xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/prefetch.h>
58 #include <linux/property.h>
59 #include <linux/ptrace.h>
60 #include <linux/regmap.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/skbuff.h>
63 #include <linux/slab.h>
64 #include <linux/spinlock.h>
65 #include <linux/string.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/workqueue.h>
69 #include <net/ip.h>
70 #include <net/page_pool/helpers.h>
71 #include <net/selftests.h>
72 #include <net/tso.h>
73 #include <soc/imx/cpuidle.h>
74 
75 #include "fec.h"
76 
77 static void set_multicast_list(struct net_device *ndev);
78 static void fec_enet_itr_coal_set(struct net_device *ndev);
79 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
80 				int cpu, struct xdp_buff *xdp,
81 				u32 dma_sync_len);
82 
83 #define DRIVER_NAME	"fec"
84 
85 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
86 
87 #define FEC_ENET_RSEM_V	0x84
88 #define FEC_ENET_RSFL_V	16
89 #define FEC_ENET_RAEM_V	0x8
90 #define FEC_ENET_RAFL_V	0x8
91 #define FEC_ENET_OPD_V	0xFFF0
92 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
93 
94 #define FEC_ENET_XDP_PASS          0
95 #define FEC_ENET_XDP_CONSUMED      BIT(0)
96 #define FEC_ENET_XDP_TX            BIT(1)
97 #define FEC_ENET_XDP_REDIR         BIT(2)
98 
99 struct fec_devinfo {
100 	u32 quirks;
101 };
102 
103 static const struct fec_devinfo fec_imx25_info = {
104 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
106 };
107 
108 static const struct fec_devinfo fec_imx27_info = {
109 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
110 		  FEC_QUIRK_HAS_MDIO_C45,
111 };
112 
113 static const struct fec_devinfo fec_imx28_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
115 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
116 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
117 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
118 };
119 
120 static const struct fec_devinfo fec_imx6q_info = {
121 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
125 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
126 };
127 
128 static const struct fec_devinfo fec_mvf600_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_MDIO_C45,
131 };
132 
133 static const struct fec_devinfo fec_imx6sx_info = {
134 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
135 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
136 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
137 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
138 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
139 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
140 		  FEC_QUIRK_HAS_MDIO_C45,
141 };
142 
143 static const struct fec_devinfo fec_imx6ul_info = {
144 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
145 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
146 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
147 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
148 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
149 		  FEC_QUIRK_HAS_MDIO_C45,
150 };
151 
152 static const struct fec_devinfo fec_imx8mq_info = {
153 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
154 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
155 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
156 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
157 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
158 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
159 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
160 		  FEC_QUIRK_HAS_MDIO_C45,
161 };
162 
163 static const struct fec_devinfo fec_imx8qm_info = {
164 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
165 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
166 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
167 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
168 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
169 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
170 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
171 };
172 
173 static const struct fec_devinfo fec_s32v234_info = {
174 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
175 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
176 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
177 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
178 		  FEC_QUIRK_HAS_MDIO_C45,
179 };
180 
181 static struct platform_device_id fec_devtype[] = {
182 	{
183 		/* keep it for coldfire */
184 		.name = DRIVER_NAME,
185 		.driver_data = 0,
186 	}, {
187 		/* sentinel */
188 	}
189 };
190 MODULE_DEVICE_TABLE(platform, fec_devtype);
191 
192 static const struct of_device_id fec_dt_ids[] = {
193 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
194 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
195 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
196 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
197 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
198 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
199 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
200 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
201 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
202 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
203 	{ /* sentinel */ }
204 };
205 MODULE_DEVICE_TABLE(of, fec_dt_ids);
206 
207 static unsigned char macaddr[ETH_ALEN];
208 module_param_array(macaddr, byte, NULL, 0);
209 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
210 
211 #if defined(CONFIG_M5272)
212 /*
213  * Some hardware gets it MAC address out of local flash memory.
214  * if this is non-zero then assume it is the address to get MAC from.
215  */
216 #if defined(CONFIG_NETtel)
217 #define	FEC_FLASHMAC	0xf0006006
218 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
219 #define	FEC_FLASHMAC	0xf0006000
220 #elif defined(CONFIG_CANCam)
221 #define	FEC_FLASHMAC	0xf0020000
222 #elif defined (CONFIG_M5272C3)
223 #define	FEC_FLASHMAC	(0xffe04000 + 4)
224 #elif defined(CONFIG_MOD5272)
225 #define FEC_FLASHMAC	0xffc0406b
226 #else
227 #define	FEC_FLASHMAC	0
228 #endif
229 #endif /* CONFIG_M5272 */
230 
231 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
232  *
233  * 2048 byte skbufs are allocated. However, alignment requirements
234  * varies between FEC variants. Worst case is 64, so round down by 64.
235  */
236 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
237 #define PKT_MINBUF_SIZE		64
238 
239 /* FEC receive acceleration */
240 #define FEC_RACC_IPDIS		BIT(1)
241 #define FEC_RACC_PRODIS		BIT(2)
242 #define FEC_RACC_SHIFT16	BIT(7)
243 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
244 
245 /* MIB Control Register */
246 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
247 
248 /*
249  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
250  * size bits. Other FEC hardware does not, so we need to take that into
251  * account when setting it.
252  */
253 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
254     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
255     defined(CONFIG_ARM64)
256 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
257 #else
258 #define	OPT_FRAME_SIZE	0
259 #endif
260 
261 /* FEC MII MMFR bits definition */
262 #define FEC_MMFR_ST		(1 << 30)
263 #define FEC_MMFR_ST_C45		(0)
264 #define FEC_MMFR_OP_READ	(2 << 28)
265 #define FEC_MMFR_OP_READ_C45	(3 << 28)
266 #define FEC_MMFR_OP_WRITE	(1 << 28)
267 #define FEC_MMFR_OP_ADDR_WRITE	(0)
268 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
269 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
270 #define FEC_MMFR_TA		(2 << 16)
271 #define FEC_MMFR_DATA(v)	(v & 0xffff)
272 /* FEC ECR bits definition */
273 #define FEC_ECR_RESET           BIT(0)
274 #define FEC_ECR_ETHEREN         BIT(1)
275 #define FEC_ECR_MAGICEN         BIT(2)
276 #define FEC_ECR_SLEEP           BIT(3)
277 #define FEC_ECR_EN1588          BIT(4)
278 #define FEC_ECR_SPEED           BIT(5)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_DRT		BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RGMII		BIT(6)
288 #define FEC_RCR_RMII            BIT(8)
289 #define FEC_RCR_10BASET         BIT(9)
290 #define FEC_RCR_NLC		BIT(30)
291 /* TX WMARK bits */
292 #define FEC_TXWMRK_STRFWD       BIT(8)
293 
294 #define FEC_MII_TIMEOUT		30000 /* us */
295 
296 /* Transmitter timeout */
297 #define TX_TIMEOUT (2 * HZ)
298 
299 #define FEC_PAUSE_FLAG_AUTONEG	0x1
300 #define FEC_PAUSE_FLAG_ENABLE	0x2
301 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
302 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
303 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
304 
305 /* Max number of allowed TCP segments for software TSO */
306 #define FEC_MAX_TSO_SEGS	100
307 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
308 
309 #define IS_TSO_HEADER(txq, addr) \
310 	((addr >= txq->tso_hdrs_dma) && \
311 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
312 
313 static int mii_cnt;
314 
315 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
316 					     struct bufdesc_prop *bd)
317 {
318 	return (bdp >= bd->last) ? bd->base
319 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
320 }
321 
322 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
323 					     struct bufdesc_prop *bd)
324 {
325 	return (bdp <= bd->base) ? bd->last
326 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
327 }
328 
329 static int fec_enet_get_bd_index(struct bufdesc *bdp,
330 				 struct bufdesc_prop *bd)
331 {
332 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
333 }
334 
335 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
336 {
337 	int entries;
338 
339 	entries = (((const char *)txq->dirty_tx -
340 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
341 
342 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
343 }
344 
345 static void swap_buffer(void *bufaddr, int len)
346 {
347 	int i;
348 	unsigned int *buf = bufaddr;
349 
350 	for (i = 0; i < len; i += 4, buf++)
351 		swab32s(buf);
352 }
353 
354 static void fec_dump(struct net_device *ndev)
355 {
356 	struct fec_enet_private *fep = netdev_priv(ndev);
357 	struct bufdesc *bdp;
358 	struct fec_enet_priv_tx_q *txq;
359 	int index = 0;
360 
361 	netdev_info(ndev, "TX ring dump\n");
362 	pr_info("Nr     SC     addr       len  SKB\n");
363 
364 	txq = fep->tx_queue[0];
365 	bdp = txq->bd.base;
366 
367 	do {
368 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
369 			index,
370 			bdp == txq->bd.cur ? 'S' : ' ',
371 			bdp == txq->dirty_tx ? 'H' : ' ',
372 			fec16_to_cpu(bdp->cbd_sc),
373 			fec32_to_cpu(bdp->cbd_bufaddr),
374 			fec16_to_cpu(bdp->cbd_datlen),
375 			txq->tx_buf[index].buf_p);
376 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
377 		index++;
378 	} while (bdp != txq->bd.base);
379 }
380 
381 /*
382  * Coldfire does not support DMA coherent allocations, and has historically used
383  * a band-aid with a manual flush in fec_enet_rx_queue.
384  */
385 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
386 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
387 		gfp_t gfp)
388 {
389 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
390 }
391 
392 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
393 		dma_addr_t handle)
394 {
395 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
396 }
397 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
398 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
399 		gfp_t gfp)
400 {
401 	return dma_alloc_coherent(dev, size, handle, gfp);
402 }
403 
404 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
405 		dma_addr_t handle)
406 {
407 	dma_free_coherent(dev, size, cpu_addr, handle);
408 }
409 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
410 
411 struct fec_dma_devres {
412 	size_t		size;
413 	void		*vaddr;
414 	dma_addr_t	dma_handle;
415 };
416 
417 static void fec_dmam_release(struct device *dev, void *res)
418 {
419 	struct fec_dma_devres *this = res;
420 
421 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
422 }
423 
424 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
425 		gfp_t gfp)
426 {
427 	struct fec_dma_devres *dr;
428 	void *vaddr;
429 
430 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
431 	if (!dr)
432 		return NULL;
433 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
434 	if (!vaddr) {
435 		devres_free(dr);
436 		return NULL;
437 	}
438 	dr->vaddr = vaddr;
439 	dr->dma_handle = *handle;
440 	dr->size = size;
441 	devres_add(dev, dr);
442 	return vaddr;
443 }
444 
445 static inline bool is_ipv4_pkt(struct sk_buff *skb)
446 {
447 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
448 }
449 
450 static int
451 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
452 {
453 	/* Only run for packets requiring a checksum. */
454 	if (skb->ip_summed != CHECKSUM_PARTIAL)
455 		return 0;
456 
457 	if (unlikely(skb_cow_head(skb, 0)))
458 		return -1;
459 
460 	if (is_ipv4_pkt(skb))
461 		ip_hdr(skb)->check = 0;
462 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
463 
464 	return 0;
465 }
466 
467 static int
468 fec_enet_create_page_pool(struct fec_enet_private *fep,
469 			  struct fec_enet_priv_rx_q *rxq, int size)
470 {
471 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
472 	struct page_pool_params pp_params = {
473 		.order = 0,
474 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
475 		.pool_size = size,
476 		.nid = dev_to_node(&fep->pdev->dev),
477 		.dev = &fep->pdev->dev,
478 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
479 		.offset = FEC_ENET_XDP_HEADROOM,
480 		.max_len = FEC_ENET_RX_FRSIZE,
481 	};
482 	int err;
483 
484 	rxq->page_pool = page_pool_create(&pp_params);
485 	if (IS_ERR(rxq->page_pool)) {
486 		err = PTR_ERR(rxq->page_pool);
487 		rxq->page_pool = NULL;
488 		return err;
489 	}
490 
491 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
492 	if (err < 0)
493 		goto err_free_pp;
494 
495 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
496 					 rxq->page_pool);
497 	if (err)
498 		goto err_unregister_rxq;
499 
500 	return 0;
501 
502 err_unregister_rxq:
503 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
504 err_free_pp:
505 	page_pool_destroy(rxq->page_pool);
506 	rxq->page_pool = NULL;
507 	return err;
508 }
509 
510 static struct bufdesc *
511 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
512 			     struct sk_buff *skb,
513 			     struct net_device *ndev)
514 {
515 	struct fec_enet_private *fep = netdev_priv(ndev);
516 	struct bufdesc *bdp = txq->bd.cur;
517 	struct bufdesc_ex *ebdp;
518 	int nr_frags = skb_shinfo(skb)->nr_frags;
519 	int frag, frag_len;
520 	unsigned short status;
521 	unsigned int estatus = 0;
522 	skb_frag_t *this_frag;
523 	unsigned int index;
524 	void *bufaddr;
525 	dma_addr_t addr;
526 	int i;
527 
528 	for (frag = 0; frag < nr_frags; frag++) {
529 		this_frag = &skb_shinfo(skb)->frags[frag];
530 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
531 		ebdp = (struct bufdesc_ex *)bdp;
532 
533 		status = fec16_to_cpu(bdp->cbd_sc);
534 		status &= ~BD_ENET_TX_STATS;
535 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
536 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
537 
538 		/* Handle the last BD specially */
539 		if (frag == nr_frags - 1) {
540 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
541 			if (fep->bufdesc_ex) {
542 				estatus |= BD_ENET_TX_INT;
543 				if (unlikely(skb_shinfo(skb)->tx_flags &
544 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
545 					estatus |= BD_ENET_TX_TS;
546 			}
547 		}
548 
549 		if (fep->bufdesc_ex) {
550 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 			if (skb->ip_summed == CHECKSUM_PARTIAL)
553 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
554 
555 			ebdp->cbd_bdu = 0;
556 			ebdp->cbd_esc = cpu_to_fec32(estatus);
557 		}
558 
559 		bufaddr = skb_frag_address(this_frag);
560 
561 		index = fec_enet_get_bd_index(bdp, &txq->bd);
562 		if (((unsigned long) bufaddr) & fep->tx_align ||
563 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
564 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
565 			bufaddr = txq->tx_bounce[index];
566 
567 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
568 				swap_buffer(bufaddr, frag_len);
569 		}
570 
571 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
572 				      DMA_TO_DEVICE);
573 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
574 			if (net_ratelimit())
575 				netdev_err(ndev, "Tx DMA memory map failed\n");
576 			goto dma_mapping_error;
577 		}
578 
579 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
580 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
581 		/* Make sure the updates to rest of the descriptor are
582 		 * performed before transferring ownership.
583 		 */
584 		wmb();
585 		bdp->cbd_sc = cpu_to_fec16(status);
586 	}
587 
588 	return bdp;
589 dma_mapping_error:
590 	bdp = txq->bd.cur;
591 	for (i = 0; i < frag; i++) {
592 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
593 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
594 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
595 	}
596 	return ERR_PTR(-ENOMEM);
597 }
598 
599 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
600 				   struct sk_buff *skb, struct net_device *ndev)
601 {
602 	struct fec_enet_private *fep = netdev_priv(ndev);
603 	int nr_frags = skb_shinfo(skb)->nr_frags;
604 	struct bufdesc *bdp, *last_bdp;
605 	void *bufaddr;
606 	dma_addr_t addr;
607 	unsigned short status;
608 	unsigned short buflen;
609 	unsigned int estatus = 0;
610 	unsigned int index;
611 	int entries_free;
612 
613 	entries_free = fec_enet_get_free_txdesc_num(txq);
614 	if (entries_free < MAX_SKB_FRAGS + 1) {
615 		dev_kfree_skb_any(skb);
616 		if (net_ratelimit())
617 			netdev_err(ndev, "NOT enough BD for SG!\n");
618 		return NETDEV_TX_OK;
619 	}
620 
621 	/* Protocol checksum off-load for TCP and UDP. */
622 	if (fec_enet_clear_csum(skb, ndev)) {
623 		dev_kfree_skb_any(skb);
624 		return NETDEV_TX_OK;
625 	}
626 
627 	/* Fill in a Tx ring entry */
628 	bdp = txq->bd.cur;
629 	last_bdp = bdp;
630 	status = fec16_to_cpu(bdp->cbd_sc);
631 	status &= ~BD_ENET_TX_STATS;
632 
633 	/* Set buffer length and buffer pointer */
634 	bufaddr = skb->data;
635 	buflen = skb_headlen(skb);
636 
637 	index = fec_enet_get_bd_index(bdp, &txq->bd);
638 	if (((unsigned long) bufaddr) & fep->tx_align ||
639 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
640 		memcpy(txq->tx_bounce[index], skb->data, buflen);
641 		bufaddr = txq->tx_bounce[index];
642 
643 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
644 			swap_buffer(bufaddr, buflen);
645 	}
646 
647 	/* Push the data cache so the CPM does not get stale memory data. */
648 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
649 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
650 		dev_kfree_skb_any(skb);
651 		if (net_ratelimit())
652 			netdev_err(ndev, "Tx DMA memory map failed\n");
653 		return NETDEV_TX_OK;
654 	}
655 
656 	if (nr_frags) {
657 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
658 		if (IS_ERR(last_bdp)) {
659 			dma_unmap_single(&fep->pdev->dev, addr,
660 					 buflen, DMA_TO_DEVICE);
661 			dev_kfree_skb_any(skb);
662 			return NETDEV_TX_OK;
663 		}
664 	} else {
665 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
666 		if (fep->bufdesc_ex) {
667 			estatus = BD_ENET_TX_INT;
668 			if (unlikely(skb_shinfo(skb)->tx_flags &
669 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
670 				estatus |= BD_ENET_TX_TS;
671 		}
672 	}
673 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
674 	bdp->cbd_datlen = cpu_to_fec16(buflen);
675 
676 	if (fep->bufdesc_ex) {
677 
678 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
679 
680 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
681 			fep->hwts_tx_en))
682 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
683 
684 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
685 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
686 
687 		if (skb->ip_summed == CHECKSUM_PARTIAL)
688 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
689 
690 		ebdp->cbd_bdu = 0;
691 		ebdp->cbd_esc = cpu_to_fec32(estatus);
692 	}
693 
694 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
695 	/* Save skb pointer */
696 	txq->tx_buf[index].buf_p = skb;
697 
698 	/* Make sure the updates to rest of the descriptor are performed before
699 	 * transferring ownership.
