1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/property.h> 56 #include <linux/mdio.h> 57 #include <linux/phy.h> 58 #include <linux/fec.h> 59 #include <linux/of.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 /* Pause frame feild and FIFO threshold */ 89 #define FEC_ENET_FCE (1 << 5) 90 #define FEC_ENET_RSEM_V 0x84 91 #define FEC_ENET_RSFL_V 16 92 #define FEC_ENET_RAEM_V 0x8 93 #define FEC_ENET_RAFL_V 0x8 94 #define FEC_ENET_OPD_V 0xFFF0 95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 96 97 #define FEC_ENET_XDP_PASS 0 98 #define FEC_ENET_XDP_CONSUMED BIT(0) 99 #define FEC_ENET_XDP_TX BIT(1) 100 #define FEC_ENET_XDP_REDIR BIT(2) 101 102 struct fec_devinfo { 103 u32 quirks; 104 }; 105 106 static const struct fec_devinfo fec_imx25_info = { 107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx27_info = { 112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 113 FEC_QUIRK_HAS_MDIO_C45, 114 }; 115 116 static const struct fec_devinfo fec_imx28_info = { 117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 121 }; 122 123 static const struct fec_devinfo fec_imx6q_info = { 124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_mvf600_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 133 FEC_QUIRK_HAS_MDIO_C45, 134 }; 135 136 static const struct fec_devinfo fec_imx6x_info = { 137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 143 FEC_QUIRK_HAS_MDIO_C45, 144 }; 145 146 static const struct fec_devinfo fec_imx6ul_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 152 FEC_QUIRK_HAS_MDIO_C45, 153 }; 154 155 static const struct fec_devinfo fec_imx8mq_info = { 156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 163 FEC_QUIRK_HAS_MDIO_C45, 164 }; 165 166 static const struct fec_devinfo fec_imx8qm_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 174 }; 175 176 static const struct fec_devinfo fec_s32v234_info = { 177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 181 FEC_QUIRK_HAS_MDIO_C45, 182 }; 183 184 static struct platform_device_id fec_devtype[] = { 185 { 186 /* keep it for coldfire */ 187 .name = DRIVER_NAME, 188 .driver_data = 0, 189 }, { 190 /* sentinel */ 191 } 192 }; 193 MODULE_DEVICE_TABLE(platform, fec_devtype); 194 195 static const struct of_device_id fec_dt_ids[] = { 196 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 197 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 198 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 199 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 200 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 201 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, }, 202 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 203 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 204 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 205 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 206 { /* sentinel */ } 207 }; 208 MODULE_DEVICE_TABLE(of, fec_dt_ids); 209 210 static unsigned char macaddr[ETH_ALEN]; 211 module_param_array(macaddr, byte, NULL, 0); 212 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 213 214 #if defined(CONFIG_M5272) 215 /* 216 * Some hardware gets it MAC address out of local flash memory. 217 * if this is non-zero then assume it is the address to get MAC from. 218 */ 219 #if defined(CONFIG_NETtel) 220 #define FEC_FLASHMAC 0xf0006006 221 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 222 #define FEC_FLASHMAC 0xf0006000 223 #elif defined(CONFIG_CANCam) 224 #define FEC_FLASHMAC 0xf0020000 225 #elif defined (CONFIG_M5272C3) 226 #define FEC_FLASHMAC (0xffe04000 + 4) 227 #elif defined(CONFIG_MOD5272) 228 #define FEC_FLASHMAC 0xffc0406b 229 #else 230 #define FEC_FLASHMAC 0 231 #endif 232 #endif /* CONFIG_M5272 */ 233 234 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 235 * 236 * 2048 byte skbufs are allocated. However, alignment requirements 237 * varies between FEC variants. Worst case is 64, so round down by 64. 238 */ 239 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 240 #define PKT_MINBUF_SIZE 64 241 242 /* FEC receive acceleration */ 243 #define FEC_RACC_IPDIS (1 << 1) 244 #define FEC_RACC_PRODIS (1 << 2) 245 #define FEC_RACC_SHIFT16 BIT(7) 246 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 247 248 /* MIB Control Register */ 249 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 250 251 /* 252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 253 * size bits. Other FEC hardware does not, so we need to take that into 254 * account when setting it. 255 */ 256 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 257 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 258 defined(CONFIG_ARM64) 259 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 260 #else 261 #define OPT_FRAME_SIZE 0 262 #endif 263 264 /* FEC MII MMFR bits definition */ 265 #define FEC_MMFR_ST (1 << 30) 266 #define FEC_MMFR_ST_C45 (0) 267 #define FEC_MMFR_OP_READ (2 << 28) 268 #define FEC_MMFR_OP_READ_C45 (3 << 28) 269 #define FEC_MMFR_OP_WRITE (1 << 28) 270 #define FEC_MMFR_OP_ADDR_WRITE (0) 271 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 272 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 273 #define FEC_MMFR_TA (2 << 16) 274 #define FEC_MMFR_DATA(v) (v & 0xffff) 275 /* FEC ECR bits definition */ 276 #define FEC_ECR_MAGICEN (1 << 2) 277 #define FEC_ECR_SLEEP (1 << 3) 278 279 #define FEC_MII_TIMEOUT 30000 /* us */ 280 281 /* Transmitter timeout */ 282 #define TX_TIMEOUT (2 * HZ) 283 284 #define FEC_PAUSE_FLAG_AUTONEG 0x1 285 #define FEC_PAUSE_FLAG_ENABLE 0x2 286 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 287 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 288 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 289 290 /* Max number of allowed TCP segments for software TSO */ 291 #define FEC_MAX_TSO_SEGS 100 292 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 293 294 #define IS_TSO_HEADER(txq, addr) \ 295 ((addr >= txq->tso_hdrs_dma) && \ 296 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 297 298 static int mii_cnt; 299 300 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 301 struct bufdesc_prop *bd) 302 { 303 return (bdp >= bd->last) ? bd->base 304 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 305 } 306 307 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 308 struct bufdesc_prop *bd) 309 { 310 return (bdp <= bd->base) ? bd->last 311 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 312 } 313 314 static int fec_enet_get_bd_index(struct bufdesc *bdp, 315 struct bufdesc_prop *bd) 316 { 317 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 318 } 319 320 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 321 { 322 int entries; 323 324 entries = (((const char *)txq->dirty_tx - 325 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 326 327 return entries >= 0 ? entries : entries + txq->bd.ring_size; 328 } 329 330 static void swap_buffer(void *bufaddr, int len) 331 { 332 int i; 333 unsigned int *buf = bufaddr; 334 335 for (i = 0; i < len; i += 4, buf++) 336 swab32s(buf); 337 } 338 339 static void fec_dump(struct net_device *ndev) 340 { 341 struct fec_enet_private *fep = netdev_priv(ndev); 342 struct bufdesc *bdp; 343 struct fec_enet_priv_tx_q *txq; 344 int index = 0; 345 346 netdev_info(ndev, "TX ring dump\n"); 347 pr_info("Nr SC addr len SKB\n"); 348 349 txq = fep->tx_queue[0]; 350 bdp = txq->bd.base; 351 352 do { 353 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 354 index, 355 bdp == txq->bd.cur ? 'S' : ' ', 356 bdp == txq->dirty_tx ? 'H' : ' ', 357 fec16_to_cpu(bdp->cbd_sc), 358 fec32_to_cpu(bdp->cbd_bufaddr), 359 fec16_to_cpu(bdp->cbd_datlen), 360 txq->tx_buf[index].buf_p); 361 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 362 index++; 363 } while (bdp != txq->bd.base); 364 } 365 366 /* 367 * Coldfire does not support DMA coherent allocations, and has historically used 368 * a band-aid with a manual flush in fec_enet_rx_queue. 369 */ 370 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 371 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 372 gfp_t gfp) 373 { 374 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 375 } 376 377 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 378 dma_addr_t handle) 379 { 380 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 381 } 382 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 383 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 384 gfp_t gfp) 385 { 386 return dma_alloc_coherent(dev, size, handle, gfp); 387 } 388 389 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 390 dma_addr_t handle) 391 { 392 dma_free_coherent(dev, size, cpu_addr, handle); 393 } 394 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 395 396 struct fec_dma_devres { 397 size_t size; 398 void *vaddr; 399 dma_addr_t dma_handle; 400 }; 401 402 static void fec_dmam_release(struct device *dev, void *res) 403 { 404 struct fec_dma_devres *this = res; 405 406 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 407 } 408 409 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 410 gfp_t gfp) 411 { 412 struct fec_dma_devres *dr; 413 void *vaddr; 414 415 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 416 if (!dr) 417 return NULL; 418 vaddr = fec_dma_alloc(dev, size, handle, gfp); 419 if (!vaddr) { 420 devres_free(dr); 421 return NULL; 422 } 423 dr->vaddr = vaddr; 424 dr->dma_handle = *handle; 425 dr->size = size; 426 devres_add(dev, dr); 427 return vaddr; 428 } 429 430 static inline bool is_ipv4_pkt(struct sk_buff *skb) 431 { 432 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 433 } 434 435 static int 436 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 437 { 438 /* Only run for packets requiring a checksum. */ 439 if (skb->ip_summed != CHECKSUM_PARTIAL) 440 return 0; 441 442 if (unlikely(skb_cow_head(skb, 0))) 443 return -1; 444 445 if (is_ipv4_pkt(skb)) 446 ip_hdr(skb)->check = 0; 447 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 448 449 return 0; 450 } 451 452 static int 453 fec_enet_create_page_pool(struct fec_enet_private *fep, 454 struct fec_enet_priv_rx_q *rxq, int size) 455 { 456 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 457 struct page_pool_params pp_params = { 458 .order = 0, 459 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 460 .pool_size = size, 461 .nid = dev_to_node(&fep->pdev->dev), 462 .dev = &fep->pdev->dev, 463 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 464 .offset = FEC_ENET_XDP_HEADROOM, 465 .max_len = FEC_ENET_RX_FRSIZE, 466 }; 467 int err; 468 469 rxq->page_pool = page_pool_create(&pp_params); 470 if (IS_ERR(rxq->page_pool)) { 471 err = PTR_ERR(rxq->page_pool); 472 rxq->page_pool = NULL; 473 return err; 474 } 475 476 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 477 if (err < 0) 478 goto err_free_pp; 479 480 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 481 rxq->page_pool); 482 if (err) 483 goto err_unregister_rxq; 484 485 return 0; 486 487 err_unregister_rxq: 488 xdp_rxq_info_unreg(&rxq->xdp_rxq); 489 err_free_pp: 490 page_pool_destroy(rxq->page_pool); 491 rxq->page_pool = NULL; 492 return err; 493 } 494 495 static struct bufdesc * 496 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 497 struct sk_buff *skb, 498 struct net_device *ndev) 499 { 500 struct fec_enet_private *fep = netdev_priv(ndev); 501 struct bufdesc *bdp = txq->bd.cur; 502 struct bufdesc_ex *ebdp; 503 int nr_frags = skb_shinfo(skb)->nr_frags; 504 int frag, frag_len; 505 unsigned short status; 506 unsigned int estatus = 0; 507 skb_frag_t *this_frag; 508 unsigned int index; 509 void *bufaddr; 510 dma_addr_t addr; 511 int i; 512 513 for (frag = 0; frag < nr_frags; frag++) { 514 this_frag = &skb_shinfo(skb)->frags[frag]; 515 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 516 ebdp = (struct bufdesc_ex *)bdp; 517 518 status = fec16_to_cpu(bdp->cbd_sc); 519 status &= ~BD_ENET_TX_STATS; 520 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 521 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 522 523 /* Handle the last BD specially */ 524 if (frag == nr_frags - 1) { 525 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 526 if (fep->bufdesc_ex) { 527 estatus |= BD_ENET_TX_INT; 528 if (unlikely(skb_shinfo(skb)->tx_flags & 529 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 530 estatus |= BD_ENET_TX_TS; 531 } 532 } 533 534 if (fep->bufdesc_ex) { 535 if (fep->quirks & FEC_QUIRK_HAS_AVB) 536 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 537 if (skb->ip_summed == CHECKSUM_PARTIAL) 538 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 539 540 ebdp->cbd_bdu = 0; 541 ebdp->cbd_esc = cpu_to_fec32(estatus); 542 } 543 544 bufaddr = skb_frag_address(this_frag); 545 546 index = fec_enet_get_bd_index(bdp, &txq->bd); 547 if (((unsigned long) bufaddr) & fep->tx_align || 548 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 549 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 550 bufaddr = txq->tx_bounce[index]; 551 552 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 553 swap_buffer(bufaddr, frag_len); 554 } 555 556 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 557 DMA_TO_DEVICE); 558 if (dma_mapping_error(&fep->pdev->dev, addr)) { 559 if (net_ratelimit()) 560 netdev_err(ndev, "Tx DMA memory map failed\n"); 561 goto dma_mapping_error; 562 } 563 564 bdp->cbd_bufaddr = cpu_to_fec32(addr); 565 bdp->cbd_datlen = cpu_to_fec16(frag_len); 566 /* Make sure the updates to rest of the descriptor are 567 * performed before transferring ownership. 568 */ 569 wmb(); 570 bdp->cbd_sc = cpu_to_fec16(status); 571 } 572 573 return bdp; 574 dma_mapping_error: 575 bdp = txq->bd.cur; 576 for (i = 0; i < frag; i++) { 577 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 578 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 579 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 580 } 581 return ERR_PTR(-ENOMEM); 582 } 583 584 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 585 struct sk_buff *skb, struct net_device *ndev) 586 { 587 struct fec_enet_private *fep = netdev_priv(ndev); 588 int nr_frags = skb_shinfo(skb)->nr_frags; 589 struct bufdesc *bdp, *last_bdp; 590 void *bufaddr; 591 dma_addr_t addr; 592 unsigned short status; 593 unsigned short buflen; 594 unsigned int estatus = 0; 595 unsigned int index; 596 int entries_free; 597 598 entries_free = fec_enet_get_free_txdesc_num(txq); 599 if (entries_free < MAX_SKB_FRAGS + 1) { 600 dev_kfree_skb_any(skb); 601 if (net_ratelimit()) 602 netdev_err(ndev, "NOT enough BD for SG!\n"); 603 return NETDEV_TX_OK; 604 } 605 606 /* Protocol checksum off-load for TCP and UDP. */ 607 if (fec_enet_clear_csum(skb, ndev)) { 608 dev_kfree_skb_any(skb); 609 return NETDEV_TX_OK; 610 } 611 612 /* Fill in a Tx ring entry */ 613 bdp = txq->bd.cur; 614 last_bdp = bdp; 615 status = fec16_to_cpu(bdp->cbd_sc); 616 status &= ~BD_ENET_TX_STATS; 617 618 /* Set buffer length and buffer pointer */ 619 bufaddr = skb->data; 620 buflen = skb_headlen(skb); 621 622 index = fec_enet_get_bd_index(bdp, &txq->bd); 623 if (((unsigned long) bufaddr) & fep->tx_align || 624 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 625 memcpy(txq->tx_bounce[index], skb->data, buflen); 626 bufaddr = txq->tx_bounce[index]; 627 628 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 629 swap_buffer(bufaddr, buflen); 630 } 631 632 /* Push the data cache so the CPM does not get stale memory data. */ 633 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 634 if (dma_mapping_error(&fep->pdev->dev, addr)) { 635 dev_kfree_skb_any(skb); 636 if (net_ratelimit()) 637 netdev_err(ndev, "Tx DMA memory map failed\n"); 638 return NETDEV_TX_OK; 639 } 640 641 if (nr_frags) { 642 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 643 if (IS_ERR(last_bdp)) { 644 dma_unmap_single(&fep->pdev->dev, addr, 645 buflen, DMA_TO_DEVICE); 646 dev_kfree_skb_any(skb); 647 return NETDEV_TX_OK; 648 } 649 } else { 650 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 651 if (fep->bufdesc_ex) { 652 estatus = BD_ENET_TX_INT; 653 if (unlikely(skb_shinfo(skb)->tx_flags & 654 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 655 estatus |= BD_ENET_TX_TS; 656 } 657 } 658 bdp->cbd_bufaddr = cpu_to_fec32(addr); 659 bdp->cbd_datlen = cpu_to_fec16(buflen); 660 661 if (fep->bufdesc_ex) { 662 663 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 664 665 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 666 fep->hwts_tx_en)) 667 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 668 669 if (fep->quirks & FEC_QUIRK_HAS_AVB) 670 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 671 672 if (skb->ip_summed == CHECKSUM_PARTIAL) 673 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 674 675 ebdp->cbd_bdu = 0; 676 ebdp->cbd_esc = cpu_to_fec32(estatus); 677 } 678 679 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 680 /* Save skb pointer */ 681 txq->tx_buf[index].buf_p = skb; 682 683 /* Make sure the updates to rest of the descriptor are performed before 684 * transferring ownership. 