xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision ccde82e909467abdf098a8ee6f63e1ecf9a47ce5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74 
75 #include "fec.h"
76 
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 				int cpu, struct xdp_buff *xdp,
81 				u32 dma_sync_len);
82 
83 #define DRIVER_NAME	"fec"
84 
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86 
87 #define FEC_ENET_RSEM_V	0x84
88 #define FEC_ENET_RSFL_V	16
89 #define FEC_ENET_RAEM_V	0x8
90 #define FEC_ENET_RAFL_V	0x8
91 #define FEC_ENET_OPD_V	0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
93 
94 #define FEC_ENET_XDP_PASS          0
95 #define FEC_ENET_XDP_CONSUMED      BIT(0)
96 #define FEC_ENET_XDP_TX            BIT(1)
97 #define FEC_ENET_XDP_REDIR         BIT(2)
98 
99 struct fec_devinfo {
100 	u32 quirks;
101 };
102 
103 static const struct fec_devinfo fec_imx25_info = {
104 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107 
108 static const struct fec_devinfo fec_imx27_info = {
109 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 		  FEC_QUIRK_HAS_MDIO_C45,
111 };
112 
113 static const struct fec_devinfo fec_imx28_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119 
120 static const struct fec_devinfo fec_imx6q_info = {
121 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127 
128 static const struct fec_devinfo fec_mvf600_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_MDIO_C45,
131 };
132 
133 static const struct fec_devinfo fec_imx6sx_info = {
134 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 		  FEC_QUIRK_HAS_MDIO_C45,
141 };
142 
143 static const struct fec_devinfo fec_imx6ul_info = {
144 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 		  FEC_QUIRK_HAS_MDIO_C45,
150 };
151 
152 static const struct fec_devinfo fec_imx8mq_info = {
153 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 		  FEC_QUIRK_HAS_MDIO_C45,
161 };
162 
163 static const struct fec_devinfo fec_imx8qm_info = {
164 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45 |
171 		  FEC_QUIRK_JUMBO_FRAME,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define MAX_JUMBO_BUF_SIZE	(round_down(16384 - FEC_DRV_RESERVE_SPACE - 64, 64))
238 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
239 #define PKT_MINBUF_SIZE		64
240 
241 /* FEC receive acceleration */
242 #define FEC_RACC_IPDIS		BIT(1)
243 #define FEC_RACC_PRODIS		BIT(2)
244 #define FEC_RACC_SHIFT16	BIT(7)
245 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
246 
247 /* MIB Control Register */
248 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
249 
250 /*
251  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
252  * size bits. Other FEC hardware does not, so we need to take that into
253  * account when setting it.
254  */
255 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
256     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
257     defined(CONFIG_ARM64)
258 #define	OPT_ARCH_HAS_MAX_FL	1
259 #else
260 #define	OPT_ARCH_HAS_MAX_FL	0
261 #endif
262 
263 /* FEC MII MMFR bits definition */
264 #define FEC_MMFR_ST		(1 << 30)
265 #define FEC_MMFR_ST_C45		(0)
266 #define FEC_MMFR_OP_READ	(2 << 28)
267 #define FEC_MMFR_OP_READ_C45	(3 << 28)
268 #define FEC_MMFR_OP_WRITE	(1 << 28)
269 #define FEC_MMFR_OP_ADDR_WRITE	(0)
270 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
271 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
272 #define FEC_MMFR_TA		(2 << 16)
273 #define FEC_MMFR_DATA(v)	(v & 0xffff)
274 /* FEC ECR bits definition */
275 #define FEC_ECR_RESET           BIT(0)
276 #define FEC_ECR_ETHEREN         BIT(1)
277 #define FEC_ECR_MAGICEN         BIT(2)
278 #define FEC_ECR_SLEEP           BIT(3)
279 #define FEC_ECR_EN1588          BIT(4)
280 #define FEC_ECR_SPEED           BIT(5)
281 #define FEC_ECR_BYTESWP         BIT(8)
282 /* FEC RCR bits definition */
283 #define FEC_RCR_LOOP            BIT(0)
284 #define FEC_RCR_DRT		BIT(1)
285 #define FEC_RCR_MII             BIT(2)
286 #define FEC_RCR_PROMISC         BIT(3)
287 #define FEC_RCR_BC_REJ          BIT(4)
288 #define FEC_RCR_FLOWCTL         BIT(5)
289 #define FEC_RCR_RGMII		BIT(6)
290 #define FEC_RCR_RMII            BIT(8)
291 #define FEC_RCR_10BASET         BIT(9)
292 #define FEC_RCR_NLC		BIT(30)
293 /* TX WMARK bits */
294 #define FEC_TXWMRK_STRFWD       BIT(8)
295 
296 #define FEC_MII_TIMEOUT		30000 /* us */
297 
298 /* Transmitter timeout */
299 #define TX_TIMEOUT (2 * HZ)
300 
301 #define FEC_PAUSE_FLAG_AUTONEG	0x1
302 #define FEC_PAUSE_FLAG_ENABLE	0x2
303 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
304 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
305 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
306 
307 /* Max number of allowed TCP segments for software TSO */
308 #define FEC_MAX_TSO_SEGS	100
309 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
310 
311 #define IS_TSO_HEADER(txq, addr) \
312 	((addr >= txq->tso_hdrs_dma) && \
313 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
314 
315 static int mii_cnt;
316 
317 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
318 					     struct bufdesc_prop *bd)
319 {
320 	return (bdp >= bd->last) ? bd->base
321 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
322 }
323 
324 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
325 					     struct bufdesc_prop *bd)
326 {
327 	return (bdp <= bd->base) ? bd->last
328 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
329 }
330 
331 static int fec_enet_get_bd_index(struct bufdesc *bdp,
332 				 struct bufdesc_prop *bd)
333 {
334 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
335 }
336 
337 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
338 {
339 	int entries;
340 
341 	entries = (((const char *)txq->dirty_tx -
342 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
343 
344 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
345 }
346 
347 static void swap_buffer(void *bufaddr, int len)
348 {
349 	int i;
350 	unsigned int *buf = bufaddr;
351 
352 	for (i = 0; i < len; i += 4, buf++)
353 		swab32s(buf);
354 }
355 
356 static void fec_dump(struct net_device *ndev)
357 {
358 	struct fec_enet_private *fep = netdev_priv(ndev);
359 	struct bufdesc *bdp;
360 	struct fec_enet_priv_tx_q *txq;
361 	int index = 0;
362 
363 	netdev_info(ndev, "TX ring dump\n");
364 	pr_info("Nr     SC     addr       len  SKB\n");
365 
366 	txq = fep->tx_queue[0];
367 	bdp = txq->bd.base;
368 
369 	do {
370 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
371 			index,
372 			bdp == txq->bd.cur ? 'S' : ' ',
373 			bdp == txq->dirty_tx ? 'H' : ' ',
374 			fec16_to_cpu(bdp->cbd_sc),
375 			fec32_to_cpu(bdp->cbd_bufaddr),
376 			fec16_to_cpu(bdp->cbd_datlen),
377 			txq->tx_buf[index].buf_p);
378 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
379 		index++;
380 	} while (bdp != txq->bd.base);
381 }
382 
383 /*
384  * Coldfire does not support DMA coherent allocations, and has historically used
385  * a band-aid with a manual flush in fec_enet_rx_queue.
386  */
387 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
388 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
389 		gfp_t gfp)
390 {
391 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
392 }
393 
394 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
395 		dma_addr_t handle)
396 {
397 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
398 }
399 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
400 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
401 		gfp_t gfp)
402 {
403 	return dma_alloc_coherent(dev, size, handle, gfp);
404 }
405 
406 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
407 		dma_addr_t handle)
408 {
409 	dma_free_coherent(dev, size, cpu_addr, handle);
410 }
411 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
412 
413 struct fec_dma_devres {
414 	size_t		size;
415 	void		*vaddr;
416 	dma_addr_t	dma_handle;
417 };
418 
419 static void fec_dmam_release(struct device *dev, void *res)
420 {
421 	struct fec_dma_devres *this = res;
422 
423 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
424 }
425 
426 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
427 		gfp_t gfp)
428 {
429 	struct fec_dma_devres *dr;
430 	void *vaddr;
431 
432 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
433 	if (!dr)
434 		return NULL;
435 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
436 	if (!vaddr) {
437 		devres_free(dr);
438 		return NULL;
439 	}
440 	dr->vaddr = vaddr;
441 	dr->dma_handle = *handle;
442 	dr->size = size;
443 	devres_add(dev, dr);
444 	return vaddr;
445 }
446 
447 static inline bool is_ipv4_pkt(struct sk_buff *skb)
448 {
449 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
450 }
451 
452 static int
453 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
454 {
455 	/* Only run for packets requiring a checksum. */
456 	if (skb->ip_summed != CHECKSUM_PARTIAL)
457 		return 0;
458 
459 	if (unlikely(skb_cow_head(skb, 0)))
460 		return -1;
461 
462 	if (is_ipv4_pkt(skb))
463 		ip_hdr(skb)->check = 0;
464 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
465 
466 	return 0;
467 }
468 
469 static int
470 fec_enet_create_page_pool(struct fec_enet_private *fep,
471 			  struct fec_enet_priv_rx_q *rxq, int size)
472 {
473 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
474 	struct page_pool_params pp_params = {
475 		.order = fep->pagepool_order,
476 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
477 		.pool_size = size,
478 		.nid = dev_to_node(&fep->pdev->dev),
479 		.dev = &fep->pdev->dev,
480 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
481 		.offset = FEC_ENET_XDP_HEADROOM,
482 		.max_len = fep->rx_frame_size,
483 	};
484 	int err;
485 
486 	rxq->page_pool = page_pool_create(&pp_params);
487 	if (IS_ERR(rxq->page_pool)) {
488 		err = PTR_ERR(rxq->page_pool);
489 		rxq->page_pool = NULL;
490 		return err;
491 	}
492 
493 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
494 	if (err < 0)
495 		goto err_free_pp;
496 
497 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
498 					 rxq->page_pool);
499 	if (err)
500 		goto err_unregister_rxq;
501 
502 	return 0;
503 
504 err_unregister_rxq:
505 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
506 err_free_pp:
507 	page_pool_destroy(rxq->page_pool);
508 	rxq->page_pool = NULL;
509 	return err;
510 }
511 
512 static struct bufdesc *
513 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
514 			     struct sk_buff *skb,
515 			     struct net_device *ndev)
516 {
517 	struct fec_enet_private *fep = netdev_priv(ndev);
518 	struct bufdesc *bdp = txq->bd.cur;
519 	struct bufdesc_ex *ebdp;
520 	int nr_frags = skb_shinfo(skb)->nr_frags;
521 	int frag, frag_len;
522 	unsigned short status;
523 	unsigned int estatus = 0;
524 	skb_frag_t *this_frag;
525 	unsigned int index;
526 	void *bufaddr;
527 	dma_addr_t addr;
528 	int i;
529 
530 	for (frag = 0; frag < nr_frags; frag++) {
531 		this_frag = &skb_shinfo(skb)->frags[frag];
532 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
533 		ebdp = (struct bufdesc_ex *)bdp;
534 
535 		status = fec16_to_cpu(bdp->cbd_sc);
536 		status &= ~BD_ENET_TX_STATS;
537 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
538 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
539 
540 		/* Handle the last BD specially */
541 		if (frag == nr_frags - 1) {
542 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
543 			if (fep->bufdesc_ex) {
544 				estatus |= BD_ENET_TX_INT;
545 				if (unlikely(skb_shinfo(skb)->tx_flags &
546 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
547 					estatus |= BD_ENET_TX_TS;
548 			}
549 		}
550 
551 		if (fep->bufdesc_ex) {
552 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
553 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
554 			if (skb->ip_summed == CHECKSUM_PARTIAL)
555 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
556 
557 			ebdp->cbd_bdu = 0;
558 			ebdp->cbd_esc = cpu_to_fec32(estatus);
559 		}
560 
561 		bufaddr = skb_frag_address(this_frag);
562 
563 		index = fec_enet_get_bd_index(bdp, &txq->bd);
564 		if (((unsigned long) bufaddr) & fep->tx_align ||
565 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
566 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
567 			bufaddr = txq->tx_bounce[index];
568 
569 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
570 				swap_buffer(bufaddr, frag_len);
571 		}
572 
573 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
574 				      DMA_TO_DEVICE);
575 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
576 			if (net_ratelimit())
577 				netdev_err(ndev, "Tx DMA memory map failed\n");
578 			goto dma_mapping_error;
579 		}
580 
581 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
582 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
583 		/* Make sure the updates to rest of the descriptor are
584 		 * performed before transferring ownership.
585 		 */
586 		wmb();
587 		bdp->cbd_sc = cpu_to_fec16(status);
588 	}
589 
590 	return bdp;
591 dma_mapping_error:
592 	bdp = txq->bd.cur;
593 	for (i = 0; i < frag; i++) {
594 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
595 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
596 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
597 	}
598 	return ERR_PTR(-ENOMEM);
599 }
600 
601 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
602 				   struct sk_buff *skb, struct net_device *ndev)
603 {
604 	struct fec_enet_private *fep = netdev_priv(ndev);
605 	int nr_frags = skb_shinfo(skb)->nr_frags;
606 	struct bufdesc *bdp, *last_bdp;
607 	void *bufaddr;
608 	dma_addr_t addr;
609 	unsigned short status;
610 	unsigned short buflen;
611 	unsigned int estatus = 0;
612 	unsigned int index;
613 	int entries_free;
614 
615 	entries_free = fec_enet_get_free_txdesc_num(txq);
616 	if (entries_free < MAX_SKB_FRAGS + 1) {
617 		dev_kfree_skb_any(skb);
618 		if (net_ratelimit())
619 			netdev_err(ndev, "NOT enough BD for SG!\n");
620 		return NETDEV_TX_OK;
621 	}
622 
623 	/* Protocol checksum off-load for TCP and UDP. */
624 	if (fec_enet_clear_csum(skb, ndev)) {
625 		dev_kfree_skb_any(skb);
626 		return NETDEV_TX_OK;
627 	}
628 
629 	/* Fill in a Tx ring entry */
630 	bdp = txq->bd.cur;
631 	last_bdp = bdp;
632 	status = fec16_to_cpu(bdp->cbd_sc);
633 	status &= ~BD_ENET_TX_STATS;
634 
635 	/* Set buffer length and buffer pointer */
636 	bufaddr = skb->data;
637 	buflen = skb_headlen(skb);
638 
639 	index = fec_enet_get_bd_index(bdp, &txq->bd);
640 	if (((unsigned long) bufaddr) & fep->tx_align ||
641 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
642 		memcpy(txq->tx_bounce[index], skb->data, buflen);
643 		bufaddr = txq->tx_bounce[index];
644 
645 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
646 			swap_buffer(bufaddr, buflen);
647 	}
648 
649 	/* Push the data cache so the CPM does not get stale memory data. */
650 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
651 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
652 		dev_kfree_skb_any(skb);
653 		if (net_ratelimit())
654 			netdev_err(ndev, "Tx DMA memory map failed\n");
655 		return NETDEV_TX_OK;
656 	}
657 
658 	if (nr_frags) {
659 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
660 		if (IS_ERR(last_bdp)) {
661 			dma_unmap_single(&fep->pdev->dev, addr,
662 					 buflen, DMA_TO_DEVICE);
663 			dev_kfree_skb_any(skb);
664 			return NETDEV_TX_OK;
665 		}
666 	} else {
667 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
668 		if (fep->bufdesc_ex) {
669 			estatus = BD_ENET_TX_INT;
670 			if (unlikely(skb_shinfo(skb)->tx_flags &
671 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
672 				estatus |= BD_ENET_TX_TS;
673 		}
674 	}
675 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
676 	bdp->cbd_datlen = cpu_to_fec16(buflen);
677 
678 	if (fep->bufdesc_ex) {
679 
680 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
681 
682 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
683 			fep->hwts_tx_en))
684 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
685 
686 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
687 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
688 
689 		if (skb->ip_summed == CHECKSUM_PARTIAL)
690 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
691 
692 		ebdp->cbd_bdu = 0;
693 		ebdp->cbd_esc = cpu_to_fec32(estatus);
694 	}
695 
696 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
697 	/* Save skb pointer */
698 	txq->tx_buf[index].buf_p = skb;
699 
700 	/* Make sure the updates to rest of the descriptor are performed before
701 	 * transferring ownership.
702 	 */
703 	wmb();
704 
705 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
706 	 * it's the last BD of the frame, and to put the CRC on the end.