700 	 */
701 	wmb();
702 
703 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
704 	 * it's the last BD of the frame, and to put the CRC on the end.
705 	 */
706 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
707 	bdp->cbd_sc = cpu_to_fec16(status);
708 
709 	/* If this was the last BD in the ring, start at the beginning again. */
710 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
711 
712 	skb_tx_timestamp(skb);
713 
714 	/* Make sure the update to bdp is performed before txq->bd.cur. */
715 	wmb();
716 	txq->bd.cur = bdp;
717 
718 	/* Trigger transmission start */
719 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
720 	    !readl(txq->bd.reg_desc_active) ||
721 	    !readl(txq->bd.reg_desc_active) ||
722 	    !readl(txq->bd.reg_desc_active) ||
723 	    !readl(txq->bd.reg_desc_active))
724 		writel(0, txq->bd.reg_desc_active);
725 
726 	return 0;
727 }
728 
729 static int
730 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
731 			  struct net_device *ndev,
732 			  struct bufdesc *bdp, int index, char *data,
733 			  int size, bool last_tcp, bool is_last)
734 {
735 	struct fec_enet_private *fep = netdev_priv(ndev);
736 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
737 	unsigned short status;
738 	unsigned int estatus = 0;
739 	dma_addr_t addr;
740 
741 	status = fec16_to_cpu(bdp->cbd_sc);
742 	status &= ~BD_ENET_TX_STATS;
743 
744 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
745 
746 	if (((unsigned long) data) & fep->tx_align ||
747 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
748 		memcpy(txq->tx_bounce[index], data, size);
749 		data = txq->tx_bounce[index];
750 
751 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
752 			swap_buffer(data, size);
753 	}
754 
755 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
756 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
757 		dev_kfree_skb_any(skb);
758 		if (net_ratelimit())
759 			netdev_err(ndev, "Tx DMA memory map failed\n");
760 		return NETDEV_TX_OK;
761 	}
762 
763 	bdp->cbd_datlen = cpu_to_fec16(size);
764 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
765 
766 	if (fep->bufdesc_ex) {
767 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
768 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
769 		if (skb->ip_summed == CHECKSUM_PARTIAL)
770 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
771 		ebdp->cbd_bdu = 0;
772 		ebdp->cbd_esc = cpu_to_fec32(estatus);
773 	}
774 
775 	/* Handle the last BD specially */
776 	if (last_tcp)
777 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
778 	if (is_last) {
779 		status |= BD_ENET_TX_INTR;
780 		if (fep->bufdesc_ex)
781 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
782 	}
783 
784 	bdp->cbd_sc = cpu_to_fec16(status);
785 
786 	return 0;
787 }
788 
789 static int
790 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
791 			 struct sk_buff *skb, struct net_device *ndev,
792 			 struct bufdesc *bdp, int index)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	int hdr_len = skb_tcp_all_headers(skb);
796 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
797 	void *bufaddr;
798 	unsigned long dmabuf;
799 	unsigned short status;
800 	unsigned int estatus = 0;
801 
802 	status = fec16_to_cpu(bdp->cbd_sc);
803 	status &= ~BD_ENET_TX_STATS;
804 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
805 
806 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
807 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
808 	if (((unsigned long)bufaddr) & fep->tx_align ||
809 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
810 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
811 		bufaddr = txq->tx_bounce[index];
812 
813 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
814 			swap_buffer(bufaddr, hdr_len);
815 
816 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
817 					hdr_len, DMA_TO_DEVICE);
818 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
819 			dev_kfree_skb_any(skb);
820 			if (net_ratelimit())
821 				netdev_err(ndev, "Tx DMA memory map failed\n");
822 			return NETDEV_TX_OK;
823 		}
824 	}
825 
826 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
827 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
828 
829 	if (fep->bufdesc_ex) {
830 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
831 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
832 		if (skb->ip_summed == CHECKSUM_PARTIAL)
833 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
834 		ebdp->cbd_bdu = 0;
835 		ebdp->cbd_esc = cpu_to_fec32(estatus);
836 	}
837 
838 	bdp->cbd_sc = cpu_to_fec16(status);
839 
840 	return 0;
841 }
842 
843 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
844 				   struct sk_buff *skb,
845 				   struct net_device *ndev)
846 {
847 	struct fec_enet_private *fep = netdev_priv(ndev);
848 	int hdr_len, total_len, data_left;
849 	struct bufdesc *bdp = txq->bd.cur;
850 	struct bufdesc *tmp_bdp;
851 	struct bufdesc_ex *ebdp;
852 	struct tso_t tso;
853 	unsigned int index = 0;
854 	int ret;
855 
856 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
857 		dev_kfree_skb_any(skb);
858 		if (net_ratelimit())
859 			netdev_err(ndev, "NOT enough BD for TSO!\n");
860 		return NETDEV_TX_OK;
861 	}
862 
863 	/* Protocol checksum off-load for TCP and UDP. */
864 	if (fec_enet_clear_csum(skb, ndev)) {
865 		dev_kfree_skb_any(skb);
866 		return NETDEV_TX_OK;
867 	}
868 
869 	/* Initialize the TSO handler, and prepare the first payload */
870 	hdr_len = tso_start(skb, &tso);
871 
872 	total_len = skb->len - hdr_len;
873 	while (total_len > 0) {
874 		char *hdr;
875 
876 		index = fec_enet_get_bd_index(bdp, &txq->bd);
877 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
878 		total_len -= data_left;
879 
880 		/* prepare packet headers: MAC + IP + TCP */
881 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
882 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
883 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
884 		if (ret)
885 			goto err_release;
886 
887 		while (data_left > 0) {
888 			int size;
889 
890 			size = min_t(int, tso.size, data_left);
891 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
892 			index = fec_enet_get_bd_index(bdp, &txq->bd);
893 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
894 							bdp, index,
895 							tso.data, size,
896 							size == data_left,
897 							total_len == 0);
898 			if (ret)
899 				goto err_release;
900 
901 			data_left -= size;
902 			tso_build_data(skb, &tso, size);
903 		}
904 
905 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
906 	}
907 
908 	/* Save skb pointer */
909 	txq->tx_buf[index].buf_p = skb;
910 
911 	skb_tx_timestamp(skb);
912 	txq->bd.cur = bdp;
913 
914 	/* Trigger transmission start */
915 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
916 	    !readl(txq->bd.reg_desc_active) ||
917 	    !readl(txq->bd.reg_desc_active) ||
918 	    !readl(txq->bd.reg_desc_active) ||
919 	    !readl(txq->bd.reg_desc_active))
920 		writel(0, txq->bd.reg_desc_active);
921 
922 	return 0;
923 
924 err_release:
925 	/* Release all used data descriptors for TSO */
926 	tmp_bdp = txq->bd.cur;
927 
928 	while (tmp_bdp != bdp) {
929 		/* Unmap data buffers */
930 		if (tmp_bdp->cbd_bufaddr &&
931 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
932 			dma_unmap_single(&fep->pdev->dev,
933 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
934 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
935 					 DMA_TO_DEVICE);
936 
937 		/* Clear standard buffer descriptor fields */
938 		tmp_bdp->cbd_sc = 0;
939 		tmp_bdp->cbd_datlen = 0;
940 		tmp_bdp->cbd_bufaddr = 0;
941 
942 		/* Handle extended descriptor if enabled */
943 		if (fep->bufdesc_ex) {
944 			ebdp = (struct bufdesc_ex *)tmp_bdp;
945 			ebdp->cbd_esc = 0;
946 		}
947 
948 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
949 	}
950 
951 	dev_kfree_skb_any(skb);
952 
953 	return ret;
954 }
955 
956 static netdev_tx_t
957 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
958 {
959 	struct fec_enet_private *fep = netdev_priv(ndev);
960 	int entries_free;
961 	unsigned short queue;
962 	struct fec_enet_priv_tx_q *txq;
963 	struct netdev_queue *nq;
964 	int ret;
965 
966 	queue = skb_get_queue_mapping(skb);
967 	txq = fep->tx_queue[queue];
968 	nq = netdev_get_tx_queue(ndev, queue);
969 
970 	if (skb_is_gso(skb))
971 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
972 	else
973 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
974 	if (ret)
975 		return ret;
976 
977 	entries_free = fec_enet_get_free_txdesc_num(txq);
978 	if (entries_free <= txq->tx_stop_threshold)
979 		netif_tx_stop_queue(nq);
980 
981 	return NETDEV_TX_OK;
982 }
983 
984 /* Init RX & TX buffer descriptors
985  */
986 static void fec_enet_bd_init(struct net_device *dev)
987 {
988 	struct fec_enet_private *fep = netdev_priv(dev);
989 	struct fec_enet_priv_tx_q *txq;
990 	struct fec_enet_priv_rx_q *rxq;
991 	struct bufdesc *bdp;
992 	unsigned int i;
993 	unsigned int q;
994 
995 	for (q = 0; q < fep->num_rx_queues; q++) {
996 		/* Initialize the receive buffer descriptors. */
997 		rxq = fep->rx_queue[q];
998 		bdp = rxq->bd.base;
999 
1000 		for (i = 0; i < rxq->bd.ring_size; i++) {
1001 
1002 			/* Initialize the BD for every fragment in the page. */
1003 			if (bdp->cbd_bufaddr)
1004 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1005 			else
1006 				bdp->cbd_sc = cpu_to_fec16(0);
1007 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1008 		}
1009 
1010 		/* Set the last buffer to wrap */
1011 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1012 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1013 
1014 		rxq->bd.cur = rxq->bd.base;
1015 	}
1016 
1017 	for (q = 0; q < fep->num_tx_queues; q++) {
1018 		/* ...and the same for transmit */
1019 		txq = fep->tx_queue[q];
1020 		bdp = txq->bd.base;
1021 		txq->bd.cur = bdp;
1022 
1023 		for (i = 0; i < txq->bd.ring_size; i++) {
1024 			/* Initialize the BD for every fragment in the page. */
1025 			bdp->cbd_sc = cpu_to_fec16(0);
1026 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1027 				if (bdp->cbd_bufaddr &&
1028 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1029 					dma_unmap_single(&fep->pdev->dev,
1030 							 fec32_to_cpu(bdp->cbd_bufaddr),
1031 							 fec16_to_cpu(bdp->cbd_datlen),
1032 							 DMA_TO_DEVICE);
1033 				if (txq->tx_buf[i].buf_p)
1034 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1035 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1036 				if (bdp->cbd_bufaddr)
1037 					dma_unmap_single(&fep->pdev->dev,
1038 							 fec32_to_cpu(bdp->cbd_bufaddr),
1039 							 fec16_to_cpu(bdp->cbd_datlen),
1040 							 DMA_TO_DEVICE);
1041 
1042 				if (txq->tx_buf[i].buf_p)
1043 					xdp_return_frame(txq->tx_buf[i].buf_p);
1044 			} else {
1045 				struct page *page = txq->tx_buf[i].buf_p;
1046 
1047 				if (page)
1048 					page_pool_put_page(page->pp, page, 0, false);
1049 			}
1050 
1051 			txq->tx_buf[i].buf_p = NULL;
1052 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1053 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1054 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1055 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1056 		}
1057 
1058 		/* Set the last buffer to wrap */
1059 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1060 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1061 		txq->dirty_tx = bdp;
1062 	}
1063 }
1064 
1065 static void fec_enet_active_rxring(struct net_device *ndev)
1066 {
1067 	struct fec_enet_private *fep = netdev_priv(ndev);
1068 	int i;
1069 
1070 	for (i = 0; i < fep->num_rx_queues; i++)
1071 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1072 }
1073 
1074 static void fec_enet_enable_ring(struct net_device *ndev)
1075 {
1076 	struct fec_enet_private *fep = netdev_priv(ndev);
1077 	struct fec_enet_priv_tx_q *txq;
1078 	struct fec_enet_priv_rx_q *rxq;
1079 	int i;
1080 
1081 	for (i = 0; i < fep->num_rx_queues; i++) {
1082 		rxq = fep->rx_queue[i];
1083 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1084 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1085 
1086 		/* enable DMA1/2 */
1087 		if (i)
1088 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1089 			       fep->hwp + FEC_RCMR(i));
1090 	}
1091 
1092 	for (i = 0; i < fep->num_tx_queues; i++) {
1093 		txq = fep->tx_queue[i];
1094 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1095 
1096 		/* enable DMA1/2 */
1097 		if (i)
1098 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1099 			       fep->hwp + FEC_DMA_CFG(i));
1100 	}
1101 }
1102 
1103 /* Whack a reset.  We should wait for this.
1104  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1105  * instead of reset MAC itself.
1106  */
1107 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1108 {
1109 	u32 val;
1110 
1111 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1112 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1113 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1114 			writel(0, fep->hwp + FEC_ECNTRL);
1115 		} else {
1116 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1117 			udelay(10);
1118 		}
1119 	} else {
1120 		val = readl(fep->hwp + FEC_ECNTRL);
1121 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1122 		writel(val, fep->hwp + FEC_ECNTRL);
1123 	}
1124 }
1125 
1126 static void fec_set_hw_mac_addr(struct net_device *ndev)
1127 {
1128 	struct fec_enet_private *fep = netdev_priv(ndev);
1129 
1130 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1131 	       (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1132 	       fep->hwp + FEC_ADDR_LOW);
1133 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1134 	       fep->hwp + FEC_ADDR_HIGH);
1135 }
1136 
1137 /*
1138  * This function is called to start or restart the FEC during a link
1139  * change, transmit timeout, or to reconfigure the FEC.  The network
1140  * packet processing for this device must be stopped before this call.
1141  */
1142 static void
1143 fec_restart(struct net_device *ndev)
1144 {
1145 	struct fec_enet_private *fep = netdev_priv(ndev);
1146 	u32 rcntl = OPT_FRAME_SIZE | FEC_RCR_MII;
1147 	u32 ecntl = FEC_ECR_ETHEREN;
1148 
1149 	if (fep->bufdesc_ex)
1150 		fec_ptp_save_state(fep);
1151 
1152 	fec_ctrl_reset(fep, false);
1153 
1154 	/*
1155 	 * enet-mac reset will reset mac address registers too,
1156 	 * so need to reconfigure it.
1157 	 */
1158 	fec_set_hw_mac_addr(ndev);
1159 
1160 	/* Clear any outstanding interrupt, except MDIO. */
1161 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1162 
1163 	fec_enet_bd_init(ndev);
1164 
1165 	fec_enet_enable_ring(ndev);
1166 
1167 	/* Enable MII mode */
1168 	if (fep->full_duplex == DUPLEX_FULL) {
1169 		/* FD enable */
1170 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1171 	} else {
1172 		/* No Rcv on Xmit */
1173 		rcntl |= FEC_RCR_DRT;
1174 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1175 	}
1176 
1177 	/* Set MII speed */
1178 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1179 
1180 #if !defined(CONFIG_M5272)
1181 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1182 		u32 val = readl(fep->hwp + FEC_RACC);
1183 
1184 		/* align IP header */
1185 		val |= FEC_RACC_SHIFT16;
1186 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1187 			/* set RX checksum */
1188 			val |= FEC_RACC_OPTIONS;
1189 		else
1190 			val &= ~FEC_RACC_OPTIONS;
1191 		writel(val, fep->hwp + FEC_RACC);
1192 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1193 	}
1194 #endif
1195 
1196 	/*
1197 	 * The phy interface and speed need to get configured
1198 	 * differently on enet-mac.
