1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/property.h> 56 #include <linux/mdio.h> 57 #include <linux/phy.h> 58 #include <linux/fec.h> 59 #include <linux/of.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 #define FEC_ENET_RSEM_V 0x84 89 #define FEC_ENET_RSFL_V 16 90 #define FEC_ENET_RAEM_V 0x8 91 #define FEC_ENET_RAFL_V 0x8 92 #define FEC_ENET_OPD_V 0xFFF0 93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 94 95 #define FEC_ENET_XDP_PASS 0 96 #define FEC_ENET_XDP_CONSUMED BIT(0) 97 #define FEC_ENET_XDP_TX BIT(1) 98 #define FEC_ENET_XDP_REDIR BIT(2) 99 100 struct fec_devinfo { 101 u32 quirks; 102 }; 103 104 static const struct fec_devinfo fec_imx25_info = { 105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 107 }; 108 109 static const struct fec_devinfo fec_imx27_info = { 110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 111 FEC_QUIRK_HAS_MDIO_C45, 112 }; 113 114 static const struct fec_devinfo fec_imx28_info = { 115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 119 }; 120 121 static const struct fec_devinfo fec_imx6q_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 127 }; 128 129 static const struct fec_devinfo fec_mvf600_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 131 FEC_QUIRK_HAS_MDIO_C45, 132 }; 133 134 static const struct fec_devinfo fec_imx6x_info = { 135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 141 FEC_QUIRK_HAS_MDIO_C45, 142 }; 143 144 static const struct fec_devinfo fec_imx6ul_info = { 145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 150 FEC_QUIRK_HAS_MDIO_C45, 151 }; 152 153 static const struct fec_devinfo fec_imx8mq_info = { 154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 161 FEC_QUIRK_HAS_MDIO_C45, 162 }; 163 164 static const struct fec_devinfo fec_imx8qm_info = { 165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 172 }; 173 174 static const struct fec_devinfo fec_s32v234_info = { 175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 179 FEC_QUIRK_HAS_MDIO_C45, 180 }; 181 182 static struct platform_device_id fec_devtype[] = { 183 { 184 /* keep it for coldfire */ 185 .name = DRIVER_NAME, 186 .driver_data = 0, 187 }, { 188 /* sentinel */ 189 } 190 }; 191 MODULE_DEVICE_TABLE(platform, fec_devtype); 192 193 static const struct of_device_id fec_dt_ids[] = { 194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, }, 200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 204 { /* sentinel */ } 205 }; 206 MODULE_DEVICE_TABLE(of, fec_dt_ids); 207 208 static unsigned char macaddr[ETH_ALEN]; 209 module_param_array(macaddr, byte, NULL, 0); 210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 211 212 #if defined(CONFIG_M5272) 213 /* 214 * Some hardware gets it MAC address out of local flash memory. 215 * if this is non-zero then assume it is the address to get MAC from. 216 */ 217 #if defined(CONFIG_NETtel) 218 #define FEC_FLASHMAC 0xf0006006 219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 220 #define FEC_FLASHMAC 0xf0006000 221 #elif defined(CONFIG_CANCam) 222 #define FEC_FLASHMAC 0xf0020000 223 #elif defined (CONFIG_M5272C3) 224 #define FEC_FLASHMAC (0xffe04000 + 4) 225 #elif defined(CONFIG_MOD5272) 226 #define FEC_FLASHMAC 0xffc0406b 227 #else 228 #define FEC_FLASHMAC 0 229 #endif 230 #endif /* CONFIG_M5272 */ 231 232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 233 * 234 * 2048 byte skbufs are allocated. However, alignment requirements 235 * varies between FEC variants. Worst case is 64, so round down by 64. 236 */ 237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 238 #define PKT_MINBUF_SIZE 64 239 240 /* FEC receive acceleration */ 241 #define FEC_RACC_IPDIS BIT(1) 242 #define FEC_RACC_PRODIS BIT(2) 243 #define FEC_RACC_SHIFT16 BIT(7) 244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 245 246 /* MIB Control Register */ 247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 248 249 /* 250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 251 * size bits. Other FEC hardware does not, so we need to take that into 252 * account when setting it. 253 */ 254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 256 defined(CONFIG_ARM64) 257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 258 #else 259 #define OPT_FRAME_SIZE 0 260 #endif 261 262 /* FEC MII MMFR bits definition */ 263 #define FEC_MMFR_ST (1 << 30) 264 #define FEC_MMFR_ST_C45 (0) 265 #define FEC_MMFR_OP_READ (2 << 28) 266 #define FEC_MMFR_OP_READ_C45 (3 << 28) 267 #define FEC_MMFR_OP_WRITE (1 << 28) 268 #define FEC_MMFR_OP_ADDR_WRITE (0) 269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 271 #define FEC_MMFR_TA (2 << 16) 272 #define FEC_MMFR_DATA(v) (v & 0xffff) 273 /* FEC ECR bits definition */ 274 #define FEC_ECR_RESET BIT(0) 275 #define FEC_ECR_ETHEREN BIT(1) 276 #define FEC_ECR_MAGICEN BIT(2) 277 #define FEC_ECR_SLEEP BIT(3) 278 #define FEC_ECR_EN1588 BIT(4) 279 #define FEC_ECR_BYTESWP BIT(8) 280 /* FEC RCR bits definition */ 281 #define FEC_RCR_LOOP BIT(0) 282 #define FEC_RCR_HALFDPX BIT(1) 283 #define FEC_RCR_MII BIT(2) 284 #define FEC_RCR_PROMISC BIT(3) 285 #define FEC_RCR_BC_REJ BIT(4) 286 #define FEC_RCR_FLOWCTL BIT(5) 287 #define FEC_RCR_RMII BIT(8) 288 #define FEC_RCR_10BASET BIT(9) 289 /* TX WMARK bits */ 290 #define FEC_TXWMRK_STRFWD BIT(8) 291 292 #define FEC_MII_TIMEOUT 30000 /* us */ 293 294 /* Transmitter timeout */ 295 #define TX_TIMEOUT (2 * HZ) 296 297 #define FEC_PAUSE_FLAG_AUTONEG 0x1 298 #define FEC_PAUSE_FLAG_ENABLE 0x2 299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define FEC_MAX_TSO_SEGS 100 305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 306 307 #define IS_TSO_HEADER(txq, addr) \ 308 ((addr >= txq->tso_hdrs_dma) && \ 309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 310 311 static int mii_cnt; 312 313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 314 struct bufdesc_prop *bd) 315 { 316 return (bdp >= bd->last) ? bd->base 317 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 318 } 319 320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 321 struct bufdesc_prop *bd) 322 { 323 return (bdp <= bd->base) ? bd->last 324 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 325 } 326 327 static int fec_enet_get_bd_index(struct bufdesc *bdp, 328 struct bufdesc_prop *bd) 329 { 330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 331 } 332 333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 334 { 335 int entries; 336 337 entries = (((const char *)txq->dirty_tx - 338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 339 340 return entries >= 0 ? entries : entries + txq->bd.ring_size; 341 } 342 343 static void swap_buffer(void *bufaddr, int len) 344 { 345 int i; 346 unsigned int *buf = bufaddr; 347 348 for (i = 0; i < len; i += 4, buf++) 349 swab32s(buf); 350 } 351 352 static void fec_dump(struct net_device *ndev) 353 { 354 struct fec_enet_private *fep = netdev_priv(ndev); 355 struct bufdesc *bdp; 356 struct fec_enet_priv_tx_q *txq; 357 int index = 0; 358 359 netdev_info(ndev, "TX ring dump\n"); 360 pr_info("Nr SC addr len SKB\n"); 361 362 txq = fep->tx_queue[0]; 363 bdp = txq->bd.base; 364 365 do { 366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 367 index, 368 bdp == txq->bd.cur ? 'S' : ' ', 369 bdp == txq->dirty_tx ? 'H' : ' ', 370 fec16_to_cpu(bdp->cbd_sc), 371 fec32_to_cpu(bdp->cbd_bufaddr), 372 fec16_to_cpu(bdp->cbd_datlen), 373 txq->tx_buf[index].buf_p); 374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 375 index++; 376 } while (bdp != txq->bd.base); 377 } 378 379 /* 380 * Coldfire does not support DMA coherent allocations, and has historically used 381 * a band-aid with a manual flush in fec_enet_rx_queue. 382 */ 383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 385 gfp_t gfp) 386 { 387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 388 } 389 390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 391 dma_addr_t handle) 392 { 393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 394 } 395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 397 gfp_t gfp) 398 { 399 return dma_alloc_coherent(dev, size, handle, gfp); 400 } 401 402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 403 dma_addr_t handle) 404 { 405 dma_free_coherent(dev, size, cpu_addr, handle); 406 } 407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 408 409 struct fec_dma_devres { 410 size_t size; 411 void *vaddr; 412 dma_addr_t dma_handle; 413 }; 414 415 static void fec_dmam_release(struct device *dev, void *res) 416 { 417 struct fec_dma_devres *this = res; 418 419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 420 } 421 422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 423 gfp_t gfp) 424 { 425 struct fec_dma_devres *dr; 426 void *vaddr; 427 428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 429 if (!dr) 430 return NULL; 431 vaddr = fec_dma_alloc(dev, size, handle, gfp); 432 if (!vaddr) { 433 devres_free(dr); 434 return NULL; 435 } 436 dr->vaddr = vaddr; 437 dr->dma_handle = *handle; 438 dr->size = size; 439 devres_add(dev, dr); 440 return vaddr; 441 } 442 443 static inline bool is_ipv4_pkt(struct sk_buff *skb) 444 { 445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 446 } 447 448 static int 449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 450 { 451 /* Only run for packets requiring a checksum. */ 452 if (skb->ip_summed != CHECKSUM_PARTIAL) 453 return 0; 454 455 if (unlikely(skb_cow_head(skb, 0))) 456 return -1; 457 458 if (is_ipv4_pkt(skb)) 459 ip_hdr(skb)->check = 0; 460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 461 462 return 0; 463 } 464 465 static int 466 fec_enet_create_page_pool(struct fec_enet_private *fep, 467 struct fec_enet_priv_rx_q *rxq, int size) 468 { 469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 470 struct page_pool_params pp_params = { 471 .order = 0, 472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 473 .pool_size = size, 474 .nid = dev_to_node(&fep->pdev->dev), 475 .dev = &fep->pdev->dev, 476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 477 .offset = FEC_ENET_XDP_HEADROOM, 478 .max_len = FEC_ENET_RX_FRSIZE, 479 }; 480 int err; 481 482 rxq->page_pool = page_pool_create(&pp_params); 483 if (IS_ERR(rxq->page_pool)) { 484 err = PTR_ERR(rxq->page_pool); 485 rxq->page_pool = NULL; 486 return err; 487 } 488 489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 490 if (err < 0) 491 goto err_free_pp; 492 493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 494 rxq->page_pool); 495 if (err) 496 goto err_unregister_rxq; 497 498 return 0; 499 500 err_unregister_rxq: 501 xdp_rxq_info_unreg(&rxq->xdp_rxq); 502 err_free_pp: 503 page_pool_destroy(rxq->page_pool); 504 rxq->page_pool = NULL; 505 return err; 506 } 507 508 static struct bufdesc * 509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 510 struct sk_buff *skb, 511 struct net_device *ndev) 512 { 513 struct fec_enet_private *fep = netdev_priv(ndev); 514 struct bufdesc *bdp = txq->bd.cur; 515 struct bufdesc_ex *ebdp; 516 int nr_frags = skb_shinfo(skb)->nr_frags; 517 int frag, frag_len; 518 unsigned short status; 519 unsigned int estatus = 0; 520 skb_frag_t *this_frag; 521 unsigned int index; 522 void *bufaddr; 523 dma_addr_t addr; 524 int i; 525 526 for (frag = 0; frag < nr_frags; frag++) { 527 this_frag = &skb_shinfo(skb)->frags[frag]; 528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 529 ebdp = (struct bufdesc_ex *)bdp; 530 531 status = fec16_to_cpu(bdp->cbd_sc); 532 status &= ~BD_ENET_TX_STATS; 533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 535 536 /* Handle the last BD specially */ 537 if (frag == nr_frags - 1) { 538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 539 if (fep->bufdesc_ex) { 540 estatus |= BD_ENET_TX_INT; 541 if (unlikely(skb_shinfo(skb)->tx_flags & 542 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 543 estatus |= BD_ENET_TX_TS; 544 } 545 } 546 547 if (fep->bufdesc_ex) { 548 if (fep->quirks & FEC_QUIRK_HAS_AVB) 549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 550 if (skb->ip_summed == CHECKSUM_PARTIAL) 551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 552 553 ebdp->cbd_bdu = 0; 554 ebdp->cbd_esc = cpu_to_fec32(estatus); 555 } 556 557 bufaddr = skb_frag_address(this_frag); 558 559 index = fec_enet_get_bd_index(bdp, &txq->bd); 560 if (((unsigned long) bufaddr) & fep->tx_align || 561 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 562 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 563 bufaddr = txq->tx_bounce[index]; 564 565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 566 swap_buffer(bufaddr, frag_len); 567 } 568 569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 570 DMA_TO_DEVICE); 571 if (dma_mapping_error(&fep->pdev->dev, addr)) { 572 if (net_ratelimit()) 573 netdev_err(ndev, "Tx DMA memory map failed\n"); 574 goto dma_mapping_error; 575 } 576 577 bdp->cbd_bufaddr = cpu_to_fec32(addr); 578 bdp->cbd_datlen = cpu_to_fec16(frag_len); 579 /* Make sure the updates to rest of the descriptor are 580 * performed before transferring ownership. 581 */ 582 wmb(); 583 bdp->cbd_sc = cpu_to_fec16(status); 584 } 585 586 return bdp; 587 dma_mapping_error: 588 bdp = txq->bd.cur; 589 for (i = 0; i < frag; i++) { 590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 593 } 594 return ERR_PTR(-ENOMEM); 595 } 596 597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 598 struct sk_buff *skb, struct net_device *ndev) 599 { 600 struct fec_enet_private *fep = netdev_priv(ndev); 601 int nr_frags = skb_shinfo(skb)->nr_frags; 602 struct bufdesc *bdp, *last_bdp; 603 void *bufaddr; 604 dma_addr_t addr; 605 unsigned short status; 606 unsigned short buflen; 607 unsigned int estatus = 0; 608 unsigned int index; 609 int entries_free; 610 611 entries_free = fec_enet_get_free_txdesc_num(txq); 612 if (entries_free < MAX_SKB_FRAGS + 1) { 613 dev_kfree_skb_any(skb); 614 if (net_ratelimit()) 615 netdev_err(ndev, "NOT enough BD for SG!\n"); 616 return NETDEV_TX_OK; 617 } 618 619 /* Protocol checksum off-load for TCP and UDP. */ 620 if (fec_enet_clear_csum(skb, ndev)) { 621 dev_kfree_skb_any(skb); 622 return NETDEV_TX_OK; 623 } 624 625 /* Fill in a Tx ring entry */ 626 bdp = txq->bd.cur; 627 last_bdp = bdp; 628 status = fec16_to_cpu(bdp->cbd_sc); 629 status &= ~BD_ENET_TX_STATS; 630 631 /* Set buffer length and buffer pointer */ 632 bufaddr = skb->data; 633 buflen = skb_headlen(skb); 634 635 index = fec_enet_get_bd_index(bdp, &txq->bd); 636 if (((unsigned long) bufaddr) & fep->tx_align || 637 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 638 memcpy(txq->tx_bounce[index], skb->data, buflen); 639 bufaddr = txq->tx_bounce[index]; 640 641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 642 swap_buffer(bufaddr, buflen); 643 } 644 645 /* Push the data cache so the CPM does not get stale memory data. */ 646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 647 if (dma_mapping_error(&fep->pdev->dev, addr)) { 648 dev_kfree_skb_any(skb); 649 if (net_ratelimit()) 650 netdev_err(ndev, "Tx DMA memory map failed\n"); 651 return NETDEV_TX_OK; 652 } 653 654 if (nr_frags) { 655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 656 if (IS_ERR(last_bdp)) { 657 dma_unmap_single(&fep->pdev->dev, addr, 658 buflen, DMA_TO_DEVICE); 659 dev_kfree_skb_any(skb); 660 return NETDEV_TX_OK; 661 } 662 } else { 663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 664 if (fep->bufdesc_ex) { 665 estatus = BD_ENET_TX_INT; 666 if (unlikely(skb_shinfo(skb)->tx_flags & 667 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 668 estatus |= BD_ENET_TX_TS; 669 } 670 } 671 bdp->cbd_bufaddr = cpu_to_fec32(addr); 672 bdp->cbd_datlen = cpu_to_fec16(buflen); 673 674 if (fep->bufdesc_ex) { 675 676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 677 678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 679 fep->hwts_tx_en)) 680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 681 682 if (fep->quirks & FEC_QUIRK_HAS_AVB) 683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 684 685 if (skb->ip_summed == CHECKSUM_PARTIAL) 686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 687 688 ebdp->cbd_bdu = 0; 689 ebdp->cbd_esc = cpu_to_fec32(estatus); 690 } 691 692 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 693 /* Save skb pointer */ 694 txq->tx_buf[index].buf_p = skb; 695 696 /* Make sure the updates to rest of the descriptor are performed before 697 * transferring ownership. 