * (fep->itr_clk_rate / 64000) / 1000;
2424 }
2425 
2426 /* Set threshold for interrupt coalescing */
2427 static void fec_enet_itr_coal_set(struct net_device *ndev)
2428 {
2429 	struct fec_enet_private *fep = netdev_priv(ndev);
2430 	int rx_itr, tx_itr;
2431 
2432 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2433 		return;
2434 
2435 	/* Must be greater than zero to avoid unpredictable behavior */
2436 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2437 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2438 		return;
2439 
2440 	/* Select enet system clock as Interrupt Coalescing
2441 	 * timer Clock Source
2442 	 */
2443 	rx_itr = FEC_ITR_CLK_SEL;
2444 	tx_itr = FEC_ITR_CLK_SEL;
2445 
2446 	/* set ICFT and ICTT */
2447 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2448 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2449 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2450 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2451 
2452 	rx_itr |= FEC_ITR_EN;
2453 	tx_itr |= FEC_ITR_EN;
2454 
2455 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2456 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2457 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2458 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2459 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2460 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2461 }
2462 
2463 static int
2464 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2465 {
2466 	struct fec_enet_private *fep = netdev_priv(ndev);
2467 
2468 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2469 		return -EOPNOTSUPP;
2470 
2471 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2472 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2473 
2474 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2475 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2476 
2477 	return 0;
2478 }
2479 
2480 static int
2481 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2482 {
2483 	struct fec_enet_private *fep = netdev_priv(ndev);
2484 	unsigned int cycle;
2485 
2486 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2487 		return -EOPNOTSUPP;
2488 
2489 	if (ec->rx_max_coalesced_frames > 255) {
2490 		pr_err("Rx coalesced frames exceed hardware limiation");
2491 		return -EINVAL;
2492 	}
2493 
2494 	if (ec->tx_max_coalesced_frames > 255) {
2495 		pr_err("Tx coalesced frame exceed hardware limiation");
2496 		return -EINVAL;
2497 	}
2498 
2499 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2500 	if (cycle > 0xFFFF) {
2501 		pr_err("Rx coalesed usec exceeed hardware limiation");
2502 		return -EINVAL;
2503 	}
2504 
2505 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2506 	if (cycle > 0xFFFF) {
2507 		pr_err("Rx coalesed usec exceeed hardware limiation");
2508 		return -EINVAL;
2509 	}
2510 
2511 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2512 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2513 
2514 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2515 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2516 
2517 	fec_enet_itr_coal_set(ndev);
2518 
2519 	return 0;
2520 }
2521 
2522 static void fec_enet_itr_coal_init(struct net_device *ndev)
2523 {
2524 	struct ethtool_coalesce ec;
2525 
2526 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2527 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2528 
2529 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2530 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2531 
2532 	fec_enet_set_coalesce(ndev, &ec);
2533 }
2534 
2535 static int fec_enet_get_tunable(struct net_device *netdev,
2536 				const struct ethtool_tunable *tuna,
2537 				void *data)
2538 {
2539 	struct fec_enet_private *fep = netdev_priv(netdev);
2540 	int ret = 0;
2541 
2542 	switch (tuna->id) {
2543 	case ETHTOOL_RX_COPYBREAK:
2544 		*(u32 *)data = fep->rx_copybreak;
2545 		break;
2546 	default:
2547 		ret = -EINVAL;
2548 		break;
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 static int fec_enet_set_tunable(struct net_device *netdev,
2555 				const struct ethtool_tunable *tuna,
2556 				const void *data)
2557 {
2558 	struct fec_enet_private *fep = netdev_priv(netdev);
2559 	int ret = 0;
2560 
2561 	switch (tuna->id) {
2562 	case ETHTOOL_RX_COPYBREAK:
2563 		fep->rx_copybreak = *(u32 *)data;
2564 		break;
2565 	default:
2566 		ret = -EINVAL;
2567 		break;
2568 	}
2569 
2570 	return ret;
2571 }
2572 
