xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/platform_device.h>
52 #include <linux/mdio.h>
53 #include <linux/phy.h>
54 #include <linux/fec.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/of_gpio.h>
58 #include <linux/of_mdio.h>
59 #include <linux/of_net.h>
60 #include <linux/regulator/consumer.h>
61 #include <linux/if_vlan.h>
62 #include <linux/pinctrl/consumer.h>
63 #include <linux/prefetch.h>
64 #include <soc/imx/cpuidle.h>
65 
66 #include <asm/cacheflush.h>
67 
68 #include "fec.h"
69 
70 static void set_multicast_list(struct net_device *ndev);
71 static void fec_enet_itr_coal_init(struct net_device *ndev);
72 
73 #define DRIVER_NAME	"fec"
74 
75 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 
77 /* Pause frame feild and FIFO threshold */
78 #define FEC_ENET_FCE	(1 << 5)
79 #define FEC_ENET_RSEM_V	0x84
80 #define FEC_ENET_RSFL_V	16
81 #define FEC_ENET_RAEM_V	0x8
82 #define FEC_ENET_RAFL_V	0x8
83 #define FEC_ENET_OPD_V	0xFFF0
84 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
85 
86 static struct platform_device_id fec_devtype[] = {
87 	{
88 		/* keep it for coldfire */
89 		.name = DRIVER_NAME,
90 		.driver_data = 0,
91 	}, {
92 		.name = "imx25-fec",
93 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
94 	}, {
95 		.name = "imx27-fec",
96 		.driver_data = FEC_QUIRK_MIB_CLEAR,
97 	}, {
98 		.name = "imx28-fec",
99 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
100 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
101 	}, {
102 		.name = "imx6q-fec",
103 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
104 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
105 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
106 				FEC_QUIRK_HAS_RACC,
107 	}, {
108 		.name = "mvf600-fec",
109 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
110 	}, {
111 		.name = "imx6sx-fec",
112 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
113 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
114 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
115 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
116 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
117 	}, {
118 		.name = "imx6ul-fec",
119 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
122 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
123 				FEC_QUIRK_HAS_COALESCE,
124 	}, {
125 		/* sentinel */
126 	}
127 };
128 MODULE_DEVICE_TABLE(platform, fec_devtype);
129 
130 enum imx_fec_type {
131 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
132 	IMX27_FEC,	/* runs on i.mx27/35/51 */
133 	IMX28_FEC,
134 	IMX6Q_FEC,
135 	MVF600_FEC,
136 	IMX6SX_FEC,
137 	IMX6UL_FEC,
138 };
139 
140 static const struct of_device_id fec_dt_ids[] = {
141 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
142 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
143 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
144 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
145 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
146 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
147 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
148 	{ /* sentinel */ }
149 };
150 MODULE_DEVICE_TABLE(of, fec_dt_ids);
151 
152 static unsigned char macaddr[ETH_ALEN];
153 module_param_array(macaddr, byte, NULL, 0);
154 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155 
156 #if defined(CONFIG_M5272)
157 /*
158  * Some hardware gets it MAC address out of local flash memory.
159  * if this is non-zero then assume it is the address to get MAC from.
160  */
161 #if defined(CONFIG_NETtel)
162 #define	FEC_FLASHMAC	0xf0006006
163 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
164 #define	FEC_FLASHMAC	0xf0006000
165 #elif defined(CONFIG_CANCam)
166 #define	FEC_FLASHMAC	0xf0020000
167 #elif defined (CONFIG_M5272C3)
168 #define	FEC_FLASHMAC	(0xffe04000 + 4)
169 #elif defined(CONFIG_MOD5272)
170 #define FEC_FLASHMAC	0xffc0406b
171 #else
172 #define	FEC_FLASHMAC	0
173 #endif
174 #endif /* CONFIG_M5272 */
175 
176 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
177  *
178  * 2048 byte skbufs are allocated. However, alignment requirements
179  * varies between FEC variants. Worst case is 64, so round down by 64.
180  */
181 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
182 #define PKT_MINBUF_SIZE		64
183 
184 /* FEC receive acceleration */
185 #define FEC_RACC_IPDIS		(1 << 1)
186 #define FEC_RACC_PRODIS		(1 << 2)
187 #define FEC_RACC_SHIFT16	BIT(7)
188 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
189 
190 /* MIB Control Register */
191 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
192 
193 /*
194  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
195  * size bits. Other FEC hardware does not, so we need to take that into
196  * account when setting it.
197  */
198 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
199     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
200     defined(CONFIG_ARM64)
201 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
202 #else
203 #define	OPT_FRAME_SIZE	0
204 #endif
205 
206 /* FEC MII MMFR bits definition */
207 #define FEC_MMFR_ST		(1 << 30)
208 #define FEC_MMFR_OP_READ	(2 << 28)
209 #define FEC_MMFR_OP_WRITE	(1 << 28)
210 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
211 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
212 #define FEC_MMFR_TA		(2 << 16)
213 #define FEC_MMFR_DATA(v)	(v & 0xffff)
214 /* FEC ECR bits definition */
215 #define FEC_ECR_MAGICEN		(1 << 2)
216 #define FEC_ECR_SLEEP		(1 << 3)
217 
218 #define FEC_MII_TIMEOUT		30000 /* us */
219 
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
222 
223 #define FEC_PAUSE_FLAG_AUTONEG	0x1
224 #define FEC_PAUSE_FLAG_ENABLE	0x2
225 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
226 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
227 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
228 
229 #define COPYBREAK_DEFAULT	256
230 
231 /* Max number of allowed TCP segments for software TSO */
232 #define FEC_MAX_TSO_SEGS	100
233 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
234 
235 #define IS_TSO_HEADER(txq, addr) \
236 	((addr >= txq->tso_hdrs_dma) && \
237 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
238 
239 static int mii_cnt;
240 
241 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
242 					     struct bufdesc_prop *bd)
243 {
244 	return (bdp >= bd->last) ? bd->base
245 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
246 }
247 
248 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
249 					     struct bufdesc_prop *bd)
250 {
251 	return (bdp <= bd->base) ? bd->last
252 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
253 }
254 
255 static int fec_enet_get_bd_index(struct bufdesc *bdp,
256 				 struct bufdesc_prop *bd)
257 {
258 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
259 }
260 
261 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
262 {
263 	int entries;
264 
265 	entries = (((const char *)txq->dirty_tx -
266 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
267 
268 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
269 }
270 
271 static void swap_buffer(void *bufaddr, int len)
272 {
273 	int i;
274 	unsigned int *buf = bufaddr;
275 
276 	for (i = 0; i < len; i += 4, buf++)
277 		swab32s(buf);
278 }
279 
280 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
281 {
282 	int i;
283 	unsigned int *src = src_buf;
284 	unsigned int *dst = dst_buf;
285 
286 	for (i = 0; i < len; i += 4, src++, dst++)
287 		*dst = swab32p(src);
288 }
289 
290 static void fec_dump(struct net_device *ndev)
291 {
292 	struct fec_enet_private *fep = netdev_priv(ndev);
293 	struct bufdesc *bdp;
294 	struct fec_enet_priv_tx_q *txq;
295 	int index = 0;
296 
297 	netdev_info(ndev, "TX ring dump\n");
298 	pr_info("Nr     SC     addr       len  SKB\n");
299 
300 	txq = fep->tx_queue[0];
301 	bdp = txq->bd.base;
302 
303 	do {
304 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
305 			index,
306 			bdp == txq->bd.cur ? 'S' : ' ',
307 			bdp == txq->dirty_tx ? 'H' : ' ',
308 			fec16_to_cpu(bdp->cbd_sc),
309 			fec32_to_cpu(bdp->cbd_bufaddr),
310 			fec16_to_cpu(bdp->cbd_datlen),
311 			txq->tx_skbuff[index]);
312 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
313 		index++;
314 	} while (bdp != txq->bd.base);
315 }
316 
317 static inline bool is_ipv4_pkt(struct sk_buff *skb)
318 {
319 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
320 }
321 
322 static int
323 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
324 {
325 	/* Only run for packets requiring a checksum. */
326 	if (skb->ip_summed != CHECKSUM_PARTIAL)
327 		return 0;
328 
329 	if (unlikely(skb_cow_head(skb, 0)))
330 		return -1;
331 
332 	if (is_ipv4_pkt(skb))
333 		ip_hdr(skb)->check = 0;
334 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
335 
336 	return 0;
337 }
338 
339 static struct bufdesc *
340 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
341 			     struct sk_buff *skb,
342 			     struct net_device *ndev)
343 {
344 	struct fec_enet_private *fep = netdev_priv(ndev);
345 	struct bufdesc *bdp = txq->bd.cur;
346 	struct bufdesc_ex *ebdp;
347 	int nr_frags = skb_shinfo(skb)->nr_frags;
348 	int frag, frag_len;
349 	unsigned short status;
350 	unsigned int estatus = 0;
351 	skb_frag_t *this_frag;
352 	unsigned int index;
353 	void *bufaddr;
354 	dma_addr_t addr;
355 	int i;
356 
357 	for (frag = 0; frag < nr_frags; frag++) {
358 		this_frag = &skb_shinfo(skb)->frags[frag];
359 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
360 		ebdp = (struct bufdesc_ex *)bdp;
361 
362 		status = fec16_to_cpu(bdp->cbd_sc);
363 		status &= ~BD_ENET_TX_STATS;
364 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
365 		frag_len = skb_shinfo(skb)->frags[frag].size;
366 
367 		/* Handle the last BD specially */
368 		if (frag == nr_frags - 1) {
369 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
370 			if (fep->bufdesc_ex) {
371 				estatus |= BD_ENET_TX_INT;
372 				if (unlikely(skb_shinfo(skb)->tx_flags &
373 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
374 					estatus |= BD_ENET_TX_TS;
375 			}
376 		}
377 
378 		if (fep->bufdesc_ex) {
379 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
380 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
381 			if (skb->ip_summed == CHECKSUM_PARTIAL)
382 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
383 			ebdp->cbd_bdu = 0;
384 			ebdp->cbd_esc = cpu_to_fec32(estatus);
385 		}
386 
387 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
388 
389 		index = fec_enet_get_bd_index(bdp, &txq->bd);
390 		if (((unsigned long) bufaddr) & fep->tx_align ||
391 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
392 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
393 			bufaddr = txq->tx_bounce[index];
394 
395 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
396 				swap_buffer(bufaddr, frag_len);
397 		}
398 
399 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
400 				      DMA_TO_DEVICE);
401 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
402 			if (net_ratelimit())
403 				netdev_err(ndev, "Tx DMA memory map failed\n");
404 			goto dma_mapping_error;
405 		}
406 
407 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
408 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
409 		/* Make sure the updates to rest of the descriptor are
410 		 * performed before transferring ownership.
411 		 */
412 		wmb();
413 		bdp->cbd_sc = cpu_to_fec16(status);
414 	}
415 
416 	return bdp;
417 dma_mapping_error:
418 	bdp = txq->bd.cur;
419 	for (i = 0; i < frag; i++) {
420 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
421 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
422 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
423 	}
424 	return ERR_PTR(-ENOMEM);
425 }
426 
427 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
428 				   struct sk_buff *skb, struct net_device *ndev)
429 {
430 	struct fec_enet_private *fep = netdev_priv(ndev);
431 	int nr_frags = skb_shinfo(skb)->nr_frags;
432 	struct bufdesc *bdp, *last_bdp;
433 	void *bufaddr;
434 	dma_addr_t addr;
435 	unsigned short status;
436 	unsigned short buflen;
437 	unsigned int estatus = 0;
438 	unsigned int index;
439 	int entries_free;
440 
441 	entries_free = fec_enet_get_free_txdesc_num(txq);
442 	if (entries_free < MAX_SKB_FRAGS + 1) {
443 		dev_kfree_skb_any(skb);
444 		if (net_ratelimit())
445 			netdev_err(ndev, "NOT enough BD for SG!\n");
446 		return NETDEV_TX_OK;
447 	}
448 
449 	/* Protocol checksum off-load for TCP and UDP. */
450 	if (fec_enet_clear_csum(skb, ndev)) {
451 		dev_kfree_skb_any(skb);
452 		return NETDEV_TX_OK;
453 	}
454 
455 	/* Fill in a Tx ring entry */
456 	bdp = txq->bd.cur;
457 	last_bdp = bdp;
458 	status = fec16_to_cpu(bdp->cbd_sc);
459 	status &= ~BD_ENET_TX_STATS;
460 
461 	/* Set buffer length and buffer pointer */
462 	bufaddr = skb->data;
463 	buflen = skb_headlen(skb);
464 
465 	index = fec_enet_get_bd_index(bdp, &txq->bd);
466 	if (((unsigned long) bufaddr) & fep->tx_align ||
467 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
468 		memcpy(txq->tx_bounce[index], skb->data, buflen);
469 		bufaddr = txq->tx_bounce[index];
470 
471 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
472 			swap_buffer(bufaddr, buflen);
473 	}
474 
475 	/* Push the data cache so the CPM does not get stale memory data. */
476 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
477 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
478 		dev_kfree_skb_any(skb);
479 		if (net_ratelimit())
480 			netdev_err(ndev, "Tx DMA memory map failed\n");
481 		return NETDEV_TX_OK;
482 	}
483 
484 	if (nr_frags) {
485 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
486 		if (IS_ERR(last_bdp)) {
487 			dma_unmap_single(&fep->pdev->dev, addr,
488 					 buflen, DMA_TO_DEVICE);
489 			dev_kfree_skb_any(skb);
490 			return NETDEV_TX_OK;
491 		}
492 	} else {
493 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
494 		if (fep->bufdesc_ex) {
495 			estatus = BD_ENET_TX_INT;
496 			if (unlikely(skb_shinfo(skb)->tx_flags &
497 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
498 				estatus |= BD_ENET_TX_TS;
499 		}
500 	}
501 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
502 	bdp->cbd_datlen = cpu_to_fec16(buflen);
503 
504 	if (fep->bufdesc_ex) {
505 
506 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
507 
508 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
509 			fep->hwts_tx_en))
510 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
511 
512 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
513 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
514 
515 		if (skb->ip_summed == CHECKSUM_PARTIAL)
516 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
517 
518 		ebdp->cbd_bdu = 0;
519 		ebdp->cbd_esc = cpu_to_fec32(estatus);
520 	}
521 
522 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
523 	/* Save skb pointer */
524 	txq->tx_skbuff[index] = skb;
525 
526 	/* Make sure the updates to rest of the descriptor are performed before
527 	 * transferring ownership.
