xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
53 #include <linux/of.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
62 
63 #include <asm/cacheflush.h>
64 
65 #include "fec.h"
66 
67 static void set_multicast_list(struct net_device *ndev);
68 static void fec_enet_itr_coal_init(struct net_device *ndev);
69 
70 #define DRIVER_NAME	"fec"
71 
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
73 
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE	(1 << 5)
76 #define FEC_ENET_RSEM_V	0x84
77 #define FEC_ENET_RSFL_V	16
78 #define FEC_ENET_RAEM_V	0x8
79 #define FEC_ENET_RAFL_V	0x8
80 #define FEC_ENET_OPD_V	0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
82 
83 static struct platform_device_id fec_devtype[] = {
84 	{
85 		/* keep it for coldfire */
86 		.name = DRIVER_NAME,
87 		.driver_data = 0,
88 	}, {
89 		.name = "imx25-fec",
90 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
91 	}, {
92 		.name = "imx27-fec",
93 		.driver_data = FEC_QUIRK_HAS_RACC,
94 	}, {
95 		.name = "imx28-fec",
96 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
97 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
98 	}, {
99 		.name = "imx6q-fec",
100 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
101 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
102 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
103 				FEC_QUIRK_HAS_RACC,
104 	}, {
105 		.name = "mvf600-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
107 	}, {
108 		.name = "imx6sx-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
112 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
113 				FEC_QUIRK_HAS_RACC,
114 	}, {
115 		/* sentinel */
116 	}
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119 
120 enum imx_fec_type {
121 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
122 	IMX27_FEC,	/* runs on i.mx27/35/51 */
123 	IMX28_FEC,
124 	IMX6Q_FEC,
125 	MVF600_FEC,
126 	IMX6SX_FEC,
127 };
128 
129 static const struct of_device_id fec_dt_ids[] = {
130 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
131 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
132 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
133 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
134 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
135 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
136 	{ /* sentinel */ }
137 };
138 MODULE_DEVICE_TABLE(of, fec_dt_ids);
139 
140 static unsigned char macaddr[ETH_ALEN];
141 module_param_array(macaddr, byte, NULL, 0);
142 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
143 
144 #if defined(CONFIG_M5272)
145 /*
146  * Some hardware gets it MAC address out of local flash memory.
147  * if this is non-zero then assume it is the address to get MAC from.
148  */
149 #if defined(CONFIG_NETtel)
150 #define	FEC_FLASHMAC	0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define	FEC_FLASHMAC	0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define	FEC_FLASHMAC	0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define	FEC_FLASHMAC	(0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC	0xffc0406b
159 #else
160 #define	FEC_FLASHMAC	0
161 #endif
162 #endif /* CONFIG_M5272 */
163 
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
165  */
166 #define PKT_MAXBUF_SIZE		1522
167 #define PKT_MINBUF_SIZE		64
168 #define PKT_MAXBLR_SIZE		1536
169 
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS		(1 << 1)
172 #define FEC_RACC_PRODIS		(1 << 2)
173 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
174 
175 /*
176  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177  * size bits. Other FEC hardware does not, so we need to take that into
178  * account when setting it.
179  */
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
183 #else
184 #define	OPT_FRAME_SIZE	0
185 #endif
186 
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST		(1 << 30)
189 #define FEC_MMFR_OP_READ	(2 << 28)
190 #define FEC_MMFR_OP_WRITE	(1 << 28)
191 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
193 #define FEC_MMFR_TA		(2 << 16)
194 #define FEC_MMFR_DATA(v)	(v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN		(1 << 2)
197 #define FEC_ECR_SLEEP		(1 << 3)
198 
199 #define FEC_MII_TIMEOUT		30000 /* us */
200 
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
203 
204 #define FEC_PAUSE_FLAG_AUTONEG	0x1
205 #define FEC_PAUSE_FLAG_ENABLE	0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
209 
210 #define COPYBREAK_DEFAULT	256
211 
212 #define TSO_HEADER_SIZE		128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS	100
215 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
216 
217 #define IS_TSO_HEADER(txq, addr) \
218 	((addr >= txq->tso_hdrs_dma) && \
219 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
220 
221 static int mii_cnt;
222 
223 static inline
224 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 				      struct fec_enet_private *fep,
226 				      int queue_id)
227 {
228 	struct bufdesc *new_bd = bdp + 1;
229 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
230 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
231 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
232 	struct bufdesc_ex *ex_base;
233 	struct bufdesc *base;
234 	int ring_size;
235 
236 	if (bdp >= txq->tx_bd_base) {
237 		base = txq->tx_bd_base;
238 		ring_size = txq->tx_ring_size;
239 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
240 	} else {
241 		base = rxq->rx_bd_base;
242 		ring_size = rxq->rx_ring_size;
243 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
244 	}
245 
246 	if (fep->bufdesc_ex)
247 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
248 			ex_base : ex_new_bd);
249 	else
250 		return (new_bd >= (base + ring_size)) ?
251 			base : new_bd;
252 }
253 
254 static inline
255 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
256 				      struct fec_enet_private *fep,
257 				      int queue_id)
258 {
259 	struct bufdesc *new_bd = bdp - 1;
260 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
261 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
262 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
263 	struct bufdesc_ex *ex_base;
264 	struct bufdesc *base;
265 	int ring_size;
266 
267 	if (bdp >= txq->tx_bd_base) {
268 		base = txq->tx_bd_base;
269 		ring_size = txq->tx_ring_size;
270 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
271 	} else {
272 		base = rxq->rx_bd_base;
273 		ring_size = rxq->rx_ring_size;
274 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
275 	}
276 
277 	if (fep->bufdesc_ex)
278 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
279 			(ex_new_bd + ring_size) : ex_new_bd);
280 	else
281 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
282 }
283 
284 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
285 				struct fec_enet_private *fep)
286 {
287 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
288 }
289 
290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
291 					struct fec_enet_priv_tx_q *txq)
292 {
293 	int entries;
294 
295 	entries = ((const char *)txq->dirty_tx -
296 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
297 
298 	return entries > 0 ? entries : entries + txq->tx_ring_size;
299 }
300 
301 static void swap_buffer(void *bufaddr, int len)
302 {
303 	int i;
304 	unsigned int *buf = bufaddr;
305 
306 	for (i = 0; i < len; i += 4, buf++)
307 		swab32s(buf);
308 }
309 
310 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
311 {
312 	int i;
313 	unsigned int *src = src_buf;
314 	unsigned int *dst = dst_buf;
315 
316 	for (i = 0; i < len; i += 4, src++, dst++)
317 		*dst = swab32p(src);
318 }
319 
320 static void fec_dump(struct net_device *ndev)
321 {
322 	struct fec_enet_private *fep = netdev_priv(ndev);
323 	struct bufdesc *bdp;
324 	struct fec_enet_priv_tx_q *txq;
325 	int index = 0;
326 
327 	netdev_info(ndev, "TX ring dump\n");
328 	pr_info("Nr     SC     addr       len  SKB\n");
329 
330 	txq = fep->tx_queue[0];
331 	bdp = txq->tx_bd_base;
332 
333 	do {
334 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335 			index,
336 			bdp == txq->cur_tx ? 'S' : ' ',
337 			bdp == txq->dirty_tx ? 'H' : ' ',
338 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339 			txq->tx_skbuff[index]);
340 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
341 		index++;
342 	} while (bdp != txq->tx_bd_base);
343 }
344 
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349 
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353 	/* Only run for packets requiring a checksum. */
354 	if (skb->ip_summed != CHECKSUM_PARTIAL)
355 		return 0;
356 
357 	if (unlikely(skb_cow_head(skb, 0)))
358 		return -1;
359 
360 	if (is_ipv4_pkt(skb))
361 		ip_hdr(skb)->check = 0;
362 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363 
364 	return 0;
365 }
366 
367 static struct bufdesc *
368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
369 			     struct sk_buff *skb,
370 			     struct net_device *ndev)
371 {
372 	struct fec_enet_private *fep = netdev_priv(ndev);
373 	struct bufdesc *bdp = txq->cur_tx;
374 	struct bufdesc_ex *ebdp;
375 	int nr_frags = skb_shinfo(skb)->nr_frags;
376 	unsigned short queue = skb_get_queue_mapping(skb);
377 	int frag, frag_len;
378 	unsigned short status;
379 	unsigned int estatus = 0;
380 	skb_frag_t *this_frag;
381 	unsigned int index;
382 	void *bufaddr;
383 	dma_addr_t addr;
384 	int i;
385 
386 	for (frag = 0; frag < nr_frags; frag++) {
387 		this_frag = &skb_shinfo(skb)->frags[frag];
388 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
389 		ebdp = (struct bufdesc_ex *)bdp;
390 
391 		status = bdp->cbd_sc;
392 		status &= ~BD_ENET_TX_STATS;
393 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
394 		frag_len = skb_shinfo(skb)->frags[frag].size;
395 
396 		/* Handle the last BD specially */
397 		if (frag == nr_frags - 1) {
398 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
399 			if (fep->bufdesc_ex) {
400 				estatus |= BD_ENET_TX_INT;
401 				if (unlikely(skb_shinfo(skb)->tx_flags &
402 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
403 					estatus |= BD_ENET_TX_TS;
404 			}
405 		}
406 
407 		if (fep->bufdesc_ex) {
408 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
409 				estatus |= FEC_TX_BD_FTYPE(queue);
410 			if (skb->ip_summed == CHECKSUM_PARTIAL)
411 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
412 			ebdp->cbd_bdu = 0;
413 			ebdp->cbd_esc = estatus;
414 		}
415 
416 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
417 
418 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
419 		if (((unsigned long) bufaddr) & fep->tx_align ||
420 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
421 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
422 			bufaddr = txq->tx_bounce[index];
423 
424 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
425 				swap_buffer(bufaddr, frag_len);
426 		}
427 
428 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
429 				      DMA_TO_DEVICE);
430 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
431 			dev_kfree_skb_any(skb);
432 			if (net_ratelimit())
433 				netdev_err(ndev, "Tx DMA memory map failed\n");
434 			goto dma_mapping_error;
435 		}
436 
437 		bdp->cbd_bufaddr = addr;
438 		bdp->cbd_datlen = frag_len;
439 		bdp->cbd_sc = status;
440 	}
441 
442 	return bdp;
443 dma_mapping_error:
444 	bdp = txq->cur_tx;
445 	for (i = 0; i < frag; i++) {
446 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
447 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
448 				bdp->cbd_datlen, DMA_TO_DEVICE);
449 	}
450 	return ERR_PTR(-ENOMEM);
451 }
452 
453 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
454 				   struct sk_buff *skb, struct net_device *ndev)
455 {
456 	struct fec_enet_private *fep = netdev_priv(ndev);
457 	int nr_frags = skb_shinfo(skb)->nr_frags;
458 	struct bufdesc *bdp, *last_bdp;
459 	void *bufaddr;
460 	dma_addr_t addr;
461 	unsigned short status;
462 	unsigned short buflen;
463 	unsigned short queue;
464 	unsigned int estatus = 0;
465 	unsigned int index;
466 	int entries_free;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	last_bdp = bdp;
485 	status = bdp->cbd_sc;
486 	status &= ~BD_ENET_TX_STATS;
487 
488 	/* Set buffer length and buffer pointer */
489 	bufaddr = skb->data;
490 	buflen = skb_headlen(skb);
491 
492 	queue = skb_get_queue_mapping(skb);
493 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
494 	if (((unsigned long) bufaddr) & fep->tx_align ||
495 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
496 		memcpy(txq->tx_bounce[index], skb->data, buflen);
497 		bufaddr = txq->tx_bounce[index];
498 
499 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
500 			swap_buffer(bufaddr, buflen);
501 	}
502 
503 	/* Push the data cache so the CPM does not get stale memory data. */
504 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
505 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
506 		dev_kfree_skb_any(skb);
507 		if (net_ratelimit())
508 			netdev_err(ndev, "Tx DMA memory map failed\n");
509 		return NETDEV_TX_OK;
510 	}
511 
512 	if (nr_frags) {
513 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
514 		if (IS_ERR(last_bdp))
515 			return NETDEV_TX_OK;
516 	} else {
517 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
518 		if (fep->bufdesc_ex) {
519 			estatus = BD_ENET_TX_INT;
520 			if (unlikely(skb_shinfo(skb)->tx_flags &
521 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
522 				estatus |= BD_ENET_TX_TS;
523 		}
524 	}
525 
526 	if (fep->bufdesc_ex) {
527 
528 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
529 
530 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
531 			fep->hwts_tx_en))
532 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
533 
534 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
535 			estatus |= FEC_TX_BD_FTYPE(queue);
536 
537 		if (skb->ip_summed == CHECKSUM_PARTIAL)
538 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
539 
540 		ebdp->cbd_bdu = 0;
541 		ebdp->cbd_esc = estatus;
542 	}
543 
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	/* Make sure the update to bdp and tx_skbuff are performed before
563 	 * cur_tx.