1199 	 */
1200 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1201 		/* Enable flow control and length check */
1202 		rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1203 
1204 		/* RGMII, RMII or MII */
1205 		if (phy_interface_mode_is_rgmii(fep->phy_interface))
1206 			rcntl |= FEC_RCR_RGMII;
1207 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1208 			rcntl |= FEC_RCR_RMII;
1209 		else
1210 			rcntl &= ~FEC_RCR_RMII;
1211 
1212 		/* 1G, 100M or 10M */
1213 		if (ndev->phydev) {
1214 			if (ndev->phydev->speed == SPEED_1000)
1215 				ecntl |= FEC_ECR_SPEED;
1216 			else if (ndev->phydev->speed == SPEED_100)
1217 				rcntl &= ~FEC_RCR_10BASET;
1218 			else
1219 				rcntl |= FEC_RCR_10BASET;
1220 		}
1221 	} else {
1222 #ifdef FEC_MIIGSK_ENR
1223 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1224 			u32 cfgr;
1225 			/* disable the gasket and wait */
1226 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1227 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1228 				udelay(1);
1229 
1230 			/*
1231 			 * configure the gasket:
1232 			 *   RMII, 50 MHz, no loopback, no echo
1233 			 *   MII, 25 MHz, no loopback, no echo
1234 			 */
1235 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1236 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1237 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1238 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1239 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1240 
1241 			/* re-enable the gasket */
1242 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1243 		}
1244 #endif
1245 	}
1246 
1247 #if !defined(CONFIG_M5272)
1248 	/* enable pause frame*/
1249 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1250 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1251 	     ndev->phydev && ndev->phydev->pause)) {
1252 		rcntl |= FEC_RCR_FLOWCTL;
1253 
1254 		/* set FIFO threshold parameter to reduce overrun */
1255 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1256 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1257 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1258 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1259 
1260 		/* OPD */
1261 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1262 	} else {
1263 		rcntl &= ~FEC_RCR_FLOWCTL;
1264 	}
1265 #endif /* !defined(CONFIG_M5272) */
1266 
1267 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1268 
1269 	/* Setup multicast filter. */
1270 	set_multicast_list(ndev);
1271 #ifndef CONFIG_M5272
1272 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1273 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1274 #endif
1275 
1276 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1277 		/* enable ENET endian swap */
1278 		ecntl |= FEC_ECR_BYTESWP;
1279 		/* enable ENET store and forward mode */
1280 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1281 	}
1282 
1283 	if (fep->bufdesc_ex)
1284 		ecntl |= FEC_ECR_EN1588;
1285 
1286 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1287 	    fep->rgmii_txc_dly)
1288 		ecntl |= FEC_ENET_TXC_DLY;
1289 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1290 	    fep->rgmii_rxc_dly)
1291 		ecntl |= FEC_ENET_RXC_DLY;
1292 
1293 #ifndef CONFIG_M5272
1294 	/* Enable the MIB statistic event counters */
1295 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1296 #endif
1297 
1298 	/* And last, enable the transmit and receive processing */
1299 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1300 	fec_enet_active_rxring(ndev);
1301 
1302 	if (fep->bufdesc_ex) {
1303 		fec_ptp_start_cyclecounter(ndev);
1304 		fec_ptp_restore_state(fep);
1305 	}
1306 
1307 	/* Enable interrupts we wish to service */
1308 	if (fep->link)
1309 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1310 	else
1311 		writel(0, fep->hwp + FEC_IMASK);
1312 
1313 	/* Init the interrupt coalescing */
1314 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1315 		fec_enet_itr_coal_set(ndev);
1316 }
1317 
1318 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1319 {
1320 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1321 	      of_machine_is_compatible("fsl,imx8qxp") ||
1322 	      of_machine_is_compatible("fsl,imx8dxl")))
1323 		return 0;
1324 
1325 	return imx_scu_get_handle(&fep->ipc_handle);
1326 }
1327 
1328 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1329 {
1330 	struct device_node *np = fep->pdev->dev.of_node;
1331 	u32 rsrc_id, val;
1332 	int idx;
1333 
1334 	if (!np || !fep->ipc_handle)
1335 		return;
1336 
1337 	idx = of_alias_get_id(np, "ethernet");
1338 	if (idx < 0)
1339 		idx = 0;
1340 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1341 
1342 	val = enabled ? 1 : 0;
1343 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1344 }
1345 
1346 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1347 {
1348 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1349 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1350 
1351 	if (stop_gpr->gpr) {
1352 		if (enabled)
1353 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1354 					   BIT(stop_gpr->bit),
1355 					   BIT(stop_gpr->bit));
1356 		else
1357 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1358 					   BIT(stop_gpr->bit), 0);
1359 	} else if (pdata && pdata->sleep_mode_enable) {
1360 		pdata->sleep_mode_enable(enabled);
1361 	} else {
1362 		fec_enet_ipg_stop_set(fep, enabled);
1363 	}
1364 }
1365 
1366 static void fec_irqs_disable(struct net_device *ndev)
1367 {
1368 	struct fec_enet_private *fep = netdev_priv(ndev);
1369 
1370 	writel(0, fep->hwp + FEC_IMASK);
1371 }
1372 
1373 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1374 {
1375 	struct fec_enet_private *fep = netdev_priv(ndev);
1376 
1377 	writel(0, fep->hwp + FEC_IMASK);
1378 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1379 }
1380 
1381 static void
1382 fec_stop(struct net_device *ndev)
1383 {
1384 	struct fec_enet_private *fep = netdev_priv(ndev);
1385 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1386 	u32 val;
1387 
1388 	/* We cannot expect a graceful transmit stop without link !!! */
1389 	if (fep->link) {
1390 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1391 		udelay(10);
1392 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1393 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1394 	}
1395 
1396 	if (fep->bufdesc_ex)
1397 		fec_ptp_save_state(fep);
1398 
1399 	fec_ctrl_reset(fep, true);
1400 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1401 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1402 
1403 	/* We have to keep ENET enabled to have MII interrupt stay working */
1404 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1405 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1406 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1407 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1408 	}
1409 
1410 	if (fep->bufdesc_ex) {
1411 		val = readl(fep->hwp + FEC_ECNTRL);
1412 		val |= FEC_ECR_EN1588;
1413 		writel(val, fep->hwp + FEC_ECNTRL);
1414 
1415 		fec_ptp_start_cyclecounter(ndev);
1416 		fec_ptp_restore_state(fep);
1417 	}
1418 }
1419 
1420 static void
1421 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1422 {
1423 	struct fec_enet_private *fep = netdev_priv(ndev);
1424 
1425 	fec_dump(ndev);
1426 
1427 	ndev->stats.tx_errors++;
1428 
1429 	schedule_work(&fep->tx_timeout_work);
1430 }
1431 
1432 static void fec_enet_timeout_work(struct work_struct *work)
1433 {
1434 	struct fec_enet_private *fep =
1435 		container_of(work, struct fec_enet_private, tx_timeout_work);
1436 	struct net_device *ndev = fep->netdev;
1437 
1438 	rtnl_lock();
1439 	if (netif_device_present(ndev) || netif_running(ndev)) {
1440 		napi_disable(&fep->napi);
1441 		netif_tx_lock_bh(ndev);
1442 		fec_restart(ndev);
1443 		netif_tx_wake_all_queues(ndev);
1444 		netif_tx_unlock_bh(ndev);
1445 		napi_enable(&fep->napi);
1446 	}
1447 	rtnl_unlock();
1448 }
1449 
1450 static void
1451 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1452 	struct skb_shared_hwtstamps *hwtstamps)
1453 {
1454 	unsigned long flags;
1455 	u64 ns;
1456 
1457 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1458 	ns = timecounter_cyc2time(&fep->tc, ts);
1459 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1460 
1461 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1462 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1463 }
1464 
1465 static void
1466 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1467 {
1468 	struct	fec_enet_private *fep;
1469 	struct xdp_frame *xdpf;
1470 	struct bufdesc *bdp;
1471 	unsigned short status;
1472 	struct	sk_buff	*skb;
1473 	struct fec_enet_priv_tx_q *txq;
1474 	struct netdev_queue *nq;
1475 	int	index = 0;
1476 	int	entries_free;
1477 	struct page *page;
1478 	int frame_len;
1479 
1480 	fep = netdev_priv(ndev);
1481 
1482 	txq = fep->tx_queue[queue_id];
1483 	/* get next bdp of dirty_tx */
1484 	nq = netdev_get_tx_queue(ndev, queue_id);
1485 	bdp = txq->dirty_tx;
1486 
1487 	/* get next bdp of dirty_tx */
1488 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1489 
1490 	while (bdp != READ_ONCE(txq->bd.cur)) {
1491 		/* Order the load of bd.cur and cbd_sc */
1492 		rmb();
1493 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1494 		if (status & BD_ENET_TX_READY)
1495 			break;
1496 
1497 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1498 
1499 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1500 			skb = txq->tx_buf[index].buf_p;
1501 			if (bdp->cbd_bufaddr &&
1502 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1503 				dma_unmap_single(&fep->pdev->dev,
1504 						 fec32_to_cpu(bdp->cbd_bufaddr),
1505 						 fec16_to_cpu(bdp->cbd_datlen),
1506 						 DMA_TO_DEVICE);
1507 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1508 			if (!skb)
1509 				goto tx_buf_done;
1510 		} else {
1511 			/* Tx processing cannot call any XDP (or page pool) APIs if
1512 			 * the "budget" is 0. Because NAPI is called with budget of
1513 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1514 			 * however, we can't use the page pool from IRQ context.
1515 			 */
1516 			if (unlikely(!budget))
1517 				break;
1518 
1519 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520 				xdpf = txq->tx_buf[index].buf_p;
1521 				if (bdp->cbd_bufaddr)
1522 					dma_unmap_single(&fep->pdev->dev,
1523 							 fec32_to_cpu(bdp->cbd_bufaddr),
1524 							 fec16_to_cpu(bdp->cbd_datlen),
1525 							 DMA_TO_DEVICE);
1526 			} else {
1527 				page = txq->tx_buf[index].buf_p;
1528 			}
1529 
1530 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1531 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1532 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1533 				goto tx_buf_done;
1534 			}
1535 
1536 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1537 		}
1538 
1539 		/* Check for errors. */
1540 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1541 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1542 				   BD_ENET_TX_CSL)) {
1543 			ndev->stats.tx_errors++;
1544 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1545 				ndev->stats.tx_heartbeat_errors++;
1546 			if (status & BD_ENET_TX_LC)  /* Late collision */
1547 				ndev->stats.tx_window_errors++;
1548 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1549 				ndev->stats.tx_aborted_errors++;
1550 			if (status & BD_ENET_TX_UN)  /* Underrun */
1551 				ndev->stats.tx_fifo_errors++;
1552 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1553 				ndev->stats.tx_carrier_errors++;
1554 		} else {
1555 			ndev->stats.tx_packets++;
1556 
1557 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1558 				ndev->stats.tx_bytes += skb->len;
1559 			else
1560 				ndev->stats.tx_bytes += frame_len;
1561 		}
1562 
1563 		/* Deferred means some collisions occurred during transmit,
1564 		 * but we eventually sent the packet OK.
1565 		 */
1566 		if (status & BD_ENET_TX_DEF)
1567 			ndev->stats.collisions++;
1568 
1569 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1570 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1571 			 * are to time stamp the packet, so we still need to check time
1572 			 * stamping enabled flag.
1573 			 */
1574 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1575 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1576 				struct skb_shared_hwtstamps shhwtstamps;
1577 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578 
1579 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1580 				skb_tstamp_tx(skb, &shhwtstamps);
1581 			}
1582 
1583 			/* Free the sk buffer associated with this last transmit */
1584 			napi_consume_skb(skb, budget);
1585 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1586 			xdp_return_frame_rx_napi(xdpf);
1587 		} else { /* recycle pages of XDP_TX frames */
1588 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1589 			page_pool_put_page(page->pp, page, 0, true);
1590 		}
1591 
1592 		txq->tx_buf[index].buf_p = NULL;
1593 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1594 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1595 
1596 tx_buf_done:
1597 		/* Make sure the update to bdp and tx_buf are performed
1598 		 * before dirty_tx
1599 		 */
1600 		wmb();
1601 		txq->dirty_tx = bdp;
1602 
1603 		/* Update pointer to next buffer descriptor to be transmitted */
1604 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1605 
1606 		/* Since we have freed up a buffer, the ring is no longer full
1607 		 */
1608 		if (netif_tx_queue_stopped(nq)) {
1609 			entries_free = fec_enet_get_free_txdesc_num(txq);
1610 			if (entries_free >= txq->tx_wake_threshold)
1611 				netif_tx_wake_queue(nq);
1612 		}
1613 	}
1614 
1615 	/* ERR006358: Keep the transmitter going */
1616 	if (bdp != txq->bd.cur &&
1617 	    readl(txq->bd.reg_desc_active) == 0)
1618 		writel(0, txq->bd.reg_desc_active);
1619 }
1620 
1621 static void fec_enet_tx(struct net_device *ndev, int budget)
1622 {
1623 	struct fec_enet_private *fep = netdev_priv(ndev);
1624 	int i;
1625 
1626 	/* Make sure that AVB queues are processed first. */
1627 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1628 		fec_enet_tx_queue(ndev, i, budget);
1629 }
1630 
1631 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1632 				struct bufdesc *bdp, int index)
1633 {
1634 	struct page *new_page;
1635 	dma_addr_t phys_addr;
1636 
1637 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1638 	if (unlikely(!new_page))
1639 		return -ENOMEM;
1640 
1641 	rxq->rx_skb_info[index].page = new_page;
1642 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1643 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1644 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1645 
1646 	return 0;
1647 }
1648 
1649 static u32
1650 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1651 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1652 {
1653 	unsigned int sync, len = xdp->data_end - xdp->data;
1654 	u32 ret = FEC_ENET_XDP_PASS;
1655 	struct page *page;
1656 	int err;
1657 	u32 act;
1658 
1659 	act = bpf_prog_run_xdp(prog, xdp);
1660 
1661 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1662 	 * max len CPU touch
1663 	 */
1664 	sync = xdp->data_end - xdp->data;
1665 	sync = max(sync, len);
1666 
1667 	switch (act) {
1668 	case XDP_PASS:
1669 		rxq->stats[RX_XDP_PASS]++;
1670 		ret = FEC_ENET_XDP_PASS;
1671 		break;
1672 
1673 	case XDP_REDIRECT:
1674 		rxq->stats[RX_XDP_REDIRECT]++;
1675 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1676 		if (unlikely(err))
1677 			goto xdp_err;
1678 
1679 		ret = FEC_ENET_XDP_REDIR;
1680 		break;
1681 
1682 	case XDP_TX:
1683 		rxq->stats[RX_XDP_TX]++;
1684 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1685 		if (unlikely(err)) {
1686 			rxq->stats[RX_XDP_TX_ERRORS]++;
1687 			goto xdp_err;
1688 		}
1689 
1690 		ret = FEC_ENET_XDP_TX;
1691 		break;
1692 
1693 	default:
1694 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1695 		fallthrough;
1696 
1697 	case XDP_ABORTED:
1698 		fallthrough;    /* handle aborts by dropping packet */
1699 
1700 	case XDP_DROP:
1701 		rxq->stats[RX_XDP_DROP]++;
1702 xdp_err:
1703 		ret = FEC_ENET_XDP_CONSUMED;
1704 		page = virt_to_head_page(xdp->data);
1705 		page_pool_put_page(rxq->page_pool, page, sync, true);
1706 		if (act != XDP_DROP)
1707 			trace_xdp_exception(fep->netdev, prog, act);
1708 		break;
1709 	}
1710 
1711 	return ret;
1712 }
1713 
1714 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1715 {
1716 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1717 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1718 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1719 
1720 		/* Push and remove the vlan tag */
1721 
1722 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1723 		skb_pull(skb, VLAN_HLEN);
1724 		__vlan_hwaccel_put_tag(skb,
1725 				       htons(ETH_P_8021Q),
1726 				       vlan_tag);
1727 	}
1728 }
1729 
1730 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1731  * When we update through the ring, if the next incoming buffer has
1732  * not been given to the system, we just set the empty indicator,
1733  * effectively tossing the packet.
1734  */
1735 static int
1736 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1737 {
1738 	struct fec_enet_private *fep = netdev_priv(ndev);
1739 	struct fec_enet_priv_rx_q *rxq;
1740 	struct bufdesc *bdp;
1741 	unsigned short status;
1742 	struct  sk_buff *skb;
1743 	ushort	pkt_len;
1744 	int	pkt_received = 0;
1745 	struct	bufdesc_ex *ebdp = NULL;
1746 	int	index = 0;
1747 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1748 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1749 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1750 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1751 	int cpu = smp_processor_id();
1752 	struct xdp_buff xdp;
1753 	struct page *page;
1754 	__fec32 cbd_bufaddr;
1755 	u32 sub_len = 4;
1756 
1757 #if !defined(CONFIG_M5272)
1758 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1759 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1760 	 */
1761 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1762 		data_start += 2;
1763 		sub_len += 2;
1764 	}
1765 #endif
1766 
1767 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1768 	/*
1769 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1770 	 * headers.
1771 	 */
1772 	flush_cache_all();
1773 #endif
1774 	rxq = fep->rx_queue[queue_id];
1775 
1776 	/* First, grab all of the stats for the incoming packet.
1777 	 * These get messed up if we get called due to a busy condition.
1778 	 */
1779 	bdp = rxq->bd.cur;
1780 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1781 
1782 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1783 
1784 		if (pkt_received >= budget)
1785 			break;
1786 		pkt_received++;
1787 
1788 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1789 
1790 		/* Check for errors. */
1791 		status ^= BD_ENET_RX_LAST;
1792 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1793 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1794 			   BD_ENET_RX_CL)) {
1795 			ndev->stats.rx_errors++;
1796 			if (status & BD_ENET_RX_OV) {
1797 				/* FIFO overrun */
1798 				ndev->stats.rx_fifo_errors++;
1799 				goto rx_processing_done;
1800 			}
1801 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1802 						| BD_ENET_RX_LAST)) {
1803 				/* Frame too long or too short. */
1804 				ndev->stats.rx_length_errors++;
1805 				if (status & BD_ENET_RX_LAST)
1806 					netdev_err(ndev, "rcv is not +last\n");
1807 			}
1808 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1809 				ndev->stats.rx_crc_errors++;
1810 			/* Report late collisions as a frame error. */
1811 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1812 				ndev->stats.rx_frame_errors++;
1813 			goto rx_processing_done;
1814 		}
1815 
1816 		/* Process the incoming frame. */
1817 		ndev->stats.rx_packets++;
1818 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1819 		ndev->stats.rx_bytes += pkt_len;
1820 
1821 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1822 		page = rxq->rx_skb_info[index].page;
1823 		cbd_bufaddr = bdp->cbd_bufaddr;
1824 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1825 			ndev->stats.rx_dropped++;
1826 			goto rx_processing_done;
1827 		}
1828 
1829 		dma_sync_single_for_cpu(&fep->pdev->dev,
1830 					fec32_to_cpu(cbd_bufaddr),
1831 					pkt_len,
1832 					DMA_FROM_DEVICE);
1833 		prefetch(page_address(page));
1834 
1835 		if (xdp_prog) {
1836 			xdp_buff_clear_frags_flag(&xdp);
1837 			/* subtract 16bit shift and FCS */
1838 			xdp_prepare_buff(&xdp, page_address(page),
1839 					 data_start, pkt_len - sub_len, false);
1840 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1841 			xdp_result |= ret;
1842 			if (ret != FEC_ENET_XDP_PASS)
1843 				goto rx_processing_done;
1844 		}
1845 
1846 		/* The packet length includes FCS, but we don't want to
1847 		 * include that when passing upstream as it messes up
1848 		 * bridging applications.