528 	 */
529 	wmb();
530 
531 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
532 	 * it's the last BD of the frame, and to put the CRC on the end.
533 	 */
534 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
535 	bdp->cbd_sc = cpu_to_fec16(status);
536 
537 	/* If this was the last BD in the ring, start at the beginning again. */
538 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
539 
540 	skb_tx_timestamp(skb);
541 
542 	/* Make sure the update to bdp and tx_skbuff are performed before
543 	 * txq->bd.cur.
544 	 */
545 	wmb();
546 	txq->bd.cur = bdp;
547 
548 	/* Trigger transmission start */
549 	writel(0, txq->bd.reg_desc_active);
550 
551 	return 0;
552 }
553 
554 static int
555 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
556 			  struct net_device *ndev,
557 			  struct bufdesc *bdp, int index, char *data,
558 			  int size, bool last_tcp, bool is_last)
559 {
560 	struct fec_enet_private *fep = netdev_priv(ndev);
561 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
562 	unsigned short status;
563 	unsigned int estatus = 0;
564 	dma_addr_t addr;
565 
566 	status = fec16_to_cpu(bdp->cbd_sc);
567 	status &= ~BD_ENET_TX_STATS;
568 
569 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
570 
571 	if (((unsigned long) data) & fep->tx_align ||
572 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
573 		memcpy(txq->tx_bounce[index], data, size);
574 		data = txq->tx_bounce[index];
575 
576 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
577 			swap_buffer(data, size);
578 	}
579 
580 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
581 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
582 		dev_kfree_skb_any(skb);
583 		if (net_ratelimit())
584 			netdev_err(ndev, "Tx DMA memory map failed\n");
585 		return NETDEV_TX_BUSY;
586 	}
587 
588 	bdp->cbd_datlen = cpu_to_fec16(size);
589 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
590 
591 	if (fep->bufdesc_ex) {
592 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
593 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
594 		if (skb->ip_summed == CHECKSUM_PARTIAL)
595 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
596 		ebdp->cbd_bdu = 0;
597 		ebdp->cbd_esc = cpu_to_fec32(estatus);
598 	}
599 
600 	/* Handle the last BD specially */
601 	if (last_tcp)
602 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
603 	if (is_last) {
604 		status |= BD_ENET_TX_INTR;
605 		if (fep->bufdesc_ex)
606 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
607 	}
608 
609 	bdp->cbd_sc = cpu_to_fec16(status);
610 
611 	return 0;
612 }
613 
614 static int
615 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
616 			 struct sk_buff *skb, struct net_device *ndev,
617 			 struct bufdesc *bdp, int index)
618 {
619 	struct fec_enet_private *fep = netdev_priv(ndev);
620 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
621 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
622 	void *bufaddr;
623 	unsigned long dmabuf;
624 	unsigned short status;
625 	unsigned int estatus = 0;
626 
627 	status = fec16_to_cpu(bdp->cbd_sc);
628 	status &= ~BD_ENET_TX_STATS;
629 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
630 
631 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
632 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
633 	if (((unsigned long)bufaddr) & fep->tx_align ||
634 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
635 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
636 		bufaddr = txq->tx_bounce[index];
637 
638 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
639 			swap_buffer(bufaddr, hdr_len);
640 
641 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
642 					hdr_len, DMA_TO_DEVICE);
643 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
644 			dev_kfree_skb_any(skb);
645 			if (net_ratelimit())
646 				netdev_err(ndev, "Tx DMA memory map failed\n");
647 			return NETDEV_TX_BUSY;
648 		}
649 	}
650 
651 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
652 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
653 
654 	if (fep->bufdesc_ex) {
655 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
656 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
657 		if (skb->ip_summed == CHECKSUM_PARTIAL)
658 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
659 		ebdp->cbd_bdu = 0;
660 		ebdp->cbd_esc = cpu_to_fec32(estatus);
661 	}
662 
663 	bdp->cbd_sc = cpu_to_fec16(status);
664 
665 	return 0;
666 }
667 
668 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
669 				   struct sk_buff *skb,
670 				   struct net_device *ndev)
671 {
672 	struct fec_enet_private *fep = netdev_priv(ndev);
673 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
674 	int total_len, data_left;
675 	struct bufdesc *bdp = txq->bd.cur;
676 	struct tso_t tso;
677 	unsigned int index = 0;
678 	int ret;
679 
680 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
681 		dev_kfree_skb_any(skb);
682 		if (net_ratelimit())
683 			netdev_err(ndev, "NOT enough BD for TSO!\n");
684 		return NETDEV_TX_OK;
685 	}
686 
687 	/* Protocol checksum off-load for TCP and UDP. */
688 	if (fec_enet_clear_csum(skb, ndev)) {
689 		dev_kfree_skb_any(skb);
690 		return NETDEV_TX_OK;
691 	}
692 
693 	/* Initialize the TSO handler, and prepare the first payload */
694 	tso_start(skb, &tso);
695 
696 	total_len = skb->len - hdr_len;
697 	while (total_len > 0) {
698 		char *hdr;
699 
700 		index = fec_enet_get_bd_index(bdp, &txq->bd);
701 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
702 		total_len -= data_left;
703 
704 		/* prepare packet headers: MAC + IP + TCP */
705 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
707 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
708 		if (ret)
709 			goto err_release;
710 
711 		while (data_left > 0) {
712 			int size;
713 
714 			size = min_t(int, tso.size, data_left);
715 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
716 			index = fec_enet_get_bd_index(bdp, &txq->bd);
717 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
718 							bdp, index,
719 							tso.data, size,
720 							size == data_left,
721 							total_len == 0);
722 			if (ret)
723 				goto err_release;
724 
725 			data_left -= size;
726 			tso_build_data(skb, &tso, size);
727 		}
728 
729 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
730 	}
731 
732 	/* Save skb pointer */
733 	txq->tx_skbuff[index] = skb;
734 
735 	skb_tx_timestamp(skb);
736 	txq->bd.cur = bdp;
737 
738 	/* Trigger transmission start */
739 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
740 	    !readl(txq->bd.reg_desc_active) ||
741 	    !readl(txq->bd.reg_desc_active) ||
742 	    !readl(txq->bd.reg_desc_active) ||
743 	    !readl(txq->bd.reg_desc_active))
744 		writel(0, txq->bd.reg_desc_active);
745 
746 	return 0;
747 
748 err_release:
749 	/* TODO: Release all used data descriptors for TSO */
750 	return ret;
751 }
752 
753 static netdev_tx_t
754 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
755 {
756 	struct fec_enet_private *fep = netdev_priv(ndev);
757 	int entries_free;
758 	unsigned short queue;
759 	struct fec_enet_priv_tx_q *txq;
760 	struct netdev_queue *nq;
761 	int ret;
762 
763 	queue = skb_get_queue_mapping(skb);
764 	txq = fep->tx_queue[queue];
765 	nq = netdev_get_tx_queue(ndev, queue);
766 
767 	if (skb_is_gso(skb))
768 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
769 	else
770 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
771 	if (ret)
772 		return ret;
773 
774 	entries_free = fec_enet_get_free_txdesc_num(txq);
775 	if (entries_free <= txq->tx_stop_threshold)
776 		netif_tx_stop_queue(nq);
777 
778 	return NETDEV_TX_OK;
779 }
780 
781 /* Init RX & TX buffer descriptors
782  */
783 static void fec_enet_bd_init(struct net_device *dev)
784 {
785 	struct fec_enet_private *fep = netdev_priv(dev);
786 	struct fec_enet_priv_tx_q *txq;
787 	struct fec_enet_priv_rx_q *rxq;
788 	struct bufdesc *bdp;
789 	unsigned int i;
790 	unsigned int q;
791 
792 	for (q = 0; q < fep->num_rx_queues; q++) {
793 		/* Initialize the receive buffer descriptors. */
794 		rxq = fep->rx_queue[q];
795 		bdp = rxq->bd.base;
796 
797 		for (i = 0; i < rxq->bd.ring_size; i++) {
798 
799 			/* Initialize the BD for every fragment in the page. */
800 			if (bdp->cbd_bufaddr)
801 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
802 			else
803 				bdp->cbd_sc = cpu_to_fec16(0);
804 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
805 		}
806 
807 		/* Set the last buffer to wrap */
808 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
809 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
810 
811 		rxq->bd.cur = rxq->bd.base;
812 	}
813 
814 	for (q = 0; q < fep->num_tx_queues; q++) {
815 		/* ...and the same for transmit */
816 		txq = fep->tx_queue[q];
817 		bdp = txq->bd.base;
818 		txq->bd.cur = bdp;
819 
820 		for (i = 0; i < txq->bd.ring_size; i++) {
821 			/* Initialize the BD for every fragment in the page. */
822 			bdp->cbd_sc = cpu_to_fec16(0);
823 			if (bdp->cbd_bufaddr &&
824 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
825 				dma_unmap_single(&fep->pdev->dev,
826 						 fec32_to_cpu(bdp->cbd_bufaddr),
827 						 fec16_to_cpu(bdp->cbd_datlen),
828 						 DMA_TO_DEVICE);
829 			if (txq->tx_skbuff[i]) {
830 				dev_kfree_skb_any(txq->tx_skbuff[i]);
831 				txq->tx_skbuff[i] = NULL;
832 			}
833 			bdp->cbd_bufaddr = cpu_to_fec32(0);
834 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
835 		}
836 
837 		/* Set the last buffer to wrap */
838 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
839 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
840 		txq->dirty_tx = bdp;
841 	}
842 }
843 
844 static void fec_enet_active_rxring(struct net_device *ndev)
845 {
846 	struct fec_enet_private *fep = netdev_priv(ndev);
847 	int i;
848 
849 	for (i = 0; i < fep->num_rx_queues; i++)
850 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
851 }
852 
853 static void fec_enet_enable_ring(struct net_device *ndev)
854 {
855 	struct fec_enet_private *fep = netdev_priv(ndev);
856 	struct fec_enet_priv_tx_q *txq;
857 	struct fec_enet_priv_rx_q *rxq;
858 	int i;
859 
860 	for (i = 0; i < fep->num_rx_queues; i++) {
861 		rxq = fep->rx_queue[i];
862 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
863 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
864 
865 		/* enable DMA1/2 */
866 		if (i)
867 			writel(RCMR_MATCHEN | RCMR_CMP(i),
868 			       fep->hwp + FEC_RCMR(i));
869 	}
870 
871 	for (i = 0; i < fep->num_tx_queues; i++) {
872 		txq = fep->tx_queue[i];
873 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
874 
875 		/* enable DMA1/2 */
876 		if (i)
877 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
878 			       fep->hwp + FEC_DMA_CFG(i));
879 	}
880 }
881 
882 static void fec_enet_reset_skb(struct net_device *ndev)
883 {
884 	struct fec_enet_private *fep = netdev_priv(ndev);
885 	struct fec_enet_priv_tx_q *txq;
886 	int i, j;
887 
888 	for (i = 0; i < fep->num_tx_queues; i++) {
889 		txq = fep->tx_queue[i];
890 
891 		for (j = 0; j < txq->bd.ring_size; j++) {
892 			if (txq->tx_skbuff[j]) {
893 				dev_kfree_skb_any(txq->tx_skbuff[j]);
894 				txq->tx_skbuff[j] = NULL;
895 			}
896 		}
897 	}
898 }
899 
900 /*
901  * This function is called to start or restart the FEC during a link
902  * change, transmit timeout, or to reconfigure the FEC.  The network
903  * packet processing for this device must be stopped before this call.
904  */
905 static void
906 fec_restart(struct net_device *ndev)
907 {
908 	struct fec_enet_private *fep = netdev_priv(ndev);
909 	u32 val;
910 	u32 temp_mac[2];
911 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
912 	u32 ecntl = 0x2; /* ETHEREN */
913 
914 	/* Whack a reset.  We should wait for this.
915 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
916 	 * instead of reset MAC itself.
917 	 */
918 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
919 		writel(0, fep->hwp + FEC_ECNTRL);
920 	} else {
921 		writel(1, fep->hwp + FEC_ECNTRL);
922 		udelay(10);
923 	}
924 
925 	/*
926 	 * enet-mac reset will reset mac address registers too,
927 	 * so need to reconfigure it.
928 	 */
929 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
930 	writel((__force u32)cpu_to_be32(temp_mac[0]),
931 	       fep->hwp + FEC_ADDR_LOW);
932 	writel((__force u32)cpu_to_be32(temp_mac[1]),
933 	       fep->hwp + FEC_ADDR_HIGH);
934 
935 	/* Clear any outstanding interrupt. */
936 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
937 
938 	fec_enet_bd_init(ndev);
939 
940 	fec_enet_enable_ring(ndev);
941 
942 	/* Reset tx SKB buffers. */
943 	fec_enet_reset_skb(ndev);
944 
945 	/* Enable MII mode */
946 	if (fep->full_duplex == DUPLEX_FULL) {
947 		/* FD enable */
948 		writel(0x04, fep->hwp + FEC_X_CNTRL);
949 	} else {
950 		/* No Rcv on Xmit */
951 		rcntl |= 0x02;
952 		writel(0x0, fep->hwp + FEC_X_CNTRL);
953 	}
954 
955 	/* Set MII speed */
956 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
957 
958 #if !defined(CONFIG_M5272)
959 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
960 		val = readl(fep->hwp + FEC_RACC);
961 		/* align IP header */
962 		val |= FEC_RACC_SHIFT16;
963 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
964 			/* set RX checksum */
965 			val |= FEC_RACC_OPTIONS;
966 		else
967 			val &= ~FEC_RACC_OPTIONS;
968 		writel(val, fep->hwp + FEC_RACC);
969 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
970 	}
971 #endif
972 
973 	/*
974 	 * The phy interface and speed need to get configured
975 	 * differently on enet-mac.