698 */ 699 wmb(); 700 701 /* Send it on its way. Tell FEC it's ready, interrupt when done, 702 * it's the last BD of the frame, and to put the CRC on the end. 703 */ 704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 705 bdp->cbd_sc = cpu_to_fec16(status); 706 707 /* If this was the last BD in the ring, start at the beginning again. */ 708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 709 710 skb_tx_timestamp(skb); 711 712 /* Make sure the update to bdp is performed before txq->bd.cur. */ 713 wmb(); 714 txq->bd.cur = bdp; 715 716 /* Trigger transmission start */ 717 writel(0, txq->bd.reg_desc_active); 718 719 return 0; 720 } 721 722 static int 723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 724 struct net_device *ndev, 725 struct bufdesc *bdp, int index, char *data, 726 int size, bool last_tcp, bool is_last) 727 { 728 struct fec_enet_private *fep = netdev_priv(ndev); 729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 730 unsigned short status; 731 unsigned int estatus = 0; 732 dma_addr_t addr; 733 734 status = fec16_to_cpu(bdp->cbd_sc); 735 status &= ~BD_ENET_TX_STATS; 736 737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 738 739 if (((unsigned long) data) & fep->tx_align || 740 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 741 memcpy(txq->tx_bounce[index], data, size); 742 data = txq->tx_bounce[index]; 743 744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 745 swap_buffer(data, size); 746 } 747 748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 749 if (dma_mapping_error(&fep->pdev->dev, addr)) { 750 dev_kfree_skb_any(skb); 751 if (net_ratelimit()) 752 netdev_err(ndev, "Tx DMA memory map failed\n"); 753 return NETDEV_TX_OK; 754 } 755 756 bdp->cbd_datlen = cpu_to_fec16(size); 757 bdp->cbd_bufaddr = cpu_to_fec32(addr); 758 759 if (fep->bufdesc_ex) { 760 if (fep->quirks & FEC_QUIRK_HAS_AVB) 761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 762 if (skb->ip_summed == CHECKSUM_PARTIAL) 763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 764 ebdp->cbd_bdu = 0; 765 ebdp->cbd_esc = cpu_to_fec32(estatus); 766 } 767 768 /* Handle the last BD specially */ 769 if (last_tcp) 770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 771 if (is_last) { 772 status |= BD_ENET_TX_INTR; 773 if (fep->bufdesc_ex) 774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 775 } 776 777 bdp->cbd_sc = cpu_to_fec16(status); 778 779 return 0; 780 } 781 782 static int 783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 784 struct sk_buff *skb, struct net_device *ndev, 785 struct bufdesc *bdp, int index) 786 { 787 struct fec_enet_private *fep = netdev_priv(ndev); 788 int hdr_len = skb_tcp_all_headers(skb); 789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 790 void *bufaddr; 791 unsigned long dmabuf; 792 unsigned short status; 793 unsigned int estatus = 0; 794 795 status = fec16_to_cpu(bdp->cbd_sc); 796 status &= ~BD_ENET_TX_STATS; 797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 798 799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 801 if (((unsigned long)bufaddr) & fep->tx_align || 802 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 803 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 804 bufaddr = txq->tx_bounce[index]; 805 806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 807 swap_buffer(bufaddr, hdr_len); 808 809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 810 hdr_len, DMA_TO_DEVICE); 811 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 812 dev_kfree_skb_any(skb); 813 if (net_ratelimit()) 814 netdev_err(ndev, "Tx DMA memory map failed\n"); 815 return NETDEV_TX_OK; 816 } 817 } 818 819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 820 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 821 822 if (fep->bufdesc_ex) { 823 if (fep->quirks & FEC_QUIRK_HAS_AVB) 824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 825 if (skb->ip_summed == CHECKSUM_PARTIAL) 826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 827 ebdp->cbd_bdu = 0; 828 ebdp->cbd_esc = cpu_to_fec32(estatus); 829 } 830 831 bdp->cbd_sc = cpu_to_fec16(status); 832 833 return 0; 834 } 835 836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 837 struct sk_buff *skb, 838 struct net_device *ndev) 839 { 840 struct fec_enet_private *fep = netdev_priv(ndev); 841 int hdr_len, total_len, data_left; 842 struct bufdesc *bdp = txq->bd.cur; 843 struct tso_t tso; 844 unsigned int index = 0; 845 int ret; 846 847 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 848 dev_kfree_skb_any(skb); 849 if (net_ratelimit()) 850 netdev_err(ndev, "NOT enough BD for TSO!\n"); 851 return NETDEV_TX_OK; 852 } 853 854 /* Protocol checksum off-load for TCP and UDP. */ 855 if (fec_enet_clear_csum(skb, ndev)) { 856 dev_kfree_skb_any(skb); 857 return NETDEV_TX_OK; 858 } 859 860 /* Initialize the TSO handler, and prepare the first payload */ 861 hdr_len = tso_start(skb, &tso); 862 863 total_len = skb->len - hdr_len; 864 while (total_len > 0) { 865 char *hdr; 866 867 index = fec_enet_get_bd_index(bdp, &txq->bd); 868 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 869 total_len -= data_left; 870 871 /* prepare packet headers: MAC + IP + TCP */ 872 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 873 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 874 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 875 if (ret) 876 goto err_release; 877 878 while (data_left > 0) { 879 int size; 880 881 size = min_t(int, tso.size, data_left); 882 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 883 index = fec_enet_get_bd_index(bdp, &txq->bd); 884 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 885 bdp, index, 886 tso.data, size, 887 size == data_left, 888 total_len == 0); 889 if (ret) 890 goto err_release; 891 892 data_left -= size; 893 tso_build_data(skb, &tso, size); 894 } 895 896 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 897 } 898 899 /* Save skb pointer */ 900 txq->tx_buf[index].buf_p = skb; 901 902 skb_tx_timestamp(skb); 903 txq->bd.cur = bdp; 904 905 /* Trigger transmission start */ 906 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 907 !readl(txq->bd.reg_desc_active) || 908 !readl(txq->bd.reg_desc_active) || 909 !readl(txq->bd.reg_desc_active) || 910 !readl(txq->bd.reg_desc_active)) 911 writel(0, txq->bd.reg_desc_active); 912 913 return 0; 914 915 err_release: 916 /* TODO: Release all used data descriptors for TSO */ 917 return ret; 918 } 919 920 static netdev_tx_t 921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 922 { 923 struct fec_enet_private *fep = netdev_priv(ndev); 924 int entries_free; 925 unsigned short queue; 926 struct fec_enet_priv_tx_q *txq; 927 struct netdev_queue *nq; 928 int ret; 929 930 queue = skb_get_queue_mapping(skb); 931 txq = fep->tx_queue[queue]; 932 nq = netdev_get_tx_queue(ndev, queue); 933 934 if (skb_is_gso(skb)) 935 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 936 else 937 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 938 if (ret) 939 return ret; 940 941 entries_free = fec_enet_get_free_txdesc_num(txq); 942 if (entries_free <= txq->tx_stop_threshold) 943 netif_tx_stop_queue(nq); 944 945 return NETDEV_TX_OK; 946 } 947 948 /* Init RX & TX buffer descriptors 949 */ 950 static void fec_enet_bd_init(struct net_device *dev) 951 { 952 struct fec_enet_private *fep = netdev_priv(dev); 953 struct fec_enet_priv_tx_q *txq; 954 struct fec_enet_priv_rx_q *rxq; 955 struct bufdesc *bdp; 956 unsigned int i; 957 unsigned int q; 958 959 for (q = 0; q < fep->num_rx_queues; q++) { 960 /* Initialize the receive buffer descriptors. */ 961 rxq = fep->rx_queue[q]; 962 bdp = rxq->bd.base; 963 964 for (i = 0; i < rxq->bd.ring_size; i++) { 965 966 /* Initialize the BD for every fragment in the page. */ 967 if (bdp->cbd_bufaddr) 968 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 969 else 970 bdp->cbd_sc = cpu_to_fec16(0); 971 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 972 } 973 974 /* Set the last buffer to wrap */ 975 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 976 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 977 978 rxq->bd.cur = rxq->bd.base; 979 } 980 981 for (q = 0; q < fep->num_tx_queues; q++) { 982 /* ...and the same for transmit */ 983 txq = fep->tx_queue[q]; 984 bdp = txq->bd.base; 985 txq->bd.cur = bdp; 986 987 for (i = 0; i < txq->bd.ring_size; i++) { 988 /* Initialize the BD for every fragment in the page. */ 989 bdp->cbd_sc = cpu_to_fec16(0); 990 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 991 if (bdp->cbd_bufaddr && 992 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 993 dma_unmap_single(&fep->pdev->dev, 994 fec32_to_cpu(bdp->cbd_bufaddr), 995 fec16_to_cpu(bdp->cbd_datlen), 996 DMA_TO_DEVICE); 997 if (txq->tx_buf[i].buf_p) 998 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 999 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 1000 if (bdp->cbd_bufaddr) 1001 dma_unmap_single(&fep->pdev->dev, 1002 fec32_to_cpu(bdp->cbd_bufaddr), 1003 fec16_to_cpu(bdp->cbd_datlen), 1004 DMA_TO_DEVICE); 1005 1006 if (txq->tx_buf[i].buf_p) 1007 xdp_return_frame(txq->tx_buf[i].buf_p); 1008 } else { 1009 struct page *page = txq->tx_buf[i].buf_p; 1010 1011 if (page) 1012 page_pool_put_page(page->pp, page, 0, false); 1013 } 1014 1015 txq->tx_buf[i].buf_p = NULL; 1016 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1017 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1018 bdp->cbd_bufaddr = cpu_to_fec32(0); 1019 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1020 } 1021 1022 /* Set the last buffer to wrap */ 1023 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1024 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1025 txq->dirty_tx = bdp; 1026 } 1027 } 1028 1029 static void fec_enet_active_rxring(struct net_device *ndev) 1030 { 1031 struct fec_enet_private *fep = netdev_priv(ndev); 1032 int i; 1033 1034 for (i = 0; i < fep->num_rx_queues; i++) 1035 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1036 } 1037 1038 static void fec_enet_enable_ring(struct net_device *ndev) 1039 { 1040 struct fec_enet_private *fep = netdev_priv(ndev); 1041 struct fec_enet_priv_tx_q *txq; 1042 struct fec_enet_priv_rx_q *rxq; 1043 int i; 1044 1045 for (i = 0; i < fep->num_rx_queues; i++) { 1046 rxq = fep->rx_queue[i]; 1047 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1048 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1049 1050 /* enable DMA1/2 */ 1051 if (i) 1052 writel(RCMR_MATCHEN | RCMR_CMP(i), 1053 fep->hwp + FEC_RCMR(i)); 1054 } 1055 1056 for (i = 0; i < fep->num_tx_queues; i++) { 1057 txq = fep->tx_queue[i]; 1058 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1059 1060 /* enable DMA1/2 */ 1061 if (i) 1062 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1063 fep->hwp + FEC_DMA_CFG(i)); 1064 } 1065 } 1066 1067 /* 1068 * This function is called to start or restart the FEC during a link 1069 * change, transmit timeout, or to reconfigure the FEC. The network 1070 * packet processing for this device must be stopped before this call. 1071 */ 1072 static void 1073 fec_restart(struct net_device *ndev) 1074 { 1075 struct fec_enet_private *fep = netdev_priv(ndev); 1076 u32 temp_mac[2]; 1077 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1078 u32 ecntl = FEC_ECR_ETHEREN; 1079 1080 /* Whack a reset. We should wait for this. 1081 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1082 * instead of reset MAC itself. 1083 */ 1084 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1085 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1086 writel(0, fep->hwp + FEC_ECNTRL); 1087 } else { 1088 writel(1, fep->hwp + FEC_ECNTRL); 1089 udelay(10); 1090 } 1091 1092 /* 1093 * enet-mac reset will reset mac address registers too, 1094 * so need to reconfigure it. 1095 */ 1096 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1097 writel((__force u32)cpu_to_be32(temp_mac[0]), 1098 fep->hwp + FEC_ADDR_LOW); 1099 writel((__force u32)cpu_to_be32(temp_mac[1]), 1100 fep->hwp + FEC_ADDR_HIGH); 1101 1102 /* Clear any outstanding interrupt, except MDIO. */ 1103 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1104 1105 fec_enet_bd_init(ndev); 1106 1107 fec_enet_enable_ring(ndev); 1108 1109 /* Enable MII mode */ 1110 if (fep->full_duplex == DUPLEX_FULL) { 1111 /* FD enable */ 1112 writel(0x04, fep->hwp + FEC_X_CNTRL); 1113 } else { 1114 /* No Rcv on Xmit */ 1115 rcntl |= 0x02; 1116 writel(0x0, fep->hwp + FEC_X_CNTRL); 1117 } 1118 1119 /* Set MII speed */ 1120 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1121 1122 #if !defined(CONFIG_M5272) 1123 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1124 u32 val = readl(fep->hwp + FEC_RACC); 1125 1126 /* align IP header */ 1127 val |= FEC_RACC_SHIFT16; 1128 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1129 /* set RX checksum */ 1130 val |= FEC_RACC_OPTIONS; 1131 else 1132 val &= ~FEC_RACC_OPTIONS; 1133 writel(val, fep->hwp + FEC_RACC); 1134 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1135 } 1136 #endif 1137 1138 /* 1139 * The phy interface and speed need to get configured 1140 * differently on enet-mac. 1141 */ 1142 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1143 /* Enable flow control and length check */ 1144 rcntl |= 0x40000000 | 0x00000020; 1145 1146 /* RGMII, RMII or MII */ 1147 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1148 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1149 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1150 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1151 rcntl |= (1 << 6); 1152 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1153 rcntl |= FEC_RCR_RMII; 1154 else 1155 rcntl &= ~FEC_RCR_RMII; 1156 1157 /* 1G, 100M or 10M */ 1158 if (ndev->phydev) { 1159 if (ndev->phydev->speed == SPEED_1000) 1160 ecntl |= (1 << 5); 1161 else if (ndev->phydev->speed == SPEED_100) 1162 rcntl &= ~FEC_RCR_10BASET; 1163 else 1164 rcntl |= FEC_RCR_10BASET; 1165 } 1166 } else { 1167 #ifdef FEC_MIIGSK_ENR 1168 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1169 u32 cfgr; 1170 /* disable the gasket and wait */ 1171 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1172 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1173 udelay(1); 1174 1175 /* 1176 * configure the gasket: 1177 * RMII, 50 MHz, no loopback, no echo 1178 * MII, 25 MHz, no loopback, no echo 1179 */ 1180 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1181 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1182 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1183 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1184 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1185 1186 /* re-enable the gasket */ 1187 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1188 } 1189 #endif 1190 } 1191 1192 #if !defined(CONFIG_M5272) 1193 /* enable pause frame*/ 1194 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1195 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1196 ndev->phydev && ndev->phydev->pause)) { 1197 rcntl |= FEC_RCR_FLOWCTL; 1198 1199 /* set FIFO threshold parameter to reduce overrun */ 1200 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1201 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1202 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1203 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1204 1205 /* OPD */ 1206 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1207 } else { 1208 rcntl &= ~FEC_RCR_FLOWCTL; 1209 } 1210 #endif /* !defined(CONFIG_M5272) */ 1211 1212 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1213 1214 /* Setup multicast filter. */ 1215 set_multicast_list(ndev); 1216 #ifndef CONFIG_M5272 1217 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1218 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1219 #endif 1220 1221 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1222 /* enable ENET endian swap */ 1223 ecntl |= FEC_ECR_BYTESWP; 1224 /* enable ENET store and forward mode */ 1225 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); 1226 } 1227 1228 if (fep->bufdesc_ex) 1229 ecntl |= FEC_ECR_EN1588; 1230 1231 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1232 fep->rgmii_txc_dly) 1233 ecntl |= FEC_ENET_TXC_DLY; 1234 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1235 fep->rgmii_rxc_dly) 1236 ecntl |= FEC_ENET_RXC_DLY; 1237 1238 #ifndef CONFIG_M5272 1239 /* Enable the MIB statistic event counters */ 1240 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1241 #endif 1242 1243 /* And last, enable the transmit and receive processing */ 1244 writel(ecntl, fep->hwp + FEC_ECNTRL); 1245 fec_enet_active_rxring(ndev); 1246 1247 if (fep->bufdesc_ex) 1248 fec_ptp_start_cyclecounter(ndev); 1249 1250 /* Enable interrupts we wish to service */ 1251 if (fep->link) 1252 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1253 else 1254 writel(0, fep->hwp + FEC_IMASK); 1255 1256 /* Init the interrupt coalescing */ 1257 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1258 fec_enet_itr_coal_set(ndev); 1259 } 1260 1261 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1262 { 1263 if (!(of_machine_is_compatible("fsl,imx8qm") || 1264 of_machine_is_compatible("fsl,imx8qxp") || 1265 of_machine_is_compatible("fsl,imx8dxl"))) 1266 return 0; 1267 1268 return imx_scu_get_handle(&fep->ipc_handle); 1269 } 1270 1271 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1272 { 1273 struct device_node *np = fep->pdev->dev.of_node; 1274 u32 rsrc_id, val; 1275 int idx; 1276 1277 if (!np || !fep->ipc_handle) 1278 return; 1279 1280 idx = of_alias_get_id(np, "ethernet"); 1281 if (idx < 0) 1282 idx = 0; 1283 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1284 1285 val = enabled ? 