1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/property.h> 56 #include <linux/mdio.h> 57 #include <linux/phy.h> 58 #include <linux/fec.h> 59 #include <linux/of.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 #define FEC_ENET_RSEM_V 0x84 89 #define FEC_ENET_RSFL_V 16 90 #define FEC_ENET_RAEM_V 0x8 91 #define FEC_ENET_RAFL_V 0x8 92 #define FEC_ENET_OPD_V 0xFFF0 93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 94 95 #define FEC_ENET_XDP_PASS 0 96 #define FEC_ENET_XDP_CONSUMED BIT(0) 97 #define FEC_ENET_XDP_TX BIT(1) 98 #define FEC_ENET_XDP_REDIR BIT(2) 99 100 struct fec_devinfo { 101 u32 quirks; 102 }; 103 104 static const struct fec_devinfo fec_imx25_info = { 105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 107 }; 108 109 static const struct fec_devinfo fec_imx27_info = { 110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 111 FEC_QUIRK_HAS_MDIO_C45, 112 }; 113 114 static const struct fec_devinfo fec_imx28_info = { 115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 119 }; 120 121 static const struct fec_devinfo fec_imx6q_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 127 }; 128 129 static const struct fec_devinfo fec_mvf600_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 131 FEC_QUIRK_HAS_MDIO_C45, 132 }; 133 134 static const struct fec_devinfo fec_imx6x_info = { 135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 141 FEC_QUIRK_HAS_MDIO_C45, 142 }; 143 144 static const struct fec_devinfo fec_imx6ul_info = { 145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 150 FEC_QUIRK_HAS_MDIO_C45, 151 }; 152 153 static const struct fec_devinfo fec_imx8mq_info = { 154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 161 FEC_QUIRK_HAS_MDIO_C45, 162 }; 163 164 static const struct fec_devinfo fec_imx8qm_info = { 165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 172 }; 173 174 static const struct fec_devinfo fec_s32v234_info = { 175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 179 FEC_QUIRK_HAS_MDIO_C45, 180 }; 181 182 static struct platform_device_id fec_devtype[] = { 183 { 184 /* keep it for coldfire */ 185 .name = DRIVER_NAME, 186 .driver_data = 0, 187 }, { 188 /* sentinel */ 189 } 190 }; 191 MODULE_DEVICE_TABLE(platform, fec_devtype); 192 193 static const struct of_device_id fec_dt_ids[] = { 194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, }, 200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 204 { /* sentinel */ } 205 }; 206 MODULE_DEVICE_TABLE(of, fec_dt_ids); 207 208 static unsigned char macaddr[ETH_ALEN]; 209 module_param_array(macaddr, byte, NULL, 0); 210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 211 212 #if defined(CONFIG_M5272) 213 /* 214 * Some hardware gets it MAC address out of local flash memory. 215 * if this is non-zero then assume it is the address to get MAC from. 216 */ 217 #if defined(CONFIG_NETtel) 218 #define FEC_FLASHMAC 0xf0006006 219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 220 #define FEC_FLASHMAC 0xf0006000 221 #elif defined(CONFIG_CANCam) 222 #define FEC_FLASHMAC 0xf0020000 223 #elif defined (CONFIG_M5272C3) 224 #define FEC_FLASHMAC (0xffe04000 + 4) 225 #elif defined(CONFIG_MOD5272) 226 #define FEC_FLASHMAC 0xffc0406b 227 #else 228 #define FEC_FLASHMAC 0 229 #endif 230 #endif /* CONFIG_M5272 */ 231 232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 233 * 234 * 2048 byte skbufs are allocated. However, alignment requirements 235 * varies between FEC variants. Worst case is 64, so round down by 64. 