976 	 */
977 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
978 		/* Enable flow control and length check */
979 		rcntl |= 0x40000000 | 0x00000020;
980 
981 		/* RGMII, RMII or MII */
982 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
983 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
984 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
985 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
986 			rcntl |= (1 << 6);
987 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
988 			rcntl |= (1 << 8);
989 		else
990 			rcntl &= ~(1 << 8);
991 
992 		/* 1G, 100M or 10M */
993 		if (ndev->phydev) {
994 			if (ndev->phydev->speed == SPEED_1000)
995 				ecntl |= (1 << 5);
996 			else if (ndev->phydev->speed == SPEED_100)
997 				rcntl &= ~(1 << 9);
998 			else
999 				rcntl |= (1 << 9);
1000 		}
1001 	} else {
1002 #ifdef FEC_MIIGSK_ENR
1003 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1004 			u32 cfgr;
1005 			/* disable the gasket and wait */
1006 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1007 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1008 				udelay(1);
1009 
1010 			/*
1011 			 * configure the gasket:
1012 			 *   RMII, 50 MHz, no loopback, no echo
1013 			 *   MII, 25 MHz, no loopback, no echo
1014 			 */
1015 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1016 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1017 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1018 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1019 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020 
1021 			/* re-enable the gasket */
1022 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023 		}
1024 #endif
1025 	}
1026 
1027 #if !defined(CONFIG_M5272)
1028 	/* enable pause frame*/
1029 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1030 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1031 	     ndev->phydev && ndev->phydev->pause)) {
1032 		rcntl |= FEC_ENET_FCE;
1033 
1034 		/* set FIFO threshold parameter to reduce overrun */
1035 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1036 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1037 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1038 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039 
1040 		/* OPD */
1041 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1042 	} else {
1043 		rcntl &= ~FEC_ENET_FCE;
1044 	}
1045 #endif /* !defined(CONFIG_M5272) */
1046 
1047 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048 
1049 	/* Setup multicast filter. */
1050 	set_multicast_list(ndev);
1051 #ifndef CONFIG_M5272
1052 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1053 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1054 #endif
1055 
1056 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1057 		/* enable ENET endian swap */
1058 		ecntl |= (1 << 8);
1059 		/* enable ENET store and forward mode */
1060 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1061 	}
1062 
1063 	if (fep->bufdesc_ex)
1064 		ecntl |= (1 << 4);
1065 
1066 #ifndef CONFIG_M5272
1067 	/* Enable the MIB statistic event counters */
1068 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1069 #endif
1070 
1071 	/* And last, enable the transmit and receive processing */
1072 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1073 	fec_enet_active_rxring(ndev);
1074 
1075 	if (fep->bufdesc_ex)
1076 		fec_ptp_start_cyclecounter(ndev);
1077 
1078 	/* Enable interrupts we wish to service */
1079 	if (fep->link)
1080 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1081 	else
1082 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083 
1084 	/* Init the interrupt coalescing */
1085 	fec_enet_itr_coal_init(ndev);
1086 
1087 }
1088 
1089 static void
1090 fec_stop(struct net_device *ndev)
1091 {
1092 	struct fec_enet_private *fep = netdev_priv(ndev);
1093 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1094 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1095 	u32 val;
1096 
1097 	/* We cannot expect a graceful transmit stop without link !!! */
1098 	if (fep->link) {
1099 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1100 		udelay(10);
1101 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1102 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1103 	}
1104 
1105 	/* Whack a reset.  We should wait for this.
1106 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1107 	 * instead of reset MAC itself.
1108 	 */
1109 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1111 			writel(0, fep->hwp + FEC_ECNTRL);
1112 		} else {
1113 			writel(1, fep->hwp + FEC_ECNTRL);
1114 			udelay(10);
1115 		}
1116 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1117 	} else {
1118 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1119 		val = readl(fep->hwp + FEC_ECNTRL);
1120 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1121 		writel(val, fep->hwp + FEC_ECNTRL);
1122 
1123 		if (pdata && pdata->sleep_mode_enable)
1124 			pdata->sleep_mode_enable(true);
1125 	}
1126 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1127 
1128 	/* We have to keep ENET enabled to have MII interrupt stay working */
1129 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1130 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1131 		writel(2, fep->hwp + FEC_ECNTRL);
1132 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1133 	}
1134 }
1135 
1136 
1137 static void
1138 fec_timeout(struct net_device *ndev)
1139 {
1140 	struct fec_enet_private *fep = netdev_priv(ndev);
1141 
1142 	fec_dump(ndev);
1143 
1144 	ndev->stats.tx_errors++;
1145 
1146 	schedule_work(&fep->tx_timeout_work);
1147 }
1148 
1149 static void fec_enet_timeout_work(struct work_struct *work)
1150 {
1151 	struct fec_enet_private *fep =
1152 		container_of(work, struct fec_enet_private, tx_timeout_work);
1153 	struct net_device *ndev = fep->netdev;
1154 
1155 	rtnl_lock();
1156 	if (netif_device_present(ndev) || netif_running(ndev)) {
1157 		napi_disable(&fep->napi);
1158 		netif_tx_lock_bh(ndev);
1159 		fec_restart(ndev);
1160 		netif_wake_queue(ndev);
1161 		netif_tx_unlock_bh(ndev);
1162 		napi_enable(&fep->napi);
1163 	}
1164 	rtnl_unlock();
1165 }
1166 
1167 static void
1168 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1169 	struct skb_shared_hwtstamps *hwtstamps)
1170 {
1171 	unsigned long flags;
1172 	u64 ns;
1173 
1174 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1175 	ns = timecounter_cyc2time(&fep->tc, ts);
1176 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177 
1178 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1179 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1180 }
1181 
1182 static void
1183 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184 {
1185 	struct	fec_enet_private *fep;
1186 	struct bufdesc *bdp;
1187 	unsigned short status;
1188 	struct	sk_buff	*skb;
1189 	struct fec_enet_priv_tx_q *txq;
1190 	struct netdev_queue *nq;
1191 	int	index = 0;
1192 	int	entries_free;
1193 
1194 	fep = netdev_priv(ndev);
1195 
1196 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197 
1198 	txq = fep->tx_queue[queue_id];
1199 	/* get next bdp of dirty_tx */
1200 	nq = netdev_get_tx_queue(ndev, queue_id);
1201 	bdp = txq->dirty_tx;
1202 
1203 	/* get next bdp of dirty_tx */
1204 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205 
1206 	while (bdp != READ_ONCE(txq->bd.cur)) {
1207 		/* Order the load of bd.cur and cbd_sc */
1208 		rmb();
1209 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1210 		if (status & BD_ENET_TX_READY)
1211 			break;
1212 
1213 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1214 
1215 		skb = txq->tx_skbuff[index];
1216 		txq->tx_skbuff[index] = NULL;
1217 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1218 			dma_unmap_single(&fep->pdev->dev,
1219 					 fec32_to_cpu(bdp->cbd_bufaddr),
1220 					 fec16_to_cpu(bdp->cbd_datlen),
1221 					 DMA_TO_DEVICE);
1222 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1223 		if (!skb)
1224 			goto skb_done;
1225 
1226 		/* Check for errors. */
1227 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1229 				   BD_ENET_TX_CSL)) {
1230 			ndev->stats.tx_errors++;
1231 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232 				ndev->stats.tx_heartbeat_errors++;
1233 			if (status & BD_ENET_TX_LC)  /* Late collision */
1234 				ndev->stats.tx_window_errors++;
1235 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236 				ndev->stats.tx_aborted_errors++;
1237 			if (status & BD_ENET_TX_UN)  /* Underrun */
1238 				ndev->stats.tx_fifo_errors++;
1239 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240 				ndev->stats.tx_carrier_errors++;
1241 		} else {
1242 			ndev->stats.tx_packets++;
1243 			ndev->stats.tx_bytes += skb->len;
1244 		}
1245 
1246 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247 			fep->bufdesc_ex) {
1248 			struct skb_shared_hwtstamps shhwtstamps;
1249 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250 
1251 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1252 			skb_tstamp_tx(skb, &shhwtstamps);
1253 		}
1254 
1255 		/* Deferred means some collisions occurred during transmit,
1256 		 * but we eventually sent the packet OK.
1257 		 */
1258 		if (status & BD_ENET_TX_DEF)
1259 			ndev->stats.collisions++;
1260 
1261 		/* Free the sk buffer associated with this last transmit */
1262 		dev_kfree_skb_any(skb);
1263 skb_done:
1264 		/* Make sure the update to bdp and tx_skbuff are performed
1265 		 * before dirty_tx
1266 		 */
1267 		wmb();
1268 		txq->dirty_tx = bdp;
1269 
1270 		/* Update pointer to next buffer descriptor to be transmitted */
1271 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272 
1273 		/* Since we have freed up a buffer, the ring is no longer full
1274 		 */
1275 		if (netif_queue_stopped(ndev)) {
1276 			entries_free = fec_enet_get_free_txdesc_num(txq);
1277 			if (entries_free >= txq->tx_wake_threshold)
1278 				netif_tx_wake_queue(nq);
1279 		}
1280 	}
1281 
1282 	/* ERR006358: Keep the transmitter going */
1283 	if (bdp != txq->bd.cur &&
1284 	    readl(txq->bd.reg_desc_active) == 0)
1285 		writel(0, txq->bd.reg_desc_active);
1286 }
1287 
1288 static void
1289 fec_enet_tx(struct net_device *ndev)
1290 {
1291 	struct fec_enet_private *fep = netdev_priv(ndev);
1292 	u16 queue_id;
1293 	/* First process class A queue, then Class B and Best Effort queue */
1294 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1295 		clear_bit(queue_id, &fep->work_tx);
1296 		fec_enet_tx_queue(ndev, queue_id);
1297 	}
1298 	return;
1299 }
1300 
1301 static int
1302 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303 {
1304 	struct  fec_enet_private *fep = netdev_priv(ndev);
1305 	int off;
1306 
1307 	off = ((unsigned long)skb->data) & fep->rx_align;
1308 	if (off)
1309 		skb_reserve(skb, fep->rx_align + 1 - off);
1310 
1311 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1312 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1313 		if (net_ratelimit())
1314 			netdev_err(ndev, "Rx DMA memory map failed\n");
1315 		return -ENOMEM;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1322 			       struct bufdesc *bdp, u32 length, bool swap)
1323 {
1324 	struct  fec_enet_private *fep = netdev_priv(ndev);
1325 	struct sk_buff *new_skb;
1326 
1327 	if (length > fep->rx_copybreak)
1328 		return false;
1329 
1330 	new_skb = netdev_alloc_skb(ndev, length);
1331 	if (!new_skb)
1332 		return false;
1333 
1334 	dma_sync_single_for_cpu(&fep->pdev->dev,
1335 				fec32_to_cpu(bdp->cbd_bufaddr),
1336 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1337 				DMA_FROM_DEVICE);
1338 	if (!swap)
1339 		memcpy(new_skb->data, (*skb)->data, length);
1340 	else
1341 		swap_buffer2(new_skb->data, (*skb)->data, length);
1342 	*skb = new_skb;
1343 
1344 	return true;
1345 }
1346 
1347 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1348  * When we update through the ring, if the next incoming buffer has
1349  * not been given to the system, we just set the empty indicator,
1350  * effectively tossing the packet.
1351  */
1352 static int
1353 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354 {
1355 	struct fec_enet_private *fep = netdev_priv(ndev);
1356 	struct fec_enet_priv_rx_q *rxq;
1357 	struct bufdesc *bdp;
1358 	unsigned short status;
1359 	struct  sk_buff *skb_new = NULL;
1360 	struct  sk_buff *skb;
1361 	ushort	pkt_len;
1362 	__u8 *data;
1363 	int	pkt_received = 0;
1364 	struct	bufdesc_ex *ebdp = NULL;
1365 	bool	vlan_packet_rcvd = false;
1366 	u16	vlan_tag;
1367 	int	index = 0;
1368 	bool	is_copybreak;
1369 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1370 
1371 #ifdef CONFIG_M532x
1372 	flush_cache_all();
1373 #endif
1374 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1375 	rxq = fep->rx_queue[queue_id];
1376 
1377 	/* First, grab all of the stats for the incoming packet.
1378 	 * These get messed up if we get called due to a busy condition.
1379 	 */
1380 	bdp = rxq->bd.cur;
1381 
1382 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383 
1384 		if (pkt_received >= budget)
1385 			break;
1386 		pkt_received++;
1387 
1388 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1389 
1390 		/* Check for errors. */
1391 		status ^= BD_ENET_RX_LAST;
1392 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1393 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1394 			   BD_ENET_RX_CL)) {
1395 			ndev->stats.rx_errors++;
1396 			if (status & BD_ENET_RX_OV) {
1397 				/* FIFO overrun */
1398 				ndev->stats.rx_fifo_errors++;
1399 				goto rx_processing_done;
1400 			}
1401 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1402 						| BD_ENET_RX_LAST)) {
1403 				/* Frame too long or too short. */
1404 				ndev->stats.rx_length_errors++;
1405 				if (status & BD_ENET_RX_LAST)
1406 					netdev_err(ndev, "rcv is not +last\n");
1407 			}
1408 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1409 				ndev->stats.rx_crc_errors++;
1410 			/* Report late collisions as a frame error. */
1411 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1412 				ndev->stats.rx_frame_errors++;
1413 			goto rx_processing_done;
1414 		}
1415 
1416 		/* Process the incoming frame. */
1417 		ndev->stats.rx_packets++;
1418 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1419 		ndev->stats.rx_bytes += pkt_len;
1420 
1421 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1422 		skb = rxq->rx_skbuff[index];
1423 
1424 		/* The packet length includes FCS, but we don't want to
1425 		 * include that when passing upstream as it messes up
1426 		 * bridging applications.