2573 static void
2574 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2575 {
2576 	struct fec_enet_private *fep = netdev_priv(ndev);
2577 
2578 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2579 		wol->supported = WAKE_MAGIC;
2580 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2581 	} else {
2582 		wol->supported = wol->wolopts = 0;
2583 	}
2584 }
2585 
2586 static int
2587 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2588 {
2589 	struct fec_enet_private *fep = netdev_priv(ndev);
2590 
2591 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2592 		return -EINVAL;
2593 
2594 	if (wol->wolopts & ~WAKE_MAGIC)
2595 		return -EINVAL;
2596 
2597 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2598 	if (device_may_wakeup(&ndev->dev)) {
2599 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2600 		if (fep->irq[0] > 0)
2601 			enable_irq_wake(fep->irq[0]);
2602 	} else {
2603 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2604 		if (fep->irq[0] > 0)
2605 			disable_irq_wake(fep->irq[0]);
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static const struct ethtool_ops fec_enet_ethtool_ops = {
2612 	.get_settings		= fec_enet_get_settings,
2613 	.set_settings		= fec_enet_set_settings,
2614 	.get_drvinfo		= fec_enet_get_drvinfo,
2615 	.get_regs_len		= fec_enet_get_regs_len,
2616 	.get_regs		= fec_enet_get_regs,
2617 	.nway_reset		= fec_enet_nway_reset,
2618 	.get_link		= ethtool_op_get_link,
2619 	.get_coalesce		= fec_enet_get_coalesce,
2620 	.set_coalesce		= fec_enet_set_coalesce,
2621 #ifndef CONFIG_M5272
2622 	.get_pauseparam		= fec_enet_get_pauseparam,
2623 	.set_pauseparam		= fec_enet_set_pauseparam,
2624 	.get_strings		= fec_enet_get_strings,
2625 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2626 	.get_sset_count		= fec_enet_get_sset_count,
2627 #endif
2628 	.get_ts_info		= fec_enet_get_ts_info,
2629 	.get_tunable		= fec_enet_get_tunable,
2630 	.set_tunable		= fec_enet_set_tunable,
2631 	.get_wol		= fec_enet_get_wol,
2632 	.set_wol		= fec_enet_set_wol,
2633 };
2634 
2635 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2636 {
2637 	struct fec_enet_private *fep = netdev_priv(ndev);
2638 	struct phy_device *phydev = fep->phy_dev;
2639 
2640 	if (!netif_running(ndev))
2641 		return -EINVAL;
2642 
2643 	if (!phydev)
2644 		return -ENODEV;
2645 
2646 	if (fep->bufdesc_ex) {
2647 		if (cmd == SIOCSHWTSTAMP)
2648 			return fec_ptp_set(ndev, rq);
2649 		if (cmd == SIOCGHWTSTAMP)
2650 			return fec_ptp_get(ndev, rq);
2651 	}
2652 
2653 	return phy_mii_ioctl(phydev, rq, cmd);
2654 }
2655 
2656 static void fec_enet_free_buffers(struct net_device *ndev)
2657 {
2658 	struct fec_enet_private *fep = netdev_priv(ndev);
2659 	unsigned int i;
2660 	struct sk_buff *skb;
2661 	struct bufdesc	*bdp;
2662 	struct fec_enet_priv_tx_q *txq;
2663 	struct fec_enet_priv_rx_q *rxq;
2664 	unsigned int q;
2665 
2666 	for (q = 0; q < fep->num_rx_queues; q++) {
2667 		rxq = fep->rx_queue[q];
2668 		bdp = rxq->rx_bd_base;
2669 		for (i = 0; i < rxq->rx_ring_size; i++) {
2670 			skb = rxq->rx_skbuff[i];
2671 			rxq->rx_skbuff[i] = NULL;
2672 			if (skb) {
2673 				dma_unmap_single(&fep->pdev->dev,
2674 						 bdp->cbd_bufaddr,
2675 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2676 						 DMA_FROM_DEVICE);
2677 				dev_kfree_skb(skb);
2678 			}
2679 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2680 		}
2681 	}
2682 
2683 	for (q = 0; q < fep->num_tx_queues; q++) {
2684 		txq = fep->tx_queue[q];
2685 		bdp = txq->tx_bd_base;
2686 		for (i = 0; i < txq->tx_ring_size; i++) {
2687 			kfree(txq->tx_bounce[i]);
2688 			txq->tx_bounce[i] = NULL;
2689 			skb = txq->tx_skbuff[i];
2690 			txq->tx_skbuff[i] = NULL;
2691 			dev_kfree_skb(skb);
2692 		}
2693 	}
2694 }
2695 
2696 static void fec_enet_free_queue(struct net_device *ndev)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 	int i;
2700 	struct fec_enet_priv_tx_q *txq;
2701 
2702 	for (i = 0; i < fep->num_tx_queues; i++)
2703 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2704 			txq = fep->tx_queue[i];
2705 			dma_free_coherent(NULL,
2706 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2707 					  txq->tso_hdrs,
2708 					  txq->tso_hdrs_dma);
2709 		}
2710 
2711 	for (i = 0; i < fep->num_rx_queues; i++)
2712 		kfree(fep->rx_queue[i]);
2713 	for (i = 0; i < fep->num_tx_queues; i++)
2714 		kfree(fep->tx_queue[i]);
2715 }
2716 
2717 static int fec_enet_alloc_queue(struct net_device *ndev)