1849 		 */
1850 		skb = build_skb(page_address(page), PAGE_SIZE);
1851 		if (unlikely(!skb)) {
1852 			page_pool_recycle_direct(rxq->page_pool, page);
1853 			ndev->stats.rx_dropped++;
1854 
1855 			netdev_err_once(ndev, "build_skb failed!\n");
1856 			goto rx_processing_done;
1857 		}
1858 
1859 		skb_reserve(skb, data_start);
1860 		skb_put(skb, pkt_len - sub_len);
1861 		skb_mark_for_recycle(skb);
1862 
1863 		if (unlikely(need_swap)) {
1864 			u8 *data;
1865 
1866 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1867 			swap_buffer(data, pkt_len);
1868 		}
1869 
1870 		/* Extract the enhanced buffer descriptor */
1871 		ebdp = NULL;
1872 		if (fep->bufdesc_ex)
1873 			ebdp = (struct bufdesc_ex *)bdp;
1874 
1875 		/* If this is a VLAN packet remove the VLAN Tag */
1876 		if (fep->bufdesc_ex &&
1877 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1878 			fec_enet_rx_vlan(ndev, skb);
1879 
1880 		skb->protocol = eth_type_trans(skb, ndev);
1881 
1882 		/* Get receive timestamp from the skb */
1883 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1884 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1885 					  skb_hwtstamps(skb));
1886 
1887 		if (fep->bufdesc_ex &&
1888 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1889 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1890 				/* don't check it */
1891 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1892 			} else {
1893 				skb_checksum_none_assert(skb);
1894 			}
1895 		}
1896 
1897 		skb_record_rx_queue(skb, queue_id);
1898 		napi_gro_receive(&fep->napi, skb);
1899 
1900 rx_processing_done:
1901 		/* Clear the status flags for this buffer */
1902 		status &= ~BD_ENET_RX_STATS;
1903 
1904 		/* Mark the buffer empty */
1905 		status |= BD_ENET_RX_EMPTY;
1906 
1907 		if (fep->bufdesc_ex) {
1908 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1909 
1910 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1911 			ebdp->cbd_prot = 0;
1912 			ebdp->cbd_bdu = 0;
1913 		}
1914 		/* Make sure the updates to rest of the descriptor are
1915 		 * performed before transferring ownership.
1916 		 */
1917 		wmb();
1918 		bdp->cbd_sc = cpu_to_fec16(status);
1919 
1920 		/* Update BD pointer to next entry */
1921 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1922 
1923 		/* Doing this here will keep the FEC running while we process
1924 		 * incoming frames.  On a heavily loaded network, we should be
1925 		 * able to keep up at the expense of system resources.
1926 		 */
1927 		writel(0, rxq->bd.reg_desc_active);
1928 	}
1929 	rxq->bd.cur = bdp;
1930 
1931 	if (xdp_result & FEC_ENET_XDP_REDIR)
1932 		xdp_do_flush();
1933 
1934 	return pkt_received;
1935 }
1936 
1937 static int fec_enet_rx(struct net_device *ndev, int budget)
1938 {
1939 	struct fec_enet_private *fep = netdev_priv(ndev);
1940 	int i, done = 0;
1941 
1942 	/* Make sure that AVB queues are processed first. */
1943 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1944 		done += fec_enet_rx_queue(ndev, i, budget - done);
1945 
1946 	return done;
1947 }
1948 
1949 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1950 {
1951 	uint int_events;
1952 
1953 	int_events = readl(fep->hwp + FEC_IEVENT);
1954 
1955 	/* Don't clear MDIO events, we poll for those */
1956 	int_events &= ~FEC_ENET_MII;
1957 
1958 	writel(int_events, fep->hwp + FEC_IEVENT);
1959 
1960 	return int_events != 0;
1961 }
1962 
1963 static irqreturn_t
1964 fec_enet_interrupt(int irq, void *dev_id)
1965 {
1966 	struct net_device *ndev = dev_id;
1967 	struct fec_enet_private *fep = netdev_priv(ndev);
1968 	irqreturn_t ret = IRQ_NONE;
1969 
1970 	if (fec_enet_collect_events(fep) && fep->link) {
1971 		ret = IRQ_HANDLED;
1972 
1973 		if (napi_schedule_prep(&fep->napi)) {
1974 			/* Disable interrupts */
1975 			writel(0, fep->hwp + FEC_IMASK);
1976 			__napi_schedule(&fep->napi);
1977 		}
1978 	}
1979 
1980 	return ret;
1981 }
1982 
1983 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1984 {
1985 	struct net_device *ndev = napi->dev;
1986 	struct fec_enet_private *fep = netdev_priv(ndev);
1987 	int done = 0;
1988 
1989 	do {
1990 		done += fec_enet_rx(ndev, budget - done);
1991 		fec_enet_tx(ndev, budget);
1992 	} while ((done < budget) && fec_enet_collect_events(fep));
1993 
1994 	if (done < budget) {
1995 		napi_complete_done(napi, done);
1996 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1997 	}
1998 
1999 	return done;
2000 }
2001 
2002 /* ------------------------------------------------------------------------- */
2003 static int fec_get_mac(struct net_device *ndev)
2004 {
2005 	struct fec_enet_private *fep = netdev_priv(ndev);
2006 	unsigned char *iap, tmpaddr[ETH_ALEN];
2007 	int ret;
2008 
2009 	/*
2010 	 * try to get mac address in following order:
2011 	 *
2012 	 * 1) module parameter via kernel command line in form
2013 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2014 	 */
2015 	iap = macaddr;
2016 
2017 	/*
2018 	 * 2) from device tree data
2019 	 */
2020 	if (!is_valid_ether_addr(iap)) {
2021 		struct device_node *np = fep->pdev->dev.of_node;
2022 		if (np) {
2023 			ret = of_get_mac_address(np, tmpaddr);
2024 			if (!ret)
2025 				iap = tmpaddr;
2026 			else if (ret == -EPROBE_DEFER)
2027 				return ret;
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * 3) from flash or fuse (via platform data)
2033 	 */
2034 	if (!is_valid_ether_addr(iap)) {
2035 #ifdef CONFIG_M5272
2036 		if (FEC_FLASHMAC)
2037 			iap = (unsigned char *)FEC_FLASHMAC;
2038 #else
2039 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2040 
2041 		if (pdata)
2042 			iap = (unsigned char *)&pdata->mac;
2043 #endif
2044 	}
2045 
2046 	/*
2047 	 * 4) FEC mac registers set by bootloader
2048 	 */
2049 	if (!is_valid_ether_addr(iap)) {
2050 		*((__be32 *) &tmpaddr[0]) =
2051 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2052 		*((__be16 *) &tmpaddr[4]) =
2053 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2054 		iap = &tmpaddr[0];
2055 	}
2056 
2057 	/*
2058 	 * 5) random mac address
2059 	 */
2060 	if (!is_valid_ether_addr(iap)) {
2061 		/* Report it and use a random ethernet address instead */
2062 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2063 		eth_hw_addr_random(ndev);
2064 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2065 			 ndev->dev_addr);
2066 		return 0;
2067 	}
2068 
2069 	/* Adjust MAC if using macaddr */
2070 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2071 
2072 	return 0;
2073 }
2074 
2075 /* ------------------------------------------------------------------------- */
2076 
2077 /*
2078  * Phy section
2079  */
2080 
2081 /* LPI Sleep Ts count base on tx clk (clk_ref).
2082  * The lpi sleep cnt value = X us / (cycle_ns).
2083  */
2084 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2085 {
2086 	struct fec_enet_private *fep = netdev_priv(ndev);
2087 
2088 	return us * (fep->clk_ref_rate / 1000) / 1000;
2089 }
2090 
2091 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2092 				 bool enable)
2093 {
2094 	struct fec_enet_private *fep = netdev_priv(ndev);
2095 	unsigned int sleep_cycle, wake_cycle;
2096 
2097 	if (enable) {
2098 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2099 		wake_cycle = sleep_cycle;
2100 	} else {
2101 		sleep_cycle = 0;
2102 		wake_cycle = 0;
2103 	}
2104 
2105 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2106 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2107 
2108 	return 0;
2109 }
2110 
2111 static void fec_enet_adjust_link(struct net_device *ndev)
2112 {
2113 	struct fec_enet_private *fep = netdev_priv(ndev);
2114 	struct phy_device *phy_dev = ndev->phydev;
2115 	int status_change = 0;
2116 
2117 	/*
2118 	 * If the netdev is down, or is going down, we're not interested
2119 	 * in link state events, so just mark our idea of the link as down
2120 	 * and ignore the event.
2121 	 */
2122 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2123 		fep->link = 0;
2124 	} else if (phy_dev->link) {
2125 		if (!fep->link) {
2126 			fep->link = phy_dev->link;
2127 			status_change = 1;
2128 		}
2129 
2130 		if (fep->full_duplex != phy_dev->duplex) {
2131 			fep->full_duplex = phy_dev->duplex;
2132 			status_change = 1;
2133 		}
2134 
2135 		if (phy_dev->speed != fep->speed) {
2136 			fep->speed = phy_dev->speed;
2137 			status_change = 1;
2138 		}
2139 
2140 		/* if any of the above changed restart the FEC */
2141 		if (status_change) {
2142 			netif_stop_queue(ndev);
2143 			napi_disable(&fep->napi);
2144 			netif_tx_lock_bh(ndev);
2145 			fec_restart(ndev);
2146 			netif_tx_wake_all_queues(ndev);
2147 			netif_tx_unlock_bh(ndev);
2148 			napi_enable(&fep->napi);
2149 		}
2150 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2151 			fec_enet_eee_mode_set(ndev,
2152 					      phy_dev->eee_cfg.tx_lpi_timer,
2153 					      phy_dev->enable_tx_lpi);
2154 	} else {
2155 		if (fep->link) {
2156 			netif_stop_queue(ndev);
2157 			napi_disable(&fep->napi);
2158 			netif_tx_lock_bh(ndev);
2159 			fec_stop(ndev);
2160 			netif_tx_unlock_bh(ndev);
2161 			napi_enable(&fep->napi);
2162 			fep->link = phy_dev->link;
2163 			status_change = 1;
2164 		}
2165 	}
2166 
2167 	if (status_change)
2168 		phy_print_status(phy_dev);
2169 }
2170 
2171 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2172 {
2173 	uint ievent;
2174 	int ret;
2175 
2176 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2177 					ievent & FEC_ENET_MII, 2, 30000);
2178 
2179 	if (!ret)
2180 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2181 
2182 	return ret;
2183 }
2184 
2185 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2186 {
2187 	struct fec_enet_private *fep = bus->priv;
2188 	struct device *dev = &fep->pdev->dev;
2189 	int ret = 0, frame_start, frame_addr, frame_op;
2190 
2191 	ret = pm_runtime_resume_and_get(dev);
2192 	if (ret < 0)
2193 		return ret;
2194 
2195 	/* C22 read */
2196 	frame_op = FEC_MMFR_OP_READ;
2197 	frame_start = FEC_MMFR_ST;
2198 	frame_addr = regnum;
2199 
2200 	/* start a read op */
2201 	writel(frame_start | frame_op |
2202 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2203 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2204 
2205 	/* wait for end of transfer */
2206 	ret = fec_enet_mdio_wait(fep);
2207 	if (ret) {
2208 		netdev_err(fep->netdev, "MDIO read timeout\n");
2209 		goto out;
2210 	}
2211 
2212 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2213 
2214 out:
2215 	pm_runtime_mark_last_busy(dev);
2216 	pm_runtime_put_autosuspend(dev);
2217 
2218 	return ret;
2219 }
2220 
2221 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2222 				  int devad, int regnum)
2223 {
2224 	struct fec_enet_private *fep = bus->priv;
2225 	struct device *dev = &fep->pdev->dev;
2226 	int ret = 0, frame_start, frame_op;
2227 
2228 	ret = pm_runtime_resume_and_get(dev);
2229 	if (ret < 0)
2230 		return ret;
2231 
2232 	frame_start = FEC_MMFR_ST_C45;
2233 
2234 	/* write address */
2235 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2236 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2237 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2238 	       fep->hwp + FEC_MII_DATA);
2239 
2240 	/* wait for end of transfer */
2241 	ret = fec_enet_mdio_wait(fep);
2242 	if (ret) {
2243 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2244 		goto out;
2245 	}
2246 
2247 	frame_op = FEC_MMFR_OP_READ_C45;
2248 
2249 	/* start a read op */
2250 	writel(frame_start | frame_op |
2251 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2252 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2253 
2254 	/* wait for end of transfer */
2255 	ret = fec_enet_mdio_wait(fep);
2256 	if (ret) {
2257 		netdev_err(fep->netdev, "MDIO read timeout\n");
2258 		goto out;
2259 	}
2260 
2261 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2262 
2263 out:
2264 	pm_runtime_mark_last_busy(dev);
2265 	pm_runtime_put_autosuspend(dev);
2266 
2267 	return ret;
2268 }
2269 
2270 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2271 				   u16 value)
2272 {
2273 	struct fec_enet_private *fep = bus->priv;
2274 	struct device *dev = &fep->pdev->dev;
2275 	int ret, frame_start, frame_addr;
2276 
2277 	ret = pm_runtime_resume_and_get(dev);
2278 	if (ret < 0)
2279 		return ret;
2280 
2281 	/* C22 write */
2282 	frame_start = FEC_MMFR_ST;
2283 	frame_addr = regnum;
2284 
2285 	/* start a write op */
2286 	writel(frame_start | FEC_MMFR_OP_WRITE |
2287 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2288 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2289 	       fep->hwp + FEC_MII_DATA);
2290 
2291 	/* wait for end of transfer */
2292 	ret = fec_enet_mdio_wait(fep);
2293 	if (ret)
2294 		netdev_err(fep->netdev, "MDIO write timeout\n");
2295 
2296 	pm_runtime_mark_last_busy(dev);
2297 	pm_runtime_put_autosuspend(dev);
2298 
2299 	return ret;
2300 }
2301 
2302 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2303 				   int devad, int regnum, u16 value)
2304 {
2305 	struct fec_enet_private *fep = bus->priv;
2306 	struct device *dev = &fep->pdev->dev;
2307 	int ret, frame_start;
2308 
2309 	ret = pm_runtime_resume_and_get(dev);
2310 	if (ret < 0)
2311 		return ret;
2312 
2313 	frame_start = FEC_MMFR_ST_C45;
2314 
2315 	/* write address */
2316 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2317 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2318 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2319 	       fep->hwp + FEC_MII_DATA);
2320 
2321 	/* wait for end of transfer */
2322 	ret = fec_enet_mdio_wait(fep);
2323 	if (ret) {
2324 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2325 		goto out;
2326 	}
2327 
2328 	/* start a write op */
2329 	writel(frame_start | FEC_MMFR_OP_WRITE |
2330 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2331 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2332 	       fep->hwp + FEC_MII_DATA);
2333 
2334 	/* wait for end of transfer */
2335 	ret = fec_enet_mdio_wait(fep);
2336 	if (ret)
2337 		netdev_err(fep->netdev, "MDIO write timeout\n");
2338 
2339 out:
2340 	pm_runtime_mark_last_busy(dev);
2341 	pm_runtime_put_autosuspend(dev);
2342 
2343 	return ret;
2344 }
2345 
2346 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2347 {
2348 	struct fec_enet_private *fep = netdev_priv(ndev);
2349 	struct phy_device *phy_dev = ndev->phydev;
2350 
2351 	if (phy_dev) {
2352 		phy_reset_after_clk_enable(phy_dev);
2353 	} else if (fep->phy_node) {
2354 		/*
2355 		 * If the PHY still is not bound to the MAC, but there is
2356 		 * OF PHY node and a matching PHY device instance already,
2357 		 * use the OF PHY node to obtain the PHY device instance,
2358 		 * and then use that PHY device instance when triggering
2359 		 * the PHY reset.