685 */ 686 wmb(); 687 688 /* Send it on its way. Tell FEC it's ready, interrupt when done, 689 * it's the last BD of the frame, and to put the CRC on the end. 690 */ 691 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 692 bdp->cbd_sc = cpu_to_fec16(status); 693 694 /* If this was the last BD in the ring, start at the beginning again. */ 695 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 696 697 skb_tx_timestamp(skb); 698 699 /* Make sure the update to bdp is performed before txq->bd.cur. */ 700 wmb(); 701 txq->bd.cur = bdp; 702 703 /* Trigger transmission start */ 704 writel(0, txq->bd.reg_desc_active); 705 706 return 0; 707 } 708 709 static int 710 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 711 struct net_device *ndev, 712 struct bufdesc *bdp, int index, char *data, 713 int size, bool last_tcp, bool is_last) 714 { 715 struct fec_enet_private *fep = netdev_priv(ndev); 716 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 717 unsigned short status; 718 unsigned int estatus = 0; 719 dma_addr_t addr; 720 721 status = fec16_to_cpu(bdp->cbd_sc); 722 status &= ~BD_ENET_TX_STATS; 723 724 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 725 726 if (((unsigned long) data) & fep->tx_align || 727 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 728 memcpy(txq->tx_bounce[index], data, size); 729 data = txq->tx_bounce[index]; 730 731 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 732 swap_buffer(data, size); 733 } 734 735 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 736 if (dma_mapping_error(&fep->pdev->dev, addr)) { 737 dev_kfree_skb_any(skb); 738 if (net_ratelimit()) 739 netdev_err(ndev, "Tx DMA memory map failed\n"); 740 return NETDEV_TX_OK; 741 } 742 743 bdp->cbd_datlen = cpu_to_fec16(size); 744 bdp->cbd_bufaddr = cpu_to_fec32(addr); 745 746 if (fep->bufdesc_ex) { 747 if (fep->quirks & FEC_QUIRK_HAS_AVB) 748 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 749 if (skb->ip_summed == CHECKSUM_PARTIAL) 750 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 751 ebdp->cbd_bdu = 0; 752 ebdp->cbd_esc = cpu_to_fec32(estatus); 753 } 754 755 /* Handle the last BD specially */ 756 if (last_tcp) 757 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 758 if (is_last) { 759 status |= BD_ENET_TX_INTR; 760 if (fep->bufdesc_ex) 761 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 762 } 763 764 bdp->cbd_sc = cpu_to_fec16(status); 765 766 return 0; 767 } 768 769 static int 770 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 771 struct sk_buff *skb, struct net_device *ndev, 772 struct bufdesc *bdp, int index) 773 { 774 struct fec_enet_private *fep = netdev_priv(ndev); 775 int hdr_len = skb_tcp_all_headers(skb); 776 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 777 void *bufaddr; 778 unsigned long dmabuf; 779 unsigned short status; 780 unsigned int estatus = 0; 781 782 status = fec16_to_cpu(bdp->cbd_sc); 783 status &= ~BD_ENET_TX_STATS; 784 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 785 786 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 787 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 788 if (((unsigned long)bufaddr) & fep->tx_align || 789 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 790 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 791 bufaddr = txq->tx_bounce[index]; 792 793 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 794 swap_buffer(bufaddr, hdr_len); 795 796 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 797 hdr_len, DMA_TO_DEVICE); 798 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 799 dev_kfree_skb_any(skb); 800 if (net_ratelimit()) 801 netdev_err(ndev, "Tx DMA memory map failed\n"); 802 return NETDEV_TX_OK; 803 } 804 } 805 806 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 807 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 808 809 if (fep->bufdesc_ex) { 810 if (fep->quirks & FEC_QUIRK_HAS_AVB) 811 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 812 if (skb->ip_summed == CHECKSUM_PARTIAL) 813 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 814 ebdp->cbd_bdu = 0; 815 ebdp->cbd_esc = cpu_to_fec32(estatus); 816 } 817 818 bdp->cbd_sc = cpu_to_fec16(status); 819 820 return 0; 821 } 822 823 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 824 struct sk_buff *skb, 825 struct net_device *ndev) 826 { 827 struct fec_enet_private *fep = netdev_priv(ndev); 828 int hdr_len, total_len, data_left; 829 struct bufdesc *bdp = txq->bd.cur; 830 struct tso_t tso; 831 unsigned int index = 0; 832 int ret; 833 834 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 835 dev_kfree_skb_any(skb); 836 if (net_ratelimit()) 837 netdev_err(ndev, "NOT enough BD for TSO!\n"); 838 return NETDEV_TX_OK; 839 } 840 841 /* Protocol checksum off-load for TCP and UDP. */ 842 if (fec_enet_clear_csum(skb, ndev)) { 843 dev_kfree_skb_any(skb); 844 return NETDEV_TX_OK; 845 } 846 847 /* Initialize the TSO handler, and prepare the first payload */ 848 hdr_len = tso_start(skb, &tso); 849 850 total_len = skb->len - hdr_len; 851 while (total_len > 0) { 852 char *hdr; 853 854 index = fec_enet_get_bd_index(bdp, &txq->bd); 855 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 856 total_len -= data_left; 857 858 /* prepare packet headers: MAC + IP + TCP */ 859 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 860 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 861 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 862 if (ret) 863 goto err_release; 864 865 while (data_left > 0) { 866 int size; 867 868 size = min_t(int, tso.size, data_left); 869 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 870 index = fec_enet_get_bd_index(bdp, &txq->bd); 871 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 872 bdp, index, 873 tso.data, size, 874 size == data_left, 875 total_len == 0); 876 if (ret) 877 goto err_release; 878 879 data_left -= size; 880 tso_build_data(skb, &tso, size); 881 } 882 883 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 884 } 885 886 /* Save skb pointer */ 887 txq->tx_buf[index].buf_p = skb; 888 889 skb_tx_timestamp(skb); 890 txq->bd.cur = bdp; 891 892 /* Trigger transmission start */ 893 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 894 !readl(txq->bd.reg_desc_active) || 895 !readl(txq->bd.reg_desc_active) || 896 !readl(txq->bd.reg_desc_active) || 897 !readl(txq->bd.reg_desc_active)) 898 writel(0, txq->bd.reg_desc_active); 899 900 return 0; 901 902 err_release: 903 /* TODO: Release all used data descriptors for TSO */ 904 return ret; 905 } 906 907 static netdev_tx_t 908 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 909 { 910 struct fec_enet_private *fep = netdev_priv(ndev); 911 int entries_free; 912 unsigned short queue; 913 struct fec_enet_priv_tx_q *txq; 914 struct netdev_queue *nq; 915 int ret; 916 917 queue = skb_get_queue_mapping(skb); 918 txq = fep->tx_queue[queue]; 919 nq = netdev_get_tx_queue(ndev, queue); 920 921 if (skb_is_gso(skb)) 922 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 923 else 924 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 925 if (ret) 926 return ret; 927 928 entries_free = fec_enet_get_free_txdesc_num(txq); 929 if (entries_free <= txq->tx_stop_threshold) 930 netif_tx_stop_queue(nq); 931 932 return NETDEV_TX_OK; 933 } 934 935 /* Init RX & TX buffer descriptors 936 */ 937 static void fec_enet_bd_init(struct net_device *dev) 938 { 939 struct fec_enet_private *fep = netdev_priv(dev); 940 struct fec_enet_priv_tx_q *txq; 941 struct fec_enet_priv_rx_q *rxq; 942 struct bufdesc *bdp; 943 unsigned int i; 944 unsigned int q; 945 946 for (q = 0; q < fep->num_rx_queues; q++) { 947 /* Initialize the receive buffer descriptors. */ 948 rxq = fep->rx_queue[q]; 949 bdp = rxq->bd.base; 950 951 for (i = 0; i < rxq->bd.ring_size; i++) { 952 953 /* Initialize the BD for every fragment in the page. */ 954 if (bdp->cbd_bufaddr) 955 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 956 else 957 bdp->cbd_sc = cpu_to_fec16(0); 958 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 959 } 960 961 /* Set the last buffer to wrap */ 962 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 963 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 964 965 rxq->bd.cur = rxq->bd.base; 966 } 967 968 for (q = 0; q < fep->num_tx_queues; q++) { 969 /* ...and the same for transmit */ 970 txq = fep->tx_queue[q]; 971 bdp = txq->bd.base; 972 txq->bd.cur = bdp; 973 974 for (i = 0; i < txq->bd.ring_size; i++) { 975 /* Initialize the BD for every fragment in the page. */ 976 bdp->cbd_sc = cpu_to_fec16(0); 977 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 978 if (bdp->cbd_bufaddr && 979 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 980 dma_unmap_single(&fep->pdev->dev, 981 fec32_to_cpu(bdp->cbd_bufaddr), 982 fec16_to_cpu(bdp->cbd_datlen), 983 DMA_TO_DEVICE); 984 if (txq->tx_buf[i].buf_p) 985 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 986 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 987 if (bdp->cbd_bufaddr) 988 dma_unmap_single(&fep->pdev->dev, 989 fec32_to_cpu(bdp->cbd_bufaddr), 990 fec16_to_cpu(bdp->cbd_datlen), 991 DMA_TO_DEVICE); 992 993 if (txq->tx_buf[i].buf_p) 994 xdp_return_frame(txq->tx_buf[i].buf_p); 995 } else { 996 struct page *page = txq->tx_buf[i].buf_p; 997 998 if (page) 999 page_pool_put_page(page->pp, page, 0, false); 1000 } 1001 1002 txq->tx_buf[i].buf_p = NULL; 1003 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1004 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1005 bdp->cbd_bufaddr = cpu_to_fec32(0); 1006 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1007 } 1008 1009 /* Set the last buffer to wrap */ 1010 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1011 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1012 txq->dirty_tx = bdp; 1013 } 1014 } 1015 1016 static void fec_enet_active_rxring(struct net_device *ndev) 1017 { 1018 struct fec_enet_private *fep = netdev_priv(ndev); 1019 int i; 1020 1021 for (i = 0; i < fep->num_rx_queues; i++) 1022 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1023 } 1024 1025 static void fec_enet_enable_ring(struct net_device *ndev) 1026 { 1027 struct fec_enet_private *fep = netdev_priv(ndev); 1028 struct fec_enet_priv_tx_q *txq; 1029 struct fec_enet_priv_rx_q *rxq; 1030 int i; 1031 1032 for (i = 0; i < fep->num_rx_queues; i++) { 1033 rxq = fep->rx_queue[i]; 1034 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1035 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1036 1037 /* enable DMA1/2 */ 1038 if (i) 1039 writel(RCMR_MATCHEN | RCMR_CMP(i), 1040 fep->hwp + FEC_RCMR(i)); 1041 } 1042 1043 for (i = 0; i < fep->num_tx_queues; i++) { 1044 txq = fep->tx_queue[i]; 1045 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1046 1047 /* enable DMA1/2 */ 1048 if (i) 1049 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1050 fep->hwp + FEC_DMA_CFG(i)); 1051 } 1052 } 1053 1054 /* 1055 * This function is called to start or restart the FEC during a link 1056 * change, transmit timeout, or to reconfigure the FEC. The network 1057 * packet processing for this device must be stopped before this call. 1058 */ 1059 static void 1060 fec_restart(struct net_device *ndev) 1061 { 1062 struct fec_enet_private *fep = netdev_priv(ndev); 1063 u32 temp_mac[2]; 1064 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1065 u32 ecntl = 0x2; /* ETHEREN */ 1066 1067 /* Whack a reset. We should wait for this. 1068 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1069 * instead of reset MAC itself. 1070 */ 1071 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1072 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1073 writel(0, fep->hwp + FEC_ECNTRL); 1074 } else { 1075 writel(1, fep->hwp + FEC_ECNTRL); 1076 udelay(10); 1077 } 1078 1079 /* 1080 * enet-mac reset will reset mac address registers too, 1081 * so need to reconfigure it. 1082 */ 1083 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1084 writel((__force u32)cpu_to_be32(temp_mac[0]), 1085 fep->hwp + FEC_ADDR_LOW); 1086 writel((__force u32)cpu_to_be32(temp_mac[1]), 1087 fep->hwp + FEC_ADDR_HIGH); 1088 1089 /* Clear any outstanding interrupt, except MDIO. */ 1090 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1091 1092 fec_enet_bd_init(ndev); 1093 1094 fec_enet_enable_ring(ndev); 1095 1096 /* Enable MII mode */ 1097 if (fep->full_duplex == DUPLEX_FULL) { 1098 /* FD enable */ 1099 writel(0x04, fep->hwp + FEC_X_CNTRL); 1100 } else { 1101 /* No Rcv on Xmit */ 1102 rcntl |= 0x02; 1103 writel(0x0, fep->hwp + FEC_X_CNTRL); 1104 } 1105 1106 /* Set MII speed */ 1107 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1108 1109 #if !defined(CONFIG_M5272) 1110 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1111 u32 val = readl(fep->hwp + FEC_RACC); 1112 1113 /* align IP header */ 1114 val |= FEC_RACC_SHIFT16; 1115 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1116 /* set RX checksum */ 1117 val |= FEC_RACC_OPTIONS; 1118 else 1119 val &= ~FEC_RACC_OPTIONS; 1120 writel(val, fep->hwp + FEC_RACC); 1121 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1122 } 1123 #endif 1124 1125 /* 1126 * The phy interface and speed need to get configured 1127 * differently on enet-mac. 1128 */ 1129 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1130 /* Enable flow control and length check */ 1131 rcntl |= 0x40000000 | 0x00000020; 1132 1133 /* RGMII, RMII or MII */ 1134 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1135 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1136 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1137 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1138 rcntl |= (1 << 6); 1139 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1140 rcntl |= (1 << 8); 1141 else 1142 rcntl &= ~(1 << 8); 1143 1144 /* 1G, 100M or 10M */ 1145 if (ndev->phydev) { 1146 if (ndev->phydev->speed == SPEED_1000) 1147 ecntl |= (1 << 5); 1148 else if (ndev->phydev->speed == SPEED_100) 1149 rcntl &= ~(1 << 9); 1150 else 1151 rcntl |= (1 << 9); 1152 } 1153 } else { 1154 #ifdef FEC_MIIGSK_ENR 1155 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1156 u32 cfgr; 1157 /* disable the gasket and wait */ 1158 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1159 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1160 udelay(1); 1161 1162 /* 1163 * configure the gasket: 1164 * RMII, 50 MHz, no loopback, no echo 1165 * MII, 25 MHz, no loopback, no echo 1166 */ 1167 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1168 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1169 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1170 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1171 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1172 1173 /* re-enable the gasket */ 1174 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1175 } 1176 #endif 1177 } 1178 1179 #if !defined(CONFIG_M5272) 1180 /* enable pause frame*/ 1181 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1182 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1183 ndev->phydev && ndev->phydev->pause)) { 1184 rcntl |= FEC_ENET_FCE; 1185 1186 /* set FIFO threshold parameter to reduce overrun */ 1187 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1188 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1189 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1190 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1191 1192 /* OPD */ 1193 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1194 } else { 1195 rcntl &= ~FEC_ENET_FCE; 1196 } 1197 #endif /* !defined(CONFIG_M5272) */ 1198 1199 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1200 1201 /* Setup multicast filter. */ 1202 set_multicast_list(ndev); 1203 #ifndef CONFIG_M5272 1204 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1205 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1206 #endif 1207 1208 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1209 /* enable ENET endian swap */ 1210 ecntl |= (1 << 8); 1211 /* enable ENET store and forward mode */ 1212 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1213 } 1214 1215 if (fep->bufdesc_ex) 1216 ecntl |= (1 << 4); 1217 1218 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1219 fep->rgmii_txc_dly) 1220 ecntl |= FEC_ENET_TXC_DLY; 1221 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1222 fep->rgmii_rxc_dly) 1223 ecntl |= FEC_ENET_RXC_DLY; 1224 1225 #ifndef CONFIG_M5272 1226 /* Enable the MIB statistic event counters */ 1227 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1228 #endif 1229 1230 /* And last, enable the transmit and receive processing */ 1231 writel(ecntl, fep->hwp + FEC_ECNTRL); 1232 fec_enet_active_rxring(ndev); 1233 1234 if (fep->bufdesc_ex) 1235 fec_ptp_start_cyclecounter(ndev); 1236 1237 /* Enable interrupts we wish to service */ 1238 if (fep->link) 1239 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1240 else 1241 writel(0, fep->hwp + FEC_IMASK); 1242 1243 /* Init the interrupt coalescing */ 1244 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1245 fec_enet_itr_coal_set(ndev); 1246 } 1247 1248 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1249 { 1250 if (!(of_machine_is_compatible("fsl,imx8qm") || 1251 of_machine_is_compatible("fsl,imx8qxp") || 1252 of_machine_is_compatible("fsl,imx8dxl"))) 1253 return 0; 1254 1255 return imx_scu_get_handle(&fep->ipc_handle); 1256 } 1257 1258 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1259 { 1260 struct device_node *np = fep->pdev->dev.of_node; 1261 u32 rsrc_id, val; 1262 int idx; 1263 1264 if (!np || !fep->ipc_handle) 1265 return; 1266 1267 idx = of_alias_get_id(np, "ethernet"); 1268 if (idx < 0) 1269 idx = 0; 1270 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1271 1272 val = enabled ? 