564 	 */
565 	wmb();
566 	txq->cur_tx = bdp;
567 
568 	/* Trigger transmission start */
569 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
570 
571 	return 0;
572 }
573 
574 static int
575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
576 			  struct net_device *ndev,
577 			  struct bufdesc *bdp, int index, char *data,
578 			  int size, bool last_tcp, bool is_last)
579 {
580 	struct fec_enet_private *fep = netdev_priv(ndev);
581 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
582 	unsigned short queue = skb_get_queue_mapping(skb);
583 	unsigned short status;
584 	unsigned int estatus = 0;
585 	dma_addr_t addr;
586 
587 	status = bdp->cbd_sc;
588 	status &= ~BD_ENET_TX_STATS;
589 
590 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
591 
592 	if (((unsigned long) data) & fep->tx_align ||
593 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
594 		memcpy(txq->tx_bounce[index], data, size);
595 		data = txq->tx_bounce[index];
596 
597 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
598 			swap_buffer(data, size);
599 	}
600 
601 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
602 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
603 		dev_kfree_skb_any(skb);
604 		if (net_ratelimit())
605 			netdev_err(ndev, "Tx DMA memory map failed\n");
606 		return NETDEV_TX_BUSY;
607 	}
608 
609 	bdp->cbd_datlen = size;
610 	bdp->cbd_bufaddr = addr;
611 
612 	if (fep->bufdesc_ex) {
613 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
614 			estatus |= FEC_TX_BD_FTYPE(queue);
615 		if (skb->ip_summed == CHECKSUM_PARTIAL)
616 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
617 		ebdp->cbd_bdu = 0;
618 		ebdp->cbd_esc = estatus;
619 	}
620 
621 	/* Handle the last BD specially */
622 	if (last_tcp)
623 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
624 	if (is_last) {
625 		status |= BD_ENET_TX_INTR;
626 		if (fep->bufdesc_ex)
627 			ebdp->cbd_esc |= BD_ENET_TX_INT;
628 	}
629 
630 	bdp->cbd_sc = status;
631 
632 	return 0;
633 }
634 
635 static int
636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
637 			 struct sk_buff *skb, struct net_device *ndev,
638 			 struct bufdesc *bdp, int index)
639 {
640 	struct fec_enet_private *fep = netdev_priv(ndev);
641 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
642 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
643 	unsigned short queue = skb_get_queue_mapping(skb);
644 	void *bufaddr;
645 	unsigned long dmabuf;
646 	unsigned short status;
647 	unsigned int estatus = 0;
648 
649 	status = bdp->cbd_sc;
650 	status &= ~BD_ENET_TX_STATS;
651 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
652 
653 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
654 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
655 	if (((unsigned long)bufaddr) & fep->tx_align ||
656 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
657 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
658 		bufaddr = txq->tx_bounce[index];
659 
660 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
661 			swap_buffer(bufaddr, hdr_len);
662 
663 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
664 					hdr_len, DMA_TO_DEVICE);
665 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
666 			dev_kfree_skb_any(skb);
667 			if (net_ratelimit())
668 				netdev_err(ndev, "Tx DMA memory map failed\n");
669 			return NETDEV_TX_BUSY;
670 		}
671 	}
672 
673 	bdp->cbd_bufaddr = dmabuf;
674 	bdp->cbd_datlen = hdr_len;
675 
676 	if (fep->bufdesc_ex) {
677 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
678 			estatus |= FEC_TX_BD_FTYPE(queue);
679 		if (skb->ip_summed == CHECKSUM_PARTIAL)
680 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
681 		ebdp->cbd_bdu = 0;
682 		ebdp->cbd_esc = estatus;
683 	}
684 
685 	bdp->cbd_sc = status;
686 
687 	return 0;
688 }
689 
690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
691 				   struct sk_buff *skb,
692 				   struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
696 	int total_len, data_left;
697 	struct bufdesc *bdp = txq->cur_tx;
698 	unsigned short queue = skb_get_queue_mapping(skb);
699 	struct tso_t tso;
700 	unsigned int index = 0;
701 	int ret;
702 
703 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
704 		dev_kfree_skb_any(skb);
705 		if (net_ratelimit())
706 			netdev_err(ndev, "NOT enough BD for TSO!\n");
707 		return NETDEV_TX_OK;
708 	}
709 
710 	/* Protocol checksum off-load for TCP and UDP. */
711 	if (fec_enet_clear_csum(skb, ndev)) {
712 		dev_kfree_skb_any(skb);
713 		return NETDEV_TX_OK;
714 	}
715 
716 	/* Initialize the TSO handler, and prepare the first payload */
717 	tso_start(skb, &tso);
718 
719 	total_len = skb->len - hdr_len;
720 	while (total_len > 0) {
721 		char *hdr;
722 
723 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
724 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
725 		total_len -= data_left;
726 
727 		/* prepare packet headers: MAC + IP + TCP */
728 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
729 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
730 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
731 		if (ret)
732 			goto err_release;
733 
734 		while (data_left > 0) {
735 			int size;
736 
737 			size = min_t(int, tso.size, data_left);
738 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
739 			index = fec_enet_get_bd_index(txq->tx_bd_base,
740 						      bdp, fep);
741 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
742 							bdp, index,
743 							tso.data, size,
744 							size == data_left,
745 							total_len == 0);
746 			if (ret)
747 				goto err_release;
748 
749 			data_left -= size;
750 			tso_build_data(skb, &tso, size);
751 		}
752 
753 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
754 	}
755 
756 	/* Save skb pointer */
757 	txq->tx_skbuff[index] = skb;
758 
759 	skb_tx_timestamp(skb);
760 	txq->cur_tx = bdp;
761 
762 	/* Trigger transmission start */
763 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
764 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
768 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
769 
770 	return 0;
771 
772 err_release:
773 	/* TODO: Release all used data descriptors for TSO */
774 	return ret;
775 }
776 
777 static netdev_tx_t
778 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(ndev);
781 	int entries_free;
782 	unsigned short queue;
783 	struct fec_enet_priv_tx_q *txq;
784 	struct netdev_queue *nq;
785 	int ret;
786 
787 	queue = skb_get_queue_mapping(skb);
788 	txq = fep->tx_queue[queue];
789 	nq = netdev_get_tx_queue(ndev, queue);
790 
791 	if (skb_is_gso(skb))
792 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
793 	else
794 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
795 	if (ret)
796 		return ret;
797 
798 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
799 	if (entries_free <= txq->tx_stop_threshold)
800 		netif_tx_stop_queue(nq);
801 
802 	return NETDEV_TX_OK;
803 }
804 
805 /* Init RX & TX buffer descriptors
806  */
807 static void fec_enet_bd_init(struct net_device *dev)
808 {
809 	struct fec_enet_private *fep = netdev_priv(dev);
810 	struct fec_enet_priv_tx_q *txq;
811 	struct fec_enet_priv_rx_q *rxq;
812 	struct bufdesc *bdp;
813 	unsigned int i;
814 	unsigned int q;
815 
816 	for (q = 0; q < fep->num_rx_queues; q++) {
817 		/* Initialize the receive buffer descriptors. */
818 		rxq = fep->rx_queue[q];
819 		bdp = rxq->rx_bd_base;
820 
821 		for (i = 0; i < rxq->rx_ring_size; i++) {
822 
823 			/* Initialize the BD for every fragment in the page. */
824 			if (bdp->cbd_bufaddr)
825 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
826 			else
827 				bdp->cbd_sc = 0;
828 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
829 		}
830 
831 		/* Set the last buffer to wrap */
832 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
833 		bdp->cbd_sc |= BD_SC_WRAP;
834 
835 		rxq->cur_rx = rxq->rx_bd_base;
836 	}
837 
838 	for (q = 0; q < fep->num_tx_queues; q++) {
839 		/* ...and the same for transmit */
840 		txq = fep->tx_queue[q];
841 		bdp = txq->tx_bd_base;
842 		txq->cur_tx = bdp;
843 
844 		for (i = 0; i < txq->tx_ring_size; i++) {
845 			/* Initialize the BD for every fragment in the page. */
846 			bdp->cbd_sc = 0;
847 			if (txq->tx_skbuff[i]) {
848 				dev_kfree_skb_any(txq->tx_skbuff[i]);
849 				txq->tx_skbuff[i] = NULL;
850 			}
851 			bdp->cbd_bufaddr = 0;
852 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
853 		}
854 
855 		/* Set the last buffer to wrap */
856 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
857 		bdp->cbd_sc |= BD_SC_WRAP;
858 		txq->dirty_tx = bdp;
859 	}
860 }
861 
862 static void fec_enet_active_rxring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	int i;
866 
867 	for (i = 0; i < fep->num_rx_queues; i++)
868 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
869 }
870 
871 static void fec_enet_enable_ring(struct net_device *ndev)
872 {
873 	struct fec_enet_private *fep = netdev_priv(ndev);
874 	struct fec_enet_priv_tx_q *txq;
875 	struct fec_enet_priv_rx_q *rxq;
876 	int i;
877 
878 	for (i = 0; i < fep->num_rx_queues; i++) {
879 		rxq = fep->rx_queue[i];
880 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
881 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(RCMR_MATCHEN | RCMR_CMP(i),
886 			       fep->hwp + FEC_RCMR(i));
887 	}
888 
889 	for (i = 0; i < fep->num_tx_queues; i++) {
890 		txq = fep->tx_queue[i];
891 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893 		/* enable DMA1/2 */
894 		if (i)
895 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896 			       fep->hwp + FEC_DMA_CFG(i));
897 	}
898 }
899 
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902 	struct fec_enet_private *fep = netdev_priv(ndev);
903 	struct fec_enet_priv_tx_q *txq;
904 	int i, j;
905 
906 	for (i = 0; i < fep->num_tx_queues; i++) {
907 		txq = fep->tx_queue[i];
908 
909 		for (j = 0; j < txq->tx_ring_size; j++) {
910 			if (txq->tx_skbuff[j]) {
911 				dev_kfree_skb_any(txq->tx_skbuff[j]);
912 				txq->tx_skbuff[j] = NULL;
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926 	struct fec_enet_private *fep = netdev_priv(ndev);
927 	u32 val;
928 	u32 temp_mac[2];
929 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
930 	u32 ecntl = 0x2; /* ETHEREN */
931 
932 	/* Whack a reset.  We should wait for this.
933 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934 	 * instead of reset MAC itself.
935 	 */
936 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
937 		writel(0, fep->hwp + FEC_ECNTRL);
938 	} else {
939 		writel(1, fep->hwp + FEC_ECNTRL);
940 		udelay(10);
941 	}
942 
943 	/*
944 	 * enet-mac reset will reset mac address registers too,
945 	 * so need to reconfigure it.
946 	 */
947 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
948 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
949 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
950 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
951 	}
952 
953 	/* Clear any outstanding interrupt. */
954 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
955 
956 	fec_enet_bd_init(ndev);
957 
958 	fec_enet_enable_ring(ndev);
959 
960 	/* Reset tx SKB buffers. */
961 	fec_enet_reset_skb(ndev);
962 
963 	/* Enable MII mode */
964 	if (fep->full_duplex == DUPLEX_FULL) {
965 		/* FD enable */
966 		writel(0x04, fep->hwp + FEC_X_CNTRL);
967 	} else {
968 		/* No Rcv on Xmit */
969 		rcntl |= 0x02;
970 		writel(0x0, fep->hwp + FEC_X_CNTRL);
971 	}
972 
973 	/* Set MII speed */
974 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
975 
976 #if !defined(CONFIG_M5272)
977 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
978 		/* set RX checksum */
979 		val = readl(fep->hwp + FEC_RACC);
980 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
981 			val |= FEC_RACC_OPTIONS;
982 		else
983 			val &= ~FEC_RACC_OPTIONS;
984 		writel(val, fep->hwp + FEC_RACC);
985 	}
986 #endif
987 
988 	/*
989 	 * The phy interface and speed need to get configured
990 	 * differently on enet-mac.
991 	 */
992 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
993 		/* Enable flow control and length check */
994 		rcntl |= 0x40000000 | 0x00000020;
995 
996 		/* RGMII, RMII or MII */
997 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
998 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
999 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1000 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1001 			rcntl |= (1 << 6);
1002 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003 			rcntl |= (1 << 8);
1004 		else
1005 			rcntl &= ~(1 << 8);
1006 
1007 		/* 1G, 100M or 10M */
1008 		if (fep->phy_dev) {
1009 			if (fep->phy_dev->speed == SPEED_1000)
1010 				ecntl |= (1 << 5);
1011 			else if (fep->phy_dev->speed == SPEED_100)
1012 				rcntl &= ~(1 << 9);
1013 			else
1014 				rcntl |= (1 << 9);
1015 		}
1016 	} else {
1017 #ifdef FEC_MIIGSK_ENR
1018 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1019 			u32 cfgr;
1020 			/* disable the gasket and wait */
1021 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023 				udelay(1);
1024 
1025 			/*
1026 			 * configure the gasket:
1027 			 *   RMII, 50 MHz, no loopback, no echo
1028 			 *   MII, 25 MHz, no loopback, no echo
1029 			 */
1030 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036 			/* re-enable the gasket */
1037 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038 		}
1039 #endif
1040 	}
1041 
1042 #if !defined(CONFIG_M5272)
1043 	/* enable pause frame*/
1044 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046 	     fep->phy_dev && fep->phy_dev->pause)) {
1047 		rcntl |= FEC_ENET_FCE;
1048 
1049 		/* set FIFO threshold parameter to reduce overrun */
1050 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055 		/* OPD */
1056 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057 	} else {
1058 		rcntl &= ~FEC_ENET_FCE;
1059 	}
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064 	/* Setup multicast filter. */
1065 	set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1072 		/* enable ENET endian swap */
1073 		ecntl |= (1 << 8);
1074 		/* enable ENET store and forward mode */
1075 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076 	}
1077 
1078 	if (fep->bufdesc_ex)
1079 		ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082 	/* Enable the MIB statistic event counters */
1083 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086 	/* And last, enable the transmit and receive processing */
1087 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1088 	fec_enet_active_rxring(ndev);
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_start_cyclecounter(ndev);
1092 
1093 	/* Enable interrupts we wish to service */
1094 	if (fep->link)
1095 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1096 	else
1097 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1098 
1099 	/* Init the interrupt coalescing */
1100 	fec_enet_itr_coal_init(ndev);
1101 
1102 }
1103 
1104 static void
1105 fec_stop(struct net_device *ndev)
1106 {
1107 	struct fec_enet_private *fep = netdev_priv(ndev);
1108 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1109 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1110 	u32 val;
1111 
1112 	/* We cannot expect a graceful transmit stop without link !!! */
1113 	if (fep->link) {
1114 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1115 		udelay(10);
1116 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1117 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1118 	}
1119 
1120 	/* Whack a reset.  We should wait for this.