707 	 */
708 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
709 	bdp->cbd_sc = cpu_to_fec16(status);
710 
711 	/* If this was the last BD in the ring, start at the beginning again. */
712 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
713 
714 	skb_tx_timestamp(skb);
715 
716 	/* Make sure the update to bdp is performed before txq->bd.cur. */
717 	wmb();
718 	txq->bd.cur = bdp;
719 
720 	/* Trigger transmission start */
721 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
722 	    !readl(txq->bd.reg_desc_active) ||
723 	    !readl(txq->bd.reg_desc_active) ||
724 	    !readl(txq->bd.reg_desc_active) ||
725 	    !readl(txq->bd.reg_desc_active))
726 		writel(0, txq->bd.reg_desc_active);
727 
728 	return 0;
729 }
730 
731 static int
732 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
733 			  struct net_device *ndev,
734 			  struct bufdesc *bdp, int index, char *data,
735 			  int size, bool last_tcp, bool is_last)
736 {
737 	struct fec_enet_private *fep = netdev_priv(ndev);
738 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
739 	unsigned short status;
740 	unsigned int estatus = 0;
741 	dma_addr_t addr;
742 
743 	status = fec16_to_cpu(bdp->cbd_sc);
744 	status &= ~BD_ENET_TX_STATS;
745 
746 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
747 
748 	if (((unsigned long) data) & fep->tx_align ||
749 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
750 		memcpy(txq->tx_bounce[index], data, size);
751 		data = txq->tx_bounce[index];
752 
753 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
754 			swap_buffer(data, size);
755 	}
756 
757 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
758 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
759 		dev_kfree_skb_any(skb);
760 		if (net_ratelimit())
761 			netdev_err(ndev, "Tx DMA memory map failed\n");
762 		return NETDEV_TX_OK;
763 	}
764 
765 	bdp->cbd_datlen = cpu_to_fec16(size);
766 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
767 
768 	if (fep->bufdesc_ex) {
769 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
770 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
771 		if (skb->ip_summed == CHECKSUM_PARTIAL)
772 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
773 		ebdp->cbd_bdu = 0;
774 		ebdp->cbd_esc = cpu_to_fec32(estatus);
775 	}
776 
777 	/* Handle the last BD specially */
778 	if (last_tcp)
779 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
780 	if (is_last) {
781 		status |= BD_ENET_TX_INTR;
782 		if (fep->bufdesc_ex)
783 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
784 	}
785 
786 	bdp->cbd_sc = cpu_to_fec16(status);
787 
788 	return 0;
789 }
790 
791 static int
792 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
793 			 struct sk_buff *skb, struct net_device *ndev,
794 			 struct bufdesc *bdp, int index)
795 {
796 	struct fec_enet_private *fep = netdev_priv(ndev);
797 	int hdr_len = skb_tcp_all_headers(skb);
798 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
799 	void *bufaddr;
800 	unsigned long dmabuf;
801 	unsigned short status;
802 	unsigned int estatus = 0;
803 
804 	status = fec16_to_cpu(bdp->cbd_sc);
805 	status &= ~BD_ENET_TX_STATS;
806 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
807 
808 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
809 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
810 	if (((unsigned long)bufaddr) & fep->tx_align ||
811 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
812 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
813 		bufaddr = txq->tx_bounce[index];
814 
815 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
816 			swap_buffer(bufaddr, hdr_len);
817 
818 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
819 					hdr_len, DMA_TO_DEVICE);
820 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
821 			dev_kfree_skb_any(skb);
822 			if (net_ratelimit())
823 				netdev_err(ndev, "Tx DMA memory map failed\n");
824 			return NETDEV_TX_OK;
825 		}
826 	}
827 
828 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
829 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
830 
831 	if (fep->bufdesc_ex) {
832 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
833 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
834 		if (skb->ip_summed == CHECKSUM_PARTIAL)
835 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
836 		ebdp->cbd_bdu = 0;
837 		ebdp->cbd_esc = cpu_to_fec32(estatus);
838 	}
839 
840 	bdp->cbd_sc = cpu_to_fec16(status);
841 
842 	return 0;
843 }
844 
845 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
846 				   struct sk_buff *skb,
847 				   struct net_device *ndev)
848 {
849 	struct fec_enet_private *fep = netdev_priv(ndev);
850 	int hdr_len, total_len, data_left;
851 	struct bufdesc *bdp = txq->bd.cur;
852 	struct bufdesc *tmp_bdp;
853 	struct bufdesc_ex *ebdp;
854 	struct tso_t tso;
855 	unsigned int index = 0;
856 	int ret;
857 
858 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
859 		dev_kfree_skb_any(skb);
860 		if (net_ratelimit())
861 			netdev_err(ndev, "NOT enough BD for TSO!\n");
862 		return NETDEV_TX_OK;
863 	}
864 
865 	/* Protocol checksum off-load for TCP and UDP. */
866 	if (fec_enet_clear_csum(skb, ndev)) {
867 		dev_kfree_skb_any(skb);
868 		return NETDEV_TX_OK;
869 	}
870 
871 	/* Initialize the TSO handler, and prepare the first payload */
872 	hdr_len = tso_start(skb, &tso);
873 
874 	total_len = skb->len - hdr_len;
875 	while (total_len > 0) {
876 		char *hdr;
877 
878 		index = fec_enet_get_bd_index(bdp, &txq->bd);
879 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
880 		total_len -= data_left;
881 
882 		/* prepare packet headers: MAC + IP + TCP */
883 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
884 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
885 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
886 		if (ret)
887 			goto err_release;
888 
889 		while (data_left > 0) {
890 			int size;
891 
892 			size = min_t(int, tso.size, data_left);
893 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
894 			index = fec_enet_get_bd_index(bdp, &txq->bd);
895 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
896 							bdp, index,
897 							tso.data, size,
898 							size == data_left,
899 							total_len == 0);
900 			if (ret)
901 				goto err_release;
902 
903 			data_left -= size;
904 			tso_build_data(skb, &tso, size);
905 		}
906 
907 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
908 	}
909 
910 	/* Save skb pointer */
911 	txq->tx_buf[index].buf_p = skb;
912 
913 	skb_tx_timestamp(skb);
914 	txq->bd.cur = bdp;
915 
916 	/* Trigger transmission start */
917 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
918 	    !readl(txq->bd.reg_desc_active) ||
919 	    !readl(txq->bd.reg_desc_active) ||
920 	    !readl(txq->bd.reg_desc_active) ||
921 	    !readl(txq->bd.reg_desc_active))
922 		writel(0, txq->bd.reg_desc_active);
923 
924 	return 0;
925 
926 err_release:
927 	/* Release all used data descriptors for TSO */
928 	tmp_bdp = txq->bd.cur;
929 
930 	while (tmp_bdp != bdp) {
931 		/* Unmap data buffers */
932 		if (tmp_bdp->cbd_bufaddr &&
933 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
934 			dma_unmap_single(&fep->pdev->dev,
935 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
936 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
937 					 DMA_TO_DEVICE);
938 
939 		/* Clear standard buffer descriptor fields */
940 		tmp_bdp->cbd_sc = 0;
941 		tmp_bdp->cbd_datlen = 0;
942 		tmp_bdp->cbd_bufaddr = 0;
943 
944 		/* Handle extended descriptor if enabled */
945 		if (fep->bufdesc_ex) {
946 			ebdp = (struct bufdesc_ex *)tmp_bdp;
947 			ebdp->cbd_esc = 0;
948 		}
949 
950 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
951 	}
952 
953 	dev_kfree_skb_any(skb);
954 
955 	return ret;
956 }
957 
958 static netdev_tx_t
959 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
960 {
961 	struct fec_enet_private *fep = netdev_priv(ndev);
962 	int entries_free;
963 	unsigned short queue;
964 	struct fec_enet_priv_tx_q *txq;
965 	struct netdev_queue *nq;
966 	int ret;
967 
968 	queue = skb_get_queue_mapping(skb);
969 	txq = fep->tx_queue[queue];
970 	nq = netdev_get_tx_queue(ndev, queue);
971 
972 	if (skb_is_gso(skb))
973 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
974 	else
975 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
976 	if (ret)
977 		return ret;
978 
979 	entries_free = fec_enet_get_free_txdesc_num(txq);
980 	if (entries_free <= txq->tx_stop_threshold)
981 		netif_tx_stop_queue(nq);
982 
983 	return NETDEV_TX_OK;
984 }
985 
986 /* Init RX & TX buffer descriptors
987  */
988 static void fec_enet_bd_init(struct net_device *dev)
989 {
990 	struct fec_enet_private *fep = netdev_priv(dev);
991 	struct fec_enet_priv_tx_q *txq;
992 	struct fec_enet_priv_rx_q *rxq;
993 	struct bufdesc *bdp;
994 	unsigned int i;
995 	unsigned int q;
996 
997 	for (q = 0; q < fep->num_rx_queues; q++) {
998 		/* Initialize the receive buffer descriptors. */
999 		rxq = fep->rx_queue[q];
1000 		bdp = rxq->bd.base;
1001 
1002 		for (i = 0; i < rxq->bd.ring_size; i++) {
1003 
1004 			/* Initialize the BD for every fragment in the page. */
1005 			if (bdp->cbd_bufaddr)
1006 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1007 			else
1008 				bdp->cbd_sc = cpu_to_fec16(0);
1009 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1010 		}
1011 
1012 		/* Set the last buffer to wrap */
1013 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1014 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1015 
1016 		rxq->bd.cur = rxq->bd.base;
1017 	}
1018 
1019 	for (q = 0; q < fep->num_tx_queues; q++) {
1020 		/* ...and the same for transmit */
1021 		txq = fep->tx_queue[q];
1022 		bdp = txq->bd.base;
1023 		txq->bd.cur = bdp;
1024 
1025 		for (i = 0; i < txq->bd.ring_size; i++) {
1026 			/* Initialize the BD for every fragment in the page. */
1027 			bdp->cbd_sc = cpu_to_fec16(0);
1028 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1029 				if (bdp->cbd_bufaddr &&
1030 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1031 					dma_unmap_single(&fep->pdev->dev,
1032 							 fec32_to_cpu(bdp->cbd_bufaddr),
1033 							 fec16_to_cpu(bdp->cbd_datlen),
1034 							 DMA_TO_DEVICE);
1035 				if (txq->tx_buf[i].buf_p)
1036 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1037 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1038 				if (bdp->cbd_bufaddr)
1039 					dma_unmap_single(&fep->pdev->dev,
1040 							 fec32_to_cpu(bdp->cbd_bufaddr),
1041 							 fec16_to_cpu(bdp->cbd_datlen),
1042 							 DMA_TO_DEVICE);
1043 
1044 				if (txq->tx_buf[i].buf_p)
1045 					xdp_return_frame(txq->tx_buf[i].buf_p);
1046 			} else {
1047 				struct page *page = txq->tx_buf[i].buf_p;
1048 
1049 				if (page)
1050 					page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1051 							   page, 0,
1052 							   false);
1053 			}
1054 
1055 			txq->tx_buf[i].buf_p = NULL;
1056 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1057 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1058 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1059 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1060 		}
1061 
1062 		/* Set the last buffer to wrap */
1063 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1064 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1065 		txq->dirty_tx = bdp;
1066 	}
1067 }
1068 
1069 static void fec_enet_active_rxring(struct net_device *ndev)
1070 {
1071 	struct fec_enet_private *fep = netdev_priv(ndev);
1072 	int i;
1073 
1074 	for (i = 0; i < fep->num_rx_queues; i++)
1075 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1076 }
1077 
1078 static void fec_enet_enable_ring(struct net_device *ndev)
1079 {
1080 	struct fec_enet_private *fep = netdev_priv(ndev);
1081 	struct fec_enet_priv_tx_q *txq;
1082 	struct fec_enet_priv_rx_q *rxq;
1083 	int i;
1084 
1085 	for (i = 0; i < fep->num_rx_queues; i++) {
1086 		rxq = fep->rx_queue[i];
1087 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1088 		writel(fep->max_buf_size, fep->hwp + FEC_R_BUFF_SIZE(i));
1089 
1090 		/* enable DMA1/2 */
1091 		if (i)
1092 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1093 			       fep->hwp + FEC_RCMR(i));
1094 	}
1095 
1096 	for (i = 0; i < fep->num_tx_queues; i++) {
1097 		txq = fep->tx_queue[i];
1098 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1099 
1100 		/* enable DMA1/2 */
1101 		if (i)
1102 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1103 			       fep->hwp + FEC_DMA_CFG(i));
1104 	}
1105 }
1106 
1107 /* Whack a reset.  We should wait for this.
1108  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1109  * instead of reset MAC itself.
1110  */
1111 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1112 {
1113 	u32 val;
1114 
1115 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1117 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1118 			writel(0, fep->hwp + FEC_ECNTRL);
1119 		} else {
1120 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1121 			udelay(10);
1122 		}
1123 	} else {
1124 		val = readl(fep->hwp + FEC_ECNTRL);
1125 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1126 		writel(val, fep->hwp + FEC_ECNTRL);
1127 	}
1128 }
1129 
1130 static void fec_set_hw_mac_addr(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 
1134 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1135 	       (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1136 	       fep->hwp + FEC_ADDR_LOW);
1137 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1138 	       fep->hwp + FEC_ADDR_HIGH);
1139 }
1140 
1141 /*
1142  * This function is called to start or restart the FEC during a link
1143  * change, transmit timeout, or to reconfigure the FEC.  The network
1144  * packet processing for this device must be stopped before this call.
1145  */
1146 static void
1147 fec_restart(struct net_device *ndev)
1148 {
1149 	struct fec_enet_private *fep = netdev_priv(ndev);
1150 	u32 ecntl = FEC_ECR_ETHEREN;
1151 	u32 rcntl = FEC_RCR_MII;
1152 
1153 	if (OPT_ARCH_HAS_MAX_FL)
1154 		rcntl |= (fep->netdev->mtu + ETH_HLEN + ETH_FCS_LEN) << 16;
1155 
1156 	if (fep->bufdesc_ex)
1157 		fec_ptp_save_state(fep);
1158 
1159 	fec_ctrl_reset(fep, false);
1160 
1161 	/*
1162 	 * enet-mac reset will reset mac address registers too,
1163 	 * so need to reconfigure it.
1164 	 */
1165 	fec_set_hw_mac_addr(ndev);
1166 
1167 	/* Clear any outstanding interrupt, except MDIO. */
1168 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1169 
1170 	fec_enet_bd_init(ndev);
1171 
1172 	fec_enet_enable_ring(ndev);
1173 
1174 	/* Enable MII mode */
1175 	if (fep->full_duplex == DUPLEX_FULL) {
1176 		/* FD enable */
1177 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1178 	} else {
1179 		/* No Rcv on Xmit */
1180 		rcntl |= FEC_RCR_DRT;
1181 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1182 	}
1183 
1184 	/* Set MII speed */
1185 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186 
1187 #if !defined(CONFIG_M5272)
1188 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1189 		u32 val = readl(fep->hwp + FEC_RACC);
1190 
1191 		/* align IP header */
1192 		val |= FEC_RACC_SHIFT16;
1193 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1194 			/* set RX checksum */
1195 			val |= FEC_RACC_OPTIONS;
1196 		else
1197 			val &= ~FEC_RACC_OPTIONS;
1198 		writel(val, fep->hwp + FEC_RACC);
1199 		writel(min(fep->rx_frame_size, fep->max_buf_size), fep->hwp + FEC_FTRL);
1200 	}
1201 #endif
1202 
1203 	/*
1204 	 * The phy interface and speed need to get configured
1205 	 * differently on enet-mac.
1206 	 */
1207 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1208 		/* Enable flow control and length check */
1209 		rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1210 
1211 		/* RGMII, RMII or MII */
1212 		if (phy_interface_mode_is_rgmii(fep->phy_interface))
1213 			rcntl |= FEC_RCR_RGMII;
1214 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1215 			rcntl |= FEC_RCR_RMII;
1216 		else
1217 			rcntl &= ~FEC_RCR_RMII;
1218 
1219 		/* 1G, 100M or 10M */
1220 		if (ndev->phydev) {
1221 			if (ndev->phydev->speed == SPEED_1000)
1222 				ecntl |= FEC_ECR_SPEED;
1223 			else if (ndev->phydev->speed == SPEED_100)
1224 				rcntl &= ~FEC_RCR_10BASET;
1225 			else
1226 				rcntl |= FEC_RCR_10BASET;
1227 		}
1228 	} else {
1229 #ifdef FEC_MIIGSK_ENR
1230 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1231 			u32 cfgr;
1232 			/* disable the gasket and wait */
1233 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1234 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1235 				udelay(1);
1236 
1237 			/*
1238 			 * configure the gasket:
1239 			 *   RMII, 50 MHz, no loopback, no echo
1240 			 *   MII, 25 MHz, no loopback, no echo
1241 			 */
1242 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1243 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1244 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1245 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1246 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1247 
1248 			/* re-enable the gasket */
1249 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1250 		}
1251 #endif
1252 	}
1253 
1254 #if !defined(CONFIG_M5272)
1255 	/* enable pause frame*/
1256 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1257 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1258 	     ndev->phydev && ndev->phydev->pause)) {
1259 		rcntl |= FEC_RCR_FLOWCTL;
1260 
1261 		/* set FIFO threshold parameter to reduce overrun */
1262 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1263 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1264 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1265 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1266 
1267 		/* OPD */
1268 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1269 	} else {
1270 		rcntl &= ~FEC_RCR_FLOWCTL;
1271 	}
1272 #endif /* !defined(CONFIG_M5272) */
1273 
1274 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1275 
1276 	/* Setup multicast filter. */
1277 	set_multicast_list(ndev);
1278 #ifndef CONFIG_M5272
1279 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1280 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1281 #endif
1282 
1283 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1284 		/* enable ENET endian swap */
1285 		ecntl |= FEC_ECR_BYTESWP;
1286 
1287 		/* When Jumbo Frame is enabled, the FIFO may not be large enough
1288 		 * to hold an entire frame. In such cases, if the MTU exceeds
1289 		 * (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN), configure the interface
1290 		 * to operate in cut-through mode, triggered by the FIFO threshold.
1291 		 * Otherwise, enable the ENET store-and-forward mode.