2718 {
2719 	struct fec_enet_private *fep = netdev_priv(ndev);
2720 	int i;
2721 	int ret = 0;
2722 	struct fec_enet_priv_tx_q *txq;
2723 
2724 	for (i = 0; i < fep->num_tx_queues; i++) {
2725 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2726 		if (!txq) {
2727 			ret = -ENOMEM;
2728 			goto alloc_failed;
2729 		}
2730 
2731 		fep->tx_queue[i] = txq;
2732 		txq->tx_ring_size = TX_RING_SIZE;
2733 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2734 
2735 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2736 		txq->tx_wake_threshold =
2737 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2738 
2739 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2740 					txq->tx_ring_size * TSO_HEADER_SIZE,
2741 					&txq->tso_hdrs_dma,
2742 					GFP_KERNEL);
2743 		if (!txq->tso_hdrs) {
2744 			ret = -ENOMEM;
2745 			goto alloc_failed;
2746 		}
2747 	}
2748 
2749 	for (i = 0; i < fep->num_rx_queues; i++) {
2750 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2751 					   GFP_KERNEL);
2752 		if (!fep->rx_queue[i]) {
2753 			ret = -ENOMEM;
2754 			goto alloc_failed;
2755 		}
2756 
2757 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2758 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2759 	}
2760 	return ret;
2761 
2762 alloc_failed:
2763 	fec_enet_free_queue(ndev);
2764 	return ret;
2765 }
2766 
2767 static int
2768 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2769 {
2770 	struct fec_enet_private *fep = netdev_priv(ndev);
2771 	unsigned int i;
2772 	struct sk_buff *skb;
2773 	struct bufdesc	*bdp;
2774 	struct fec_enet_priv_rx_q *rxq;
2775 
2776 	rxq = fep->rx_queue[queue];
2777 	bdp = rxq->rx_bd_base;
2778 	for (i = 0; i < rxq->rx_ring_size; i++) {
2779 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2780 		if (!skb)
2781 			goto err_alloc;
2782 
2783 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2784 			dev_kfree_skb(skb);
2785 			goto err_alloc;
2786 		}
2787 
2788 		rxq->rx_skbuff[i] = skb;
2789 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2790 
2791 		if (fep->bufdesc_ex) {
2792 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2793 			ebdp->cbd_esc = BD_ENET_RX_INT;
2794 		}
2795 
2796 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2797 	}
2798 
2799 	/* Set the last buffer to wrap. */
2800 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2801 	bdp->cbd_sc |= BD_SC_WRAP;
2802 	return 0;
2803 
2804  err_alloc:
2805 	fec_enet_free_buffers(ndev);
2806 	return -ENOMEM;
2807 }
2808 
2809 static int
2810 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2811 {
2812 	struct fec_enet_private *fep = netdev_priv(ndev);
2813 	unsigned int i;
2814 	struct bufdesc  *bdp;
2815 	struct fec_enet_priv_tx_q *txq;
2816 
2817 	txq = fep->tx_queue[queue];
2818 	bdp = txq->tx_bd_base;
2819 	for (i = 0; i < txq->tx_ring_size; i++) {
2820 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2821 		if (!txq->tx_bounce[i])
2822 			goto err_alloc;
2823 
2824 		bdp->cbd_sc = 0;
2825 		bdp->cbd_bufaddr = 0;
2826 
2827 		if (fep->bufdesc_ex) {
2828 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2829 			ebdp->cbd_esc = BD_ENET_TX_INT;
2830 		}
2831 
2832 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2833 	}
2834 
2835 	/* Set the last buffer to wrap. */
2836 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2837 	bdp->cbd_sc |= BD_SC_WRAP;
2838 
2839 	return 0;
2840 
2841  err_alloc:
2842 	fec_enet_free_buffers(ndev);
2843 	return -ENOMEM;
2844 }
2845 
2846 static int fec_enet_alloc_buffers(struct net_device *ndev)
2847 {
2848 	struct fec_enet_private *fep = netdev_priv(ndev);
2849 	unsigned int i;
2850 
2851 	for (i = 0; i < fep->num_rx_queues; i++)
2852 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2853 			return -ENOMEM;
2854 
2855 	for (i = 0; i < fep->num_tx_queues; i++)
2856 		if (fec_enet_alloc_txq_buffers(ndev, i))
2857 			return -ENOMEM;
2858 	return 0;
2859 }
2860 
2861 static int
2862 fec_enet_open(struct net_device *ndev)
2863 {
2864 	struct fec_enet_private *fep = netdev_priv(ndev);
2865 	int ret;
2866 
2867 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2868 	if (IS_ERR_VALUE(ret))
2869 		return ret;
2870 
2871 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2872 	ret = fec_enet_clk_enable(ndev, true);
2873 	if (ret)
2874 		goto clk_enable;
2875 
2876 	/* I should reset the ring buffers here, but I don't yet know
2877 	 * a simple way to do that.