1121 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122 	 * instead of reset MAC itself.
1123 	 */
1124 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1125 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1126 			writel(0, fep->hwp + FEC_ECNTRL);
1127 		} else {
1128 			writel(1, fep->hwp + FEC_ECNTRL);
1129 			udelay(10);
1130 		}
1131 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1132 	} else {
1133 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1134 		val = readl(fep->hwp + FEC_ECNTRL);
1135 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1136 		writel(val, fep->hwp + FEC_ECNTRL);
1137 
1138 		if (pdata && pdata->sleep_mode_enable)
1139 			pdata->sleep_mode_enable(true);
1140 	}
1141 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1142 
1143 	/* We have to keep ENET enabled to have MII interrupt stay working */
1144 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1145 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1146 		writel(2, fep->hwp + FEC_ECNTRL);
1147 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1148 	}
1149 }
1150 
1151 
1152 static void
1153 fec_timeout(struct net_device *ndev)
1154 {
1155 	struct fec_enet_private *fep = netdev_priv(ndev);
1156 
1157 	fec_dump(ndev);
1158 
1159 	ndev->stats.tx_errors++;
1160 
1161 	schedule_work(&fep->tx_timeout_work);
1162 }
1163 
1164 static void fec_enet_timeout_work(struct work_struct *work)
1165 {
1166 	struct fec_enet_private *fep =
1167 		container_of(work, struct fec_enet_private, tx_timeout_work);
1168 	struct net_device *ndev = fep->netdev;
1169 
1170 	rtnl_lock();
1171 	if (netif_device_present(ndev) || netif_running(ndev)) {
1172 		napi_disable(&fep->napi);
1173 		netif_tx_lock_bh(ndev);
1174 		fec_restart(ndev);
1175 		netif_wake_queue(ndev);
1176 		netif_tx_unlock_bh(ndev);
1177 		napi_enable(&fep->napi);
1178 	}
1179 	rtnl_unlock();
1180 }
1181 
1182 static void
1183 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1184 	struct skb_shared_hwtstamps *hwtstamps)
1185 {
1186 	unsigned long flags;
1187 	u64 ns;
1188 
1189 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1190 	ns = timecounter_cyc2time(&fep->tc, ts);
1191 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1192 
1193 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1194 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1195 }
1196 
1197 static void
1198 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1199 {
1200 	struct	fec_enet_private *fep;
1201 	struct bufdesc *bdp;
1202 	unsigned short status;
1203 	struct	sk_buff	*skb;
1204 	struct fec_enet_priv_tx_q *txq;
1205 	struct netdev_queue *nq;
1206 	int	index = 0;
1207 	int	entries_free;
1208 
1209 	fep = netdev_priv(ndev);
1210 
1211 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1212 
1213 	txq = fep->tx_queue[queue_id];
1214 	/* get next bdp of dirty_tx */
1215 	nq = netdev_get_tx_queue(ndev, queue_id);
1216 	bdp = txq->dirty_tx;
1217 
1218 	/* get next bdp of dirty_tx */
1219 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1220 
1221 	while (bdp != READ_ONCE(txq->cur_tx)) {
1222 		/* Order the load of cur_tx and cbd_sc */
1223 		rmb();
1224 		status = READ_ONCE(bdp->cbd_sc);
1225 		if (status & BD_ENET_TX_READY)
1226 			break;
1227 
1228 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1229 
1230 		skb = txq->tx_skbuff[index];
1231 		txq->tx_skbuff[index] = NULL;
1232 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1233 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1234 					bdp->cbd_datlen, DMA_TO_DEVICE);
1235 		bdp->cbd_bufaddr = 0;
1236 		if (!skb) {
1237 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1238 			continue;
1239 		}
1240 
1241 		/* Check for errors. */
1242 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1243 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1244 				   BD_ENET_TX_CSL)) {
1245 			ndev->stats.tx_errors++;
1246 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1247 				ndev->stats.tx_heartbeat_errors++;
1248 			if (status & BD_ENET_TX_LC)  /* Late collision */
1249 				ndev->stats.tx_window_errors++;
1250 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1251 				ndev->stats.tx_aborted_errors++;
1252 			if (status & BD_ENET_TX_UN)  /* Underrun */
1253 				ndev->stats.tx_fifo_errors++;
1254 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1255 				ndev->stats.tx_carrier_errors++;
1256 		} else {
1257 			ndev->stats.tx_packets++;
1258 			ndev->stats.tx_bytes += skb->len;
1259 		}
1260 
1261 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1262 			fep->bufdesc_ex) {
1263 			struct skb_shared_hwtstamps shhwtstamps;
1264 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1265 
1266 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1267 			skb_tstamp_tx(skb, &shhwtstamps);
1268 		}
1269 
1270 		/* Deferred means some collisions occurred during transmit,
1271 		 * but we eventually sent the packet OK.
1272 		 */
1273 		if (status & BD_ENET_TX_DEF)
1274 			ndev->stats.collisions++;
1275 
1276 		/* Free the sk buffer associated with this last transmit */
1277 		dev_kfree_skb_any(skb);
1278 
1279 		/* Make sure the update to bdp and tx_skbuff are performed
1280 		 * before dirty_tx
1281 		 */
1282 		wmb();
1283 		txq->dirty_tx = bdp;
1284 
1285 		/* Update pointer to next buffer descriptor to be transmitted */
1286 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1287 
1288 		/* Since we have freed up a buffer, the ring is no longer full
1289 		 */
1290 		if (netif_queue_stopped(ndev)) {
1291 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1292 			if (entries_free >= txq->tx_wake_threshold)
1293 				netif_tx_wake_queue(nq);
1294 		}
1295 	}
1296 
1297 	/* ERR006538: Keep the transmitter going */
1298 	if (bdp != txq->cur_tx &&
1299 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1300 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1301 }
1302 
1303 static void
1304 fec_enet_tx(struct net_device *ndev)
1305 {
1306 	struct fec_enet_private *fep = netdev_priv(ndev);
1307 	u16 queue_id;
1308 	/* First process class A queue, then Class B and Best Effort queue */
1309 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1310 		clear_bit(queue_id, &fep->work_tx);
1311 		fec_enet_tx_queue(ndev, queue_id);
1312 	}
1313 	return;
1314 }
1315 
1316 static int
1317 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1318 {
1319 	struct  fec_enet_private *fep = netdev_priv(ndev);
1320 	int off;
1321 
1322 	off = ((unsigned long)skb->data) & fep->rx_align;
1323 	if (off)
1324 		skb_reserve(skb, fep->rx_align + 1 - off);
1325 
1326 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1327 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1328 					  DMA_FROM_DEVICE);
1329 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1330 		if (net_ratelimit())
1331 			netdev_err(ndev, "Rx DMA memory map failed\n");
1332 		return -ENOMEM;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1339 			       struct bufdesc *bdp, u32 length, bool swap)
1340 {
1341 	struct  fec_enet_private *fep = netdev_priv(ndev);
1342 	struct sk_buff *new_skb;
1343 
1344 	if (length > fep->rx_copybreak)
1345 		return false;
1346 
1347 	new_skb = netdev_alloc_skb(ndev, length);
1348 	if (!new_skb)
1349 		return false;
1350 
1351 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1352 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1353 				DMA_FROM_DEVICE);
1354 	if (!swap)
1355 		memcpy(new_skb->data, (*skb)->data, length);
1356 	else
1357 		swap_buffer2(new_skb->data, (*skb)->data, length);
1358 	*skb = new_skb;
1359 
1360 	return true;
1361 }
1362 
1363 /* During a receive, the cur_rx points to the current incoming buffer.
1364  * When we update through the ring, if the next incoming buffer has
1365  * not been given to the system, we just set the empty indicator,
1366  * effectively tossing the packet.
1367  */
1368 static int
1369 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1370 {
1371 	struct fec_enet_private *fep = netdev_priv(ndev);
1372 	struct fec_enet_priv_rx_q *rxq;
1373 	struct bufdesc *bdp;
1374 	unsigned short status;
1375 	struct  sk_buff *skb_new = NULL;
1376 	struct  sk_buff *skb;
1377 	ushort	pkt_len;
1378 	__u8 *data;
1379 	int	pkt_received = 0;
1380 	struct	bufdesc_ex *ebdp = NULL;
1381 	bool	vlan_packet_rcvd = false;
1382 	u16	vlan_tag;
1383 	int	index = 0;
1384 	bool	is_copybreak;
1385 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1386 
1387 #ifdef CONFIG_M532x
1388 	flush_cache_all();
1389 #endif
1390 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1391 	rxq = fep->rx_queue[queue_id];
1392 
1393 	/* First, grab all of the stats for the incoming packet.
1394 	 * These get messed up if we get called due to a busy condition.
1395 	 */
1396 	bdp = rxq->cur_rx;
1397 
1398 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1399 
1400 		if (pkt_received >= budget)
1401 			break;
1402 		pkt_received++;
1403 
1404 		/* Since we have allocated space to hold a complete frame,
1405 		 * the last indicator should be set.
1406 		 */
1407 		if ((status & BD_ENET_RX_LAST) == 0)
1408 			netdev_err(ndev, "rcv is not +last\n");
1409 
1410 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1411 
1412 		/* Check for errors. */
1413 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1414 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1415 			ndev->stats.rx_errors++;
1416 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1417 				/* Frame too long or too short. */
1418 				ndev->stats.rx_length_errors++;
1419 			}
1420 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1421 				ndev->stats.rx_frame_errors++;
1422 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1423 				ndev->stats.rx_crc_errors++;
1424 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1425 				ndev->stats.rx_fifo_errors++;
1426 		}
1427 
1428 		/* Report late collisions as a frame error.
1429 		 * On this error, the BD is closed, but we don't know what we
1430 		 * have in the buffer.  So, just drop this frame on the floor.
1431 		 */
1432 		if (status & BD_ENET_RX_CL) {
1433 			ndev->stats.rx_errors++;
1434 			ndev->stats.rx_frame_errors++;
1435 			goto rx_processing_done;
1436 		}
1437 
1438 		/* Process the incoming frame. */
1439 		ndev->stats.rx_packets++;
1440 		pkt_len = bdp->cbd_datlen;
1441 		ndev->stats.rx_bytes += pkt_len;
1442 
1443 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1444 		skb = rxq->rx_skbuff[index];
1445 
1446 		/* The packet length includes FCS, but we don't want to
1447 		 * include that when passing upstream as it messes up
1448 		 * bridging applications.
1449 		 */
1450 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1451 						  need_swap);
1452 		if (!is_copybreak) {
1453 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1454 			if (unlikely(!skb_new)) {
1455 				ndev->stats.rx_dropped++;
1456 				goto rx_processing_done;
1457 			}
1458 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1459 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1460 					 DMA_FROM_DEVICE);
1461 		}
1462 
1463 		prefetch(skb->data - NET_IP_ALIGN);
1464 		skb_put(skb, pkt_len - 4);
1465 		data = skb->data;
1466 		if (!is_copybreak && need_swap)
1467 			swap_buffer(data, pkt_len);
1468 
1469 		/* Extract the enhanced buffer descriptor */
1470 		ebdp = NULL;
1471 		if (fep->bufdesc_ex)
1472 			ebdp = (struct bufdesc_ex *)bdp;
1473 
1474 		/* If this is a VLAN packet remove the VLAN Tag */
1475 		vlan_packet_rcvd = false;
1476 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1477 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1478 			/* Push and remove the vlan tag */
1479 			struct vlan_hdr *vlan_header =
1480 					(struct vlan_hdr *) (data + ETH_HLEN);
1481 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1482 
1483 			vlan_packet_rcvd = true;
1484 
1485 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1486 			skb_pull(skb, VLAN_HLEN);
1487 		}
1488 
1489 		skb->protocol = eth_type_trans(skb, ndev);
1490 
1491 		/* Get receive timestamp from the skb */
1492 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1493 			fec_enet_hwtstamp(fep, ebdp->ts,
1494 					  skb_hwtstamps(skb));
1495 
1496 		if (fep->bufdesc_ex &&
1497 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1498 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1499 				/* don't check it */
1500 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1501 			} else {
1502 				skb_checksum_none_assert(skb);
1503 			}
1504 		}
1505 
1506 		/* Handle received VLAN packets */
1507 		if (vlan_packet_rcvd)
1508 			__vlan_hwaccel_put_tag(skb,
1509 					       htons(ETH_P_8021Q),
1510 					       vlan_tag);
1511 
1512 		napi_gro_receive(&fep->napi, skb);
1513 
1514 		if (is_copybreak) {
1515 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1516 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1517 						   DMA_FROM_DEVICE);
1518 		} else {
1519 			rxq->rx_skbuff[index] = skb_new;
1520 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1521 		}
1522 
1523 rx_processing_done:
1524 		/* Clear the status flags for this buffer */
1525 		status &= ~BD_ENET_RX_STATS;
1526 
1527 		/* Mark the buffer empty */
1528 		status |= BD_ENET_RX_EMPTY;
1529 		bdp->cbd_sc = status;
1530 
1531 		if (fep->bufdesc_ex) {
1532 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1533 
1534 			ebdp->cbd_esc = BD_ENET_RX_INT;
1535 			ebdp->cbd_prot = 0;
1536 			ebdp->cbd_bdu = 0;
1537 		}
1538 
1539 		/* Update BD pointer to next entry */
1540 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1541 
1542 		/* Doing this here will keep the FEC running while we process
1543 		 * incoming frames.  On a heavily loaded network, we should be
1544 		 * able to keep up at the expense of system resources.