1 : 0; 1286 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1287 } 1288 1289 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1290 { 1291 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1292 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1293 1294 if (stop_gpr->gpr) { 1295 if (enabled) 1296 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1297 BIT(stop_gpr->bit), 1298 BIT(stop_gpr->bit)); 1299 else 1300 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1301 BIT(stop_gpr->bit), 0); 1302 } else if (pdata && pdata->sleep_mode_enable) { 1303 pdata->sleep_mode_enable(enabled); 1304 } else { 1305 fec_enet_ipg_stop_set(fep, enabled); 1306 } 1307 } 1308 1309 static void fec_irqs_disable(struct net_device *ndev) 1310 { 1311 struct fec_enet_private *fep = netdev_priv(ndev); 1312 1313 writel(0, fep->hwp + FEC_IMASK); 1314 } 1315 1316 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1317 { 1318 struct fec_enet_private *fep = netdev_priv(ndev); 1319 1320 writel(0, fep->hwp + FEC_IMASK); 1321 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1322 } 1323 1324 static void 1325 fec_stop(struct net_device *ndev) 1326 { 1327 struct fec_enet_private *fep = netdev_priv(ndev); 1328 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; 1329 u32 val; 1330 1331 /* We cannot expect a graceful transmit stop without link !!! */ 1332 if (fep->link) { 1333 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1334 udelay(10); 1335 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1336 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1337 } 1338 1339 /* Whack a reset. We should wait for this. 1340 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1341 * instead of reset MAC itself. 1342 */ 1343 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1344 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1345 writel(0, fep->hwp + FEC_ECNTRL); 1346 } else { 1347 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); 1348 udelay(10); 1349 } 1350 } else { 1351 val = readl(fep->hwp + FEC_ECNTRL); 1352 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1353 writel(val, fep->hwp + FEC_ECNTRL); 1354 } 1355 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1356 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1357 1358 /* We have to keep ENET enabled to have MII interrupt stay working */ 1359 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1360 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1361 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); 1362 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1363 } 1364 } 1365 1366 static void 1367 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1368 { 1369 struct fec_enet_private *fep = netdev_priv(ndev); 1370 1371 fec_dump(ndev); 1372 1373 ndev->stats.tx_errors++; 1374 1375 schedule_work(&fep->tx_timeout_work); 1376 } 1377 1378 static void fec_enet_timeout_work(struct work_struct *work) 1379 { 1380 struct fec_enet_private *fep = 1381 container_of(work, struct fec_enet_private, tx_timeout_work); 1382 struct net_device *ndev = fep->netdev; 1383 1384 rtnl_lock(); 1385 if (netif_device_present(ndev) || netif_running(ndev)) { 1386 napi_disable(&fep->napi); 1387 netif_tx_lock_bh(ndev); 1388 fec_restart(ndev); 1389 netif_tx_wake_all_queues(ndev); 1390 netif_tx_unlock_bh(ndev); 1391 napi_enable(&fep->napi); 1392 } 1393 rtnl_unlock(); 1394 } 1395 1396 static void 1397 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1398 struct skb_shared_hwtstamps *hwtstamps) 1399 { 1400 unsigned long flags; 1401 u64 ns; 1402 1403 spin_lock_irqsave(&fep->tmreg_lock, flags); 1404 ns = timecounter_cyc2time(&fep->tc, ts); 1405 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1406 1407 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1408 hwtstamps->hwtstamp = ns_to_ktime(ns); 1409 } 1410 1411 static void 1412 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1413 { 1414 struct fec_enet_private *fep; 1415 struct xdp_frame *xdpf; 1416 struct bufdesc *bdp; 1417 unsigned short status; 1418 struct sk_buff *skb; 1419 struct fec_enet_priv_tx_q *txq; 1420 struct netdev_queue *nq; 1421 int index = 0; 1422 int entries_free; 1423 struct page *page; 1424 int frame_len; 1425 1426 fep = netdev_priv(ndev); 1427 1428 txq = fep->tx_queue[queue_id]; 1429 /* get next bdp of dirty_tx */ 1430 nq = netdev_get_tx_queue(ndev, queue_id); 1431 bdp = txq->dirty_tx; 1432 1433 /* get next bdp of dirty_tx */ 1434 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1435 1436 while (bdp != READ_ONCE(txq->bd.cur)) { 1437 /* Order the load of bd.cur and cbd_sc */ 1438 rmb(); 1439 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1440 if (status & BD_ENET_TX_READY) 1441 break; 1442 1443 index = fec_enet_get_bd_index(bdp, &txq->bd); 1444 1445 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1446 skb = txq->tx_buf[index].buf_p; 1447 if (bdp->cbd_bufaddr && 1448 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1449 dma_unmap_single(&fep->pdev->dev, 1450 fec32_to_cpu(bdp->cbd_bufaddr), 1451 fec16_to_cpu(bdp->cbd_datlen), 1452 DMA_TO_DEVICE); 1453 bdp->cbd_bufaddr = cpu_to_fec32(0); 1454 if (!skb) 1455 goto tx_buf_done; 1456 } else { 1457 /* Tx processing cannot call any XDP (or page pool) APIs if 1458 * the "budget" is 0. Because NAPI is called with budget of 1459 * 0 (such as netpoll) indicates we may be in an IRQ context, 1460 * however, we can't use the page pool from IRQ context. 1461 */ 1462 if (unlikely(!budget)) 1463 break; 1464 1465 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1466 xdpf = txq->tx_buf[index].buf_p; 1467 if (bdp->cbd_bufaddr) 1468 dma_unmap_single(&fep->pdev->dev, 1469 fec32_to_cpu(bdp->cbd_bufaddr), 1470 fec16_to_cpu(bdp->cbd_datlen), 1471 DMA_TO_DEVICE); 1472 } else { 1473 page = txq->tx_buf[index].buf_p; 1474 } 1475 1476 bdp->cbd_bufaddr = cpu_to_fec32(0); 1477 if (unlikely(!txq->tx_buf[index].buf_p)) { 1478 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1479 goto tx_buf_done; 1480 } 1481 1482 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1483 } 1484 1485 /* Check for errors. */ 1486 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1487 BD_ENET_TX_RL | BD_ENET_TX_UN | 1488 BD_ENET_TX_CSL)) { 1489 ndev->stats.tx_errors++; 1490 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1491 ndev->stats.tx_heartbeat_errors++; 1492 if (status & BD_ENET_TX_LC) /* Late collision */ 1493 ndev->stats.tx_window_errors++; 1494 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1495 ndev->stats.tx_aborted_errors++; 1496 if (status & BD_ENET_TX_UN) /* Underrun */ 1497 ndev->stats.tx_fifo_errors++; 1498 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1499 ndev->stats.tx_carrier_errors++; 1500 } else { 1501 ndev->stats.tx_packets++; 1502 1503 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1504 ndev->stats.tx_bytes += skb->len; 1505 else 1506 ndev->stats.tx_bytes += frame_len; 1507 } 1508 1509 /* Deferred means some collisions occurred during transmit, 1510 * but we eventually sent the packet OK. 1511 */ 1512 if (status & BD_ENET_TX_DEF) 1513 ndev->stats.collisions++; 1514 1515 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1516 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1517 * are to time stamp the packet, so we still need to check time 1518 * stamping enabled flag. 1519 */ 1520 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1521 fep->hwts_tx_en) && fep->bufdesc_ex) { 1522 struct skb_shared_hwtstamps shhwtstamps; 1523 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1524 1525 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1526 skb_tstamp_tx(skb, &shhwtstamps); 1527 } 1528 1529 /* Free the sk buffer associated with this last transmit */ 1530 napi_consume_skb(skb, budget); 1531 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1532 xdp_return_frame_rx_napi(xdpf); 1533 } else { /* recycle pages of XDP_TX frames */ 1534 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1535 page_pool_put_page(page->pp, page, 0, true); 1536 } 1537 1538 txq->tx_buf[index].buf_p = NULL; 1539 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1540 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1541 1542 tx_buf_done: 1543 /* Make sure the update to bdp and tx_buf are performed 1544 * before dirty_tx 1545 */ 1546 wmb(); 1547 txq->dirty_tx = bdp; 1548 1549 /* Update pointer to next buffer descriptor to be transmitted */ 1550 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1551 1552 /* Since we have freed up a buffer, the ring is no longer full 1553 */ 1554 if (netif_tx_queue_stopped(nq)) { 1555 entries_free = fec_enet_get_free_txdesc_num(txq); 1556 if (entries_free >= txq->tx_wake_threshold) 1557 netif_tx_wake_queue(nq); 1558 } 1559 } 1560 1561 /* ERR006358: Keep the transmitter going */ 1562 if (bdp != txq->bd.cur && 1563 readl(txq->bd.reg_desc_active) == 0) 1564 writel(0, txq->bd.reg_desc_active); 1565 } 1566 1567 static void fec_enet_tx(struct net_device *ndev, int budget) 1568 { 1569 struct fec_enet_private *fep = netdev_priv(ndev); 1570 int i; 1571 1572 /* Make sure that AVB queues are processed first. */ 1573 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1574 fec_enet_tx_queue(ndev, i, budget); 1575 } 1576 1577 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1578 struct bufdesc *bdp, int index) 1579 { 1580 struct page *new_page; 1581 dma_addr_t phys_addr; 1582 1583 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1584 WARN_ON(!new_page); 1585 rxq->rx_skb_info[index].page = new_page; 1586 1587 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1588 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1589 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1590 } 1591 1592 static u32 1593 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1594 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1595 { 1596 unsigned int sync, len = xdp->data_end - xdp->data; 1597 u32 ret = FEC_ENET_XDP_PASS; 1598 struct page *page; 1599 int err; 1600 u32 act; 1601 1602 act = bpf_prog_run_xdp(prog, xdp); 1603 1604 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1605 * max len CPU touch 1606 */ 1607 sync = xdp->data_end - xdp->data; 1608 sync = max(sync, len); 1609 1610 switch (act) { 1611 case XDP_PASS: 1612 rxq->stats[RX_XDP_PASS]++; 1613 ret = FEC_ENET_XDP_PASS; 1614 break; 1615 1616 case XDP_REDIRECT: 1617 rxq->stats[RX_XDP_REDIRECT]++; 1618 err = xdp_do_redirect(fep->netdev, xdp, prog); 1619 if (unlikely(err)) 1620 goto xdp_err; 1621 1622 ret = FEC_ENET_XDP_REDIR; 1623 break; 1624 1625 case XDP_TX: 1626 rxq->stats[RX_XDP_TX]++; 1627 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1628 if (unlikely(err)) { 1629 rxq->stats[RX_XDP_TX_ERRORS]++; 1630 goto xdp_err; 1631 } 1632 1633 ret = FEC_ENET_XDP_TX; 1634 break; 1635 1636 default: 1637 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1638 fallthrough; 1639 1640 case XDP_ABORTED: 1641 fallthrough; /* handle aborts by dropping packet */ 1642 1643 case XDP_DROP: 1644 rxq->stats[RX_XDP_DROP]++; 1645 xdp_err: 1646 ret = FEC_ENET_XDP_CONSUMED; 1647 page = virt_to_head_page(xdp->data); 1648 page_pool_put_page(rxq->page_pool, page, sync, true); 1649 if (act != XDP_DROP) 1650 trace_xdp_exception(fep->netdev, prog, act); 1651 break; 1652 } 1653 1654 return ret; 1655 } 1656 1657 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1658 * When we update through the ring, if the next incoming buffer has 1659 * not been given to the system, we just set the empty indicator, 1660 * effectively tossing the packet. 1661 */ 1662 static int 1663 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1664 { 1665 struct fec_enet_private *fep = netdev_priv(ndev); 1666 struct fec_enet_priv_rx_q *rxq; 1667 struct bufdesc *bdp; 1668 unsigned short status; 1669 struct sk_buff *skb; 1670 ushort pkt_len; 1671 __u8 *data; 1672 int pkt_received = 0; 1673 struct bufdesc_ex *ebdp = NULL; 1674 bool vlan_packet_rcvd = false; 1675 u16 vlan_tag; 1676 int index = 0; 1677 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1678 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1679 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1680 u32 data_start = FEC_ENET_XDP_HEADROOM; 1681 int cpu = smp_processor_id(); 1682 struct xdp_buff xdp; 1683 struct page *page; 1684 u32 sub_len = 4; 1685 1686 #if !defined(CONFIG_M5272) 1687 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1688 * FEC_RACC_SHIFT16 is set by default in the probe function. 1689 */ 1690 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1691 data_start += 2; 1692 sub_len += 2; 1693 } 1694 #endif 1695 1696 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1697 /* 1698 * Hacky flush of all caches instead of using the DMA API for the TSO 1699 * headers. 1700 */ 1701 flush_cache_all(); 1702 #endif 1703 rxq = fep->rx_queue[queue_id]; 1704 1705 /* First, grab all of the stats for the incoming packet. 1706 * These get messed up if we get called due to a busy condition. 1707 */ 1708 bdp = rxq->bd.cur; 1709 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1710 1711 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1712 1713 if (pkt_received >= budget) 1714 break; 1715 pkt_received++; 1716 1717 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1718 1719 /* Check for errors. */ 1720 status ^= BD_ENET_RX_LAST; 1721 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1722 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1723 BD_ENET_RX_CL)) { 1724 ndev->stats.rx_errors++; 1725 if (status & BD_ENET_RX_OV) { 1726 /* FIFO overrun */ 1727 ndev->stats.rx_fifo_errors++; 1728 goto rx_processing_done; 1729 } 1730 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1731 | BD_ENET_RX_LAST)) { 1732 /* Frame too long or too short. */ 1733 ndev->stats.rx_length_errors++; 1734 if (status & BD_ENET_RX_LAST) 1735 netdev_err(ndev, "rcv is not +last\n"); 1736 } 1737 if (status & BD_ENET_RX_CR) /* CRC Error */ 1738 ndev->stats.rx_crc_errors++; 1739 /* Report late collisions as a frame error. */ 1740 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1741 ndev->stats.rx_frame_errors++; 1742 goto rx_processing_done; 1743 } 1744 1745 /* Process the incoming frame. */ 1746 ndev->stats.rx_packets++; 1747 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1748 ndev->stats.rx_bytes += pkt_len; 1749 1750 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1751 page = rxq->rx_skb_info[index].page; 1752 dma_sync_single_for_cpu(&fep->pdev->dev, 1753 fec32_to_cpu(bdp->cbd_bufaddr), 1754 pkt_len, 1755 DMA_FROM_DEVICE); 1756 prefetch(page_address(page)); 1757 fec_enet_update_cbd(rxq, bdp, index); 1758 1759 if (xdp_prog) { 1760 xdp_buff_clear_frags_flag(&xdp); 1761 /* subtract 16bit shift and FCS */ 1762 xdp_prepare_buff(&xdp, page_address(page), 1763 data_start, pkt_len - sub_len, false); 1764 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1765 xdp_result |= ret; 1766 if (ret != FEC_ENET_XDP_PASS) 1767 goto rx_processing_done; 1768 } 1769 1770 /* The packet length includes FCS, but we don't want to 1771 * include that when passing upstream as it messes up 1772 * bridging applications. 1773 */ 1774 skb = build_skb(page_address(page), PAGE_SIZE); 1775 if (unlikely(!skb)) { 1776 page_pool_recycle_direct(rxq->page_pool, page); 1777 ndev->stats.rx_dropped++; 1778 1779 netdev_err_once(ndev, "build_skb failed!\n"); 1780 goto rx_processing_done; 1781 } 1782 1783 skb_reserve(skb, data_start); 1784 skb_put(skb, pkt_len - sub_len); 1785 skb_mark_for_recycle(skb); 1786 1787 if (unlikely(need_swap)) { 1788 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1789 swap_buffer(data, pkt_len); 1790 } 1791 data = skb->data; 1792 1793 /* Extract the enhanced buffer descriptor */ 1794 ebdp = NULL; 1795 if (fep->bufdesc_ex) 1796 ebdp = (struct bufdesc_ex *)bdp; 1797 1798 /* If this is a VLAN packet remove the VLAN Tag */ 1799 vlan_packet_rcvd = false; 1800 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1801 fep->bufdesc_ex && 1802 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1803 /* Push and remove the vlan tag */ 1804 struct vlan_hdr *vlan_header = 1805 (struct vlan_hdr *) (data + ETH_HLEN); 1806 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1807 1808 vlan_packet_rcvd = true; 1809 1810 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1811 skb_pull(skb, VLAN_HLEN); 1812 } 1813 1814 skb->protocol = eth_type_trans(skb, ndev); 1815 1816 /* Get receive timestamp from the skb */ 1817 if (fep->hwts_rx_en && fep->bufdesc_ex) 1818 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1819 skb_hwtstamps(skb)); 1820 1821 if (fep->bufdesc_ex && 1822 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1823 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1824 /* don't check it */ 1825 skb->ip_summed = CHECKSUM_UNNECESSARY; 1826 } else { 1827 skb_checksum_none_assert(skb); 1828 } 1829 } 1830 1831 /* Handle received VLAN packets */ 1832 if (vlan_packet_rcvd) 1833 __vlan_hwaccel_put_tag(skb, 1834 htons(ETH_P_8021Q), 1835 vlan_tag); 1836 1837 skb_record_rx_queue(skb, queue_id); 1838 napi_gro_receive(&fep->napi, skb); 1839 1840 rx_processing_done: 1841 /* Clear the status flags for this buffer */ 1842 status &= ~BD_ENET_RX_STATS; 1843 1844 /* Mark the buffer empty */ 1845 status |= BD_ENET_RX_EMPTY; 1846 1847 if (fep->bufdesc_ex) { 1848 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1849 1850 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1851 ebdp->cbd_prot = 0; 1852 ebdp->cbd_bdu = 0; 1853 } 1854 /* Make sure the updates to rest of the descriptor are 1855 * performed before transferring ownership. 