1 : 0; 1273 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1274 } 1275 1276 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1277 { 1278 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1279 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1280 1281 if (stop_gpr->gpr) { 1282 if (enabled) 1283 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1284 BIT(stop_gpr->bit), 1285 BIT(stop_gpr->bit)); 1286 else 1287 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1288 BIT(stop_gpr->bit), 0); 1289 } else if (pdata && pdata->sleep_mode_enable) { 1290 pdata->sleep_mode_enable(enabled); 1291 } else { 1292 fec_enet_ipg_stop_set(fep, enabled); 1293 } 1294 } 1295 1296 static void fec_irqs_disable(struct net_device *ndev) 1297 { 1298 struct fec_enet_private *fep = netdev_priv(ndev); 1299 1300 writel(0, fep->hwp + FEC_IMASK); 1301 } 1302 1303 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1304 { 1305 struct fec_enet_private *fep = netdev_priv(ndev); 1306 1307 writel(0, fep->hwp + FEC_IMASK); 1308 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1309 } 1310 1311 static void 1312 fec_stop(struct net_device *ndev) 1313 { 1314 struct fec_enet_private *fep = netdev_priv(ndev); 1315 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1316 u32 val; 1317 1318 /* We cannot expect a graceful transmit stop without link !!! */ 1319 if (fep->link) { 1320 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1321 udelay(10); 1322 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1323 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1324 } 1325 1326 /* Whack a reset. We should wait for this. 1327 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1328 * instead of reset MAC itself. 1329 */ 1330 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1331 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1332 writel(0, fep->hwp + FEC_ECNTRL); 1333 } else { 1334 writel(1, fep->hwp + FEC_ECNTRL); 1335 udelay(10); 1336 } 1337 } else { 1338 val = readl(fep->hwp + FEC_ECNTRL); 1339 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1340 writel(val, fep->hwp + FEC_ECNTRL); 1341 } 1342 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1343 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1344 1345 /* We have to keep ENET enabled to have MII interrupt stay working */ 1346 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1347 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1348 writel(2, fep->hwp + FEC_ECNTRL); 1349 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1350 } 1351 } 1352 1353 1354 static void 1355 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1356 { 1357 struct fec_enet_private *fep = netdev_priv(ndev); 1358 1359 fec_dump(ndev); 1360 1361 ndev->stats.tx_errors++; 1362 1363 schedule_work(&fep->tx_timeout_work); 1364 } 1365 1366 static void fec_enet_timeout_work(struct work_struct *work) 1367 { 1368 struct fec_enet_private *fep = 1369 container_of(work, struct fec_enet_private, tx_timeout_work); 1370 struct net_device *ndev = fep->netdev; 1371 1372 rtnl_lock(); 1373 if (netif_device_present(ndev) || netif_running(ndev)) { 1374 napi_disable(&fep->napi); 1375 netif_tx_lock_bh(ndev); 1376 fec_restart(ndev); 1377 netif_tx_wake_all_queues(ndev); 1378 netif_tx_unlock_bh(ndev); 1379 napi_enable(&fep->napi); 1380 } 1381 rtnl_unlock(); 1382 } 1383 1384 static void 1385 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1386 struct skb_shared_hwtstamps *hwtstamps) 1387 { 1388 unsigned long flags; 1389 u64 ns; 1390 1391 spin_lock_irqsave(&fep->tmreg_lock, flags); 1392 ns = timecounter_cyc2time(&fep->tc, ts); 1393 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1394 1395 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1396 hwtstamps->hwtstamp = ns_to_ktime(ns); 1397 } 1398 1399 static void 1400 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1401 { 1402 struct fec_enet_private *fep; 1403 struct xdp_frame *xdpf; 1404 struct bufdesc *bdp; 1405 unsigned short status; 1406 struct sk_buff *skb; 1407 struct fec_enet_priv_tx_q *txq; 1408 struct netdev_queue *nq; 1409 int index = 0; 1410 int entries_free; 1411 struct page *page; 1412 int frame_len; 1413 1414 fep = netdev_priv(ndev); 1415 1416 txq = fep->tx_queue[queue_id]; 1417 /* get next bdp of dirty_tx */ 1418 nq = netdev_get_tx_queue(ndev, queue_id); 1419 bdp = txq->dirty_tx; 1420 1421 /* get next bdp of dirty_tx */ 1422 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1423 1424 while (bdp != READ_ONCE(txq->bd.cur)) { 1425 /* Order the load of bd.cur and cbd_sc */ 1426 rmb(); 1427 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1428 if (status & BD_ENET_TX_READY) 1429 break; 1430 1431 index = fec_enet_get_bd_index(bdp, &txq->bd); 1432 1433 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1434 skb = txq->tx_buf[index].buf_p; 1435 if (bdp->cbd_bufaddr && 1436 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1437 dma_unmap_single(&fep->pdev->dev, 1438 fec32_to_cpu(bdp->cbd_bufaddr), 1439 fec16_to_cpu(bdp->cbd_datlen), 1440 DMA_TO_DEVICE); 1441 bdp->cbd_bufaddr = cpu_to_fec32(0); 1442 if (!skb) 1443 goto tx_buf_done; 1444 } else { 1445 /* Tx processing cannot call any XDP (or page pool) APIs if 1446 * the "budget" is 0. Because NAPI is called with budget of 1447 * 0 (such as netpoll) indicates we may be in an IRQ context, 1448 * however, we can't use the page pool from IRQ context. 1449 */ 1450 if (unlikely(!budget)) 1451 break; 1452 1453 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1454 xdpf = txq->tx_buf[index].buf_p; 1455 if (bdp->cbd_bufaddr) 1456 dma_unmap_single(&fep->pdev->dev, 1457 fec32_to_cpu(bdp->cbd_bufaddr), 1458 fec16_to_cpu(bdp->cbd_datlen), 1459 DMA_TO_DEVICE); 1460 } else { 1461 page = txq->tx_buf[index].buf_p; 1462 } 1463 1464 bdp->cbd_bufaddr = cpu_to_fec32(0); 1465 if (unlikely(!txq->tx_buf[index].buf_p)) { 1466 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1467 goto tx_buf_done; 1468 } 1469 1470 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1471 } 1472 1473 /* Check for errors. */ 1474 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1475 BD_ENET_TX_RL | BD_ENET_TX_UN | 1476 BD_ENET_TX_CSL)) { 1477 ndev->stats.tx_errors++; 1478 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1479 ndev->stats.tx_heartbeat_errors++; 1480 if (status & BD_ENET_TX_LC) /* Late collision */ 1481 ndev->stats.tx_window_errors++; 1482 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1483 ndev->stats.tx_aborted_errors++; 1484 if (status & BD_ENET_TX_UN) /* Underrun */ 1485 ndev->stats.tx_fifo_errors++; 1486 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1487 ndev->stats.tx_carrier_errors++; 1488 } else { 1489 ndev->stats.tx_packets++; 1490 1491 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1492 ndev->stats.tx_bytes += skb->len; 1493 else 1494 ndev->stats.tx_bytes += frame_len; 1495 } 1496 1497 /* Deferred means some collisions occurred during transmit, 1498 * but we eventually sent the packet OK. 1499 */ 1500 if (status & BD_ENET_TX_DEF) 1501 ndev->stats.collisions++; 1502 1503 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1504 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1505 * are to time stamp the packet, so we still need to check time 1506 * stamping enabled flag. 1507 */ 1508 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1509 fep->hwts_tx_en) && fep->bufdesc_ex) { 1510 struct skb_shared_hwtstamps shhwtstamps; 1511 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1512 1513 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1514 skb_tstamp_tx(skb, &shhwtstamps); 1515 } 1516 1517 /* Free the sk buffer associated with this last transmit */ 1518 napi_consume_skb(skb, budget); 1519 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1520 xdp_return_frame_rx_napi(xdpf); 1521 } else { /* recycle pages of XDP_TX frames */ 1522 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1523 page_pool_put_page(page->pp, page, 0, true); 1524 } 1525 1526 txq->tx_buf[index].buf_p = NULL; 1527 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1528 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1529 1530 tx_buf_done: 1531 /* Make sure the update to bdp and tx_buf are performed 1532 * before dirty_tx 1533 */ 1534 wmb(); 1535 txq->dirty_tx = bdp; 1536 1537 /* Update pointer to next buffer descriptor to be transmitted */ 1538 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1539 1540 /* Since we have freed up a buffer, the ring is no longer full 1541 */ 1542 if (netif_tx_queue_stopped(nq)) { 1543 entries_free = fec_enet_get_free_txdesc_num(txq); 1544 if (entries_free >= txq->tx_wake_threshold) 1545 netif_tx_wake_queue(nq); 1546 } 1547 } 1548 1549 /* ERR006358: Keep the transmitter going */ 1550 if (bdp != txq->bd.cur && 1551 readl(txq->bd.reg_desc_active) == 0) 1552 writel(0, txq->bd.reg_desc_active); 1553 } 1554 1555 static void fec_enet_tx(struct net_device *ndev, int budget) 1556 { 1557 struct fec_enet_private *fep = netdev_priv(ndev); 1558 int i; 1559 1560 /* Make sure that AVB queues are processed first. */ 1561 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1562 fec_enet_tx_queue(ndev, i, budget); 1563 } 1564 1565 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1566 struct bufdesc *bdp, int index) 1567 { 1568 struct page *new_page; 1569 dma_addr_t phys_addr; 1570 1571 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1572 WARN_ON(!new_page); 1573 rxq->rx_skb_info[index].page = new_page; 1574 1575 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1576 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1577 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1578 } 1579 1580 static u32 1581 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1582 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1583 { 1584 unsigned int sync, len = xdp->data_end - xdp->data; 1585 u32 ret = FEC_ENET_XDP_PASS; 1586 struct page *page; 1587 int err; 1588 u32 act; 1589 1590 act = bpf_prog_run_xdp(prog, xdp); 1591 1592 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1593 * max len CPU touch 1594 */ 1595 sync = xdp->data_end - xdp->data; 1596 sync = max(sync, len); 1597 1598 switch (act) { 1599 case XDP_PASS: 1600 rxq->stats[RX_XDP_PASS]++; 1601 ret = FEC_ENET_XDP_PASS; 1602 break; 1603 1604 case XDP_REDIRECT: 1605 rxq->stats[RX_XDP_REDIRECT]++; 1606 err = xdp_do_redirect(fep->netdev, xdp, prog); 1607 if (unlikely(err)) 1608 goto xdp_err; 1609 1610 ret = FEC_ENET_XDP_REDIR; 1611 break; 1612 1613 case XDP_TX: 1614 rxq->stats[RX_XDP_TX]++; 1615 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1616 if (unlikely(err)) { 1617 rxq->stats[RX_XDP_TX_ERRORS]++; 1618 goto xdp_err; 1619 } 1620 1621 ret = FEC_ENET_XDP_TX; 1622 break; 1623 1624 default: 1625 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1626 fallthrough; 1627 1628 case XDP_ABORTED: 1629 fallthrough; /* handle aborts by dropping packet */ 1630 1631 case XDP_DROP: 1632 rxq->stats[RX_XDP_DROP]++; 1633 xdp_err: 1634 ret = FEC_ENET_XDP_CONSUMED; 1635 page = virt_to_head_page(xdp->data); 1636 page_pool_put_page(rxq->page_pool, page, sync, true); 1637 if (act != XDP_DROP) 1638 trace_xdp_exception(fep->netdev, prog, act); 1639 break; 1640 } 1641 1642 return ret; 1643 } 1644 1645 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1646 * When we update through the ring, if the next incoming buffer has 1647 * not been given to the system, we just set the empty indicator, 1648 * effectively tossing the packet. 1649 */ 1650 static int 1651 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1652 { 1653 struct fec_enet_private *fep = netdev_priv(ndev); 1654 struct fec_enet_priv_rx_q *rxq; 1655 struct bufdesc *bdp; 1656 unsigned short status; 1657 struct sk_buff *skb; 1658 ushort pkt_len; 1659 __u8 *data; 1660 int pkt_received = 0; 1661 struct bufdesc_ex *ebdp = NULL; 1662 bool vlan_packet_rcvd = false; 1663 u16 vlan_tag; 1664 int index = 0; 1665 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1666 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1667 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1668 u32 data_start = FEC_ENET_XDP_HEADROOM; 1669 int cpu = smp_processor_id(); 1670 struct xdp_buff xdp; 1671 struct page *page; 1672 u32 sub_len = 4; 1673 1674 #if !defined(CONFIG_M5272) 1675 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1676 * FEC_RACC_SHIFT16 is set by default in the probe function. 1677 */ 1678 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1679 data_start += 2; 1680 sub_len += 2; 1681 } 1682 #endif 1683 1684 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1685 /* 1686 * Hacky flush of all caches instead of using the DMA API for the TSO 1687 * headers. 1688 */ 1689 flush_cache_all(); 1690 #endif 1691 rxq = fep->rx_queue[queue_id]; 1692 1693 /* First, grab all of the stats for the incoming packet. 1694 * These get messed up if we get called due to a busy condition. 1695 */ 1696 bdp = rxq->bd.cur; 1697 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1698 1699 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1700 1701 if (pkt_received >= budget) 1702 break; 1703 pkt_received++; 1704 1705 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1706 1707 /* Check for errors. */ 1708 status ^= BD_ENET_RX_LAST; 1709 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1710 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1711 BD_ENET_RX_CL)) { 1712 ndev->stats.rx_errors++; 1713 if (status & BD_ENET_RX_OV) { 1714 /* FIFO overrun */ 1715 ndev->stats.rx_fifo_errors++; 1716 goto rx_processing_done; 1717 } 1718 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1719 | BD_ENET_RX_LAST)) { 1720 /* Frame too long or too short. */ 1721 ndev->stats.rx_length_errors++; 1722 if (status & BD_ENET_RX_LAST) 1723 netdev_err(ndev, "rcv is not +last\n"); 1724 } 1725 if (status & BD_ENET_RX_CR) /* CRC Error */ 1726 ndev->stats.rx_crc_errors++; 1727 /* Report late collisions as a frame error. */ 1728 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1729 ndev->stats.rx_frame_errors++; 1730 goto rx_processing_done; 1731 } 1732 1733 /* Process the incoming frame. */ 1734 ndev->stats.rx_packets++; 1735 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1736 ndev->stats.rx_bytes += pkt_len; 1737 1738 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1739 page = rxq->rx_skb_info[index].page; 1740 dma_sync_single_for_cpu(&fep->pdev->dev, 1741 fec32_to_cpu(bdp->cbd_bufaddr), 1742 pkt_len, 1743 DMA_FROM_DEVICE); 1744 prefetch(page_address(page)); 1745 fec_enet_update_cbd(rxq, bdp, index); 1746 1747 if (xdp_prog) { 1748 xdp_buff_clear_frags_flag(&xdp); 1749 /* subtract 16bit shift and FCS */ 1750 xdp_prepare_buff(&xdp, page_address(page), 1751 data_start, pkt_len - sub_len, false); 1752 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1753 xdp_result |= ret; 1754 if (ret != FEC_ENET_XDP_PASS) 1755 goto rx_processing_done; 1756 } 1757 1758 /* The packet length includes FCS, but we don't want to 1759 * include that when passing upstream as it messes up 1760 * bridging applications. 1761 */ 1762 skb = build_skb(page_address(page), PAGE_SIZE); 1763 if (unlikely(!skb)) { 1764 page_pool_recycle_direct(rxq->page_pool, page); 1765 ndev->stats.rx_dropped++; 1766 1767 netdev_err_once(ndev, "build_skb failed!\n"); 1768 goto rx_processing_done; 1769 } 1770 1771 skb_reserve(skb, data_start); 1772 skb_put(skb, pkt_len - sub_len); 1773 skb_mark_for_recycle(skb); 1774 1775 if (unlikely(need_swap)) { 1776 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1777 swap_buffer(data, pkt_len); 1778 } 1779 data = skb->data; 1780 1781 /* Extract the enhanced buffer descriptor */ 1782 ebdp = NULL; 1783 if (fep->bufdesc_ex) 1784 ebdp = (struct bufdesc_ex *)bdp; 1785 1786 /* If this is a VLAN packet remove the VLAN Tag */ 1787 vlan_packet_rcvd = false; 1788 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1789 fep->bufdesc_ex && 1790 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1791 /* Push and remove the vlan tag */ 1792 struct vlan_hdr *vlan_header = 1793 (struct vlan_hdr *) (data + ETH_HLEN); 1794 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1795 1796 vlan_packet_rcvd = true; 1797 1798 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1799 skb_pull(skb, VLAN_HLEN); 1800 } 1801 1802 skb->protocol = eth_type_trans(skb, ndev); 1803 1804 /* Get receive timestamp from the skb */ 1805 if (fep->hwts_rx_en && fep->bufdesc_ex) 1806 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1807 skb_hwtstamps(skb)); 1808 1809 if (fep->bufdesc_ex && 1810 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1811 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1812 /* don't check it */ 1813 skb->ip_summed = CHECKSUM_UNNECESSARY; 1814 } else { 1815 skb_checksum_none_assert(skb); 1816 } 1817 } 1818 1819 /* Handle received VLAN packets */ 1820 if (vlan_packet_rcvd) 1821 __vlan_hwaccel_put_tag(skb, 1822 htons(ETH_P_8021Q), 1823 vlan_tag); 1824 1825 skb_record_rx_queue(skb, queue_id); 1826 napi_gro_receive(&fep->napi, skb); 1827 1828 rx_processing_done: 1829 /* Clear the status flags for this buffer */ 1830 status &= ~BD_ENET_RX_STATS; 1831 1832 /* Mark the buffer empty */ 1833 status |= BD_ENET_RX_EMPTY; 1834 1835 if (fep->bufdesc_ex) { 1836 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1837 1838 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1839 ebdp->cbd_prot = 0; 1840 ebdp->cbd_bdu = 0; 1841 } 1842 /* Make sure the updates to rest of the descriptor are 1843 * performed before transferring ownership. 