1545 		 */
1546 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1547 	}
1548 	rxq->cur_rx = bdp;
1549 	return pkt_received;
1550 }
1551 
1552 static int
1553 fec_enet_rx(struct net_device *ndev, int budget)
1554 {
1555 	int     pkt_received = 0;
1556 	u16	queue_id;
1557 	struct fec_enet_private *fep = netdev_priv(ndev);
1558 
1559 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1560 		clear_bit(queue_id, &fep->work_rx);
1561 		pkt_received += fec_enet_rx_queue(ndev,
1562 					budget - pkt_received, queue_id);
1563 	}
1564 	return pkt_received;
1565 }
1566 
1567 static bool
1568 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1569 {
1570 	if (int_events == 0)
1571 		return false;
1572 
1573 	if (int_events & FEC_ENET_RXF)
1574 		fep->work_rx |= (1 << 2);
1575 	if (int_events & FEC_ENET_RXF_1)
1576 		fep->work_rx |= (1 << 0);
1577 	if (int_events & FEC_ENET_RXF_2)
1578 		fep->work_rx |= (1 << 1);
1579 
1580 	if (int_events & FEC_ENET_TXF)
1581 		fep->work_tx |= (1 << 2);
1582 	if (int_events & FEC_ENET_TXF_1)
1583 		fep->work_tx |= (1 << 0);
1584 	if (int_events & FEC_ENET_TXF_2)
1585 		fep->work_tx |= (1 << 1);
1586 
1587 	return true;
1588 }
1589 
1590 static irqreturn_t
1591 fec_enet_interrupt(int irq, void *dev_id)
1592 {
1593 	struct net_device *ndev = dev_id;
1594 	struct fec_enet_private *fep = netdev_priv(ndev);
1595 	uint int_events;
1596 	irqreturn_t ret = IRQ_NONE;
1597 
1598 	int_events = readl(fep->hwp + FEC_IEVENT);
1599 	writel(int_events, fep->hwp + FEC_IEVENT);
1600 	fec_enet_collect_events(fep, int_events);
1601 
1602 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1603 		ret = IRQ_HANDLED;
1604 
1605 		if (napi_schedule_prep(&fep->napi)) {
1606 			/* Disable the NAPI interrupts */
1607 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1608 			__napi_schedule(&fep->napi);
1609 		}
1610 	}
1611 
1612 	if (int_events & FEC_ENET_MII) {
1613 		ret = IRQ_HANDLED;
1614 		complete(&fep->mdio_done);
1615 	}
1616 
1617 	if (fep->ptp_clock)
1618 		fec_ptp_check_pps_event(fep);
1619 
1620 	return ret;
1621 }
1622 
1623 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1624 {
1625 	struct net_device *ndev = napi->dev;
1626 	struct fec_enet_private *fep = netdev_priv(ndev);
1627 	int pkts;
1628 
1629 	pkts = fec_enet_rx(ndev, budget);
1630 
1631 	fec_enet_tx(ndev);
1632 
1633 	if (pkts < budget) {
1634 		napi_complete(napi);
1635 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1636 	}
1637 	return pkts;
1638 }
1639 
1640 /* ------------------------------------------------------------------------- */
1641 static void fec_get_mac(struct net_device *ndev)
1642 {
1643 	struct fec_enet_private *fep = netdev_priv(ndev);
1644 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1645 	unsigned char *iap, tmpaddr[ETH_ALEN];
1646 
1647 	/*
1648 	 * try to get mac address in following order:
1649 	 *
1650 	 * 1) module parameter via kernel command line in form
1651 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1652 	 */
1653 	iap = macaddr;
1654 
1655 	/*
1656 	 * 2) from device tree data
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 		struct device_node *np = fep->pdev->dev.of_node;
1660 		if (np) {
1661 			const char *mac = of_get_mac_address(np);
1662 			if (mac)
1663 				iap = (unsigned char *) mac;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * 3) from flash or fuse (via platform data)
1669 	 */
1670 	if (!is_valid_ether_addr(iap)) {
1671 #ifdef CONFIG_M5272
1672 		if (FEC_FLASHMAC)
1673 			iap = (unsigned char *)FEC_FLASHMAC;
1674 #else
1675 		if (pdata)
1676 			iap = (unsigned char *)&pdata->mac;
1677 #endif
1678 	}
1679 
1680 	/*
1681 	 * 4) FEC mac registers set by bootloader
1682 	 */
1683 	if (!is_valid_ether_addr(iap)) {
1684 		*((__be32 *) &tmpaddr[0]) =
1685 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1686 		*((__be16 *) &tmpaddr[4]) =
1687 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1688 		iap = &tmpaddr[0];
1689 	}
1690 
1691 	/*
1692 	 * 5) random mac address
1693 	 */
1694 	if (!is_valid_ether_addr(iap)) {
1695 		/* Report it and use a random ethernet address instead */
1696 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1697 		eth_hw_addr_random(ndev);
1698 		netdev_info(ndev, "Using random MAC address: %pM\n",
1699 			    ndev->dev_addr);
1700 		return;
1701 	}
1702 
1703 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1704 
1705 	/* Adjust MAC if using macaddr */
1706 	if (iap == macaddr)
1707 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1708 }
1709 
1710 /* ------------------------------------------------------------------------- */
1711 
1712 /*
1713  * Phy section
1714  */
1715 static void fec_enet_adjust_link(struct net_device *ndev)
1716 {
1717 	struct fec_enet_private *fep = netdev_priv(ndev);
1718 	struct phy_device *phy_dev = fep->phy_dev;
1719 	int status_change = 0;
1720 
1721 	/* Prevent a state halted on mii error */
1722 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1723 		phy_dev->state = PHY_RESUMING;
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * If the netdev is down, or is going down, we're not interested
1729 	 * in link state events, so just mark our idea of the link as down
1730 	 * and ignore the event.
1731 	 */
1732 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1733 		fep->link = 0;
1734 	} else if (phy_dev->link) {
1735 		if (!fep->link) {
1736 			fep->link = phy_dev->link;
1737 			status_change = 1;
1738 		}
1739 
1740 		if (fep->full_duplex != phy_dev->duplex) {
1741 			fep->full_duplex = phy_dev->duplex;
1742 			status_change = 1;
1743 		}
1744 
1745 		if (phy_dev->speed != fep->speed) {
1746 			fep->speed = phy_dev->speed;
1747 			status_change = 1;
1748 		}
1749 
1750 		/* if any of the above changed restart the FEC */
1751 		if (status_change) {
1752 			napi_disable(&fep->napi);
1753 			netif_tx_lock_bh(ndev);
1754 			fec_restart(ndev);
1755 			netif_wake_queue(ndev);
1756 			netif_tx_unlock_bh(ndev);
1757 			napi_enable(&fep->napi);
1758 		}
1759 	} else {
1760 		if (fep->link) {
1761 			napi_disable(&fep->napi);
1762 			netif_tx_lock_bh(ndev);
1763 			fec_stop(ndev);
1764 			netif_tx_unlock_bh(ndev);
1765 			napi_enable(&fep->napi);
1766 			fep->link = phy_dev->link;
1767 			status_change = 1;
1768 		}
1769 	}
1770 
1771 	if (status_change)
1772 		phy_print_status(phy_dev);
1773 }
1774 
1775 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1776 {
1777 	struct fec_enet_private *fep = bus->priv;
1778 	struct device *dev = &fep->pdev->dev;
1779 	unsigned long time_left;
1780 	int ret = 0;
1781 
1782 	ret = pm_runtime_get_sync(dev);
1783 	if (ret < 0)
1784 		return ret;
1785 
1786 	fep->mii_timeout = 0;
1787 	reinit_completion(&fep->mdio_done);
1788 
1789 	/* start a read op */
1790 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1791 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1792 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1793 
1794 	/* wait for end of transfer */
1795 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1796 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1797 	if (time_left == 0) {
1798 		fep->mii_timeout = 1;
1799 		netdev_err(fep->netdev, "MDIO read timeout\n");
1800 		ret = -ETIMEDOUT;
1801 		goto out;
1802 	}
1803 
1804 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1805 
1806 out:
1807 	pm_runtime_mark_last_busy(dev);
1808 	pm_runtime_put_autosuspend(dev);
1809 
1810 	return ret;
1811 }
1812 
1813 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1814 			   u16 value)
1815 {
1816 	struct fec_enet_private *fep = bus->priv;
1817 	struct device *dev = &fep->pdev->dev;
1818 	unsigned long time_left;
1819 	int ret;
1820 
1821 	ret = pm_runtime_get_sync(dev);
1822 	if (ret < 0)
1823 		return ret;
1824 	else
1825 		ret = 0;
1826 
1827 	fep->mii_timeout = 0;
1828 	reinit_completion(&fep->mdio_done);
1829 
1830 	/* start a write op */
1831 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1832 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1833 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1834 		fep->hwp + FEC_MII_DATA);
1835 
1836 	/* wait for end of transfer */
1837 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1838 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1839 	if (time_left == 0) {
1840 		fep->mii_timeout = 1;
1841 		netdev_err(fep->netdev, "MDIO write timeout\n");
1842 		ret  = -ETIMEDOUT;
1843 	}
1844 
1845 	pm_runtime_mark_last_busy(dev);
1846 	pm_runtime_put_autosuspend(dev);
1847 
1848 	return ret;
1849 }
1850 
1851 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1852 {
1853 	struct fec_enet_private *fep = netdev_priv(ndev);
1854 	int ret;
1855 
1856 	if (enable) {
1857 		ret = clk_prepare_enable(fep->clk_ahb);
1858 		if (ret)
1859 			return ret;
1860 		if (fep->clk_enet_out) {
1861 			ret = clk_prepare_enable(fep->clk_enet_out);
1862 			if (ret)
1863 				goto failed_clk_enet_out;
1864 		}
1865 		if (fep->clk_ptp) {
1866 			mutex_lock(&fep->ptp_clk_mutex);
1867 			ret = clk_prepare_enable(fep->clk_ptp);
1868 			if (ret) {
1869 				mutex_unlock(&fep->ptp_clk_mutex);
1870 				goto failed_clk_ptp;
1871 			} else {
1872 				fep->ptp_clk_on = true;
1873 			}
1874 			mutex_unlock(&fep->ptp_clk_mutex);
1875 		}
1876 		if (fep->clk_ref) {
1877 			ret = clk_prepare_enable(fep->clk_ref);
1878 			if (ret)
1879 				goto failed_clk_ref;
1880 		}
1881 	} else {
1882 		clk_disable_unprepare(fep->clk_ahb);
1883 		if (fep->clk_enet_out)
1884 			clk_disable_unprepare(fep->clk_enet_out);
1885 		if (fep->clk_ptp) {
1886 			mutex_lock(&fep->ptp_clk_mutex);
1887 			clk_disable_unprepare(fep->clk_ptp);
1888 			fep->ptp_clk_on = false;
1889 			mutex_unlock(&fep->ptp_clk_mutex);
1890 		}
1891 		if (fep->clk_ref)
1892 			clk_disable_unprepare(fep->clk_ref);
1893 	}
1894 
1895 	return 0;
1896 
1897 failed_clk_ref:
1898 	if (fep->clk_ref)
1899 		clk_disable_unprepare(fep->clk_ref);
1900 failed_clk_ptp:
1901 	if (fep->clk_enet_out)
1902 		clk_disable_unprepare(fep->clk_enet_out);
1903 failed_clk_enet_out:
1904 		clk_disable_unprepare(fep->clk_ahb);
1905 
1906 	return ret;
1907 }
1908 
1909 static int fec_enet_mii_probe(struct net_device *ndev)
1910 {
1911 	struct fec_enet_private *fep = netdev_priv(ndev);
1912 	struct phy_device *phy_dev = NULL;
1913 	char mdio_bus_id[MII_BUS_ID_SIZE];
1914 	char phy_name[MII_BUS_ID_SIZE + 3];
1915 	int phy_id;
1916 	int dev_id = fep->dev_id;
1917 
1918 	fep->phy_dev = NULL;
1919 
1920 	if (fep->phy_node) {
1921 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1922 					 &fec_enet_adjust_link, 0,
1923 					 fep->phy_interface);
1924 		if (!phy_dev)
1925 			return -ENODEV;
1926 	} else {
1927 		/* check for attached phy */
1928 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1929 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1930 				continue;
1931 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1932 				continue;
1933 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1934 				continue;
1935 			if (dev_id--)
1936 				continue;
1937 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1938 			break;
1939 		}
1940 
1941 		if (phy_id >= PHY_MAX_ADDR) {
1942 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1943 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1944 			phy_id = 0;
1945 		}
1946 
1947 		snprintf(phy_name, sizeof(phy_name),
1948 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1949 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1950 				      fep->phy_interface);
1951 	}
1952 
1953 	if (IS_ERR(phy_dev)) {
1954 		netdev_err(ndev, "could not attach to PHY\n");
1955 		return PTR_ERR(phy_dev);
1956 	}
1957 
1958 	/* mask with MAC supported features */
1959 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1960 		phy_dev->supported &= PHY_GBIT_FEATURES;
1961 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1962 #if !defined(CONFIG_M5272)
1963 		phy_dev->supported |= SUPPORTED_Pause;
1964 #endif
1965 	}
1966 	else
1967 		phy_dev->supported &= PHY_BASIC_FEATURES;
1968 
1969 	phy_dev->advertising = phy_dev->supported;
1970 
1971 	fep->phy_dev = phy_dev;
1972 	fep->link = 0;
1973 	fep->full_duplex = 0;
1974 
1975 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1976 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1977 		    fep->phy_dev->irq);
1978 
1979 	return 0;
1980 }
1981 
1982 static int fec_enet_mii_init(struct platform_device *pdev)
1983 {
1984 	static struct mii_bus *fec0_mii_bus;
1985 	struct net_device *ndev = platform_get_drvdata(pdev);
1986 	struct fec_enet_private *fep = netdev_priv(ndev);
1987 	struct device_node *node;
1988 	int err = -ENXIO, i;
1989 	u32 mii_speed, holdtime;
1990 
1991 	/*
1992 	 * The i.MX28 dual fec interfaces are not equal.