2878 	 */
2879 
2880 	ret = fec_enet_alloc_buffers(ndev);
2881 	if (ret)
2882 		goto err_enet_alloc;
2883 
2884 	/* Init MAC prior to mii bus probe */
2885 	fec_restart(ndev);
2886 
2887 	/* Probe and connect to PHY when open the interface */
2888 	ret = fec_enet_mii_probe(ndev);
2889 	if (ret)
2890 		goto err_enet_mii_probe;
2891 
2892 	napi_enable(&fep->napi);
2893 	phy_start(fep->phy_dev);
2894 	netif_tx_start_all_queues(ndev);
2895 
2896 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2897 				 FEC_WOL_FLAG_ENABLE);
2898 
2899 	return 0;
2900 
2901 err_enet_mii_probe:
2902 	fec_enet_free_buffers(ndev);
2903 err_enet_alloc:
2904 	fec_enet_clk_enable(ndev, false);
2905 clk_enable:
2906 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2907 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2908 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2909 	return ret;
2910 }
2911 
2912 static int
2913 fec_enet_close(struct net_device *ndev)
2914 {
2915 	struct fec_enet_private *fep = netdev_priv(ndev);
2916 
2917 	phy_stop(fep->phy_dev);
2918 
2919 	if (netif_device_present(ndev)) {
2920 		napi_disable(&fep->napi);
2921 		netif_tx_disable(ndev);
2922 		fec_stop(ndev);
2923 	}
2924 
2925 	phy_disconnect(fep->phy_dev);
2926 	fep->phy_dev = NULL;
2927 
2928 	fec_enet_clk_enable(ndev, false);
2929 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2930 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2931 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2932 
2933 	fec_enet_free_buffers(ndev);
2934 
2935 	return 0;
2936 }
2937 
2938 /* Set or clear the multicast filter for this adaptor.
2939  * Skeleton taken from sunlance driver.
2940  * The CPM Ethernet implementation allows Multicast as well as individual
2941  * MAC address filtering.  Some of the drivers check to make sure it is
2942  * a group multicast address, and discard those that are not.  I guess I
2943  * will do the same for now, but just remove the test if you want
2944  * individual filtering as well (do the upper net layers want or support
2945  * this kind of feature?).
2946  */
2947 
2948 #define HASH_BITS	6		/* #bits in hash */
2949 #define CRC32_POLY	0xEDB88320
2950 
2951 static void set_multicast_list(struct net_device *ndev)
2952 {
2953 	struct fec_enet_private *fep = netdev_priv(ndev);
2954 	struct netdev_hw_addr *ha;
2955 	unsigned int i, bit, data, crc, tmp;
2956 	unsigned char hash;
2957 
2958 	if (ndev->flags & IFF_PROMISC) {
2959 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2960 		tmp |= 0x8;
2961 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2962 		return;
2963 	}
2964 
2965 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2966 	tmp &= ~0x8;
2967 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2968 
2969 	if (ndev->flags & IFF_ALLMULTI) {
2970 		/* Catch all multicast addresses, so set the
2971 		 * filter to all 1's
2972 		 */
2973 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2974 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2975 
2976 		return;
2977 	}
2978 
2979 	/* Clear filter and add the addresses in hash register
2980 	 */
2981 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983 
2984 	netdev_for_each_mc_addr(ha, ndev) {
2985 		/* calculate crc32 value of mac address */
2986 		crc = 0xffffffff;
2987 
2988 		for (i = 0; i < ndev->addr_len; i++) {
2989 			data = ha->addr[i];
2990 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2991 				crc = (crc >> 1) ^
2992 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2993 			}
2994 		}
2995 
2996 		/* only upper 6 bits (HASH_BITS) are used
2997 		 * which point to specific bit in he hash registers
2998 		 */
2999 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
3000 
3001 		if (hash > 31) {
3002 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3003 			tmp |= 1 << (hash - 32);
3004 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3005 		} else {
3006 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3007 			tmp |= 1 << hash;
3008 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3009 		}
3010 	}
3011 }
3012 
3013 /* Set a MAC change in hardware. */
3014 static int
3015 fec_set_mac_address(struct net_device *ndev, void *p)
3016 {
3017 	struct fec_enet_private *fep = netdev_priv(ndev);
3018 	struct sockaddr *addr = p;
3019 
3020 	if (addr) {
3021 		if (!is_valid_ether_addr(addr->sa_data))
3022 			return -EADDRNOTAVAIL;
3023 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3024 	}
3025 
3026 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3027 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3028 		fep->hwp + FEC_ADDR_LOW);