1292 		 */
1293 		if ((fep->quirks & FEC_QUIRK_JUMBO_FRAME) &&
1294 		    (ndev->mtu > (PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN)))
1295 			writel(0xF, fep->hwp + FEC_X_WMRK);
1296 		else
1297 			writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1298 	}
1299 
1300 	if (fep->bufdesc_ex)
1301 		ecntl |= FEC_ECR_EN1588;
1302 
1303 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1304 	    fep->rgmii_txc_dly)
1305 		ecntl |= FEC_ENET_TXC_DLY;
1306 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1307 	    fep->rgmii_rxc_dly)
1308 		ecntl |= FEC_ENET_RXC_DLY;
1309 
1310 #ifndef CONFIG_M5272
1311 	/* Enable the MIB statistic event counters */
1312 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1313 #endif
1314 
1315 	/* And last, enable the transmit and receive processing */
1316 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1317 	fec_enet_active_rxring(ndev);
1318 
1319 	if (fep->bufdesc_ex) {
1320 		fec_ptp_start_cyclecounter(ndev);
1321 		fec_ptp_restore_state(fep);
1322 	}
1323 
1324 	/* Enable interrupts we wish to service */
1325 	if (fep->link)
1326 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1327 	else
1328 		writel(0, fep->hwp + FEC_IMASK);
1329 
1330 	/* Init the interrupt coalescing */
1331 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1332 		fec_enet_itr_coal_set(ndev);
1333 }
1334 
1335 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1336 {
1337 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1338 	      of_machine_is_compatible("fsl,imx8qxp") ||
1339 	      of_machine_is_compatible("fsl,imx8dxl")))
1340 		return 0;
1341 
1342 	return imx_scu_get_handle(&fep->ipc_handle);
1343 }
1344 
1345 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1346 {
1347 	struct device_node *np = fep->pdev->dev.of_node;
1348 	u32 rsrc_id, val;
1349 	int idx;
1350 
1351 	if (!np || !fep->ipc_handle)
1352 		return;
1353 
1354 	idx = of_alias_get_id(np, "ethernet");
1355 	if (idx < 0)
1356 		idx = 0;
1357 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1358 
1359 	val = enabled ? 1 : 0;
1360 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1361 }
1362 
1363 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1364 {
1365 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1366 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1367 
1368 	if (stop_gpr->gpr) {
1369 		if (enabled)
1370 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1371 					   BIT(stop_gpr->bit),
1372 					   BIT(stop_gpr->bit));
1373 		else
1374 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1375 					   BIT(stop_gpr->bit), 0);
1376 	} else if (pdata && pdata->sleep_mode_enable) {
1377 		pdata->sleep_mode_enable(enabled);
1378 	} else {
1379 		fec_enet_ipg_stop_set(fep, enabled);
1380 	}
1381 }
1382 
1383 static void fec_irqs_disable(struct net_device *ndev)
1384 {
1385 	struct fec_enet_private *fep = netdev_priv(ndev);
1386 
1387 	writel(0, fep->hwp + FEC_IMASK);
1388 }
1389 
1390 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1391 {
1392 	struct fec_enet_private *fep = netdev_priv(ndev);
1393 
1394 	writel(0, fep->hwp + FEC_IMASK);
1395 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1396 }
1397 
1398 static void
1399 fec_stop(struct net_device *ndev)
1400 {
1401 	struct fec_enet_private *fep = netdev_priv(ndev);
1402 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1403 	u32 val;
1404 
1405 	/* We cannot expect a graceful transmit stop without link !!! */
1406 	if (fep->link) {
1407 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1408 		udelay(10);
1409 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1410 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1411 	}
1412 
1413 	if (fep->bufdesc_ex)
1414 		fec_ptp_save_state(fep);
1415 
1416 	fec_ctrl_reset(fep, true);
1417 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1418 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1419 
1420 	/* We have to keep ENET enabled to have MII interrupt stay working */
1421 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1422 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1423 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1424 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1425 	}
1426 
1427 	if (fep->bufdesc_ex) {
1428 		val = readl(fep->hwp + FEC_ECNTRL);
1429 		val |= FEC_ECR_EN1588;
1430 		writel(val, fep->hwp + FEC_ECNTRL);
1431 
1432 		fec_ptp_start_cyclecounter(ndev);
1433 		fec_ptp_restore_state(fep);
1434 	}
1435 }
1436 
1437 static void
1438 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1439 {
1440 	struct fec_enet_private *fep = netdev_priv(ndev);
1441 
1442 	fec_dump(ndev);
1443 
1444 	ndev->stats.tx_errors++;
1445 
1446 	schedule_work(&fep->tx_timeout_work);
1447 }
1448 
1449 static void fec_enet_timeout_work(struct work_struct *work)
1450 {
1451 	struct fec_enet_private *fep =
1452 		container_of(work, struct fec_enet_private, tx_timeout_work);
1453 	struct net_device *ndev = fep->netdev;
1454 
1455 	rtnl_lock();
1456 	if (netif_device_present(ndev) || netif_running(ndev)) {
1457 		napi_disable(&fep->napi);
1458 		netif_tx_lock_bh(ndev);
1459 		fec_restart(ndev);
1460 		netif_tx_wake_all_queues(ndev);
1461 		netif_tx_unlock_bh(ndev);
1462 		napi_enable(&fep->napi);
1463 	}
1464 	rtnl_unlock();
1465 }
1466 
1467 static void
1468 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1469 	struct skb_shared_hwtstamps *hwtstamps)
1470 {
1471 	unsigned long flags;
1472 	u64 ns;
1473 
1474 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1475 	ns = timecounter_cyc2time(&fep->tc, ts);
1476 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1477 
1478 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1479 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1480 }
1481 
1482 static void
1483 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1484 {
1485 	struct	fec_enet_private *fep;
1486 	struct xdp_frame *xdpf;
1487 	struct bufdesc *bdp;
1488 	unsigned short status;
1489 	struct	sk_buff	*skb;
1490 	struct fec_enet_priv_tx_q *txq;
1491 	struct netdev_queue *nq;
1492 	int	index = 0;
1493 	int	entries_free;
1494 	struct page *page;
1495 	int frame_len;
1496 
1497 	fep = netdev_priv(ndev);
1498 
1499 	txq = fep->tx_queue[queue_id];
1500 	/* get next bdp of dirty_tx */
1501 	nq = netdev_get_tx_queue(ndev, queue_id);
1502 	bdp = txq->dirty_tx;
1503 
1504 	/* get next bdp of dirty_tx */
1505 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1506 
1507 	while (bdp != READ_ONCE(txq->bd.cur)) {
1508 		/* Order the load of bd.cur and cbd_sc */
1509 		rmb();
1510 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1511 		if (status & BD_ENET_TX_READY)
1512 			break;
1513 
1514 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1515 
1516 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1517 			skb = txq->tx_buf[index].buf_p;
1518 			if (bdp->cbd_bufaddr &&
1519 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1520 				dma_unmap_single(&fep->pdev->dev,
1521 						 fec32_to_cpu(bdp->cbd_bufaddr),
1522 						 fec16_to_cpu(bdp->cbd_datlen),
1523 						 DMA_TO_DEVICE);
1524 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1525 			if (!skb)
1526 				goto tx_buf_done;
1527 		} else {
1528 			/* Tx processing cannot call any XDP (or page pool) APIs if
1529 			 * the "budget" is 0. Because NAPI is called with budget of
1530 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1531 			 * however, we can't use the page pool from IRQ context.
1532 			 */
1533 			if (unlikely(!budget))
1534 				break;
1535 
1536 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1537 				xdpf = txq->tx_buf[index].buf_p;
1538 				if (bdp->cbd_bufaddr)
1539 					dma_unmap_single(&fep->pdev->dev,
1540 							 fec32_to_cpu(bdp->cbd_bufaddr),
1541 							 fec16_to_cpu(bdp->cbd_datlen),
1542 							 DMA_TO_DEVICE);
1543 			} else {
1544 				page = txq->tx_buf[index].buf_p;
1545 			}
1546 
1547 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1548 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1549 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1550 				goto tx_buf_done;
1551 			}
1552 
1553 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1554 		}
1555 
1556 		/* Check for errors. */
1557 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1558 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1559 				   BD_ENET_TX_CSL)) {
1560 			ndev->stats.tx_errors++;
1561 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1562 				ndev->stats.tx_heartbeat_errors++;
1563 			if (status & BD_ENET_TX_LC)  /* Late collision */
1564 				ndev->stats.tx_window_errors++;
1565 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1566 				ndev->stats.tx_aborted_errors++;
1567 			if (status & BD_ENET_TX_UN)  /* Underrun */
1568 				ndev->stats.tx_fifo_errors++;
1569 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1570 				ndev->stats.tx_carrier_errors++;
1571 		} else {
1572 			ndev->stats.tx_packets++;
1573 
1574 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1575 				ndev->stats.tx_bytes += skb->len;
1576 			else
1577 				ndev->stats.tx_bytes += frame_len;
1578 		}
1579 
1580 		/* Deferred means some collisions occurred during transmit,
1581 		 * but we eventually sent the packet OK.
1582 		 */
1583 		if (status & BD_ENET_TX_DEF)
1584 			ndev->stats.collisions++;
1585 
1586 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1587 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1588 			 * are to time stamp the packet, so we still need to check time
1589 			 * stamping enabled flag.
1590 			 */
1591 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1592 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1593 				struct skb_shared_hwtstamps shhwtstamps;
1594 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1595 
1596 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1597 				skb_tstamp_tx(skb, &shhwtstamps);
1598 			}
1599 
1600 			/* Free the sk buffer associated with this last transmit */
1601 			napi_consume_skb(skb, budget);
1602 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1603 			xdp_return_frame_rx_napi(xdpf);
1604 		} else { /* recycle pages of XDP_TX frames */
1605 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1606 			page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1607 					   0, true);
1608 		}
1609 
1610 		txq->tx_buf[index].buf_p = NULL;
1611 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1612 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1613 
1614 tx_buf_done:
1615 		/* Make sure the update to bdp and tx_buf are performed
1616 		 * before dirty_tx
1617 		 */
1618 		wmb();
1619 		txq->dirty_tx = bdp;
1620 
1621 		/* Update pointer to next buffer descriptor to be transmitted */
1622 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1623 
1624 		/* Since we have freed up a buffer, the ring is no longer full
1625 		 */
1626 		if (netif_tx_queue_stopped(nq)) {
1627 			entries_free = fec_enet_get_free_txdesc_num(txq);
1628 			if (entries_free >= txq->tx_wake_threshold)
1629 				netif_tx_wake_queue(nq);
1630 		}
1631 	}
1632 
1633 	/* ERR006358: Keep the transmitter going */
1634 	if (bdp != txq->bd.cur &&
1635 	    readl(txq->bd.reg_desc_active) == 0)
1636 		writel(0, txq->bd.reg_desc_active);
1637 }
1638 
1639 static void fec_enet_tx(struct net_device *ndev, int budget)
1640 {
1641 	struct fec_enet_private *fep = netdev_priv(ndev);
1642 	int i;
1643 
1644 	/* Make sure that AVB queues are processed first. */
1645 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1646 		fec_enet_tx_queue(ndev, i, budget);
1647 }
1648 
1649 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1650 				struct bufdesc *bdp, int index)
1651 {
1652 	struct page *new_page;
1653 	dma_addr_t phys_addr;
1654 
1655 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1656 	if (unlikely(!new_page))
1657 		return -ENOMEM;
1658 
1659 	rxq->rx_skb_info[index].page = new_page;
1660 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1661 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1662 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1663 
1664 	return 0;
1665 }
1666 
1667 static u32
1668 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1669 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1670 {
1671 	unsigned int sync, len = xdp->data_end - xdp->data;
1672 	u32 ret = FEC_ENET_XDP_PASS;
1673 	struct page *page;
1674 	int err;
1675 	u32 act;
1676 
1677 	act = bpf_prog_run_xdp(prog, xdp);
1678 
1679 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1680 	 * max len CPU touch
1681 	 */
1682 	sync = xdp->data_end - xdp->data;
1683 	sync = max(sync, len);
1684 
1685 	switch (act) {
1686 	case XDP_PASS:
1687 		rxq->stats[RX_XDP_PASS]++;
1688 		ret = FEC_ENET_XDP_PASS;
1689 		break;
1690 
1691 	case XDP_REDIRECT:
1692 		rxq->stats[RX_XDP_REDIRECT]++;
1693 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1694 		if (unlikely(err))
1695 			goto xdp_err;
1696 
1697 		ret = FEC_ENET_XDP_REDIR;
1698 		break;
1699 
1700 	case XDP_TX:
1701 		rxq->stats[RX_XDP_TX]++;
1702 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1703 		if (unlikely(err)) {
1704 			rxq->stats[RX_XDP_TX_ERRORS]++;
1705 			goto xdp_err;
1706 		}
1707 
1708 		ret = FEC_ENET_XDP_TX;
1709 		break;
1710 
1711 	default:
1712 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1713 		fallthrough;
1714 
1715 	case XDP_ABORTED:
1716 		fallthrough;    /* handle aborts by dropping packet */
1717 
1718 	case XDP_DROP:
1719 		rxq->stats[RX_XDP_DROP]++;
1720 xdp_err:
1721 		ret = FEC_ENET_XDP_CONSUMED;
1722 		page = virt_to_head_page(xdp->data);
1723 		page_pool_put_page(rxq->page_pool, page, sync, true);
1724 		if (act != XDP_DROP)
1725 			trace_xdp_exception(fep->netdev, prog, act);
1726 		break;
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1733 {
1734 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1735 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1736 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1737 
1738 		/* Push and remove the vlan tag */
1739 
1740 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1741 		skb_pull(skb, VLAN_HLEN);
1742 		__vlan_hwaccel_put_tag(skb,
1743 				       htons(ETH_P_8021Q),
1744 				       vlan_tag);
1745 	}
1746 }
1747 
1748 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1749  * When we update through the ring, if the next incoming buffer has
1750  * not been given to the system, we just set the empty indicator,
1751  * effectively tossing the packet.
1752  */
1753 static int
1754 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1755 {
1756 	struct fec_enet_private *fep = netdev_priv(ndev);
1757 	struct fec_enet_priv_rx_q *rxq;
1758 	struct bufdesc *bdp;
1759 	unsigned short status;
1760 	struct  sk_buff *skb;
1761 	ushort	pkt_len;
1762 	int	pkt_received = 0;
1763 	struct	bufdesc_ex *ebdp = NULL;
1764 	int	index = 0;
1765 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1766 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1767 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1768 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1769 	int cpu = smp_processor_id();
1770 	struct xdp_buff xdp;
1771 	struct page *page;
1772 	__fec32 cbd_bufaddr;
1773 	u32 sub_len = 4;
1774 
1775 #if !defined(CONFIG_M5272)
1776 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1777 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1778 	 */
1779 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1780 		data_start += 2;
1781 		sub_len += 2;
1782 	}
1783 #endif
1784 
1785 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1786 	/*
1787 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1788 	 * headers.
1789 	 */
1790 	flush_cache_all();
1791 #endif
1792 	rxq = fep->rx_queue[queue_id];
1793 
1794 	/* First, grab all of the stats for the incoming packet.
1795 	 * These get messed up if we get called due to a busy condition.
1796 	 */
1797 	bdp = rxq->bd.cur;
1798 	xdp_init_buff(&xdp, PAGE_SIZE << fep->pagepool_order, &rxq->xdp_rxq);
1799 
1800 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1801 
1802 		if (pkt_received >= budget)
1803 			break;
1804 		pkt_received++;
1805 
1806 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1807 
1808 		/* Check for errors. */
1809 		status ^= BD_ENET_RX_LAST;
1810 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1811 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1812 			   BD_ENET_RX_CL)) {
1813 			ndev->stats.rx_errors++;
1814 			if (status & BD_ENET_RX_OV) {
1815 				/* FIFO overrun */
1816 				ndev->stats.rx_fifo_errors++;
1817 				goto rx_processing_done;
1818 			}
1819 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1820 						| BD_ENET_RX_LAST)) {
1821 				/* Frame too long or too short. */
1822 				ndev->stats.rx_length_errors++;
1823 				if (status & BD_ENET_RX_LAST)
1824 					netdev_err(ndev, "rcv is not +last\n");
1825 			}
1826 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1827 				ndev->stats.rx_crc_errors++;
1828 			/* Report late collisions as a frame error. */
1829 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1830 				ndev->stats.rx_frame_errors++;
1831 			goto rx_processing_done;
1832 		}
1833 
1834 		/* Process the incoming frame. */
1835 		ndev->stats.rx_packets++;
1836 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1837 		ndev->stats.rx_bytes += pkt_len;
1838 
1839 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1840 		page = rxq->rx_skb_info[index].page;
1841 		cbd_bufaddr = bdp->cbd_bufaddr;
1842 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1843 			ndev->stats.rx_dropped++;
1844 			goto rx_processing_done;
1845 		}
1846 
1847 		dma_sync_single_for_cpu(&fep->pdev->dev,
1848 					fec32_to_cpu(cbd_bufaddr),
1849 					pkt_len,
1850 					DMA_FROM_DEVICE);
1851 		prefetch(page_address(page));
1852 
1853 		if (xdp_prog) {
1854 			xdp_buff_clear_frags_flag(&xdp);
1855 			/* subtract 16bit shift and FCS */
1856 			xdp_prepare_buff(&xdp, page_address(page),
1857 					 data_start, pkt_len - sub_len, false);
1858 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1859 			xdp_result |= ret;
1860 			if (ret != FEC_ENET_XDP_PASS)
1861 				goto rx_processing_done;
1862 		}
1863 
1864 		/* The packet length includes FCS, but we don't want to
1865 		 * include that when passing upstream as it messes up
1866 		 * bridging applications.