1993 	 * Here are the differences:
1994 	 *
1995 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1996 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1997 	 *  - external phys can only be configured by fec0
1998 	 *
1999 	 * That is to say fec1 can not work independently. It only works
2000 	 * when fec0 is working. The reason behind this design is that the
2001 	 * second interface is added primarily for Switch mode.
2002 	 *
2003 	 * Because of the last point above, both phys are attached on fec0
2004 	 * mdio interface in board design, and need to be configured by
2005 	 * fec0 mii_bus.
2006 	 */
2007 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2008 		/* fec1 uses fec0 mii_bus */
2009 		if (mii_cnt && fec0_mii_bus) {
2010 			fep->mii_bus = fec0_mii_bus;
2011 			mii_cnt++;
2012 			return 0;
2013 		}
2014 		return -ENOENT;
2015 	}
2016 
2017 	fep->mii_timeout = 0;
2018 
2019 	/*
2020 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2021 	 *
2022 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2023 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2024 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2025 	 * document.
2026 	 */
2027 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2028 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2029 		mii_speed--;
2030 	if (mii_speed > 63) {
2031 		dev_err(&pdev->dev,
2032 			"fec clock (%lu) to fast to get right mii speed\n",
2033 			clk_get_rate(fep->clk_ipg));
2034 		err = -EINVAL;
2035 		goto err_out;
2036 	}
2037 
2038 	/*
2039 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2040 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2041 	 * versions are RAZ there, so just ignore the difference and write the
2042 	 * register always.
2043 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2044 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2045 	 * output.
2046 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2047 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2048 	 * holdtime cannot result in a value greater than 3.
2049 	 */
2050 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2051 
2052 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2053 
2054 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2055 
2056 	fep->mii_bus = mdiobus_alloc();
2057 	if (fep->mii_bus == NULL) {
2058 		err = -ENOMEM;
2059 		goto err_out;
2060 	}
2061 
2062 	fep->mii_bus->name = "fec_enet_mii_bus";
2063 	fep->mii_bus->read = fec_enet_mdio_read;
2064 	fep->mii_bus->write = fec_enet_mdio_write;
2065 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2066 		pdev->name, fep->dev_id + 1);
2067 	fep->mii_bus->priv = fep;
2068 	fep->mii_bus->parent = &pdev->dev;
2069 
2070 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2071 	if (!fep->mii_bus->irq) {
2072 		err = -ENOMEM;
2073 		goto err_out_free_mdiobus;
2074 	}
2075 
2076 	for (i = 0; i < PHY_MAX_ADDR; i++)
2077 		fep->mii_bus->irq[i] = PHY_POLL;
2078 
2079 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2080 	if (node) {
2081 		err = of_mdiobus_register(fep->mii_bus, node);
2082 		of_node_put(node);
2083 	} else {
2084 		err = mdiobus_register(fep->mii_bus);
2085 	}
2086 
2087 	if (err)
2088 		goto err_out_free_mdio_irq;
2089 
2090 	mii_cnt++;
2091 
2092 	/* save fec0 mii_bus */
2093 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2094 		fec0_mii_bus = fep->mii_bus;
2095 
2096 	return 0;
2097 
2098 err_out_free_mdio_irq:
2099 	kfree(fep->mii_bus->irq);
2100 err_out_free_mdiobus:
2101 	mdiobus_free(fep->mii_bus);
2102 err_out:
2103 	return err;
2104 }
2105 
2106 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2107 {
2108 	if (--mii_cnt == 0) {
2109 		mdiobus_unregister(fep->mii_bus);
2110 		kfree(fep->mii_bus->irq);
2111 		mdiobus_free(fep->mii_bus);
2112 	}
2113 }
2114 
2115 static int fec_enet_get_settings(struct net_device *ndev,
2116 				  struct ethtool_cmd *cmd)
2117 {
2118 	struct fec_enet_private *fep = netdev_priv(ndev);
2119 	struct phy_device *phydev = fep->phy_dev;
2120 
2121 	if (!phydev)
2122 		return -ENODEV;
2123 
2124 	return phy_ethtool_gset(phydev, cmd);
2125 }
2126 
2127 static int fec_enet_set_settings(struct net_device *ndev,
2128 				 struct ethtool_cmd *cmd)
2129 {
2130 	struct fec_enet_private *fep = netdev_priv(ndev);
2131 	struct phy_device *phydev = fep->phy_dev;
2132 
2133 	if (!phydev)
2134 		return -ENODEV;
2135 
2136 	return phy_ethtool_sset(phydev, cmd);
2137 }
2138 
2139 static void fec_enet_get_drvinfo(struct net_device *ndev,
2140 				 struct ethtool_drvinfo *info)
2141 {
2142 	struct fec_enet_private *fep = netdev_priv(ndev);
2143 
2144 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2145 		sizeof(info->driver));
2146 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2147 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2148 }
2149 
2150 static int fec_enet_get_regs_len(struct net_device *ndev)
2151 {
2152 	struct fec_enet_private *fep = netdev_priv(ndev);
2153 	struct resource *r;
2154 	int s = 0;
2155 
2156 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2157 	if (r)
2158 		s = resource_size(r);
2159 
2160 	return s;
2161 }
2162 
2163 /* List of registers that can be safety be read to dump them with ethtool */
2164 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2165 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2166 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2167 static u32 fec_enet_register_offset[] = {
2168 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2169 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2170 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2171 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2172 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2173 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2174 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2175 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2176 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2177 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2178 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2179 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2180 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2181 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2182 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2183 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2184 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2185 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2186 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2187 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2188 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2189 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2190 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2191 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2192 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2193 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2194 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2195 };
2196 #else
2197 static u32 fec_enet_register_offset[] = {
2198 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2199 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2200 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2201 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2202 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2203 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2204 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2205 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2206 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2207 };
2208 #endif
2209 
2210 static void fec_enet_get_regs(struct net_device *ndev,
2211 			      struct ethtool_regs *regs, void *regbuf)
2212 {
2213 	struct fec_enet_private *fep = netdev_priv(ndev);
2214 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2215 	u32 *buf = (u32 *)regbuf;
2216 	u32 i, off;
2217 
2218 	memset(buf, 0, regs->len);
2219 
2220 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2221 		off = fec_enet_register_offset[i] / 4;
2222 		buf[off] = readl(&theregs[off]);
2223 	}
2224 }
2225 
2226 static int fec_enet_get_ts_info(struct net_device *ndev,
2227 				struct ethtool_ts_info *info)
2228 {
2229 	struct fec_enet_private *fep = netdev_priv(ndev);
2230 
2231 	if (fep->bufdesc_ex) {
2232 
2233 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2234 					SOF_TIMESTAMPING_RX_SOFTWARE |
2235 					SOF_TIMESTAMPING_SOFTWARE |
2236 					SOF_TIMESTAMPING_TX_HARDWARE |
2237 					SOF_TIMESTAMPING_RX_HARDWARE |
2238 					SOF_TIMESTAMPING_RAW_HARDWARE;
2239 		if (fep->ptp_clock)
2240 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2241 		else
2242 			info->phc_index = -1;
2243 
2244 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2245 				 (1 << HWTSTAMP_TX_ON);
2246 
2247 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2248 				   (1 << HWTSTAMP_FILTER_ALL);
2249 		return 0;
2250 	} else {
2251 		return ethtool_op_get_ts_info(ndev, info);
2252 	}
2253 }
2254 
2255 #if !defined(CONFIG_M5272)
2256 
2257 static void fec_enet_get_pauseparam(struct net_device *ndev,
2258 				    struct ethtool_pauseparam *pause)
2259 {
2260 	struct fec_enet_private *fep = netdev_priv(ndev);
2261 
2262 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2263 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2264 	pause->rx_pause = pause->tx_pause;
2265 }
2266 
2267 static int fec_enet_set_pauseparam(struct net_device *ndev,
2268 				   struct ethtool_pauseparam *pause)
2269 {
2270 	struct fec_enet_private *fep = netdev_priv(ndev);
2271 
2272 	if (!fep->phy_dev)
2273 		return -ENODEV;
2274 
2275 	if (pause->tx_pause != pause->rx_pause) {
2276 		netdev_info(ndev,
2277 			"hardware only support enable/disable both tx and rx");
2278 		return -EINVAL;
2279 	}
2280 
2281 	fep->pause_flag = 0;
2282 
2283 	/* tx pause must be same as rx pause */
2284 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2285 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2286 
2287 	if (pause->rx_pause || pause->autoneg) {
2288 		fep->phy_dev->supported |= ADVERTISED_Pause;
2289 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2290 	} else {
2291 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2292 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2293 	}
2294 
2295 	if (pause->autoneg) {
2296 		if (netif_running(ndev))
2297 			fec_stop(ndev);
2298 		phy_start_aneg(fep->phy_dev);
2299 	}
2300 	if (netif_running(ndev)) {
2301 		napi_disable(&fep->napi);
2302 		netif_tx_lock_bh(ndev);
2303 		fec_restart(ndev);
2304 		netif_wake_queue(ndev);
2305 		netif_tx_unlock_bh(ndev);
2306 		napi_enable(&fep->napi);
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 static const struct fec_stat {
2313 	char name[ETH_GSTRING_LEN];
2314 	u16 offset;
2315 } fec_stats[] = {
2316 	/* RMON TX */
2317 	{ "tx_dropped", RMON_T_DROP },
2318 	{ "tx_packets", RMON_T_PACKETS },
2319 	{ "tx_broadcast", RMON_T_BC_PKT },
2320 	{ "tx_multicast", RMON_T_MC_PKT },
2321 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2322 	{ "tx_undersize", RMON_T_UNDERSIZE },
2323 	{ "tx_oversize", RMON_T_OVERSIZE },
2324 	{ "tx_fragment", RMON_T_FRAG },
2325 	{ "tx_jabber", RMON_T_JAB },
2326 	{ "tx_collision", RMON_T_COL },
2327 	{ "tx_64byte", RMON_T_P64 },
2328 	{ "tx_65to127byte", RMON_T_P65TO127 },
2329 	{ "tx_128to255byte", RMON_T_P128TO255 },
2330 	{ "tx_256to511byte", RMON_T_P256TO511 },
2331 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2332 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2333 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2334 	{ "tx_octets", RMON_T_OCTETS },
2335 
2336 	/* IEEE TX */
2337 	{ "IEEE_tx_drop", IEEE_T_DROP },
2338 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2339 	{ "IEEE_tx_1col", IEEE_T_1COL },
2340 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2341 	{ "IEEE_tx_def", IEEE_T_DEF },
2342 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2343 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2344 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2345 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2346 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2347 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2348 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2349 
2350 	/* RMON RX */
2351 	{ "rx_packets", RMON_R_PACKETS },
2352 	{ "rx_broadcast", RMON_R_BC_PKT },
2353 	{ "rx_multicast", RMON_R_MC_PKT },
2354 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2355 	{ "rx_undersize", RMON_R_UNDERSIZE },
2356 	{ "rx_oversize", RMON_R_OVERSIZE },
2357 	{ "rx_fragment", RMON_R_FRAG },
2358 	{ "rx_jabber", RMON_R_JAB },
2359 	{ "rx_64byte", RMON_R_P64 },
2360 	{ "rx_65to127byte", RMON_R_P65TO127 },
2361 	{ "rx_128to255byte", RMON_R_P128TO255 },
2362 	{ "rx_256to511byte", RMON_R_P256TO511 },
2363 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2364 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2365 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2366 	{ "rx_octets", RMON_R_OCTETS },
2367 
2368 	/* IEEE RX */
2369 	{ "IEEE_rx_drop", IEEE_R_DROP },
2370 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2371 	{ "IEEE_rx_crc", IEEE_R_CRC },
2372 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2373 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2374 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2375 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2376 };
2377 
2378 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2379 	struct ethtool_stats *stats, u64 *data)
2380 {
2381 	struct fec_enet_private *fep = netdev_priv(dev);
2382 	int i;
2383 
2384 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2385 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2386 }
2387 
2388 static void fec_enet_get_strings(struct net_device *netdev,
2389 	u32 stringset, u8 *data)
2390 {
2391 	int i;
2392 	switch (stringset) {
2393 	case ETH_SS_STATS:
2394 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2395 			memcpy(data + i * ETH_GSTRING_LEN,
2396 				fec_stats[i].name, ETH_GSTRING_LEN);
2397 		break;
2398 	}
2399 }
2400 
2401 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2402 {
2403 	switch (sset) {
2404 	case ETH_SS_STATS:
2405 		return ARRAY_SIZE(fec_stats);
2406 	default:
2407 		return -EOPNOTSUPP;
2408 	}
2409 }
2410 #endif /* !defined(CONFIG_M5272) */
2411 
2412 static int fec_enet_nway_reset(struct net_device *dev)
2413 {
2414 	struct fec_enet_private *fep = netdev_priv(dev);
2415 	struct phy_device *phydev = fep->phy_dev;
2416 
2417 	if (!phydev)
2418 		return -ENODEV;
2419 
2420 	return genphy_restart_aneg(phydev);
2421 }
2422 
2423 /* ITR clock source is enet system clock (clk_ahb).