3029 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3030 		fep->hwp + FEC_ADDR_HIGH);
3031 	return 0;
3032 }
3033 
3034 #ifdef CONFIG_NET_POLL_CONTROLLER
3035 /**
3036  * fec_poll_controller - FEC Poll controller function
3037  * @dev: The FEC network adapter
3038  *
3039  * Polled functionality used by netconsole and others in non interrupt mode
3040  *
3041  */
3042 static void fec_poll_controller(struct net_device *dev)
3043 {
3044 	int i;
3045 	struct fec_enet_private *fep = netdev_priv(dev);
3046 
3047 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3048 		if (fep->irq[i] > 0) {
3049 			disable_irq(fep->irq[i]);
3050 			fec_enet_interrupt(fep->irq[i], dev);
3051 			enable_irq(fep->irq[i]);
3052 		}
3053 	}
3054 }
3055 #endif
3056 
3057 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3058 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3059 	netdev_features_t features)
3060 {
3061 	struct fec_enet_private *fep = netdev_priv(netdev);
3062 	netdev_features_t changed = features ^ netdev->features;
3063 
3064 	netdev->features = features;
3065 
3066 	/* Receive checksum has been changed */
3067 	if (changed & NETIF_F_RXCSUM) {
3068 		if (features & NETIF_F_RXCSUM)
3069 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3070 		else
3071 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3072 	}
3073 }
3074 
3075 static int fec_set_features(struct net_device *netdev,
3076 	netdev_features_t features)
3077 {
3078 	struct fec_enet_private *fep = netdev_priv(netdev);
3079 	netdev_features_t changed = features ^ netdev->features;
3080 
3081 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3082 		napi_disable(&fep->napi);
3083 		netif_tx_lock_bh(netdev);
3084 		fec_stop(netdev);
3085 		fec_enet_set_netdev_features(netdev, features);
3086 		fec_restart(netdev);
3087 		netif_tx_wake_all_queues(netdev);
3088 		netif_tx_unlock_bh(netdev);
3089 		napi_enable(&fep->napi);
3090 	} else {
3091 		fec_enet_set_netdev_features(netdev, features);
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static const struct net_device_ops fec_netdev_ops = {
3098 	.ndo_open		= fec_enet_open,
3099 	.ndo_stop		= fec_enet_close,
3100 	.ndo_start_xmit		= fec_enet_start_xmit,
3101 	.ndo_set_rx_mode	= set_multicast_list,
3102 	.ndo_change_mtu		= eth_change_mtu,
3103 	.ndo_validate_addr	= eth_validate_addr,
3104 	.ndo_tx_timeout		= fec_timeout,
3105 	.ndo_set_mac_address	= fec_set_mac_address,
3106 	.ndo_do_ioctl		= fec_enet_ioctl,
3107 #ifdef CONFIG_NET_POLL_CONTROLLER
3108 	.ndo_poll_controller	= fec_poll_controller,
3109 #endif
3110 	.ndo_set_features	= fec_set_features,
3111 };
3112 
3113  /*
3114   * XXX:  We need to clean up on failure exits here.
3115   *
3116   */
3117 static int fec_enet_init(struct net_device *ndev)
3118 {
3119 	struct fec_enet_private *fep = netdev_priv(ndev);
3120 	struct fec_enet_priv_tx_q *txq;
3121 	struct fec_enet_priv_rx_q *rxq;
3122 	struct bufdesc *cbd_base;
3123 	dma_addr_t bd_dma;
3124 	int bd_size;
3125 	unsigned int i;
3126 
3127 #if defined(CONFIG_ARM)
3128 	fep->rx_align = 0xf;
3129 	fep->tx_align = 0xf;
3130 #else
3131 	fep->rx_align = 0x3;
3132 	fep->tx_align = 0x3;
3133 #endif
3134 
3135 	fec_enet_alloc_queue(ndev);
3136 
3137 	if (fep->bufdesc_ex)
3138 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3139 	else
3140 		fep->bufdesc_size = sizeof(struct bufdesc);
3141 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3142 			fep->bufdesc_size;
3143 
3144 	/* Allocate memory for buffer descriptors. */
3145 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3146 				       GFP_KERNEL);
3147 	if (!cbd_base) {
3148 		return -ENOMEM;
3149 	}
3150 
3151 	memset(cbd_base, 0, bd_size);
3152 
3153 	/* Get the Ethernet address */
3154 	fec_get_mac(ndev);
3155 	/* make sure MAC we just acquired is programmed into the hw */
3156 	fec_set_mac_address(ndev, NULL);
3157 
3158 	/* Set receive and transmit descriptor base. */
3159 	for (i = 0; i < fep->num_rx_queues; i++) {
3160 		rxq = fep->rx_queue[i];
3161 		rxq->index = i;
3162 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3163 		rxq->bd_dma = bd_dma;
3164 		if (fep->bufdesc_ex) {
3165 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3166 			cbd_base = (struct bufdesc *)
3167 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3168 		} else {
3169 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3170 			cbd_base += rxq->rx_ring_size;
3171 		}
3172 	}
3173 
3174 	for (i = 0; i < fep->num_tx_queues; i++) {