1856 */ 1857 wmb(); 1858 bdp->cbd_sc = cpu_to_fec16(status); 1859 1860 /* Update BD pointer to next entry */ 1861 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1862 1863 /* Doing this here will keep the FEC running while we process 1864 * incoming frames. On a heavily loaded network, we should be 1865 * able to keep up at the expense of system resources. 1866 */ 1867 writel(0, rxq->bd.reg_desc_active); 1868 } 1869 rxq->bd.cur = bdp; 1870 1871 if (xdp_result & FEC_ENET_XDP_REDIR) 1872 xdp_do_flush(); 1873 1874 return pkt_received; 1875 } 1876 1877 static int fec_enet_rx(struct net_device *ndev, int budget) 1878 { 1879 struct fec_enet_private *fep = netdev_priv(ndev); 1880 int i, done = 0; 1881 1882 /* Make sure that AVB queues are processed first. */ 1883 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1884 done += fec_enet_rx_queue(ndev, budget - done, i); 1885 1886 return done; 1887 } 1888 1889 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1890 { 1891 uint int_events; 1892 1893 int_events = readl(fep->hwp + FEC_IEVENT); 1894 1895 /* Don't clear MDIO events, we poll for those */ 1896 int_events &= ~FEC_ENET_MII; 1897 1898 writel(int_events, fep->hwp + FEC_IEVENT); 1899 1900 return int_events != 0; 1901 } 1902 1903 static irqreturn_t 1904 fec_enet_interrupt(int irq, void *dev_id) 1905 { 1906 struct net_device *ndev = dev_id; 1907 struct fec_enet_private *fep = netdev_priv(ndev); 1908 irqreturn_t ret = IRQ_NONE; 1909 1910 if (fec_enet_collect_events(fep) && fep->link) { 1911 ret = IRQ_HANDLED; 1912 1913 if (napi_schedule_prep(&fep->napi)) { 1914 /* Disable interrupts */ 1915 writel(0, fep->hwp + FEC_IMASK); 1916 __napi_schedule(&fep->napi); 1917 } 1918 } 1919 1920 return ret; 1921 } 1922 1923 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1924 { 1925 struct net_device *ndev = napi->dev; 1926 struct fec_enet_private *fep = netdev_priv(ndev); 1927 int done = 0; 1928 1929 do { 1930 done += fec_enet_rx(ndev, budget - done); 1931 fec_enet_tx(ndev, budget); 1932 } while ((done < budget) && fec_enet_collect_events(fep)); 1933 1934 if (done < budget) { 1935 napi_complete_done(napi, done); 1936 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1937 } 1938 1939 return done; 1940 } 1941 1942 /* ------------------------------------------------------------------------- */ 1943 static int fec_get_mac(struct net_device *ndev) 1944 { 1945 struct fec_enet_private *fep = netdev_priv(ndev); 1946 unsigned char *iap, tmpaddr[ETH_ALEN]; 1947 int ret; 1948 1949 /* 1950 * try to get mac address in following order: 1951 * 1952 * 1) module parameter via kernel command line in form 1953 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1954 */ 1955 iap = macaddr; 1956 1957 /* 1958 * 2) from device tree data 1959 */ 1960 if (!is_valid_ether_addr(iap)) { 1961 struct device_node *np = fep->pdev->dev.of_node; 1962 if (np) { 1963 ret = of_get_mac_address(np, tmpaddr); 1964 if (!ret) 1965 iap = tmpaddr; 1966 else if (ret == -EPROBE_DEFER) 1967 return ret; 1968 } 1969 } 1970 1971 /* 1972 * 3) from flash or fuse (via platform data) 1973 */ 1974 if (!is_valid_ether_addr(iap)) { 1975 #ifdef CONFIG_M5272 1976 if (FEC_FLASHMAC) 1977 iap = (unsigned char *)FEC_FLASHMAC; 1978 #else 1979 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1980 1981 if (pdata) 1982 iap = (unsigned char *)&pdata->mac; 1983 #endif 1984 } 1985 1986 /* 1987 * 4) FEC mac registers set by bootloader 1988 */ 1989 if (!is_valid_ether_addr(iap)) { 1990 *((__be32 *) &tmpaddr[0]) = 1991 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1992 *((__be16 *) &tmpaddr[4]) = 1993 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1994 iap = &tmpaddr[0]; 1995 } 1996 1997 /* 1998 * 5) random mac address 1999 */ 2000 if (!is_valid_ether_addr(iap)) { 2001 /* Report it and use a random ethernet address instead */ 2002 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 2003 eth_hw_addr_random(ndev); 2004 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 2005 ndev->dev_addr); 2006 return 0; 2007 } 2008 2009 /* Adjust MAC if using macaddr */ 2010 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 2011 2012 return 0; 2013 } 2014 2015 /* ------------------------------------------------------------------------- */ 2016 2017 /* 2018 * Phy section 2019 */ 2020 static void fec_enet_adjust_link(struct net_device *ndev) 2021 { 2022 struct fec_enet_private *fep = netdev_priv(ndev); 2023 struct phy_device *phy_dev = ndev->phydev; 2024 int status_change = 0; 2025 2026 /* 2027 * If the netdev is down, or is going down, we're not interested 2028 * in link state events, so just mark our idea of the link as down 2029 * and ignore the event. 2030 */ 2031 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2032 fep->link = 0; 2033 } else if (phy_dev->link) { 2034 if (!fep->link) { 2035 fep->link = phy_dev->link; 2036 status_change = 1; 2037 } 2038 2039 if (fep->full_duplex != phy_dev->duplex) { 2040 fep->full_duplex = phy_dev->duplex; 2041 status_change = 1; 2042 } 2043 2044 if (phy_dev->speed != fep->speed) { 2045 fep->speed = phy_dev->speed; 2046 status_change = 1; 2047 } 2048 2049 /* if any of the above changed restart the FEC */ 2050 if (status_change) { 2051 netif_stop_queue(ndev); 2052 napi_disable(&fep->napi); 2053 netif_tx_lock_bh(ndev); 2054 fec_restart(ndev); 2055 netif_tx_wake_all_queues(ndev); 2056 netif_tx_unlock_bh(ndev); 2057 napi_enable(&fep->napi); 2058 } 2059 } else { 2060 if (fep->link) { 2061 netif_stop_queue(ndev); 2062 napi_disable(&fep->napi); 2063 netif_tx_lock_bh(ndev); 2064 fec_stop(ndev); 2065 netif_tx_unlock_bh(ndev); 2066 napi_enable(&fep->napi); 2067 fep->link = phy_dev->link; 2068 status_change = 1; 2069 } 2070 } 2071 2072 if (status_change) 2073 phy_print_status(phy_dev); 2074 } 2075 2076 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2077 { 2078 uint ievent; 2079 int ret; 2080 2081 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2082 ievent & FEC_ENET_MII, 2, 30000); 2083 2084 if (!ret) 2085 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2086 2087 return ret; 2088 } 2089 2090 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2091 { 2092 struct fec_enet_private *fep = bus->priv; 2093 struct device *dev = &fep->pdev->dev; 2094 int ret = 0, frame_start, frame_addr, frame_op; 2095 2096 ret = pm_runtime_resume_and_get(dev); 2097 if (ret < 0) 2098 return ret; 2099 2100 /* C22 read */ 2101 frame_op = FEC_MMFR_OP_READ; 2102 frame_start = FEC_MMFR_ST; 2103 frame_addr = regnum; 2104 2105 /* start a read op */ 2106 writel(frame_start | frame_op | 2107 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2108 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2109 2110 /* wait for end of transfer */ 2111 ret = fec_enet_mdio_wait(fep); 2112 if (ret) { 2113 netdev_err(fep->netdev, "MDIO read timeout\n"); 2114 goto out; 2115 } 2116 2117 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2118 2119 out: 2120 pm_runtime_mark_last_busy(dev); 2121 pm_runtime_put_autosuspend(dev); 2122 2123 return ret; 2124 } 2125 2126 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2127 int devad, int regnum) 2128 { 2129 struct fec_enet_private *fep = bus->priv; 2130 struct device *dev = &fep->pdev->dev; 2131 int ret = 0, frame_start, frame_op; 2132 2133 ret = pm_runtime_resume_and_get(dev); 2134 if (ret < 0) 2135 return ret; 2136 2137 frame_start = FEC_MMFR_ST_C45; 2138 2139 /* write address */ 2140 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2141 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2142 FEC_MMFR_TA | (regnum & 0xFFFF), 2143 fep->hwp + FEC_MII_DATA); 2144 2145 /* wait for end of transfer */ 2146 ret = fec_enet_mdio_wait(fep); 2147 if (ret) { 2148 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2149 goto out; 2150 } 2151 2152 frame_op = FEC_MMFR_OP_READ_C45; 2153 2154 /* start a read op */ 2155 writel(frame_start | frame_op | 2156 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2157 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2158 2159 /* wait for end of transfer */ 2160 ret = fec_enet_mdio_wait(fep); 2161 if (ret) { 2162 netdev_err(fep->netdev, "MDIO read timeout\n"); 2163 goto out; 2164 } 2165 2166 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2167 2168 out: 2169 pm_runtime_mark_last_busy(dev); 2170 pm_runtime_put_autosuspend(dev); 2171 2172 return ret; 2173 } 2174 2175 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2176 u16 value) 2177 { 2178 struct fec_enet_private *fep = bus->priv; 2179 struct device *dev = &fep->pdev->dev; 2180 int ret, frame_start, frame_addr; 2181 2182 ret = pm_runtime_resume_and_get(dev); 2183 if (ret < 0) 2184 return ret; 2185 2186 /* C22 write */ 2187 frame_start = FEC_MMFR_ST; 2188 frame_addr = regnum; 2189 2190 /* start a write op */ 2191 writel(frame_start | FEC_MMFR_OP_WRITE | 2192 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2193 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2194 fep->hwp + FEC_MII_DATA); 2195 2196 /* wait for end of transfer */ 2197 ret = fec_enet_mdio_wait(fep); 2198 if (ret) 2199 netdev_err(fep->netdev, "MDIO write timeout\n"); 2200 2201 pm_runtime_mark_last_busy(dev); 2202 pm_runtime_put_autosuspend(dev); 2203 2204 return ret; 2205 } 2206 2207 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2208 int devad, int regnum, u16 value) 2209 { 2210 struct fec_enet_private *fep = bus->priv; 2211 struct device *dev = &fep->pdev->dev; 2212 int ret, frame_start; 2213 2214 ret = pm_runtime_resume_and_get(dev); 2215 if (ret < 0) 2216 return ret; 2217 2218 frame_start = FEC_MMFR_ST_C45; 2219 2220 /* write address */ 2221 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2222 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2223 FEC_MMFR_TA | (regnum & 0xFFFF), 2224 fep->hwp + FEC_MII_DATA); 2225 2226 /* wait for end of transfer */ 2227 ret = fec_enet_mdio_wait(fep); 2228 if (ret) { 2229 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2230 goto out; 2231 } 2232 2233 /* start a write op */ 2234 writel(frame_start | FEC_MMFR_OP_WRITE | 2235 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2236 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2237 fep->hwp + FEC_MII_DATA); 2238 2239 /* wait for end of transfer */ 2240 ret = fec_enet_mdio_wait(fep); 2241 if (ret) 2242 netdev_err(fep->netdev, "MDIO write timeout\n"); 2243 2244 out: 2245 pm_runtime_mark_last_busy(dev); 2246 pm_runtime_put_autosuspend(dev); 2247 2248 return ret; 2249 } 2250 2251 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2252 { 2253 struct fec_enet_private *fep = netdev_priv(ndev); 2254 struct phy_device *phy_dev = ndev->phydev; 2255 2256 if (phy_dev) { 2257 phy_reset_after_clk_enable(phy_dev); 2258 } else if (fep->phy_node) { 2259 /* 2260 * If the PHY still is not bound to the MAC, but there is 2261 * OF PHY node and a matching PHY device instance already, 2262 * use the OF PHY node to obtain the PHY device instance, 2263 * and then use that PHY device instance when triggering 2264 * the PHY reset. 2265 */ 2266 phy_dev = of_phy_find_device(fep->phy_node); 2267 phy_reset_after_clk_enable(phy_dev); 2268 put_device(&phy_dev->mdio.dev); 2269 } 2270 } 2271 2272 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2273 { 2274 struct fec_enet_private *fep = netdev_priv(ndev); 2275 int ret; 2276 2277 if (enable) { 2278 ret = clk_prepare_enable(fep->clk_enet_out); 2279 if (ret) 2280 return ret; 2281 2282 if (fep->clk_ptp) { 2283 mutex_lock(&fep->ptp_clk_mutex); 2284 ret = clk_prepare_enable(fep->clk_ptp); 2285 if (ret) { 2286 mutex_unlock(&fep->ptp_clk_mutex); 2287 goto failed_clk_ptp; 2288 } else { 2289 fep->ptp_clk_on = true; 2290 } 2291 mutex_unlock(&fep->ptp_clk_mutex); 2292 } 2293 2294 ret = clk_prepare_enable(fep->clk_ref); 2295 if (ret) 2296 goto failed_clk_ref; 2297 2298 ret = clk_prepare_enable(fep->clk_2x_txclk); 2299 if (ret) 2300 goto failed_clk_2x_txclk; 2301 2302 fec_enet_phy_reset_after_clk_enable(ndev); 2303 } else { 2304 clk_disable_unprepare(fep->clk_enet_out); 2305 if (fep->clk_ptp) { 2306 mutex_lock(&fep->ptp_clk_mutex); 2307 clk_disable_unprepare(fep->clk_ptp); 2308 fep->ptp_clk_on = false; 2309 mutex_unlock(&fep->ptp_clk_mutex); 2310 } 2311 clk_disable_unprepare(fep->clk_ref); 2312 clk_disable_unprepare(fep->clk_2x_txclk); 2313 } 2314 2315 return 0; 2316 2317 failed_clk_2x_txclk: 2318 if (fep->clk_ref) 2319 clk_disable_unprepare(fep->clk_ref); 2320 failed_clk_ref: 2321 if (fep->clk_ptp) { 2322 mutex_lock(&fep->ptp_clk_mutex); 2323 clk_disable_unprepare(fep->clk_ptp); 2324 fep->ptp_clk_on = false; 2325 mutex_unlock(&fep->ptp_clk_mutex); 2326 } 2327 failed_clk_ptp: 2328 clk_disable_unprepare(fep->clk_enet_out); 2329 2330 return ret; 2331 } 2332 2333 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2334 struct device_node *np) 2335 { 2336 u32 rgmii_tx_delay, rgmii_rx_delay; 2337 2338 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2339 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2340 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2341 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2342 return -EINVAL; 2343 } else if (rgmii_tx_delay == 2000) { 2344 fep->rgmii_txc_dly = true; 2345 } 2346 } 2347 2348 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2349 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2350 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2351 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2352 return -EINVAL; 2353 } else if (rgmii_rx_delay == 2000) { 2354 fep->rgmii_rxc_dly = true; 2355 } 2356 } 2357 2358 return 0; 2359 } 2360 2361 static int fec_enet_mii_probe(struct net_device *ndev) 2362 { 2363 struct fec_enet_private *fep = netdev_priv(ndev); 2364 struct phy_device *phy_dev = NULL; 2365 char mdio_bus_id[MII_BUS_ID_SIZE]; 2366 char phy_name[MII_BUS_ID_SIZE + 3]; 2367 int phy_id; 2368 int dev_id = fep->dev_id; 2369 2370 if (fep->phy_node) { 2371 phy_dev = of_phy_connect(ndev, fep->phy_node, 2372 &fec_enet_adjust_link, 0, 2373 fep->phy_interface); 2374 if (!phy_dev) { 2375 netdev_err(ndev, "Unable to connect to phy\n"); 2376 return -ENODEV; 2377 } 2378 } else { 2379 /* check for attached phy */ 2380 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2381 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2382 continue; 2383 if (dev_id--) 2384 continue; 2385 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2386 break; 2387 } 2388 2389 if (phy_id >= PHY_MAX_ADDR) { 2390 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2391 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2392 phy_id = 0; 2393 } 2394 2395 snprintf(phy_name, sizeof(phy_name), 2396 PHY_ID_FMT, mdio_bus_id, phy_id); 2397 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2398 fep->phy_interface); 2399 } 2400 2401 if (IS_ERR(phy_dev)) { 2402 netdev_err(ndev, "could not attach to PHY\n"); 2403 return PTR_ERR(phy_dev); 2404 } 2405 2406 /* mask with MAC supported features */ 2407 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2408 phy_set_max_speed(phy_dev, 1000); 2409 phy_remove_link_mode(phy_dev, 2410 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2411 #if !defined(CONFIG_M5272) 2412 phy_support_sym_pause(phy_dev); 2413 #endif 2414 } 2415 else 2416 phy_set_max_speed(phy_dev, 100); 2417 2418 fep->link = 0; 2419 fep->full_duplex = 0; 2420 2421 phy_dev->mac_managed_pm = true; 2422 2423 phy_attached_info(phy_dev); 2424 2425 return 0; 2426 } 2427 2428 static int fec_enet_mii_init(struct platform_device *pdev) 2429 { 2430 static struct mii_bus *fec0_mii_bus; 2431 struct net_device *ndev = platform_get_drvdata(pdev); 2432 struct fec_enet_private *fep = netdev_priv(ndev); 2433 bool suppress_preamble = false; 2434 struct device_node *node; 2435 int err = -ENXIO; 2436 u32 mii_speed, holdtime; 2437 u32 bus_freq; 2438 2439 /* 2440 * The i.MX28 dual fec interfaces are not equal. 2441 * Here are the differences: 2442 * 2443 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2444 * - fec0 acts as the 1588 time master while fec1 is slave 2445 * - external phys can only be configured by fec0 2446 * 2447 * That is to say fec1 can not work independently. It only works 2448 * when fec0 is working. The reason behind this design is that the 2449 * second interface is added primarily for Switch mode. 2450 * 2451 * Because of the last point above, both phys are attached on fec0 2452 * mdio interface in board design, and need to be configured by 2453 * fec0 mii_bus. 2454 */ 2455 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2456 /* fec1 uses fec0 mii_bus */ 2457 if (mii_cnt && fec0_mii_bus) { 2458 fep->mii_bus = fec0_mii_bus; 2459 mii_cnt++; 2460 return 0; 2461 } 2462 return -ENOENT; 2463 } 2464 2465 bus_freq = 2500000; /* 2.5MHz by default */ 2466 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2467 if (node) { 2468 of_property_read_u32(node, "clock-frequency", &bus_freq); 2469 suppress_preamble = of_property_read_bool(node, 2470 "suppress-preamble"); 2471 } 2472 2473 /* 2474 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2475 * 2476 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2477 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2478 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2479 * document. 