1867 		 */
1868 		skb = build_skb(page_address(page),
1869 				PAGE_SIZE << fep->pagepool_order);
1870 		if (unlikely(!skb)) {
1871 			page_pool_recycle_direct(rxq->page_pool, page);
1872 			ndev->stats.rx_dropped++;
1873 
1874 			netdev_err_once(ndev, "build_skb failed!\n");
1875 			goto rx_processing_done;
1876 		}
1877 
1878 		skb_reserve(skb, data_start);
1879 		skb_put(skb, pkt_len - sub_len);
1880 		skb_mark_for_recycle(skb);
1881 
1882 		if (unlikely(need_swap)) {
1883 			u8 *data;
1884 
1885 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1886 			swap_buffer(data, pkt_len);
1887 		}
1888 
1889 		/* Extract the enhanced buffer descriptor */
1890 		ebdp = NULL;
1891 		if (fep->bufdesc_ex)
1892 			ebdp = (struct bufdesc_ex *)bdp;
1893 
1894 		/* If this is a VLAN packet remove the VLAN Tag */
1895 		if (fep->bufdesc_ex &&
1896 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1897 			fec_enet_rx_vlan(ndev, skb);
1898 
1899 		skb->protocol = eth_type_trans(skb, ndev);
1900 
1901 		/* Get receive timestamp from the skb */
1902 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1903 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1904 					  skb_hwtstamps(skb));
1905 
1906 		if (fep->bufdesc_ex &&
1907 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1908 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1909 				/* don't check it */
1910 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1911 			} else {
1912 				skb_checksum_none_assert(skb);
1913 			}
1914 		}
1915 
1916 		skb_record_rx_queue(skb, queue_id);
1917 		napi_gro_receive(&fep->napi, skb);
1918 
1919 rx_processing_done:
1920 		/* Clear the status flags for this buffer */
1921 		status &= ~BD_ENET_RX_STATS;
1922 
1923 		/* Mark the buffer empty */
1924 		status |= BD_ENET_RX_EMPTY;
1925 
1926 		if (fep->bufdesc_ex) {
1927 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1928 
1929 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1930 			ebdp->cbd_prot = 0;
1931 			ebdp->cbd_bdu = 0;
1932 		}
1933 		/* Make sure the updates to rest of the descriptor are
1934 		 * performed before transferring ownership.
1935 		 */
1936 		wmb();
1937 		bdp->cbd_sc = cpu_to_fec16(status);
1938 
1939 		/* Update BD pointer to next entry */
1940 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1941 
1942 		/* Doing this here will keep the FEC running while we process
1943 		 * incoming frames.  On a heavily loaded network, we should be
1944 		 * able to keep up at the expense of system resources.
1945 		 */
1946 		writel(0, rxq->bd.reg_desc_active);
1947 	}
1948 	rxq->bd.cur = bdp;
1949 
1950 	if (xdp_result & FEC_ENET_XDP_REDIR)
1951 		xdp_do_flush();
1952 
1953 	return pkt_received;
1954 }
1955 
1956 static int fec_enet_rx(struct net_device *ndev, int budget)
1957 {
1958 	struct fec_enet_private *fep = netdev_priv(ndev);
1959 	int i, done = 0;
1960 
1961 	/* Make sure that AVB queues are processed first. */
1962 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1963 		done += fec_enet_rx_queue(ndev, i, budget - done);
1964 
1965 	return done;
1966 }
1967 
1968 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1969 {
1970 	uint int_events;
1971 
1972 	int_events = readl(fep->hwp + FEC_IEVENT);
1973 
1974 	/* Don't clear MDIO events, we poll for those */
1975 	int_events &= ~FEC_ENET_MII;
1976 
1977 	writel(int_events, fep->hwp + FEC_IEVENT);
1978 
1979 	return int_events != 0;
1980 }
1981 
1982 static irqreturn_t
1983 fec_enet_interrupt(int irq, void *dev_id)
1984 {
1985 	struct net_device *ndev = dev_id;
1986 	struct fec_enet_private *fep = netdev_priv(ndev);
1987 	irqreturn_t ret = IRQ_NONE;
1988 
1989 	if (fec_enet_collect_events(fep) && fep->link) {
1990 		ret = IRQ_HANDLED;
1991 
1992 		if (napi_schedule_prep(&fep->napi)) {
1993 			/* Disable interrupts */
1994 			writel(0, fep->hwp + FEC_IMASK);
1995 			__napi_schedule(&fep->napi);
1996 		}
1997 	}
1998 
1999 	return ret;
2000 }
2001 
2002 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
2003 {
2004 	struct net_device *ndev = napi->dev;
2005 	struct fec_enet_private *fep = netdev_priv(ndev);
2006 	int done = 0;
2007 
2008 	do {
2009 		done += fec_enet_rx(ndev, budget - done);
2010 		fec_enet_tx(ndev, budget);
2011 	} while ((done < budget) && fec_enet_collect_events(fep));
2012 
2013 	if (done < budget) {
2014 		napi_complete_done(napi, done);
2015 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2016 	}
2017 
2018 	return done;
2019 }
2020 
2021 /* ------------------------------------------------------------------------- */
2022 static int fec_get_mac(struct net_device *ndev)
2023 {
2024 	struct fec_enet_private *fep = netdev_priv(ndev);
2025 	unsigned char *iap, tmpaddr[ETH_ALEN];
2026 	int ret;
2027 
2028 	/*
2029 	 * try to get mac address in following order:
2030 	 *
2031 	 * 1) module parameter via kernel command line in form
2032 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2033 	 */
2034 	iap = macaddr;
2035 
2036 	/*
2037 	 * 2) from device tree data
2038 	 */
2039 	if (!is_valid_ether_addr(iap)) {
2040 		struct device_node *np = fep->pdev->dev.of_node;
2041 		if (np) {
2042 			ret = of_get_mac_address(np, tmpaddr);
2043 			if (!ret)
2044 				iap = tmpaddr;
2045 			else if (ret == -EPROBE_DEFER)
2046 				return ret;
2047 		}
2048 	}
2049 
2050 	/*
2051 	 * 3) from flash or fuse (via platform data)
2052 	 */
2053 	if (!is_valid_ether_addr(iap)) {
2054 #ifdef CONFIG_M5272
2055 		if (FEC_FLASHMAC)
2056 			iap = (unsigned char *)FEC_FLASHMAC;
2057 #else
2058 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2059 
2060 		if (pdata)
2061 			iap = (unsigned char *)&pdata->mac;
2062 #endif
2063 	}
2064 
2065 	/*
2066 	 * 4) FEC mac registers set by bootloader
2067 	 */
2068 	if (!is_valid_ether_addr(iap)) {
2069 		*((__be32 *) &tmpaddr[0]) =
2070 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2071 		*((__be16 *) &tmpaddr[4]) =
2072 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2073 		iap = &tmpaddr[0];
2074 	}
2075 
2076 	/*
2077 	 * 5) random mac address
2078 	 */
2079 	if (!is_valid_ether_addr(iap)) {
2080 		/* Report it and use a random ethernet address instead */
2081 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2082 		eth_hw_addr_random(ndev);
2083 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2084 			 ndev->dev_addr);
2085 		return 0;
2086 	}
2087 
2088 	/* Adjust MAC if using macaddr */
2089 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2090 
2091 	return 0;
2092 }
2093 
2094 /* ------------------------------------------------------------------------- */
2095 
2096 /*
2097  * Phy section
2098  */
2099 
2100 /* LPI Sleep Ts count base on tx clk (clk_ref).
2101  * The lpi sleep cnt value = X us / (cycle_ns).
2102  */
2103 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2104 {
2105 	struct fec_enet_private *fep = netdev_priv(ndev);
2106 
2107 	return us * (fep->clk_ref_rate / 1000) / 1000;
2108 }
2109 
2110 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2111 				 bool enable)
2112 {
2113 	struct fec_enet_private *fep = netdev_priv(ndev);
2114 	unsigned int sleep_cycle, wake_cycle;
2115 
2116 	if (enable) {
2117 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2118 		wake_cycle = sleep_cycle;
2119 	} else {
2120 		sleep_cycle = 0;
2121 		wake_cycle = 0;
2122 	}
2123 
2124 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2125 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2126 
2127 	return 0;
2128 }
2129 
2130 static void fec_enet_adjust_link(struct net_device *ndev)
2131 {
2132 	struct fec_enet_private *fep = netdev_priv(ndev);
2133 	struct phy_device *phy_dev = ndev->phydev;
2134 	int status_change = 0;
2135 
2136 	/*
2137 	 * If the netdev is down, or is going down, we're not interested
2138 	 * in link state events, so just mark our idea of the link as down
2139 	 * and ignore the event.
2140 	 */
2141 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2142 		fep->link = 0;
2143 	} else if (phy_dev->link) {
2144 		if (!fep->link) {
2145 			fep->link = phy_dev->link;
2146 			status_change = 1;
2147 		}
2148 
2149 		if (fep->full_duplex != phy_dev->duplex) {
2150 			fep->full_duplex = phy_dev->duplex;
2151 			status_change = 1;
2152 		}
2153 
2154 		if (phy_dev->speed != fep->speed) {
2155 			fep->speed = phy_dev->speed;
2156 			status_change = 1;
2157 		}
2158 
2159 		/* if any of the above changed restart the FEC */
2160 		if (status_change) {
2161 			netif_stop_queue(ndev);
2162 			napi_disable(&fep->napi);
2163 			netif_tx_lock_bh(ndev);
2164 			fec_restart(ndev);
2165 			netif_tx_wake_all_queues(ndev);
2166 			netif_tx_unlock_bh(ndev);
2167 			napi_enable(&fep->napi);
2168 		}
2169 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2170 			fec_enet_eee_mode_set(ndev,
2171 					      phy_dev->eee_cfg.tx_lpi_timer,
2172 					      phy_dev->enable_tx_lpi);
2173 	} else {
2174 		if (fep->link) {
2175 			netif_stop_queue(ndev);
2176 			napi_disable(&fep->napi);
2177 			netif_tx_lock_bh(ndev);
2178 			fec_stop(ndev);
2179 			netif_tx_unlock_bh(ndev);
2180 			napi_enable(&fep->napi);
2181 			fep->link = phy_dev->link;
2182 			status_change = 1;
2183 		}
2184 	}
2185 
2186 	if (status_change)
2187 		phy_print_status(phy_dev);
2188 }
2189 
2190 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2191 {
2192 	uint ievent;
2193 	int ret;
2194 
2195 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2196 					ievent & FEC_ENET_MII, 2, 30000);
2197 
2198 	if (!ret)
2199 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2200 
2201 	return ret;
2202 }
2203 
2204 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2205 {
2206 	struct fec_enet_private *fep = bus->priv;
2207 	struct device *dev = &fep->pdev->dev;
2208 	int ret = 0, frame_start, frame_addr, frame_op;
2209 
2210 	ret = pm_runtime_resume_and_get(dev);
2211 	if (ret < 0)
2212 		return ret;
2213 
2214 	/* C22 read */
2215 	frame_op = FEC_MMFR_OP_READ;
2216 	frame_start = FEC_MMFR_ST;
2217 	frame_addr = regnum;
2218 
2219 	/* start a read op */
2220 	writel(frame_start | frame_op |
2221 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2222 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2223 
2224 	/* wait for end of transfer */
2225 	ret = fec_enet_mdio_wait(fep);
2226 	if (ret) {
2227 		netdev_err(fep->netdev, "MDIO read timeout\n");
2228 		goto out;
2229 	}
2230 
2231 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2232 
2233 out:
2234 	pm_runtime_mark_last_busy(dev);
2235 	pm_runtime_put_autosuspend(dev);
2236 
2237 	return ret;
2238 }
2239 
2240 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2241 				  int devad, int regnum)
2242 {
2243 	struct fec_enet_private *fep = bus->priv;
2244 	struct device *dev = &fep->pdev->dev;
2245 	int ret = 0, frame_start, frame_op;
2246 
2247 	ret = pm_runtime_resume_and_get(dev);
2248 	if (ret < 0)
2249 		return ret;
2250 
2251 	frame_start = FEC_MMFR_ST_C45;
2252 
2253 	/* write address */
2254 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2255 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2256 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2257 	       fep->hwp + FEC_MII_DATA);
2258 
2259 	/* wait for end of transfer */
2260 	ret = fec_enet_mdio_wait(fep);
2261 	if (ret) {
2262 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2263 		goto out;
2264 	}
2265 
2266 	frame_op = FEC_MMFR_OP_READ_C45;
2267 
2268 	/* start a read op */
2269 	writel(frame_start | frame_op |
2270 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2271 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2272 
2273 	/* wait for end of transfer */
2274 	ret = fec_enet_mdio_wait(fep);
2275 	if (ret) {
2276 		netdev_err(fep->netdev, "MDIO read timeout\n");
2277 		goto out;
2278 	}
2279 
2280 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2281 
2282 out:
2283 	pm_runtime_mark_last_busy(dev);
2284 	pm_runtime_put_autosuspend(dev);
2285 
2286 	return ret;
2287 }
2288 
2289 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2290 				   u16 value)
2291 {
2292 	struct fec_enet_private *fep = bus->priv;
2293 	struct device *dev = &fep->pdev->dev;
2294 	int ret, frame_start, frame_addr;
2295 
2296 	ret = pm_runtime_resume_and_get(dev);
2297 	if (ret < 0)
2298 		return ret;
2299 
2300 	/* C22 write */
2301 	frame_start = FEC_MMFR_ST;
2302 	frame_addr = regnum;
2303 
2304 	/* start a write op */
2305 	writel(frame_start | FEC_MMFR_OP_WRITE |
2306 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2307 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2308 	       fep->hwp + FEC_MII_DATA);
2309 
2310 	/* wait for end of transfer */
2311 	ret = fec_enet_mdio_wait(fep);
2312 	if (ret)
2313 		netdev_err(fep->netdev, "MDIO write timeout\n");
2314 
2315 	pm_runtime_mark_last_busy(dev);
2316 	pm_runtime_put_autosuspend(dev);
2317 
2318 	return ret;
2319 }
2320 
2321 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2322 				   int devad, int regnum, u16 value)
2323 {
2324 	struct fec_enet_private *fep = bus->priv;
2325 	struct device *dev = &fep->pdev->dev;
2326 	int ret, frame_start;
2327 
2328 	ret = pm_runtime_resume_and_get(dev);
2329 	if (ret < 0)
2330 		return ret;
2331 
2332 	frame_start = FEC_MMFR_ST_C45;
2333 
2334 	/* write address */
2335 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2336 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2337 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2338 	       fep->hwp + FEC_MII_DATA);
2339 
2340 	/* wait for end of transfer */
2341 	ret = fec_enet_mdio_wait(fep);
2342 	if (ret) {
2343 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2344 		goto out;
2345 	}
2346 
2347 	/* start a write op */
2348 	writel(frame_start | FEC_MMFR_OP_WRITE |
2349 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2350 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2351 	       fep->hwp + FEC_MII_DATA);
2352 
2353 	/* wait for end of transfer */
2354 	ret = fec_enet_mdio_wait(fep);
2355 	if (ret)
2356 		netdev_err(fep->netdev, "MDIO write timeout\n");
2357 
2358 out:
2359 	pm_runtime_mark_last_busy(dev);
2360 	pm_runtime_put_autosuspend(dev);
2361 
2362 	return ret;
2363 }
2364 
2365 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2366 {
2367 	struct fec_enet_private *fep = netdev_priv(ndev);
2368 	struct phy_device *phy_dev = ndev->phydev;
2369 
2370 	if (phy_dev) {
2371 		phy_reset_after_clk_enable(phy_dev);
2372 	} else if (fep->phy_node) {
2373 		/*
2374 		 * If the PHY still is not bound to the MAC, but there is
2375 		 * OF PHY node and a matching PHY device instance already,
2376 		 * use the OF PHY node to obtain the PHY device instance,
2377 		 * and then use that PHY device instance when triggering
2378 		 * the PHY reset.