3175 		txq = fep->tx_queue[i];
3176 		txq->index = i;
3177 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3178 		txq->bd_dma = bd_dma;
3179 		if (fep->bufdesc_ex) {
3180 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3181 			cbd_base = (struct bufdesc *)
3182 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3183 		} else {
3184 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3185 			cbd_base += txq->tx_ring_size;
3186 		}
3187 	}
3188 
3189 
3190 	/* The FEC Ethernet specific entries in the device structure */
3191 	ndev->watchdog_timeo = TX_TIMEOUT;
3192 	ndev->netdev_ops = &fec_netdev_ops;
3193 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3194 
3195 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3196 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3197 
3198 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3199 		/* enable hw VLAN support */
3200 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3201 
3202 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3203 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3204 
3205 		/* enable hw accelerator */
3206 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3207 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3208 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3209 	}
3210 
3211 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3212 		fep->tx_align = 0;
3213 		fep->rx_align = 0x3f;
3214 	}
3215 
3216 	ndev->hw_features = ndev->features;
3217 
3218 	fec_restart(ndev);
3219 
3220 	return 0;
3221 }
3222 
3223 #ifdef CONFIG_OF
3224 static void fec_reset_phy(struct platform_device *pdev)
3225 {
3226 	int err, phy_reset;
3227 	int msec = 1;
3228 	struct device_node *np = pdev->dev.of_node;
3229 
3230 	if (!np)
3231 		return;
3232 
3233 	of_property_read_u32(np, "phy-reset-duration", &msec);
3234 	/* A sane reset duration should not be longer than 1s */
3235 	if (msec > 1000)
3236 		msec = 1;
3237 
3238 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3239 	if (!gpio_is_valid(phy_reset))
3240 		return;
3241 
3242 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3243 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3244 	if (err) {
3245 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3246 		return;
3247 	}
3248 	msleep(msec);
3249 	gpio_set_value(phy_reset, 1);
3250 }
3251 #else /* CONFIG_OF */
3252 static void fec_reset_phy(struct platform_device *pdev)
3253 {
3254 	/*
3255 	 * In case of platform probe, the reset has been done
3256 	 * by machine code.
3257 	 */
3258 }
3259 #endif /* CONFIG_OF */
3260 
3261 static void
3262 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3263 {
3264 	struct device_node *np = pdev->dev.of_node;
3265 	int err;
3266 
3267 	*num_tx = *num_rx = 1;
3268 
3269 	if (!np || !of_device_is_available(np))
3270 		return;
3271 
3272 	/* parse the num of tx and rx queues */
3273 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3274 	if (err)
3275 		*num_tx = 1;
3276 
3277 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3278 	if (err)
3279 		*num_rx = 1;
3280 
3281 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3282 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3283 			 *num_tx);
3284 		*num_tx = 1;
3285 		return;
3286 	}
3287 
3288 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3289 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3290 			 *num_rx);
3291 		*num_rx = 1;
3292 		return;
3293 	}
3294 
3295 }
3296 
3297 static int
3298 fec_probe(struct platform_device *pdev)
3299 {
3300 	struct fec_enet_private *fep;
3301 	struct fec_platform_data *pdata;
3302 	struct net_device *ndev;
3303 	int i, irq, ret = 0;
3304 	struct resource *r;
3305 	const struct of_device_id *of_id;
3306 	static int dev_id;
3307 	struct device_node *np = pdev->dev.of_node, *phy_node;
3308 	int num_tx_qs;
3309 	int num_rx_qs;
3310 
3311 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3312 
3313 	/* Init network device */
3314 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3315 				  num_tx_qs, num_rx_qs);
3316 	if (!ndev)
3317 		return -ENOMEM;
3318 
3319 	SET_NETDEV_DEV(ndev, &pdev->dev);
3320 
3321 	/* setup board info structure */
3322 	fep = netdev_priv(ndev);
3323 
3324 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3325 	if (of_id)
3326 		pdev->id_entry = of_id->data;
3327 	fep->quirks = pdev->id_entry->driver_data;
3328 
3329 	fep->netdev = ndev;
3330 	fep->num_rx_queues = num_rx_qs;
3331 	fep->num_tx_queues = num_tx_qs;
3332 
3333 #if !defined(CONFIG_M5272)
3334 	/* default enable pause frame auto negotiation */