2360 		 */
2361 		phy_dev = of_phy_find_device(fep->phy_node);
2362 		phy_reset_after_clk_enable(phy_dev);
2363 		put_device(&phy_dev->mdio.dev);
2364 	}
2365 }
2366 
2367 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2368 {
2369 	struct fec_enet_private *fep = netdev_priv(ndev);
2370 	int ret;
2371 
2372 	if (enable) {
2373 		ret = clk_prepare_enable(fep->clk_enet_out);
2374 		if (ret)
2375 			return ret;
2376 
2377 		if (fep->clk_ptp) {
2378 			mutex_lock(&fep->ptp_clk_mutex);
2379 			ret = clk_prepare_enable(fep->clk_ptp);
2380 			if (ret) {
2381 				mutex_unlock(&fep->ptp_clk_mutex);
2382 				goto failed_clk_ptp;
2383 			} else {
2384 				fep->ptp_clk_on = true;
2385 			}
2386 			mutex_unlock(&fep->ptp_clk_mutex);
2387 		}
2388 
2389 		ret = clk_prepare_enable(fep->clk_ref);
2390 		if (ret)
2391 			goto failed_clk_ref;
2392 
2393 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2394 		if (ret)
2395 			goto failed_clk_2x_txclk;
2396 
2397 		fec_enet_phy_reset_after_clk_enable(ndev);
2398 	} else {
2399 		clk_disable_unprepare(fep->clk_enet_out);
2400 		if (fep->clk_ptp) {
2401 			mutex_lock(&fep->ptp_clk_mutex);
2402 			clk_disable_unprepare(fep->clk_ptp);
2403 			fep->ptp_clk_on = false;
2404 			mutex_unlock(&fep->ptp_clk_mutex);
2405 		}
2406 		clk_disable_unprepare(fep->clk_ref);
2407 		clk_disable_unprepare(fep->clk_2x_txclk);
2408 	}
2409 
2410 	return 0;
2411 
2412 failed_clk_2x_txclk:
2413 	if (fep->clk_ref)
2414 		clk_disable_unprepare(fep->clk_ref);
2415 failed_clk_ref:
2416 	if (fep->clk_ptp) {
2417 		mutex_lock(&fep->ptp_clk_mutex);
2418 		clk_disable_unprepare(fep->clk_ptp);
2419 		fep->ptp_clk_on = false;
2420 		mutex_unlock(&fep->ptp_clk_mutex);
2421 	}
2422 failed_clk_ptp:
2423 	clk_disable_unprepare(fep->clk_enet_out);
2424 
2425 	return ret;
2426 }
2427 
2428 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2429 				      struct device_node *np)
2430 {
2431 	u32 rgmii_tx_delay, rgmii_rx_delay;
2432 
2433 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2434 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2435 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2436 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2437 			return -EINVAL;
2438 		} else if (rgmii_tx_delay == 2000) {
2439 			fep->rgmii_txc_dly = true;
2440 		}
2441 	}
2442 
2443 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2444 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2445 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2446 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2447 			return -EINVAL;
2448 		} else if (rgmii_rx_delay == 2000) {
2449 			fep->rgmii_rxc_dly = true;
2450 		}
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 static int fec_enet_mii_probe(struct net_device *ndev)
2457 {
2458 	struct fec_enet_private *fep = netdev_priv(ndev);
2459 	struct phy_device *phy_dev = NULL;
2460 	char mdio_bus_id[MII_BUS_ID_SIZE];
2461 	char phy_name[MII_BUS_ID_SIZE + 3];
2462 	int phy_id;
2463 	int dev_id = fep->dev_id;
2464 
2465 	if (fep->phy_node) {
2466 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2467 					 &fec_enet_adjust_link, 0,
2468 					 fep->phy_interface);
2469 		if (!phy_dev) {
2470 			netdev_err(ndev, "Unable to connect to phy\n");
2471 			return -ENODEV;
2472 		}
2473 	} else {
2474 		/* check for attached phy */
2475 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2476 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2477 				continue;
2478 			if (dev_id--)
2479 				continue;
2480 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2481 			break;
2482 		}
2483 
2484 		if (phy_id >= PHY_MAX_ADDR) {
2485 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2486 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2487 			phy_id = 0;
2488 		}
2489 
2490 		snprintf(phy_name, sizeof(phy_name),
2491 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2492 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2493 				      fep->phy_interface);
2494 	}
2495 
2496 	if (IS_ERR(phy_dev)) {
2497 		netdev_err(ndev, "could not attach to PHY\n");
2498 		return PTR_ERR(phy_dev);
2499 	}
2500 
2501 	/* mask with MAC supported features */
2502 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2503 		phy_set_max_speed(phy_dev, 1000);
2504 		phy_remove_link_mode(phy_dev,
2505 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2506 #if !defined(CONFIG_M5272)
2507 		phy_support_sym_pause(phy_dev);
2508 #endif
2509 	}
2510 	else
2511 		phy_set_max_speed(phy_dev, 100);
2512 
2513 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2514 		phy_support_eee(phy_dev);
2515 
2516 	fep->link = 0;
2517 	fep->full_duplex = 0;
2518 
2519 	phy_attached_info(phy_dev);
2520 
2521 	return 0;
2522 }
2523 
2524 static int fec_enet_mii_init(struct platform_device *pdev)
2525 {
2526 	static struct mii_bus *fec0_mii_bus;
2527 	struct net_device *ndev = platform_get_drvdata(pdev);
2528 	struct fec_enet_private *fep = netdev_priv(ndev);
2529 	bool suppress_preamble = false;
2530 	struct phy_device *phydev;
2531 	struct device_node *node;
2532 	int err = -ENXIO;
2533 	u32 mii_speed, holdtime;
2534 	u32 bus_freq;
2535 	int addr;
2536 
2537 	/*
2538 	 * The i.MX28 dual fec interfaces are not equal.
2539 	 * Here are the differences:
2540 	 *
2541 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2542 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2543 	 *  - external phys can only be configured by fec0
2544 	 *
2545 	 * That is to say fec1 can not work independently. It only works
2546 	 * when fec0 is working. The reason behind this design is that the
2547 	 * second interface is added primarily for Switch mode.
2548 	 *
2549 	 * Because of the last point above, both phys are attached on fec0
2550 	 * mdio interface in board design, and need to be configured by
2551 	 * fec0 mii_bus.
2552 	 */
2553 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2554 		/* fec1 uses fec0 mii_bus */
2555 		if (mii_cnt && fec0_mii_bus) {
2556 			fep->mii_bus = fec0_mii_bus;
2557 			mii_cnt++;
2558 			return 0;
2559 		}
2560 		return -ENOENT;
2561 	}
2562 
2563 	bus_freq = 2500000; /* 2.5MHz by default */
2564 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2565 	if (node) {
2566 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2567 		suppress_preamble = of_property_read_bool(node,
2568 							  "suppress-preamble");
2569 	}
2570 
2571 	/*
2572 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2573 	 *
2574 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2575 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2576 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2577 	 * document.
2578 	 */
2579 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2580 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2581 		mii_speed--;
2582 	if (mii_speed > 63) {
2583 		dev_err(&pdev->dev,
2584 			"fec clock (%lu) too fast to get right mii speed\n",
2585 			clk_get_rate(fep->clk_ipg));
2586 		err = -EINVAL;
2587 		goto err_out;
2588 	}
2589 
2590 	/*
2591 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2592 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2593 	 * versions are RAZ there, so just ignore the difference and write the
2594 	 * register always.
2595 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2596 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2597 	 * output.
2598 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2599 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2600 	 * holdtime cannot result in a value greater than 3.
2601 	 */
2602 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2603 
2604 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2605 
2606 	if (suppress_preamble)
2607 		fep->phy_speed |= BIT(7);
2608 
2609 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2610 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2611 		 * MII event generation condition:
2612 		 * - writing MSCR:
2613 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2614 		 *	  mscr_reg_data_in[7:0] != 0
2615 		 * - writing MMFR:
2616 		 *	- mscr[7:0]_not_zero
2617 		 */
2618 		writel(0, fep->hwp + FEC_MII_DATA);
2619 	}
2620 
2621 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2622 
2623 	/* Clear any pending transaction complete indication */
2624 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2625 
2626 	fep->mii_bus = mdiobus_alloc();
2627 	if (fep->mii_bus == NULL) {
2628 		err = -ENOMEM;
2629 		goto err_out;
2630 	}
2631 
2632 	fep->mii_bus->name = "fec_enet_mii_bus";
2633 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2634 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2635 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2636 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2637 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2638 	}
2639 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2640 		pdev->name, fep->dev_id + 1);
2641 	fep->mii_bus->priv = fep;
2642 	fep->mii_bus->parent = &pdev->dev;
2643 
2644 	err = of_mdiobus_register(fep->mii_bus, node);
2645 	if (err)
2646 		goto err_out_free_mdiobus;
2647 	of_node_put(node);
2648 
2649 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2650 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2651 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2652 		if (phydev)
2653 			phydev->mac_managed_pm = true;
2654 	}
2655 
2656 	mii_cnt++;
2657 
2658 	/* save fec0 mii_bus */
2659 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2660 		fec0_mii_bus = fep->mii_bus;
2661 
2662 	return 0;
2663 
2664 err_out_free_mdiobus:
2665 	mdiobus_free(fep->mii_bus);
2666 err_out:
2667 	of_node_put(node);
2668 	return err;
2669 }
2670 
2671 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2672 {
2673 	if (--mii_cnt == 0) {
2674 		mdiobus_unregister(fep->mii_bus);
2675 		mdiobus_free(fep->mii_bus);
2676 	}
2677 }
2678 
2679 static void fec_enet_get_drvinfo(struct net_device *ndev,
2680 				 struct ethtool_drvinfo *info)
2681 {
2682 	struct fec_enet_private *fep = netdev_priv(ndev);
2683 
2684 	strscpy(info->driver, fep->pdev->dev.driver->name,
2685 		sizeof(info->driver));
2686 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2687 }
2688 
2689 static int fec_enet_get_regs_len(struct net_device *ndev)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 	struct resource *r;
2693 	int s = 0;
2694 
2695 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2696 	if (r)
2697 		s = resource_size(r);
2698 
2699 	return s;
2700 }
2701 
2702 /* List of registers that can be safety be read to dump them with ethtool */
2703 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2704 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2705 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2706 static __u32 fec_enet_register_version = 2;
2707 static u32 fec_enet_register_offset[] = {
2708 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2709 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2710 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2711 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2712 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2713 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2714 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2715 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2716 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2717 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2718 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2719 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2720 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2721 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2722 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2723 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2724 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2725 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2726 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2727 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2728 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2729 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2730 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2731 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2732 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2733 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2734 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2735 };
2736 /* for i.MX6ul */
2737 static u32 fec_enet_register_offset_6ul[] = {
2738 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2739 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2740 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2741 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2742 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2743 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2744 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2745 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2746 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2747 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2748 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2749 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2750 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2751 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2752 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2753 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2754 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2755 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2756 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2757 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2758 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2759 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2760 };
2761 #else
2762 static __u32 fec_enet_register_version = 1;
2763 static u32 fec_enet_register_offset[] = {
2764 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2765 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2766 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2767 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2768 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2769 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2770 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2771 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2772 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2773 };
2774 #endif
2775 
2776 static void fec_enet_get_regs(struct net_device *ndev,
2777 			      struct ethtool_regs *regs, void *regbuf)
2778 {
2779 	struct fec_enet_private *fep = netdev_priv(ndev);
2780 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2781 	struct device *dev = &fep->pdev->dev;
2782 	u32 *buf = (u32 *)regbuf;
2783 	u32 i, off;
2784 	int ret;
2785 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2786 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2787 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2788 	u32 *reg_list;
2789 	u32 reg_cnt;
2790 
2791 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2792 		reg_list = fec_enet_register_offset;
2793 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2794 	} else {
2795 		reg_list = fec_enet_register_offset_6ul;
2796 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2797 	}
2798 #else
2799 	/* coldfire */
2800 	static u32 *reg_list = fec_enet_register_offset;
2801 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2802 #endif
2803 	ret = pm_runtime_resume_and_get(dev);
2804 	if (ret < 0)
2805 		return;
2806 
2807 	regs->version = fec_enet_register_version;
2808 
2809 	memset(buf, 0, regs->len);
2810 
2811 	for (i = 0; i < reg_cnt; i++) {
2812 		off = reg_list[i];
2813 
2814 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2815 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2816 			continue;
2817 
2818 		off >>= 2;
2819 		buf[off] = readl(&theregs[off]);
2820 	}
2821 
2822 	pm_runtime_mark_last_busy(dev);
2823 	pm_runtime_put_autosuspend(dev);
2824 }
2825 
2826 static int fec_enet_get_ts_info(struct net_device *ndev,
2827 				struct kernel_ethtool_ts_info *info)
2828 {
2829 	struct fec_enet_private *fep = netdev_priv(ndev);
2830 
2831 	if (fep->bufdesc_ex) {
2832 
2833 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2834 					SOF_TIMESTAMPING_TX_HARDWARE |
2835 					SOF_TIMESTAMPING_RX_HARDWARE |
2836 					SOF_TIMESTAMPING_RAW_HARDWARE;
2837 		if (fep->ptp_clock)
2838 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2839 
2840 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2841 				 (1 << HWTSTAMP_TX_ON);
2842 
2843 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2844 				   (1 << HWTSTAMP_FILTER_ALL);
2845 		return 0;
2846 	} else {
2847 		return ethtool_op_get_ts_info(ndev, info);
2848 	}
2849 }
2850 
2851 #if !defined(CONFIG_M5272)
2852 
2853 static void fec_enet_get_pauseparam(struct net_device *ndev,
2854 				    struct ethtool_pauseparam *pause)
2855 {
2856 	struct fec_enet_private *fep = netdev_priv(ndev);
2857 
2858 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2859 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2860 	pause->rx_pause = pause->tx_pause;
2861 }
2862 
2863 static int fec_enet_set_pauseparam(struct net_device *ndev,
2864 				   struct ethtool_pauseparam *pause)
2865 {
2866 	struct fec_enet_private *fep = netdev_priv(ndev);
2867 
2868 	if (!ndev->phydev)
2869 		return -ENODEV;
2870 
2871 	if (pause->tx_pause != pause->rx_pause) {
2872 		netdev_info(ndev,
2873 			"hardware only support enable/disable both tx and rx");
2874 		return -EINVAL;
2875 	}
2876 
2877 	fep->pause_flag = 0;
2878 
2879 	/* tx pause must be same as rx pause */
2880 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2881 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2882 
2883 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2884 			  pause->autoneg);
2885 
2886 	if (pause->autoneg) {
2887 		if (netif_running(ndev))
2888 			fec_stop(ndev);
2889 		phy_start_aneg(ndev->phydev);
2890 	}
2891 	if (netif_running(ndev)) {
2892 		napi_disable(&fep->napi);
2893 		netif_tx_lock_bh(ndev);
2894 		fec_restart(ndev);
2895 		netif_tx_wake_all_queues(ndev);
2896 		netif_tx_unlock_bh(ndev);
2897 		napi_enable(&fep->napi);
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static const struct fec_stat {
2904 	char name[ETH_GSTRING_LEN];
2905 	u16 offset;
2906 } fec_stats[] = {
2907 	/* RMON TX */
2908 	{ "tx_dropped", RMON_T_DROP },
2909 	{ "tx_packets", RMON_T_PACKETS },
2910 	{ "tx_broadcast", RMON_T_BC_PKT },
2911 	{ "tx_multicast", RMON_T_MC_PKT },
2912 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2913 	{ "tx_undersize", RMON_T_UNDERSIZE },
2914 	{ "tx_oversize", RMON_T_OVERSIZE },
2915 	{ "tx_fragment", RMON_T_FRAG },
2916 	{ "tx_jabber", RMON_T_JAB },
2917 	{ "tx_collision", RMON_T_COL },
2918 	{ "tx_64byte", RMON_T_P64 },
2919 	{ "tx_65to127byte", RMON_T_P65TO127 },
2920 	{ "tx_128to255byte", RMON_T_P128TO255 },
2921 	{ "tx_256to511byte", RMON_T_P256TO511 },
2922 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2923 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2924 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2925 	{ "tx_octets", RMON_T_OCTETS },
2926 
2927 	/* IEEE TX */
2928 	{ "IEEE_tx_drop", IEEE_T_DROP },
2929 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2930 	{ "IEEE_tx_1col", IEEE_T_1COL },
2931 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2932 	{ "IEEE_tx_def", IEEE_T_DEF },
2933 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2934 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2935 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2936 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2937 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2938 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2939 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2940 
2941 	/* RMON RX */
2942 	{ "rx_packets", RMON_R_PACKETS },
2943 	{ "rx_broadcast", RMON_R_BC_PKT },
2944 	{ "rx_multicast", RMON_R_MC_PKT },
2945 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2946 	{ "rx_undersize", RMON_R_UNDERSIZE },
2947 	{ "rx_oversize", RMON_R_OVERSIZE },
2948 	{ "rx_fragment", RMON_R_FRAG },
2949 	{ "rx_jabber", RMON_R_JAB },
2950 	{ "rx_64byte", RMON_R_P64 },
2951 	{ "rx_65to127byte", RMON_R_P65TO127 },
2952 	{ "rx_128to255byte", RMON_R_P128TO255 },
2953 	{ "rx_256to511byte", RMON_R_P256TO511 },
2954 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2955 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2956 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2957 	{ "rx_octets", RMON_R_OCTETS },
2958 
2959 	/* IEEE RX */
2960 	{ "IEEE_rx_drop", IEEE_R_DROP },
2961 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2962 	{ "IEEE_rx_crc", IEEE_R_CRC },
2963 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2964 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2965 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2966 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2967 };
2968 
2969 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2970 
2971 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2972 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2973 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2974 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2975 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2976 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2977 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2978 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2979 };
2980 
2981 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2982 {
2983 	struct fec_enet_private *fep = netdev_priv(dev);
2984 	int i;
2985 
2986 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2987 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2988 }
2989 
2990 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2991 {
2992 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2993 	struct fec_enet_priv_rx_q *rxq;
2994 	int i, j;
2995 
2996 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2997 		rxq = fep->rx_queue[i];
2998 
2999 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3000 			xdp_stats[j] += rxq->stats[j];
3001 	}
3002 
3003 	memcpy(data, xdp_stats, sizeof(xdp_stats));
3004 }
3005 
3006 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3007 {
3008 #ifdef CONFIG_PAGE_POOL_STATS
3009 	struct page_pool_stats stats = {};
3010 	struct fec_enet_priv_rx_q *rxq;
3011 	int i;
3012 
3013 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3014 		rxq = fep->rx_queue[i];
3015 
3016 		if (!rxq->page_pool)
3017 			continue;
3018 
3019 		page_pool_get_stats(rxq->page_pool, &stats);
3020 	}
3021 
3022 	page_pool_ethtool_stats_get(data, &stats);
3023 #endif
3024 }
3025 
3026 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3027 				       struct ethtool_stats *stats, u64 *data)
3028 {
3029 	struct fec_enet_private *fep = netdev_priv(dev);
3030 
3031 	if (netif_running(dev))
3032 		fec_enet_update_ethtool_stats(dev);
3033 
3034 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3035 	data += FEC_STATS_SIZE / sizeof(u64);
3036 
3037 	fec_enet_get_xdp_stats(fep, data);
3038 	data += XDP_STATS_TOTAL;
3039 
3040 	fec_enet_page_pool_stats(fep, data);
3041 }
3042 
3043 static void fec_enet_get_strings(struct net_device *netdev,
3044 	u32 stringset, u8 *data)
3045 {
3046 	int i;
3047 	switch (stringset) {
3048 	case ETH_SS_STATS:
3049 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3050 			ethtool_puts(&data, fec_stats[i].name);
3051 		}
3052 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3053 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3054 		}
3055 		page_pool_ethtool_stats_get_strings(data);
3056 
3057 		break;
3058 	case ETH_SS_TEST:
3059 		net_selftest_get_strings(data);
3060 		break;
3061 	}
3062 }
3063 
3064 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3065 {
3066 	int count;
3067 
3068 	switch (sset) {
3069 	case ETH_SS_STATS:
3070 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3071 		count += page_pool_ethtool_stats_get_count();
3072 		return count;
3073 
3074 	case ETH_SS_TEST:
3075 		return net_selftest_get_count();
3076 	default:
3077 		return -EOPNOTSUPP;
3078 	}
3079 }
3080 
3081 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3082 {
3083 	struct fec_enet_private *fep = netdev_priv(dev);
3084 	struct fec_enet_priv_rx_q *rxq;
3085 	int i, j;
3086 
3087 	/* Disable MIB statistics counters */
3088 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3089 
3090 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3091 		writel(0, fep->hwp + fec_stats[i].offset);
3092 
3093 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3094 		rxq = fep->rx_queue[i];
3095 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3096 			rxq->stats[j] = 0;
3097 	}
3098 
3099 	/* Don't disable MIB statistics counters */
3100 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3101 }
3102 
3103 #else	/* !defined(CONFIG_M5272) */
3104 #define FEC_STATS_SIZE	0
3105 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3106 {
3107 }
3108 
3109 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3110 {
3111 }
3112 #endif /* !defined(CONFIG_M5272) */
3113 
3114 /* ITR clock source is enet system clock (clk_ahb).