236 */ 237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 238 #define PKT_MINBUF_SIZE 64 239 240 /* FEC receive acceleration */ 241 #define FEC_RACC_IPDIS BIT(1) 242 #define FEC_RACC_PRODIS BIT(2) 243 #define FEC_RACC_SHIFT16 BIT(7) 244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 245 246 /* MIB Control Register */ 247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 248 249 /* 250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 251 * size bits. Other FEC hardware does not, so we need to take that into 252 * account when setting it. 253 */ 254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 256 defined(CONFIG_ARM64) 257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 258 #else 259 #define OPT_FRAME_SIZE 0 260 #endif 261 262 /* FEC MII MMFR bits definition */ 263 #define FEC_MMFR_ST (1 << 30) 264 #define FEC_MMFR_ST_C45 (0) 265 #define FEC_MMFR_OP_READ (2 << 28) 266 #define FEC_MMFR_OP_READ_C45 (3 << 28) 267 #define FEC_MMFR_OP_WRITE (1 << 28) 268 #define FEC_MMFR_OP_ADDR_WRITE (0) 269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 271 #define FEC_MMFR_TA (2 << 16) 272 #define FEC_MMFR_DATA(v) (v & 0xffff) 273 /* FEC ECR bits definition */ 274 #define FEC_ECR_RESET BIT(0) 275 #define FEC_ECR_ETHEREN BIT(1) 276 #define FEC_ECR_MAGICEN BIT(2) 277 #define FEC_ECR_SLEEP BIT(3) 278 #define FEC_ECR_EN1588 BIT(4) 279 #define FEC_ECR_BYTESWP BIT(8) 280 /* FEC RCR bits definition */ 281 #define FEC_RCR_LOOP BIT(0) 282 #define FEC_RCR_HALFDPX BIT(1) 283 #define FEC_RCR_MII BIT(2) 284 #define FEC_RCR_PROMISC BIT(3) 285 #define FEC_RCR_BC_REJ BIT(4) 286 #define FEC_RCR_FLOWCTL BIT(5) 287 #define FEC_RCR_RMII BIT(8) 288 #define FEC_RCR_10BASET BIT(9) 289 /* TX WMARK bits */ 290 #define FEC_TXWMRK_STRFWD BIT(8) 291 292 #define FEC_MII_TIMEOUT 30000 /* us */ 293 294 /* Transmitter timeout */ 295 #define TX_TIMEOUT (2 * HZ) 296 297 #define FEC_PAUSE_FLAG_AUTONEG 0x1 298 #define FEC_PAUSE_FLAG_ENABLE 0x2 299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define FEC_MAX_TSO_SEGS 100 305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 306 307 #define IS_TSO_HEADER(txq, addr) \ 308 ((addr >= txq->tso_hdrs_dma) && \ 309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 310 311 static int mii_cnt; 312 313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 314 struct bufdesc_prop *bd) 315 { 316 return (bdp >= bd->last) ? bd->base 317 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 318 } 319 320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 321 struct bufdesc_prop *bd) 322 { 323 return (bdp <= bd->base) ? bd->last 324 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 325 } 326 327 static int fec_enet_get_bd_index(struct bufdesc *bdp, 328 struct bufdesc_prop *bd) 329 { 330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 331 } 332 333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 334 { 335 int entries; 336 337 entries = (((const char *)txq->dirty_tx - 338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 339 340 return entries >= 0 ? entries : entries + txq->bd.ring_size; 341 } 342 343 static void swap_buffer(void *bufaddr, int len) 344 { 345 int i; 346 unsigned int *buf = bufaddr; 347 348 for (i = 0; i < len; i += 4, buf++) 349 swab32s(buf); 350 } 351 352 static void fec_dump(struct net_device *ndev) 353 { 354 struct fec_enet_private *fep = netdev_priv(ndev); 355 struct bufdesc *bdp; 356 struct fec_enet_priv_tx_q *txq; 357 int index = 0; 358 359 netdev_info(ndev, "TX ring dump\n"); 360 pr_info("Nr SC addr len SKB\n"); 361 362 txq = fep->tx_queue[0]; 363 bdp = txq->bd.base; 364 365 do { 366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 367 index, 368 bdp == txq->bd.cur ? 'S' : ' ', 369 bdp == txq->dirty_tx ? 'H' : ' ', 370 fec16_to_cpu(bdp->cbd_sc), 371 fec32_to_cpu(bdp->cbd_bufaddr), 372 fec16_to_cpu(bdp->cbd_datlen), 373 txq->tx_buf[index].buf_p); 374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 375 index++; 376 } while (bdp != txq->bd.base); 377 } 378 379 /* 380 * Coldfire does not support DMA coherent allocations, and has historically used 381 * a band-aid with a manual flush in fec_enet_rx_queue. 