2424  * TCTT unit is cycle_ns * 64 cycle
2425  * So, the ICTT value = X us / (cycle_ns * 64)
2426  */
2427 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2428 {
2429 	struct fec_enet_private *fep = netdev_priv(ndev);
2430 
2431 	return us * (fep->itr_clk_rate / 64000) / 1000;
2432 }
2433 
2434 /* Set threshold for interrupt coalescing */
2435 static void fec_enet_itr_coal_set(struct net_device *ndev)
2436 {
2437 	struct fec_enet_private *fep = netdev_priv(ndev);
2438 	int rx_itr, tx_itr;
2439 
2440 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2441 		return;
2442 
2443 	/* Must be greater than zero to avoid unpredictable behavior */
2444 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2445 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2446 		return;
2447 
2448 	/* Select enet system clock as Interrupt Coalescing
2449 	 * timer Clock Source
2450 	 */
2451 	rx_itr = FEC_ITR_CLK_SEL;
2452 	tx_itr = FEC_ITR_CLK_SEL;
2453 
2454 	/* set ICFT and ICTT */
2455 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2456 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2457 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2458 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2459 
2460 	rx_itr |= FEC_ITR_EN;
2461 	tx_itr |= FEC_ITR_EN;
2462 
2463 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2464 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2465 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2466 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2467 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2468 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2469 }
2470 
2471 static int
2472 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2473 {
2474 	struct fec_enet_private *fep = netdev_priv(ndev);
2475 
2476 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2477 		return -EOPNOTSUPP;
2478 
2479 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2480 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2481 
2482 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2483 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2484 
2485 	return 0;
2486 }
2487 
2488 static int
2489 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2490 {
2491 	struct fec_enet_private *fep = netdev_priv(ndev);
2492 	unsigned int cycle;
2493 
2494 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2495 		return -EOPNOTSUPP;
2496 
2497 	if (ec->rx_max_coalesced_frames > 255) {
2498 		pr_err("Rx coalesced frames exceed hardware limiation");
2499 		return -EINVAL;
2500 	}
2501 
2502 	if (ec->tx_max_coalesced_frames > 255) {
2503 		pr_err("Tx coalesced frame exceed hardware limiation");
2504 		return -EINVAL;
2505 	}
2506 
2507 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2508 	if (cycle > 0xFFFF) {
2509 		pr_err("Rx coalesed usec exceeed hardware limiation");
2510 		return -EINVAL;
2511 	}
2512 
2513 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2514 	if (cycle > 0xFFFF) {
2515 		pr_err("Rx coalesed usec exceeed hardware limiation");
2516 		return -EINVAL;
2517 	}
2518 
2519 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2520 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2521 
2522 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2523 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2524 
2525 	fec_enet_itr_coal_set(ndev);
2526 
2527 	return 0;
2528 }
2529 
2530 static void fec_enet_itr_coal_init(struct net_device *ndev)
2531 {
2532 	struct ethtool_coalesce ec;
2533 
2534 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2535 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2536 
2537 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2538 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2539 
2540 	fec_enet_set_coalesce(ndev, &ec);
2541 }
2542 
2543 static int fec_enet_get_tunable(struct net_device *netdev,
2544 				const struct ethtool_tunable *tuna,
2545 				void *data)
2546 {
2547 	struct fec_enet_private *fep = netdev_priv(netdev);
2548 	int ret = 0;
2549 
2550 	switch (tuna->id) {
2551 	case ETHTOOL_RX_COPYBREAK:
2552 		*(u32 *)data = fep->rx_copybreak;
2553 		break;
2554 	default:
2555 		ret = -EINVAL;
2556 		break;
2557 	}
2558 
2559 	return ret;
2560 }
2561 
2562 static int fec_enet_set_tunable(struct net_device *netdev,
2563 				const struct ethtool_tunable *tuna,
2564 				const void *data)
2565 {
2566 	struct fec_enet_private *fep = netdev_priv(netdev);
2567 	int ret = 0;
2568 
2569 	switch (tuna->id) {
2570 	case ETHTOOL_RX_COPYBREAK:
2571 		fep->rx_copybreak = *(u32 *)data;
2572 		break;
2573 	default:
2574 		ret = -EINVAL;
2575 		break;
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 static void
2582 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2583 {
2584 	struct fec_enet_private *fep = netdev_priv(ndev);
2585 
2586 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2587 		wol->supported = WAKE_MAGIC;
2588 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2589 	} else {
2590 		wol->supported = wol->wolopts = 0;
2591 	}
2592 }
2593 
2594 static int
2595 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2596 {
2597 	struct fec_enet_private *fep = netdev_priv(ndev);
2598 
2599 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2600 		return -EINVAL;
2601 
2602 	if (wol->wolopts & ~WAKE_MAGIC)
2603 		return -EINVAL;
2604 
2605 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2606 	if (device_may_wakeup(&ndev->dev)) {
2607 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2608 		if (fep->irq[0] > 0)
2609 			enable_irq_wake(fep->irq[0]);
2610 	} else {
2611 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2612 		if (fep->irq[0] > 0)
2613 			disable_irq_wake(fep->irq[0]);
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static const struct ethtool_ops fec_enet_ethtool_ops = {
2620 	.get_settings		= fec_enet_get_settings,
2621 	.set_settings		= fec_enet_set_settings,
2622 	.get_drvinfo		= fec_enet_get_drvinfo,
2623 	.get_regs_len		= fec_enet_get_regs_len,
2624 	.get_regs		= fec_enet_get_regs,
2625 	.nway_reset		= fec_enet_nway_reset,
2626 	.get_link		= ethtool_op_get_link,
2627 	.get_coalesce		= fec_enet_get_coalesce,
2628 	.set_coalesce		= fec_enet_set_coalesce,
2629 #ifndef CONFIG_M5272
2630 	.get_pauseparam		= fec_enet_get_pauseparam,
2631 	.set_pauseparam		= fec_enet_set_pauseparam,
2632 	.get_strings		= fec_enet_get_strings,
2633 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2634 	.get_sset_count		= fec_enet_get_sset_count,
2635 #endif
2636 	.get_ts_info		= fec_enet_get_ts_info,
2637 	.get_tunable		= fec_enet_get_tunable,
2638 	.set_tunable		= fec_enet_set_tunable,
2639 	.get_wol		= fec_enet_get_wol,
2640 	.set_wol		= fec_enet_set_wol,
2641 };
2642 
2643 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2644 {
2645 	struct fec_enet_private *fep = netdev_priv(ndev);
2646 	struct phy_device *phydev = fep->phy_dev;
2647 
2648 	if (!netif_running(ndev))
2649 		return -EINVAL;
2650 
2651 	if (!phydev)
2652 		return -ENODEV;
2653 
2654 	if (fep->bufdesc_ex) {
2655 		if (cmd == SIOCSHWTSTAMP)
2656 			return fec_ptp_set(ndev, rq);
2657 		if (cmd == SIOCGHWTSTAMP)
2658 			return fec_ptp_get(ndev, rq);
2659 	}
2660 
2661 	return phy_mii_ioctl(phydev, rq, cmd);
2662 }
2663 
2664 static void fec_enet_free_buffers(struct net_device *ndev)
2665 {
2666 	struct fec_enet_private *fep = netdev_priv(ndev);
2667 	unsigned int i;
2668 	struct sk_buff *skb;
2669 	struct bufdesc	*bdp;
2670 	struct fec_enet_priv_tx_q *txq;
2671 	struct fec_enet_priv_rx_q *rxq;
2672 	unsigned int q;
2673 
2674 	for (q = 0; q < fep->num_rx_queues; q++) {
2675 		rxq = fep->rx_queue[q];
2676 		bdp = rxq->rx_bd_base;
2677 		for (i = 0; i < rxq->rx_ring_size; i++) {
2678 			skb = rxq->rx_skbuff[i];
2679 			rxq->rx_skbuff[i] = NULL;
2680 			if (skb) {
2681 				dma_unmap_single(&fep->pdev->dev,
2682 						 bdp->cbd_bufaddr,
2683 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2684 						 DMA_FROM_DEVICE);
2685 				dev_kfree_skb(skb);
2686 			}
2687 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2688 		}
2689 	}
2690 
2691 	for (q = 0; q < fep->num_tx_queues; q++) {
2692 		txq = fep->tx_queue[q];
2693 		bdp = txq->tx_bd_base;
2694 		for (i = 0; i < txq->tx_ring_size; i++) {
2695 			kfree(txq->tx_bounce[i]);
2696 			txq->tx_bounce[i] = NULL;
2697 			skb = txq->tx_skbuff[i];
2698 			txq->tx_skbuff[i] = NULL;
2699 			dev_kfree_skb(skb);
2700 		}
2701 	}
2702 }
2703 
2704 static void fec_enet_free_queue(struct net_device *ndev)
2705 {
2706 	struct fec_enet_private *fep = netdev_priv(ndev);
2707 	int i;
2708 	struct fec_enet_priv_tx_q *txq;
2709 
2710 	for (i = 0; i < fep->num_tx_queues; i++)
2711 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2712 			txq = fep->tx_queue[i];
2713 			dma_free_coherent(NULL,
2714 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2715 					  txq->tso_hdrs,
2716 					  txq->tso_hdrs_dma);
2717 		}
2718 
2719 	for (i = 0; i < fep->num_rx_queues; i++)
2720 		kfree(fep->rx_queue[i]);
2721 	for (i = 0; i < fep->num_tx_queues; i++)
2722 		kfree(fep->tx_queue[i]);
2723 }
2724 
2725 static int fec_enet_alloc_queue(struct net_device *ndev)
2726 {
2727 	struct fec_enet_private *fep = netdev_priv(ndev);
2728 	int i;
2729 	int ret = 0;
2730 	struct fec_enet_priv_tx_q *txq;
2731 
2732 	for (i = 0; i < fep->num_tx_queues; i++) {
2733 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2734 		if (!txq) {
2735 			ret = -ENOMEM;
2736 			goto alloc_failed;
2737 		}
2738 
2739 		fep->tx_queue[i] = txq;
2740 		txq->tx_ring_size = TX_RING_SIZE;
2741 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2742 
2743 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2744 		txq->tx_wake_threshold =
2745 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2746 
2747 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2748 					txq->tx_ring_size * TSO_HEADER_SIZE,
2749 					&txq->tso_hdrs_dma,
2750 					GFP_KERNEL);
2751 		if (!txq->tso_hdrs) {
2752 			ret = -ENOMEM;
2753 			goto alloc_failed;
2754 		}
2755 	}
2756 
2757 	for (i = 0; i < fep->num_rx_queues; i++) {
2758 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2759 					   GFP_KERNEL);
2760 		if (!fep->rx_queue[i]) {
2761 			ret = -ENOMEM;
2762 			goto alloc_failed;
2763 		}
2764 
2765 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2766 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2767 	}
2768 	return ret;
2769 
2770 alloc_failed:
2771 	fec_enet_free_queue(ndev);
2772 	return ret;
2773 }
2774 
2775 static int
2776 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2777 {
2778 	struct fec_enet_private *fep = netdev_priv(ndev);
2779 	unsigned int i;
2780 	struct sk_buff *skb;
2781 	struct bufdesc	*bdp;
2782 	struct fec_enet_priv_rx_q *rxq;
2783 
2784 	rxq = fep->rx_queue[queue];
2785 	bdp = rxq->rx_bd_base;
2786 	for (i = 0; i < rxq->rx_ring_size; i++) {
2787 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2788 		if (!skb)
2789 			goto err_alloc;
2790 
2791 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2792 			dev_kfree_skb(skb);
2793 			goto err_alloc;
2794 		}
2795 
2796 		rxq->rx_skbuff[i] = skb;
2797 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2798 
2799 		if (fep->bufdesc_ex) {
2800 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2801 			ebdp->cbd_esc = BD_ENET_RX_INT;
2802 		}
2803 
2804 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2805 	}
2806 
2807 	/* Set the last buffer to wrap. */
2808 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2809 	bdp->cbd_sc |= BD_SC_WRAP;
2810 	return 0;
2811 
2812  err_alloc:
2813 	fec_enet_free_buffers(ndev);
2814 	return -ENOMEM;
2815 }
2816 
2817 static int
2818 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2819 {
2820 	struct fec_enet_private *fep = netdev_priv(ndev);
2821 	unsigned int i;
2822 	struct bufdesc  *bdp;
2823 	struct fec_enet_priv_tx_q *txq;
2824 
2825 	txq = fep->tx_queue[queue];
2826 	bdp = txq->tx_bd_base;
2827 	for (i = 0; i < txq->tx_ring_size; i++) {
2828 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2829 		if (!txq->tx_bounce[i])
2830 			goto err_alloc;
2831 
2832 		bdp->cbd_sc = 0;
2833 		bdp->cbd_bufaddr = 0;
2834 
2835 		if (fep->bufdesc_ex) {
2836 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2837 			ebdp->cbd_esc = BD_ENET_TX_INT;
2838 		}
2839 
2840 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2841 	}
2842 
2843 	/* Set the last buffer to wrap. */
2844 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2845 	bdp->cbd_sc |= BD_SC_WRAP;
2846 
2847 	return 0;
2848 
2849  err_alloc:
2850 	fec_enet_free_buffers(ndev);
2851 	return -ENOMEM;
2852 }
2853 
2854 static int fec_enet_alloc_buffers(struct net_device *ndev)
2855 {
2856 	struct fec_enet_private *fep = netdev_priv(ndev);
2857 	unsigned int i;
2858 
2859 	for (i = 0; i < fep->num_rx_queues; i++)
2860 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2861 			return -ENOMEM;
2862 
2863 	for (i = 0; i < fep->num_tx_queues; i++)
2864 		if (fec_enet_alloc_txq_buffers(ndev, i))
2865 			return -ENOMEM;
2866 	return 0;
2867 }
2868 
2869 static int
2870 fec_enet_open(struct net_device *ndev)
2871 {
2872 	struct fec_enet_private *fep = netdev_priv(ndev);
2873 	int ret;
2874 
2875 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2876 	if (ret < 0)
2877 		return ret;
2878 
2879 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2880 	ret = fec_enet_clk_enable(ndev, true);
2881 	if (ret)
2882 		goto clk_enable;
2883 
2884 	/* I should reset the ring buffers here, but I don't yet know
2885 	 * a simple way to do that.