1844 */ 1845 wmb(); 1846 bdp->cbd_sc = cpu_to_fec16(status); 1847 1848 /* Update BD pointer to next entry */ 1849 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1850 1851 /* Doing this here will keep the FEC running while we process 1852 * incoming frames. On a heavily loaded network, we should be 1853 * able to keep up at the expense of system resources. 1854 */ 1855 writel(0, rxq->bd.reg_desc_active); 1856 } 1857 rxq->bd.cur = bdp; 1858 1859 if (xdp_result & FEC_ENET_XDP_REDIR) 1860 xdp_do_flush(); 1861 1862 return pkt_received; 1863 } 1864 1865 static int fec_enet_rx(struct net_device *ndev, int budget) 1866 { 1867 struct fec_enet_private *fep = netdev_priv(ndev); 1868 int i, done = 0; 1869 1870 /* Make sure that AVB queues are processed first. */ 1871 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1872 done += fec_enet_rx_queue(ndev, budget - done, i); 1873 1874 return done; 1875 } 1876 1877 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1878 { 1879 uint int_events; 1880 1881 int_events = readl(fep->hwp + FEC_IEVENT); 1882 1883 /* Don't clear MDIO events, we poll for those */ 1884 int_events &= ~FEC_ENET_MII; 1885 1886 writel(int_events, fep->hwp + FEC_IEVENT); 1887 1888 return int_events != 0; 1889 } 1890 1891 static irqreturn_t 1892 fec_enet_interrupt(int irq, void *dev_id) 1893 { 1894 struct net_device *ndev = dev_id; 1895 struct fec_enet_private *fep = netdev_priv(ndev); 1896 irqreturn_t ret = IRQ_NONE; 1897 1898 if (fec_enet_collect_events(fep) && fep->link) { 1899 ret = IRQ_HANDLED; 1900 1901 if (napi_schedule_prep(&fep->napi)) { 1902 /* Disable interrupts */ 1903 writel(0, fep->hwp + FEC_IMASK); 1904 __napi_schedule(&fep->napi); 1905 } 1906 } 1907 1908 return ret; 1909 } 1910 1911 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1912 { 1913 struct net_device *ndev = napi->dev; 1914 struct fec_enet_private *fep = netdev_priv(ndev); 1915 int done = 0; 1916 1917 do { 1918 done += fec_enet_rx(ndev, budget - done); 1919 fec_enet_tx(ndev, budget); 1920 } while ((done < budget) && fec_enet_collect_events(fep)); 1921 1922 if (done < budget) { 1923 napi_complete_done(napi, done); 1924 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1925 } 1926 1927 return done; 1928 } 1929 1930 /* ------------------------------------------------------------------------- */ 1931 static int fec_get_mac(struct net_device *ndev) 1932 { 1933 struct fec_enet_private *fep = netdev_priv(ndev); 1934 unsigned char *iap, tmpaddr[ETH_ALEN]; 1935 int ret; 1936 1937 /* 1938 * try to get mac address in following order: 1939 * 1940 * 1) module parameter via kernel command line in form 1941 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1942 */ 1943 iap = macaddr; 1944 1945 /* 1946 * 2) from device tree data 1947 */ 1948 if (!is_valid_ether_addr(iap)) { 1949 struct device_node *np = fep->pdev->dev.of_node; 1950 if (np) { 1951 ret = of_get_mac_address(np, tmpaddr); 1952 if (!ret) 1953 iap = tmpaddr; 1954 else if (ret == -EPROBE_DEFER) 1955 return ret; 1956 } 1957 } 1958 1959 /* 1960 * 3) from flash or fuse (via platform data) 1961 */ 1962 if (!is_valid_ether_addr(iap)) { 1963 #ifdef CONFIG_M5272 1964 if (FEC_FLASHMAC) 1965 iap = (unsigned char *)FEC_FLASHMAC; 1966 #else 1967 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1968 1969 if (pdata) 1970 iap = (unsigned char *)&pdata->mac; 1971 #endif 1972 } 1973 1974 /* 1975 * 4) FEC mac registers set by bootloader 1976 */ 1977 if (!is_valid_ether_addr(iap)) { 1978 *((__be32 *) &tmpaddr[0]) = 1979 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1980 *((__be16 *) &tmpaddr[4]) = 1981 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1982 iap = &tmpaddr[0]; 1983 } 1984 1985 /* 1986 * 5) random mac address 1987 */ 1988 if (!is_valid_ether_addr(iap)) { 1989 /* Report it and use a random ethernet address instead */ 1990 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1991 eth_hw_addr_random(ndev); 1992 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1993 ndev->dev_addr); 1994 return 0; 1995 } 1996 1997 /* Adjust MAC if using macaddr */ 1998 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1999 2000 return 0; 2001 } 2002 2003 /* ------------------------------------------------------------------------- */ 2004 2005 /* 2006 * Phy section 2007 */ 2008 static void fec_enet_adjust_link(struct net_device *ndev) 2009 { 2010 struct fec_enet_private *fep = netdev_priv(ndev); 2011 struct phy_device *phy_dev = ndev->phydev; 2012 int status_change = 0; 2013 2014 /* 2015 * If the netdev is down, or is going down, we're not interested 2016 * in link state events, so just mark our idea of the link as down 2017 * and ignore the event. 2018 */ 2019 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2020 fep->link = 0; 2021 } else if (phy_dev->link) { 2022 if (!fep->link) { 2023 fep->link = phy_dev->link; 2024 status_change = 1; 2025 } 2026 2027 if (fep->full_duplex != phy_dev->duplex) { 2028 fep->full_duplex = phy_dev->duplex; 2029 status_change = 1; 2030 } 2031 2032 if (phy_dev->speed != fep->speed) { 2033 fep->speed = phy_dev->speed; 2034 status_change = 1; 2035 } 2036 2037 /* if any of the above changed restart the FEC */ 2038 if (status_change) { 2039 napi_disable(&fep->napi); 2040 netif_tx_lock_bh(ndev); 2041 fec_restart(ndev); 2042 netif_tx_wake_all_queues(ndev); 2043 netif_tx_unlock_bh(ndev); 2044 napi_enable(&fep->napi); 2045 } 2046 } else { 2047 if (fep->link) { 2048 napi_disable(&fep->napi); 2049 netif_tx_lock_bh(ndev); 2050 fec_stop(ndev); 2051 netif_tx_unlock_bh(ndev); 2052 napi_enable(&fep->napi); 2053 fep->link = phy_dev->link; 2054 status_change = 1; 2055 } 2056 } 2057 2058 if (status_change) 2059 phy_print_status(phy_dev); 2060 } 2061 2062 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2063 { 2064 uint ievent; 2065 int ret; 2066 2067 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2068 ievent & FEC_ENET_MII, 2, 30000); 2069 2070 if (!ret) 2071 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2072 2073 return ret; 2074 } 2075 2076 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2077 { 2078 struct fec_enet_private *fep = bus->priv; 2079 struct device *dev = &fep->pdev->dev; 2080 int ret = 0, frame_start, frame_addr, frame_op; 2081 2082 ret = pm_runtime_resume_and_get(dev); 2083 if (ret < 0) 2084 return ret; 2085 2086 /* C22 read */ 2087 frame_op = FEC_MMFR_OP_READ; 2088 frame_start = FEC_MMFR_ST; 2089 frame_addr = regnum; 2090 2091 /* start a read op */ 2092 writel(frame_start | frame_op | 2093 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2094 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2095 2096 /* wait for end of transfer */ 2097 ret = fec_enet_mdio_wait(fep); 2098 if (ret) { 2099 netdev_err(fep->netdev, "MDIO read timeout\n"); 2100 goto out; 2101 } 2102 2103 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2104 2105 out: 2106 pm_runtime_mark_last_busy(dev); 2107 pm_runtime_put_autosuspend(dev); 2108 2109 return ret; 2110 } 2111 2112 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2113 int devad, int regnum) 2114 { 2115 struct fec_enet_private *fep = bus->priv; 2116 struct device *dev = &fep->pdev->dev; 2117 int ret = 0, frame_start, frame_op; 2118 2119 ret = pm_runtime_resume_and_get(dev); 2120 if (ret < 0) 2121 return ret; 2122 2123 frame_start = FEC_MMFR_ST_C45; 2124 2125 /* write address */ 2126 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2127 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2128 FEC_MMFR_TA | (regnum & 0xFFFF), 2129 fep->hwp + FEC_MII_DATA); 2130 2131 /* wait for end of transfer */ 2132 ret = fec_enet_mdio_wait(fep); 2133 if (ret) { 2134 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2135 goto out; 2136 } 2137 2138 frame_op = FEC_MMFR_OP_READ_C45; 2139 2140 /* start a read op */ 2141 writel(frame_start | frame_op | 2142 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2143 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2144 2145 /* wait for end of transfer */ 2146 ret = fec_enet_mdio_wait(fep); 2147 if (ret) { 2148 netdev_err(fep->netdev, "MDIO read timeout\n"); 2149 goto out; 2150 } 2151 2152 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2153 2154 out: 2155 pm_runtime_mark_last_busy(dev); 2156 pm_runtime_put_autosuspend(dev); 2157 2158 return ret; 2159 } 2160 2161 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2162 u16 value) 2163 { 2164 struct fec_enet_private *fep = bus->priv; 2165 struct device *dev = &fep->pdev->dev; 2166 int ret, frame_start, frame_addr; 2167 2168 ret = pm_runtime_resume_and_get(dev); 2169 if (ret < 0) 2170 return ret; 2171 2172 /* C22 write */ 2173 frame_start = FEC_MMFR_ST; 2174 frame_addr = regnum; 2175 2176 /* start a write op */ 2177 writel(frame_start | FEC_MMFR_OP_WRITE | 2178 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2179 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2180 fep->hwp + FEC_MII_DATA); 2181 2182 /* wait for end of transfer */ 2183 ret = fec_enet_mdio_wait(fep); 2184 if (ret) 2185 netdev_err(fep->netdev, "MDIO write timeout\n"); 2186 2187 pm_runtime_mark_last_busy(dev); 2188 pm_runtime_put_autosuspend(dev); 2189 2190 return ret; 2191 } 2192 2193 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2194 int devad, int regnum, u16 value) 2195 { 2196 struct fec_enet_private *fep = bus->priv; 2197 struct device *dev = &fep->pdev->dev; 2198 int ret, frame_start; 2199 2200 ret = pm_runtime_resume_and_get(dev); 2201 if (ret < 0) 2202 return ret; 2203 2204 frame_start = FEC_MMFR_ST_C45; 2205 2206 /* write address */ 2207 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2208 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2209 FEC_MMFR_TA | (regnum & 0xFFFF), 2210 fep->hwp + FEC_MII_DATA); 2211 2212 /* wait for end of transfer */ 2213 ret = fec_enet_mdio_wait(fep); 2214 if (ret) { 2215 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2216 goto out; 2217 } 2218 2219 /* start a write op */ 2220 writel(frame_start | FEC_MMFR_OP_WRITE | 2221 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2222 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2223 fep->hwp + FEC_MII_DATA); 2224 2225 /* wait for end of transfer */ 2226 ret = fec_enet_mdio_wait(fep); 2227 if (ret) 2228 netdev_err(fep->netdev, "MDIO write timeout\n"); 2229 2230 out: 2231 pm_runtime_mark_last_busy(dev); 2232 pm_runtime_put_autosuspend(dev); 2233 2234 return ret; 2235 } 2236 2237 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2238 { 2239 struct fec_enet_private *fep = netdev_priv(ndev); 2240 struct phy_device *phy_dev = ndev->phydev; 2241 2242 if (phy_dev) { 2243 phy_reset_after_clk_enable(phy_dev); 2244 } else if (fep->phy_node) { 2245 /* 2246 * If the PHY still is not bound to the MAC, but there is 2247 * OF PHY node and a matching PHY device instance already, 2248 * use the OF PHY node to obtain the PHY device instance, 2249 * and then use that PHY device instance when triggering 2250 * the PHY reset. 2251 */ 2252 phy_dev = of_phy_find_device(fep->phy_node); 2253 phy_reset_after_clk_enable(phy_dev); 2254 put_device(&phy_dev->mdio.dev); 2255 } 2256 } 2257 2258 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2259 { 2260 struct fec_enet_private *fep = netdev_priv(ndev); 2261 int ret; 2262 2263 if (enable) { 2264 ret = clk_prepare_enable(fep->clk_enet_out); 2265 if (ret) 2266 return ret; 2267 2268 if (fep->clk_ptp) { 2269 mutex_lock(&fep->ptp_clk_mutex); 2270 ret = clk_prepare_enable(fep->clk_ptp); 2271 if (ret) { 2272 mutex_unlock(&fep->ptp_clk_mutex); 2273 goto failed_clk_ptp; 2274 } else { 2275 fep->ptp_clk_on = true; 2276 } 2277 mutex_unlock(&fep->ptp_clk_mutex); 2278 } 2279 2280 ret = clk_prepare_enable(fep->clk_ref); 2281 if (ret) 2282 goto failed_clk_ref; 2283 2284 ret = clk_prepare_enable(fep->clk_2x_txclk); 2285 if (ret) 2286 goto failed_clk_2x_txclk; 2287 2288 fec_enet_phy_reset_after_clk_enable(ndev); 2289 } else { 2290 clk_disable_unprepare(fep->clk_enet_out); 2291 if (fep->clk_ptp) { 2292 mutex_lock(&fep->ptp_clk_mutex); 2293 clk_disable_unprepare(fep->clk_ptp); 2294 fep->ptp_clk_on = false; 2295 mutex_unlock(&fep->ptp_clk_mutex); 2296 } 2297 clk_disable_unprepare(fep->clk_ref); 2298 clk_disable_unprepare(fep->clk_2x_txclk); 2299 } 2300 2301 return 0; 2302 2303 failed_clk_2x_txclk: 2304 if (fep->clk_ref) 2305 clk_disable_unprepare(fep->clk_ref); 2306 failed_clk_ref: 2307 if (fep->clk_ptp) { 2308 mutex_lock(&fep->ptp_clk_mutex); 2309 clk_disable_unprepare(fep->clk_ptp); 2310 fep->ptp_clk_on = false; 2311 mutex_unlock(&fep->ptp_clk_mutex); 2312 } 2313 failed_clk_ptp: 2314 clk_disable_unprepare(fep->clk_enet_out); 2315 2316 return ret; 2317 } 2318 2319 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2320 struct device_node *np) 2321 { 2322 u32 rgmii_tx_delay, rgmii_rx_delay; 2323 2324 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2325 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2326 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2327 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2328 return -EINVAL; 2329 } else if (rgmii_tx_delay == 2000) { 2330 fep->rgmii_txc_dly = true; 2331 } 2332 } 2333 2334 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2335 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2336 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2337 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2338 return -EINVAL; 2339 } else if (rgmii_rx_delay == 2000) { 2340 fep->rgmii_rxc_dly = true; 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int fec_enet_mii_probe(struct net_device *ndev) 2348 { 2349 struct fec_enet_private *fep = netdev_priv(ndev); 2350 struct phy_device *phy_dev = NULL; 2351 char mdio_bus_id[MII_BUS_ID_SIZE]; 2352 char phy_name[MII_BUS_ID_SIZE + 3]; 2353 int phy_id; 2354 int dev_id = fep->dev_id; 2355 2356 if (fep->phy_node) { 2357 phy_dev = of_phy_connect(ndev, fep->phy_node, 2358 &fec_enet_adjust_link, 0, 2359 fep->phy_interface); 2360 if (!phy_dev) { 2361 netdev_err(ndev, "Unable to connect to phy\n"); 2362 return -ENODEV; 2363 } 2364 } else { 2365 /* check for attached phy */ 2366 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2367 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2368 continue; 2369 if (dev_id--) 2370 continue; 2371 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2372 break; 2373 } 2374 2375 if (phy_id >= PHY_MAX_ADDR) { 2376 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2377 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2378 phy_id = 0; 2379 } 2380 2381 snprintf(phy_name, sizeof(phy_name), 2382 PHY_ID_FMT, mdio_bus_id, phy_id); 2383 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2384 fep->phy_interface); 2385 } 2386 2387 if (IS_ERR(phy_dev)) { 2388 netdev_err(ndev, "could not attach to PHY\n"); 2389 return PTR_ERR(phy_dev); 2390 } 2391 2392 /* mask with MAC supported features */ 2393 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2394 phy_set_max_speed(phy_dev, 1000); 2395 phy_remove_link_mode(phy_dev, 2396 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2397 #if !defined(CONFIG_M5272) 2398 phy_support_sym_pause(phy_dev); 2399 #endif 2400 } 2401 else 2402 phy_set_max_speed(phy_dev, 100); 2403 2404 fep->link = 0; 2405 fep->full_duplex = 0; 2406 2407 phy_dev->mac_managed_pm = true; 2408 2409 phy_attached_info(phy_dev); 2410 2411 return 0; 2412 } 2413 2414 static int fec_enet_mii_init(struct platform_device *pdev) 2415 { 2416 static struct mii_bus *fec0_mii_bus; 2417 struct net_device *ndev = platform_get_drvdata(pdev); 2418 struct fec_enet_private *fep = netdev_priv(ndev); 2419 bool suppress_preamble = false; 2420 struct device_node *node; 2421 int err = -ENXIO; 2422 u32 mii_speed, holdtime; 2423 u32 bus_freq; 2424 2425 /* 2426 * The i.MX28 dual fec interfaces are not equal. 2427 * Here are the differences: 2428 * 2429 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2430 * - fec0 acts as the 1588 time master while fec1 is slave 2431 * - external phys can only be configured by fec0 2432 * 2433 * That is to say fec1 can not work independently. It only works 2434 * when fec0 is working. The reason behind this design is that the 2435 * second interface is added primarily for Switch mode. 2436 * 2437 * Because of the last point above, both phys are attached on fec0 2438 * mdio interface in board design, and need to be configured by 2439 * fec0 mii_bus. 2440 */ 2441 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2442 /* fec1 uses fec0 mii_bus */ 2443 if (mii_cnt && fec0_mii_bus) { 2444 fep->mii_bus = fec0_mii_bus; 2445 mii_cnt++; 2446 return 0; 2447 } 2448 return -ENOENT; 2449 } 2450 2451 bus_freq = 2500000; /* 2.5MHz by default */ 2452 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2453 if (node) { 2454 of_property_read_u32(node, "clock-frequency", &bus_freq); 2455 suppress_preamble = of_property_read_bool(node, 2456 "suppress-preamble"); 2457 } 2458 2459 /* 2460 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2461 * 2462 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2463 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2464 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2465 * document. 