2480 */ 2481 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2482 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2483 mii_speed--; 2484 if (mii_speed > 63) { 2485 dev_err(&pdev->dev, 2486 "fec clock (%lu) too fast to get right mii speed\n", 2487 clk_get_rate(fep->clk_ipg)); 2488 err = -EINVAL; 2489 goto err_out; 2490 } 2491 2492 /* 2493 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2494 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2495 * versions are RAZ there, so just ignore the difference and write the 2496 * register always. 2497 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2498 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2499 * output. 2500 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2501 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2502 * holdtime cannot result in a value greater than 3. 2503 */ 2504 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2505 2506 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2507 2508 if (suppress_preamble) 2509 fep->phy_speed |= BIT(7); 2510 2511 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2512 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2513 * MII event generation condition: 2514 * - writing MSCR: 2515 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2516 * mscr_reg_data_in[7:0] != 0 2517 * - writing MMFR: 2518 * - mscr[7:0]_not_zero 2519 */ 2520 writel(0, fep->hwp + FEC_MII_DATA); 2521 } 2522 2523 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2524 2525 /* Clear any pending transaction complete indication */ 2526 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2527 2528 fep->mii_bus = mdiobus_alloc(); 2529 if (fep->mii_bus == NULL) { 2530 err = -ENOMEM; 2531 goto err_out; 2532 } 2533 2534 fep->mii_bus->name = "fec_enet_mii_bus"; 2535 fep->mii_bus->read = fec_enet_mdio_read_c22; 2536 fep->mii_bus->write = fec_enet_mdio_write_c22; 2537 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2538 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2539 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2540 } 2541 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2542 pdev->name, fep->dev_id + 1); 2543 fep->mii_bus->priv = fep; 2544 fep->mii_bus->parent = &pdev->dev; 2545 2546 err = of_mdiobus_register(fep->mii_bus, node); 2547 if (err) 2548 goto err_out_free_mdiobus; 2549 of_node_put(node); 2550 2551 mii_cnt++; 2552 2553 /* save fec0 mii_bus */ 2554 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2555 fec0_mii_bus = fep->mii_bus; 2556 2557 return 0; 2558 2559 err_out_free_mdiobus: 2560 mdiobus_free(fep->mii_bus); 2561 err_out: 2562 of_node_put(node); 2563 return err; 2564 } 2565 2566 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2567 { 2568 if (--mii_cnt == 0) { 2569 mdiobus_unregister(fep->mii_bus); 2570 mdiobus_free(fep->mii_bus); 2571 } 2572 } 2573 2574 static void fec_enet_get_drvinfo(struct net_device *ndev, 2575 struct ethtool_drvinfo *info) 2576 { 2577 struct fec_enet_private *fep = netdev_priv(ndev); 2578 2579 strscpy(info->driver, fep->pdev->dev.driver->name, 2580 sizeof(info->driver)); 2581 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2582 } 2583 2584 static int fec_enet_get_regs_len(struct net_device *ndev) 2585 { 2586 struct fec_enet_private *fep = netdev_priv(ndev); 2587 struct resource *r; 2588 int s = 0; 2589 2590 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2591 if (r) 2592 s = resource_size(r); 2593 2594 return s; 2595 } 2596 2597 /* List of registers that can be safety be read to dump them with ethtool */ 2598 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2599 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2600 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2601 static __u32 fec_enet_register_version = 2; 2602 static u32 fec_enet_register_offset[] = { 2603 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2604 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2605 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2606 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2607 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2608 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2609 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2610 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2611 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2612 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2613 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2614 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2615 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2616 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2617 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2618 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2619 RMON_T_P_GTE2048, RMON_T_OCTETS, 2620 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2621 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2622 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2623 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2624 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2625 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2626 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2627 RMON_R_P_GTE2048, RMON_R_OCTETS, 2628 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2629 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2630 }; 2631 /* for i.MX6ul */ 2632 static u32 fec_enet_register_offset_6ul[] = { 2633 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2634 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2635 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2636 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2637 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2638 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2639 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2640 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2641 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2642 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2643 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2644 RMON_T_P_GTE2048, RMON_T_OCTETS, 2645 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2646 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2647 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2648 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2649 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2650 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2651 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2652 RMON_R_P_GTE2048, RMON_R_OCTETS, 2653 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2654 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2655 }; 2656 #else 2657 static __u32 fec_enet_register_version = 1; 2658 static u32 fec_enet_register_offset[] = { 2659 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2660 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2661 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2662 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2663 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2664 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2665 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2666 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2667 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2668 }; 2669 #endif 2670 2671 static void fec_enet_get_regs(struct net_device *ndev, 2672 struct ethtool_regs *regs, void *regbuf) 2673 { 2674 struct fec_enet_private *fep = netdev_priv(ndev); 2675 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2676 struct device *dev = &fep->pdev->dev; 2677 u32 *buf = (u32 *)regbuf; 2678 u32 i, off; 2679 int ret; 2680 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2681 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2682 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2683 u32 *reg_list; 2684 u32 reg_cnt; 2685 2686 if (!of_machine_is_compatible("fsl,imx6ul")) { 2687 reg_list = fec_enet_register_offset; 2688 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2689 } else { 2690 reg_list = fec_enet_register_offset_6ul; 2691 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2692 } 2693 #else 2694 /* coldfire */ 2695 static u32 *reg_list = fec_enet_register_offset; 2696 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2697 #endif 2698 ret = pm_runtime_resume_and_get(dev); 2699 if (ret < 0) 2700 return; 2701 2702 regs->version = fec_enet_register_version; 2703 2704 memset(buf, 0, regs->len); 2705 2706 for (i = 0; i < reg_cnt; i++) { 2707 off = reg_list[i]; 2708 2709 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2710 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2711 continue; 2712 2713 off >>= 2; 2714 buf[off] = readl(&theregs[off]); 2715 } 2716 2717 pm_runtime_mark_last_busy(dev); 2718 pm_runtime_put_autosuspend(dev); 2719 } 2720 2721 static int fec_enet_get_ts_info(struct net_device *ndev, 2722 struct ethtool_ts_info *info) 2723 { 2724 struct fec_enet_private *fep = netdev_priv(ndev); 2725 2726 if (fep->bufdesc_ex) { 2727 2728 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2729 SOF_TIMESTAMPING_RX_SOFTWARE | 2730 SOF_TIMESTAMPING_SOFTWARE | 2731 SOF_TIMESTAMPING_TX_HARDWARE | 2732 SOF_TIMESTAMPING_RX_HARDWARE | 2733 SOF_TIMESTAMPING_RAW_HARDWARE; 2734 if (fep->ptp_clock) 2735 info->phc_index = ptp_clock_index(fep->ptp_clock); 2736 else 2737 info->phc_index = -1; 2738 2739 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2740 (1 << HWTSTAMP_TX_ON); 2741 2742 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2743 (1 << HWTSTAMP_FILTER_ALL); 2744 return 0; 2745 } else { 2746 return ethtool_op_get_ts_info(ndev, info); 2747 } 2748 } 2749 2750 #if !defined(CONFIG_M5272) 2751 2752 static void fec_enet_get_pauseparam(struct net_device *ndev, 2753 struct ethtool_pauseparam *pause) 2754 { 2755 struct fec_enet_private *fep = netdev_priv(ndev); 2756 2757 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2758 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2759 pause->rx_pause = pause->tx_pause; 2760 } 2761 2762 static int fec_enet_set_pauseparam(struct net_device *ndev, 2763 struct ethtool_pauseparam *pause) 2764 { 2765 struct fec_enet_private *fep = netdev_priv(ndev); 2766 2767 if (!ndev->phydev) 2768 return -ENODEV; 2769 2770 if (pause->tx_pause != pause->rx_pause) { 2771 netdev_info(ndev, 2772 "hardware only support enable/disable both tx and rx"); 2773 return -EINVAL; 2774 } 2775 2776 fep->pause_flag = 0; 2777 2778 /* tx pause must be same as rx pause */ 2779 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2780 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2781 2782 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2783 pause->autoneg); 2784 2785 if (pause->autoneg) { 2786 if (netif_running(ndev)) 2787 fec_stop(ndev); 2788 phy_start_aneg(ndev->phydev); 2789 } 2790 if (netif_running(ndev)) { 2791 napi_disable(&fep->napi); 2792 netif_tx_lock_bh(ndev); 2793 fec_restart(ndev); 2794 netif_tx_wake_all_queues(ndev); 2795 netif_tx_unlock_bh(ndev); 2796 napi_enable(&fep->napi); 2797 } 2798 2799 return 0; 2800 } 2801 2802 static const struct fec_stat { 2803 char name[ETH_GSTRING_LEN]; 2804 u16 offset; 2805 } fec_stats[] = { 2806 /* RMON TX */ 2807 { "tx_dropped", RMON_T_DROP }, 2808 { "tx_packets", RMON_T_PACKETS }, 2809 { "tx_broadcast", RMON_T_BC_PKT }, 2810 { "tx_multicast", RMON_T_MC_PKT }, 2811 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2812 { "tx_undersize", RMON_T_UNDERSIZE }, 2813 { "tx_oversize", RMON_T_OVERSIZE }, 2814 { "tx_fragment", RMON_T_FRAG }, 2815 { "tx_jabber", RMON_T_JAB }, 2816 { "tx_collision", RMON_T_COL }, 2817 { "tx_64byte", RMON_T_P64 }, 2818 { "tx_65to127byte", RMON_T_P65TO127 }, 2819 { "tx_128to255byte", RMON_T_P128TO255 }, 2820 { "tx_256to511byte", RMON_T_P256TO511 }, 2821 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2822 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2823 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2824 { "tx_octets", RMON_T_OCTETS }, 2825 2826 /* IEEE TX */ 2827 { "IEEE_tx_drop", IEEE_T_DROP }, 2828 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2829 { "IEEE_tx_1col", IEEE_T_1COL }, 2830 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2831 { "IEEE_tx_def", IEEE_T_DEF }, 2832 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2833 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2834 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2835 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2836 { "IEEE_tx_sqe", IEEE_T_SQE }, 2837 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2838 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2839 2840 /* RMON RX */ 2841 { "rx_packets", RMON_R_PACKETS }, 2842 { "rx_broadcast", RMON_R_BC_PKT }, 2843 { "rx_multicast", RMON_R_MC_PKT }, 2844 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2845 { "rx_undersize", RMON_R_UNDERSIZE }, 2846 { "rx_oversize", RMON_R_OVERSIZE }, 2847 { "rx_fragment", RMON_R_FRAG }, 2848 { "rx_jabber", RMON_R_JAB }, 2849 { "rx_64byte", RMON_R_P64 }, 2850 { "rx_65to127byte", RMON_R_P65TO127 }, 2851 { "rx_128to255byte", RMON_R_P128TO255 }, 2852 { "rx_256to511byte", RMON_R_P256TO511 }, 2853 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2854 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2855 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2856 { "rx_octets", RMON_R_OCTETS }, 2857 2858 /* IEEE RX */ 2859 { "IEEE_rx_drop", IEEE_R_DROP }, 2860 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2861 { "IEEE_rx_crc", IEEE_R_CRC }, 2862 { "IEEE_rx_align", IEEE_R_ALIGN }, 2863 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2864 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2865 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2866 }; 2867 2868 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2869 2870 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2871 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2872 "rx_xdp_pass", /* RX_XDP_PASS, */ 2873 "rx_xdp_drop", /* RX_XDP_DROP, */ 2874 "rx_xdp_tx", /* RX_XDP_TX, */ 2875 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2876 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2877 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2878 }; 2879 2880 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2881 { 2882 struct fec_enet_private *fep = netdev_priv(dev); 2883 int i; 2884 2885 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2886 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2887 } 2888 2889 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2890 { 2891 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2892 struct fec_enet_priv_rx_q *rxq; 2893 int i, j; 2894 2895 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2896 rxq = fep->rx_queue[i]; 2897 2898 for (j = 0; j < XDP_STATS_TOTAL; j++) 2899 xdp_stats[j] += rxq->stats[j]; 2900 } 2901 2902 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2903 } 2904 2905 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2906 { 2907 #ifdef CONFIG_PAGE_POOL_STATS 2908 struct page_pool_stats stats = {}; 2909 struct fec_enet_priv_rx_q *rxq; 2910 int i; 2911 2912 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2913 rxq = fep->rx_queue[i]; 2914 2915 if (!rxq->page_pool) 2916 continue; 2917 2918 page_pool_get_stats(rxq->page_pool, &stats); 2919 } 2920 2921 page_pool_ethtool_stats_get(data, &stats); 2922 #endif 2923 } 2924 2925 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2926 struct ethtool_stats *stats, u64 *data) 2927 { 2928 struct fec_enet_private *fep = netdev_priv(dev); 2929 2930 if (netif_running(dev)) 2931 fec_enet_update_ethtool_stats(dev); 2932 2933 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2934 data += FEC_STATS_SIZE / sizeof(u64); 2935 2936 fec_enet_get_xdp_stats(fep, data); 2937 data += XDP_STATS_TOTAL; 2938 2939 fec_enet_page_pool_stats(fep, data); 2940 } 2941 2942 static void fec_enet_get_strings(struct net_device *netdev, 2943 u32 stringset, u8 *data) 2944 { 2945 int i; 2946 switch (stringset) { 2947 case ETH_SS_STATS: 2948 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2949 ethtool_puts(&data, fec_stats[i].name); 2950 } 2951 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2952 ethtool_puts(&data, fec_xdp_stat_strs[i]); 2953 } 2954 page_pool_ethtool_stats_get_strings(data); 2955 2956 break; 2957 case ETH_SS_TEST: 2958 net_selftest_get_strings(data); 2959 break; 2960 } 2961 } 2962 2963 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2964 { 2965 int count; 2966 2967 switch (sset) { 2968 case ETH_SS_STATS: 2969 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2970 count += page_pool_ethtool_stats_get_count(); 2971 return count; 2972 2973 case ETH_SS_TEST: 2974 return net_selftest_get_count(); 2975 default: 2976 return -EOPNOTSUPP; 2977 } 2978 } 2979 2980 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2981 { 2982 struct fec_enet_private *fep = netdev_priv(dev); 2983 struct fec_enet_priv_rx_q *rxq; 2984 int i, j; 2985 2986 /* Disable MIB statistics counters */ 2987 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2988 2989 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2990 writel(0, fep->hwp + fec_stats[i].offset); 2991 2992 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2993 rxq = fep->rx_queue[i]; 2994 for (j = 0; j < XDP_STATS_TOTAL; j++) 2995 rxq->stats[j] = 0; 2996 } 2997 2998 /* Don't disable MIB statistics counters */ 2999 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 3000 } 3001 3002 #else /* !defined(CONFIG_M5272) */ 3003 #define FEC_STATS_SIZE 0 3004 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 3005 { 3006 } 3007 3008 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 3009 { 3010 } 3011 #endif /* !defined(CONFIG_M5272) */ 3012 3013 /* ITR clock source is enet system clock (clk_ahb). 