1427 		 */
1428 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1429 						  need_swap);
1430 		if (!is_copybreak) {
1431 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1432 			if (unlikely(!skb_new)) {
1433 				ndev->stats.rx_dropped++;
1434 				goto rx_processing_done;
1435 			}
1436 			dma_unmap_single(&fep->pdev->dev,
1437 					 fec32_to_cpu(bdp->cbd_bufaddr),
1438 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1439 					 DMA_FROM_DEVICE);
1440 		}
1441 
1442 		prefetch(skb->data - NET_IP_ALIGN);
1443 		skb_put(skb, pkt_len - 4);
1444 		data = skb->data;
1445 
1446 		if (!is_copybreak && need_swap)
1447 			swap_buffer(data, pkt_len);
1448 
1449 #if !defined(CONFIG_M5272)
1450 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1451 			data = skb_pull_inline(skb, 2);
1452 #endif
1453 
1454 		/* Extract the enhanced buffer descriptor */
1455 		ebdp = NULL;
1456 		if (fep->bufdesc_ex)
1457 			ebdp = (struct bufdesc_ex *)bdp;
1458 
1459 		/* If this is a VLAN packet remove the VLAN Tag */
1460 		vlan_packet_rcvd = false;
1461 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 		    fep->bufdesc_ex &&
1463 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1464 			/* Push and remove the vlan tag */
1465 			struct vlan_hdr *vlan_header =
1466 					(struct vlan_hdr *) (data + ETH_HLEN);
1467 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1468 
1469 			vlan_packet_rcvd = true;
1470 
1471 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1472 			skb_pull(skb, VLAN_HLEN);
1473 		}
1474 
1475 		skb->protocol = eth_type_trans(skb, ndev);
1476 
1477 		/* Get receive timestamp from the skb */
1478 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1479 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1480 					  skb_hwtstamps(skb));
1481 
1482 		if (fep->bufdesc_ex &&
1483 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1484 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1485 				/* don't check it */
1486 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1487 			} else {
1488 				skb_checksum_none_assert(skb);
1489 			}
1490 		}
1491 
1492 		/* Handle received VLAN packets */
1493 		if (vlan_packet_rcvd)
1494 			__vlan_hwaccel_put_tag(skb,
1495 					       htons(ETH_P_8021Q),
1496 					       vlan_tag);
1497 
1498 		napi_gro_receive(&fep->napi, skb);
1499 
1500 		if (is_copybreak) {
1501 			dma_sync_single_for_device(&fep->pdev->dev,
1502 						   fec32_to_cpu(bdp->cbd_bufaddr),
1503 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1504 						   DMA_FROM_DEVICE);
1505 		} else {
1506 			rxq->rx_skbuff[index] = skb_new;
1507 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1508 		}
1509 
1510 rx_processing_done:
1511 		/* Clear the status flags for this buffer */
1512 		status &= ~BD_ENET_RX_STATS;
1513 
1514 		/* Mark the buffer empty */
1515 		status |= BD_ENET_RX_EMPTY;
1516 
1517 		if (fep->bufdesc_ex) {
1518 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519 
1520 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1521 			ebdp->cbd_prot = 0;
1522 			ebdp->cbd_bdu = 0;
1523 		}
1524 		/* Make sure the updates to rest of the descriptor are
1525 		 * performed before transferring ownership.
1526 		 */
1527 		wmb();
1528 		bdp->cbd_sc = cpu_to_fec16(status);
1529 
1530 		/* Update BD pointer to next entry */
1531 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532 
1533 		/* Doing this here will keep the FEC running while we process
1534 		 * incoming frames.  On a heavily loaded network, we should be
1535 		 * able to keep up at the expense of system resources.
1536 		 */
1537 		writel(0, rxq->bd.reg_desc_active);
1538 	}
1539 	rxq->bd.cur = bdp;
1540 	return pkt_received;
1541 }
1542 
1543 static int
1544 fec_enet_rx(struct net_device *ndev, int budget)
1545 {
1546 	int     pkt_received = 0;
1547 	u16	queue_id;
1548 	struct fec_enet_private *fep = netdev_priv(ndev);
1549 
1550 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1551 		int ret;
1552 
1553 		ret = fec_enet_rx_queue(ndev,
1554 					budget - pkt_received, queue_id);
1555 
1556 		if (ret < budget - pkt_received)
1557 			clear_bit(queue_id, &fep->work_rx);
1558 
1559 		pkt_received += ret;
1560 	}
1561 	return pkt_received;
1562 }
1563 
1564 static bool
1565 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566 {
1567 	if (int_events == 0)
1568 		return false;
1569 
1570 	if (int_events & FEC_ENET_RXF_0)
1571 		fep->work_rx |= (1 << 2);
1572 	if (int_events & FEC_ENET_RXF_1)
1573 		fep->work_rx |= (1 << 0);
1574 	if (int_events & FEC_ENET_RXF_2)
1575 		fep->work_rx |= (1 << 1);
1576 
1577 	if (int_events & FEC_ENET_TXF_0)
1578 		fep->work_tx |= (1 << 2);
1579 	if (int_events & FEC_ENET_TXF_1)
1580 		fep->work_tx |= (1 << 0);
1581 	if (int_events & FEC_ENET_TXF_2)
1582 		fep->work_tx |= (1 << 1);
1583 
1584 	return true;
1585 }
1586 
1587 static irqreturn_t
1588 fec_enet_interrupt(int irq, void *dev_id)
1589 {
1590 	struct net_device *ndev = dev_id;
1591 	struct fec_enet_private *fep = netdev_priv(ndev);
1592 	uint int_events;
1593 	irqreturn_t ret = IRQ_NONE;
1594 
1595 	int_events = readl(fep->hwp + FEC_IEVENT);
1596 	writel(int_events, fep->hwp + FEC_IEVENT);
1597 	fec_enet_collect_events(fep, int_events);
1598 
1599 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1600 		ret = IRQ_HANDLED;
1601 
1602 		if (napi_schedule_prep(&fep->napi)) {
1603 			/* Disable the NAPI interrupts */
1604 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1605 			__napi_schedule(&fep->napi);
1606 		}
1607 	}
1608 
1609 	if (int_events & FEC_ENET_MII) {
1610 		ret = IRQ_HANDLED;
1611 		complete(&fep->mdio_done);
1612 	}
1613 	return ret;
1614 }
1615 
1616 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617 {
1618 	struct net_device *ndev = napi->dev;
1619 	struct fec_enet_private *fep = netdev_priv(ndev);
1620 	int pkts;
1621 
1622 	pkts = fec_enet_rx(ndev, budget);
1623 
1624 	fec_enet_tx(ndev);
1625 
1626 	if (pkts < budget) {
1627 		napi_complete_done(napi, pkts);
1628 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629 	}
1630 	return pkts;
1631 }
1632 
1633 /* ------------------------------------------------------------------------- */
1634 static void fec_get_mac(struct net_device *ndev)
1635 {
1636 	struct fec_enet_private *fep = netdev_priv(ndev);
1637 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1638 	unsigned char *iap, tmpaddr[ETH_ALEN];
1639 
1640 	/*
1641 	 * try to get mac address in following order:
1642 	 *
1643 	 * 1) module parameter via kernel command line in form
1644 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1645 	 */
1646 	iap = macaddr;
1647 
1648 	/*
1649 	 * 2) from device tree data
1650 	 */
1651 	if (!is_valid_ether_addr(iap)) {
1652 		struct device_node *np = fep->pdev->dev.of_node;
1653 		if (np) {
1654 			const char *mac = of_get_mac_address(np);
1655 			if (mac)
1656 				iap = (unsigned char *) mac;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * 3) from flash or fuse (via platform data)
1662 	 */
1663 	if (!is_valid_ether_addr(iap)) {
1664 #ifdef CONFIG_M5272
1665 		if (FEC_FLASHMAC)
1666 			iap = (unsigned char *)FEC_FLASHMAC;
1667 #else
1668 		if (pdata)
1669 			iap = (unsigned char *)&pdata->mac;
1670 #endif
1671 	}
1672 
1673 	/*
1674 	 * 4) FEC mac registers set by bootloader
1675 	 */
1676 	if (!is_valid_ether_addr(iap)) {
1677 		*((__be32 *) &tmpaddr[0]) =
1678 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1679 		*((__be16 *) &tmpaddr[4]) =
1680 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1681 		iap = &tmpaddr[0];
1682 	}
1683 
1684 	/*
1685 	 * 5) random mac address
1686 	 */
1687 	if (!is_valid_ether_addr(iap)) {
1688 		/* Report it and use a random ethernet address instead */
1689 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1690 		eth_hw_addr_random(ndev);
1691 		netdev_info(ndev, "Using random MAC address: %pM\n",
1692 			    ndev->dev_addr);
1693 		return;
1694 	}
1695 
1696 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1697 
1698 	/* Adjust MAC if using macaddr */
1699 	if (iap == macaddr)
1700 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1701 }
1702 
1703 /* ------------------------------------------------------------------------- */
1704 
1705 /*
1706  * Phy section
1707  */
1708 static void fec_enet_adjust_link(struct net_device *ndev)
1709 {
1710 	struct fec_enet_private *fep = netdev_priv(ndev);
1711 	struct phy_device *phy_dev = ndev->phydev;
1712 	int status_change = 0;
1713 
1714 	/* Prevent a state halted on mii error */
1715 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1716 		phy_dev->state = PHY_RESUMING;
1717 		return;
1718 	}
1719 
1720 	/*
1721 	 * If the netdev is down, or is going down, we're not interested
1722 	 * in link state events, so just mark our idea of the link as down
1723 	 * and ignore the event.
1724 	 */
1725 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726 		fep->link = 0;
1727 	} else if (phy_dev->link) {
1728 		if (!fep->link) {
1729 			fep->link = phy_dev->link;
1730 			status_change = 1;
1731 		}
1732 
1733 		if (fep->full_duplex != phy_dev->duplex) {
1734 			fep->full_duplex = phy_dev->duplex;
1735 			status_change = 1;
1736 		}
1737 
1738 		if (phy_dev->speed != fep->speed) {
1739 			fep->speed = phy_dev->speed;
1740 			status_change = 1;
1741 		}
1742 
1743 		/* if any of the above changed restart the FEC */
1744 		if (status_change) {
1745 			napi_disable(&fep->napi);
1746 			netif_tx_lock_bh(ndev);
1747 			fec_restart(ndev);
1748 			netif_wake_queue(ndev);
1749 			netif_tx_unlock_bh(ndev);
1750 			napi_enable(&fep->napi);
1751 		}
1752 	} else {
1753 		if (fep->link) {
1754 			napi_disable(&fep->napi);
1755 			netif_tx_lock_bh(ndev);
1756 			fec_stop(ndev);
1757 			netif_tx_unlock_bh(ndev);
1758 			napi_enable(&fep->napi);
1759 			fep->link = phy_dev->link;
1760 			status_change = 1;
1761 		}
1762 	}
1763 
1764 	if (status_change)
1765 		phy_print_status(phy_dev);
1766 }
1767 
1768 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769 {
1770 	struct fec_enet_private *fep = bus->priv;
1771 	struct device *dev = &fep->pdev->dev;
1772 	unsigned long time_left;
1773 	int ret = 0;
1774 
1775 	ret = pm_runtime_get_sync(dev);
1776 	if (ret < 0)
1777 		return ret;
1778 
1779 	fep->mii_timeout = 0;
1780 	reinit_completion(&fep->mdio_done);
1781 
1782 	/* start a read op */
1783 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1784 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1785 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1786 
1787 	/* wait for end of transfer */
1788 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1789 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1790 	if (time_left == 0) {
1791 		fep->mii_timeout = 1;
1792 		netdev_err(fep->netdev, "MDIO read timeout\n");
1793 		ret = -ETIMEDOUT;
1794 		goto out;
1795 	}
1796 
1797 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1798 
1799 out:
1800 	pm_runtime_mark_last_busy(dev);
1801 	pm_runtime_put_autosuspend(dev);
1802 
1803 	return ret;
1804 }
1805 
1806 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1807 			   u16 value)
1808 {
1809 	struct fec_enet_private *fep = bus->priv;
1810 	struct device *dev = &fep->pdev->dev;
1811 	unsigned long time_left;
1812 	int ret;
1813 
1814 	ret = pm_runtime_get_sync(dev);
1815 	if (ret < 0)
1816 		return ret;
1817 	else
1818 		ret = 0;
1819 
1820 	fep->mii_timeout = 0;
1821 	reinit_completion(&fep->mdio_done);
1822 
1823 	/* start a write op */
1824 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1825 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1826 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1827 		fep->hwp + FEC_MII_DATA);
1828 
1829 	/* wait for end of transfer */
1830 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1831 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1832 	if (time_left == 0) {
1833 		fep->mii_timeout = 1;
1834 		netdev_err(fep->netdev, "MDIO write timeout\n");
1835 		ret  = -ETIMEDOUT;
1836 	}
1837 
1838 	pm_runtime_mark_last_busy(dev);
1839 	pm_runtime_put_autosuspend(dev);
1840 
1841 	return ret;
1842 }
1843 
1844 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1845 {
1846 	struct fec_enet_private *fep = netdev_priv(ndev);
1847 	int ret;
1848 
1849 	if (enable) {
1850 		ret = clk_prepare_enable(fep->clk_ahb);
1851 		if (ret)
1852 			return ret;
1853 
1854 		ret = clk_prepare_enable(fep->clk_enet_out);
1855 		if (ret)
1856 			goto failed_clk_enet_out;
1857 
1858 		if (fep->clk_ptp) {
1859 			mutex_lock(&fep->ptp_clk_mutex);
1860 			ret = clk_prepare_enable(fep->clk_ptp);
1861 			if (ret) {
1862 				mutex_unlock(&fep->ptp_clk_mutex);
1863 				goto failed_clk_ptp;
1864 			} else {
1865 				fep->ptp_clk_on = true;
1866 			}
1867 			mutex_unlock(&fep->ptp_clk_mutex);
1868 		}
1869 
1870 		ret = clk_prepare_enable(fep->clk_ref);
1871 		if (ret)
1872 			goto failed_clk_ref;
1873 
1874 		phy_reset_after_clk_enable(ndev->phydev);
1875 	} else {
1876 		clk_disable_unprepare(fep->clk_ahb);
1877 		clk_disable_unprepare(fep->clk_enet_out);
1878 		if (fep->clk_ptp) {
1879 			mutex_lock(&fep->ptp_clk_mutex);
1880 			clk_disable_unprepare(fep->clk_ptp);
1881 			fep->ptp_clk_on = false;
1882 			mutex_unlock(&fep->ptp_clk_mutex);
1883 		}
1884 		clk_disable_unprepare(fep->clk_ref);
1885 	}
1886 
1887 	return 0;
1888 
1889 failed_clk_ref:
1890 	if (fep->clk_ref)
1891 		clk_disable_unprepare(fep->clk_ref);
1892 failed_clk_ptp:
1893 	if (fep->clk_enet_out)
1894 		clk_disable_unprepare(fep->clk_enet_out);
1895 failed_clk_enet_out:
1896 		clk_disable_unprepare(fep->clk_ahb);
1897 
1898 	return ret;
1899 }
1900 
1901 static int fec_enet_mii_probe(struct net_device *ndev)
1902 {
1903 	struct fec_enet_private *fep = netdev_priv(ndev);
1904 	struct phy_device *phy_dev = NULL;
1905 	char mdio_bus_id[MII_BUS_ID_SIZE];
1906 	char phy_name[MII_BUS_ID_SIZE + 3];
1907 	int phy_id;
1908 	int dev_id = fep->dev_id;
1909 
1910 	if (fep->phy_node) {
1911 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1912 					 &fec_enet_adjust_link, 0,
1913 					 fep->phy_interface);
1914 		if (!phy_dev) {
1915 			netdev_err(ndev, "Unable to connect to phy\n");
1916 			return -ENODEV;
1917 		}
1918 	} else {
1919 		/* check for attached phy */
1920 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1922 				continue;
1923 			if (dev_id--)
1924 				continue;
1925 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1926 			break;
1927 		}
1928 
1929 		if (phy_id >= PHY_MAX_ADDR) {
1930 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1931 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1932 			phy_id = 0;
1933 		}
1934 
1935 		snprintf(phy_name, sizeof(phy_name),
1936 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1937 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1938 				      fep->phy_interface);
1939 	}
1940 
1941 	if (IS_ERR(phy_dev)) {
1942 		netdev_err(ndev, "could not attach to PHY\n");
1943 		return PTR_ERR(phy_dev);
1944 	}
1945 
1946 	/* mask with MAC supported features */
1947 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1948 		phy_dev->supported &= PHY_GBIT_FEATURES;
1949 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1950 #if !defined(CONFIG_M5272)
1951 		phy_dev->supported |= SUPPORTED_Pause;
1952 #endif
1953 	}
1954 	else
1955 		phy_dev->supported &= PHY_BASIC_FEATURES;
1956 
1957 	phy_dev->advertising = phy_dev->supported;
1958 
1959 	fep->link = 0;
1960 	fep->full_duplex = 0;
1961 
1962 	phy_attached_info(phy_dev);
1963 
1964 	return 0;
1965 }
1966 
1967 static int fec_enet_mii_init(struct platform_device *pdev)
1968 {
1969 	static struct mii_bus *fec0_mii_bus;
1970 	struct net_device *ndev = platform_get_drvdata(pdev);
1971 	struct fec_enet_private *fep = netdev_priv(ndev);
1972 	struct device_node *node;
1973 	int err = -ENXIO;
1974 	u32 mii_speed, holdtime;
1975 
1976 	/*
1977 	 * The i.MX28 dual fec interfaces are not equal.