3115  * TCTT unit is cycle_ns * 64 cycle
3116  * So, the ICTT value = X us / (cycle_ns * 64)
3117  */
3118 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3119 {
3120 	struct fec_enet_private *fep = netdev_priv(ndev);
3121 
3122 	return us * (fep->itr_clk_rate / 64000) / 1000;
3123 }
3124 
3125 /* Set threshold for interrupt coalescing */
3126 static void fec_enet_itr_coal_set(struct net_device *ndev)
3127 {
3128 	struct fec_enet_private *fep = netdev_priv(ndev);
3129 	u32 rx_itr = 0, tx_itr = 0;
3130 	int rx_ictt, tx_ictt;
3131 
3132 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3133 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3134 
3135 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3136 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3137 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3138 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3139 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3140 	}
3141 
3142 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3143 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3144 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3145 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3146 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3147 	}
3148 
3149 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3150 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3151 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3152 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3153 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3154 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3155 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3156 	}
3157 }
3158 
3159 static int fec_enet_get_coalesce(struct net_device *ndev,
3160 				 struct ethtool_coalesce *ec,
3161 				 struct kernel_ethtool_coalesce *kernel_coal,
3162 				 struct netlink_ext_ack *extack)
3163 {
3164 	struct fec_enet_private *fep = netdev_priv(ndev);
3165 
3166 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3167 		return -EOPNOTSUPP;
3168 
3169 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3170 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3171 
3172 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3173 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3174 
3175 	return 0;
3176 }
3177 
3178 static int fec_enet_set_coalesce(struct net_device *ndev,
3179 				 struct ethtool_coalesce *ec,
3180 				 struct kernel_ethtool_coalesce *kernel_coal,
3181 				 struct netlink_ext_ack *extack)
3182 {
3183 	struct fec_enet_private *fep = netdev_priv(ndev);
3184 	struct device *dev = &fep->pdev->dev;
3185 	unsigned int cycle;
3186 
3187 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3188 		return -EOPNOTSUPP;
3189 
3190 	if (ec->rx_max_coalesced_frames > 255) {
3191 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3192 		return -EINVAL;
3193 	}
3194 
3195 	if (ec->tx_max_coalesced_frames > 255) {
3196 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3197 		return -EINVAL;
3198 	}
3199 
3200 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3201 	if (cycle > 0xFFFF) {
3202 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3203 		return -EINVAL;
3204 	}
3205 
3206 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3207 	if (cycle > 0xFFFF) {
3208 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3209 		return -EINVAL;
3210 	}
3211 
3212 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3213 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3214 
3215 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3216 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3217 
3218 	fec_enet_itr_coal_set(ndev);
3219 
3220 	return 0;
3221 }
3222 
3223 static int
3224 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3225 {
3226 	struct fec_enet_private *fep = netdev_priv(ndev);
3227 
3228 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3229 		return -EOPNOTSUPP;
3230 
3231 	if (!netif_running(ndev))
3232 		return -ENETDOWN;
3233 
3234 	return phy_ethtool_get_eee(ndev->phydev, edata);
3235 }
3236 
3237 static int
3238 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3239 {
3240 	struct fec_enet_private *fep = netdev_priv(ndev);
3241 
3242 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3243 		return -EOPNOTSUPP;
3244 
3245 	if (!netif_running(ndev))
3246 		return -ENETDOWN;
3247 
3248 	return phy_ethtool_set_eee(ndev->phydev, edata);
3249 }
3250 
3251 static void
3252 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3253 {
3254 	struct fec_enet_private *fep = netdev_priv(ndev);
3255 
3256 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3257 		wol->supported = WAKE_MAGIC;
3258 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3259 	} else {
3260 		wol->supported = wol->wolopts = 0;
3261 	}
3262 }
3263 
3264 static int
3265 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3266 {
3267 	struct fec_enet_private *fep = netdev_priv(ndev);
3268 
3269 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3270 		return -EINVAL;
3271 
3272 	if (wol->wolopts & ~WAKE_MAGIC)
3273 		return -EINVAL;
3274 
3275 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3276 	if (device_may_wakeup(&ndev->dev))
3277 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3278 	else
3279 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3280 
3281 	return 0;
3282 }
3283 
3284 static const struct ethtool_ops fec_enet_ethtool_ops = {
3285 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3286 				     ETHTOOL_COALESCE_MAX_FRAMES,
3287 	.get_drvinfo		= fec_enet_get_drvinfo,
3288 	.get_regs_len		= fec_enet_get_regs_len,
3289 	.get_regs		= fec_enet_get_regs,
3290 	.nway_reset		= phy_ethtool_nway_reset,
3291 	.get_link		= ethtool_op_get_link,
3292 	.get_coalesce		= fec_enet_get_coalesce,
3293 	.set_coalesce		= fec_enet_set_coalesce,
3294 #ifndef CONFIG_M5272
3295 	.get_pauseparam		= fec_enet_get_pauseparam,
3296 	.set_pauseparam		= fec_enet_set_pauseparam,
3297 	.get_strings		= fec_enet_get_strings,
3298 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3299 	.get_sset_count		= fec_enet_get_sset_count,
3300 #endif
3301 	.get_ts_info		= fec_enet_get_ts_info,
3302 	.get_wol		= fec_enet_get_wol,
3303 	.set_wol		= fec_enet_set_wol,
3304 	.get_eee		= fec_enet_get_eee,
3305 	.set_eee		= fec_enet_set_eee,
3306 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3307 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3308 	.self_test		= net_selftest,
3309 };
3310 
3311 static void fec_enet_free_buffers(struct net_device *ndev)
3312 {
3313 	struct fec_enet_private *fep = netdev_priv(ndev);
3314 	unsigned int i;
3315 	struct fec_enet_priv_tx_q *txq;
3316 	struct fec_enet_priv_rx_q *rxq;
3317 	unsigned int q;
3318 
3319 	for (q = 0; q < fep->num_rx_queues; q++) {
3320 		rxq = fep->rx_queue[q];
3321 		for (i = 0; i < rxq->bd.ring_size; i++)
3322 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3323 
3324 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3325 			rxq->stats[i] = 0;
3326 
3327 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3328 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3329 		page_pool_destroy(rxq->page_pool);
3330 		rxq->page_pool = NULL;
3331 	}
3332 
3333 	for (q = 0; q < fep->num_tx_queues; q++) {
3334 		txq = fep->tx_queue[q];
3335 		for (i = 0; i < txq->bd.ring_size; i++) {
3336 			kfree(txq->tx_bounce[i]);
3337 			txq->tx_bounce[i] = NULL;
3338 
3339 			if (!txq->tx_buf[i].buf_p) {
3340 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3341 				continue;
3342 			}
3343 
3344 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3345 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3346 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3347 				xdp_return_frame(txq->tx_buf[i].buf_p);
3348 			} else {
3349 				struct page *page = txq->tx_buf[i].buf_p;
3350 
3351 				page_pool_put_page(page->pp, page, 0, false);
3352 			}
3353 
3354 			txq->tx_buf[i].buf_p = NULL;
3355 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3356 		}
3357 	}
3358 }
3359 
3360 static void fec_enet_free_queue(struct net_device *ndev)
3361 {
3362 	struct fec_enet_private *fep = netdev_priv(ndev);
3363 	int i;
3364 	struct fec_enet_priv_tx_q *txq;
3365 
3366 	for (i = 0; i < fep->num_tx_queues; i++)
3367 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3368 			txq = fep->tx_queue[i];
3369 			fec_dma_free(&fep->pdev->dev,
3370 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3371 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3372 		}
3373 
3374 	for (i = 0; i < fep->num_rx_queues; i++)
3375 		kfree(fep->rx_queue[i]);
3376 	for (i = 0; i < fep->num_tx_queues; i++)
3377 		kfree(fep->tx_queue[i]);
3378 }
3379 
3380 static int fec_enet_alloc_queue(struct net_device *ndev)
3381 {
3382 	struct fec_enet_private *fep = netdev_priv(ndev);
3383 	int i;
3384 	int ret = 0;
3385 	struct fec_enet_priv_tx_q *txq;
3386 
3387 	for (i = 0; i < fep->num_tx_queues; i++) {
3388 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3389 		if (!txq) {
3390 			ret = -ENOMEM;
3391 			goto alloc_failed;
3392 		}
3393 
3394 		fep->tx_queue[i] = txq;
3395 		txq->bd.ring_size = TX_RING_SIZE;
3396 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3397 
3398 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3399 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3400 
3401 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3402 					txq->bd.ring_size * TSO_HEADER_SIZE,
3403 					&txq->tso_hdrs_dma, GFP_KERNEL);
3404 		if (!txq->tso_hdrs) {
3405 			ret = -ENOMEM;
3406 			goto alloc_failed;
3407 		}
3408 	}
3409 
3410 	for (i = 0; i < fep->num_rx_queues; i++) {
3411 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3412 					   GFP_KERNEL);
3413 		if (!fep->rx_queue[i]) {
3414 			ret = -ENOMEM;
3415 			goto alloc_failed;
3416 		}
3417 
3418 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3419 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3420 	}
3421 	return ret;
3422 
3423 alloc_failed:
3424 	fec_enet_free_queue(ndev);
3425 	return ret;
3426 }
3427 
3428 static int
3429 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3430 {
3431 	struct fec_enet_private *fep = netdev_priv(ndev);
3432 	struct fec_enet_priv_rx_q *rxq;
3433 	dma_addr_t phys_addr;
3434 	struct bufdesc	*bdp;
3435 	struct page *page;
3436 	int i, err;
3437 
3438 	rxq = fep->rx_queue[queue];
3439 	bdp = rxq->bd.base;
3440 
3441 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3442 	if (err < 0) {
3443 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3444 		return err;
3445 	}
3446 
3447 	for (i = 0; i < rxq->bd.ring_size; i++) {
3448 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3449 		if (!page)
3450 			goto err_alloc;
3451 
3452 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3453 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3454 
3455 		rxq->rx_skb_info[i].page = page;
3456 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3457 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3458 
3459 		if (fep->bufdesc_ex) {
3460 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3461 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3462 		}
3463 
3464 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3465 	}
3466 
3467 	/* Set the last buffer to wrap. */
3468 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3469 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3470 	return 0;
3471 
3472  err_alloc:
3473 	fec_enet_free_buffers(ndev);
3474 	return -ENOMEM;
3475 }
3476 
3477 static int
3478 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3479 {
3480 	struct fec_enet_private *fep = netdev_priv(ndev);
3481 	unsigned int i;
3482 	struct bufdesc  *bdp;
3483 	struct fec_enet_priv_tx_q *txq;
3484 
3485 	txq = fep->tx_queue[queue];
3486 	bdp = txq->bd.base;
3487 	for (i = 0; i < txq->bd.ring_size; i++) {
3488 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3489 		if (!txq->tx_bounce[i])
3490 			goto err_alloc;
3491 
3492 		bdp->cbd_sc = cpu_to_fec16(0);
3493 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3494 
3495 		if (fep->bufdesc_ex) {
3496 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3497 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3498 		}
3499 
3500 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3501 	}
3502 
3503 	/* Set the last buffer to wrap. */
3504 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3505 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3506 
3507 	return 0;
3508 
3509  err_alloc:
3510 	fec_enet_free_buffers(ndev);
3511 	return -ENOMEM;
3512 }
3513 
3514 static int fec_enet_alloc_buffers(struct net_device *ndev)
3515 {
3516 	struct fec_enet_private *fep = netdev_priv(ndev);
3517 	unsigned int i;
3518 
3519 	for (i = 0; i < fep->num_rx_queues; i++)
3520 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3521 			return -ENOMEM;
3522 
3523 	for (i = 0; i < fep->num_tx_queues; i++)
3524 		if (fec_enet_alloc_txq_buffers(ndev, i))
3525 			return -ENOMEM;
3526 	return 0;
3527 }
3528 
3529 static int
3530 fec_enet_open(struct net_device *ndev)
3531 {
3532 	struct fec_enet_private *fep = netdev_priv(ndev);
3533 	int ret;
3534 	bool reset_again;
3535 
3536 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3537 	if (ret < 0)
3538 		return ret;
3539 
3540 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3541 	ret = fec_enet_clk_enable(ndev, true);
3542 	if (ret)
3543 		goto clk_enable;
3544 
3545 	/* During the first fec_enet_open call the PHY isn't probed at this
3546 	 * point. Therefore the phy_reset_after_clk_enable() call within
3547 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3548 	 * sure the PHY is working correctly we check if we need to reset again
3549 	 * later when the PHY is probed
3550 	 */
3551 	if (ndev->phydev && ndev->phydev->drv)
3552 		reset_again = false;
3553 	else
3554 		reset_again = true;
3555 
3556 	/* I should reset the ring buffers here, but I don't yet know
3557 	 * a simple way to do that.
3558 	 */
3559 
3560 	ret = fec_enet_alloc_buffers(ndev);
3561 	if (ret)
3562 		goto err_enet_alloc;
3563 
3564 	/* Init MAC prior to mii bus probe */
3565 	fec_restart(ndev);
3566 
3567 	/* Call phy_reset_after_clk_enable() again if it failed during
3568 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3569 	 */
3570 	if (reset_again)
3571 		fec_enet_phy_reset_after_clk_enable(ndev);
3572 
3573 	/* Probe and connect to PHY when open the interface */
3574 	ret = fec_enet_mii_probe(ndev);
3575 	if (ret)
3576 		goto err_enet_mii_probe;
3577 
3578 	if (fep->quirks & FEC_QUIRK_ERR006687)
3579 		imx6q_cpuidle_fec_irqs_used();
3580 
3581 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3582 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3583 
3584 	napi_enable(&fep->napi);
3585 	phy_start(ndev->phydev);
3586 	netif_tx_start_all_queues(ndev);
3587 
3588 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3589 				 FEC_WOL_FLAG_ENABLE);
3590 
3591 	return 0;
3592 
3593 err_enet_mii_probe:
3594 	fec_enet_free_buffers(ndev);
3595 err_enet_alloc:
3596 	fec_enet_clk_enable(ndev, false);
3597 clk_enable:
3598 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3599 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3600 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3601 	return ret;
3602 }
3603 
3604 static int
3605 fec_enet_close(struct net_device *ndev)
3606 {
3607 	struct fec_enet_private *fep = netdev_priv(ndev);
3608 
3609 	phy_stop(ndev->phydev);
3610 
3611 	if (netif_device_present(ndev)) {
3612 		napi_disable(&fep->napi);
3613 		netif_tx_disable(ndev);
3614 		fec_stop(ndev);
3615 	}
3616 
3617 	phy_disconnect(ndev->phydev);
3618 
3619 	if (fep->quirks & FEC_QUIRK_ERR006687)
3620 		imx6q_cpuidle_fec_irqs_unused();
3621 
3622 	fec_enet_update_ethtool_stats(ndev);
3623 
3624 	fec_enet_clk_enable(ndev, false);
3625 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3626 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3627 
3628 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3629 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3630 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3631 
3632 	fec_enet_free_buffers(ndev);
3633 
3634 	return 0;
3635 }
3636 
3637 /* Set or clear the multicast filter for this adaptor.
3638  * Skeleton taken from sunlance driver.
3639  * The CPM Ethernet implementation allows Multicast as well as individual
3640  * MAC address filtering.  Some of the drivers check to make sure it is
3641  * a group multicast address, and discard those that are not.  I guess I
3642  * will do the same for now, but just remove the test if you want
3643  * individual filtering as well (do the upper net layers want or support
3644  * this kind of feature?).