2466 */ 2467 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2468 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2469 mii_speed--; 2470 if (mii_speed > 63) { 2471 dev_err(&pdev->dev, 2472 "fec clock (%lu) too fast to get right mii speed\n", 2473 clk_get_rate(fep->clk_ipg)); 2474 err = -EINVAL; 2475 goto err_out; 2476 } 2477 2478 /* 2479 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2480 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2481 * versions are RAZ there, so just ignore the difference and write the 2482 * register always. 2483 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2484 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2485 * output. 2486 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2487 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2488 * holdtime cannot result in a value greater than 3. 2489 */ 2490 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2491 2492 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2493 2494 if (suppress_preamble) 2495 fep->phy_speed |= BIT(7); 2496 2497 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2498 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2499 * MII event generation condition: 2500 * - writing MSCR: 2501 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2502 * mscr_reg_data_in[7:0] != 0 2503 * - writing MMFR: 2504 * - mscr[7:0]_not_zero 2505 */ 2506 writel(0, fep->hwp + FEC_MII_DATA); 2507 } 2508 2509 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2510 2511 /* Clear any pending transaction complete indication */ 2512 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2513 2514 fep->mii_bus = mdiobus_alloc(); 2515 if (fep->mii_bus == NULL) { 2516 err = -ENOMEM; 2517 goto err_out; 2518 } 2519 2520 fep->mii_bus->name = "fec_enet_mii_bus"; 2521 fep->mii_bus->read = fec_enet_mdio_read_c22; 2522 fep->mii_bus->write = fec_enet_mdio_write_c22; 2523 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2524 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2525 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2526 } 2527 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2528 pdev->name, fep->dev_id + 1); 2529 fep->mii_bus->priv = fep; 2530 fep->mii_bus->parent = &pdev->dev; 2531 2532 err = of_mdiobus_register(fep->mii_bus, node); 2533 if (err) 2534 goto err_out_free_mdiobus; 2535 of_node_put(node); 2536 2537 mii_cnt++; 2538 2539 /* save fec0 mii_bus */ 2540 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2541 fec0_mii_bus = fep->mii_bus; 2542 2543 return 0; 2544 2545 err_out_free_mdiobus: 2546 mdiobus_free(fep->mii_bus); 2547 err_out: 2548 of_node_put(node); 2549 return err; 2550 } 2551 2552 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2553 { 2554 if (--mii_cnt == 0) { 2555 mdiobus_unregister(fep->mii_bus); 2556 mdiobus_free(fep->mii_bus); 2557 } 2558 } 2559 2560 static void fec_enet_get_drvinfo(struct net_device *ndev, 2561 struct ethtool_drvinfo *info) 2562 { 2563 struct fec_enet_private *fep = netdev_priv(ndev); 2564 2565 strscpy(info->driver, fep->pdev->dev.driver->name, 2566 sizeof(info->driver)); 2567 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2568 } 2569 2570 static int fec_enet_get_regs_len(struct net_device *ndev) 2571 { 2572 struct fec_enet_private *fep = netdev_priv(ndev); 2573 struct resource *r; 2574 int s = 0; 2575 2576 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2577 if (r) 2578 s = resource_size(r); 2579 2580 return s; 2581 } 2582 2583 /* List of registers that can be safety be read to dump them with ethtool */ 2584 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2585 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2586 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2587 static __u32 fec_enet_register_version = 2; 2588 static u32 fec_enet_register_offset[] = { 2589 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2590 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2591 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2592 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2593 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2594 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2595 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2596 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2597 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2598 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2599 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2600 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2601 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2602 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2603 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2604 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2605 RMON_T_P_GTE2048, RMON_T_OCTETS, 2606 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2607 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2608 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2609 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2610 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2611 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2612 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2613 RMON_R_P_GTE2048, RMON_R_OCTETS, 2614 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2615 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2616 }; 2617 /* for i.MX6ul */ 2618 static u32 fec_enet_register_offset_6ul[] = { 2619 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2620 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2621 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2622 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2623 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2624 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2625 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2626 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2627 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2628 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2629 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2630 RMON_T_P_GTE2048, RMON_T_OCTETS, 2631 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2632 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2633 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2634 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2635 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2636 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2637 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2638 RMON_R_P_GTE2048, RMON_R_OCTETS, 2639 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2640 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2641 }; 2642 #else 2643 static __u32 fec_enet_register_version = 1; 2644 static u32 fec_enet_register_offset[] = { 2645 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2646 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2647 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2648 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2649 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2650 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2651 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2652 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2653 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2654 }; 2655 #endif 2656 2657 static void fec_enet_get_regs(struct net_device *ndev, 2658 struct ethtool_regs *regs, void *regbuf) 2659 { 2660 struct fec_enet_private *fep = netdev_priv(ndev); 2661 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2662 struct device *dev = &fep->pdev->dev; 2663 u32 *buf = (u32 *)regbuf; 2664 u32 i, off; 2665 int ret; 2666 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2667 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2668 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2669 u32 *reg_list; 2670 u32 reg_cnt; 2671 2672 if (!of_machine_is_compatible("fsl,imx6ul")) { 2673 reg_list = fec_enet_register_offset; 2674 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2675 } else { 2676 reg_list = fec_enet_register_offset_6ul; 2677 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2678 } 2679 #else 2680 /* coldfire */ 2681 static u32 *reg_list = fec_enet_register_offset; 2682 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2683 #endif 2684 ret = pm_runtime_resume_and_get(dev); 2685 if (ret < 0) 2686 return; 2687 2688 regs->version = fec_enet_register_version; 2689 2690 memset(buf, 0, regs->len); 2691 2692 for (i = 0; i < reg_cnt; i++) { 2693 off = reg_list[i]; 2694 2695 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2696 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2697 continue; 2698 2699 off >>= 2; 2700 buf[off] = readl(&theregs[off]); 2701 } 2702 2703 pm_runtime_mark_last_busy(dev); 2704 pm_runtime_put_autosuspend(dev); 2705 } 2706 2707 static int fec_enet_get_ts_info(struct net_device *ndev, 2708 struct ethtool_ts_info *info) 2709 { 2710 struct fec_enet_private *fep = netdev_priv(ndev); 2711 2712 if (fep->bufdesc_ex) { 2713 2714 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2715 SOF_TIMESTAMPING_RX_SOFTWARE | 2716 SOF_TIMESTAMPING_SOFTWARE | 2717 SOF_TIMESTAMPING_TX_HARDWARE | 2718 SOF_TIMESTAMPING_RX_HARDWARE | 2719 SOF_TIMESTAMPING_RAW_HARDWARE; 2720 if (fep->ptp_clock) 2721 info->phc_index = ptp_clock_index(fep->ptp_clock); 2722 else 2723 info->phc_index = -1; 2724 2725 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2726 (1 << HWTSTAMP_TX_ON); 2727 2728 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2729 (1 << HWTSTAMP_FILTER_ALL); 2730 return 0; 2731 } else { 2732 return ethtool_op_get_ts_info(ndev, info); 2733 } 2734 } 2735 2736 #if !defined(CONFIG_M5272) 2737 2738 static void fec_enet_get_pauseparam(struct net_device *ndev, 2739 struct ethtool_pauseparam *pause) 2740 { 2741 struct fec_enet_private *fep = netdev_priv(ndev); 2742 2743 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2744 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2745 pause->rx_pause = pause->tx_pause; 2746 } 2747 2748 static int fec_enet_set_pauseparam(struct net_device *ndev, 2749 struct ethtool_pauseparam *pause) 2750 { 2751 struct fec_enet_private *fep = netdev_priv(ndev); 2752 2753 if (!ndev->phydev) 2754 return -ENODEV; 2755 2756 if (pause->tx_pause != pause->rx_pause) { 2757 netdev_info(ndev, 2758 "hardware only support enable/disable both tx and rx"); 2759 return -EINVAL; 2760 } 2761 2762 fep->pause_flag = 0; 2763 2764 /* tx pause must be same as rx pause */ 2765 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2766 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2767 2768 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2769 pause->autoneg); 2770 2771 if (pause->autoneg) { 2772 if (netif_running(ndev)) 2773 fec_stop(ndev); 2774 phy_start_aneg(ndev->phydev); 2775 } 2776 if (netif_running(ndev)) { 2777 napi_disable(&fep->napi); 2778 netif_tx_lock_bh(ndev); 2779 fec_restart(ndev); 2780 netif_tx_wake_all_queues(ndev); 2781 netif_tx_unlock_bh(ndev); 2782 napi_enable(&fep->napi); 2783 } 2784 2785 return 0; 2786 } 2787 2788 static const struct fec_stat { 2789 char name[ETH_GSTRING_LEN]; 2790 u16 offset; 2791 } fec_stats[] = { 2792 /* RMON TX */ 2793 { "tx_dropped", RMON_T_DROP }, 2794 { "tx_packets", RMON_T_PACKETS }, 2795 { "tx_broadcast", RMON_T_BC_PKT }, 2796 { "tx_multicast", RMON_T_MC_PKT }, 2797 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2798 { "tx_undersize", RMON_T_UNDERSIZE }, 2799 { "tx_oversize", RMON_T_OVERSIZE }, 2800 { "tx_fragment", RMON_T_FRAG }, 2801 { "tx_jabber", RMON_T_JAB }, 2802 { "tx_collision", RMON_T_COL }, 2803 { "tx_64byte", RMON_T_P64 }, 2804 { "tx_65to127byte", RMON_T_P65TO127 }, 2805 { "tx_128to255byte", RMON_T_P128TO255 }, 2806 { "tx_256to511byte", RMON_T_P256TO511 }, 2807 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2808 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2809 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2810 { "tx_octets", RMON_T_OCTETS }, 2811 2812 /* IEEE TX */ 2813 { "IEEE_tx_drop", IEEE_T_DROP }, 2814 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2815 { "IEEE_tx_1col", IEEE_T_1COL }, 2816 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2817 { "IEEE_tx_def", IEEE_T_DEF }, 2818 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2819 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2820 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2821 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2822 { "IEEE_tx_sqe", IEEE_T_SQE }, 2823 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2824 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2825 2826 /* RMON RX */ 2827 { "rx_packets", RMON_R_PACKETS }, 2828 { "rx_broadcast", RMON_R_BC_PKT }, 2829 { "rx_multicast", RMON_R_MC_PKT }, 2830 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2831 { "rx_undersize", RMON_R_UNDERSIZE }, 2832 { "rx_oversize", RMON_R_OVERSIZE }, 2833 { "rx_fragment", RMON_R_FRAG }, 2834 { "rx_jabber", RMON_R_JAB }, 2835 { "rx_64byte", RMON_R_P64 }, 2836 { "rx_65to127byte", RMON_R_P65TO127 }, 2837 { "rx_128to255byte", RMON_R_P128TO255 }, 2838 { "rx_256to511byte", RMON_R_P256TO511 }, 2839 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2840 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2841 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2842 { "rx_octets", RMON_R_OCTETS }, 2843 2844 /* IEEE RX */ 2845 { "IEEE_rx_drop", IEEE_R_DROP }, 2846 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2847 { "IEEE_rx_crc", IEEE_R_CRC }, 2848 { "IEEE_rx_align", IEEE_R_ALIGN }, 2849 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2850 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2851 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2852 }; 2853 2854 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2855 2856 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2857 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2858 "rx_xdp_pass", /* RX_XDP_PASS, */ 2859 "rx_xdp_drop", /* RX_XDP_DROP, */ 2860 "rx_xdp_tx", /* RX_XDP_TX, */ 2861 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2862 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2863 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2864 }; 2865 2866 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2867 { 2868 struct fec_enet_private *fep = netdev_priv(dev); 2869 int i; 2870 2871 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2872 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2873 } 2874 2875 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2876 { 2877 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2878 struct fec_enet_priv_rx_q *rxq; 2879 int i, j; 2880 2881 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2882 rxq = fep->rx_queue[i]; 2883 2884 for (j = 0; j < XDP_STATS_TOTAL; j++) 2885 xdp_stats[j] += rxq->stats[j]; 2886 } 2887 2888 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2889 } 2890 2891 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2892 { 2893 #ifdef CONFIG_PAGE_POOL_STATS 2894 struct page_pool_stats stats = {}; 2895 struct fec_enet_priv_rx_q *rxq; 2896 int i; 2897 2898 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2899 rxq = fep->rx_queue[i]; 2900 2901 if (!rxq->page_pool) 2902 continue; 2903 2904 page_pool_get_stats(rxq->page_pool, &stats); 2905 } 2906 2907 page_pool_ethtool_stats_get(data, &stats); 2908 #endif 2909 } 2910 2911 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2912 struct ethtool_stats *stats, u64 *data) 2913 { 2914 struct fec_enet_private *fep = netdev_priv(dev); 2915 2916 if (netif_running(dev)) 2917 fec_enet_update_ethtool_stats(dev); 2918 2919 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2920 data += FEC_STATS_SIZE / sizeof(u64); 2921 2922 fec_enet_get_xdp_stats(fep, data); 2923 data += XDP_STATS_TOTAL; 2924 2925 fec_enet_page_pool_stats(fep, data); 2926 } 2927 2928 static void fec_enet_get_strings(struct net_device *netdev, 2929 u32 stringset, u8 *data) 2930 { 2931 int i; 2932 switch (stringset) { 2933 case ETH_SS_STATS: 2934 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2935 ethtool_puts(&data, fec_stats[i].name); 2936 } 2937 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2938 ethtool_puts(&data, fec_xdp_stat_strs[i]); 2939 } 2940 page_pool_ethtool_stats_get_strings(data); 2941 2942 break; 2943 case ETH_SS_TEST: 2944 net_selftest_get_strings(data); 2945 break; 2946 } 2947 } 2948 2949 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2950 { 2951 int count; 2952 2953 switch (sset) { 2954 case ETH_SS_STATS: 2955 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2956 count += page_pool_ethtool_stats_get_count(); 2957 return count; 2958 2959 case ETH_SS_TEST: 2960 return net_selftest_get_count(); 2961 default: 2962 return -EOPNOTSUPP; 2963 } 2964 } 2965 2966 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2967 { 2968 struct fec_enet_private *fep = netdev_priv(dev); 2969 struct fec_enet_priv_rx_q *rxq; 2970 int i, j; 2971 2972 /* Disable MIB statistics counters */ 2973 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2974 2975 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2976 writel(0, fep->hwp + fec_stats[i].offset); 2977 2978 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2979 rxq = fep->rx_queue[i]; 2980 for (j = 0; j < XDP_STATS_TOTAL; j++) 2981 rxq->stats[j] = 0; 2982 } 2983 2984 /* Don't disable MIB statistics counters */ 2985 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2986 } 2987 2988 #else /* !defined(CONFIG_M5272) */ 2989 #define FEC_STATS_SIZE 0 2990 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2991 { 2992 } 2993 2994 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2995 { 2996 } 2997 #endif /* !defined(CONFIG_M5272) */ 2998 2999 /* ITR clock source is enet system clock (clk_ahb). 