1978 	 * Here are the differences:
1979 	 *
1980 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1981 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1982 	 *  - external phys can only be configured by fec0
1983 	 *
1984 	 * That is to say fec1 can not work independently. It only works
1985 	 * when fec0 is working. The reason behind this design is that the
1986 	 * second interface is added primarily for Switch mode.
1987 	 *
1988 	 * Because of the last point above, both phys are attached on fec0
1989 	 * mdio interface in board design, and need to be configured by
1990 	 * fec0 mii_bus.
1991 	 */
1992 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1993 		/* fec1 uses fec0 mii_bus */
1994 		if (mii_cnt && fec0_mii_bus) {
1995 			fep->mii_bus = fec0_mii_bus;
1996 			mii_cnt++;
1997 			return 0;
1998 		}
1999 		return -ENOENT;
2000 	}
2001 
2002 	fep->mii_timeout = 0;
2003 
2004 	/*
2005 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006 	 *
2007 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2008 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2009 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2010 	 * document.
2011 	 */
2012 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2013 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2014 		mii_speed--;
2015 	if (mii_speed > 63) {
2016 		dev_err(&pdev->dev,
2017 			"fec clock (%lu) too fast to get right mii speed\n",
2018 			clk_get_rate(fep->clk_ipg));
2019 		err = -EINVAL;
2020 		goto err_out;
2021 	}
2022 
2023 	/*
2024 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2025 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2026 	 * versions are RAZ there, so just ignore the difference and write the
2027 	 * register always.
2028 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2029 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030 	 * output.
2031 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2032 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2033 	 * holdtime cannot result in a value greater than 3.
2034 	 */
2035 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036 
2037 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038 
2039 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040 
2041 	fep->mii_bus = mdiobus_alloc();
2042 	if (fep->mii_bus == NULL) {
2043 		err = -ENOMEM;
2044 		goto err_out;
2045 	}
2046 
2047 	fep->mii_bus->name = "fec_enet_mii_bus";
2048 	fep->mii_bus->read = fec_enet_mdio_read;
2049 	fep->mii_bus->write = fec_enet_mdio_write;
2050 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2051 		pdev->name, fep->dev_id + 1);
2052 	fep->mii_bus->priv = fep;
2053 	fep->mii_bus->parent = &pdev->dev;
2054 
2055 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2056 	err = of_mdiobus_register(fep->mii_bus, node);
2057 	if (node)
2058 		of_node_put(node);
2059 	if (err)
2060 		goto err_out_free_mdiobus;
2061 
2062 	mii_cnt++;
2063 
2064 	/* save fec0 mii_bus */
2065 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2066 		fec0_mii_bus = fep->mii_bus;
2067 
2068 	return 0;
2069 
2070 err_out_free_mdiobus:
2071 	mdiobus_free(fep->mii_bus);
2072 err_out:
2073 	return err;
2074 }
2075 
2076 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2077 {
2078 	if (--mii_cnt == 0) {
2079 		mdiobus_unregister(fep->mii_bus);
2080 		mdiobus_free(fep->mii_bus);
2081 	}
2082 }
2083 
2084 static void fec_enet_get_drvinfo(struct net_device *ndev,
2085 				 struct ethtool_drvinfo *info)
2086 {
2087 	struct fec_enet_private *fep = netdev_priv(ndev);
2088 
2089 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2090 		sizeof(info->driver));
2091 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2092 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2093 }
2094 
2095 static int fec_enet_get_regs_len(struct net_device *ndev)
2096 {
2097 	struct fec_enet_private *fep = netdev_priv(ndev);
2098 	struct resource *r;
2099 	int s = 0;
2100 
2101 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2102 	if (r)
2103 		s = resource_size(r);
2104 
2105 	return s;
2106 }
2107 
2108 /* List of registers that can be safety be read to dump them with ethtool */
2109 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2110 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2111 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2112 static u32 fec_enet_register_offset[] = {
2113 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2114 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2115 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2116 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2117 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2118 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2119 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2120 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2121 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2122 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2123 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2124 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2125 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2126 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2127 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2128 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2129 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2130 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2131 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2132 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2133 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2134 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2135 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2136 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2137 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2138 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2139 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2140 };
2141 #else
2142 static u32 fec_enet_register_offset[] = {
2143 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2144 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2145 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2146 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2147 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2148 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2149 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2150 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2151 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2152 };
2153 #endif
2154 
2155 static void fec_enet_get_regs(struct net_device *ndev,
2156 			      struct ethtool_regs *regs, void *regbuf)
2157 {
2158 	struct fec_enet_private *fep = netdev_priv(ndev);
2159 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2160 	u32 *buf = (u32 *)regbuf;
2161 	u32 i, off;
2162 
2163 	memset(buf, 0, regs->len);
2164 
2165 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2166 		off = fec_enet_register_offset[i] / 4;
2167 		buf[off] = readl(&theregs[off]);
2168 	}
2169 }
2170 
2171 static int fec_enet_get_ts_info(struct net_device *ndev,
2172 				struct ethtool_ts_info *info)
2173 {
2174 	struct fec_enet_private *fep = netdev_priv(ndev);
2175 
2176 	if (fep->bufdesc_ex) {
2177 
2178 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2179 					SOF_TIMESTAMPING_RX_SOFTWARE |
2180 					SOF_TIMESTAMPING_SOFTWARE |
2181 					SOF_TIMESTAMPING_TX_HARDWARE |
2182 					SOF_TIMESTAMPING_RX_HARDWARE |
2183 					SOF_TIMESTAMPING_RAW_HARDWARE;
2184 		if (fep->ptp_clock)
2185 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2186 		else
2187 			info->phc_index = -1;
2188 
2189 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2190 				 (1 << HWTSTAMP_TX_ON);
2191 
2192 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2193 				   (1 << HWTSTAMP_FILTER_ALL);
2194 		return 0;
2195 	} else {
2196 		return ethtool_op_get_ts_info(ndev, info);
2197 	}
2198 }
2199 
2200 #if !defined(CONFIG_M5272)
2201 
2202 static void fec_enet_get_pauseparam(struct net_device *ndev,
2203 				    struct ethtool_pauseparam *pause)
2204 {
2205 	struct fec_enet_private *fep = netdev_priv(ndev);
2206 
2207 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2208 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2209 	pause->rx_pause = pause->tx_pause;
2210 }
2211 
2212 static int fec_enet_set_pauseparam(struct net_device *ndev,
2213 				   struct ethtool_pauseparam *pause)
2214 {
2215 	struct fec_enet_private *fep = netdev_priv(ndev);
2216 
2217 	if (!ndev->phydev)
2218 		return -ENODEV;
2219 
2220 	if (pause->tx_pause != pause->rx_pause) {
2221 		netdev_info(ndev,
2222 			"hardware only support enable/disable both tx and rx");
2223 		return -EINVAL;
2224 	}
2225 
2226 	fep->pause_flag = 0;
2227 
2228 	/* tx pause must be same as rx pause */
2229 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2230 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2231 
2232 	if (pause->rx_pause || pause->autoneg) {
2233 		ndev->phydev->supported |= ADVERTISED_Pause;
2234 		ndev->phydev->advertising |= ADVERTISED_Pause;
2235 	} else {
2236 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2237 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2238 	}
2239 
2240 	if (pause->autoneg) {
2241 		if (netif_running(ndev))
2242 			fec_stop(ndev);
2243 		phy_start_aneg(ndev->phydev);
2244 	}
2245 	if (netif_running(ndev)) {
2246 		napi_disable(&fep->napi);
2247 		netif_tx_lock_bh(ndev);
2248 		fec_restart(ndev);
2249 		netif_wake_queue(ndev);
2250 		netif_tx_unlock_bh(ndev);
2251 		napi_enable(&fep->napi);
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 static const struct fec_stat {
2258 	char name[ETH_GSTRING_LEN];
2259 	u16 offset;
2260 } fec_stats[] = {
2261 	/* RMON TX */
2262 	{ "tx_dropped", RMON_T_DROP },
2263 	{ "tx_packets", RMON_T_PACKETS },
2264 	{ "tx_broadcast", RMON_T_BC_PKT },
2265 	{ "tx_multicast", RMON_T_MC_PKT },
2266 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2267 	{ "tx_undersize", RMON_T_UNDERSIZE },
2268 	{ "tx_oversize", RMON_T_OVERSIZE },
2269 	{ "tx_fragment", RMON_T_FRAG },
2270 	{ "tx_jabber", RMON_T_JAB },
2271 	{ "tx_collision", RMON_T_COL },
2272 	{ "tx_64byte", RMON_T_P64 },
2273 	{ "tx_65to127byte", RMON_T_P65TO127 },
2274 	{ "tx_128to255byte", RMON_T_P128TO255 },
2275 	{ "tx_256to511byte", RMON_T_P256TO511 },
2276 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2277 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2278 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2279 	{ "tx_octets", RMON_T_OCTETS },
2280 
2281 	/* IEEE TX */
2282 	{ "IEEE_tx_drop", IEEE_T_DROP },
2283 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2284 	{ "IEEE_tx_1col", IEEE_T_1COL },
2285 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2286 	{ "IEEE_tx_def", IEEE_T_DEF },
2287 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2288 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2289 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2290 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2291 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2292 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2293 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2294 
2295 	/* RMON RX */
2296 	{ "rx_packets", RMON_R_PACKETS },
2297 	{ "rx_broadcast", RMON_R_BC_PKT },
2298 	{ "rx_multicast", RMON_R_MC_PKT },
2299 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2300 	{ "rx_undersize", RMON_R_UNDERSIZE },
2301 	{ "rx_oversize", RMON_R_OVERSIZE },
2302 	{ "rx_fragment", RMON_R_FRAG },
2303 	{ "rx_jabber", RMON_R_JAB },
2304 	{ "rx_64byte", RMON_R_P64 },
2305 	{ "rx_65to127byte", RMON_R_P65TO127 },
2306 	{ "rx_128to255byte", RMON_R_P128TO255 },
2307 	{ "rx_256to511byte", RMON_R_P256TO511 },
2308 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2309 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2310 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2311 	{ "rx_octets", RMON_R_OCTETS },
2312 
2313 	/* IEEE RX */
2314 	{ "IEEE_rx_drop", IEEE_R_DROP },
2315 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2316 	{ "IEEE_rx_crc", IEEE_R_CRC },
2317 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2318 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2319 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2320 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2321 };
2322 
2323 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2324 
2325 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2326 {
2327 	struct fec_enet_private *fep = netdev_priv(dev);
2328 	int i;
2329 
2330 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2331 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2332 }
2333 
2334 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2335 				       struct ethtool_stats *stats, u64 *data)
2336 {
2337 	struct fec_enet_private *fep = netdev_priv(dev);
2338 
2339 	if (netif_running(dev))
2340 		fec_enet_update_ethtool_stats(dev);
2341 
2342 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2343 }
2344 
2345 static void fec_enet_get_strings(struct net_device *netdev,
2346 	u32 stringset, u8 *data)
2347 {
2348 	int i;
2349 	switch (stringset) {
2350 	case ETH_SS_STATS:
2351 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2352 			memcpy(data + i * ETH_GSTRING_LEN,
2353 				fec_stats[i].name, ETH_GSTRING_LEN);
2354 		break;
2355 	}
2356 }
2357 
2358 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2359 {
2360 	switch (sset) {
2361 	case ETH_SS_STATS:
2362 		return ARRAY_SIZE(fec_stats);
2363 	default:
2364 		return -EOPNOTSUPP;
2365 	}
2366 }
2367 
2368 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2369 {
2370 	struct fec_enet_private *fep = netdev_priv(dev);
2371 	int i;
2372 
2373 	/* Disable MIB statistics counters */
2374 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2375 
2376 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2377 		writel(0, fep->hwp + fec_stats[i].offset);
2378 
2379 	/* Don't disable MIB statistics counters */
2380 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2381 }
2382 
2383 #else	/* !defined(CONFIG_M5272) */
2384 #define FEC_STATS_SIZE	0
2385 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2386 {
2387 }
2388 
2389 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2390 {
2391 }
2392 #endif /* !defined(CONFIG_M5272) */
2393 
2394 /* ITR clock source is enet system clock (clk_ahb).