2886 	 */
2887 
2888 	ret = fec_enet_alloc_buffers(ndev);
2889 	if (ret)
2890 		goto err_enet_alloc;
2891 
2892 	/* Init MAC prior to mii bus probe */
2893 	fec_restart(ndev);
2894 
2895 	/* Probe and connect to PHY when open the interface */
2896 	ret = fec_enet_mii_probe(ndev);
2897 	if (ret)
2898 		goto err_enet_mii_probe;
2899 
2900 	napi_enable(&fep->napi);
2901 	phy_start(fep->phy_dev);
2902 	netif_tx_start_all_queues(ndev);
2903 
2904 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2905 				 FEC_WOL_FLAG_ENABLE);
2906 
2907 	return 0;
2908 
2909 err_enet_mii_probe:
2910 	fec_enet_free_buffers(ndev);
2911 err_enet_alloc:
2912 	fec_enet_clk_enable(ndev, false);
2913 clk_enable:
2914 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2915 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2916 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2917 	return ret;
2918 }
2919 
2920 static int
2921 fec_enet_close(struct net_device *ndev)
2922 {
2923 	struct fec_enet_private *fep = netdev_priv(ndev);
2924 
2925 	phy_stop(fep->phy_dev);
2926 
2927 	if (netif_device_present(ndev)) {
2928 		napi_disable(&fep->napi);
2929 		netif_tx_disable(ndev);
2930 		fec_stop(ndev);
2931 	}
2932 
2933 	phy_disconnect(fep->phy_dev);
2934 	fep->phy_dev = NULL;
2935 
2936 	fec_enet_clk_enable(ndev, false);
2937 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2938 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2939 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2940 
2941 	fec_enet_free_buffers(ndev);
2942 
2943 	return 0;
2944 }
2945 
2946 /* Set or clear the multicast filter for this adaptor.
2947  * Skeleton taken from sunlance driver.
2948  * The CPM Ethernet implementation allows Multicast as well as individual
2949  * MAC address filtering.  Some of the drivers check to make sure it is
2950  * a group multicast address, and discard those that are not.  I guess I
2951  * will do the same for now, but just remove the test if you want
2952  * individual filtering as well (do the upper net layers want or support
2953  * this kind of feature?).
2954  */
2955 
2956 #define HASH_BITS	6		/* #bits in hash */
2957 #define CRC32_POLY	0xEDB88320
2958 
2959 static void set_multicast_list(struct net_device *ndev)
2960 {
2961 	struct fec_enet_private *fep = netdev_priv(ndev);
2962 	struct netdev_hw_addr *ha;
2963 	unsigned int i, bit, data, crc, tmp;
2964 	unsigned char hash;
2965 
2966 	if (ndev->flags & IFF_PROMISC) {
2967 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2968 		tmp |= 0x8;
2969 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2970 		return;
2971 	}
2972 
2973 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2974 	tmp &= ~0x8;
2975 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2976 
2977 	if (ndev->flags & IFF_ALLMULTI) {
2978 		/* Catch all multicast addresses, so set the
2979 		 * filter to all 1's
2980 		 */
2981 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983 
2984 		return;
2985 	}
2986 
2987 	/* Clear filter and add the addresses in hash register
2988 	 */
2989 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2990 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2991 
2992 	netdev_for_each_mc_addr(ha, ndev) {
2993 		/* calculate crc32 value of mac address */
2994 		crc = 0xffffffff;
2995 
2996 		for (i = 0; i < ndev->addr_len; i++) {
2997 			data = ha->addr[i];
2998 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2999 				crc = (crc >> 1) ^
3000 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
3001 			}
3002 		}
3003 
3004 		/* only upper 6 bits (HASH_BITS) are used
3005 		 * which point to specific bit in he hash registers
3006 		 */
3007 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
3008 
3009 		if (hash > 31) {
3010 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3011 			tmp |= 1 << (hash - 32);
3012 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3013 		} else {
3014 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3015 			tmp |= 1 << hash;
3016 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3017 		}
3018 	}
3019 }
3020 
3021 /* Set a MAC change in hardware. */
3022 static int
3023 fec_set_mac_address(struct net_device *ndev, void *p)
3024 {
3025 	struct fec_enet_private *fep = netdev_priv(ndev);
3026 	struct sockaddr *addr = p;
3027 
3028 	if (addr) {
3029 		if (!is_valid_ether_addr(addr->sa_data))
3030 			return -EADDRNOTAVAIL;
3031 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3032 	}
3033 
3034 	/* Add netif status check here to avoid system hang in below case:
3035 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3036 	 * After ethx down, fec all clocks are gated off and then register
3037 	 * access causes system hang.
3038 	 */
3039 	if (!netif_running(ndev))
3040 		return 0;
3041 
3042 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3043 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3044 		fep->hwp + FEC_ADDR_LOW);
3045 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3046 		fep->hwp + FEC_ADDR_HIGH);
3047 	return 0;
3048 }
3049 
3050 #ifdef CONFIG_NET_POLL_CONTROLLER
3051 /**
3052  * fec_poll_controller - FEC Poll controller function
3053  * @dev: The FEC network adapter
3054  *
3055  * Polled functionality used by netconsole and others in non interrupt mode
3056  *
3057  */
3058 static void fec_poll_controller(struct net_device *dev)
3059 {
3060 	int i;
3061 	struct fec_enet_private *fep = netdev_priv(dev);
3062 
3063 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3064 		if (fep->irq[i] > 0) {
3065 			disable_irq(fep->irq[i]);
3066 			fec_enet_interrupt(fep->irq[i], dev);
3067 			enable_irq(fep->irq[i]);
3068 		}
3069 	}
3070 }
3071 #endif
3072 
3073 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3074 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3075 	netdev_features_t features)
3076 {
3077 	struct fec_enet_private *fep = netdev_priv(netdev);
3078 	netdev_features_t changed = features ^ netdev->features;
3079 
3080 	netdev->features = features;
3081 
3082 	/* Receive checksum has been changed */
3083 	if (changed & NETIF_F_RXCSUM) {
3084 		if (features & NETIF_F_RXCSUM)
3085 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3086 		else
3087 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3088 	}
3089 }
3090 
3091 static int fec_set_features(struct net_device *netdev,
3092 	netdev_features_t features)
3093 {
3094 	struct fec_enet_private *fep = netdev_priv(netdev);
3095 	netdev_features_t changed = features ^ netdev->features;
3096 
3097 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3098 		napi_disable(&fep->napi);
3099 		netif_tx_lock_bh(netdev);
3100 		fec_stop(netdev);
3101 		fec_enet_set_netdev_features(netdev, features);
3102 		fec_restart(netdev);
3103 		netif_tx_wake_all_queues(netdev);
3104 		netif_tx_unlock_bh(netdev);
3105 		napi_enable(&fep->napi);
3106 	} else {
3107 		fec_enet_set_netdev_features(netdev, features);
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 static const struct net_device_ops fec_netdev_ops = {
3114 	.ndo_open		= fec_enet_open,
3115 	.ndo_stop		= fec_enet_close,
3116 	.ndo_start_xmit		= fec_enet_start_xmit,
3117 	.ndo_set_rx_mode	= set_multicast_list,
3118 	.ndo_change_mtu		= eth_change_mtu,
3119 	.ndo_validate_addr	= eth_validate_addr,
3120 	.ndo_tx_timeout		= fec_timeout,
3121 	.ndo_set_mac_address	= fec_set_mac_address,
3122 	.ndo_do_ioctl		= fec_enet_ioctl,
3123 #ifdef CONFIG_NET_POLL_CONTROLLER
3124 	.ndo_poll_controller	= fec_poll_controller,
3125 #endif
3126 	.ndo_set_features	= fec_set_features,
3127 };
3128 
3129  /*
3130   * XXX:  We need to clean up on failure exits here.
3131   *
3132   */
3133 static int fec_enet_init(struct net_device *ndev)
3134 {
3135 	struct fec_enet_private *fep = netdev_priv(ndev);
3136 	struct fec_enet_priv_tx_q *txq;
3137 	struct fec_enet_priv_rx_q *rxq;
3138 	struct bufdesc *cbd_base;
3139 	dma_addr_t bd_dma;
3140 	int bd_size;
3141 	unsigned int i;
3142 
3143 #if defined(CONFIG_ARM)
3144 	fep->rx_align = 0xf;
3145 	fep->tx_align = 0xf;
3146 #else
3147 	fep->rx_align = 0x3;
3148 	fep->tx_align = 0x3;
3149 #endif
3150 
3151 	fec_enet_alloc_queue(ndev);
3152 
3153 	if (fep->bufdesc_ex)
3154 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3155 	else
3156 		fep->bufdesc_size = sizeof(struct bufdesc);
3157 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3158 			fep->bufdesc_size;
3159 
3160 	/* Allocate memory for buffer descriptors. */
3161 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3162 				       GFP_KERNEL);
3163 	if (!cbd_base) {
3164 		return -ENOMEM;
3165 	}
3166 
3167 	memset(cbd_base, 0, bd_size);
3168 
3169 	/* Get the Ethernet address */
3170 	fec_get_mac(ndev);
3171 	/* make sure MAC we just acquired is programmed into the hw */
3172 	fec_set_mac_address(ndev, NULL);
3173 
3174 	/* Set receive and transmit descriptor base. */
3175 	for (i = 0; i < fep->num_rx_queues; i++) {
3176 		rxq = fep->rx_queue[i];
3177 		rxq->index = i;
3178 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3179 		rxq->bd_dma = bd_dma;
3180 		if (fep->bufdesc_ex) {
3181 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3182 			cbd_base = (struct bufdesc *)
3183 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3184 		} else {
3185 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3186 			cbd_base += rxq->rx_ring_size;
3187 		}
3188 	}
3189 
3190 	for (i = 0; i < fep->num_tx_queues; i++) {
3191 		txq = fep->tx_queue[i];
3192 		txq->index = i;
3193 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3194 		txq->bd_dma = bd_dma;
3195 		if (fep->bufdesc_ex) {
3196 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3197 			cbd_base = (struct bufdesc *)
3198 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3199 		} else {
3200 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3201 			cbd_base += txq->tx_ring_size;
3202 		}
3203 	}
3204 
3205 
3206 	/* The FEC Ethernet specific entries in the device structure */
3207 	ndev->watchdog_timeo = TX_TIMEOUT;
3208 	ndev->netdev_ops = &fec_netdev_ops;
3209 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3210 
3211 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3212 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3213 
3214 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3215 		/* enable hw VLAN support */
3216 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3217 
3218 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3219 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3220 
3221 		/* enable hw accelerator */
3222 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3223 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3224 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3225 	}
3226 
3227 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3228 		fep->tx_align = 0;
3229 		fep->rx_align = 0x3f;
3230 	}
3231 
3232 	ndev->hw_features = ndev->features;
3233 
3234 	fec_restart(ndev);
3235 
3236 	return 0;
3237 }
3238 
3239 #ifdef CONFIG_OF
3240 static void fec_reset_phy(struct platform_device *pdev)
3241 {
3242 	int err, phy_reset;
3243 	int msec = 1;
3244 	struct device_node *np = pdev->dev.of_node;
3245 
3246 	if (!np)
3247 		return;
3248 
3249 	of_property_read_u32(np, "phy-reset-duration", &msec);
3250 	/* A sane reset duration should not be longer than 1s */
3251 	if (msec > 1000)
3252 		msec = 1;
3253 
3254 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3255 	if (!gpio_is_valid(phy_reset))
3256 		return;
3257 
3258 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3259 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3260 	if (err) {
3261 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3262 		return;
3263 	}
3264 	msleep(msec);
3265 	gpio_set_value(phy_reset, 1);
3266 }
3267 #else /* CONFIG_OF */
3268 static void fec_reset_phy(struct platform_device *pdev)
3269 {
3270 	/*
3271 	 * In case of platform probe, the reset has been done
3272 	 * by machine code.