3000 * TCTT unit is cycle_ns * 64 cycle 3001 * So, the ICTT value = X us / (cycle_ns * 64) 3002 */ 3003 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3004 { 3005 struct fec_enet_private *fep = netdev_priv(ndev); 3006 3007 return us * (fep->itr_clk_rate / 64000) / 1000; 3008 } 3009 3010 /* Set threshold for interrupt coalescing */ 3011 static void fec_enet_itr_coal_set(struct net_device *ndev) 3012 { 3013 struct fec_enet_private *fep = netdev_priv(ndev); 3014 int rx_itr, tx_itr; 3015 3016 /* Must be greater than zero to avoid unpredictable behavior */ 3017 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3018 !fep->tx_time_itr || !fep->tx_pkts_itr) 3019 return; 3020 3021 /* Select enet system clock as Interrupt Coalescing 3022 * timer Clock Source 3023 */ 3024 rx_itr = FEC_ITR_CLK_SEL; 3025 tx_itr = FEC_ITR_CLK_SEL; 3026 3027 /* set ICFT and ICTT */ 3028 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3029 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3030 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3031 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3032 3033 rx_itr |= FEC_ITR_EN; 3034 tx_itr |= FEC_ITR_EN; 3035 3036 writel(tx_itr, fep->hwp + FEC_TXIC0); 3037 writel(rx_itr, fep->hwp + FEC_RXIC0); 3038 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3039 writel(tx_itr, fep->hwp + FEC_TXIC1); 3040 writel(rx_itr, fep->hwp + FEC_RXIC1); 3041 writel(tx_itr, fep->hwp + FEC_TXIC2); 3042 writel(rx_itr, fep->hwp + FEC_RXIC2); 3043 } 3044 } 3045 3046 static int fec_enet_get_coalesce(struct net_device *ndev, 3047 struct ethtool_coalesce *ec, 3048 struct kernel_ethtool_coalesce *kernel_coal, 3049 struct netlink_ext_ack *extack) 3050 { 3051 struct fec_enet_private *fep = netdev_priv(ndev); 3052 3053 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3054 return -EOPNOTSUPP; 3055 3056 ec->rx_coalesce_usecs = fep->rx_time_itr; 3057 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3058 3059 ec->tx_coalesce_usecs = fep->tx_time_itr; 3060 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3061 3062 return 0; 3063 } 3064 3065 static int fec_enet_set_coalesce(struct net_device *ndev, 3066 struct ethtool_coalesce *ec, 3067 struct kernel_ethtool_coalesce *kernel_coal, 3068 struct netlink_ext_ack *extack) 3069 { 3070 struct fec_enet_private *fep = netdev_priv(ndev); 3071 struct device *dev = &fep->pdev->dev; 3072 unsigned int cycle; 3073 3074 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3075 return -EOPNOTSUPP; 3076 3077 if (ec->rx_max_coalesced_frames > 255) { 3078 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3079 return -EINVAL; 3080 } 3081 3082 if (ec->tx_max_coalesced_frames > 255) { 3083 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3084 return -EINVAL; 3085 } 3086 3087 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3088 if (cycle > 0xFFFF) { 3089 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3090 return -EINVAL; 3091 } 3092 3093 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3094 if (cycle > 0xFFFF) { 3095 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3096 return -EINVAL; 3097 } 3098 3099 fep->rx_time_itr = ec->rx_coalesce_usecs; 3100 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3101 3102 fep->tx_time_itr = ec->tx_coalesce_usecs; 3103 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3104 3105 fec_enet_itr_coal_set(ndev); 3106 3107 return 0; 3108 } 3109 3110 /* LPI Sleep Ts count base on tx clk (clk_ref). 3111 * The lpi sleep cnt value = X us / (cycle_ns). 3112 */ 3113 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3114 { 3115 struct fec_enet_private *fep = netdev_priv(ndev); 3116 3117 return us * (fep->clk_ref_rate / 1000) / 1000; 3118 } 3119 3120 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3121 { 3122 struct fec_enet_private *fep = netdev_priv(ndev); 3123 struct ethtool_eee *p = &fep->eee; 3124 unsigned int sleep_cycle, wake_cycle; 3125 int ret = 0; 3126 3127 if (enable) { 3128 ret = phy_init_eee(ndev->phydev, false); 3129 if (ret) 3130 return ret; 3131 3132 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3133 wake_cycle = sleep_cycle; 3134 } else { 3135 sleep_cycle = 0; 3136 wake_cycle = 0; 3137 } 3138 3139 p->tx_lpi_enabled = enable; 3140 p->eee_enabled = enable; 3141 p->eee_active = enable; 3142 3143 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3144 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3145 3146 return 0; 3147 } 3148 3149 static int 3150 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3151 { 3152 struct fec_enet_private *fep = netdev_priv(ndev); 3153 struct ethtool_eee *p = &fep->eee; 3154 3155 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3156 return -EOPNOTSUPP; 3157 3158 if (!netif_running(ndev)) 3159 return -ENETDOWN; 3160 3161 edata->eee_enabled = p->eee_enabled; 3162 edata->eee_active = p->eee_active; 3163 edata->tx_lpi_timer = p->tx_lpi_timer; 3164 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3165 3166 return phy_ethtool_get_eee(ndev->phydev, edata); 3167 } 3168 3169 static int 3170 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3171 { 3172 struct fec_enet_private *fep = netdev_priv(ndev); 3173 struct ethtool_eee *p = &fep->eee; 3174 int ret = 0; 3175 3176 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3177 return -EOPNOTSUPP; 3178 3179 if (!netif_running(ndev)) 3180 return -ENETDOWN; 3181 3182 p->tx_lpi_timer = edata->tx_lpi_timer; 3183 3184 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3185 !edata->tx_lpi_timer) 3186 ret = fec_enet_eee_mode_set(ndev, false); 3187 else 3188 ret = fec_enet_eee_mode_set(ndev, true); 3189 3190 if (ret) 3191 return ret; 3192 3193 return phy_ethtool_set_eee(ndev->phydev, edata); 3194 } 3195 3196 static void 3197 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3198 { 3199 struct fec_enet_private *fep = netdev_priv(ndev); 3200 3201 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3202 wol->supported = WAKE_MAGIC; 3203 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3204 } else { 3205 wol->supported = wol->wolopts = 0; 3206 } 3207 } 3208 3209 static int 3210 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3211 { 3212 struct fec_enet_private *fep = netdev_priv(ndev); 3213 3214 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3215 return -EINVAL; 3216 3217 if (wol->wolopts & ~WAKE_MAGIC) 3218 return -EINVAL; 3219 3220 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3221 if (device_may_wakeup(&ndev->dev)) 3222 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3223 else 3224 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3225 3226 return 0; 3227 } 3228 3229 static const struct ethtool_ops fec_enet_ethtool_ops = { 3230 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3231 ETHTOOL_COALESCE_MAX_FRAMES, 3232 .get_drvinfo = fec_enet_get_drvinfo, 3233 .get_regs_len = fec_enet_get_regs_len, 3234 .get_regs = fec_enet_get_regs, 3235 .nway_reset = phy_ethtool_nway_reset, 3236 .get_link = ethtool_op_get_link, 3237 .get_coalesce = fec_enet_get_coalesce, 3238 .set_coalesce = fec_enet_set_coalesce, 3239 #ifndef CONFIG_M5272 3240 .get_pauseparam = fec_enet_get_pauseparam, 3241 .set_pauseparam = fec_enet_set_pauseparam, 3242 .get_strings = fec_enet_get_strings, 3243 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3244 .get_sset_count = fec_enet_get_sset_count, 3245 #endif 3246 .get_ts_info = fec_enet_get_ts_info, 3247 .get_wol = fec_enet_get_wol, 3248 .set_wol = fec_enet_set_wol, 3249 .get_eee = fec_enet_get_eee, 3250 .set_eee = fec_enet_set_eee, 3251 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3252 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3253 .self_test = net_selftest, 3254 }; 3255 3256 static void fec_enet_free_buffers(struct net_device *ndev) 3257 { 3258 struct fec_enet_private *fep = netdev_priv(ndev); 3259 unsigned int i; 3260 struct fec_enet_priv_tx_q *txq; 3261 struct fec_enet_priv_rx_q *rxq; 3262 unsigned int q; 3263 3264 for (q = 0; q < fep->num_rx_queues; q++) { 3265 rxq = fep->rx_queue[q]; 3266 for (i = 0; i < rxq->bd.ring_size; i++) 3267 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3268 3269 for (i = 0; i < XDP_STATS_TOTAL; i++) 3270 rxq->stats[i] = 0; 3271 3272 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3273 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3274 page_pool_destroy(rxq->page_pool); 3275 rxq->page_pool = NULL; 3276 } 3277 3278 for (q = 0; q < fep->num_tx_queues; q++) { 3279 txq = fep->tx_queue[q]; 3280 for (i = 0; i < txq->bd.ring_size; i++) { 3281 kfree(txq->tx_bounce[i]); 3282 txq->tx_bounce[i] = NULL; 3283 3284 if (!txq->tx_buf[i].buf_p) { 3285 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3286 continue; 3287 } 3288 3289 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3290 dev_kfree_skb(txq->tx_buf[i].buf_p); 3291 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3292 xdp_return_frame(txq->tx_buf[i].buf_p); 3293 } else { 3294 struct page *page = txq->tx_buf[i].buf_p; 3295 3296 page_pool_put_page(page->pp, page, 0, false); 3297 } 3298 3299 txq->tx_buf[i].buf_p = NULL; 3300 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3301 } 3302 } 3303 } 3304 3305 static void fec_enet_free_queue(struct net_device *ndev) 3306 { 3307 struct fec_enet_private *fep = netdev_priv(ndev); 3308 int i; 3309 struct fec_enet_priv_tx_q *txq; 3310 3311 for (i = 0; i < fep->num_tx_queues; i++) 3312 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3313 txq = fep->tx_queue[i]; 3314 fec_dma_free(&fep->pdev->dev, 3315 txq->bd.ring_size * TSO_HEADER_SIZE, 3316 txq->tso_hdrs, txq->tso_hdrs_dma); 3317 } 3318 3319 for (i = 0; i < fep->num_rx_queues; i++) 3320 kfree(fep->rx_queue[i]); 3321 for (i = 0; i < fep->num_tx_queues; i++) 3322 kfree(fep->tx_queue[i]); 3323 } 3324 3325 static int fec_enet_alloc_queue(struct net_device *ndev) 3326 { 3327 struct fec_enet_private *fep = netdev_priv(ndev); 3328 int i; 3329 int ret = 0; 3330 struct fec_enet_priv_tx_q *txq; 3331 3332 for (i = 0; i < fep->num_tx_queues; i++) { 3333 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3334 if (!txq) { 3335 ret = -ENOMEM; 3336 goto alloc_failed; 3337 } 3338 3339 fep->tx_queue[i] = txq; 3340 txq->bd.ring_size = TX_RING_SIZE; 3341 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3342 3343 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3344 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3345 3346 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3347 txq->bd.ring_size * TSO_HEADER_SIZE, 3348 &txq->tso_hdrs_dma, GFP_KERNEL); 3349 if (!txq->tso_hdrs) { 3350 ret = -ENOMEM; 3351 goto alloc_failed; 3352 } 3353 } 3354 3355 for (i = 0; i < fep->num_rx_queues; i++) { 3356 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3357 GFP_KERNEL); 3358 if (!fep->rx_queue[i]) { 3359 ret = -ENOMEM; 3360 goto alloc_failed; 3361 } 3362 3363 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3364 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3365 } 3366 return ret; 3367 3368 alloc_failed: 3369 fec_enet_free_queue(ndev); 3370 return ret; 3371 } 3372 3373 static int 3374 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3375 { 3376 struct fec_enet_private *fep = netdev_priv(ndev); 3377 struct fec_enet_priv_rx_q *rxq; 3378 dma_addr_t phys_addr; 3379 struct bufdesc *bdp; 3380 struct page *page; 3381 int i, err; 3382 3383 rxq = fep->rx_queue[queue]; 3384 bdp = rxq->bd.base; 3385 3386 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3387 if (err < 0) { 3388 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3389 return err; 3390 } 3391 3392 for (i = 0; i < rxq->bd.ring_size; i++) { 3393 page = page_pool_dev_alloc_pages(rxq->page_pool); 3394 if (!page) 3395 goto err_alloc; 3396 3397 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3398 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3399 3400 rxq->rx_skb_info[i].page = page; 3401 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3402 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3403 3404 if (fep->bufdesc_ex) { 3405 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3406 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3407 } 3408 3409 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3410 } 3411 3412 /* Set the last buffer to wrap. */ 3413 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3414 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3415 return 0; 3416 3417 err_alloc: 3418 fec_enet_free_buffers(ndev); 3419 return -ENOMEM; 3420 } 3421 3422 static int 3423 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3424 { 3425 struct fec_enet_private *fep = netdev_priv(ndev); 3426 unsigned int i; 3427 struct bufdesc *bdp; 3428 struct fec_enet_priv_tx_q *txq; 3429 3430 txq = fep->tx_queue[queue]; 3431 bdp = txq->bd.base; 3432 for (i = 0; i < txq->bd.ring_size; i++) { 3433 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3434 if (!txq->tx_bounce[i]) 3435 goto err_alloc; 3436 3437 bdp->cbd_sc = cpu_to_fec16(0); 3438 bdp->cbd_bufaddr = cpu_to_fec32(0); 3439 3440 if (fep->bufdesc_ex) { 3441 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3442 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3443 } 3444 3445 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3446 } 3447 3448 /* Set the last buffer to wrap. */ 3449 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3450 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3451 3452 return 0; 3453 3454 err_alloc: 3455 fec_enet_free_buffers(ndev); 3456 return -ENOMEM; 3457 } 3458 3459 static int fec_enet_alloc_buffers(struct net_device *ndev) 3460 { 3461 struct fec_enet_private *fep = netdev_priv(ndev); 3462 unsigned int i; 3463 3464 for (i = 0; i < fep->num_rx_queues; i++) 3465 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3466 return -ENOMEM; 3467 3468 for (i = 0; i < fep->num_tx_queues; i++) 3469 if (fec_enet_alloc_txq_buffers(ndev, i)) 3470 return -ENOMEM; 3471 return 0; 3472 } 3473 3474 static int 3475 fec_enet_open(struct net_device *ndev) 3476 { 3477 struct fec_enet_private *fep = netdev_priv(ndev); 3478 int ret; 3479 bool reset_again; 3480 3481 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3482 if (ret < 0) 3483 return ret; 3484 3485 pinctrl_pm_select_default_state(&fep->pdev->dev); 3486 ret = fec_enet_clk_enable(ndev, true); 3487 if (ret) 3488 goto clk_enable; 3489 3490 /* During the first fec_enet_open call the PHY isn't probed at this 3491 * point. Therefore the phy_reset_after_clk_enable() call within 3492 * fec_enet_clk_enable() fails. As we need this reset in order to be 3493 * sure the PHY is working correctly we check if we need to reset again 3494 * later when the PHY is probed 3495 */ 3496 if (ndev->phydev && ndev->phydev->drv) 3497 reset_again = false; 3498 else 3499 reset_again = true; 3500 3501 /* I should reset the ring buffers here, but I don't yet know 3502 * a simple way to do that. 3503 */ 3504 3505 ret = fec_enet_alloc_buffers(ndev); 3506 if (ret) 3507 goto err_enet_alloc; 3508 3509 /* Init MAC prior to mii bus probe */ 3510 fec_restart(ndev); 3511 3512 /* Call phy_reset_after_clk_enable() again if it failed during 3513 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3514 */ 3515 if (reset_again) 3516 fec_enet_phy_reset_after_clk_enable(ndev); 3517 3518 /* Probe and connect to PHY when open the interface */ 3519 ret = fec_enet_mii_probe(ndev); 3520 if (ret) 3521 goto err_enet_mii_probe; 3522 3523 if (fep->quirks & FEC_QUIRK_ERR006687) 3524 imx6q_cpuidle_fec_irqs_used(); 3525 3526 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3527 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3528 3529 napi_enable(&fep->napi); 3530 phy_start(ndev->phydev); 3531 netif_tx_start_all_queues(ndev); 3532 3533 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3534 FEC_WOL_FLAG_ENABLE); 3535 3536 return 0; 3537 3538 err_enet_mii_probe: 3539 fec_enet_free_buffers(ndev); 3540 err_enet_alloc: 3541 fec_enet_clk_enable(ndev, false); 3542 clk_enable: 3543 pm_runtime_mark_last_busy(&fep->pdev->dev); 3544 pm_runtime_put_autosuspend(&fep->pdev->dev); 3545 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3546 return ret; 3547 } 3548 3549 static int 3550 fec_enet_close(struct net_device *ndev) 3551 { 3552 struct fec_enet_private *fep = netdev_priv(ndev); 3553 3554 phy_stop(ndev->phydev); 3555 3556 if (netif_device_present(ndev)) { 3557 napi_disable(&fep->napi); 3558 netif_tx_disable(ndev); 3559 fec_stop(ndev); 3560 } 3561 3562 phy_disconnect(ndev->phydev); 3563 3564 if (fep->quirks & FEC_QUIRK_ERR006687) 3565 imx6q_cpuidle_fec_irqs_unused(); 3566 3567 fec_enet_update_ethtool_stats(ndev); 3568 3569 fec_enet_clk_enable(ndev, false); 3570 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3571 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3572 3573 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3574 pm_runtime_mark_last_busy(&fep->pdev->dev); 3575 pm_runtime_put_autosuspend(&fep->pdev->dev); 3576 3577 fec_enet_free_buffers(ndev); 3578 3579 return 0; 3580 } 3581 3582 /* Set or clear the multicast filter for this adaptor. 