3335 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3336 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3337 #endif
3338 
3339 	/* Select default pin state */
3340 	pinctrl_pm_select_default_state(&pdev->dev);
3341 
3342 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3343 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3344 	if (IS_ERR(fep->hwp)) {
3345 		ret = PTR_ERR(fep->hwp);
3346 		goto failed_ioremap;
3347 	}
3348 
3349 	fep->pdev = pdev;
3350 	fep->dev_id = dev_id++;
3351 
3352 	platform_set_drvdata(pdev, ndev);
3353 
3354 	if (of_get_property(np, "fsl,magic-packet", NULL))
3355 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3356 
3357 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3358 	if (!phy_node && of_phy_is_fixed_link(np)) {
3359 		ret = of_phy_register_fixed_link(np);
3360 		if (ret < 0) {
3361 			dev_err(&pdev->dev,
3362 				"broken fixed-link specification\n");
3363 			goto failed_phy;
3364 		}
3365 		phy_node = of_node_get(np);
3366 	}
3367 	fep->phy_node = phy_node;
3368 
3369 	ret = of_get_phy_mode(pdev->dev.of_node);
3370 	if (ret < 0) {
3371 		pdata = dev_get_platdata(&pdev->dev);
3372 		if (pdata)
3373 			fep->phy_interface = pdata->phy;
3374 		else
3375 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3376 	} else {
3377 		fep->phy_interface = ret;
3378 	}
3379 
3380 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3381 	if (IS_ERR(fep->clk_ipg)) {
3382 		ret = PTR_ERR(fep->clk_ipg);
3383 		goto failed_clk;
3384 	}
3385 
3386 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3387 	if (IS_ERR(fep->clk_ahb)) {
3388 		ret = PTR_ERR(fep->clk_ahb);
3389 		goto failed_clk;
3390 	}
3391 
3392 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3393 
3394 	/* enet_out is optional, depends on board */
3395 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3396 	if (IS_ERR(fep->clk_enet_out))
3397 		fep->clk_enet_out = NULL;
3398 
3399 	fep->ptp_clk_on = false;
3400 	mutex_init(&fep->ptp_clk_mutex);
3401 
3402 	/* clk_ref is optional, depends on board */
3403 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3404 	if (IS_ERR(fep->clk_ref))
3405 		fep->clk_ref = NULL;
3406 
3407 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3408 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3409 	if (IS_ERR(fep->clk_ptp)) {
3410 		fep->clk_ptp = NULL;
3411 		fep->bufdesc_ex = false;
3412 	}
3413 
3414 	ret = fec_enet_clk_enable(ndev, true);
3415 	if (ret)
3416 		goto failed_clk;
3417 
3418 	ret = clk_prepare_enable(fep->clk_ipg);
3419 	if (ret)
3420 		goto failed_clk_ipg;
3421 
3422 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3423 	if (!IS_ERR(fep->reg_phy)) {
3424 		ret = regulator_enable(fep->reg_phy);
3425 		if (ret) {
3426 			dev_err(&pdev->dev,
3427 				"Failed to enable phy regulator: %d\n", ret);
3428 			goto failed_regulator;
3429 		}
3430 	} else {
3431 		fep->reg_phy = NULL;
3432 	}
3433 
3434 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3435 	pm_runtime_use_autosuspend(&pdev->dev);
3436 	pm_runtime_get_noresume(&pdev->dev);
3437 	pm_runtime_set_active(&pdev->dev);
3438 	pm_runtime_enable(&pdev->dev);
3439 
3440 	fec_reset_phy(pdev);
3441 
3442 	if (fep->bufdesc_ex)
3443 		fec_ptp_init(pdev);
3444 
3445 	ret = fec_enet_init(ndev);
3446 	if (ret)
3447 		goto failed_init;
3448 
3449 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3450 		irq = platform_get_irq(pdev, i);
3451 		if (irq < 0) {
3452 			if (i)
3453 				break;
3454 			ret = irq;
3455 			goto failed_irq;
3456 		}
3457 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3458 				       0, pdev->name, ndev);
3459 		if (ret)
3460 			goto failed_irq;
3461 
3462 		fep->irq[i] = irq;
3463 	}
3464 
3465 	init_completion(&fep->mdio_done);
3466 	ret = fec_enet_mii_init(pdev);
3467 	if (ret)
3468 		goto failed_mii_init;
3469 
3470 	/* Carrier starts down, phylib will bring it up */
3471 	netif_carrier_off(ndev);
3472 	fec_enet_clk_enable(ndev, false);
3473 	pinctrl_pm_select_sleep_state(&pdev->dev);
3474 
3475 	ret = register_netdev(ndev);
3476 	if (ret)
3477 		goto failed_register;
3478 
3479 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3480 			   FEC_WOL_HAS_MAGIC_PACKET);
3481 
3482 	if (fep->bufdesc_ex && fep->ptp_clock)
3483 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3484 
3485 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3486 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3487 
3488 	pm_runtime_mark_last_busy(&pdev->dev);
3489 	pm_runtime_put_autosuspend(&pdev->dev);
3490 