2379 		 */
2380 		phy_dev = of_phy_find_device(fep->phy_node);
2381 		phy_reset_after_clk_enable(phy_dev);
2382 		if (phy_dev)
2383 			put_device(&phy_dev->mdio.dev);
2384 	}
2385 }
2386 
2387 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2388 {
2389 	struct fec_enet_private *fep = netdev_priv(ndev);
2390 	int ret;
2391 
2392 	if (enable) {
2393 		ret = clk_prepare_enable(fep->clk_enet_out);
2394 		if (ret)
2395 			return ret;
2396 
2397 		if (fep->clk_ptp) {
2398 			mutex_lock(&fep->ptp_clk_mutex);
2399 			ret = clk_prepare_enable(fep->clk_ptp);
2400 			if (ret) {
2401 				mutex_unlock(&fep->ptp_clk_mutex);
2402 				goto failed_clk_ptp;
2403 			} else {
2404 				fep->ptp_clk_on = true;
2405 			}
2406 			mutex_unlock(&fep->ptp_clk_mutex);
2407 		}
2408 
2409 		ret = clk_prepare_enable(fep->clk_ref);
2410 		if (ret)
2411 			goto failed_clk_ref;
2412 
2413 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2414 		if (ret)
2415 			goto failed_clk_2x_txclk;
2416 
2417 		fec_enet_phy_reset_after_clk_enable(ndev);
2418 	} else {
2419 		clk_disable_unprepare(fep->clk_enet_out);
2420 		if (fep->clk_ptp) {
2421 			mutex_lock(&fep->ptp_clk_mutex);
2422 			clk_disable_unprepare(fep->clk_ptp);
2423 			fep->ptp_clk_on = false;
2424 			mutex_unlock(&fep->ptp_clk_mutex);
2425 		}
2426 		clk_disable_unprepare(fep->clk_ref);
2427 		clk_disable_unprepare(fep->clk_2x_txclk);
2428 	}
2429 
2430 	return 0;
2431 
2432 failed_clk_2x_txclk:
2433 	if (fep->clk_ref)
2434 		clk_disable_unprepare(fep->clk_ref);
2435 failed_clk_ref:
2436 	if (fep->clk_ptp) {
2437 		mutex_lock(&fep->ptp_clk_mutex);
2438 		clk_disable_unprepare(fep->clk_ptp);
2439 		fep->ptp_clk_on = false;
2440 		mutex_unlock(&fep->ptp_clk_mutex);
2441 	}
2442 failed_clk_ptp:
2443 	clk_disable_unprepare(fep->clk_enet_out);
2444 
2445 	return ret;
2446 }
2447 
2448 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2449 				      struct device_node *np)
2450 {
2451 	u32 rgmii_tx_delay, rgmii_rx_delay;
2452 
2453 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2454 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2455 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2456 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2457 			return -EINVAL;
2458 		} else if (rgmii_tx_delay == 2000) {
2459 			fep->rgmii_txc_dly = true;
2460 		}
2461 	}
2462 
2463 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2464 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2465 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2466 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2467 			return -EINVAL;
2468 		} else if (rgmii_rx_delay == 2000) {
2469 			fep->rgmii_rxc_dly = true;
2470 		}
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int fec_enet_mii_probe(struct net_device *ndev)
2477 {
2478 	struct fec_enet_private *fep = netdev_priv(ndev);
2479 	struct phy_device *phy_dev = NULL;
2480 	char mdio_bus_id[MII_BUS_ID_SIZE];
2481 	char phy_name[MII_BUS_ID_SIZE + 3];
2482 	int phy_id;
2483 	int dev_id = fep->dev_id;
2484 
2485 	if (fep->phy_node) {
2486 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2487 					 &fec_enet_adjust_link, 0,
2488 					 fep->phy_interface);
2489 		if (!phy_dev) {
2490 			netdev_err(ndev, "Unable to connect to phy\n");
2491 			return -ENODEV;
2492 		}
2493 	} else {
2494 		/* check for attached phy */
2495 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2496 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2497 				continue;
2498 			if (dev_id--)
2499 				continue;
2500 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2501 			break;
2502 		}
2503 
2504 		if (phy_id >= PHY_MAX_ADDR) {
2505 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2506 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2507 			phy_id = 0;
2508 		}
2509 
2510 		snprintf(phy_name, sizeof(phy_name),
2511 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2512 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2513 				      fep->phy_interface);
2514 	}
2515 
2516 	if (IS_ERR(phy_dev)) {
2517 		netdev_err(ndev, "could not attach to PHY\n");
2518 		return PTR_ERR(phy_dev);
2519 	}
2520 
2521 	/* mask with MAC supported features */
2522 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2523 		phy_set_max_speed(phy_dev, 1000);
2524 		phy_remove_link_mode(phy_dev,
2525 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2526 #if !defined(CONFIG_M5272)
2527 		phy_support_sym_pause(phy_dev);
2528 #endif
2529 	}
2530 	else
2531 		phy_set_max_speed(phy_dev, 100);
2532 
2533 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2534 		phy_support_eee(phy_dev);
2535 
2536 	fep->link = 0;
2537 	fep->full_duplex = 0;
2538 
2539 	phy_attached_info(phy_dev);
2540 
2541 	return 0;
2542 }
2543 
2544 static int fec_enet_mii_init(struct platform_device *pdev)
2545 {
2546 	static struct mii_bus *fec0_mii_bus;
2547 	struct net_device *ndev = platform_get_drvdata(pdev);
2548 	struct fec_enet_private *fep = netdev_priv(ndev);
2549 	bool suppress_preamble = false;
2550 	struct phy_device *phydev;
2551 	struct device_node *node;
2552 	int err = -ENXIO;
2553 	u32 mii_speed, holdtime;
2554 	u32 bus_freq;
2555 	int addr;
2556 
2557 	/*
2558 	 * The i.MX28 dual fec interfaces are not equal.
2559 	 * Here are the differences:
2560 	 *
2561 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2562 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2563 	 *  - external phys can only be configured by fec0
2564 	 *
2565 	 * That is to say fec1 can not work independently. It only works
2566 	 * when fec0 is working. The reason behind this design is that the
2567 	 * second interface is added primarily for Switch mode.
2568 	 *
2569 	 * Because of the last point above, both phys are attached on fec0
2570 	 * mdio interface in board design, and need to be configured by
2571 	 * fec0 mii_bus.
2572 	 */
2573 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2574 		/* fec1 uses fec0 mii_bus */
2575 		if (mii_cnt && fec0_mii_bus) {
2576 			fep->mii_bus = fec0_mii_bus;
2577 			mii_cnt++;
2578 			return 0;
2579 		}
2580 		return -ENOENT;
2581 	}
2582 
2583 	bus_freq = 2500000; /* 2.5MHz by default */
2584 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2585 	if (node) {
2586 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2587 		suppress_preamble = of_property_read_bool(node,
2588 							  "suppress-preamble");
2589 	}
2590 
2591 	/*
2592 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2593 	 *
2594 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2595 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2596 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2597 	 * document.
2598 	 */
2599 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2600 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2601 		mii_speed--;
2602 	if (mii_speed > 63) {
2603 		dev_err(&pdev->dev,
2604 			"fec clock (%lu) too fast to get right mii speed\n",
2605 			clk_get_rate(fep->clk_ipg));
2606 		err = -EINVAL;
2607 		goto err_out;
2608 	}
2609 
2610 	/*
2611 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2612 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2613 	 * versions are RAZ there, so just ignore the difference and write the
2614 	 * register always.
2615 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2616 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2617 	 * output.
2618 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2619 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2620 	 * holdtime cannot result in a value greater than 3.
2621 	 */
2622 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2623 
2624 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2625 
2626 	if (suppress_preamble)
2627 		fep->phy_speed |= BIT(7);
2628 
2629 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2630 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2631 		 * MII event generation condition:
2632 		 * - writing MSCR:
2633 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2634 		 *	  mscr_reg_data_in[7:0] != 0
2635 		 * - writing MMFR:
2636 		 *	- mscr[7:0]_not_zero
2637 		 */
2638 		writel(0, fep->hwp + FEC_MII_DATA);
2639 	}
2640 
2641 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2642 
2643 	/* Clear any pending transaction complete indication */
2644 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2645 
2646 	fep->mii_bus = mdiobus_alloc();
2647 	if (fep->mii_bus == NULL) {
2648 		err = -ENOMEM;
2649 		goto err_out;
2650 	}
2651 
2652 	fep->mii_bus->name = "fec_enet_mii_bus";
2653 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2654 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2655 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2656 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2657 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2658 	}
2659 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2660 		pdev->name, fep->dev_id + 1);
2661 	fep->mii_bus->priv = fep;
2662 	fep->mii_bus->parent = &pdev->dev;
2663 
2664 	err = of_mdiobus_register(fep->mii_bus, node);
2665 	if (err)
2666 		goto err_out_free_mdiobus;
2667 	of_node_put(node);
2668 
2669 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2670 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2671 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2672 		if (phydev)
2673 			phydev->mac_managed_pm = true;
2674 	}
2675 
2676 	mii_cnt++;
2677 
2678 	/* save fec0 mii_bus */
2679 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2680 		fec0_mii_bus = fep->mii_bus;
2681 
2682 	return 0;
2683 
2684 err_out_free_mdiobus:
2685 	mdiobus_free(fep->mii_bus);
2686 err_out:
2687 	of_node_put(node);
2688 	return err;
2689 }
2690 
2691 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2692 {
2693 	if (--mii_cnt == 0) {
2694 		mdiobus_unregister(fep->mii_bus);
2695 		mdiobus_free(fep->mii_bus);
2696 	}
2697 }
2698 
2699 static void fec_enet_get_drvinfo(struct net_device *ndev,
2700 				 struct ethtool_drvinfo *info)
2701 {
2702 	struct fec_enet_private *fep = netdev_priv(ndev);
2703 
2704 	strscpy(info->driver, fep->pdev->dev.driver->name,
2705 		sizeof(info->driver));
2706 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2707 }
2708 
2709 static int fec_enet_get_regs_len(struct net_device *ndev)
2710 {
2711 	struct fec_enet_private *fep = netdev_priv(ndev);
2712 	struct resource *r;
2713 	int s = 0;
2714 
2715 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2716 	if (r)
2717 		s = resource_size(r);
2718 
2719 	return s;
2720 }
2721 
2722 /* List of registers that can be safety be read to dump them with ethtool */
2723 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2724 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2725 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2726 static __u32 fec_enet_register_version = 2;
2727 static u32 fec_enet_register_offset[] = {
2728 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2729 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2730 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2731 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2732 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2733 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2734 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2735 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2736 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2737 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2738 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2739 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2740 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2741 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2742 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2743 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2744 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2745 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2746 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2747 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2748 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2749 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2750 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2751 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2752 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2753 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2754 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2755 };
2756 /* for i.MX6ul */
2757 static u32 fec_enet_register_offset_6ul[] = {
2758 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2759 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2760 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2761 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2762 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2763 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2764 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2765 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2766 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2767 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2768 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2769 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2770 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2771 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2772 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2773 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2774 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2775 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2776 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2777 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2778 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2779 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2780 };
2781 #else
2782 static __u32 fec_enet_register_version = 1;
2783 static u32 fec_enet_register_offset[] = {
2784 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2785 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2786 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2787 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2788 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2789 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2790 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2791 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2792 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2793 };
2794 #endif
2795 
2796 static void fec_enet_get_regs(struct net_device *ndev,
2797 			      struct ethtool_regs *regs, void *regbuf)
2798 {
2799 	struct fec_enet_private *fep = netdev_priv(ndev);
2800 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2801 	struct device *dev = &fep->pdev->dev;
2802 	u32 *buf = (u32 *)regbuf;
2803 	u32 i, off;
2804 	int ret;
2805 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2806 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2807 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2808 	u32 *reg_list;
2809 	u32 reg_cnt;
2810 
2811 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2812 		reg_list = fec_enet_register_offset;
2813 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2814 	} else {
2815 		reg_list = fec_enet_register_offset_6ul;
2816 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2817 	}
2818 #else
2819 	/* coldfire */
2820 	static u32 *reg_list = fec_enet_register_offset;
2821 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2822 #endif
2823 	ret = pm_runtime_resume_and_get(dev);
2824 	if (ret < 0)
2825 		return;
2826 
2827 	regs->version = fec_enet_register_version;
2828 
2829 	memset(buf, 0, regs->len);
2830 
2831 	for (i = 0; i < reg_cnt; i++) {
2832 		off = reg_list[i];
2833 
2834 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2835 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2836 			continue;
2837 
2838 		off >>= 2;
2839 		buf[off] = readl(&theregs[off]);
2840 	}
2841 
2842 	pm_runtime_mark_last_busy(dev);
2843 	pm_runtime_put_autosuspend(dev);
2844 }
2845 
2846 static int fec_enet_get_ts_info(struct net_device *ndev,
2847 				struct kernel_ethtool_ts_info *info)
2848 {
2849 	struct fec_enet_private *fep = netdev_priv(ndev);
2850 
2851 	if (fep->bufdesc_ex) {
2852 
2853 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2854 					SOF_TIMESTAMPING_TX_HARDWARE |
2855 					SOF_TIMESTAMPING_RX_HARDWARE |
2856 					SOF_TIMESTAMPING_RAW_HARDWARE;
2857 		if (fep->ptp_clock)
2858 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2859 
2860 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2861 				 (1 << HWTSTAMP_TX_ON);
2862 
2863 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2864 				   (1 << HWTSTAMP_FILTER_ALL);
2865 		return 0;
2866 	} else {
2867 		return ethtool_op_get_ts_info(ndev, info);
2868 	}
2869 }
2870 
2871 #if !defined(CONFIG_M5272)
2872 
2873 static void fec_enet_get_pauseparam(struct net_device *ndev,
2874 				    struct ethtool_pauseparam *pause)
2875 {
2876 	struct fec_enet_private *fep = netdev_priv(ndev);
2877 
2878 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2879 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2880 	pause->rx_pause = pause->tx_pause;
2881 }
2882 
2883 static int fec_enet_set_pauseparam(struct net_device *ndev,
2884 				   struct ethtool_pauseparam *pause)
2885 {
2886 	struct fec_enet_private *fep = netdev_priv(ndev);
2887 
2888 	if (!ndev->phydev)
2889 		return -ENODEV;
2890 
2891 	if (pause->tx_pause != pause->rx_pause) {
2892 		netdev_info(ndev,
2893 			"hardware only support enable/disable both tx and rx");
2894 		return -EINVAL;
2895 	}
2896 
2897 	fep->pause_flag = 0;
2898 
2899 	/* tx pause must be same as rx pause */
2900 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2901 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2902 
2903 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2904 			  pause->autoneg);
2905 
2906 	if (pause->autoneg) {
2907 		if (netif_running(ndev))
2908 			fec_stop(ndev);
2909 		phy_start_aneg(ndev->phydev);
2910 	}
2911 	if (netif_running(ndev)) {
2912 		napi_disable(&fep->napi);
2913 		netif_tx_lock_bh(ndev);
2914 		fec_restart(ndev);
2915 		netif_tx_wake_all_queues(ndev);
2916 		netif_tx_unlock_bh(ndev);
2917 		napi_enable(&fep->napi);
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 static const struct fec_stat {
2924 	char name[ETH_GSTRING_LEN];
2925 	u16 offset;
2926 } fec_stats[] = {
2927 	/* RMON TX */
2928 	{ "tx_dropped", RMON_T_DROP },
2929 	{ "tx_packets", RMON_T_PACKETS },
2930 	{ "tx_broadcast", RMON_T_BC_PKT },
2931 	{ "tx_multicast", RMON_T_MC_PKT },
2932 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2933 	{ "tx_undersize", RMON_T_UNDERSIZE },
2934 	{ "tx_oversize", RMON_T_OVERSIZE },
2935 	{ "tx_fragment", RMON_T_FRAG },
2936 	{ "tx_jabber", RMON_T_JAB },
2937 	{ "tx_collision", RMON_T_COL },
2938 	{ "tx_64byte", RMON_T_P64 },
2939 	{ "tx_65to127byte", RMON_T_P65TO127 },
2940 	{ "tx_128to255byte", RMON_T_P128TO255 },
2941 	{ "tx_256to511byte", RMON_T_P256TO511 },
2942 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2943 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2944 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2945 	{ "tx_octets", RMON_T_OCTETS },
2946 
2947 	/* IEEE TX */
2948 	{ "IEEE_tx_drop", IEEE_T_DROP },
2949 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2950 	{ "IEEE_tx_1col", IEEE_T_1COL },
2951 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2952 	{ "IEEE_tx_def", IEEE_T_DEF },
2953 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2954 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2955 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2956 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2957 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2958 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2959 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2960 
2961 	/* RMON RX */
2962 	{ "rx_packets", RMON_R_PACKETS },
2963 	{ "rx_broadcast", RMON_R_BC_PKT },
2964 	{ "rx_multicast", RMON_R_MC_PKT },
2965 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2966 	{ "rx_undersize", RMON_R_UNDERSIZE },
2967 	{ "rx_oversize", RMON_R_OVERSIZE },
2968 	{ "rx_fragment", RMON_R_FRAG },
2969 	{ "rx_jabber", RMON_R_JAB },
2970 	{ "rx_64byte", RMON_R_P64 },
2971 	{ "rx_65to127byte", RMON_R_P65TO127 },
2972 	{ "rx_128to255byte", RMON_R_P128TO255 },
2973 	{ "rx_256to511byte", RMON_R_P256TO511 },
2974 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2975 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2976 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2977 	{ "rx_octets", RMON_R_OCTETS },
2978 
2979 	/* IEEE RX */
2980 	{ "IEEE_rx_drop", IEEE_R_DROP },
2981 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2982 	{ "IEEE_rx_crc", IEEE_R_CRC },
2983 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2984 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2985 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2986 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2987 };
2988 
2989 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2990 
2991 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2992 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2993 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2994 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2995 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2996 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2997 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2998 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2999 };
3000 
3001 static void fec_enet_update_ethtool_stats(struct net_device *dev)
3002 {
3003 	struct fec_enet_private *fep = netdev_priv(dev);
3004 	int i;
3005 
3006 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3007 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
3008 }
3009 
3010 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
3011 {
3012 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
3013 	struct fec_enet_priv_rx_q *rxq;
3014 	int i, j;
3015 
3016 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3017 		rxq = fep->rx_queue[i];
3018 
3019 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3020 			xdp_stats[j] += rxq->stats[j];
3021 	}
3022 
3023 	memcpy(data, xdp_stats, sizeof(xdp_stats));
3024 }
3025 
3026 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3027 {
3028 #ifdef CONFIG_PAGE_POOL_STATS
3029 	struct page_pool_stats stats = {};
3030 	struct fec_enet_priv_rx_q *rxq;
3031 	int i;
3032 
3033 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3034 		rxq = fep->rx_queue[i];
3035 
3036 		if (!rxq->page_pool)
3037 			continue;
3038 
3039 		page_pool_get_stats(rxq->page_pool, &stats);
3040 	}
3041 
3042 	page_pool_ethtool_stats_get(data, &stats);
3043 #endif
3044 }
3045 
3046 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3047 				       struct ethtool_stats *stats, u64 *data)
3048 {
3049 	struct fec_enet_private *fep = netdev_priv(dev);
3050 
3051 	if (netif_running(dev))
3052 		fec_enet_update_ethtool_stats(dev);
3053 
3054 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3055 	data += FEC_STATS_SIZE / sizeof(u64);
3056 
3057 	fec_enet_get_xdp_stats(fep, data);
3058 	data += XDP_STATS_TOTAL;
3059 
3060 	fec_enet_page_pool_stats(fep, data);
3061 }
3062 
3063 static void fec_enet_get_strings(struct net_device *netdev,
3064 	u32 stringset, u8 *data)
3065 {
3066 	int i;
3067 	switch (stringset) {
3068 	case ETH_SS_STATS:
3069 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3070 			ethtool_puts(&data, fec_stats[i].name);
3071 		}
3072 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3073 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3074 		}
3075 		page_pool_ethtool_stats_get_strings(data);
3076 
3077 		break;
3078 	case ETH_SS_TEST:
3079 		net_selftest_get_strings(data);
3080 		break;
3081 	}
3082 }
3083 
3084 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3085 {
3086 	int count;
3087 
3088 	switch (sset) {
3089 	case ETH_SS_STATS:
3090 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3091 		count += page_pool_ethtool_stats_get_count();
3092 		return count;
3093 
3094 	case ETH_SS_TEST:
3095 		return net_selftest_get_count();
3096 	default:
3097 		return -EOPNOTSUPP;
3098 	}
3099 }
3100 
3101 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3102 {
3103 	struct fec_enet_private *fep = netdev_priv(dev);
3104 	struct fec_enet_priv_rx_q *rxq;
3105 	int i, j;
3106 
3107 	/* Disable MIB statistics counters */
3108 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3109 
3110 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3111 		writel(0, fep->hwp + fec_stats[i].offset);
3112 
3113 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3114 		rxq = fep->rx_queue[i];
3115 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3116 			rxq->stats[j] = 0;
3117 	}
3118 
3119 	/* Don't disable MIB statistics counters */
3120 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3121 }
3122 
3123 #else	/* !defined(CONFIG_M5272) */
3124 #define FEC_STATS_SIZE	0
3125 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3126 {
3127 }
3128 
3129 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3130 {
3131 }
3132 #endif /* !defined(CONFIG_M5272) */
3133 
3134 /* ITR clock source is enet system clock (clk_ahb).