3014 * TCTT unit is cycle_ns * 64 cycle 3015 * So, the ICTT value = X us / (cycle_ns * 64) 3016 */ 3017 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3018 { 3019 struct fec_enet_private *fep = netdev_priv(ndev); 3020 3021 return us * (fep->itr_clk_rate / 64000) / 1000; 3022 } 3023 3024 /* Set threshold for interrupt coalescing */ 3025 static void fec_enet_itr_coal_set(struct net_device *ndev) 3026 { 3027 struct fec_enet_private *fep = netdev_priv(ndev); 3028 int rx_itr, tx_itr; 3029 3030 /* Must be greater than zero to avoid unpredictable behavior */ 3031 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3032 !fep->tx_time_itr || !fep->tx_pkts_itr) 3033 return; 3034 3035 /* Select enet system clock as Interrupt Coalescing 3036 * timer Clock Source 3037 */ 3038 rx_itr = FEC_ITR_CLK_SEL; 3039 tx_itr = FEC_ITR_CLK_SEL; 3040 3041 /* set ICFT and ICTT */ 3042 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3043 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3044 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3045 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3046 3047 rx_itr |= FEC_ITR_EN; 3048 tx_itr |= FEC_ITR_EN; 3049 3050 writel(tx_itr, fep->hwp + FEC_TXIC0); 3051 writel(rx_itr, fep->hwp + FEC_RXIC0); 3052 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3053 writel(tx_itr, fep->hwp + FEC_TXIC1); 3054 writel(rx_itr, fep->hwp + FEC_RXIC1); 3055 writel(tx_itr, fep->hwp + FEC_TXIC2); 3056 writel(rx_itr, fep->hwp + FEC_RXIC2); 3057 } 3058 } 3059 3060 static int fec_enet_get_coalesce(struct net_device *ndev, 3061 struct ethtool_coalesce *ec, 3062 struct kernel_ethtool_coalesce *kernel_coal, 3063 struct netlink_ext_ack *extack) 3064 { 3065 struct fec_enet_private *fep = netdev_priv(ndev); 3066 3067 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3068 return -EOPNOTSUPP; 3069 3070 ec->rx_coalesce_usecs = fep->rx_time_itr; 3071 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3072 3073 ec->tx_coalesce_usecs = fep->tx_time_itr; 3074 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3075 3076 return 0; 3077 } 3078 3079 static int fec_enet_set_coalesce(struct net_device *ndev, 3080 struct ethtool_coalesce *ec, 3081 struct kernel_ethtool_coalesce *kernel_coal, 3082 struct netlink_ext_ack *extack) 3083 { 3084 struct fec_enet_private *fep = netdev_priv(ndev); 3085 struct device *dev = &fep->pdev->dev; 3086 unsigned int cycle; 3087 3088 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3089 return -EOPNOTSUPP; 3090 3091 if (ec->rx_max_coalesced_frames > 255) { 3092 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3093 return -EINVAL; 3094 } 3095 3096 if (ec->tx_max_coalesced_frames > 255) { 3097 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3098 return -EINVAL; 3099 } 3100 3101 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3102 if (cycle > 0xFFFF) { 3103 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3104 return -EINVAL; 3105 } 3106 3107 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3108 if (cycle > 0xFFFF) { 3109 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3110 return -EINVAL; 3111 } 3112 3113 fep->rx_time_itr = ec->rx_coalesce_usecs; 3114 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3115 3116 fep->tx_time_itr = ec->tx_coalesce_usecs; 3117 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3118 3119 fec_enet_itr_coal_set(ndev); 3120 3121 return 0; 3122 } 3123 3124 /* LPI Sleep Ts count base on tx clk (clk_ref). 3125 * The lpi sleep cnt value = X us / (cycle_ns). 3126 */ 3127 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3128 { 3129 struct fec_enet_private *fep = netdev_priv(ndev); 3130 3131 return us * (fep->clk_ref_rate / 1000) / 1000; 3132 } 3133 3134 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3135 { 3136 struct fec_enet_private *fep = netdev_priv(ndev); 3137 struct ethtool_keee *p = &fep->eee; 3138 unsigned int sleep_cycle, wake_cycle; 3139 int ret = 0; 3140 3141 if (enable) { 3142 ret = phy_init_eee(ndev->phydev, false); 3143 if (ret) 3144 return ret; 3145 3146 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3147 wake_cycle = sleep_cycle; 3148 } else { 3149 sleep_cycle = 0; 3150 wake_cycle = 0; 3151 } 3152 3153 p->tx_lpi_enabled = enable; 3154 3155 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3156 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3157 3158 return 0; 3159 } 3160 3161 static int 3162 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata) 3163 { 3164 struct fec_enet_private *fep = netdev_priv(ndev); 3165 struct ethtool_keee *p = &fep->eee; 3166 3167 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3168 return -EOPNOTSUPP; 3169 3170 if (!netif_running(ndev)) 3171 return -ENETDOWN; 3172 3173 edata->tx_lpi_timer = p->tx_lpi_timer; 3174 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3175 3176 return phy_ethtool_get_eee(ndev->phydev, edata); 3177 } 3178 3179 static int 3180 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata) 3181 { 3182 struct fec_enet_private *fep = netdev_priv(ndev); 3183 struct ethtool_keee *p = &fep->eee; 3184 int ret = 0; 3185 3186 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3187 return -EOPNOTSUPP; 3188 3189 if (!netif_running(ndev)) 3190 return -ENETDOWN; 3191 3192 p->tx_lpi_timer = edata->tx_lpi_timer; 3193 3194 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3195 !edata->tx_lpi_timer) 3196 ret = fec_enet_eee_mode_set(ndev, false); 3197 else 3198 ret = fec_enet_eee_mode_set(ndev, true); 3199 3200 if (ret) 3201 return ret; 3202 3203 return phy_ethtool_set_eee(ndev->phydev, edata); 3204 } 3205 3206 static void 3207 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3208 { 3209 struct fec_enet_private *fep = netdev_priv(ndev); 3210 3211 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3212 wol->supported = WAKE_MAGIC; 3213 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3214 } else { 3215 wol->supported = wol->wolopts = 0; 3216 } 3217 } 3218 3219 static int 3220 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3221 { 3222 struct fec_enet_private *fep = netdev_priv(ndev); 3223 3224 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3225 return -EINVAL; 3226 3227 if (wol->wolopts & ~WAKE_MAGIC) 3228 return -EINVAL; 3229 3230 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3231 if (device_may_wakeup(&ndev->dev)) 3232 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3233 else 3234 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3235 3236 return 0; 3237 } 3238 3239 static const struct ethtool_ops fec_enet_ethtool_ops = { 3240 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3241 ETHTOOL_COALESCE_MAX_FRAMES, 3242 .get_drvinfo = fec_enet_get_drvinfo, 3243 .get_regs_len = fec_enet_get_regs_len, 3244 .get_regs = fec_enet_get_regs, 3245 .nway_reset = phy_ethtool_nway_reset, 3246 .get_link = ethtool_op_get_link, 3247 .get_coalesce = fec_enet_get_coalesce, 3248 .set_coalesce = fec_enet_set_coalesce, 3249 #ifndef CONFIG_M5272 3250 .get_pauseparam = fec_enet_get_pauseparam, 3251 .set_pauseparam = fec_enet_set_pauseparam, 3252 .get_strings = fec_enet_get_strings, 3253 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3254 .get_sset_count = fec_enet_get_sset_count, 3255 #endif 3256 .get_ts_info = fec_enet_get_ts_info, 3257 .get_wol = fec_enet_get_wol, 3258 .set_wol = fec_enet_set_wol, 3259 .get_eee = fec_enet_get_eee, 3260 .set_eee = fec_enet_set_eee, 3261 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3262 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3263 .self_test = net_selftest, 3264 }; 3265 3266 static void fec_enet_free_buffers(struct net_device *ndev) 3267 { 3268 struct fec_enet_private *fep = netdev_priv(ndev); 3269 unsigned int i; 3270 struct fec_enet_priv_tx_q *txq; 3271 struct fec_enet_priv_rx_q *rxq; 3272 unsigned int q; 3273 3274 for (q = 0; q < fep->num_rx_queues; q++) { 3275 rxq = fep->rx_queue[q]; 3276 for (i = 0; i < rxq->bd.ring_size; i++) 3277 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3278 3279 for (i = 0; i < XDP_STATS_TOTAL; i++) 3280 rxq->stats[i] = 0; 3281 3282 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3283 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3284 page_pool_destroy(rxq->page_pool); 3285 rxq->page_pool = NULL; 3286 } 3287 3288 for (q = 0; q < fep->num_tx_queues; q++) { 3289 txq = fep->tx_queue[q]; 3290 for (i = 0; i < txq->bd.ring_size; i++) { 3291 kfree(txq->tx_bounce[i]); 3292 txq->tx_bounce[i] = NULL; 3293 3294 if (!txq->tx_buf[i].buf_p) { 3295 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3296 continue; 3297 } 3298 3299 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3300 dev_kfree_skb(txq->tx_buf[i].buf_p); 3301 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3302 xdp_return_frame(txq->tx_buf[i].buf_p); 3303 } else { 3304 struct page *page = txq->tx_buf[i].buf_p; 3305 3306 page_pool_put_page(page->pp, page, 0, false); 3307 } 3308 3309 txq->tx_buf[i].buf_p = NULL; 3310 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3311 } 3312 } 3313 } 3314 3315 static void fec_enet_free_queue(struct net_device *ndev) 3316 { 3317 struct fec_enet_private *fep = netdev_priv(ndev); 3318 int i; 3319 struct fec_enet_priv_tx_q *txq; 3320 3321 for (i = 0; i < fep->num_tx_queues; i++) 3322 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3323 txq = fep->tx_queue[i]; 3324 fec_dma_free(&fep->pdev->dev, 3325 txq->bd.ring_size * TSO_HEADER_SIZE, 3326 txq->tso_hdrs, txq->tso_hdrs_dma); 3327 } 3328 3329 for (i = 0; i < fep->num_rx_queues; i++) 3330 kfree(fep->rx_queue[i]); 3331 for (i = 0; i < fep->num_tx_queues; i++) 3332 kfree(fep->tx_queue[i]); 3333 } 3334 3335 static int fec_enet_alloc_queue(struct net_device *ndev) 3336 { 3337 struct fec_enet_private *fep = netdev_priv(ndev); 3338 int i; 3339 int ret = 0; 3340 struct fec_enet_priv_tx_q *txq; 3341 3342 for (i = 0; i < fep->num_tx_queues; i++) { 3343 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3344 if (!txq) { 3345 ret = -ENOMEM; 3346 goto alloc_failed; 3347 } 3348 3349 fep->tx_queue[i] = txq; 3350 txq->bd.ring_size = TX_RING_SIZE; 3351 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3352 3353 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3354 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3355 3356 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3357 txq->bd.ring_size * TSO_HEADER_SIZE, 3358 &txq->tso_hdrs_dma, GFP_KERNEL); 3359 if (!txq->tso_hdrs) { 3360 ret = -ENOMEM; 3361 goto alloc_failed; 3362 } 3363 } 3364 3365 for (i = 0; i < fep->num_rx_queues; i++) { 3366 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3367 GFP_KERNEL); 3368 if (!fep->rx_queue[i]) { 3369 ret = -ENOMEM; 3370 goto alloc_failed; 3371 } 3372 3373 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3374 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3375 } 3376 return ret; 3377 3378 alloc_failed: 3379 fec_enet_free_queue(ndev); 3380 return ret; 3381 } 3382 3383 static int 3384 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3385 { 3386 struct fec_enet_private *fep = netdev_priv(ndev); 3387 struct fec_enet_priv_rx_q *rxq; 3388 dma_addr_t phys_addr; 3389 struct bufdesc *bdp; 3390 struct page *page; 3391 int i, err; 3392 3393 rxq = fep->rx_queue[queue]; 3394 bdp = rxq->bd.base; 3395 3396 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3397 if (err < 0) { 3398 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3399 return err; 3400 } 3401 3402 for (i = 0; i < rxq->bd.ring_size; i++) { 3403 page = page_pool_dev_alloc_pages(rxq->page_pool); 3404 if (!page) 3405 goto err_alloc; 3406 3407 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3408 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3409 3410 rxq->rx_skb_info[i].page = page; 3411 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3412 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3413 3414 if (fep->bufdesc_ex) { 3415 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3416 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3417 } 3418 3419 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3420 } 3421 3422 /* Set the last buffer to wrap. */ 3423 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3424 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3425 return 0; 3426 3427 err_alloc: 3428 fec_enet_free_buffers(ndev); 3429 return -ENOMEM; 3430 } 3431 3432 static int 3433 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3434 { 3435 struct fec_enet_private *fep = netdev_priv(ndev); 3436 unsigned int i; 3437 struct bufdesc *bdp; 3438 struct fec_enet_priv_tx_q *txq; 3439 3440 txq = fep->tx_queue[queue]; 3441 bdp = txq->bd.base; 3442 for (i = 0; i < txq->bd.ring_size; i++) { 3443 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3444 if (!txq->tx_bounce[i]) 3445 goto err_alloc; 3446 3447 bdp->cbd_sc = cpu_to_fec16(0); 3448 bdp->cbd_bufaddr = cpu_to_fec32(0); 3449 3450 if (fep->bufdesc_ex) { 3451 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3452 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3453 } 3454 3455 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3456 } 3457 3458 /* Set the last buffer to wrap. */ 3459 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3460 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3461 3462 return 0; 3463 3464 err_alloc: 3465 fec_enet_free_buffers(ndev); 3466 return -ENOMEM; 3467 } 3468 3469 static int fec_enet_alloc_buffers(struct net_device *ndev) 3470 { 3471 struct fec_enet_private *fep = netdev_priv(ndev); 3472 unsigned int i; 3473 3474 for (i = 0; i < fep->num_rx_queues; i++) 3475 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3476 return -ENOMEM; 3477 3478 for (i = 0; i < fep->num_tx_queues; i++) 3479 if (fec_enet_alloc_txq_buffers(ndev, i)) 3480 return -ENOMEM; 3481 return 0; 3482 } 3483 3484 static int 3485 fec_enet_open(struct net_device *ndev) 3486 { 3487 struct fec_enet_private *fep = netdev_priv(ndev); 3488 int ret; 3489 bool reset_again; 3490 3491 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3492 if (ret < 0) 3493 return ret; 3494 3495 pinctrl_pm_select_default_state(&fep->pdev->dev); 3496 ret = fec_enet_clk_enable(ndev, true); 3497 if (ret) 3498 goto clk_enable; 3499 3500 /* During the first fec_enet_open call the PHY isn't probed at this 3501 * point. Therefore the phy_reset_after_clk_enable() call within 3502 * fec_enet_clk_enable() fails. As we need this reset in order to be 3503 * sure the PHY is working correctly we check if we need to reset again 3504 * later when the PHY is probed 3505 */ 3506 if (ndev->phydev && ndev->phydev->drv) 3507 reset_again = false; 3508 else 3509 reset_again = true; 3510 3511 /* I should reset the ring buffers here, but I don't yet know 3512 * a simple way to do that. 3513 */ 3514 3515 ret = fec_enet_alloc_buffers(ndev); 3516 if (ret) 3517 goto err_enet_alloc; 3518 3519 /* Init MAC prior to mii bus probe */ 3520 fec_restart(ndev); 3521 3522 /* Call phy_reset_after_clk_enable() again if it failed during 3523 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3524 */ 3525 if (reset_again) 3526 fec_enet_phy_reset_after_clk_enable(ndev); 3527 3528 /* Probe and connect to PHY when open the interface */ 3529 ret = fec_enet_mii_probe(ndev); 3530 if (ret) 3531 goto err_enet_mii_probe; 3532 3533 if (fep->quirks & FEC_QUIRK_ERR006687) 3534 imx6q_cpuidle_fec_irqs_used(); 3535 3536 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3537 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3538 3539 napi_enable(&fep->napi); 3540 phy_start(ndev->phydev); 3541 netif_tx_start_all_queues(ndev); 3542 3543 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3544 FEC_WOL_FLAG_ENABLE); 3545 3546 return 0; 3547 3548 err_enet_mii_probe: 3549 fec_enet_free_buffers(ndev); 3550 err_enet_alloc: 3551 fec_enet_clk_enable(ndev, false); 3552 clk_enable: 3553 pm_runtime_mark_last_busy(&fep->pdev->dev); 3554 pm_runtime_put_autosuspend(&fep->pdev->dev); 3555 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3556 return ret; 3557 } 3558 3559 static int 3560 fec_enet_close(struct net_device *ndev) 3561 { 3562 struct fec_enet_private *fep = netdev_priv(ndev); 3563 3564 phy_stop(ndev->phydev); 3565 3566 if (netif_device_present(ndev)) { 3567 napi_disable(&fep->napi); 3568 netif_tx_disable(ndev); 3569 fec_stop(ndev); 3570 } 3571 3572 phy_disconnect(ndev->phydev); 3573 3574 if (fep->quirks & FEC_QUIRK_ERR006687) 3575 imx6q_cpuidle_fec_irqs_unused(); 3576 3577 fec_enet_update_ethtool_stats(ndev); 3578 3579 fec_enet_clk_enable(ndev, false); 3580 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3581 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3582 3583 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3584 pm_runtime_mark_last_busy(&fep->pdev->dev); 3585 pm_runtime_put_autosuspend(&fep->pdev->dev); 3586 3587 fec_enet_free_buffers(ndev); 3588 3589 return 0; 3590 } 3591 3592 /* Set or clear the multicast filter for this adaptor. 