3583 * Skeleton taken from sunlance driver. 3584 * The CPM Ethernet implementation allows Multicast as well as individual 3585 * MAC address filtering. Some of the drivers check to make sure it is 3586 * a group multicast address, and discard those that are not. I guess I 3587 * will do the same for now, but just remove the test if you want 3588 * individual filtering as well (do the upper net layers want or support 3589 * this kind of feature?). 3590 */ 3591 3592 #define FEC_HASH_BITS 6 /* #bits in hash */ 3593 3594 static void set_multicast_list(struct net_device *ndev) 3595 { 3596 struct fec_enet_private *fep = netdev_priv(ndev); 3597 struct netdev_hw_addr *ha; 3598 unsigned int crc, tmp; 3599 unsigned char hash; 3600 unsigned int hash_high = 0, hash_low = 0; 3601 3602 if (ndev->flags & IFF_PROMISC) { 3603 tmp = readl(fep->hwp + FEC_R_CNTRL); 3604 tmp |= 0x8; 3605 writel(tmp, fep->hwp + FEC_R_CNTRL); 3606 return; 3607 } 3608 3609 tmp = readl(fep->hwp + FEC_R_CNTRL); 3610 tmp &= ~0x8; 3611 writel(tmp, fep->hwp + FEC_R_CNTRL); 3612 3613 if (ndev->flags & IFF_ALLMULTI) { 3614 /* Catch all multicast addresses, so set the 3615 * filter to all 1's 3616 */ 3617 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3618 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3619 3620 return; 3621 } 3622 3623 /* Add the addresses in hash register */ 3624 netdev_for_each_mc_addr(ha, ndev) { 3625 /* calculate crc32 value of mac address */ 3626 crc = ether_crc_le(ndev->addr_len, ha->addr); 3627 3628 /* only upper 6 bits (FEC_HASH_BITS) are used 3629 * which point to specific bit in the hash registers 3630 */ 3631 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3632 3633 if (hash > 31) 3634 hash_high |= 1 << (hash - 32); 3635 else 3636 hash_low |= 1 << hash; 3637 } 3638 3639 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3640 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3641 } 3642 3643 /* Set a MAC change in hardware. */ 3644 static int 3645 fec_set_mac_address(struct net_device *ndev, void *p) 3646 { 3647 struct fec_enet_private *fep = netdev_priv(ndev); 3648 struct sockaddr *addr = p; 3649 3650 if (addr) { 3651 if (!is_valid_ether_addr(addr->sa_data)) 3652 return -EADDRNOTAVAIL; 3653 eth_hw_addr_set(ndev, addr->sa_data); 3654 } 3655 3656 /* Add netif status check here to avoid system hang in below case: 3657 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3658 * After ethx down, fec all clocks are gated off and then register 3659 * access causes system hang. 3660 */ 3661 if (!netif_running(ndev)) 3662 return 0; 3663 3664 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3665 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3666 fep->hwp + FEC_ADDR_LOW); 3667 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3668 fep->hwp + FEC_ADDR_HIGH); 3669 return 0; 3670 } 3671 3672 #ifdef CONFIG_NET_POLL_CONTROLLER 3673 /** 3674 * fec_poll_controller - FEC Poll controller function 3675 * @dev: The FEC network adapter 3676 * 3677 * Polled functionality used by netconsole and others in non interrupt mode 3678 * 3679 */ 3680 static void fec_poll_controller(struct net_device *dev) 3681 { 3682 int i; 3683 struct fec_enet_private *fep = netdev_priv(dev); 3684 3685 for (i = 0; i < FEC_IRQ_NUM; i++) { 3686 if (fep->irq[i] > 0) { 3687 disable_irq(fep->irq[i]); 3688 fec_enet_interrupt(fep->irq[i], dev); 3689 enable_irq(fep->irq[i]); 3690 } 3691 } 3692 } 3693 #endif 3694 3695 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3696 netdev_features_t features) 3697 { 3698 struct fec_enet_private *fep = netdev_priv(netdev); 3699 netdev_features_t changed = features ^ netdev->features; 3700 3701 netdev->features = features; 3702 3703 /* Receive checksum has been changed */ 3704 if (changed & NETIF_F_RXCSUM) { 3705 if (features & NETIF_F_RXCSUM) 3706 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3707 else 3708 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3709 } 3710 } 3711 3712 static int fec_set_features(struct net_device *netdev, 3713 netdev_features_t features) 3714 { 3715 struct fec_enet_private *fep = netdev_priv(netdev); 3716 netdev_features_t changed = features ^ netdev->features; 3717 3718 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3719 napi_disable(&fep->napi); 3720 netif_tx_lock_bh(netdev); 3721 fec_stop(netdev); 3722 fec_enet_set_netdev_features(netdev, features); 3723 fec_restart(netdev); 3724 netif_tx_wake_all_queues(netdev); 3725 netif_tx_unlock_bh(netdev); 3726 napi_enable(&fep->napi); 3727 } else { 3728 fec_enet_set_netdev_features(netdev, features); 3729 } 3730 3731 return 0; 3732 } 3733 3734 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3735 struct net_device *sb_dev) 3736 { 3737 struct fec_enet_private *fep = netdev_priv(ndev); 3738 u16 vlan_tag = 0; 3739 3740 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3741 return netdev_pick_tx(ndev, skb, NULL); 3742 3743 /* VLAN is present in the payload.*/ 3744 if (eth_type_vlan(skb->protocol)) { 3745 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3746 3747 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3748 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3749 } else if (skb_vlan_tag_present(skb)) { 3750 vlan_tag = skb->vlan_tci; 3751 } else { 3752 return vlan_tag; 3753 } 3754 3755 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3756 } 3757 3758 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3759 { 3760 struct fec_enet_private *fep = netdev_priv(dev); 3761 bool is_run = netif_running(dev); 3762 struct bpf_prog *old_prog; 3763 3764 switch (bpf->command) { 3765 case XDP_SETUP_PROG: 3766 /* No need to support the SoCs that require to 3767 * do the frame swap because the performance wouldn't be 3768 * better than the skb mode. 3769 */ 3770 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3771 return -EOPNOTSUPP; 3772 3773 if (!bpf->prog) 3774 xdp_features_clear_redirect_target(dev); 3775 3776 if (is_run) { 3777 napi_disable(&fep->napi); 3778 netif_tx_disable(dev); 3779 } 3780 3781 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3782 if (old_prog) 3783 bpf_prog_put(old_prog); 3784 3785 fec_restart(dev); 3786 3787 if (is_run) { 3788 napi_enable(&fep->napi); 3789 netif_tx_start_all_queues(dev); 3790 } 3791 3792 if (bpf->prog) 3793 xdp_features_set_redirect_target(dev, false); 3794 3795 return 0; 3796 3797 case XDP_SETUP_XSK_POOL: 3798 return -EOPNOTSUPP; 3799 3800 default: 3801 return -EOPNOTSUPP; 3802 } 3803 } 3804 3805 static int 3806 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3807 { 3808 if (unlikely(index < 0)) 3809 return 0; 3810 3811 return (index % fep->num_tx_queues); 3812 } 3813 3814 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3815 struct fec_enet_priv_tx_q *txq, 3816 void *frame, u32 dma_sync_len, 3817 bool ndo_xmit) 3818 { 3819 unsigned int index, status, estatus; 3820 struct bufdesc *bdp; 3821 dma_addr_t dma_addr; 3822 int entries_free; 3823 u16 frame_len; 3824 3825 entries_free = fec_enet_get_free_txdesc_num(txq); 3826 if (entries_free < MAX_SKB_FRAGS + 1) { 3827 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3828 return -EBUSY; 3829 } 3830 3831 /* Fill in a Tx ring entry */ 3832 bdp = txq->bd.cur; 3833 status = fec16_to_cpu(bdp->cbd_sc); 3834 status &= ~BD_ENET_TX_STATS; 3835 3836 index = fec_enet_get_bd_index(bdp, &txq->bd); 3837 3838 if (ndo_xmit) { 3839 struct xdp_frame *xdpf = frame; 3840 3841 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3842 xdpf->len, DMA_TO_DEVICE); 3843 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3844 return -ENOMEM; 3845 3846 frame_len = xdpf->len; 3847 txq->tx_buf[index].buf_p = xdpf; 3848 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3849 } else { 3850 struct xdp_buff *xdpb = frame; 3851 struct page *page; 3852 3853 page = virt_to_page(xdpb->data); 3854 dma_addr = page_pool_get_dma_addr(page) + 3855 (xdpb->data - xdpb->data_hard_start); 3856 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3857 dma_sync_len, DMA_BIDIRECTIONAL); 3858 frame_len = xdpb->data_end - xdpb->data; 3859 txq->tx_buf[index].buf_p = page; 3860 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3861 } 3862 3863 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3864 if (fep->bufdesc_ex) 3865 estatus = BD_ENET_TX_INT; 3866 3867 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3868 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3869 3870 if (fep->bufdesc_ex) { 3871 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3872 3873 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3874 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3875 3876 ebdp->cbd_bdu = 0; 3877 ebdp->cbd_esc = cpu_to_fec32(estatus); 3878 } 3879 3880 /* Make sure the updates to rest of the descriptor are performed before 3881 * transferring ownership. 3882 */ 3883 dma_wmb(); 3884 3885 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3886 * it's the last BD of the frame, and to put the CRC on the end. 3887 */ 3888 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3889 bdp->cbd_sc = cpu_to_fec16(status); 3890 3891 /* If this was the last BD in the ring, start at the beginning again. */ 3892 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3893 3894 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3895 dma_wmb(); 3896 3897 txq->bd.cur = bdp; 3898 3899 /* Trigger transmission start */ 3900 writel(0, txq->bd.reg_desc_active); 3901 3902 return 0; 3903 } 3904 3905 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3906 int cpu, struct xdp_buff *xdp, 3907 u32 dma_sync_len) 3908 { 3909 struct fec_enet_priv_tx_q *txq; 3910 struct netdev_queue *nq; 3911 int queue, ret; 3912 3913 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3914 txq = fep->tx_queue[queue]; 3915 nq = netdev_get_tx_queue(fep->netdev, queue); 3916 3917 __netif_tx_lock(nq, cpu); 3918 3919 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3920 txq_trans_cond_update(nq); 3921 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3922 3923 __netif_tx_unlock(nq); 3924 3925 return ret; 3926 } 3927 3928 static int fec_enet_xdp_xmit(struct net_device *dev, 3929 int num_frames, 3930 struct xdp_frame **frames, 3931 u32 flags) 3932 { 3933 struct fec_enet_private *fep = netdev_priv(dev); 3934 struct fec_enet_priv_tx_q *txq; 3935 int cpu = smp_processor_id(); 3936 unsigned int sent_frames = 0; 3937 struct netdev_queue *nq; 3938 unsigned int queue; 3939 int i; 3940 3941 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3942 txq = fep->tx_queue[queue]; 3943 nq = netdev_get_tx_queue(fep->netdev, queue); 3944 3945 __netif_tx_lock(nq, cpu); 3946 3947 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3948 txq_trans_cond_update(nq); 3949 for (i = 0; i < num_frames; i++) { 3950 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3951 break; 3952 sent_frames++; 3953 } 3954 3955 __netif_tx_unlock(nq); 3956 3957 return sent_frames; 3958 } 3959 3960 static int fec_hwtstamp_get(struct net_device *ndev, 3961 struct kernel_hwtstamp_config *config) 3962 { 3963 struct fec_enet_private *fep = netdev_priv(ndev); 3964 3965 if (!netif_running(ndev)) 3966 return -EINVAL; 3967 3968 if (!fep->bufdesc_ex) 3969 return -EOPNOTSUPP; 3970 3971 fec_ptp_get(ndev, config); 3972 3973 return 0; 3974 } 3975 3976 static int fec_hwtstamp_set(struct net_device *ndev, 3977 struct kernel_hwtstamp_config *config, 3978 struct netlink_ext_ack *extack) 3979 { 3980 struct fec_enet_private *fep = netdev_priv(ndev); 3981 3982 if (!netif_running(ndev)) 3983 return -EINVAL; 3984 3985 if (!fep->bufdesc_ex) 3986 return -EOPNOTSUPP; 3987 3988 return fec_ptp_set(ndev, config, extack); 3989 } 3990 3991 static const struct net_device_ops fec_netdev_ops = { 3992 .ndo_open = fec_enet_open, 3993 .ndo_stop = fec_enet_close, 3994 .ndo_start_xmit = fec_enet_start_xmit, 3995 .ndo_select_queue = fec_enet_select_queue, 3996 .ndo_set_rx_mode = set_multicast_list, 3997 .ndo_validate_addr = eth_validate_addr, 3998 .ndo_tx_timeout = fec_timeout, 3999 .ndo_set_mac_address = fec_set_mac_address, 4000 .ndo_eth_ioctl = phy_do_ioctl_running, 4001 #ifdef CONFIG_NET_POLL_CONTROLLER 4002 .ndo_poll_controller = fec_poll_controller, 4003 #endif 4004 .ndo_set_features = fec_set_features, 4005 .ndo_bpf = fec_enet_bpf, 4006 .ndo_xdp_xmit = fec_enet_xdp_xmit, 4007 .ndo_hwtstamp_get = fec_hwtstamp_get, 4008 .ndo_hwtstamp_set = fec_hwtstamp_set, 4009 }; 4010 4011 static const unsigned short offset_des_active_rxq[] = { 4012 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4013 }; 4014 4015 static const unsigned short offset_des_active_txq[] = { 4016 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4017 }; 4018 4019 /* 4020 * XXX: We need to clean up on failure exits here. 4021 * 4022 */ 4023 static int fec_enet_init(struct net_device *ndev) 4024 { 4025 struct fec_enet_private *fep = netdev_priv(ndev); 4026 struct bufdesc *cbd_base; 4027 dma_addr_t bd_dma; 4028 int bd_size; 4029 unsigned int i; 4030 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4031 sizeof(struct bufdesc); 4032 unsigned dsize_log2 = __fls(dsize); 4033 int ret; 4034 4035 WARN_ON(dsize != (1 << dsize_log2)); 4036 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4037 fep->rx_align = 0xf; 4038 fep->tx_align = 0xf; 4039 #else 4040 fep->rx_align = 0x3; 4041 fep->tx_align = 0x3; 4042 #endif 4043 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4044 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4045 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4046 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4047 4048 /* Check mask of the streaming and coherent API */ 4049 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4050 if (ret < 0) { 4051 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4052 return ret; 4053 } 4054 4055 ret = fec_enet_alloc_queue(ndev); 4056 if (ret) 4057 return ret; 4058 4059 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4060 4061 /* Allocate memory for buffer descriptors. */ 4062 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4063 GFP_KERNEL); 4064 if (!cbd_base) { 4065 ret = -ENOMEM; 4066 goto free_queue_mem; 4067 } 4068 4069 /* Get the Ethernet address */ 4070 ret = fec_get_mac(ndev); 4071 if (ret) 4072 goto free_queue_mem; 4073 4074 /* Set receive and transmit descriptor base. */ 4075 for (i = 0; i < fep->num_rx_queues; i++) { 4076 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4077 unsigned size = dsize * rxq->bd.ring_size; 4078 4079 rxq->bd.qid = i; 4080 rxq->bd.base = cbd_base; 4081 rxq->bd.cur = cbd_base; 4082 rxq->bd.dma = bd_dma; 4083 rxq->bd.dsize = dsize; 4084 rxq->bd.dsize_log2 = dsize_log2; 4085 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4086 bd_dma += size; 4087 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4088 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4089 } 4090 4091 for (i = 0; i < fep->num_tx_queues; i++) { 4092 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4093 unsigned size = dsize * txq->bd.ring_size; 4094 4095 txq->bd.qid = i; 4096 txq->bd.base = cbd_base; 4097 txq->bd.cur = cbd_base; 4098 txq->bd.dma = bd_dma; 4099 txq->bd.dsize = dsize; 4100 txq->bd.dsize_log2 = dsize_log2; 4101 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4102 bd_dma += size; 4103 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4104 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4105 } 4106 4107 4108 /* The FEC Ethernet specific entries in the device structure */ 4109 ndev->watchdog_timeo = TX_TIMEOUT; 4110 ndev->netdev_ops = &fec_netdev_ops; 4111 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4112 4113 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4114 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4115 4116 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4117 /* enable hw VLAN support */ 4118 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4119 4120 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4121 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4122 4123 /* enable hw accelerator */ 4124 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4125 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4126 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4127 } 4128 4129 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4130 fep->tx_align = 0; 4131 fep->rx_align = 0x3f; 4132 } 4133 4134 ndev->hw_features = ndev->features; 4135 4136 