2395  * TCTT unit is cycle_ns * 64 cycle
2396  * So, the ICTT value = X us / (cycle_ns * 64)
2397  */
2398 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2399 {
2400 	struct fec_enet_private *fep = netdev_priv(ndev);
2401 
2402 	return us * (fep->itr_clk_rate / 64000) / 1000;
2403 }
2404 
2405 /* Set threshold for interrupt coalescing */
2406 static void fec_enet_itr_coal_set(struct net_device *ndev)
2407 {
2408 	struct fec_enet_private *fep = netdev_priv(ndev);
2409 	int rx_itr, tx_itr;
2410 
2411 	/* Must be greater than zero to avoid unpredictable behavior */
2412 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2413 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2414 		return;
2415 
2416 	/* Select enet system clock as Interrupt Coalescing
2417 	 * timer Clock Source
2418 	 */
2419 	rx_itr = FEC_ITR_CLK_SEL;
2420 	tx_itr = FEC_ITR_CLK_SEL;
2421 
2422 	/* set ICFT and ICTT */
2423 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2424 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2425 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2426 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2427 
2428 	rx_itr |= FEC_ITR_EN;
2429 	tx_itr |= FEC_ITR_EN;
2430 
2431 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2432 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2433 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2434 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2435 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2436 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2437 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2438 	}
2439 }
2440 
2441 static int
2442 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2443 {
2444 	struct fec_enet_private *fep = netdev_priv(ndev);
2445 
2446 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2447 		return -EOPNOTSUPP;
2448 
2449 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2450 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2451 
2452 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2453 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2454 
2455 	return 0;
2456 }
2457 
2458 static int
2459 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2460 {
2461 	struct fec_enet_private *fep = netdev_priv(ndev);
2462 	unsigned int cycle;
2463 
2464 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2465 		return -EOPNOTSUPP;
2466 
2467 	if (ec->rx_max_coalesced_frames > 255) {
2468 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2469 		return -EINVAL;
2470 	}
2471 
2472 	if (ec->tx_max_coalesced_frames > 255) {
2473 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2474 		return -EINVAL;
2475 	}
2476 
2477 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2478 	if (cycle > 0xFFFF) {
2479 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2480 		return -EINVAL;
2481 	}
2482 
2483 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2484 	if (cycle > 0xFFFF) {
2485 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2486 		return -EINVAL;
2487 	}
2488 
2489 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2490 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2491 
2492 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2493 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2494 
2495 	fec_enet_itr_coal_set(ndev);
2496 
2497 	return 0;
2498 }
2499 
2500 static void fec_enet_itr_coal_init(struct net_device *ndev)
2501 {
2502 	struct ethtool_coalesce ec;
2503 
2504 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2505 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2506 
2507 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2508 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2509 
2510 	fec_enet_set_coalesce(ndev, &ec);
2511 }
2512 
2513 static int fec_enet_get_tunable(struct net_device *netdev,
2514 				const struct ethtool_tunable *tuna,
2515 				void *data)
2516 {
2517 	struct fec_enet_private *fep = netdev_priv(netdev);
2518 	int ret = 0;
2519 
2520 	switch (tuna->id) {
2521 	case ETHTOOL_RX_COPYBREAK:
2522 		*(u32 *)data = fep->rx_copybreak;
2523 		break;
2524 	default:
2525 		ret = -EINVAL;
2526 		break;
2527 	}
2528 
2529 	return ret;
2530 }
2531 
2532 static int fec_enet_set_tunable(struct net_device *netdev,
2533 				const struct ethtool_tunable *tuna,
2534 				const void *data)
2535 {
2536 	struct fec_enet_private *fep = netdev_priv(netdev);
2537 	int ret = 0;
2538 
2539 	switch (tuna->id) {
2540 	case ETHTOOL_RX_COPYBREAK:
2541 		fep->rx_copybreak = *(u32 *)data;
2542 		break;
2543 	default:
2544 		ret = -EINVAL;
2545 		break;
2546 	}
2547 
2548 	return ret;
2549 }
2550 
2551 static void
2552 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2553 {
2554 	struct fec_enet_private *fep = netdev_priv(ndev);
2555 
2556 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2557 		wol->supported = WAKE_MAGIC;
2558 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2559 	} else {
2560 		wol->supported = wol->wolopts = 0;
2561 	}
2562 }
2563 
2564 static int
2565 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 
2569 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2570 		return -EINVAL;
2571 
2572 	if (wol->wolopts & ~WAKE_MAGIC)
2573 		return -EINVAL;
2574 
2575 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2576 	if (device_may_wakeup(&ndev->dev)) {
2577 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2578 		if (fep->irq[0] > 0)
2579 			enable_irq_wake(fep->irq[0]);
2580 	} else {
2581 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2582 		if (fep->irq[0] > 0)
2583 			disable_irq_wake(fep->irq[0]);
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 static const struct ethtool_ops fec_enet_ethtool_ops = {
2590 	.get_drvinfo		= fec_enet_get_drvinfo,
2591 	.get_regs_len		= fec_enet_get_regs_len,
2592 	.get_regs		= fec_enet_get_regs,
2593 	.nway_reset		= phy_ethtool_nway_reset,
2594 	.get_link		= ethtool_op_get_link,
2595 	.get_coalesce		= fec_enet_get_coalesce,
2596 	.set_coalesce		= fec_enet_set_coalesce,
2597 #ifndef CONFIG_M5272
2598 	.get_pauseparam		= fec_enet_get_pauseparam,
2599 	.set_pauseparam		= fec_enet_set_pauseparam,
2600 	.get_strings		= fec_enet_get_strings,
2601 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2602 	.get_sset_count		= fec_enet_get_sset_count,
2603 #endif
2604 	.get_ts_info		= fec_enet_get_ts_info,
2605 	.get_tunable		= fec_enet_get_tunable,
2606 	.set_tunable		= fec_enet_set_tunable,
2607 	.get_wol		= fec_enet_get_wol,
2608 	.set_wol		= fec_enet_set_wol,
2609 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2610 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2611 };
2612 
2613 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2614 {
2615 	struct fec_enet_private *fep = netdev_priv(ndev);
2616 	struct phy_device *phydev = ndev->phydev;
2617 
2618 	if (!netif_running(ndev))
2619 		return -EINVAL;
2620 
2621 	if (!phydev)
2622 		return -ENODEV;
2623 
2624 	if (fep->bufdesc_ex) {
2625 		if (cmd == SIOCSHWTSTAMP)
2626 			return fec_ptp_set(ndev, rq);
2627 		if (cmd == SIOCGHWTSTAMP)
2628 			return fec_ptp_get(ndev, rq);
2629 	}
2630 
2631 	return phy_mii_ioctl(phydev, rq, cmd);
2632 }
2633 
2634 static void fec_enet_free_buffers(struct net_device *ndev)
2635 {
2636 	struct fec_enet_private *fep = netdev_priv(ndev);
2637 	unsigned int i;
2638 	struct sk_buff *skb;
2639 	struct bufdesc	*bdp;
2640 	struct fec_enet_priv_tx_q *txq;
2641 	struct fec_enet_priv_rx_q *rxq;
2642 	unsigned int q;
2643 
2644 	for (q = 0; q < fep->num_rx_queues; q++) {
2645 		rxq = fep->rx_queue[q];
2646 		bdp = rxq->bd.base;
2647 		for (i = 0; i < rxq->bd.ring_size; i++) {
2648 			skb = rxq->rx_skbuff[i];
2649 			rxq->rx_skbuff[i] = NULL;
2650 			if (skb) {
2651 				dma_unmap_single(&fep->pdev->dev,
2652 						 fec32_to_cpu(bdp->cbd_bufaddr),
2653 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2654 						 DMA_FROM_DEVICE);
2655 				dev_kfree_skb(skb);
2656 			}
2657 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2658 		}
2659 	}
2660 
2661 	for (q = 0; q < fep->num_tx_queues; q++) {
2662 		txq = fep->tx_queue[q];
2663 		bdp = txq->bd.base;
2664 		for (i = 0; i < txq->bd.ring_size; i++) {
2665 			kfree(txq->tx_bounce[i]);
2666 			txq->tx_bounce[i] = NULL;
2667 			skb = txq->tx_skbuff[i];
2668 			txq->tx_skbuff[i] = NULL;
2669 			dev_kfree_skb(skb);
2670 		}
2671 	}
2672 }
2673 
2674 static void fec_enet_free_queue(struct net_device *ndev)
2675 {
2676 	struct fec_enet_private *fep = netdev_priv(ndev);
2677 	int i;
2678 	struct fec_enet_priv_tx_q *txq;
2679 
2680 	for (i = 0; i < fep->num_tx_queues; i++)
2681 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2682 			txq = fep->tx_queue[i];
2683 			dma_free_coherent(&fep->pdev->dev,
2684 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2685 					  txq->tso_hdrs,
2686 					  txq->tso_hdrs_dma);
2687 		}
2688 
2689 	for (i = 0; i < fep->num_rx_queues; i++)
2690 		kfree(fep->rx_queue[i]);
2691 	for (i = 0; i < fep->num_tx_queues; i++)
2692 		kfree(fep->tx_queue[i]);
2693 }
2694 
2695 static int fec_enet_alloc_queue(struct net_device *ndev)
2696 {
2697 	struct fec_enet_private *fep = netdev_priv(ndev);
2698 	int i;
2699 	int ret = 0;
2700 	struct fec_enet_priv_tx_q *txq;
2701 
2702 	for (i = 0; i < fep->num_tx_queues; i++) {
2703 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2704 		if (!txq) {
2705 			ret = -ENOMEM;
2706 			goto alloc_failed;
2707 		}
2708 
2709 		fep->tx_queue[i] = txq;
2710 		txq->bd.ring_size = TX_RING_SIZE;
2711 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2712 
2713 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2714 		txq->tx_wake_threshold =
2715 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2716 
2717 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2718 					txq->bd.ring_size * TSO_HEADER_SIZE,
2719 					&txq->tso_hdrs_dma,
2720 					GFP_KERNEL);
2721 		if (!txq->tso_hdrs) {
2722 			ret = -ENOMEM;
2723 			goto alloc_failed;
2724 		}
2725 	}
2726 
2727 	for (i = 0; i < fep->num_rx_queues; i++) {
2728 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2729 					   GFP_KERNEL);
2730 		if (!fep->rx_queue[i]) {
2731 			ret = -ENOMEM;
2732 			goto alloc_failed;
2733 		}
2734 
2735 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2736 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2737 	}
2738 	return ret;
2739 
2740 alloc_failed:
2741 	fec_enet_free_queue(ndev);
2742 	return ret;
2743 }
2744 
2745 static int
2746 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2747 {
2748 	struct fec_enet_private *fep = netdev_priv(ndev);
2749 	unsigned int i;
2750 	struct sk_buff *skb;
2751 	struct bufdesc	*bdp;
2752 	struct fec_enet_priv_rx_q *rxq;
2753 
2754 	rxq = fep->rx_queue[queue];
2755 	bdp = rxq->bd.base;
2756 	for (i = 0; i < rxq->bd.ring_size; i++) {
2757 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2758 		if (!skb)
2759 			goto err_alloc;
2760 
2761 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2762 			dev_kfree_skb(skb);
2763 			goto err_alloc;
2764 		}
2765 
2766 		rxq->rx_skbuff[i] = skb;
2767 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2768 
2769 		if (fep->bufdesc_ex) {
2770 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2771 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2772 		}
2773 
2774 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2775 	}
2776 
2777 	/* Set the last buffer to wrap. */
2778 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2779 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2780 	return 0;
2781 
2782  err_alloc:
2783 	fec_enet_free_buffers(ndev);
2784 	return -ENOMEM;
2785 }
2786 
2787 static int
2788 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2789 {
2790 	struct fec_enet_private *fep = netdev_priv(ndev);
2791 	unsigned int i;
2792 	struct bufdesc  *bdp;
2793 	struct fec_enet_priv_tx_q *txq;
2794 
2795 	txq = fep->tx_queue[queue];
2796 	bdp = txq->bd.base;
2797 	for (i = 0; i < txq->bd.ring_size; i++) {
2798 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2799 		if (!txq->tx_bounce[i])
2800 			goto err_alloc;
2801 
2802 		bdp->cbd_sc = cpu_to_fec16(0);
2803 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2804 
2805 		if (fep->bufdesc_ex) {
2806 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2807 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2808 		}
2809 
2810 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2811 	}
2812 
2813 	/* Set the last buffer to wrap. */
2814 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2815 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2816 
2817 	return 0;
2818 
2819  err_alloc:
2820 	fec_enet_free_buffers(ndev);
2821 	return -ENOMEM;
2822 }
2823 
2824 static int fec_enet_alloc_buffers(struct net_device *ndev)
2825 {
2826 	struct fec_enet_private *fep = netdev_priv(ndev);
2827 	unsigned int i;
2828 
2829 	for (i = 0; i < fep->num_rx_queues; i++)
2830 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2831 			return -ENOMEM;
2832 
2833 	for (i = 0; i < fep->num_tx_queues; i++)
2834 		if (fec_enet_alloc_txq_buffers(ndev, i))
2835 			return -ENOMEM;
2836 	return 0;
2837 }
2838 
2839 static int
2840 fec_enet_open(struct net_device *ndev)
2841 {
2842 	struct fec_enet_private *fep = netdev_priv(ndev);
2843 	int ret;
2844 	bool reset_again;
2845 
2846 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2847 	if (ret < 0)
2848 		return ret;
2849 
2850 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2851 	ret = fec_enet_clk_enable(ndev, true);
2852 	if (ret)
2853 		goto clk_enable;
2854 
2855 	/* During the first fec_enet_open call the PHY isn't probed at this
2856 	 * point. Therefore the phy_reset_after_clk_enable() call within
2857 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2858 	 * sure the PHY is working correctly we check if we need to reset again
2859 	 * later when the PHY is probed
2860 	 */
2861 	if (ndev->phydev && ndev->phydev->drv)
2862 		reset_again = false;
2863 	else
2864 		reset_again = true;
2865 
2866 	/* I should reset the ring buffers here, but I don't yet know
2867 	 * a simple way to do that.