3491 	return 0;
3492 
3493 failed_register:
3494 	fec_enet_mii_remove(fep);
3495 failed_mii_init:
3496 failed_irq:
3497 failed_init:
3498 	fec_ptp_stop(pdev);
3499 	if (fep->reg_phy)
3500 		regulator_disable(fep->reg_phy);
3501 failed_regulator:
3502 	clk_disable_unprepare(fep->clk_ipg);
3503 failed_clk_ipg:
3504 	fec_enet_clk_enable(ndev, false);
3505 failed_clk:
3506 failed_phy:
3507 	of_node_put(phy_node);
3508 failed_ioremap:
3509 	free_netdev(ndev);
3510 
3511 	return ret;
3512 }
3513 
3514 static int
3515 fec_drv_remove(struct platform_device *pdev)
3516 {
3517 	struct net_device *ndev = platform_get_drvdata(pdev);
3518 	struct fec_enet_private *fep = netdev_priv(ndev);
3519 
3520 	cancel_work_sync(&fep->tx_timeout_work);
3521 	fec_ptp_stop(pdev);
3522 	unregister_netdev(ndev);
3523 	fec_enet_mii_remove(fep);
3524 	if (fep->reg_phy)
3525 		regulator_disable(fep->reg_phy);
3526 	of_node_put(fep->phy_node);
3527 	free_netdev(ndev);
3528 
3529 	return 0;
3530 }
3531 
3532 static int __maybe_unused fec_suspend(struct device *dev)
3533 {
3534 	struct net_device *ndev = dev_get_drvdata(dev);
3535 	struct fec_enet_private *fep = netdev_priv(ndev);
3536 
3537 	rtnl_lock();
3538 	if (netif_running(ndev)) {
3539 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3540 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3541 		phy_stop(fep->phy_dev);
3542 		napi_disable(&fep->napi);
3543 		netif_tx_lock_bh(ndev);
3544 		netif_device_detach(ndev);
3545 		netif_tx_unlock_bh(ndev);
3546 		fec_stop(ndev);
3547 		fec_enet_clk_enable(ndev, false);
3548 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3549 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3550 	}
3551 	rtnl_unlock();
3552 
3553 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3554 		regulator_disable(fep->reg_phy);
3555 
3556 	/* SOC supply clock to phy, when clock is disabled, phy link down
3557 	 * SOC control phy regulator, when regulator is disabled, phy link down
3558 	 */
3559 	if (fep->clk_enet_out || fep->reg_phy)
3560 		fep->link = 0;
3561 
3562 	return 0;
3563 }
3564 
3565 static int __maybe_unused fec_resume(struct device *dev)
3566 {
3567 	struct net_device *ndev = dev_get_drvdata(dev);
3568 	struct fec_enet_private *fep = netdev_priv(ndev);
3569 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3570 	int ret;
3571 	int val;
3572 
3573 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3574 		ret = regulator_enable(fep->reg_phy);
3575 		if (ret)
3576 			return ret;
3577 	}
3578 
3579 	rtnl_lock();
3580 	if (netif_running(ndev)) {
3581 		ret = fec_enet_clk_enable(ndev, true);
3582 		if (ret) {
3583 			rtnl_unlock();
3584 			goto failed_clk;
3585 		}
3586 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3587 			if (pdata && pdata->sleep_mode_enable)
3588 				pdata->sleep_mode_enable(false);
3589 			val = readl(fep->hwp + FEC_ECNTRL);
3590 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3591 			writel(val, fep->hwp + FEC_ECNTRL);
3592 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3593 		} else {
3594 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3595 		}
3596 		fec_restart(ndev);
3597 		netif_tx_lock_bh(ndev);
3598 		netif_device_attach(ndev);
3599 		netif_tx_unlock_bh(ndev);
3600 		napi_enable(&fep->napi);
3601 		phy_start(fep->phy_dev);
3602 	}
3603 	rtnl_unlock();
3604 
3605 	return 0;
3606 
3607 failed_clk:
3608 	if (fep->reg_phy)
3609 		regulator_disable(fep->reg_phy);
3610 	return ret;
3611 }
3612 
3613 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3614 {
3615 	struct net_device *ndev = dev_get_drvdata(dev);
3616 	struct fec_enet_private *fep = netdev_priv(ndev);
3617 
3618 	clk_disable_unprepare(fep->clk_ipg);
3619 
3620 	return 0;
3621 }
3622 
3623 static int __maybe_unused fec_runtime_resume(struct device *dev)
3624 {
3625 	struct net_device *ndev = dev_get_drvdata(dev);
3626 	struct fec_enet_private *fep = netdev_priv(ndev);
3627 
3628 	return clk_prepare_enable(fep->clk_ipg);
3629 }
3630 
3631 static const struct dev_pm_ops fec_pm_ops = {
3632 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3633 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3634 };
3635 
3636 static struct platform_driver fec_driver = {
3637 	.driver	= {
3638 		.name	= DRIVER_NAME,
3639 		.pm	= &fec_pm_ops,
3640 		.of_match_table = fec_dt_ids,
3641 	},
3642 	.id_table = fec_devtype,
3643 	.probe	= fec_probe,
3644 	.remove	= fec_drv_remove,
3645 };
3646 
3647 module_platform_driver(fec_driver);
3648 
3649 MODULE_ALIAS("platform:"DRIVER_NAME);
3650 MODULE_LICENSE("GPL");
3651