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4137 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4138 NETDEV_XDP_ACT_REDIRECT; 4139 4140 fec_restart(ndev); 4141 4142 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4143 fec_enet_clear_ethtool_stats(ndev); 4144 else 4145 fec_enet_update_ethtool_stats(ndev); 4146 4147 return 0; 4148 4149 free_queue_mem: 4150 fec_enet_free_queue(ndev); 4151 return ret; 4152 } 4153 4154 #ifdef CONFIG_OF 4155 static int fec_reset_phy(struct platform_device *pdev) 4156 { 4157 struct gpio_desc *phy_reset; 4158 int msec = 1, phy_post_delay = 0; 4159 struct device_node *np = pdev->dev.of_node; 4160 int err; 4161 4162 if (!np) 4163 return 0; 4164 4165 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4166 /* A sane reset duration should not be longer than 1s */ 4167 if (!err && msec > 1000) 4168 msec = 1; 4169 4170 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4171 /* valid reset duration should be less than 1s */ 4172 if (!err && phy_post_delay > 1000) 4173 return -EINVAL; 4174 4175 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4176 GPIOD_OUT_HIGH); 4177 if (IS_ERR(phy_reset)) 4178 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4179 "failed to get phy-reset-gpios\n"); 4180 4181 if (!phy_reset) 4182 return 0; 4183 4184 if (msec > 20) 4185 msleep(msec); 4186 else 4187 usleep_range(msec * 1000, msec * 1000 + 1000); 4188 4189 gpiod_set_value_cansleep(phy_reset, 0); 4190 4191 if (!phy_post_delay) 4192 return 0; 4193 4194 if (phy_post_delay > 20) 4195 msleep(phy_post_delay); 4196 else 4197 usleep_range(phy_post_delay * 1000, 4198 phy_post_delay * 1000 + 1000); 4199 4200 return 0; 4201 } 4202 #else /* CONFIG_OF */ 4203 static int fec_reset_phy(struct platform_device *pdev) 4204 { 4205 /* 4206 * In case of platform probe, the reset has been done 4207 * by machine code. 4208 */ 4209 return 0; 4210 } 4211 #endif /* CONFIG_OF */ 4212 4213 static void 4214 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4215 { 4216 struct device_node *np = pdev->dev.of_node; 4217 4218 *num_tx = *num_rx = 1; 4219 4220 if (!np || !of_device_is_available(np)) 4221 return; 4222 4223 /* parse the num of tx and rx queues */ 4224 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4225 4226 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4227 4228 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4229 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4230 *num_tx); 4231 *num_tx = 1; 4232 return; 4233 } 4234 4235 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4236 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4237 *num_rx); 4238 *num_rx = 1; 4239 return; 4240 } 4241 4242 } 4243 4244 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4245 { 4246 int irq_cnt = platform_irq_count(pdev); 4247 4248 if (irq_cnt > FEC_IRQ_NUM) 4249 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4250 else if (irq_cnt == 2) 4251 irq_cnt = 1; /* last for pps */ 4252 else if (irq_cnt <= 0) 4253 irq_cnt = 1; /* At least 1 irq is needed */ 4254 return irq_cnt; 4255 } 4256 4257 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4258 { 4259 struct net_device *ndev = platform_get_drvdata(pdev); 4260 struct fec_enet_private *fep = netdev_priv(ndev); 4261 4262 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4263 fep->wake_irq = fep->irq[2]; 4264 else 4265 fep->wake_irq = fep->irq[0]; 4266 } 4267 4268 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4269 struct device_node *np) 4270 { 4271 struct device_node *gpr_np; 4272 u32 out_val[3]; 4273 int ret = 0; 4274 4275 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4276 if (!gpr_np) 4277 return 0; 4278 4279 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4280 ARRAY_SIZE(out_val)); 4281 if (ret) { 4282 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4283 goto out; 4284 } 4285 4286 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4287 if (IS_ERR(fep->stop_gpr.gpr)) { 4288 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4289 ret = PTR_ERR(fep->stop_gpr.gpr); 4290 fep->stop_gpr.gpr = NULL; 4291 goto out; 4292 } 4293 4294 fep->stop_gpr.reg = out_val[1]; 4295 fep->stop_gpr.bit = out_val[2]; 4296 4297 out: 4298 of_node_put(gpr_np); 4299 4300 return ret; 4301 } 4302 4303 static int 4304 fec_probe(struct platform_device *pdev) 4305 { 4306 struct fec_enet_private *fep; 4307 struct fec_platform_data *pdata; 4308 phy_interface_t interface; 4309 struct net_device *ndev; 4310 int i, irq, ret = 0; 4311 static int dev_id; 4312 struct device_node *np = pdev->dev.of_node, *phy_node; 4313 int num_tx_qs; 4314 int num_rx_qs; 4315 char irq_name[8]; 4316 int irq_cnt; 4317 const struct fec_devinfo *dev_info; 4318 4319 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4320 4321 /* Init network device */ 4322 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4323 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4324 if (!ndev) 4325 return -ENOMEM; 4326 4327 SET_NETDEV_DEV(ndev, &pdev->dev); 4328 4329 /* setup board info structure */ 4330 fep = netdev_priv(ndev); 4331 4332 dev_info = device_get_match_data(&pdev->dev); 4333 if (!dev_info) 4334 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 4335 if (dev_info) 4336 fep->quirks = dev_info->quirks; 4337 4338 fep->netdev = ndev; 4339 fep->num_rx_queues = num_rx_qs; 4340 fep->num_tx_queues = num_tx_qs; 4341 4342 #if !defined(CONFIG_M5272) 4343 /* default enable pause frame auto negotiation */ 4344 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4345 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4346 #endif 4347 4348 /* Select default pin state */ 4349 pinctrl_pm_select_default_state(&pdev->dev); 4350 4351 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4352 if (IS_ERR(fep->hwp)) { 4353 ret = PTR_ERR(fep->hwp); 4354 goto failed_ioremap; 4355 } 4356 4357 fep->pdev = pdev; 4358 fep->dev_id = dev_id++; 4359 4360 platform_set_drvdata(pdev, ndev); 4361 4362 if ((of_machine_is_compatible("fsl,imx6q") || 4363 of_machine_is_compatible("fsl,imx6dl")) && 4364 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4365 fep->quirks |= FEC_QUIRK_ERR006687; 4366 4367 ret = fec_enet_ipc_handle_init(fep); 4368 if (ret) 4369 goto failed_ipc_init; 4370 4371 if (of_property_read_bool(np, "fsl,magic-packet")) 4372 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4373 4374 ret = fec_enet_init_stop_mode(fep, np); 4375 if (ret) 4376 goto failed_stop_mode; 4377 4378 phy_node = of_parse_phandle(np, "phy-handle", 0); 4379 if (!phy_node && of_phy_is_fixed_link(np)) { 4380 ret = of_phy_register_fixed_link(np); 4381 if (ret < 0) { 4382 dev_err(&pdev->dev, 4383 "broken fixed-link specification\n"); 4384 goto failed_phy; 4385 } 4386 phy_node = of_node_get(np); 4387 } 4388 fep->phy_node = phy_node; 4389 4390 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4391 if (ret) { 4392 pdata = dev_get_platdata(&pdev->dev); 4393 if (pdata) 4394 fep->phy_interface = pdata->phy; 4395 else 4396 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4397 } else { 4398 fep->phy_interface = interface; 4399 } 4400 4401 ret = fec_enet_parse_rgmii_delay(fep, np); 4402 if (ret) 4403 goto failed_rgmii_delay; 4404 4405 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4406 if (IS_ERR(fep->clk_ipg)) { 4407 ret = PTR_ERR(fep->clk_ipg); 4408 goto failed_clk; 4409 } 4410 4411 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4412 if (IS_ERR(fep->clk_ahb)) { 4413 ret = PTR_ERR(fep->clk_ahb); 4414 goto failed_clk; 4415 } 4416 4417 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4418 4419 /* enet_out is optional, depends on board */ 4420 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4421 if (IS_ERR(fep->clk_enet_out)) { 4422 ret = PTR_ERR(fep->clk_enet_out); 4423 goto failed_clk; 4424 } 4425 4426 fep->ptp_clk_on = false; 4427 mutex_init(&fep->ptp_clk_mutex); 4428 4429 /* clk_ref is optional, depends on board */ 4430 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4431 if (IS_ERR(fep->clk_ref)) { 4432 ret = PTR_ERR(fep->clk_ref); 4433 goto failed_clk; 4434 } 4435 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4436 4437 /* clk_2x_txclk is optional, depends on board */ 4438 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4439 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4440 if (IS_ERR(fep->clk_2x_txclk)) 4441 fep->clk_2x_txclk = NULL; 4442 } 4443 4444 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4445 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4446 if (IS_ERR(fep->clk_ptp)) { 4447 fep->clk_ptp = NULL; 4448 fep->bufdesc_ex = false; 4449 } 4450 4451 ret = fec_enet_clk_enable(ndev, true); 4452 if (ret) 4453 goto failed_clk; 4454 4455 ret = clk_prepare_enable(fep->clk_ipg); 4456 if (ret) 4457 goto failed_clk_ipg; 4458 ret = clk_prepare_enable(fep->clk_ahb); 4459 if (ret) 4460 goto failed_clk_ahb; 4461 4462 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4463 if (!IS_ERR(fep->reg_phy)) { 4464 ret = regulator_enable(fep->reg_phy); 4465 if (ret) { 4466 dev_err(&pdev->dev, 4467 "Failed to enable phy regulator: %d\n", ret); 4468 goto failed_regulator; 4469 } 4470 } else { 4471 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4472 ret = -EPROBE_DEFER; 4473 goto failed_regulator; 4474 } 4475 fep->reg_phy = NULL; 4476 } 4477 4478 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4479 pm_runtime_use_autosuspend(&pdev->dev); 4480 pm_runtime_get_noresume(&pdev->dev); 4481 pm_runtime_set_active(&pdev->dev); 4482 pm_runtime_enable(&pdev->dev); 4483 4484 ret = fec_reset_phy(pdev); 4485 if (ret) 4486 goto failed_reset; 4487 4488 irq_cnt = fec_enet_get_irq_cnt(pdev); 4489 if (fep->bufdesc_ex) 4490 fec_ptp_init(pdev, irq_cnt); 4491 4492 ret = fec_enet_init(ndev); 4493 if (ret) 4494 goto failed_init; 4495 4496 for (i = 0; i < irq_cnt; i++) { 4497 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4498 irq = platform_get_irq_byname_optional(pdev, irq_name); 4499 if (irq < 0) 4500 irq = platform_get_irq(pdev, i); 4501 if (irq < 0) { 4502 ret = irq; 4503 goto failed_irq; 4504 } 4505 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4506 0, pdev->name, ndev); 4507 if (ret) 4508 goto failed_irq; 4509 4510 fep->irq[i] = irq; 4511 } 4512 4513 /* Decide which interrupt line is wakeup capable */ 4514 fec_enet_get_wakeup_irq(pdev); 4515 4516 ret = fec_enet_mii_init(pdev); 4517 if (ret) 4518 goto failed_mii_init; 4519 4520 /* Carrier starts down, phylib will bring it up */ 4521 netif_carrier_off(ndev); 4522 fec_enet_clk_enable(ndev, false); 4523 pinctrl_pm_select_sleep_state(&pdev->dev); 4524 4525 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4526 4527 ret = register_netdev(ndev); 4528 if (ret) 4529 goto failed_register; 4530 4531 device_init_wakeup(&ndev->dev, fep->wol_flag & 4532 FEC_WOL_HAS_MAGIC_PACKET); 4533 4534 if (fep->bufdesc_ex && fep->ptp_clock) 4535 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4536 4537 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4538 4539 pm_runtime_mark_last_busy(&pdev->dev); 4540 pm_runtime_put_autosuspend(&pdev->dev); 4541 4542 return 0; 4543 4544 failed_register: 4545 fec_enet_mii_remove(fep); 4546 failed_mii_init: 4547 failed_irq: 4548 failed_init: 4549 fec_ptp_stop(pdev); 4550 failed_reset: 4551 pm_runtime_put_noidle(&pdev->dev); 4552 pm_runtime_disable(&pdev->dev); 4553 if (fep->reg_phy) 4554 regulator_disable(fep->reg_phy); 4555 failed_regulator: 4556 clk_disable_unprepare(fep->clk_ahb); 4557 failed_clk_ahb: 4558 clk_disable_unprepare(fep->clk_ipg); 4559 failed_clk_ipg: 4560 fec_enet_clk_enable(ndev, false); 4561 failed_clk: 4562 failed_rgmii_delay: 4563 if (of_phy_is_fixed_link(np)) 4564 of_phy_deregister_fixed_link(np); 4565 of_node_put(phy_node); 4566 failed_stop_mode: 4567 failed_ipc_init: 4568 failed_phy: 4569 dev_id--; 4570 failed_ioremap: 4571 free_netdev(ndev); 4572 4573 return ret; 4574 } 4575 4576 static void 4577 fec_drv_remove(struct platform_device *pdev) 4578 { 4579 struct net_device *ndev = platform_get_drvdata(pdev); 4580 struct fec_enet_private *fep = netdev_priv(ndev); 4581 struct device_node *np = pdev->dev.of_node; 4582 int ret; 4583 4584 ret = pm_runtime_get_sync(&pdev->dev); 4585 if (ret < 0) 4586 dev_err(&pdev->dev, 4587 "Failed to resume device in remove callback (%pe)\n", 4588 ERR_PTR(ret)); 4589 4590 cancel_work_sync(&fep->tx_timeout_work); 4591 fec_ptp_stop(pdev); 4592 unregister_netdev(ndev); 4593 fec_enet_mii_remove(fep); 4594 if (fep->reg_phy) 4595 regulator_disable(fep->reg_phy); 4596 4597 if (of_phy_is_fixed_link(np)) 4598 of_phy_deregister_fixed_link(np); 4599 of_node_put(fep->phy_node); 4600 4601 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4602 * disabling them again. 4603 */ 4604 if (ret >= 0) { 4605 clk_disable_unprepare(fep->clk_ahb); 4606 clk_disable_unprepare(fep->clk_ipg); 4607 } 4608 pm_runtime_put_noidle(&pdev->dev); 4609 pm_runtime_disable(&pdev->dev); 4610 4611 free_netdev(ndev); 4612 } 4613 4614 static int __maybe_unused fec_suspend(struct device *dev) 4615 { 4616 struct net_device *ndev = dev_get_drvdata(dev); 4617 struct fec_enet_private *fep = netdev_priv(ndev); 4618 int ret; 4619 4620 rtnl_lock(); 4621 if (netif_running(ndev)) { 4622 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4623 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4624 phy_stop(ndev->phydev); 4625 napi_disable(&fep->napi); 4626 netif_tx_lock_bh(ndev); 4627 netif_device_detach(ndev); 4628 netif_tx_unlock_bh(ndev); 4629 fec_stop(ndev); 4630 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4631 fec_irqs_disable(ndev); 4632 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4633 } else { 4634 fec_irqs_disable_except_wakeup(ndev); 4635 if (fep->wake_irq > 0) { 4636 disable_irq(fep->wake_irq); 4637 enable_irq_wake(fep->wake_irq); 4638 } 4639 fec_enet_stop_mode(fep, true); 4640 } 4641 /* It's safe to disable clocks since interrupts are masked */ 4642 fec_enet_clk_enable(ndev, false); 4643 4644 fep->rpm_active = !pm_runtime_status_suspended(dev); 4645 if (fep->rpm_active) { 4646 ret = pm_runtime_force_suspend(dev); 4647 if (ret < 0) { 4648 rtnl_unlock(); 4649 return ret; 4650 } 4651 } 4652 } 4653 rtnl_unlock(); 4654 4655 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4656 regulator_disable(fep->reg_phy); 4657 4658 /* SOC supply clock to phy, when clock is disabled, phy link down 4659 * SOC control phy regulator, when regulator is disabled, phy link down 4660 */ 4661 if (fep->clk_enet_out || fep->reg_phy) 4662 fep->link = 0; 4663 4664 return 0; 4665 } 4666 4667 static int __maybe_unused fec_resume(struct device *dev) 4668 { 4669 struct net_device *ndev = dev_get_drvdata(dev); 4670 struct fec_enet_private *fep = netdev_priv(ndev); 4671 int ret; 4672 int val; 4673 4674 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4675 ret = regulator_enable(fep->reg_phy); 4676 if (ret) 4677 return ret; 4678 } 4679 4680 rtnl_lock(); 4681 if (netif_running(ndev)) { 4682 if (fep->rpm_active) 4683 pm_runtime_force_resume(dev); 4684 4685 ret = fec_enet_clk_enable(ndev, true); 4686 if (ret) { 4687 rtnl_unlock(); 4688 goto failed_clk; 4689 } 4690 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4691 fec_enet_stop_mode(fep, false); 4692 if (fep->wake_irq) { 4693 disable_irq_wake(fep->wake_irq); 4694 enable_irq(fep->wake_irq); 4695 } 4696 4697 val = readl(fep->hwp + FEC_ECNTRL); 4698 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4699 writel(val, fep->hwp + FEC_ECNTRL); 4700 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4701 } else { 4702 pinctrl_pm_select_default_state(&fep->pdev->dev); 4703 } 4704 fec_restart(ndev); 4705 netif_tx_lock_bh(ndev); 4706 netif_device_attach(ndev); 4707 netif_tx_unlock_bh(ndev); 4708 napi_enable(&fep->napi); 4709 phy_init_hw(ndev->phydev); 4710 phy_start(ndev->phydev); 4711 } 4712 rtnl_unlock(); 4713 4714 return 0; 4715 4716 failed_clk: 4717 if (fep->reg_phy) 4718 regulator_disable(fep->reg_phy); 4719 return ret; 4720 } 4721 4722 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4723 { 4724 struct net_device *ndev = dev_get_drvdata(dev); 4725 struct fec_enet_private *fep = netdev_priv(ndev); 4726 4727 clk_disable_unprepare(fep->clk_ahb); 4728 clk_disable_unprepare(fep->clk_ipg); 4729 4730 return 0; 4731 } 4732 4733 static int __maybe_unused fec_runtime_resume(struct device *dev) 4734 { 4735 struct net_device *ndev = dev_get_drvdata(dev); 4736 struct fec_enet_private *fep = netdev_priv(ndev); 4737 int ret; 4738 4739 ret = clk_prepare_enable(fep->clk_ahb); 4740 if (ret) 4741 return ret; 4742 ret = clk_prepare_enable(fep->clk_ipg); 4743 if (ret) 4744 goto failed_clk_ipg; 4745 4746 return 0; 4747 4748 failed_clk_ipg: 4749 clk_disable_unprepare(fep->clk_ahb); 4750 return ret; 4751 } 4752 4753 static const struct dev_pm_ops fec_pm_ops = { 4754 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4755 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4756 }; 4757 4758 static struct platform_driver fec_driver = { 4759 .driver = { 4760 .name = DRIVER_NAME, 4761 .pm = &fec_pm_ops, 4762 .of_match_table = fec_dt_ids, 4763 .suppress_bind_attrs = true, 4764 }, 4765 .id_table = fec_devtype, 4766 .probe = fec_probe, 4767 .remove_new = fec_drv_remove, 4768 }; 4769 4770 module_platform_driver(fec_driver); 4771 4772 MODULE_LICENSE("GPL"); 4773