3273 	 */
3274 }
3275 #endif /* CONFIG_OF */
3276 
3277 static void
3278 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3279 {
3280 	struct device_node *np = pdev->dev.of_node;
3281 	int err;
3282 
3283 	*num_tx = *num_rx = 1;
3284 
3285 	if (!np || !of_device_is_available(np))
3286 		return;
3287 
3288 	/* parse the num of tx and rx queues */
3289 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3290 	if (err)
3291 		*num_tx = 1;
3292 
3293 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3294 	if (err)
3295 		*num_rx = 1;
3296 
3297 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3298 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3299 			 *num_tx);
3300 		*num_tx = 1;
3301 		return;
3302 	}
3303 
3304 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3305 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3306 			 *num_rx);
3307 		*num_rx = 1;
3308 		return;
3309 	}
3310 
3311 }
3312 
3313 static int
3314 fec_probe(struct platform_device *pdev)
3315 {
3316 	struct fec_enet_private *fep;
3317 	struct fec_platform_data *pdata;
3318 	struct net_device *ndev;
3319 	int i, irq, ret = 0;
3320 	struct resource *r;
3321 	const struct of_device_id *of_id;
3322 	static int dev_id;
3323 	struct device_node *np = pdev->dev.of_node, *phy_node;
3324 	int num_tx_qs;
3325 	int num_rx_qs;
3326 
3327 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3328 
3329 	/* Init network device */
3330 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3331 				  num_tx_qs, num_rx_qs);
3332 	if (!ndev)
3333 		return -ENOMEM;
3334 
3335 	SET_NETDEV_DEV(ndev, &pdev->dev);
3336 
3337 	/* setup board info structure */
3338 	fep = netdev_priv(ndev);
3339 
3340 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3341 	if (of_id)
3342 		pdev->id_entry = of_id->data;
3343 	fep->quirks = pdev->id_entry->driver_data;
3344 
3345 	fep->netdev = ndev;
3346 	fep->num_rx_queues = num_rx_qs;
3347 	fep->num_tx_queues = num_tx_qs;
3348 
3349 #if !defined(CONFIG_M5272)
3350 	/* default enable pause frame auto negotiation */
3351 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3352 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3353 #endif
3354 
3355 	/* Select default pin state */
3356 	pinctrl_pm_select_default_state(&pdev->dev);
3357 
3358 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3359 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3360 	if (IS_ERR(fep->hwp)) {
3361 		ret = PTR_ERR(fep->hwp);
3362 		goto failed_ioremap;
3363 	}
3364 
3365 	fep->pdev = pdev;
3366 	fep->dev_id = dev_id++;
3367 
3368 	platform_set_drvdata(pdev, ndev);
3369 
3370 	if (of_get_property(np, "fsl,magic-packet", NULL))
3371 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3372 
3373 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3374 	if (!phy_node && of_phy_is_fixed_link(np)) {
3375 		ret = of_phy_register_fixed_link(np);
3376 		if (ret < 0) {
3377 			dev_err(&pdev->dev,
3378 				"broken fixed-link specification\n");
3379 			goto failed_phy;
3380 		}
3381 		phy_node = of_node_get(np);
3382 	}
3383 	fep->phy_node = phy_node;
3384 
3385 	ret = of_get_phy_mode(pdev->dev.of_node);
3386 	if (ret < 0) {
3387 		pdata = dev_get_platdata(&pdev->dev);
3388 		if (pdata)
3389 			fep->phy_interface = pdata->phy;
3390 		else
3391 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3392 	} else {
3393 		fep->phy_interface = ret;
3394 	}
3395 
3396 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3397 	if (IS_ERR(fep->clk_ipg)) {
3398 		ret = PTR_ERR(fep->clk_ipg);
3399 		goto failed_clk;
3400 	}
3401 
3402 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3403 	if (IS_ERR(fep->clk_ahb)) {
3404 		ret = PTR_ERR(fep->clk_ahb);
3405 		goto failed_clk;
3406 	}
3407 
3408 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3409 
3410 	/* enet_out is optional, depends on board */
3411 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3412 	if (IS_ERR(fep->clk_enet_out))
3413 		fep->clk_enet_out = NULL;
3414 
3415 	fep->ptp_clk_on = false;
3416 	mutex_init(&fep->ptp_clk_mutex);
3417 
3418 	/* clk_ref is optional, depends on board */
3419 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3420 	if (IS_ERR(fep->clk_ref))
3421 		fep->clk_ref = NULL;
3422 
3423 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3424 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3425 	if (IS_ERR(fep->clk_ptp)) {
3426 		fep->clk_ptp = NULL;
3427 		fep->bufdesc_ex = false;
3428 	}
3429 
3430 	ret = fec_enet_clk_enable(ndev, true);
3431 	if (ret)
3432 		goto failed_clk;
3433 
3434 	ret = clk_prepare_enable(fep->clk_ipg);
3435 	if (ret)
3436 		goto failed_clk_ipg;
3437 
3438 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3439 	if (!IS_ERR(fep->reg_phy)) {
3440 		ret = regulator_enable(fep->reg_phy);
3441 		if (ret) {
3442 			dev_err(&pdev->dev,
3443 				"Failed to enable phy regulator: %d\n", ret);
3444 			goto failed_regulator;
3445 		}
3446 	} else {
3447 		fep->reg_phy = NULL;
3448 	}
3449 
3450 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3451 	pm_runtime_use_autosuspend(&pdev->dev);
3452 	pm_runtime_get_noresume(&pdev->dev);
3453 	pm_runtime_set_active(&pdev->dev);
3454 	pm_runtime_enable(&pdev->dev);
3455 
3456 	fec_reset_phy(pdev);
3457 
3458 	if (fep->bufdesc_ex)
3459 		fec_ptp_init(pdev);
3460 
3461 	ret = fec_enet_init(ndev);
3462 	if (ret)
3463 		goto failed_init;
3464 
3465 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3466 		irq = platform_get_irq(pdev, i);
3467 		if (irq < 0) {
3468 			if (i)
3469 				break;
3470 			ret = irq;
3471 			goto failed_irq;
3472 		}
3473 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3474 				       0, pdev->name, ndev);
3475 		if (ret)
3476 			goto failed_irq;
3477 
3478 		fep->irq[i] = irq;
3479 	}
3480 
3481 	init_completion(&fep->mdio_done);
3482 	ret = fec_enet_mii_init(pdev);
3483 	if (ret)
3484 		goto failed_mii_init;
3485 
3486 	/* Carrier starts down, phylib will bring it up */
3487 	netif_carrier_off(ndev);
3488 	fec_enet_clk_enable(ndev, false);
3489 	pinctrl_pm_select_sleep_state(&pdev->dev);
3490 
3491 	ret = register_netdev(ndev);
3492 	if (ret)
3493 		goto failed_register;
3494 
3495 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3496 			   FEC_WOL_HAS_MAGIC_PACKET);
3497 
3498 	if (fep->bufdesc_ex && fep->ptp_clock)
3499 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3500 
3501 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3502 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3503 
3504 	pm_runtime_mark_last_busy(&pdev->dev);
3505 	pm_runtime_put_autosuspend(&pdev->dev);
3506 
3507 	return 0;
3508 
3509 failed_register:
3510 	fec_enet_mii_remove(fep);
3511 failed_mii_init:
3512 failed_irq:
3513 failed_init:
3514 	fec_ptp_stop(pdev);
3515 	if (fep->reg_phy)
3516 		regulator_disable(fep->reg_phy);
3517 failed_regulator:
3518 	clk_disable_unprepare(fep->clk_ipg);
3519 failed_clk_ipg:
3520 	fec_enet_clk_enable(ndev, false);
3521 failed_clk:
3522 failed_phy:
3523 	of_node_put(phy_node);
3524 failed_ioremap:
3525 	free_netdev(ndev);
3526 
3527 	return ret;
3528 }
3529 
3530 static int
3531 fec_drv_remove(struct platform_device *pdev)
3532 {
3533 	struct net_device *ndev = platform_get_drvdata(pdev);
3534 	struct fec_enet_private *fep = netdev_priv(ndev);
3535 
3536 	cancel_work_sync(&fep->tx_timeout_work);
3537 	fec_ptp_stop(pdev);
3538 	unregister_netdev(ndev);
3539 	fec_enet_mii_remove(fep);
3540 	if (fep->reg_phy)
3541 		regulator_disable(fep->reg_phy);
3542 	of_node_put(fep->phy_node);
3543 	free_netdev(ndev);
3544 
3545 	return 0;
3546 }
3547 
3548 static int __maybe_unused fec_suspend(struct device *dev)
3549 {
3550 	struct net_device *ndev = dev_get_drvdata(dev);
3551 	struct fec_enet_private *fep = netdev_priv(ndev);
3552 
3553 	rtnl_lock();
3554 	if (netif_running(ndev)) {
3555 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3556 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3557 		phy_stop(fep->phy_dev);
3558 		napi_disable(&fep->napi);
3559 		netif_tx_lock_bh(ndev);
3560 		netif_device_detach(ndev);
3561 		netif_tx_unlock_bh(ndev);
3562 		fec_stop(ndev);
3563 		fec_enet_clk_enable(ndev, false);
3564 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3565 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3566 	}
3567 	rtnl_unlock();
3568 
3569 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3570 		regulator_disable(fep->reg_phy);
3571 
3572 	/* SOC supply clock to phy, when clock is disabled, phy link down
3573 	 * SOC control phy regulator, when regulator is disabled, phy link down
3574 	 */
3575 	if (fep->clk_enet_out || fep->reg_phy)
3576 		fep->link = 0;
3577 
3578 	return 0;
3579 }
3580 
3581 static int __maybe_unused fec_resume(struct device *dev)
3582 {
3583 	struct net_device *ndev = dev_get_drvdata(dev);
3584 	struct fec_enet_private *fep = netdev_priv(ndev);
3585 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3586 	int ret;
3587 	int val;
3588 
3589 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3590 		ret = regulator_enable(fep->reg_phy);
3591 		if (ret)
3592 			return ret;
3593 	}
3594 
3595 	rtnl_lock();
3596 	if (netif_running(ndev)) {
3597 		ret = fec_enet_clk_enable(ndev, true);
3598 		if (ret) {
3599 			rtnl_unlock();
3600 			goto failed_clk;
3601 		}
3602 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3603 			if (pdata && pdata->sleep_mode_enable)
3604 				pdata->sleep_mode_enable(false);
3605 			val = readl(fep->hwp + FEC_ECNTRL);
3606 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3607 			writel(val, fep->hwp + FEC_ECNTRL);
3608 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3609 		} else {
3610 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3611 		}
3612 		fec_restart(ndev);
3613 		netif_tx_lock_bh(ndev);
3614 		netif_device_attach(ndev);
3615 		netif_tx_unlock_bh(ndev);
3616 		napi_enable(&fep->napi);
3617 		phy_start(fep->phy_dev);
3618 	}
3619 	rtnl_unlock();
3620 
3621 	return 0;
3622 
3623 failed_clk:
3624 	if (fep->reg_phy)
3625 		regulator_disable(fep->reg_phy);
3626 	return ret;
3627 }
3628 
3629 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3630 {
3631 	struct net_device *ndev = dev_get_drvdata(dev);
3632 	struct fec_enet_private *fep = netdev_priv(ndev);
3633 
3634 	clk_disable_unprepare(fep->clk_ipg);
3635 
3636 	return 0;
3637 }
3638 
3639 static int __maybe_unused fec_runtime_resume(struct device *dev)
3640 {
3641 	struct net_device *ndev = dev_get_drvdata(dev);
3642 	struct fec_enet_private *fep = netdev_priv(ndev);
3643 
3644 	return clk_prepare_enable(fep->clk_ipg);
3645 }
3646 
3647 static const struct dev_pm_ops fec_pm_ops = {
3648 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3649 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3650 };
3651 
3652 static struct platform_driver fec_driver = {
3653 	.driver	= {
3654 		.name	= DRIVER_NAME,
3655 		.pm	= &fec_pm_ops,
3656 		.of_match_table = fec_dt_ids,
3657 	},
3658 	.id_table = fec_devtype,
3659 	.probe	= fec_probe,
3660 	.remove	= fec_drv_remove,
3661 };
3662 
3663 module_platform_driver(fec_driver);
3664 
3665 MODULE_ALIAS("platform:"DRIVER_NAME);
3666 MODULE_LICENSE("GPL");
3667