2868 	 */
2869 
2870 	ret = fec_enet_alloc_buffers(ndev);
2871 	if (ret)
2872 		goto err_enet_alloc;
2873 
2874 	/* Init MAC prior to mii bus probe */
2875 	fec_restart(ndev);
2876 
2877 	/* Probe and connect to PHY when open the interface */
2878 	ret = fec_enet_mii_probe(ndev);
2879 	if (ret)
2880 		goto err_enet_mii_probe;
2881 
2882 	/* Call phy_reset_after_clk_enable() again if it failed during
2883 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2884 	 */
2885 	if (reset_again)
2886 		phy_reset_after_clk_enable(ndev->phydev);
2887 
2888 	if (fep->quirks & FEC_QUIRK_ERR006687)
2889 		imx6q_cpuidle_fec_irqs_used();
2890 
2891 	napi_enable(&fep->napi);
2892 	phy_start(ndev->phydev);
2893 	netif_tx_start_all_queues(ndev);
2894 
2895 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2896 				 FEC_WOL_FLAG_ENABLE);
2897 
2898 	return 0;
2899 
2900 err_enet_mii_probe:
2901 	fec_enet_free_buffers(ndev);
2902 err_enet_alloc:
2903 	fec_enet_clk_enable(ndev, false);
2904 clk_enable:
2905 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2906 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2907 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2908 	return ret;
2909 }
2910 
2911 static int
2912 fec_enet_close(struct net_device *ndev)
2913 {
2914 	struct fec_enet_private *fep = netdev_priv(ndev);
2915 
2916 	phy_stop(ndev->phydev);
2917 
2918 	if (netif_device_present(ndev)) {
2919 		napi_disable(&fep->napi);
2920 		netif_tx_disable(ndev);
2921 		fec_stop(ndev);
2922 	}
2923 
2924 	phy_disconnect(ndev->phydev);
2925 
2926 	if (fep->quirks & FEC_QUIRK_ERR006687)
2927 		imx6q_cpuidle_fec_irqs_unused();
2928 
2929 	fec_enet_update_ethtool_stats(ndev);
2930 
2931 	fec_enet_clk_enable(ndev, false);
2932 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2933 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2934 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2935 
2936 	fec_enet_free_buffers(ndev);
2937 
2938 	return 0;
2939 }
2940 
2941 /* Set or clear the multicast filter for this adaptor.
2942  * Skeleton taken from sunlance driver.
2943  * The CPM Ethernet implementation allows Multicast as well as individual
2944  * MAC address filtering.  Some of the drivers check to make sure it is
2945  * a group multicast address, and discard those that are not.  I guess I
2946  * will do the same for now, but just remove the test if you want
2947  * individual filtering as well (do the upper net layers want or support
2948  * this kind of feature?).
2949  */
2950 
2951 #define FEC_HASH_BITS	6		/* #bits in hash */
2952 #define CRC32_POLY	0xEDB88320
2953 
2954 static void set_multicast_list(struct net_device *ndev)
2955 {
2956 	struct fec_enet_private *fep = netdev_priv(ndev);
2957 	struct netdev_hw_addr *ha;
2958 	unsigned int i, bit, data, crc, tmp;
2959 	unsigned char hash;
2960 	unsigned int hash_high = 0, hash_low = 0;
2961 
2962 	if (ndev->flags & IFF_PROMISC) {
2963 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2964 		tmp |= 0x8;
2965 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2966 		return;
2967 	}
2968 
2969 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2970 	tmp &= ~0x8;
2971 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2972 
2973 	if (ndev->flags & IFF_ALLMULTI) {
2974 		/* Catch all multicast addresses, so set the
2975 		 * filter to all 1's
2976 		 */
2977 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2978 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2979 
2980 		return;
2981 	}
2982 
2983 	/* Add the addresses in hash register */
2984 	netdev_for_each_mc_addr(ha, ndev) {
2985 		/* calculate crc32 value of mac address */
2986 		crc = 0xffffffff;
2987 
2988 		for (i = 0; i < ndev->addr_len; i++) {
2989 			data = ha->addr[i];
2990 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2991 				crc = (crc >> 1) ^
2992 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2993 			}
2994 		}
2995 
2996 		/* only upper 6 bits (FEC_HASH_BITS) are used
2997 		 * which point to specific bit in the hash registers
2998 		 */
2999 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3000 
3001 		if (hash > 31)
3002 			hash_high |= 1 << (hash - 32);
3003 		else
3004 			hash_low |= 1 << hash;
3005 	}
3006 
3007 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3008 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3009 }
3010 
3011 /* Set a MAC change in hardware. */
3012 static int
3013 fec_set_mac_address(struct net_device *ndev, void *p)
3014 {
3015 	struct fec_enet_private *fep = netdev_priv(ndev);
3016 	struct sockaddr *addr = p;
3017 
3018 	if (addr) {
3019 		if (!is_valid_ether_addr(addr->sa_data))
3020 			return -EADDRNOTAVAIL;
3021 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3022 	}
3023 
3024 	/* Add netif status check here to avoid system hang in below case:
3025 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3026 	 * After ethx down, fec all clocks are gated off and then register
3027 	 * access causes system hang.
3028 	 */
3029 	if (!netif_running(ndev))
3030 		return 0;
3031 
3032 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3033 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3034 		fep->hwp + FEC_ADDR_LOW);
3035 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3036 		fep->hwp + FEC_ADDR_HIGH);
3037 	return 0;
3038 }
3039 
3040 #ifdef CONFIG_NET_POLL_CONTROLLER
3041 /**
3042  * fec_poll_controller - FEC Poll controller function
3043  * @dev: The FEC network adapter
3044  *
3045  * Polled functionality used by netconsole and others in non interrupt mode
3046  *
3047  */
3048 static void fec_poll_controller(struct net_device *dev)
3049 {
3050 	int i;
3051 	struct fec_enet_private *fep = netdev_priv(dev);
3052 
3053 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3054 		if (fep->irq[i] > 0) {
3055 			disable_irq(fep->irq[i]);
3056 			fec_enet_interrupt(fep->irq[i], dev);
3057 			enable_irq(fep->irq[i]);
3058 		}
3059 	}
3060 }
3061 #endif
3062 
3063 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3064 	netdev_features_t features)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(netdev);
3067 	netdev_features_t changed = features ^ netdev->features;
3068 
3069 	netdev->features = features;
3070 
3071 	/* Receive checksum has been changed */
3072 	if (changed & NETIF_F_RXCSUM) {
3073 		if (features & NETIF_F_RXCSUM)
3074 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3075 		else
3076 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3077 	}
3078 }
3079 
3080 static int fec_set_features(struct net_device *netdev,
3081 	netdev_features_t features)
3082 {
3083 	struct fec_enet_private *fep = netdev_priv(netdev);
3084 	netdev_features_t changed = features ^ netdev->features;
3085 
3086 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3087 		napi_disable(&fep->napi);
3088 		netif_tx_lock_bh(netdev);
3089 		fec_stop(netdev);
3090 		fec_enet_set_netdev_features(netdev, features);
3091 		fec_restart(netdev);
3092 		netif_tx_wake_all_queues(netdev);
3093 		netif_tx_unlock_bh(netdev);
3094 		napi_enable(&fep->napi);
3095 	} else {
3096 		fec_enet_set_netdev_features(netdev, features);
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 static const struct net_device_ops fec_netdev_ops = {
3103 	.ndo_open		= fec_enet_open,
3104 	.ndo_stop		= fec_enet_close,
3105 	.ndo_start_xmit		= fec_enet_start_xmit,
3106 	.ndo_set_rx_mode	= set_multicast_list,
3107 	.ndo_validate_addr	= eth_validate_addr,
3108 	.ndo_tx_timeout		= fec_timeout,
3109 	.ndo_set_mac_address	= fec_set_mac_address,
3110 	.ndo_do_ioctl		= fec_enet_ioctl,
3111 #ifdef CONFIG_NET_POLL_CONTROLLER
3112 	.ndo_poll_controller	= fec_poll_controller,
3113 #endif
3114 	.ndo_set_features	= fec_set_features,
3115 };
3116 
3117 static const unsigned short offset_des_active_rxq[] = {
3118 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3119 };
3120 
3121 static const unsigned short offset_des_active_txq[] = {
3122 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3123 };
3124 
3125  /*
3126   * XXX:  We need to clean up on failure exits here.
3127   *
3128   */
3129 static int fec_enet_init(struct net_device *ndev)
3130 {
3131 	struct fec_enet_private *fep = netdev_priv(ndev);
3132 	struct bufdesc *cbd_base;
3133 	dma_addr_t bd_dma;
3134 	int bd_size;
3135 	unsigned int i;
3136 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3137 			sizeof(struct bufdesc);
3138 	unsigned dsize_log2 = __fls(dsize);
3139 
3140 	WARN_ON(dsize != (1 << dsize_log2));
3141 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3142 	fep->rx_align = 0xf;
3143 	fep->tx_align = 0xf;
3144 #else
3145 	fep->rx_align = 0x3;
3146 	fep->tx_align = 0x3;
3147 #endif
3148 
3149 	fec_enet_alloc_queue(ndev);
3150 
3151 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3152 
3153 	/* Allocate memory for buffer descriptors. */
3154 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3155 				       GFP_KERNEL);
3156 	if (!cbd_base) {
3157 		return -ENOMEM;
3158 	}
3159 
3160 	memset(cbd_base, 0, bd_size);
3161 
3162 	/* Get the Ethernet address */
3163 	fec_get_mac(ndev);
3164 	/* make sure MAC we just acquired is programmed into the hw */
3165 	fec_set_mac_address(ndev, NULL);
3166 
3167 	/* Set receive and transmit descriptor base. */
3168 	for (i = 0; i < fep->num_rx_queues; i++) {
3169 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3170 		unsigned size = dsize * rxq->bd.ring_size;
3171 
3172 		rxq->bd.qid = i;
3173 		rxq->bd.base = cbd_base;
3174 		rxq->bd.cur = cbd_base;
3175 		rxq->bd.dma = bd_dma;
3176 		rxq->bd.dsize = dsize;
3177 		rxq->bd.dsize_log2 = dsize_log2;
3178 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3179 		bd_dma += size;
3180 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3181 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3182 	}
3183 
3184 	for (i = 0; i < fep->num_tx_queues; i++) {
3185 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3186 		unsigned size = dsize * txq->bd.ring_size;
3187 
3188 		txq->bd.qid = i;
3189 		txq->bd.base = cbd_base;
3190 		txq->bd.cur = cbd_base;
3191 		txq->bd.dma = bd_dma;
3192 		txq->bd.dsize = dsize;
3193 		txq->bd.dsize_log2 = dsize_log2;
3194 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3195 		bd_dma += size;
3196 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3197 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3198 	}
3199 
3200 
3201 	/* The FEC Ethernet specific entries in the device structure */
3202 	ndev->watchdog_timeo = TX_TIMEOUT;
3203 	ndev->netdev_ops = &fec_netdev_ops;
3204 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3205 
3206 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3207 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3208 
3209 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3210 		/* enable hw VLAN support */
3211 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3212 
3213 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3214 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3215 
3216 		/* enable hw accelerator */
3217 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3218 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3219 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3220 	}
3221 
3222 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3223 		fep->tx_align = 0;
3224 		fep->rx_align = 0x3f;
3225 	}
3226 
3227 	ndev->hw_features = ndev->features;
3228 
3229 	fec_restart(ndev);
3230 
3231 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3232 		fec_enet_clear_ethtool_stats(ndev);
3233 	else
3234 		fec_enet_update_ethtool_stats(ndev);
3235 
3236 	return 0;
3237 }
3238 
3239 #ifdef CONFIG_OF
3240 static int fec_reset_phy(struct platform_device *pdev)
3241 {
3242 	int err, phy_reset;
3243 	bool active_high = false;
3244 	int msec = 1, phy_post_delay = 0;
3245 	struct device_node *np = pdev->dev.of_node;
3246 
3247 	if (!np)
3248 		return 0;
3249 
3250 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3251 	/* A sane reset duration should not be longer than 1s */
3252 	if (!err && msec > 1000)
3253 		msec = 1;
3254 
3255 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3256 	if (phy_reset == -EPROBE_DEFER)
3257 		return phy_reset;
3258 	else if (!gpio_is_valid(phy_reset))
3259 		return 0;
3260 
3261 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3262 	/* valid reset duration should be less than 1s */
3263 	if (!err && phy_post_delay > 1000)
3264 		return -EINVAL;
3265 
3266 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3267 
3268 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3269 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3270 			"phy-reset");
3271 	if (err) {
3272 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3273 		return err;
3274 	}
3275 
3276 	if (msec > 20)
3277 		msleep(msec);
3278 	else
3279 		usleep_range(msec * 1000, msec * 1000 + 1000);
3280 
3281 	gpio_set_value_cansleep(phy_reset, !active_high);
3282 
3283 	if (!phy_post_delay)
3284 		return 0;
3285 
3286 	if (phy_post_delay > 20)
3287 		msleep(phy_post_delay);
3288 	else
3289 		usleep_range(phy_post_delay * 1000,
3290 			     phy_post_delay * 1000 + 1000);
3291 
3292 	return 0;
3293 }
3294 #else /* CONFIG_OF */
3295 static int fec_reset_phy(struct platform_device *pdev)
3296 {
3297 	/*
3298 	 * In case of platform probe, the reset has been done
3299 	 * by machine code.