3645  */
3646 
3647 #define FEC_HASH_BITS	6		/* #bits in hash */
3648 
3649 static void set_multicast_list(struct net_device *ndev)
3650 {
3651 	struct fec_enet_private *fep = netdev_priv(ndev);
3652 	struct netdev_hw_addr *ha;
3653 	unsigned int crc, tmp;
3654 	unsigned char hash;
3655 	unsigned int hash_high = 0, hash_low = 0;
3656 
3657 	if (ndev->flags & IFF_PROMISC) {
3658 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3659 		tmp |= 0x8;
3660 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3661 		return;
3662 	}
3663 
3664 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3665 	tmp &= ~0x8;
3666 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3667 
3668 	if (ndev->flags & IFF_ALLMULTI) {
3669 		/* Catch all multicast addresses, so set the
3670 		 * filter to all 1's
3671 		 */
3672 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3673 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3674 
3675 		return;
3676 	}
3677 
3678 	/* Add the addresses in hash register */
3679 	netdev_for_each_mc_addr(ha, ndev) {
3680 		/* calculate crc32 value of mac address */
3681 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3682 
3683 		/* only upper 6 bits (FEC_HASH_BITS) are used
3684 		 * which point to specific bit in the hash registers
3685 		 */
3686 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3687 
3688 		if (hash > 31)
3689 			hash_high |= 1 << (hash - 32);
3690 		else
3691 			hash_low |= 1 << hash;
3692 	}
3693 
3694 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3695 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3696 }
3697 
3698 /* Set a MAC change in hardware. */
3699 static int
3700 fec_set_mac_address(struct net_device *ndev, void *p)
3701 {
3702 	struct sockaddr *addr = p;
3703 
3704 	if (addr) {
3705 		if (!is_valid_ether_addr(addr->sa_data))
3706 			return -EADDRNOTAVAIL;
3707 		eth_hw_addr_set(ndev, addr->sa_data);
3708 	}
3709 
3710 	/* Add netif status check here to avoid system hang in below case:
3711 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3712 	 * After ethx down, fec all clocks are gated off and then register
3713 	 * access causes system hang.
3714 	 */
3715 	if (!netif_running(ndev))
3716 		return 0;
3717 
3718 	fec_set_hw_mac_addr(ndev);
3719 
3720 	return 0;
3721 }
3722 
3723 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3724 	netdev_features_t features)
3725 {
3726 	struct fec_enet_private *fep = netdev_priv(netdev);
3727 	netdev_features_t changed = features ^ netdev->features;
3728 
3729 	netdev->features = features;
3730 
3731 	/* Receive checksum has been changed */
3732 	if (changed & NETIF_F_RXCSUM) {
3733 		if (features & NETIF_F_RXCSUM)
3734 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3735 		else
3736 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3737 	}
3738 }
3739 
3740 static int fec_set_features(struct net_device *netdev,
3741 	netdev_features_t features)
3742 {
3743 	struct fec_enet_private *fep = netdev_priv(netdev);
3744 	netdev_features_t changed = features ^ netdev->features;
3745 
3746 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3747 		napi_disable(&fep->napi);
3748 		netif_tx_lock_bh(netdev);
3749 		fec_stop(netdev);
3750 		fec_enet_set_netdev_features(netdev, features);
3751 		fec_restart(netdev);
3752 		netif_tx_wake_all_queues(netdev);
3753 		netif_tx_unlock_bh(netdev);
3754 		napi_enable(&fep->napi);
3755 	} else {
3756 		fec_enet_set_netdev_features(netdev, features);
3757 	}
3758 
3759 	return 0;
3760 }
3761 
3762 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3763 				 struct net_device *sb_dev)
3764 {
3765 	struct fec_enet_private *fep = netdev_priv(ndev);
3766 	u16 vlan_tag = 0;
3767 
3768 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3769 		return netdev_pick_tx(ndev, skb, NULL);
3770 
3771 	/* VLAN is present in the payload.*/
3772 	if (eth_type_vlan(skb->protocol)) {
3773 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3774 
3775 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3776 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3777 	} else if (skb_vlan_tag_present(skb)) {
3778 		vlan_tag = skb->vlan_tci;
3779 	} else {
3780 		return vlan_tag;
3781 	}
3782 
3783 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3784 }
3785 
3786 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3787 {
3788 	struct fec_enet_private *fep = netdev_priv(dev);
3789 	bool is_run = netif_running(dev);
3790 	struct bpf_prog *old_prog;
3791 
3792 	switch (bpf->command) {
3793 	case XDP_SETUP_PROG:
3794 		/* No need to support the SoCs that require to
3795 		 * do the frame swap because the performance wouldn't be
3796 		 * better than the skb mode.
3797 		 */
3798 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3799 			return -EOPNOTSUPP;
3800 
3801 		if (!bpf->prog)
3802 			xdp_features_clear_redirect_target(dev);
3803 
3804 		if (is_run) {
3805 			napi_disable(&fep->napi);
3806 			netif_tx_disable(dev);
3807 		}
3808 
3809 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3810 		if (old_prog)
3811 			bpf_prog_put(old_prog);
3812 
3813 		fec_restart(dev);
3814 
3815 		if (is_run) {
3816 			napi_enable(&fep->napi);
3817 			netif_tx_start_all_queues(dev);
3818 		}
3819 
3820 		if (bpf->prog)
3821 			xdp_features_set_redirect_target(dev, false);
3822 
3823 		return 0;
3824 
3825 	case XDP_SETUP_XSK_POOL:
3826 		return -EOPNOTSUPP;
3827 
3828 	default:
3829 		return -EOPNOTSUPP;
3830 	}
3831 }
3832 
3833 static int
3834 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3835 {
3836 	if (unlikely(index < 0))
3837 		return 0;
3838 
3839 	return (index % fep->num_tx_queues);
3840 }
3841 
3842 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3843 				   struct fec_enet_priv_tx_q *txq,
3844 				   void *frame, u32 dma_sync_len,
3845 				   bool ndo_xmit)
3846 {
3847 	unsigned int index, status, estatus;
3848 	struct bufdesc *bdp;
3849 	dma_addr_t dma_addr;
3850 	int entries_free;
3851 	u16 frame_len;
3852 
3853 	entries_free = fec_enet_get_free_txdesc_num(txq);
3854 	if (entries_free < MAX_SKB_FRAGS + 1) {
3855 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3856 		return -EBUSY;
3857 	}
3858 
3859 	/* Fill in a Tx ring entry */
3860 	bdp = txq->bd.cur;
3861 	status = fec16_to_cpu(bdp->cbd_sc);
3862 	status &= ~BD_ENET_TX_STATS;
3863 
3864 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3865 
3866 	if (ndo_xmit) {
3867 		struct xdp_frame *xdpf = frame;
3868 
3869 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3870 					  xdpf->len, DMA_TO_DEVICE);
3871 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3872 			return -ENOMEM;
3873 
3874 		frame_len = xdpf->len;
3875 		txq->tx_buf[index].buf_p = xdpf;
3876 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3877 	} else {
3878 		struct xdp_buff *xdpb = frame;
3879 		struct page *page;
3880 
3881 		page = virt_to_page(xdpb->data);
3882 		dma_addr = page_pool_get_dma_addr(page) +
3883 			   (xdpb->data - xdpb->data_hard_start);
3884 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3885 					   dma_sync_len, DMA_BIDIRECTIONAL);
3886 		frame_len = xdpb->data_end - xdpb->data;
3887 		txq->tx_buf[index].buf_p = page;
3888 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3889 	}
3890 
3891 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3892 	if (fep->bufdesc_ex)
3893 		estatus = BD_ENET_TX_INT;
3894 
3895 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3896 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3897 
3898 	if (fep->bufdesc_ex) {
3899 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3900 
3901 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3902 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3903 
3904 		ebdp->cbd_bdu = 0;
3905 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3906 	}
3907 
3908 	/* Make sure the updates to rest of the descriptor are performed before
3909 	 * transferring ownership.
3910 	 */
3911 	dma_wmb();
3912 
3913 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3914 	 * it's the last BD of the frame, and to put the CRC on the end.
3915 	 */
3916 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3917 	bdp->cbd_sc = cpu_to_fec16(status);
3918 
3919 	/* If this was the last BD in the ring, start at the beginning again. */
3920 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3921 
3922 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3923 	dma_wmb();
3924 
3925 	txq->bd.cur = bdp;
3926 
3927 	/* Trigger transmission start */
3928 	writel(0, txq->bd.reg_desc_active);
3929 
3930 	return 0;
3931 }
3932 
3933 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3934 				int cpu, struct xdp_buff *xdp,
3935 				u32 dma_sync_len)
3936 {
3937 	struct fec_enet_priv_tx_q *txq;
3938 	struct netdev_queue *nq;
3939 	int queue, ret;
3940 
3941 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3942 	txq = fep->tx_queue[queue];
3943 	nq = netdev_get_tx_queue(fep->netdev, queue);
3944 
3945 	__netif_tx_lock(nq, cpu);
3946 
3947 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3948 	txq_trans_cond_update(nq);
3949 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3950 
3951 	__netif_tx_unlock(nq);
3952 
3953 	return ret;
3954 }
3955 
3956 static int fec_enet_xdp_xmit(struct net_device *dev,
3957 			     int num_frames,
3958 			     struct xdp_frame **frames,
3959 			     u32 flags)
3960 {
3961 	struct fec_enet_private *fep = netdev_priv(dev);
3962 	struct fec_enet_priv_tx_q *txq;
3963 	int cpu = smp_processor_id();
3964 	unsigned int sent_frames = 0;
3965 	struct netdev_queue *nq;
3966 	unsigned int queue;
3967 	int i;
3968 
3969 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3970 	txq = fep->tx_queue[queue];
3971 	nq = netdev_get_tx_queue(fep->netdev, queue);
3972 
3973 	__netif_tx_lock(nq, cpu);
3974 
3975 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3976 	txq_trans_cond_update(nq);
3977 	for (i = 0; i < num_frames; i++) {
3978 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3979 			break;
3980 		sent_frames++;
3981 	}
3982 
3983 	__netif_tx_unlock(nq);
3984 
3985 	return sent_frames;
3986 }
3987 
3988 static int fec_hwtstamp_get(struct net_device *ndev,
3989 			    struct kernel_hwtstamp_config *config)
3990 {
3991 	struct fec_enet_private *fep = netdev_priv(ndev);
3992 
3993 	if (!netif_running(ndev))
3994 		return -EINVAL;
3995 
3996 	if (!fep->bufdesc_ex)
3997 		return -EOPNOTSUPP;
3998 
3999 	fec_ptp_get(ndev, config);
4000 
4001 	return 0;
4002 }
4003 
4004 static int fec_hwtstamp_set(struct net_device *ndev,
4005 			    struct kernel_hwtstamp_config *config,
4006 			    struct netlink_ext_ack *extack)
4007 {
4008 	struct fec_enet_private *fep = netdev_priv(ndev);
4009 
4010 	if (!netif_running(ndev))
4011 		return -EINVAL;
4012 
4013 	if (!fep->bufdesc_ex)
4014 		return -EOPNOTSUPP;
4015 
4016 	return fec_ptp_set(ndev, config, extack);
4017 }
4018 
4019 static const struct net_device_ops fec_netdev_ops = {
4020 	.ndo_open		= fec_enet_open,
4021 	.ndo_stop		= fec_enet_close,
4022 	.ndo_start_xmit		= fec_enet_start_xmit,
4023 	.ndo_select_queue       = fec_enet_select_queue,
4024 	.ndo_set_rx_mode	= set_multicast_list,
4025 	.ndo_validate_addr	= eth_validate_addr,
4026 	.ndo_tx_timeout		= fec_timeout,
4027 	.ndo_set_mac_address	= fec_set_mac_address,
4028 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4029 	.ndo_set_features	= fec_set_features,
4030 	.ndo_bpf		= fec_enet_bpf,
4031 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4032 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4033 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4034 };
4035 
4036 static const unsigned short offset_des_active_rxq[] = {
4037 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4038 };
4039 
4040 static const unsigned short offset_des_active_txq[] = {
4041 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4042 };
4043 
4044  /*
4045   * XXX:  We need to clean up on failure exits here.
4046   *
4047   */
4048 static int fec_enet_init(struct net_device *ndev)
4049 {
4050 	struct fec_enet_private *fep = netdev_priv(ndev);
4051 	struct bufdesc *cbd_base;
4052 	dma_addr_t bd_dma;
4053 	int bd_size;
4054 	unsigned int i;
4055 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4056 			sizeof(struct bufdesc);
4057 	unsigned dsize_log2 = __fls(dsize);
4058 	int ret;
4059 
4060 	WARN_ON(dsize != (1 << dsize_log2));
4061 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4062 	fep->rx_align = 0xf;
4063 	fep->tx_align = 0xf;
4064 #else
4065 	fep->rx_align = 0x3;
4066 	fep->tx_align = 0x3;
4067 #endif
4068 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4069 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4070 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4071 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4072 
4073 	/* Check mask of the streaming and coherent API */
4074 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4075 	if (ret < 0) {
4076 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4077 		return ret;
4078 	}
4079 
4080 	ret = fec_enet_alloc_queue(ndev);
4081 	if (ret)
4082 		return ret;
4083 
4084 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4085 
4086 	/* Allocate memory for buffer descriptors. */
4087 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4088 				  GFP_KERNEL);
4089 	if (!cbd_base) {
4090 		ret = -ENOMEM;
4091 		goto free_queue_mem;
4092 	}
4093 
4094 	/* Get the Ethernet address */
4095 	ret = fec_get_mac(ndev);
4096 	if (ret)
4097 		goto free_queue_mem;
4098 
4099 	/* Set receive and transmit descriptor base. */
4100 	for (i = 0; i < fep->num_rx_queues; i++) {
4101 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4102 		unsigned size = dsize * rxq->bd.ring_size;
4103 
4104 		rxq->bd.qid = i;
4105 		rxq->bd.base = cbd_base;
4106 		rxq->bd.cur = cbd_base;
4107 		rxq->bd.dma = bd_dma;
4108 		rxq->bd.dsize = dsize;
4109 		rxq->bd.dsize_log2 = dsize_log2;
4110 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4111 		bd_dma += size;
4112 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4113 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4114 	}
4115 
4116 	for (i = 0; i < fep->num_tx_queues; i++) {
4117 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4118 		unsigned size = dsize * txq->bd.ring_size;
4119 
4120 		txq->bd.qid = i;
4121 		txq->bd.base = cbd_base;
4122 		txq->bd.cur = cbd_base;
4123 		txq->bd.dma = bd_dma;
4124 		txq->bd.dsize = dsize;
4125 		txq->bd.dsize_log2 = dsize_log2;
4126 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4127 		bd_dma += size;
4128 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4129 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4130 	}
4131 
4132 
4133 	/* The FEC Ethernet specific entries in the device structure */
4134 	ndev->watchdog_timeo = TX_TIMEOUT;
4135 	ndev->netdev_ops = &fec_netdev_ops;
4136 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4137 
4138 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4139 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4140 
4141 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4142 		/* enable hw VLAN support */
4143 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4144 
4145 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4146 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4147 
4148 		/* enable hw accelerator */
4149 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4150 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4151 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4152 	}
4153 
4154 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4155 		fep->tx_align = 0;
4156 		fep->rx_align = 0x3f;
4157 	}
4158 
4159 	ndev->hw_features = ndev->features;
4160 
4161 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4162 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4163 				     NETDEV_XDP_ACT_REDIRECT;
4164 
4165 	fec_restart(ndev);
4166 
4167 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4168 		fec_enet_clear_ethtool_stats(ndev);
4169 	else
4170 		fec_enet_update_ethtool_stats(ndev);
4171 
4172 	return 0;
4173 
4174 free_queue_mem:
4175 	fec_enet_free_queue(ndev);
4176 	return ret;
4177 }
4178 
4179 static void fec_enet_deinit(struct net_device *ndev)
4180 {
4181 	struct fec_enet_private *fep = netdev_priv(ndev);
4182 
4183 	netif_napi_del(&fep->napi);
4184 	fec_enet_free_queue(ndev);
4185 }
4186 
4187 #ifdef CONFIG_OF
4188 static int fec_reset_phy(struct platform_device *pdev)
4189 {
4190 	struct gpio_desc *phy_reset;
4191 	int msec = 1, phy_post_delay = 0;
4192 	struct device_node *np = pdev->dev.of_node;
4193 	int err;
4194 
4195 	if (!np)
4196 		return 0;
4197 
4198 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4199 	/* A sane reset duration should not be longer than 1s */
4200 	if (!err && msec > 1000)
4201 		msec = 1;
4202 
4203 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4204 	/* valid reset duration should be less than 1s */
4205 	if (!err && phy_post_delay > 1000)
4206 		return -EINVAL;
4207 
4208 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4209 					    GPIOD_OUT_HIGH);
4210 	if (IS_ERR(phy_reset))
4211 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4212 				     "failed to get phy-reset-gpios\n");
4213 
4214 	if (!phy_reset)
4215 		return 0;
4216 
4217 	if (msec > 20)
4218 		msleep(msec);
4219 	else
4220 		usleep_range(msec * 1000, msec * 1000 + 1000);
4221 
4222 	gpiod_set_value_cansleep(phy_reset, 0);
4223 
4224 	if (!phy_post_delay)
4225 		return 0;
4226 
4227 	if (phy_post_delay > 20)
4228 		msleep(phy_post_delay);
4229 	else
4230 		usleep_range(phy_post_delay * 1000,
4231 			     phy_post_delay * 1000 + 1000);
4232 
4233 	return 0;
4234 }
4235 #else /* CONFIG_OF */
4236 static int fec_reset_phy(struct platform_device *pdev)
4237 {
4238 	/*
4239 	 * In case of platform probe, the reset has been done
4240 	 * by machine code.