3593 * Skeleton taken from sunlance driver. 3594 * The CPM Ethernet implementation allows Multicast as well as individual 3595 * MAC address filtering. Some of the drivers check to make sure it is 3596 * a group multicast address, and discard those that are not. I guess I 3597 * will do the same for now, but just remove the test if you want 3598 * individual filtering as well (do the upper net layers want or support 3599 * this kind of feature?). 3600 */ 3601 3602 #define FEC_HASH_BITS 6 /* #bits in hash */ 3603 3604 static void set_multicast_list(struct net_device *ndev) 3605 { 3606 struct fec_enet_private *fep = netdev_priv(ndev); 3607 struct netdev_hw_addr *ha; 3608 unsigned int crc, tmp; 3609 unsigned char hash; 3610 unsigned int hash_high = 0, hash_low = 0; 3611 3612 if (ndev->flags & IFF_PROMISC) { 3613 tmp = readl(fep->hwp + FEC_R_CNTRL); 3614 tmp |= 0x8; 3615 writel(tmp, fep->hwp + FEC_R_CNTRL); 3616 return; 3617 } 3618 3619 tmp = readl(fep->hwp + FEC_R_CNTRL); 3620 tmp &= ~0x8; 3621 writel(tmp, fep->hwp + FEC_R_CNTRL); 3622 3623 if (ndev->flags & IFF_ALLMULTI) { 3624 /* Catch all multicast addresses, so set the 3625 * filter to all 1's 3626 */ 3627 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3628 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3629 3630 return; 3631 } 3632 3633 /* Add the addresses in hash register */ 3634 netdev_for_each_mc_addr(ha, ndev) { 3635 /* calculate crc32 value of mac address */ 3636 crc = ether_crc_le(ndev->addr_len, ha->addr); 3637 3638 /* only upper 6 bits (FEC_HASH_BITS) are used 3639 * which point to specific bit in the hash registers 3640 */ 3641 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3642 3643 if (hash > 31) 3644 hash_high |= 1 << (hash - 32); 3645 else 3646 hash_low |= 1 << hash; 3647 } 3648 3649 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3650 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3651 } 3652 3653 /* Set a MAC change in hardware. */ 3654 static int 3655 fec_set_mac_address(struct net_device *ndev, void *p) 3656 { 3657 struct fec_enet_private *fep = netdev_priv(ndev); 3658 struct sockaddr *addr = p; 3659 3660 if (addr) { 3661 if (!is_valid_ether_addr(addr->sa_data)) 3662 return -EADDRNOTAVAIL; 3663 eth_hw_addr_set(ndev, addr->sa_data); 3664 } 3665 3666 /* Add netif status check here to avoid system hang in below case: 3667 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3668 * After ethx down, fec all clocks are gated off and then register 3669 * access causes system hang. 3670 */ 3671 if (!netif_running(ndev)) 3672 return 0; 3673 3674 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3675 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3676 fep->hwp + FEC_ADDR_LOW); 3677 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3678 fep->hwp + FEC_ADDR_HIGH); 3679 return 0; 3680 } 3681 3682 #ifdef CONFIG_NET_POLL_CONTROLLER 3683 /** 3684 * fec_poll_controller - FEC Poll controller function 3685 * @dev: The FEC network adapter 3686 * 3687 * Polled functionality used by netconsole and others in non interrupt mode 3688 * 3689 */ 3690 static void fec_poll_controller(struct net_device *dev) 3691 { 3692 int i; 3693 struct fec_enet_private *fep = netdev_priv(dev); 3694 3695 for (i = 0; i < FEC_IRQ_NUM; i++) { 3696 if (fep->irq[i] > 0) { 3697 disable_irq(fep->irq[i]); 3698 fec_enet_interrupt(fep->irq[i], dev); 3699 enable_irq(fep->irq[i]); 3700 } 3701 } 3702 } 3703 #endif 3704 3705 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3706 netdev_features_t features) 3707 { 3708 struct fec_enet_private *fep = netdev_priv(netdev); 3709 netdev_features_t changed = features ^ netdev->features; 3710 3711 netdev->features = features; 3712 3713 /* Receive checksum has been changed */ 3714 if (changed & NETIF_F_RXCSUM) { 3715 if (features & NETIF_F_RXCSUM) 3716 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3717 else 3718 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3719 } 3720 } 3721 3722 static int fec_set_features(struct net_device *netdev, 3723 netdev_features_t features) 3724 { 3725 struct fec_enet_private *fep = netdev_priv(netdev); 3726 netdev_features_t changed = features ^ netdev->features; 3727 3728 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3729 napi_disable(&fep->napi); 3730 netif_tx_lock_bh(netdev); 3731 fec_stop(netdev); 3732 fec_enet_set_netdev_features(netdev, features); 3733 fec_restart(netdev); 3734 netif_tx_wake_all_queues(netdev); 3735 netif_tx_unlock_bh(netdev); 3736 napi_enable(&fep->napi); 3737 } else { 3738 fec_enet_set_netdev_features(netdev, features); 3739 } 3740 3741 return 0; 3742 } 3743 3744 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3745 struct net_device *sb_dev) 3746 { 3747 struct fec_enet_private *fep = netdev_priv(ndev); 3748 u16 vlan_tag = 0; 3749 3750 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3751 return netdev_pick_tx(ndev, skb, NULL); 3752 3753 /* VLAN is present in the payload.*/ 3754 if (eth_type_vlan(skb->protocol)) { 3755 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3756 3757 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3758 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3759 } else if (skb_vlan_tag_present(skb)) { 3760 vlan_tag = skb->vlan_tci; 3761 } else { 3762 return vlan_tag; 3763 } 3764 3765 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3766 } 3767 3768 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3769 { 3770 struct fec_enet_private *fep = netdev_priv(dev); 3771 bool is_run = netif_running(dev); 3772 struct bpf_prog *old_prog; 3773 3774 switch (bpf->command) { 3775 case XDP_SETUP_PROG: 3776 /* No need to support the SoCs that require to 3777 * do the frame swap because the performance wouldn't be 3778 * better than the skb mode. 3779 */ 3780 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3781 return -EOPNOTSUPP; 3782 3783 if (!bpf->prog) 3784 xdp_features_clear_redirect_target(dev); 3785 3786 if (is_run) { 3787 napi_disable(&fep->napi); 3788 netif_tx_disable(dev); 3789 } 3790 3791 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3792 if (old_prog) 3793 bpf_prog_put(old_prog); 3794 3795 fec_restart(dev); 3796 3797 if (is_run) { 3798 napi_enable(&fep->napi); 3799 netif_tx_start_all_queues(dev); 3800 } 3801 3802 if (bpf->prog) 3803 xdp_features_set_redirect_target(dev, false); 3804 3805 return 0; 3806 3807 case XDP_SETUP_XSK_POOL: 3808 return -EOPNOTSUPP; 3809 3810 default: 3811 return -EOPNOTSUPP; 3812 } 3813 } 3814 3815 static int 3816 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3817 { 3818 if (unlikely(index < 0)) 3819 return 0; 3820 3821 return (index % fep->num_tx_queues); 3822 } 3823 3824 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3825 struct fec_enet_priv_tx_q *txq, 3826 void *frame, u32 dma_sync_len, 3827 bool ndo_xmit) 3828 { 3829 unsigned int index, status, estatus; 3830 struct bufdesc *bdp; 3831 dma_addr_t dma_addr; 3832 int entries_free; 3833 u16 frame_len; 3834 3835 entries_free = fec_enet_get_free_txdesc_num(txq); 3836 if (entries_free < MAX_SKB_FRAGS + 1) { 3837 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3838 return -EBUSY; 3839 } 3840 3841 /* Fill in a Tx ring entry */ 3842 bdp = txq->bd.cur; 3843 status = fec16_to_cpu(bdp->cbd_sc); 3844 status &= ~BD_ENET_TX_STATS; 3845 3846 index = fec_enet_get_bd_index(bdp, &txq->bd); 3847 3848 if (ndo_xmit) { 3849 struct xdp_frame *xdpf = frame; 3850 3851 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3852 xdpf->len, DMA_TO_DEVICE); 3853 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3854 return -ENOMEM; 3855 3856 frame_len = xdpf->len; 3857 txq->tx_buf[index].buf_p = xdpf; 3858 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3859 } else { 3860 struct xdp_buff *xdpb = frame; 3861 struct page *page; 3862 3863 page = virt_to_page(xdpb->data); 3864 dma_addr = page_pool_get_dma_addr(page) + 3865 (xdpb->data - xdpb->data_hard_start); 3866 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3867 dma_sync_len, DMA_BIDIRECTIONAL); 3868 frame_len = xdpb->data_end - xdpb->data; 3869 txq->tx_buf[index].buf_p = page; 3870 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3871 } 3872 3873 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3874 if (fep->bufdesc_ex) 3875 estatus = BD_ENET_TX_INT; 3876 3877 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3878 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3879 3880 if (fep->bufdesc_ex) { 3881 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3882 3883 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3884 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3885 3886 ebdp->cbd_bdu = 0; 3887 ebdp->cbd_esc = cpu_to_fec32(estatus); 3888 } 3889 3890 /* Make sure the updates to rest of the descriptor are performed before 3891 * transferring ownership. 3892 */ 3893 dma_wmb(); 3894 3895 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3896 * it's the last BD of the frame, and to put the CRC on the end. 3897 */ 3898 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3899 bdp->cbd_sc = cpu_to_fec16(status); 3900 3901 /* If this was the last BD in the ring, start at the beginning again. */ 3902 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3903 3904 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3905 dma_wmb(); 3906 3907 txq->bd.cur = bdp; 3908 3909 /* Trigger transmission start */ 3910 writel(0, txq->bd.reg_desc_active); 3911 3912 return 0; 3913 } 3914 3915 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3916 int cpu, struct xdp_buff *xdp, 3917 u32 dma_sync_len) 3918 { 3919 struct fec_enet_priv_tx_q *txq; 3920 struct netdev_queue *nq; 3921 int queue, ret; 3922 3923 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3924 txq = fep->tx_queue[queue]; 3925 nq = netdev_get_tx_queue(fep->netdev, queue); 3926 3927 __netif_tx_lock(nq, cpu); 3928 3929 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3930 txq_trans_cond_update(nq); 3931 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3932 3933 __netif_tx_unlock(nq); 3934 3935 return ret; 3936 } 3937 3938 static int fec_enet_xdp_xmit(struct net_device *dev, 3939 int num_frames, 3940 struct xdp_frame **frames, 3941 u32 flags) 3942 { 3943 struct fec_enet_private *fep = netdev_priv(dev); 3944 struct fec_enet_priv_tx_q *txq; 3945 int cpu = smp_processor_id(); 3946 unsigned int sent_frames = 0; 3947 struct netdev_queue *nq; 3948 unsigned int queue; 3949 int i; 3950 3951 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3952 txq = fep->tx_queue[queue]; 3953 nq = netdev_get_tx_queue(fep->netdev, queue); 3954 3955 __netif_tx_lock(nq, cpu); 3956 3957 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3958 txq_trans_cond_update(nq); 3959 for (i = 0; i < num_frames; i++) { 3960 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3961 break; 3962 sent_frames++; 3963 } 3964 3965 __netif_tx_unlock(nq); 3966 3967 return sent_frames; 3968 } 3969 3970 static int fec_hwtstamp_get(struct net_device *ndev, 3971 struct kernel_hwtstamp_config *config) 3972 { 3973 struct fec_enet_private *fep = netdev_priv(ndev); 3974 3975 if (!netif_running(ndev)) 3976 return -EINVAL; 3977 3978 if (!fep->bufdesc_ex) 3979 return -EOPNOTSUPP; 3980 3981 fec_ptp_get(ndev, config); 3982 3983 return 0; 3984 } 3985 3986 static int fec_hwtstamp_set(struct net_device *ndev, 3987 struct kernel_hwtstamp_config *config, 3988 struct netlink_ext_ack *extack) 3989 { 3990 struct fec_enet_private *fep = netdev_priv(ndev); 3991 3992 if (!netif_running(ndev)) 3993 return -EINVAL; 3994 3995 if (!fep->bufdesc_ex) 3996 return -EOPNOTSUPP; 3997 3998 return fec_ptp_set(ndev, config, extack); 3999 } 4000 4001 static const struct net_device_ops fec_netdev_ops = { 4002 .ndo_open = fec_enet_open, 4003 .ndo_stop = fec_enet_close, 4004 .ndo_start_xmit = fec_enet_start_xmit, 4005 .ndo_select_queue = fec_enet_select_queue, 4006 .ndo_set_rx_mode = set_multicast_list, 4007 .ndo_validate_addr = eth_validate_addr, 4008 .ndo_tx_timeout = fec_timeout, 4009 .ndo_set_mac_address = fec_set_mac_address, 4010 .ndo_eth_ioctl = phy_do_ioctl_running, 4011 #ifdef CONFIG_NET_POLL_CONTROLLER 4012 .ndo_poll_controller = fec_poll_controller, 4013 #endif 4014 .ndo_set_features = fec_set_features, 4015 .ndo_bpf = fec_enet_bpf, 4016 .ndo_xdp_xmit = fec_enet_xdp_xmit, 4017 .ndo_hwtstamp_get = fec_hwtstamp_get, 4018 .ndo_hwtstamp_set = fec_hwtstamp_set, 4019 }; 4020 4021 static const unsigned short offset_des_active_rxq[] = { 4022 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4023 }; 4024 4025 static const unsigned short offset_des_active_txq[] = { 4026 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4027 }; 4028 4029 /* 4030 * XXX: We need to clean up on failure exits here. 4031 * 4032 */ 4033 static int fec_enet_init(struct net_device *ndev) 4034 { 4035 struct fec_enet_private *fep = netdev_priv(ndev); 4036 struct bufdesc *cbd_base; 4037 dma_addr_t bd_dma; 4038 int bd_size; 4039 unsigned int i; 4040 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4041 sizeof(struct bufdesc); 4042 unsigned dsize_log2 = __fls(dsize); 4043 int ret; 4044 4045 WARN_ON(dsize != (1 << dsize_log2)); 4046 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4047 fep->rx_align = 0xf; 4048 fep->tx_align = 0xf; 4049 #else 4050 fep->rx_align = 0x3; 4051 fep->tx_align = 0x3; 4052 #endif 4053 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4054 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4055 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4056 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4057 4058 /* Check mask of the streaming and coherent API */ 4059 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4060 if (ret < 0) { 4061 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4062 return ret; 4063 } 4064 4065 ret = fec_enet_alloc_queue(ndev); 4066 if (ret) 4067 return ret; 4068 4069 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4070 4071 /* Allocate memory for buffer descriptors. */ 4072 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4073 GFP_KERNEL); 4074 if (!cbd_base) { 4075 ret = -ENOMEM; 4076 goto free_queue_mem; 4077 } 4078 4079 /* Get the Ethernet address */ 4080 ret = fec_get_mac(ndev); 4081 if (ret) 4082 goto free_queue_mem; 4083 4084 /* Set receive and transmit descriptor base. */ 4085 for (i = 0; i < fep->num_rx_queues; i++) { 4086 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4087 unsigned size = dsize * rxq->bd.ring_size; 4088 4089 rxq->bd.qid = i; 4090 rxq->bd.base = cbd_base; 4091 rxq->bd.cur = cbd_base; 4092 rxq->bd.dma = bd_dma; 4093 rxq->bd.dsize = dsize; 4094 rxq->bd.dsize_log2 = dsize_log2; 4095 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4096 bd_dma += size; 4097 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4098 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4099 } 4100 4101 for (i = 0; i < fep->num_tx_queues; i++) { 4102 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4103 unsigned size = dsize * txq->bd.ring_size; 4104 4105 txq->bd.qid = i; 4106 txq->bd.base = cbd_base; 4107 txq->bd.cur = cbd_base; 4108 txq->bd.dma = bd_dma; 4109 txq->bd.dsize = dsize; 4110 txq->bd.dsize_log2 = dsize_log2; 4111 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4112 bd_dma += size; 4113 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4114 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4115 } 4116 4117 4118 /* The FEC Ethernet specific entries in the device structure */ 4119 ndev->watchdog_timeo = TX_TIMEOUT; 4120 ndev->netdev_ops = &fec_netdev_ops; 4121 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4122 4123 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4124 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4125 4126 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4127 /* enable hw VLAN support */ 4128 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4129 4130 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4131 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4132 4133 /* enable hw accelerator */ 4134 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4135 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4136 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4137 } 4138 4139 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4140 fep->tx_align = 0; 4141 fep->rx_align = 0x3f; 4142 } 4143 4144 ndev->hw_features = ndev->features; 4145 4146 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4147 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4148 NETDEV_XDP_ACT_REDIRECT; 4149 4150 fec_restart(ndev); 