3135  * TCTT unit is cycle_ns * 64 cycle
3136  * So, the ICTT value = X us / (cycle_ns * 64)
3137  */
3138 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3139 {
3140 	struct fec_enet_private *fep = netdev_priv(ndev);
3141 
3142 	return us * (fep->itr_clk_rate / 64000) / 1000;
3143 }
3144 
3145 /* Set threshold for interrupt coalescing */
3146 static void fec_enet_itr_coal_set(struct net_device *ndev)
3147 {
3148 	struct fec_enet_private *fep = netdev_priv(ndev);
3149 	u32 rx_itr = 0, tx_itr = 0;
3150 	int rx_ictt, tx_ictt;
3151 
3152 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3153 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3154 
3155 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3156 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3157 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3158 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3159 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3160 	}
3161 
3162 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3163 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3164 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3165 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3166 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3167 	}
3168 
3169 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3170 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3171 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3172 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3173 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3174 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3175 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3176 	}
3177 }
3178 
3179 static int fec_enet_get_coalesce(struct net_device *ndev,
3180 				 struct ethtool_coalesce *ec,
3181 				 struct kernel_ethtool_coalesce *kernel_coal,
3182 				 struct netlink_ext_ack *extack)
3183 {
3184 	struct fec_enet_private *fep = netdev_priv(ndev);
3185 
3186 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3187 		return -EOPNOTSUPP;
3188 
3189 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3190 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3191 
3192 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3193 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3194 
3195 	return 0;
3196 }
3197 
3198 static int fec_enet_set_coalesce(struct net_device *ndev,
3199 				 struct ethtool_coalesce *ec,
3200 				 struct kernel_ethtool_coalesce *kernel_coal,
3201 				 struct netlink_ext_ack *extack)
3202 {
3203 	struct fec_enet_private *fep = netdev_priv(ndev);
3204 	struct device *dev = &fep->pdev->dev;
3205 	unsigned int cycle;
3206 
3207 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3208 		return -EOPNOTSUPP;
3209 
3210 	if (ec->rx_max_coalesced_frames > 255) {
3211 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3212 		return -EINVAL;
3213 	}
3214 
3215 	if (ec->tx_max_coalesced_frames > 255) {
3216 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3217 		return -EINVAL;
3218 	}
3219 
3220 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3221 	if (cycle > 0xFFFF) {
3222 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3223 		return -EINVAL;
3224 	}
3225 
3226 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3227 	if (cycle > 0xFFFF) {
3228 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3229 		return -EINVAL;
3230 	}
3231 
3232 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3233 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3234 
3235 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3236 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3237 
3238 	fec_enet_itr_coal_set(ndev);
3239 
3240 	return 0;
3241 }
3242 
3243 static int
3244 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3245 {
3246 	struct fec_enet_private *fep = netdev_priv(ndev);
3247 
3248 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3249 		return -EOPNOTSUPP;
3250 
3251 	if (!netif_running(ndev))
3252 		return -ENETDOWN;
3253 
3254 	return phy_ethtool_get_eee(ndev->phydev, edata);
3255 }
3256 
3257 static int
3258 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3259 {
3260 	struct fec_enet_private *fep = netdev_priv(ndev);
3261 
3262 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3263 		return -EOPNOTSUPP;
3264 
3265 	if (!netif_running(ndev))
3266 		return -ENETDOWN;
3267 
3268 	return phy_ethtool_set_eee(ndev->phydev, edata);
3269 }
3270 
3271 static void
3272 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3273 {
3274 	struct fec_enet_private *fep = netdev_priv(ndev);
3275 
3276 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3277 		wol->supported = WAKE_MAGIC;
3278 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3279 	} else {
3280 		wol->supported = wol->wolopts = 0;
3281 	}
3282 }
3283 
3284 static int
3285 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3286 {
3287 	struct fec_enet_private *fep = netdev_priv(ndev);
3288 
3289 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3290 		return -EINVAL;
3291 
3292 	if (wol->wolopts & ~WAKE_MAGIC)
3293 		return -EINVAL;
3294 
3295 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3296 	if (device_may_wakeup(&ndev->dev))
3297 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3298 	else
3299 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3300 
3301 	return 0;
3302 }
3303 
3304 static const struct ethtool_ops fec_enet_ethtool_ops = {
3305 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3306 				     ETHTOOL_COALESCE_MAX_FRAMES,
3307 	.get_drvinfo		= fec_enet_get_drvinfo,
3308 	.get_regs_len		= fec_enet_get_regs_len,
3309 	.get_regs		= fec_enet_get_regs,
3310 	.nway_reset		= phy_ethtool_nway_reset,
3311 	.get_link		= ethtool_op_get_link,
3312 	.get_coalesce		= fec_enet_get_coalesce,
3313 	.set_coalesce		= fec_enet_set_coalesce,
3314 #ifndef CONFIG_M5272
3315 	.get_pauseparam		= fec_enet_get_pauseparam,
3316 	.set_pauseparam		= fec_enet_set_pauseparam,
3317 	.get_strings		= fec_enet_get_strings,
3318 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3319 	.get_sset_count		= fec_enet_get_sset_count,
3320 #endif
3321 	.get_ts_info		= fec_enet_get_ts_info,
3322 	.get_wol		= fec_enet_get_wol,
3323 	.set_wol		= fec_enet_set_wol,
3324 	.get_eee		= fec_enet_get_eee,
3325 	.set_eee		= fec_enet_set_eee,
3326 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3327 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3328 	.self_test		= net_selftest,
3329 };
3330 
3331 static void fec_enet_free_buffers(struct net_device *ndev)
3332 {
3333 	struct fec_enet_private *fep = netdev_priv(ndev);
3334 	unsigned int i;
3335 	struct fec_enet_priv_tx_q *txq;
3336 	struct fec_enet_priv_rx_q *rxq;
3337 	unsigned int q;
3338 
3339 	for (q = 0; q < fep->num_rx_queues; q++) {
3340 		rxq = fep->rx_queue[q];
3341 		for (i = 0; i < rxq->bd.ring_size; i++)
3342 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3343 
3344 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3345 			rxq->stats[i] = 0;
3346 
3347 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3348 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3349 		page_pool_destroy(rxq->page_pool);
3350 		rxq->page_pool = NULL;
3351 	}
3352 
3353 	for (q = 0; q < fep->num_tx_queues; q++) {
3354 		txq = fep->tx_queue[q];
3355 		for (i = 0; i < txq->bd.ring_size; i++) {
3356 			kfree(txq->tx_bounce[i]);
3357 			txq->tx_bounce[i] = NULL;
3358 
3359 			if (!txq->tx_buf[i].buf_p) {
3360 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3361 				continue;
3362 			}
3363 
3364 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3365 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3366 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3367 				xdp_return_frame(txq->tx_buf[i].buf_p);
3368 			} else {
3369 				struct page *page = txq->tx_buf[i].buf_p;
3370 
3371 				page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3372 						   page, 0, false);
3373 			}
3374 
3375 			txq->tx_buf[i].buf_p = NULL;
3376 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3377 		}
3378 	}
3379 }
3380 
3381 static void fec_enet_free_queue(struct net_device *ndev)
3382 {
3383 	struct fec_enet_private *fep = netdev_priv(ndev);
3384 	int i;
3385 	struct fec_enet_priv_tx_q *txq;
3386 
3387 	for (i = 0; i < fep->num_tx_queues; i++)
3388 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3389 			txq = fep->tx_queue[i];
3390 			fec_dma_free(&fep->pdev->dev,
3391 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3392 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3393 		}
3394 
3395 	for (i = 0; i < fep->num_rx_queues; i++)
3396 		kfree(fep->rx_queue[i]);
3397 	for (i = 0; i < fep->num_tx_queues; i++)
3398 		kfree(fep->tx_queue[i]);
3399 }
3400 
3401 static int fec_enet_alloc_queue(struct net_device *ndev)
3402 {
3403 	struct fec_enet_private *fep = netdev_priv(ndev);
3404 	int i;
3405 	int ret = 0;
3406 	struct fec_enet_priv_tx_q *txq;
3407 
3408 	for (i = 0; i < fep->num_tx_queues; i++) {
3409 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3410 		if (!txq) {
3411 			ret = -ENOMEM;
3412 			goto alloc_failed;
3413 		}
3414 
3415 		fep->tx_queue[i] = txq;
3416 		txq->bd.ring_size = TX_RING_SIZE;
3417 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3418 
3419 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3420 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3421 
3422 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3423 					txq->bd.ring_size * TSO_HEADER_SIZE,
3424 					&txq->tso_hdrs_dma, GFP_KERNEL);
3425 		if (!txq->tso_hdrs) {
3426 			ret = -ENOMEM;
3427 			goto alloc_failed;
3428 		}
3429 	}
3430 
3431 	for (i = 0; i < fep->num_rx_queues; i++) {
3432 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3433 					   GFP_KERNEL);
3434 		if (!fep->rx_queue[i]) {
3435 			ret = -ENOMEM;
3436 			goto alloc_failed;
3437 		}
3438 
3439 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3440 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3441 	}
3442 	return ret;
3443 
3444 alloc_failed:
3445 	fec_enet_free_queue(ndev);
3446 	return ret;
3447 }
3448 
3449 static int
3450 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3451 {
3452 	struct fec_enet_private *fep = netdev_priv(ndev);
3453 	struct fec_enet_priv_rx_q *rxq;
3454 	dma_addr_t phys_addr;
3455 	struct bufdesc	*bdp;
3456 	struct page *page;
3457 	int i, err;
3458 
3459 	rxq = fep->rx_queue[queue];
3460 	bdp = rxq->bd.base;
3461 
3462 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3463 	if (err < 0) {
3464 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3465 		return err;
3466 	}
3467 
3468 	for (i = 0; i < rxq->bd.ring_size; i++) {
3469 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3470 		if (!page)
3471 			goto err_alloc;
3472 
3473 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3474 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3475 
3476 		rxq->rx_skb_info[i].page = page;
3477 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3478 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3479 
3480 		if (fep->bufdesc_ex) {
3481 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3482 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3483 		}
3484 
3485 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3486 	}
3487 
3488 	/* Set the last buffer to wrap. */
3489 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3490 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3491 	return 0;
3492 
3493  err_alloc:
3494 	fec_enet_free_buffers(ndev);
3495 	return -ENOMEM;
3496 }
3497 
3498 static int
3499 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3500 {
3501 	struct fec_enet_private *fep = netdev_priv(ndev);
3502 	unsigned int i;
3503 	struct bufdesc  *bdp;
3504 	struct fec_enet_priv_tx_q *txq;
3505 
3506 	txq = fep->tx_queue[queue];
3507 	bdp = txq->bd.base;
3508 	for (i = 0; i < txq->bd.ring_size; i++) {
3509 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3510 		if (!txq->tx_bounce[i])
3511 			goto err_alloc;
3512 
3513 		bdp->cbd_sc = cpu_to_fec16(0);
3514 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3515 
3516 		if (fep->bufdesc_ex) {
3517 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3518 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3519 		}
3520 
3521 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3522 	}
3523 
3524 	/* Set the last buffer to wrap. */
3525 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3526 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3527 
3528 	return 0;
3529 
3530  err_alloc:
3531 	fec_enet_free_buffers(ndev);
3532 	return -ENOMEM;
3533 }
3534 
3535 static int fec_enet_alloc_buffers(struct net_device *ndev)
3536 {
3537 	struct fec_enet_private *fep = netdev_priv(ndev);
3538 	unsigned int i;
3539 
3540 	for (i = 0; i < fep->num_rx_queues; i++)
3541 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3542 			return -ENOMEM;
3543 
3544 	for (i = 0; i < fep->num_tx_queues; i++)
3545 		if (fec_enet_alloc_txq_buffers(ndev, i))
3546 			return -ENOMEM;
3547 	return 0;
3548 }
3549 
3550 static int
3551 fec_enet_open(struct net_device *ndev)
3552 {
3553 	struct fec_enet_private *fep = netdev_priv(ndev);
3554 	int ret;
3555 	bool reset_again;
3556 
3557 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3558 	if (ret < 0)
3559 		return ret;
3560 
3561 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3562 	ret = fec_enet_clk_enable(ndev, true);
3563 	if (ret)
3564 		goto clk_enable;
3565 
3566 	/* During the first fec_enet_open call the PHY isn't probed at this
3567 	 * point. Therefore the phy_reset_after_clk_enable() call within
3568 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3569 	 * sure the PHY is working correctly we check if we need to reset again
3570 	 * later when the PHY is probed
3571 	 */
3572 	if (ndev->phydev && ndev->phydev->drv)
3573 		reset_again = false;
3574 	else
3575 		reset_again = true;
3576 
3577 	/* I should reset the ring buffers here, but I don't yet know
3578 	 * a simple way to do that.
3579 	 */
3580 
3581 	ret = fec_enet_alloc_buffers(ndev);
3582 	if (ret)
3583 		goto err_enet_alloc;
3584 
3585 	/* Init MAC prior to mii bus probe */
3586 	fec_restart(ndev);
3587 
3588 	/* Call phy_reset_after_clk_enable() again if it failed during
3589 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3590 	 */
3591 	if (reset_again)
3592 		fec_enet_phy_reset_after_clk_enable(ndev);
3593 
3594 	/* Probe and connect to PHY when open the interface */
3595 	ret = fec_enet_mii_probe(ndev);
3596 	if (ret)
3597 		goto err_enet_mii_probe;
3598 
3599 	if (fep->quirks & FEC_QUIRK_ERR006687)
3600 		imx6q_cpuidle_fec_irqs_used();
3601 
3602 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3603 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3604 
3605 	napi_enable(&fep->napi);
3606 	phy_start(ndev->phydev);
3607 	netif_tx_start_all_queues(ndev);
3608 
3609 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3610 				 FEC_WOL_FLAG_ENABLE);
3611 
3612 	return 0;
3613 
3614 err_enet_mii_probe:
3615 	fec_enet_free_buffers(ndev);
3616 err_enet_alloc:
3617 	fec_enet_clk_enable(ndev, false);
3618 clk_enable:
3619 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3620 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3621 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3622 	return ret;
3623 }
3624 
3625 static int
3626 fec_enet_close(struct net_device *ndev)
3627 {
3628 	struct fec_enet_private *fep = netdev_priv(ndev);
3629 
3630 	phy_stop(ndev->phydev);
3631 
3632 	if (netif_device_present(ndev)) {
3633 		napi_disable(&fep->napi);
3634 		netif_tx_disable(ndev);
3635 		fec_stop(ndev);
3636 	}
3637 
3638 	phy_disconnect(ndev->phydev);
3639 
3640 	if (fep->quirks & FEC_QUIRK_ERR006687)
3641 		imx6q_cpuidle_fec_irqs_unused();
3642 
3643 	fec_enet_update_ethtool_stats(ndev);
3644 
3645 	fec_enet_clk_enable(ndev, false);
3646 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3647 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3648 
3649 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3650 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3651 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3652 
3653 	fec_enet_free_buffers(ndev);
3654 
3655 	return 0;
3656 }
3657 
3658 /* Set or clear the multicast filter for this adaptor.
3659  * Skeleton taken from sunlance driver.
3660  * The CPM Ethernet implementation allows Multicast as well as individual
3661  * MAC address filtering.  Some of the drivers check to make sure it is
3662  * a group multicast address, and discard those that are not.  I guess I
3663  * will do the same for now, but just remove the test if you want
3664  * individual filtering as well (do the upper net layers want or support
3665  * this kind of feature?).
3666  */
3667 
3668 #define FEC_HASH_BITS	6		/* #bits in hash */
3669 
3670 static void set_multicast_list(struct net_device *ndev)
3671 {
3672 	struct fec_enet_private *fep = netdev_priv(ndev);
3673 	struct netdev_hw_addr *ha;
3674 	unsigned int crc, tmp;
3675 	unsigned char hash;
3676 	unsigned int hash_high = 0, hash_low = 0;
3677 
3678 	if (ndev->flags & IFF_PROMISC) {
3679 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3680 		tmp |= 0x8;
3681 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3682 		return;
3683 	}
3684 
3685 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3686 	tmp &= ~0x8;
3687 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3688 
3689 	if (ndev->flags & IFF_ALLMULTI) {
3690 		/* Catch all multicast addresses, so set the
3691 		 * filter to all 1's
3692 		 */
3693 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3694 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3695 
3696 		return;
3697 	}
3698 
3699 	/* Add the addresses in hash register */
3700 	netdev_for_each_mc_addr(ha, ndev) {
3701 		/* calculate crc32 value of mac address */
3702 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3703 
3704 		/* only upper 6 bits (FEC_HASH_BITS) are used
3705 		 * which point to specific bit in the hash registers
3706 		 */
3707 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3708 
3709 		if (hash > 31)
3710 			hash_high |= 1 << (hash - 32);
3711 		else
3712 			hash_low |= 1 << hash;
3713 	}
3714 
3715 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3716 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3717 }
3718 
3719 /* Set a MAC change in hardware. */
3720 static int
3721 fec_set_mac_address(struct net_device *ndev, void *p)
3722 {
3723 	struct sockaddr *addr = p;
3724 
3725 	if (addr) {
3726 		if (!is_valid_ether_addr(addr->sa_data))
3727 			return -EADDRNOTAVAIL;
3728 		eth_hw_addr_set(ndev, addr->sa_data);
3729 	}
3730 
3731 	/* Add netif status check here to avoid system hang in below case:
3732 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3733 	 * After ethx down, fec all clocks are gated off and then register
3734 	 * access causes system hang.