4241 	 */
4242 	return 0;
4243 }
4244 #endif /* CONFIG_OF */
4245 
4246 static void
4247 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4248 {
4249 	struct device_node *np = pdev->dev.of_node;
4250 
4251 	*num_tx = *num_rx = 1;
4252 
4253 	if (!np || !of_device_is_available(np))
4254 		return;
4255 
4256 	/* parse the num of tx and rx queues */
4257 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4258 
4259 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4260 
4261 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4262 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4263 			 *num_tx);
4264 		*num_tx = 1;
4265 		return;
4266 	}
4267 
4268 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4269 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4270 			 *num_rx);
4271 		*num_rx = 1;
4272 		return;
4273 	}
4274 
4275 }
4276 
4277 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4278 {
4279 	int irq_cnt = platform_irq_count(pdev);
4280 
4281 	if (irq_cnt > FEC_IRQ_NUM)
4282 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4283 	else if (irq_cnt == 2)
4284 		irq_cnt = 1;	/* last for pps */
4285 	else if (irq_cnt <= 0)
4286 		irq_cnt = 1;	/* At least 1 irq is needed */
4287 	return irq_cnt;
4288 }
4289 
4290 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4291 {
4292 	struct net_device *ndev = platform_get_drvdata(pdev);
4293 	struct fec_enet_private *fep = netdev_priv(ndev);
4294 
4295 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4296 		fep->wake_irq = fep->irq[2];
4297 	else
4298 		fep->wake_irq = fep->irq[0];
4299 }
4300 
4301 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4302 				   struct device_node *np)
4303 {
4304 	struct device_node *gpr_np;
4305 	u32 out_val[3];
4306 	int ret = 0;
4307 
4308 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4309 	if (!gpr_np)
4310 		return 0;
4311 
4312 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4313 					 ARRAY_SIZE(out_val));
4314 	if (ret) {
4315 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4316 		goto out;
4317 	}
4318 
4319 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4320 	if (IS_ERR(fep->stop_gpr.gpr)) {
4321 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4322 		ret = PTR_ERR(fep->stop_gpr.gpr);
4323 		fep->stop_gpr.gpr = NULL;
4324 		goto out;
4325 	}
4326 
4327 	fep->stop_gpr.reg = out_val[1];
4328 	fep->stop_gpr.bit = out_val[2];
4329 
4330 out:
4331 	of_node_put(gpr_np);
4332 
4333 	return ret;
4334 }
4335 
4336 static int
4337 fec_probe(struct platform_device *pdev)
4338 {
4339 	struct fec_enet_private *fep;
4340 	struct fec_platform_data *pdata;
4341 	phy_interface_t interface;
4342 	struct net_device *ndev;
4343 	int i, irq, ret = 0;
4344 	static int dev_id;
4345 	struct device_node *np = pdev->dev.of_node, *phy_node;
4346 	int num_tx_qs;
4347 	int num_rx_qs;
4348 	char irq_name[8];
4349 	int irq_cnt;
4350 	const struct fec_devinfo *dev_info;
4351 
4352 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4353 
4354 	/* Init network device */
4355 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4356 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4357 	if (!ndev)
4358 		return -ENOMEM;
4359 
4360 	SET_NETDEV_DEV(ndev, &pdev->dev);
4361 
4362 	/* setup board info structure */
4363 	fep = netdev_priv(ndev);
4364 
4365 	dev_info = device_get_match_data(&pdev->dev);
4366 	if (!dev_info)
4367 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4368 	if (dev_info)
4369 		fep->quirks = dev_info->quirks;
4370 
4371 	fep->netdev = ndev;
4372 	fep->num_rx_queues = num_rx_qs;
4373 	fep->num_tx_queues = num_tx_qs;
4374 
4375 #if !defined(CONFIG_M5272)
4376 	/* default enable pause frame auto negotiation */
4377 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4378 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4379 #endif
4380 
4381 	/* Select default pin state */
4382 	pinctrl_pm_select_default_state(&pdev->dev);
4383 
4384 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4385 	if (IS_ERR(fep->hwp)) {
4386 		ret = PTR_ERR(fep->hwp);
4387 		goto failed_ioremap;
4388 	}
4389 
4390 	fep->pdev = pdev;
4391 	fep->dev_id = dev_id++;
4392 
4393 	platform_set_drvdata(pdev, ndev);
4394 
4395 	if ((of_machine_is_compatible("fsl,imx6q") ||
4396 	     of_machine_is_compatible("fsl,imx6dl")) &&
4397 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4398 		fep->quirks |= FEC_QUIRK_ERR006687;
4399 
4400 	ret = fec_enet_ipc_handle_init(fep);
4401 	if (ret)
4402 		goto failed_ipc_init;
4403 
4404 	if (of_property_read_bool(np, "fsl,magic-packet"))
4405 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4406 
4407 	ret = fec_enet_init_stop_mode(fep, np);
4408 	if (ret)
4409 		goto failed_stop_mode;
4410 
4411 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4412 	if (!phy_node && of_phy_is_fixed_link(np)) {
4413 		ret = of_phy_register_fixed_link(np);
4414 		if (ret < 0) {
4415 			dev_err(&pdev->dev,
4416 				"broken fixed-link specification\n");
4417 			goto failed_phy;
4418 		}
4419 		phy_node = of_node_get(np);
4420 	}
4421 	fep->phy_node = phy_node;
4422 
4423 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4424 	if (ret) {
4425 		pdata = dev_get_platdata(&pdev->dev);
4426 		if (pdata)
4427 			fep->phy_interface = pdata->phy;
4428 		else
4429 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4430 	} else {
4431 		fep->phy_interface = interface;
4432 	}
4433 
4434 	ret = fec_enet_parse_rgmii_delay(fep, np);
4435 	if (ret)
4436 		goto failed_rgmii_delay;
4437 
4438 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4439 	if (IS_ERR(fep->clk_ipg)) {
4440 		ret = PTR_ERR(fep->clk_ipg);
4441 		goto failed_clk;
4442 	}
4443 
4444 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4445 	if (IS_ERR(fep->clk_ahb)) {
4446 		ret = PTR_ERR(fep->clk_ahb);
4447 		goto failed_clk;
4448 	}
4449 
4450 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4451 
4452 	/* enet_out is optional, depends on board */
4453 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4454 	if (IS_ERR(fep->clk_enet_out)) {
4455 		ret = PTR_ERR(fep->clk_enet_out);
4456 		goto failed_clk;
4457 	}
4458 
4459 	fep->ptp_clk_on = false;
4460 	mutex_init(&fep->ptp_clk_mutex);
4461 
4462 	/* clk_ref is optional, depends on board */
4463 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4464 	if (IS_ERR(fep->clk_ref)) {
4465 		ret = PTR_ERR(fep->clk_ref);
4466 		goto failed_clk;
4467 	}
4468 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4469 
4470 	/* clk_2x_txclk is optional, depends on board */
4471 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4472 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4473 		if (IS_ERR(fep->clk_2x_txclk))
4474 			fep->clk_2x_txclk = NULL;
4475 	}
4476 
4477 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4478 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4479 	if (IS_ERR(fep->clk_ptp)) {
4480 		fep->clk_ptp = NULL;
4481 		fep->bufdesc_ex = false;
4482 	}
4483 
4484 	ret = fec_enet_clk_enable(ndev, true);
4485 	if (ret)
4486 		goto failed_clk;
4487 
4488 	ret = clk_prepare_enable(fep->clk_ipg);
4489 	if (ret)
4490 		goto failed_clk_ipg;
4491 	ret = clk_prepare_enable(fep->clk_ahb);
4492 	if (ret)
4493 		goto failed_clk_ahb;
4494 
4495 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4496 	if (!IS_ERR(fep->reg_phy)) {
4497 		ret = regulator_enable(fep->reg_phy);
4498 		if (ret) {
4499 			dev_err(&pdev->dev,
4500 				"Failed to enable phy regulator: %d\n", ret);
4501 			goto failed_regulator;
4502 		}
4503 	} else {
4504 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4505 			ret = -EPROBE_DEFER;
4506 			goto failed_regulator;
4507 		}
4508 		fep->reg_phy = NULL;
4509 	}
4510 
4511 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4512 	pm_runtime_use_autosuspend(&pdev->dev);
4513 	pm_runtime_get_noresume(&pdev->dev);
4514 	pm_runtime_set_active(&pdev->dev);
4515 	pm_runtime_enable(&pdev->dev);
4516 
4517 	ret = fec_reset_phy(pdev);
4518 	if (ret)
4519 		goto failed_reset;
4520 
4521 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4522 	if (fep->bufdesc_ex)
4523 		fec_ptp_init(pdev, irq_cnt);
4524 
4525 	ret = fec_enet_init(ndev);
4526 	if (ret)
4527 		goto failed_init;
4528 
4529 	for (i = 0; i < irq_cnt; i++) {
4530 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4531 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4532 		if (irq < 0)
4533 			irq = platform_get_irq(pdev, i);
4534 		if (irq < 0) {
4535 			ret = irq;
4536 			goto failed_irq;
4537 		}
4538 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4539 				       0, pdev->name, ndev);
4540 		if (ret)
4541 			goto failed_irq;
4542 
4543 		fep->irq[i] = irq;
4544 	}
4545 
4546 	/* Decide which interrupt line is wakeup capable */
4547 	fec_enet_get_wakeup_irq(pdev);
4548 
4549 	ret = fec_enet_mii_init(pdev);
4550 	if (ret)
4551 		goto failed_mii_init;
4552 
4553 	/* Carrier starts down, phylib will bring it up */
4554 	netif_carrier_off(ndev);
4555 	fec_enet_clk_enable(ndev, false);
4556 	pinctrl_pm_select_sleep_state(&pdev->dev);
4557 
4558 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4559 
4560 	ret = register_netdev(ndev);
4561 	if (ret)
4562 		goto failed_register;
4563 
4564 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4565 			   FEC_WOL_HAS_MAGIC_PACKET);
4566 
4567 	if (fep->bufdesc_ex && fep->ptp_clock)
4568 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4569 
4570 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4571 
4572 	pm_runtime_mark_last_busy(&pdev->dev);
4573 	pm_runtime_put_autosuspend(&pdev->dev);
4574 
4575 	return 0;
4576 
4577 failed_register:
4578 	fec_enet_mii_remove(fep);
4579 failed_mii_init:
4580 failed_irq:
4581 	fec_enet_deinit(ndev);
4582 failed_init:
4583 	fec_ptp_stop(pdev);
4584 failed_reset:
4585 	pm_runtime_put_noidle(&pdev->dev);
4586 	pm_runtime_disable(&pdev->dev);
4587 	if (fep->reg_phy)
4588 		regulator_disable(fep->reg_phy);
4589 failed_regulator:
4590 	clk_disable_unprepare(fep->clk_ahb);
4591 failed_clk_ahb:
4592 	clk_disable_unprepare(fep->clk_ipg);
4593 failed_clk_ipg:
4594 	fec_enet_clk_enable(ndev, false);
4595 failed_clk:
4596 failed_rgmii_delay:
4597 	if (of_phy_is_fixed_link(np))
4598 		of_phy_deregister_fixed_link(np);
4599 	of_node_put(phy_node);
4600 failed_stop_mode:
4601 failed_ipc_init:
4602 failed_phy:
4603 	dev_id--;
4604 failed_ioremap:
4605 	free_netdev(ndev);
4606 
4607 	return ret;
4608 }
4609 
4610 static void
4611 fec_drv_remove(struct platform_device *pdev)
4612 {
4613 	struct net_device *ndev = platform_get_drvdata(pdev);
4614 	struct fec_enet_private *fep = netdev_priv(ndev);
4615 	struct device_node *np = pdev->dev.of_node;
4616 	int ret;
4617 
4618 	ret = pm_runtime_get_sync(&pdev->dev);
4619 	if (ret < 0)
4620 		dev_err(&pdev->dev,
4621 			"Failed to resume device in remove callback (%pe)\n",
4622 			ERR_PTR(ret));
4623 
4624 	cancel_work_sync(&fep->tx_timeout_work);
4625 	fec_ptp_stop(pdev);
4626 	unregister_netdev(ndev);
4627 	fec_enet_mii_remove(fep);
4628 	if (fep->reg_phy)
4629 		regulator_disable(fep->reg_phy);
4630 
4631 	if (of_phy_is_fixed_link(np))
4632 		of_phy_deregister_fixed_link(np);
4633 	of_node_put(fep->phy_node);
4634 
4635 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4636 	 * disabling them again.
4637 	 */
4638 	if (ret >= 0) {
4639 		clk_disable_unprepare(fep->clk_ahb);
4640 		clk_disable_unprepare(fep->clk_ipg);
4641 	}
4642 	pm_runtime_put_noidle(&pdev->dev);
4643 	pm_runtime_disable(&pdev->dev);
4644 
4645 	fec_enet_deinit(ndev);
4646 	free_netdev(ndev);
4647 }
4648 
4649 static int fec_suspend(struct device *dev)
4650 {
4651 	struct net_device *ndev = dev_get_drvdata(dev);
4652 	struct fec_enet_private *fep = netdev_priv(ndev);
4653 	int ret;
4654 
4655 	rtnl_lock();
4656 	if (netif_running(ndev)) {
4657 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4658 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4659 		phy_stop(ndev->phydev);
4660 		napi_disable(&fep->napi);
4661 		netif_tx_lock_bh(ndev);
4662 		netif_device_detach(ndev);
4663 		netif_tx_unlock_bh(ndev);
4664 		fec_stop(ndev);
4665 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4666 			fec_irqs_disable(ndev);
4667 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4668 		} else {
4669 			fec_irqs_disable_except_wakeup(ndev);
4670 			if (fep->wake_irq > 0) {
4671 				disable_irq(fep->wake_irq);
4672 				enable_irq_wake(fep->wake_irq);
4673 			}
4674 			fec_enet_stop_mode(fep, true);
4675 		}
4676 		/* It's safe to disable clocks since interrupts are masked */
4677 		fec_enet_clk_enable(ndev, false);
4678 
4679 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4680 		if (fep->rpm_active) {
4681 			ret = pm_runtime_force_suspend(dev);
4682 			if (ret < 0) {
4683 				rtnl_unlock();
4684 				return ret;
4685 			}
4686 		}
4687 	}
4688 	rtnl_unlock();
4689 
4690 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4691 		regulator_disable(fep->reg_phy);
4692 
4693 	/* SOC supply clock to phy, when clock is disabled, phy link down
4694 	 * SOC control phy regulator, when regulator is disabled, phy link down
4695 	 */
4696 	if (fep->clk_enet_out || fep->reg_phy)
4697 		fep->link = 0;
4698 
4699 	return 0;
4700 }
4701 
4702 static int fec_resume(struct device *dev)
4703 {
4704 	struct net_device *ndev = dev_get_drvdata(dev);
4705 	struct fec_enet_private *fep = netdev_priv(ndev);
4706 	int ret;
4707 	int val;
4708 
4709 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4710 		ret = regulator_enable(fep->reg_phy);
4711 		if (ret)
4712 			return ret;
4713 	}
4714 
4715 	rtnl_lock();
4716 	if (netif_running(ndev)) {
4717 		if (fep->rpm_active)
4718 			pm_runtime_force_resume(dev);
4719 
4720 		ret = fec_enet_clk_enable(ndev, true);
4721 		if (ret) {
4722 			rtnl_unlock();
4723 			goto failed_clk;
4724 		}
4725 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4726 			fec_enet_stop_mode(fep, false);
4727 			if (fep->wake_irq) {
4728 				disable_irq_wake(fep->wake_irq);
4729 				enable_irq(fep->wake_irq);
4730 			}
4731 
4732 			val = readl(fep->hwp + FEC_ECNTRL);
4733 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4734 			writel(val, fep->hwp + FEC_ECNTRL);
4735 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4736 		} else {
4737 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4738 		}
4739 		fec_restart(ndev);
4740 		netif_tx_lock_bh(ndev);
4741 		netif_device_attach(ndev);
4742 		netif_tx_unlock_bh(ndev);
4743 		napi_enable(&fep->napi);
4744 		phy_init_hw(ndev->phydev);
4745 		phy_start(ndev->phydev);
4746 	}
4747 	rtnl_unlock();
4748 
4749 	return 0;
4750 
4751 failed_clk:
4752 	if (fep->reg_phy)
4753 		regulator_disable(fep->reg_phy);
4754 	return ret;
4755 }
4756 
4757 static int fec_runtime_suspend(struct device *dev)
4758 {
4759 	struct net_device *ndev = dev_get_drvdata(dev);
4760 	struct fec_enet_private *fep = netdev_priv(ndev);
4761 
4762 	clk_disable_unprepare(fep->clk_ahb);
4763 	clk_disable_unprepare(fep->clk_ipg);
4764 
4765 	return 0;
4766 }
4767 
4768 static int fec_runtime_resume(struct device *dev)
4769 {
4770 	struct net_device *ndev = dev_get_drvdata(dev);
4771 	struct fec_enet_private *fep = netdev_priv(ndev);
4772 	int ret;
4773 
4774 	ret = clk_prepare_enable(fep->clk_ahb);
4775 	if (ret)
4776 		return ret;
4777 	ret = clk_prepare_enable(fep->clk_ipg);
4778 	if (ret)
4779 		goto failed_clk_ipg;
4780 
4781 	return 0;
4782 
4783 failed_clk_ipg:
4784 	clk_disable_unprepare(fep->clk_ahb);
4785 	return ret;
4786 }
4787 
4788 static const struct dev_pm_ops fec_pm_ops = {
4789 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4790 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4791 };
4792 
4793 static struct platform_driver fec_driver = {
4794 	.driver	= {
4795 		.name	= DRIVER_NAME,
4796 		.pm	= pm_ptr(&fec_pm_ops),
4797 		.of_match_table = fec_dt_ids,
4798 		.suppress_bind_attrs = true,
4799 	},
4800 	.id_table = fec_devtype,
4801 	.probe	= fec_probe,
4802 	.remove = fec_drv_remove,
4803 };
4804 
4805 module_platform_driver(fec_driver);
4806 
4807 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4808 MODULE_LICENSE("GPL");
4809