3300 	 */
3301 	return 0;
3302 }
3303 #endif /* CONFIG_OF */
3304 
3305 static void
3306 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3307 {
3308 	struct device_node *np = pdev->dev.of_node;
3309 
3310 	*num_tx = *num_rx = 1;
3311 
3312 	if (!np || !of_device_is_available(np))
3313 		return;
3314 
3315 	/* parse the num of tx and rx queues */
3316 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3317 
3318 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3319 
3320 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3321 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3322 			 *num_tx);
3323 		*num_tx = 1;
3324 		return;
3325 	}
3326 
3327 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3328 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3329 			 *num_rx);
3330 		*num_rx = 1;
3331 		return;
3332 	}
3333 
3334 }
3335 
3336 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3337 {
3338 	int irq_cnt = platform_irq_count(pdev);
3339 
3340 	if (irq_cnt > FEC_IRQ_NUM)
3341 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3342 	else if (irq_cnt == 2)
3343 		irq_cnt = 1;	/* last for pps */
3344 	else if (irq_cnt <= 0)
3345 		irq_cnt = 1;	/* At least 1 irq is needed */
3346 	return irq_cnt;
3347 }
3348 
3349 static int
3350 fec_probe(struct platform_device *pdev)
3351 {
3352 	struct fec_enet_private *fep;
3353 	struct fec_platform_data *pdata;
3354 	struct net_device *ndev;
3355 	int i, irq, ret = 0;
3356 	struct resource *r;
3357 	const struct of_device_id *of_id;
3358 	static int dev_id;
3359 	struct device_node *np = pdev->dev.of_node, *phy_node;
3360 	int num_tx_qs;
3361 	int num_rx_qs;
3362 	char irq_name[8];
3363 	int irq_cnt;
3364 
3365 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3366 
3367 	/* Init network device */
3368 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3369 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3370 	if (!ndev)
3371 		return -ENOMEM;
3372 
3373 	SET_NETDEV_DEV(ndev, &pdev->dev);
3374 
3375 	/* setup board info structure */
3376 	fep = netdev_priv(ndev);
3377 
3378 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3379 	if (of_id)
3380 		pdev->id_entry = of_id->data;
3381 	fep->quirks = pdev->id_entry->driver_data;
3382 
3383 	fep->netdev = ndev;
3384 	fep->num_rx_queues = num_rx_qs;
3385 	fep->num_tx_queues = num_tx_qs;
3386 
3387 #if !defined(CONFIG_M5272)
3388 	/* default enable pause frame auto negotiation */
3389 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3390 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3391 #endif
3392 
3393 	/* Select default pin state */
3394 	pinctrl_pm_select_default_state(&pdev->dev);
3395 
3396 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3397 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3398 	if (IS_ERR(fep->hwp)) {
3399 		ret = PTR_ERR(fep->hwp);
3400 		goto failed_ioremap;
3401 	}
3402 
3403 	fep->pdev = pdev;
3404 	fep->dev_id = dev_id++;
3405 
3406 	platform_set_drvdata(pdev, ndev);
3407 
3408 	if ((of_machine_is_compatible("fsl,imx6q") ||
3409 	     of_machine_is_compatible("fsl,imx6dl")) &&
3410 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3411 		fep->quirks |= FEC_QUIRK_ERR006687;
3412 
3413 	if (of_get_property(np, "fsl,magic-packet", NULL))
3414 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3415 
3416 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3417 	if (!phy_node && of_phy_is_fixed_link(np)) {
3418 		ret = of_phy_register_fixed_link(np);
3419 		if (ret < 0) {
3420 			dev_err(&pdev->dev,
3421 				"broken fixed-link specification\n");
3422 			goto failed_phy;
3423 		}
3424 		phy_node = of_node_get(np);
3425 	}
3426 	fep->phy_node = phy_node;
3427 
3428 	ret = of_get_phy_mode(pdev->dev.of_node);
3429 	if (ret < 0) {
3430 		pdata = dev_get_platdata(&pdev->dev);
3431 		if (pdata)
3432 			fep->phy_interface = pdata->phy;
3433 		else
3434 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3435 	} else {
3436 		fep->phy_interface = ret;
3437 	}
3438 
3439 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3440 	if (IS_ERR(fep->clk_ipg)) {
3441 		ret = PTR_ERR(fep->clk_ipg);
3442 		goto failed_clk;
3443 	}
3444 
3445 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3446 	if (IS_ERR(fep->clk_ahb)) {
3447 		ret = PTR_ERR(fep->clk_ahb);
3448 		goto failed_clk;
3449 	}
3450 
3451 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3452 
3453 	/* enet_out is optional, depends on board */
3454 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3455 	if (IS_ERR(fep->clk_enet_out))
3456 		fep->clk_enet_out = NULL;
3457 
3458 	fep->ptp_clk_on = false;
3459 	mutex_init(&fep->ptp_clk_mutex);
3460 
3461 	/* clk_ref is optional, depends on board */
3462 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3463 	if (IS_ERR(fep->clk_ref))
3464 		fep->clk_ref = NULL;
3465 
3466 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3467 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3468 	if (IS_ERR(fep->clk_ptp)) {
3469 		fep->clk_ptp = NULL;
3470 		fep->bufdesc_ex = false;
3471 	}
3472 
3473 	ret = fec_enet_clk_enable(ndev, true);
3474 	if (ret)
3475 		goto failed_clk;
3476 
3477 	ret = clk_prepare_enable(fep->clk_ipg);
3478 	if (ret)
3479 		goto failed_clk_ipg;
3480 
3481 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3482 	if (!IS_ERR(fep->reg_phy)) {
3483 		ret = regulator_enable(fep->reg_phy);
3484 		if (ret) {
3485 			dev_err(&pdev->dev,
3486 				"Failed to enable phy regulator: %d\n", ret);
3487 			clk_disable_unprepare(fep->clk_ipg);
3488 			goto failed_regulator;
3489 		}
3490 	} else {
3491 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3492 			ret = -EPROBE_DEFER;
3493 			goto failed_regulator;
3494 		}
3495 		fep->reg_phy = NULL;
3496 	}
3497 
3498 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3499 	pm_runtime_use_autosuspend(&pdev->dev);
3500 	pm_runtime_get_noresume(&pdev->dev);
3501 	pm_runtime_set_active(&pdev->dev);
3502 	pm_runtime_enable(&pdev->dev);
3503 
3504 	ret = fec_reset_phy(pdev);
3505 	if (ret)
3506 		goto failed_reset;
3507 
3508 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3509 	if (fep->bufdesc_ex)
3510 		fec_ptp_init(pdev, irq_cnt);
3511 
3512 	ret = fec_enet_init(ndev);
3513 	if (ret)
3514 		goto failed_init;
3515 
3516 	for (i = 0; i < irq_cnt; i++) {
3517 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3518 		irq = platform_get_irq_byname(pdev, irq_name);
3519 		if (irq < 0)
3520 			irq = platform_get_irq(pdev, i);
3521 		if (irq < 0) {
3522 			ret = irq;
3523 			goto failed_irq;
3524 		}
3525 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3526 				       0, pdev->name, ndev);
3527 		if (ret)
3528 			goto failed_irq;
3529 
3530 		fep->irq[i] = irq;
3531 	}
3532 
3533 	init_completion(&fep->mdio_done);
3534 	ret = fec_enet_mii_init(pdev);
3535 	if (ret)
3536 		goto failed_mii_init;
3537 
3538 	/* Carrier starts down, phylib will bring it up */
3539 	netif_carrier_off(ndev);
3540 	fec_enet_clk_enable(ndev, false);
3541 	pinctrl_pm_select_sleep_state(&pdev->dev);
3542 
3543 	ret = register_netdev(ndev);
3544 	if (ret)
3545 		goto failed_register;
3546 
3547 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3548 			   FEC_WOL_HAS_MAGIC_PACKET);
3549 
3550 	if (fep->bufdesc_ex && fep->ptp_clock)
3551 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3552 
3553 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3554 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3555 
3556 	pm_runtime_mark_last_busy(&pdev->dev);
3557 	pm_runtime_put_autosuspend(&pdev->dev);
3558 
3559 	return 0;
3560 
3561 failed_register:
3562 	fec_enet_mii_remove(fep);
3563 failed_mii_init:
3564 failed_irq:
3565 failed_init:
3566 	fec_ptp_stop(pdev);
3567 	if (fep->reg_phy)
3568 		regulator_disable(fep->reg_phy);
3569 failed_reset:
3570 	pm_runtime_put(&pdev->dev);
3571 	pm_runtime_disable(&pdev->dev);
3572 failed_regulator:
3573 failed_clk_ipg:
3574 	fec_enet_clk_enable(ndev, false);
3575 failed_clk:
3576 	if (of_phy_is_fixed_link(np))
3577 		of_phy_deregister_fixed_link(np);
3578 	of_node_put(phy_node);
3579 failed_phy:
3580 	dev_id--;
3581 failed_ioremap:
3582 	free_netdev(ndev);
3583 
3584 	return ret;
3585 }
3586 
3587 static int
3588 fec_drv_remove(struct platform_device *pdev)
3589 {
3590 	struct net_device *ndev = platform_get_drvdata(pdev);
3591 	struct fec_enet_private *fep = netdev_priv(ndev);
3592 	struct device_node *np = pdev->dev.of_node;
3593 
3594 	cancel_work_sync(&fep->tx_timeout_work);
3595 	fec_ptp_stop(pdev);
3596 	unregister_netdev(ndev);
3597 	fec_enet_mii_remove(fep);
3598 	if (fep->reg_phy)
3599 		regulator_disable(fep->reg_phy);
3600 	pm_runtime_put(&pdev->dev);
3601 	pm_runtime_disable(&pdev->dev);
3602 	if (of_phy_is_fixed_link(np))
3603 		of_phy_deregister_fixed_link(np);
3604 	of_node_put(fep->phy_node);
3605 	free_netdev(ndev);
3606 
3607 	return 0;
3608 }
3609 
3610 static int __maybe_unused fec_suspend(struct device *dev)
3611 {
3612 	struct net_device *ndev = dev_get_drvdata(dev);
3613 	struct fec_enet_private *fep = netdev_priv(ndev);
3614 
3615 	rtnl_lock();
3616 	if (netif_running(ndev)) {
3617 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3618 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3619 		phy_stop(ndev->phydev);
3620 		napi_disable(&fep->napi);
3621 		netif_tx_lock_bh(ndev);
3622 		netif_device_detach(ndev);
3623 		netif_tx_unlock_bh(ndev);
3624 		fec_stop(ndev);
3625 		fec_enet_clk_enable(ndev, false);
3626 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3627 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3628 	}
3629 	rtnl_unlock();
3630 
3631 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3632 		regulator_disable(fep->reg_phy);
3633 
3634 	/* SOC supply clock to phy, when clock is disabled, phy link down
3635 	 * SOC control phy regulator, when regulator is disabled, phy link down
3636 	 */
3637 	if (fep->clk_enet_out || fep->reg_phy)
3638 		fep->link = 0;
3639 
3640 	return 0;
3641 }
3642 
3643 static int __maybe_unused fec_resume(struct device *dev)
3644 {
3645 	struct net_device *ndev = dev_get_drvdata(dev);
3646 	struct fec_enet_private *fep = netdev_priv(ndev);
3647 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3648 	int ret;
3649 	int val;
3650 
3651 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3652 		ret = regulator_enable(fep->reg_phy);
3653 		if (ret)
3654 			return ret;
3655 	}
3656 
3657 	rtnl_lock();
3658 	if (netif_running(ndev)) {
3659 		ret = fec_enet_clk_enable(ndev, true);
3660 		if (ret) {
3661 			rtnl_unlock();
3662 			goto failed_clk;
3663 		}
3664 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3665 			if (pdata && pdata->sleep_mode_enable)
3666 				pdata->sleep_mode_enable(false);
3667 			val = readl(fep->hwp + FEC_ECNTRL);
3668 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3669 			writel(val, fep->hwp + FEC_ECNTRL);
3670 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3671 		} else {
3672 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3673 		}
3674 		fec_restart(ndev);
3675 		netif_tx_lock_bh(ndev);
3676 		netif_device_attach(ndev);
3677 		netif_tx_unlock_bh(ndev);
3678 		napi_enable(&fep->napi);
3679 		phy_start(ndev->phydev);
3680 	}
3681 	rtnl_unlock();
3682 
3683 	return 0;
3684 
3685 failed_clk:
3686 	if (fep->reg_phy)
3687 		regulator_disable(fep->reg_phy);
3688 	return ret;
3689 }
3690 
3691 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3692 {
3693 	struct net_device *ndev = dev_get_drvdata(dev);
3694 	struct fec_enet_private *fep = netdev_priv(ndev);
3695 
3696 	clk_disable_unprepare(fep->clk_ipg);
3697 
3698 	return 0;
3699 }
3700 
3701 static int __maybe_unused fec_runtime_resume(struct device *dev)
3702 {
3703 	struct net_device *ndev = dev_get_drvdata(dev);
3704 	struct fec_enet_private *fep = netdev_priv(ndev);
3705 
3706 	return clk_prepare_enable(fep->clk_ipg);
3707 }
3708 
3709 static const struct dev_pm_ops fec_pm_ops = {
3710 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3711 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3712 };
3713 
3714 static struct platform_driver fec_driver = {
3715 	.driver	= {
3716 		.name	= DRIVER_NAME,
3717 		.pm	= &fec_pm_ops,
3718 		.of_match_table = fec_dt_ids,
3719 	},
3720 	.id_table = fec_devtype,
3721 	.probe	= fec_probe,
3722 	.remove	= fec_drv_remove,
3723 };
3724 
3725 module_platform_driver(fec_driver);
3726 
3727 MODULE_ALIAS("platform:"DRIVER_NAME);
3728 MODULE_LICENSE("GPL");
3729