3735 	 */
3736 	if (!netif_running(ndev))
3737 		return 0;
3738 
3739 	fec_set_hw_mac_addr(ndev);
3740 
3741 	return 0;
3742 }
3743 
3744 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3745 	netdev_features_t features)
3746 {
3747 	struct fec_enet_private *fep = netdev_priv(netdev);
3748 	netdev_features_t changed = features ^ netdev->features;
3749 
3750 	netdev->features = features;
3751 
3752 	/* Receive checksum has been changed */
3753 	if (changed & NETIF_F_RXCSUM) {
3754 		if (features & NETIF_F_RXCSUM)
3755 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3756 		else
3757 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3758 	}
3759 }
3760 
3761 static int fec_set_features(struct net_device *netdev,
3762 	netdev_features_t features)
3763 {
3764 	struct fec_enet_private *fep = netdev_priv(netdev);
3765 	netdev_features_t changed = features ^ netdev->features;
3766 
3767 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3768 		napi_disable(&fep->napi);
3769 		netif_tx_lock_bh(netdev);
3770 		fec_stop(netdev);
3771 		fec_enet_set_netdev_features(netdev, features);
3772 		fec_restart(netdev);
3773 		netif_tx_wake_all_queues(netdev);
3774 		netif_tx_unlock_bh(netdev);
3775 		napi_enable(&fep->napi);
3776 	} else {
3777 		fec_enet_set_netdev_features(netdev, features);
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3784 				 struct net_device *sb_dev)
3785 {
3786 	struct fec_enet_private *fep = netdev_priv(ndev);
3787 	u16 vlan_tag = 0;
3788 
3789 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3790 		return netdev_pick_tx(ndev, skb, NULL);
3791 
3792 	/* VLAN is present in the payload.*/
3793 	if (eth_type_vlan(skb->protocol)) {
3794 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3795 
3796 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3797 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3798 	} else if (skb_vlan_tag_present(skb)) {
3799 		vlan_tag = skb->vlan_tci;
3800 	} else {
3801 		return vlan_tag;
3802 	}
3803 
3804 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3805 }
3806 
3807 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3808 {
3809 	struct fec_enet_private *fep = netdev_priv(dev);
3810 	bool is_run = netif_running(dev);
3811 	struct bpf_prog *old_prog;
3812 
3813 	switch (bpf->command) {
3814 	case XDP_SETUP_PROG:
3815 		/* No need to support the SoCs that require to
3816 		 * do the frame swap because the performance wouldn't be
3817 		 * better than the skb mode.
3818 		 */
3819 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3820 			return -EOPNOTSUPP;
3821 
3822 		if (!bpf->prog)
3823 			xdp_features_clear_redirect_target(dev);
3824 
3825 		if (is_run) {
3826 			napi_disable(&fep->napi);
3827 			netif_tx_disable(dev);
3828 		}
3829 
3830 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3831 		if (old_prog)
3832 			bpf_prog_put(old_prog);
3833 
3834 		fec_restart(dev);
3835 
3836 		if (is_run) {
3837 			napi_enable(&fep->napi);
3838 			netif_tx_start_all_queues(dev);
3839 		}
3840 
3841 		if (bpf->prog)
3842 			xdp_features_set_redirect_target(dev, false);
3843 
3844 		return 0;
3845 
3846 	case XDP_SETUP_XSK_POOL:
3847 		return -EOPNOTSUPP;
3848 
3849 	default:
3850 		return -EOPNOTSUPP;
3851 	}
3852 }
3853 
3854 static int
3855 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3856 {
3857 	if (unlikely(index < 0))
3858 		return 0;
3859 
3860 	return (index % fep->num_tx_queues);
3861 }
3862 
3863 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3864 				   struct fec_enet_priv_tx_q *txq,
3865 				   void *frame, u32 dma_sync_len,
3866 				   bool ndo_xmit)
3867 {
3868 	unsigned int index, status, estatus;
3869 	struct bufdesc *bdp;
3870 	dma_addr_t dma_addr;
3871 	int entries_free;
3872 	u16 frame_len;
3873 
3874 	entries_free = fec_enet_get_free_txdesc_num(txq);
3875 	if (entries_free < MAX_SKB_FRAGS + 1) {
3876 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3877 		return -EBUSY;
3878 	}
3879 
3880 	/* Fill in a Tx ring entry */
3881 	bdp = txq->bd.cur;
3882 	status = fec16_to_cpu(bdp->cbd_sc);
3883 	status &= ~BD_ENET_TX_STATS;
3884 
3885 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3886 
3887 	if (ndo_xmit) {
3888 		struct xdp_frame *xdpf = frame;
3889 
3890 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3891 					  xdpf->len, DMA_TO_DEVICE);
3892 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3893 			return -ENOMEM;
3894 
3895 		frame_len = xdpf->len;
3896 		txq->tx_buf[index].buf_p = xdpf;
3897 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3898 	} else {
3899 		struct xdp_buff *xdpb = frame;
3900 		struct page *page;
3901 
3902 		page = virt_to_page(xdpb->data);
3903 		dma_addr = page_pool_get_dma_addr(page) +
3904 			   (xdpb->data - xdpb->data_hard_start);
3905 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3906 					   dma_sync_len, DMA_BIDIRECTIONAL);
3907 		frame_len = xdpb->data_end - xdpb->data;
3908 		txq->tx_buf[index].buf_p = page;
3909 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3910 	}
3911 
3912 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3913 	if (fep->bufdesc_ex)
3914 		estatus = BD_ENET_TX_INT;
3915 
3916 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3917 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3918 
3919 	if (fep->bufdesc_ex) {
3920 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3921 
3922 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3923 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3924 
3925 		ebdp->cbd_bdu = 0;
3926 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3927 	}
3928 
3929 	/* Make sure the updates to rest of the descriptor are performed before
3930 	 * transferring ownership.
3931 	 */
3932 	dma_wmb();
3933 
3934 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3935 	 * it's the last BD of the frame, and to put the CRC on the end.
3936 	 */
3937 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3938 	bdp->cbd_sc = cpu_to_fec16(status);
3939 
3940 	/* If this was the last BD in the ring, start at the beginning again. */
3941 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3942 
3943 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3944 	dma_wmb();
3945 
3946 	txq->bd.cur = bdp;
3947 
3948 	/* Trigger transmission start */
3949 	writel(0, txq->bd.reg_desc_active);
3950 
3951 	return 0;
3952 }
3953 
3954 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3955 				int cpu, struct xdp_buff *xdp,
3956 				u32 dma_sync_len)
3957 {
3958 	struct fec_enet_priv_tx_q *txq;
3959 	struct netdev_queue *nq;
3960 	int queue, ret;
3961 
3962 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3963 	txq = fep->tx_queue[queue];
3964 	nq = netdev_get_tx_queue(fep->netdev, queue);
3965 
3966 	__netif_tx_lock(nq, cpu);
3967 
3968 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3969 	txq_trans_cond_update(nq);
3970 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3971 
3972 	__netif_tx_unlock(nq);
3973 
3974 	return ret;
3975 }
3976 
3977 static int fec_enet_xdp_xmit(struct net_device *dev,
3978 			     int num_frames,
3979 			     struct xdp_frame **frames,
3980 			     u32 flags)
3981 {
3982 	struct fec_enet_private *fep = netdev_priv(dev);
3983 	struct fec_enet_priv_tx_q *txq;
3984 	int cpu = smp_processor_id();
3985 	unsigned int sent_frames = 0;
3986 	struct netdev_queue *nq;
3987 	unsigned int queue;
3988 	int i;
3989 
3990 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3991 	txq = fep->tx_queue[queue];
3992 	nq = netdev_get_tx_queue(fep->netdev, queue);
3993 
3994 	__netif_tx_lock(nq, cpu);
3995 
3996 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3997 	txq_trans_cond_update(nq);
3998 	for (i = 0; i < num_frames; i++) {
3999 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
4000 			break;
4001 		sent_frames++;
4002 	}
4003 
4004 	__netif_tx_unlock(nq);
4005 
4006 	return sent_frames;
4007 }
4008 
4009 static int fec_hwtstamp_get(struct net_device *ndev,
4010 			    struct kernel_hwtstamp_config *config)
4011 {
4012 	struct fec_enet_private *fep = netdev_priv(ndev);
4013 
4014 	if (!netif_running(ndev))
4015 		return -EINVAL;
4016 
4017 	if (!fep->bufdesc_ex)
4018 		return -EOPNOTSUPP;
4019 
4020 	fec_ptp_get(ndev, config);
4021 
4022 	return 0;
4023 }
4024 
4025 static int fec_hwtstamp_set(struct net_device *ndev,
4026 			    struct kernel_hwtstamp_config *config,
4027 			    struct netlink_ext_ack *extack)
4028 {
4029 	struct fec_enet_private *fep = netdev_priv(ndev);
4030 
4031 	if (!netif_running(ndev))
4032 		return -EINVAL;
4033 
4034 	if (!fep->bufdesc_ex)
4035 		return -EOPNOTSUPP;
4036 
4037 	return fec_ptp_set(ndev, config, extack);
4038 }
4039 
4040 static int fec_change_mtu(struct net_device *ndev, int new_mtu)
4041 {
4042 	struct fec_enet_private *fep = netdev_priv(ndev);
4043 	int order;
4044 
4045 	if (netif_running(ndev))
4046 		return -EBUSY;
4047 
4048 	order = get_order(new_mtu + ETH_HLEN + ETH_FCS_LEN
4049 			  + FEC_DRV_RESERVE_SPACE);
4050 	fep->rx_frame_size = (PAGE_SIZE << order) - FEC_DRV_RESERVE_SPACE;
4051 	fep->pagepool_order = order;
4052 	WRITE_ONCE(ndev->mtu, new_mtu);
4053 
4054 	return 0;
4055 }
4056 
4057 static const struct net_device_ops fec_netdev_ops = {
4058 	.ndo_open		= fec_enet_open,
4059 	.ndo_stop		= fec_enet_close,
4060 	.ndo_start_xmit		= fec_enet_start_xmit,
4061 	.ndo_select_queue       = fec_enet_select_queue,
4062 	.ndo_set_rx_mode	= set_multicast_list,
4063 	.ndo_validate_addr	= eth_validate_addr,
4064 	.ndo_tx_timeout		= fec_timeout,
4065 	.ndo_set_mac_address	= fec_set_mac_address,
4066 	.ndo_change_mtu		= fec_change_mtu,
4067 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4068 	.ndo_set_features	= fec_set_features,
4069 	.ndo_bpf		= fec_enet_bpf,
4070 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4071 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4072 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4073 };
4074 
4075 static const unsigned short offset_des_active_rxq[] = {
4076 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4077 };
4078 
4079 static const unsigned short offset_des_active_txq[] = {
4080 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4081 };
4082 
4083  /*
4084   * XXX:  We need to clean up on failure exits here.
4085   *
4086   */
4087 static int fec_enet_init(struct net_device *ndev)
4088 {
4089 	struct fec_enet_private *fep = netdev_priv(ndev);
4090 	struct bufdesc *cbd_base;
4091 	dma_addr_t bd_dma;
4092 	int bd_size;
4093 	unsigned int i;
4094 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4095 			sizeof(struct bufdesc);
4096 	unsigned dsize_log2 = __fls(dsize);
4097 	int ret;
4098 
4099 	WARN_ON(dsize != (1 << dsize_log2));
4100 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4101 	fep->rx_align = 0xf;
4102 	fep->tx_align = 0xf;
4103 #else
4104 	fep->rx_align = 0x3;
4105 	fep->tx_align = 0x3;
4106 #endif
4107 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4108 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4109 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4110 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4111 
4112 	/* Check mask of the streaming and coherent API */
4113 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4114 	if (ret < 0) {
4115 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4116 		return ret;
4117 	}
4118 
4119 	ret = fec_enet_alloc_queue(ndev);
4120 	if (ret)
4121 		return ret;
4122 
4123 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4124 
4125 	/* Allocate memory for buffer descriptors. */
4126 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4127 				  GFP_KERNEL);
4128 	if (!cbd_base) {
4129 		ret = -ENOMEM;
4130 		goto free_queue_mem;
4131 	}
4132 
4133 	/* Get the Ethernet address */
4134 	ret = fec_get_mac(ndev);
4135 	if (ret)
4136 		goto free_queue_mem;
4137 
4138 	/* Set receive and transmit descriptor base. */
4139 	for (i = 0; i < fep->num_rx_queues; i++) {
4140 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4141 		unsigned size = dsize * rxq->bd.ring_size;
4142 
4143 		rxq->bd.qid = i;
4144 		rxq->bd.base = cbd_base;
4145 		rxq->bd.cur = cbd_base;
4146 		rxq->bd.dma = bd_dma;
4147 		rxq->bd.dsize = dsize;
4148 		rxq->bd.dsize_log2 = dsize_log2;
4149 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4150 		bd_dma += size;
4151 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4152 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4153 	}
4154 
4155 	for (i = 0; i < fep->num_tx_queues; i++) {
4156 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4157 		unsigned size = dsize * txq->bd.ring_size;
4158 
4159 		txq->bd.qid = i;
4160 		txq->bd.base = cbd_base;
4161 		txq->bd.cur = cbd_base;
4162 		txq->bd.dma = bd_dma;
4163 		txq->bd.dsize = dsize;
4164 		txq->bd.dsize_log2 = dsize_log2;
4165 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4166 		bd_dma += size;
4167 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4168 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4169 	}
4170 
4171 
4172 	/* The FEC Ethernet specific entries in the device structure */
4173 	ndev->watchdog_timeo = TX_TIMEOUT;
4174 	ndev->netdev_ops = &fec_netdev_ops;
4175 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4176 
4177 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4178 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4179 
4180 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4181 		/* enable hw VLAN support */
4182 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4183 
4184 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4185 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4186 
4187 		/* enable hw accelerator */
4188 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4189 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4190 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4191 	}
4192 
4193 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4194 		fep->tx_align = 0;
4195 		fep->rx_align = 0x3f;
4196 	}
4197 
4198 	ndev->hw_features = ndev->features;
4199 
4200 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4201 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4202 				     NETDEV_XDP_ACT_REDIRECT;
4203 
4204 	fec_restart(ndev);
4205 
4206 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4207 		fec_enet_clear_ethtool_stats(ndev);
4208 	else
4209 		fec_enet_update_ethtool_stats(ndev);
4210 
4211 	return 0;
4212 
4213 free_queue_mem:
4214 	fec_enet_free_queue(ndev);
4215 	return ret;
4216 }
4217 
4218 static void fec_enet_deinit(struct net_device *ndev)
4219 {
4220 	struct fec_enet_private *fep = netdev_priv(ndev);
4221 
4222 	netif_napi_del(&fep->napi);
4223 	fec_enet_free_queue(ndev);
4224 }
4225 
4226 #ifdef CONFIG_OF
4227 static int fec_reset_phy(struct platform_device *pdev)
4228 {
4229 	struct gpio_desc *phy_reset;
4230 	int msec = 1, phy_post_delay = 0;
4231 	struct device_node *np = pdev->dev.of_node;
4232 	int err;
4233 
4234 	if (!np)
4235 		return 0;
4236 
4237 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4238 	/* A sane reset duration should not be longer than 1s */
4239 	if (!err && msec > 1000)
4240 		msec = 1;
4241 
4242 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4243 	/* valid reset duration should be less than 1s */
4244 	if (!err && phy_post_delay > 1000)
4245 		return -EINVAL;
4246 
4247 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4248 					    GPIOD_OUT_HIGH);
4249 	if (IS_ERR(phy_reset))
4250 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4251 				     "failed to get phy-reset-gpios\n");
4252 
4253 	if (!phy_reset)
4254 		return 0;
4255 
4256 	if (msec > 20)
4257 		msleep(msec);
4258 	else
4259 		usleep_range(msec * 1000, msec * 1000 + 1000);
4260 
4261 	gpiod_set_value_cansleep(phy_reset, 0);
4262 
4263 	if (!phy_post_delay)
4264 		return 0;
4265 
4266 	if (phy_post_delay > 20)
4267 		msleep(phy_post_delay);
4268 	else
4269 		usleep_range(phy_post_delay * 1000,
4270 			     phy_post_delay * 1000 + 1000);
4271 
4272 	return 0;
4273 }
4274 #else /* CONFIG_OF */
4275 static int fec_reset_phy(struct platform_device *pdev)
4276 {
4277 	/*
4278 	 * In case of platform probe, the reset has been done
4279 	 * by machine code.