4151 4152 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4153 fec_enet_clear_ethtool_stats(ndev); 4154 else 4155 fec_enet_update_ethtool_stats(ndev); 4156 4157 return 0; 4158 4159 free_queue_mem: 4160 fec_enet_free_queue(ndev); 4161 return ret; 4162 } 4163 4164 #ifdef CONFIG_OF 4165 static int fec_reset_phy(struct platform_device *pdev) 4166 { 4167 struct gpio_desc *phy_reset; 4168 int msec = 1, phy_post_delay = 0; 4169 struct device_node *np = pdev->dev.of_node; 4170 int err; 4171 4172 if (!np) 4173 return 0; 4174 4175 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4176 /* A sane reset duration should not be longer than 1s */ 4177 if (!err && msec > 1000) 4178 msec = 1; 4179 4180 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4181 /* valid reset duration should be less than 1s */ 4182 if (!err && phy_post_delay > 1000) 4183 return -EINVAL; 4184 4185 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4186 GPIOD_OUT_HIGH); 4187 if (IS_ERR(phy_reset)) 4188 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4189 "failed to get phy-reset-gpios\n"); 4190 4191 if (!phy_reset) 4192 return 0; 4193 4194 if (msec > 20) 4195 msleep(msec); 4196 else 4197 usleep_range(msec * 1000, msec * 1000 + 1000); 4198 4199 gpiod_set_value_cansleep(phy_reset, 0); 4200 4201 if (!phy_post_delay) 4202 return 0; 4203 4204 if (phy_post_delay > 20) 4205 msleep(phy_post_delay); 4206 else 4207 usleep_range(phy_post_delay * 1000, 4208 phy_post_delay * 1000 + 1000); 4209 4210 return 0; 4211 } 4212 #else /* CONFIG_OF */ 4213 static int fec_reset_phy(struct platform_device *pdev) 4214 { 4215 /* 4216 * In case of platform probe, the reset has been done 4217 * by machine code. 4218 */ 4219 return 0; 4220 } 4221 #endif /* CONFIG_OF */ 4222 4223 static void 4224 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4225 { 4226 struct device_node *np = pdev->dev.of_node; 4227 4228 *num_tx = *num_rx = 1; 4229 4230 if (!np || !of_device_is_available(np)) 4231 return; 4232 4233 /* parse the num of tx and rx queues */ 4234 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4235 4236 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4237 4238 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4239 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4240 *num_tx); 4241 *num_tx = 1; 4242 return; 4243 } 4244 4245 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4246 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4247 *num_rx); 4248 *num_rx = 1; 4249 return; 4250 } 4251 4252 } 4253 4254 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4255 { 4256 int irq_cnt = platform_irq_count(pdev); 4257 4258 if (irq_cnt > FEC_IRQ_NUM) 4259 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4260 else if (irq_cnt == 2) 4261 irq_cnt = 1; /* last for pps */ 4262 else if (irq_cnt <= 0) 4263 irq_cnt = 1; /* At least 1 irq is needed */ 4264 return irq_cnt; 4265 } 4266 4267 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4268 { 4269 struct net_device *ndev = platform_get_drvdata(pdev); 4270 struct fec_enet_private *fep = netdev_priv(ndev); 4271 4272 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4273 fep->wake_irq = fep->irq[2]; 4274 else 4275 fep->wake_irq = fep->irq[0]; 4276 } 4277 4278 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4279 struct device_node *np) 4280 { 4281 struct device_node *gpr_np; 4282 u32 out_val[3]; 4283 int ret = 0; 4284 4285 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4286 if (!gpr_np) 4287 return 0; 4288 4289 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4290 ARRAY_SIZE(out_val)); 4291 if (ret) { 4292 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4293 goto out; 4294 } 4295 4296 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4297 if (IS_ERR(fep->stop_gpr.gpr)) { 4298 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4299 ret = PTR_ERR(fep->stop_gpr.gpr); 4300 fep->stop_gpr.gpr = NULL; 4301 goto out; 4302 } 4303 4304 fep->stop_gpr.reg = out_val[1]; 4305 fep->stop_gpr.bit = out_val[2]; 4306 4307 out: 4308 of_node_put(gpr_np); 4309 4310 return ret; 4311 } 4312 4313 static int 4314 fec_probe(struct platform_device *pdev) 4315 { 4316 struct fec_enet_private *fep; 4317 struct fec_platform_data *pdata; 4318 phy_interface_t interface; 4319 struct net_device *ndev; 4320 int i, irq, ret = 0; 4321 static int dev_id; 4322 struct device_node *np = pdev->dev.of_node, *phy_node; 4323 int num_tx_qs; 4324 int num_rx_qs; 4325 char irq_name[8]; 4326 int irq_cnt; 4327 const struct fec_devinfo *dev_info; 4328 4329 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4330 4331 /* Init network device */ 4332 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4333 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4334 if (!ndev) 4335 return -ENOMEM; 4336 4337 SET_NETDEV_DEV(ndev, &pdev->dev); 4338 4339 /* setup board info structure */ 4340 fep = netdev_priv(ndev); 4341 4342 dev_info = device_get_match_data(&pdev->dev); 4343 if (!dev_info) 4344 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 4345 if (dev_info) 4346 fep->quirks = dev_info->quirks; 4347 4348 fep->netdev = ndev; 4349 fep->num_rx_queues = num_rx_qs; 4350 fep->num_tx_queues = num_tx_qs; 4351 4352 #if !defined(CONFIG_M5272) 4353 /* default enable pause frame auto negotiation */ 4354 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4355 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4356 #endif 4357 4358 /* Select default pin state */ 4359 pinctrl_pm_select_default_state(&pdev->dev); 4360 4361 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4362 if (IS_ERR(fep->hwp)) { 4363 ret = PTR_ERR(fep->hwp); 4364 goto failed_ioremap; 4365 } 4366 4367 fep->pdev = pdev; 4368 fep->dev_id = dev_id++; 4369 4370 platform_set_drvdata(pdev, ndev); 4371 4372 if ((of_machine_is_compatible("fsl,imx6q") || 4373 of_machine_is_compatible("fsl,imx6dl")) && 4374 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4375 fep->quirks |= FEC_QUIRK_ERR006687; 4376 4377 ret = fec_enet_ipc_handle_init(fep); 4378 if (ret) 4379 goto failed_ipc_init; 4380 4381 if (of_property_read_bool(np, "fsl,magic-packet")) 4382 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4383 4384 ret = fec_enet_init_stop_mode(fep, np); 4385 if (ret) 4386 goto failed_stop_mode; 4387 4388 phy_node = of_parse_phandle(np, "phy-handle", 0); 4389 if (!phy_node && of_phy_is_fixed_link(np)) { 4390 ret = of_phy_register_fixed_link(np); 4391 if (ret < 0) { 4392 dev_err(&pdev->dev, 4393 "broken fixed-link specification\n"); 4394 goto failed_phy; 4395 } 4396 phy_node = of_node_get(np); 4397 } 4398 fep->phy_node = phy_node; 4399 4400 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4401 if (ret) { 4402 pdata = dev_get_platdata(&pdev->dev); 4403 if (pdata) 4404 fep->phy_interface = pdata->phy; 4405 else 4406 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4407 } else { 4408 fep->phy_interface = interface; 4409 } 4410 4411 ret = fec_enet_parse_rgmii_delay(fep, np); 4412 if (ret) 4413 goto failed_rgmii_delay; 4414 4415 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4416 if (IS_ERR(fep->clk_ipg)) { 4417 ret = PTR_ERR(fep->clk_ipg); 4418 goto failed_clk; 4419 } 4420 4421 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4422 if (IS_ERR(fep->clk_ahb)) { 4423 ret = PTR_ERR(fep->clk_ahb); 4424 goto failed_clk; 4425 } 4426 4427 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4428 4429 /* enet_out is optional, depends on board */ 4430 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4431 if (IS_ERR(fep->clk_enet_out)) { 4432 ret = PTR_ERR(fep->clk_enet_out); 4433 goto failed_clk; 4434 } 4435 4436 fep->ptp_clk_on = false; 4437 mutex_init(&fep->ptp_clk_mutex); 4438 4439 /* clk_ref is optional, depends on board */ 4440 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4441 if (IS_ERR(fep->clk_ref)) { 4442 ret = PTR_ERR(fep->clk_ref); 4443 goto failed_clk; 4444 } 4445 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4446 4447 /* clk_2x_txclk is optional, depends on board */ 4448 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4449 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4450 if (IS_ERR(fep->clk_2x_txclk)) 4451 fep->clk_2x_txclk = NULL; 4452 } 4453 4454 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4455 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4456 if (IS_ERR(fep->clk_ptp)) { 4457 fep->clk_ptp = NULL; 4458 fep->bufdesc_ex = false; 4459 } 4460 4461 ret = fec_enet_clk_enable(ndev, true); 4462 if (ret) 4463 goto failed_clk; 4464 4465 ret = clk_prepare_enable(fep->clk_ipg); 4466 if (ret) 4467 goto failed_clk_ipg; 4468 ret = clk_prepare_enable(fep->clk_ahb); 4469 if (ret) 4470 goto failed_clk_ahb; 4471 4472 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4473 if (!IS_ERR(fep->reg_phy)) { 4474 ret = regulator_enable(fep->reg_phy); 4475 if (ret) { 4476 dev_err(&pdev->dev, 4477 "Failed to enable phy regulator: %d\n", ret); 4478 goto failed_regulator; 4479 } 4480 } else { 4481 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4482 ret = -EPROBE_DEFER; 4483 goto failed_regulator; 4484 } 4485 fep->reg_phy = NULL; 4486 } 4487 4488 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4489 pm_runtime_use_autosuspend(&pdev->dev); 4490 pm_runtime_get_noresume(&pdev->dev); 4491 pm_runtime_set_active(&pdev->dev); 4492 pm_runtime_enable(&pdev->dev); 4493 4494 ret = fec_reset_phy(pdev); 4495 if (ret) 4496 goto failed_reset; 4497 4498 irq_cnt = fec_enet_get_irq_cnt(pdev); 4499 if (fep->bufdesc_ex) 4500 fec_ptp_init(pdev, irq_cnt); 4501 4502 ret = fec_enet_init(ndev); 4503 if (ret) 4504 goto failed_init; 4505 4506 for (i = 0; i < irq_cnt; i++) { 4507 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4508 irq = platform_get_irq_byname_optional(pdev, irq_name); 4509 if (irq < 0) 4510 irq = platform_get_irq(pdev, i); 4511 if (irq < 0) { 4512 ret = irq; 4513 goto failed_irq; 4514 } 4515 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4516 0, pdev->name, ndev); 4517 if (ret) 4518 goto failed_irq; 4519 4520 fep->irq[i] = irq; 4521 } 4522 4523 /* Decide which interrupt line is wakeup capable */ 4524 fec_enet_get_wakeup_irq(pdev); 4525 4526 ret = fec_enet_mii_init(pdev); 4527 if (ret) 4528 goto failed_mii_init; 4529 4530 /* Carrier starts down, phylib will bring it up */ 4531 netif_carrier_off(ndev); 4532 fec_enet_clk_enable(ndev, false); 4533 pinctrl_pm_select_sleep_state(&pdev->dev); 4534 4535 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4536 4537 ret = register_netdev(ndev); 4538 if (ret) 4539 goto failed_register; 4540 4541 device_init_wakeup(&ndev->dev, fep->wol_flag & 4542 FEC_WOL_HAS_MAGIC_PACKET); 4543 4544 if (fep->bufdesc_ex && fep->ptp_clock) 4545 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4546 4547 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4548 4549 pm_runtime_mark_last_busy(&pdev->dev); 4550 pm_runtime_put_autosuspend(&pdev->dev); 4551 4552 return 0; 4553 4554 failed_register: 4555 fec_enet_mii_remove(fep); 4556 failed_mii_init: 4557 failed_irq: 4558 failed_init: 4559 fec_ptp_stop(pdev); 4560 failed_reset: 4561 pm_runtime_put_noidle(&pdev->dev); 4562 pm_runtime_disable(&pdev->dev); 4563 if (fep->reg_phy) 4564 regulator_disable(fep->reg_phy); 4565 failed_regulator: 4566 clk_disable_unprepare(fep->clk_ahb); 4567 failed_clk_ahb: 4568 clk_disable_unprepare(fep->clk_ipg); 4569 failed_clk_ipg: 4570 fec_enet_clk_enable(ndev, false); 4571 failed_clk: 4572 failed_rgmii_delay: 4573 if (of_phy_is_fixed_link(np)) 4574 of_phy_deregister_fixed_link(np); 4575 of_node_put(phy_node); 4576 failed_stop_mode: 4577 failed_ipc_init: 4578 failed_phy: 4579 dev_id--; 4580 failed_ioremap: 4581 free_netdev(ndev); 4582 4583 return ret; 4584 } 4585 4586 static void 4587 fec_drv_remove(struct platform_device *pdev) 4588 { 4589 struct net_device *ndev = platform_get_drvdata(pdev); 4590 struct fec_enet_private *fep = netdev_priv(ndev); 4591 struct device_node *np = pdev->dev.of_node; 4592 int ret; 4593 4594 ret = pm_runtime_get_sync(&pdev->dev); 4595 if (ret < 0) 4596 dev_err(&pdev->dev, 4597 "Failed to resume device in remove callback (%pe)\n", 4598 ERR_PTR(ret)); 4599 4600 cancel_work_sync(&fep->tx_timeout_work); 4601 fec_ptp_stop(pdev); 4602 unregister_netdev(ndev); 4603 fec_enet_mii_remove(fep); 4604 if (fep->reg_phy) 4605 regulator_disable(fep->reg_phy); 4606 4607 if (of_phy_is_fixed_link(np)) 4608 of_phy_deregister_fixed_link(np); 4609 of_node_put(fep->phy_node); 4610 4611 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4612 * disabling them again. 4613 */ 4614 if (ret >= 0) { 4615 clk_disable_unprepare(fep->clk_ahb); 4616 clk_disable_unprepare(fep->clk_ipg); 4617 } 4618 pm_runtime_put_noidle(&pdev->dev); 4619 pm_runtime_disable(&pdev->dev); 4620 4621 free_netdev(ndev); 4622 } 4623 4624 static int __maybe_unused fec_suspend(struct device *dev) 4625 { 4626 struct net_device *ndev = dev_get_drvdata(dev); 4627 struct fec_enet_private *fep = netdev_priv(ndev); 4628 int ret; 4629 4630 rtnl_lock(); 4631 if (netif_running(ndev)) { 4632 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4633 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4634 phy_stop(ndev->phydev); 4635 napi_disable(&fep->napi); 4636 netif_tx_lock_bh(ndev); 4637 netif_device_detach(ndev); 4638 netif_tx_unlock_bh(ndev); 4639 fec_stop(ndev); 4640 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4641 fec_irqs_disable(ndev); 4642 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4643 } else { 4644 fec_irqs_disable_except_wakeup(ndev); 4645 if (fep->wake_irq > 0) { 4646 disable_irq(fep->wake_irq); 4647 enable_irq_wake(fep->wake_irq); 4648 } 4649 fec_enet_stop_mode(fep, true); 4650 } 4651 /* It's safe to disable clocks since interrupts are masked */ 4652 fec_enet_clk_enable(ndev, false); 4653 4654 fep->rpm_active = !pm_runtime_status_suspended(dev); 4655 if (fep->rpm_active) { 4656 ret = pm_runtime_force_suspend(dev); 4657 if (ret < 0) { 4658 rtnl_unlock(); 4659 return ret; 4660 } 4661 } 4662 } 4663 rtnl_unlock(); 4664 4665 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4666 regulator_disable(fep->reg_phy); 4667 4668 /* SOC supply clock to phy, when clock is disabled, phy link down 4669 * SOC control phy regulator, when regulator is disabled, phy link down 4670 */ 4671 if (fep->clk_enet_out || fep->reg_phy) 4672 fep->link = 0; 4673 4674 return 0; 4675 } 4676 4677 static int __maybe_unused fec_resume(struct device *dev) 4678 { 4679 struct net_device *ndev = dev_get_drvdata(dev); 4680 struct fec_enet_private *fep = netdev_priv(ndev); 4681 int ret; 4682 int val; 4683 4684 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4685 ret = regulator_enable(fep->reg_phy); 4686 if (ret) 4687 return ret; 4688 } 4689 4690 rtnl_lock(); 4691 if (netif_running(ndev)) { 4692 if (fep->rpm_active) 4693 pm_runtime_force_resume(dev); 4694 4695 ret = fec_enet_clk_enable(ndev, true); 4696 if (ret) { 4697 rtnl_unlock(); 4698 goto failed_clk; 4699 } 4700 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4701 fec_enet_stop_mode(fep, false); 4702 if (fep->wake_irq) { 4703 disable_irq_wake(fep->wake_irq); 4704 enable_irq(fep->wake_irq); 4705 } 4706 4707 val = readl(fep->hwp + FEC_ECNTRL); 4708 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4709 writel(val, fep->hwp + FEC_ECNTRL); 4710 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4711 } else { 4712 pinctrl_pm_select_default_state(&fep->pdev->dev); 4713 } 4714 fec_restart(ndev); 4715 netif_tx_lock_bh(ndev); 4716 netif_device_attach(ndev); 4717 netif_tx_unlock_bh(ndev); 4718 napi_enable(&fep->napi); 4719 phy_init_hw(ndev->phydev); 4720 phy_start(ndev->phydev); 4721 } 4722 rtnl_unlock(); 4723 4724 return 0; 4725 4726 failed_clk: 4727 if (fep->reg_phy) 4728 regulator_disable(fep->reg_phy); 4729 return ret; 4730 } 4731 4732 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4733 { 4734 struct net_device *ndev = dev_get_drvdata(dev); 4735 struct fec_enet_private *fep = netdev_priv(ndev); 4736 4737 clk_disable_unprepare(fep->clk_ahb); 4738 clk_disable_unprepare(fep->clk_ipg); 4739 4740 return 0; 4741 } 4742 4743 static int __maybe_unused fec_runtime_resume(struct device *dev) 4744 { 4745 struct net_device *ndev = dev_get_drvdata(dev); 4746 struct fec_enet_private *fep = netdev_priv(ndev); 4747 int ret; 4748 4749 ret = clk_prepare_enable(fep->clk_ahb); 4750 if (ret) 4751 return ret; 4752 ret = clk_prepare_enable(fep->clk_ipg); 4753 if (ret) 4754 goto failed_clk_ipg; 4755 4756 return 0; 4757 4758 failed_clk_ipg: 4759 clk_disable_unprepare(fep->clk_ahb); 4760 return ret; 4761 } 4762 4763 static const struct dev_pm_ops fec_pm_ops = { 4764 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4765 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4766 }; 4767 4768 static struct platform_driver fec_driver = { 4769 .driver = { 4770 .name = DRIVER_NAME, 4771 .pm = &fec_pm_ops, 4772 .of_match_table = fec_dt_ids, 4773 .suppress_bind_attrs = true, 4774 }, 4775 .id_table = fec_devtype, 4776 .probe = fec_probe, 4777 .remove_new = fec_drv_remove, 4778 }; 4779 4780 module_platform_driver(fec_driver); 4781 4782 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver"); 4783 MODULE_LICENSE("GPL"); 4784