4280 	 */
4281 	return 0;
4282 }
4283 #endif /* CONFIG_OF */
4284 
4285 static void
4286 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4287 {
4288 	struct device_node *np = pdev->dev.of_node;
4289 
4290 	*num_tx = *num_rx = 1;
4291 
4292 	if (!np || !of_device_is_available(np))
4293 		return;
4294 
4295 	/* parse the num of tx and rx queues */
4296 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4297 
4298 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4299 
4300 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4301 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4302 			 *num_tx);
4303 		*num_tx = 1;
4304 		return;
4305 	}
4306 
4307 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4308 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4309 			 *num_rx);
4310 		*num_rx = 1;
4311 		return;
4312 	}
4313 
4314 }
4315 
4316 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4317 {
4318 	int irq_cnt = platform_irq_count(pdev);
4319 
4320 	if (irq_cnt > FEC_IRQ_NUM)
4321 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4322 	else if (irq_cnt == 2)
4323 		irq_cnt = 1;	/* last for pps */
4324 	else if (irq_cnt <= 0)
4325 		irq_cnt = 1;	/* At least 1 irq is needed */
4326 	return irq_cnt;
4327 }
4328 
4329 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4330 {
4331 	struct net_device *ndev = platform_get_drvdata(pdev);
4332 	struct fec_enet_private *fep = netdev_priv(ndev);
4333 
4334 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4335 		fep->wake_irq = fep->irq[2];
4336 	else
4337 		fep->wake_irq = fep->irq[0];
4338 }
4339 
4340 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4341 				   struct device_node *np)
4342 {
4343 	struct device_node *gpr_np;
4344 	u32 out_val[3];
4345 	int ret = 0;
4346 
4347 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4348 	if (!gpr_np)
4349 		return 0;
4350 
4351 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4352 					 ARRAY_SIZE(out_val));
4353 	if (ret) {
4354 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4355 		goto out;
4356 	}
4357 
4358 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4359 	if (IS_ERR(fep->stop_gpr.gpr)) {
4360 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4361 		ret = PTR_ERR(fep->stop_gpr.gpr);
4362 		fep->stop_gpr.gpr = NULL;
4363 		goto out;
4364 	}
4365 
4366 	fep->stop_gpr.reg = out_val[1];
4367 	fep->stop_gpr.bit = out_val[2];
4368 
4369 out:
4370 	of_node_put(gpr_np);
4371 
4372 	return ret;
4373 }
4374 
4375 static int
4376 fec_probe(struct platform_device *pdev)
4377 {
4378 	struct fec_enet_private *fep;
4379 	struct fec_platform_data *pdata;
4380 	phy_interface_t interface;
4381 	struct net_device *ndev;
4382 	int i, irq, ret = 0;
4383 	static int dev_id;
4384 	struct device_node *np = pdev->dev.of_node, *phy_node;
4385 	int num_tx_qs;
4386 	int num_rx_qs;
4387 	char irq_name[8];
4388 	int irq_cnt;
4389 	const struct fec_devinfo *dev_info;
4390 
4391 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4392 
4393 	/* Init network device */
4394 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4395 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4396 	if (!ndev)
4397 		return -ENOMEM;
4398 
4399 	SET_NETDEV_DEV(ndev, &pdev->dev);
4400 
4401 	/* setup board info structure */
4402 	fep = netdev_priv(ndev);
4403 
4404 	dev_info = device_get_match_data(&pdev->dev);
4405 	if (!dev_info)
4406 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4407 	if (dev_info)
4408 		fep->quirks = dev_info->quirks;
4409 
4410 	fep->netdev = ndev;
4411 	fep->num_rx_queues = num_rx_qs;
4412 	fep->num_tx_queues = num_tx_qs;
4413 
4414 #if !defined(CONFIG_M5272)
4415 	/* default enable pause frame auto negotiation */
4416 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4417 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4418 #endif
4419 
4420 	/* Select default pin state */
4421 	pinctrl_pm_select_default_state(&pdev->dev);
4422 
4423 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4424 	if (IS_ERR(fep->hwp)) {
4425 		ret = PTR_ERR(fep->hwp);
4426 		goto failed_ioremap;
4427 	}
4428 
4429 	fep->pdev = pdev;
4430 	fep->dev_id = dev_id++;
4431 
4432 	platform_set_drvdata(pdev, ndev);
4433 
4434 	if ((of_machine_is_compatible("fsl,imx6q") ||
4435 	     of_machine_is_compatible("fsl,imx6dl")) &&
4436 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4437 		fep->quirks |= FEC_QUIRK_ERR006687;
4438 
4439 	ret = fec_enet_ipc_handle_init(fep);
4440 	if (ret)
4441 		goto failed_ipc_init;
4442 
4443 	if (of_property_read_bool(np, "fsl,magic-packet"))
4444 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4445 
4446 	ret = fec_enet_init_stop_mode(fep, np);
4447 	if (ret)
4448 		goto failed_stop_mode;
4449 
4450 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4451 	if (!phy_node && of_phy_is_fixed_link(np)) {
4452 		ret = of_phy_register_fixed_link(np);
4453 		if (ret < 0) {
4454 			dev_err(&pdev->dev,
4455 				"broken fixed-link specification\n");
4456 			goto failed_phy;
4457 		}
4458 		phy_node = of_node_get(np);
4459 	}
4460 	fep->phy_node = phy_node;
4461 
4462 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4463 	if (ret) {
4464 		pdata = dev_get_platdata(&pdev->dev);
4465 		if (pdata)
4466 			fep->phy_interface = pdata->phy;
4467 		else
4468 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4469 	} else {
4470 		fep->phy_interface = interface;
4471 	}
4472 
4473 	ret = fec_enet_parse_rgmii_delay(fep, np);
4474 	if (ret)
4475 		goto failed_rgmii_delay;
4476 
4477 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4478 	if (IS_ERR(fep->clk_ipg)) {
4479 		ret = PTR_ERR(fep->clk_ipg);
4480 		goto failed_clk;
4481 	}
4482 
4483 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4484 	if (IS_ERR(fep->clk_ahb)) {
4485 		ret = PTR_ERR(fep->clk_ahb);
4486 		goto failed_clk;
4487 	}
4488 
4489 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4490 
4491 	/* enet_out is optional, depends on board */
4492 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4493 	if (IS_ERR(fep->clk_enet_out)) {
4494 		ret = PTR_ERR(fep->clk_enet_out);
4495 		goto failed_clk;
4496 	}
4497 
4498 	fep->ptp_clk_on = false;
4499 	mutex_init(&fep->ptp_clk_mutex);
4500 
4501 	/* clk_ref is optional, depends on board */
4502 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4503 	if (IS_ERR(fep->clk_ref)) {
4504 		ret = PTR_ERR(fep->clk_ref);
4505 		goto failed_clk;
4506 	}
4507 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4508 
4509 	/* clk_2x_txclk is optional, depends on board */
4510 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4511 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4512 		if (IS_ERR(fep->clk_2x_txclk))
4513 			fep->clk_2x_txclk = NULL;
4514 	}
4515 
4516 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4517 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4518 	if (IS_ERR(fep->clk_ptp)) {
4519 		fep->clk_ptp = NULL;
4520 		fep->bufdesc_ex = false;
4521 	}
4522 
4523 	ret = fec_enet_clk_enable(ndev, true);
4524 	if (ret)
4525 		goto failed_clk;
4526 
4527 	ret = clk_prepare_enable(fep->clk_ipg);
4528 	if (ret)
4529 		goto failed_clk_ipg;
4530 	ret = clk_prepare_enable(fep->clk_ahb);
4531 	if (ret)
4532 		goto failed_clk_ahb;
4533 
4534 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4535 	if (!IS_ERR(fep->reg_phy)) {
4536 		ret = regulator_enable(fep->reg_phy);
4537 		if (ret) {
4538 			dev_err(&pdev->dev,
4539 				"Failed to enable phy regulator: %d\n", ret);
4540 			goto failed_regulator;
4541 		}
4542 	} else {
4543 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4544 			ret = -EPROBE_DEFER;
4545 			goto failed_regulator;
4546 		}
4547 		fep->reg_phy = NULL;
4548 	}
4549 
4550 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4551 	pm_runtime_use_autosuspend(&pdev->dev);
4552 	pm_runtime_get_noresume(&pdev->dev);
4553 	pm_runtime_set_active(&pdev->dev);
4554 	pm_runtime_enable(&pdev->dev);
4555 
4556 	ret = fec_reset_phy(pdev);
4557 	if (ret)
4558 		goto failed_reset;
4559 
4560 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4561 	if (fep->bufdesc_ex)
4562 		fec_ptp_init(pdev, irq_cnt);
4563 
4564 	ret = fec_enet_init(ndev);
4565 	if (ret)
4566 		goto failed_init;
4567 
4568 	for (i = 0; i < irq_cnt; i++) {
4569 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4570 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4571 		if (irq < 0)
4572 			irq = platform_get_irq(pdev, i);
4573 		if (irq < 0) {
4574 			ret = irq;
4575 			goto failed_irq;
4576 		}
4577 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4578 				       0, pdev->name, ndev);
4579 		if (ret)
4580 			goto failed_irq;
4581 
4582 		fep->irq[i] = irq;
4583 	}
4584 
4585 	/* Decide which interrupt line is wakeup capable */
4586 	fec_enet_get_wakeup_irq(pdev);
4587 
4588 	ret = fec_enet_mii_init(pdev);
4589 	if (ret)
4590 		goto failed_mii_init;
4591 
4592 	/* Carrier starts down, phylib will bring it up */
4593 	netif_carrier_off(ndev);
4594 	fec_enet_clk_enable(ndev, false);
4595 	pinctrl_pm_select_sleep_state(&pdev->dev);
4596 
4597 	fep->pagepool_order = 0;
4598 	fep->rx_frame_size = FEC_ENET_RX_FRSIZE;
4599 
4600 	if (fep->quirks & FEC_QUIRK_JUMBO_FRAME)
4601 		fep->max_buf_size = MAX_JUMBO_BUF_SIZE;
4602 	else
4603 		fep->max_buf_size = PKT_MAXBUF_SIZE;
4604 
4605 	ndev->max_mtu = fep->max_buf_size - ETH_HLEN - ETH_FCS_LEN;
4606 
4607 	ret = register_netdev(ndev);
4608 	if (ret)
4609 		goto failed_register;
4610 
4611 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4612 			   FEC_WOL_HAS_MAGIC_PACKET);
4613 
4614 	if (fep->bufdesc_ex && fep->ptp_clock)
4615 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4616 
4617 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4618 
4619 	pm_runtime_mark_last_busy(&pdev->dev);
4620 	pm_runtime_put_autosuspend(&pdev->dev);
4621 
4622 	return 0;
4623 
4624 failed_register:
4625 	fec_enet_mii_remove(fep);
4626 failed_mii_init:
4627 failed_irq:
4628 	fec_enet_deinit(ndev);
4629 failed_init:
4630 	fec_ptp_stop(pdev);
4631 failed_reset:
4632 	pm_runtime_put_noidle(&pdev->dev);
4633 	pm_runtime_disable(&pdev->dev);
4634 	if (fep->reg_phy)
4635 		regulator_disable(fep->reg_phy);
4636 failed_regulator:
4637 	clk_disable_unprepare(fep->clk_ahb);
4638 failed_clk_ahb:
4639 	clk_disable_unprepare(fep->clk_ipg);
4640 failed_clk_ipg:
4641 	fec_enet_clk_enable(ndev, false);
4642 failed_clk:
4643 failed_rgmii_delay:
4644 	if (of_phy_is_fixed_link(np))
4645 		of_phy_deregister_fixed_link(np);
4646 	of_node_put(phy_node);
4647 failed_stop_mode:
4648 failed_ipc_init:
4649 failed_phy:
4650 	dev_id--;
4651 failed_ioremap:
4652 	free_netdev(ndev);
4653 
4654 	return ret;
4655 }
4656 
4657 static void
4658 fec_drv_remove(struct platform_device *pdev)
4659 {
4660 	struct net_device *ndev = platform_get_drvdata(pdev);
4661 	struct fec_enet_private *fep = netdev_priv(ndev);
4662 	struct device_node *np = pdev->dev.of_node;
4663 	int ret;
4664 
4665 	ret = pm_runtime_get_sync(&pdev->dev);
4666 	if (ret < 0)
4667 		dev_err(&pdev->dev,
4668 			"Failed to resume device in remove callback (%pe)\n",
4669 			ERR_PTR(ret));
4670 
4671 	cancel_work_sync(&fep->tx_timeout_work);
4672 	fec_ptp_stop(pdev);
4673 	unregister_netdev(ndev);
4674 	fec_enet_mii_remove(fep);
4675 	if (fep->reg_phy)
4676 		regulator_disable(fep->reg_phy);
4677 
4678 	if (of_phy_is_fixed_link(np))
4679 		of_phy_deregister_fixed_link(np);
4680 	of_node_put(fep->phy_node);
4681 
4682 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4683 	 * disabling them again.
4684 	 */
4685 	if (ret >= 0) {
4686 		clk_disable_unprepare(fep->clk_ahb);
4687 		clk_disable_unprepare(fep->clk_ipg);
4688 	}
4689 	pm_runtime_put_noidle(&pdev->dev);
4690 	pm_runtime_disable(&pdev->dev);
4691 
4692 	fec_enet_deinit(ndev);
4693 	free_netdev(ndev);
4694 }
4695 
4696 static int fec_suspend(struct device *dev)
4697 {
4698 	struct net_device *ndev = dev_get_drvdata(dev);
4699 	struct fec_enet_private *fep = netdev_priv(ndev);
4700 	int ret;
4701 
4702 	rtnl_lock();
4703 	if (netif_running(ndev)) {
4704 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4705 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4706 		phy_stop(ndev->phydev);
4707 		napi_disable(&fep->napi);
4708 		netif_tx_lock_bh(ndev);
4709 		netif_device_detach(ndev);
4710 		netif_tx_unlock_bh(ndev);
4711 		fec_stop(ndev);
4712 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4713 			fec_irqs_disable(ndev);
4714 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4715 		} else {
4716 			fec_irqs_disable_except_wakeup(ndev);
4717 			if (fep->wake_irq > 0) {
4718 				disable_irq(fep->wake_irq);
4719 				enable_irq_wake(fep->wake_irq);
4720 			}
4721 			fec_enet_stop_mode(fep, true);
4722 		}
4723 		/* It's safe to disable clocks since interrupts are masked */
4724 		fec_enet_clk_enable(ndev, false);
4725 
4726 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4727 		if (fep->rpm_active) {
4728 			ret = pm_runtime_force_suspend(dev);
4729 			if (ret < 0) {
4730 				rtnl_unlock();
4731 				return ret;
4732 			}
4733 		}
4734 	}
4735 	rtnl_unlock();
4736 
4737 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4738 		regulator_disable(fep->reg_phy);
4739 
4740 	/* SOC supply clock to phy, when clock is disabled, phy link down
4741 	 * SOC control phy regulator, when regulator is disabled, phy link down
4742 	 */
4743 	if (fep->clk_enet_out || fep->reg_phy)
4744 		fep->link = 0;
4745 
4746 	return 0;
4747 }
4748 
4749 static int fec_resume(struct device *dev)
4750 {
4751 	struct net_device *ndev = dev_get_drvdata(dev);
4752 	struct fec_enet_private *fep = netdev_priv(ndev);
4753 	int ret;
4754 	int val;
4755 
4756 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4757 		ret = regulator_enable(fep->reg_phy);
4758 		if (ret)
4759 			return ret;
4760 	}
4761 
4762 	rtnl_lock();
4763 	if (netif_running(ndev)) {
4764 		if (fep->rpm_active)
4765 			pm_runtime_force_resume(dev);
4766 
4767 		ret = fec_enet_clk_enable(ndev, true);
4768 		if (ret) {
4769 			rtnl_unlock();
4770 			goto failed_clk;
4771 		}
4772 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4773 			fec_enet_stop_mode(fep, false);
4774 			if (fep->wake_irq) {
4775 				disable_irq_wake(fep->wake_irq);
4776 				enable_irq(fep->wake_irq);
4777 			}
4778 
4779 			val = readl(fep->hwp + FEC_ECNTRL);
4780 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4781 			writel(val, fep->hwp + FEC_ECNTRL);
4782 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4783 		} else {
4784 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4785 		}
4786 		fec_restart(ndev);
4787 		netif_tx_lock_bh(ndev);
4788 		netif_device_attach(ndev);
4789 		netif_tx_unlock_bh(ndev);
4790 		napi_enable(&fep->napi);
4791 		phy_init_hw(ndev->phydev);
4792 		phy_start(ndev->phydev);
4793 	}
4794 	rtnl_unlock();
4795 
4796 	return 0;
4797 
4798 failed_clk:
4799 	if (fep->reg_phy)
4800 		regulator_disable(fep->reg_phy);
4801 	return ret;
4802 }
4803 
4804 static int fec_runtime_suspend(struct device *dev)
4805 {
4806 	struct net_device *ndev = dev_get_drvdata(dev);
4807 	struct fec_enet_private *fep = netdev_priv(ndev);
4808 
4809 	clk_disable_unprepare(fep->clk_ahb);
4810 	clk_disable_unprepare(fep->clk_ipg);
4811 
4812 	return 0;
4813 }
4814 
4815 static int fec_runtime_resume(struct device *dev)
4816 {
4817 	struct net_device *ndev = dev_get_drvdata(dev);
4818 	struct fec_enet_private *fep = netdev_priv(ndev);
4819 	int ret;
4820 
4821 	ret = clk_prepare_enable(fep->clk_ahb);
4822 	if (ret)
4823 		return ret;
4824 	ret = clk_prepare_enable(fep->clk_ipg);
4825 	if (ret)
4826 		goto failed_clk_ipg;
4827 
4828 	return 0;
4829 
4830 failed_clk_ipg:
4831 	clk_disable_unprepare(fep->clk_ahb);
4832 	return ret;
4833 }
4834 
4835 static const struct dev_pm_ops fec_pm_ops = {
4836 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4837 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4838 };
4839 
4840 static struct platform_driver fec_driver = {
4841 	.driver	= {
4842 		.name	= DRIVER_NAME,
4843 		.pm	= pm_ptr(&fec_pm_ops),
4844 		.of_match_table = fec_dt_ids,
4845 		.suppress_bind_attrs = true,
4846 	},
4847 	.id_table = fec_devtype,
4848 	.probe	= fec_probe,
4849 	.remove = fec_drv_remove,
4850 };
4851 
4852 module_platform_driver(fec_driver);
4853 
4854 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4855 MODULE_LICENSE("GPL");
4856