382 */ 383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 385 gfp_t gfp) 386 { 387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 388 } 389 390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 391 dma_addr_t handle) 392 { 393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 394 } 395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 397 gfp_t gfp) 398 { 399 return dma_alloc_coherent(dev, size, handle, gfp); 400 } 401 402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 403 dma_addr_t handle) 404 { 405 dma_free_coherent(dev, size, cpu_addr, handle); 406 } 407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 408 409 struct fec_dma_devres { 410 size_t size; 411 void *vaddr; 412 dma_addr_t dma_handle; 413 }; 414 415 static void fec_dmam_release(struct device *dev, void *res) 416 { 417 struct fec_dma_devres *this = res; 418 419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 420 } 421 422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 423 gfp_t gfp) 424 { 425 struct fec_dma_devres *dr; 426 void *vaddr; 427 428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 429 if (!dr) 430 return NULL; 431 vaddr = fec_dma_alloc(dev, size, handle, gfp); 432 if (!vaddr) { 433 devres_free(dr); 434 return NULL; 435 } 436 dr->vaddr = vaddr; 437 dr->dma_handle = *handle; 438 dr->size = size; 439 devres_add(dev, dr); 440 return vaddr; 441 } 442 443 static inline bool is_ipv4_pkt(struct sk_buff *skb) 444 { 445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 446 } 447 448 static int 449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 450 { 451 /* Only run for packets requiring a checksum. */ 452 if (skb->ip_summed != CHECKSUM_PARTIAL) 453 return 0; 454 455 if (unlikely(skb_cow_head(skb, 0))) 456 return -1; 457 458 if (is_ipv4_pkt(skb)) 459 ip_hdr(skb)->check = 0; 460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 461 462 return 0; 463 } 464 465 static int 466 fec_enet_create_page_pool(struct fec_enet_private *fep, 467 struct fec_enet_priv_rx_q *rxq, int size) 468 { 469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 470 struct page_pool_params pp_params = { 471 .order = 0, 472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 473 .pool_size = size, 474 .nid = dev_to_node(&fep->pdev->dev), 475 .dev = &fep->pdev->dev, 476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 477 .offset = FEC_ENET_XDP_HEADROOM, 478 .max_len = FEC_ENET_RX_FRSIZE, 479 }; 480 int err; 481 482 rxq->page_pool = page_pool_create(&pp_params); 483 if (IS_ERR(rxq->page_pool)) { 484 err = PTR_ERR(rxq->page_pool); 485 rxq->page_pool = NULL; 486 return err; 487 } 488 489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 490 if (err < 0) 491 goto err_free_pp; 492 493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 494 rxq->page_pool); 495 if (err) 496 goto err_unregister_rxq; 497 498 return 0; 499 500 err_unregister_rxq: 501 xdp_rxq_info_unreg(&rxq->xdp_rxq); 502 err_free_pp: 503 page_pool_destroy(rxq->page_pool); 504 rxq->page_pool = NULL; 505 return err; 506 } 507 508 static struct bufdesc * 509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 510 struct sk_buff *skb, 511 struct net_device *ndev) 512 { 513 struct fec_enet_private *fep = netdev_priv(ndev); 514 struct bufdesc *bdp = txq->bd.cur; 515 struct bufdesc_ex *ebdp; 516 int nr_frags = skb_shinfo(skb)->nr_frags; 517 int frag, frag_len; 518 unsigned short status; 519 unsigned int estatus = 0; 520 skb_frag_t *this_frag; 521 unsigned int index; 522 void *bufaddr; 523 dma_addr_t addr; 524 int i; 525 526 for (frag = 0; frag < nr_frags; frag++) { 527 this_frag = &skb_shinfo(skb)->frags[frag]; 528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 529 ebdp = (struct bufdesc_ex *)bdp; 530 531 status = fec16_to_cpu(bdp->cbd_sc); 532 status &= ~BD_ENET_TX_STATS; 533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 535 536 /* Handle the last BD specially */ 537 if (frag == nr_frags - 1) { 538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 539 if (fep->bufdesc_ex) { 540 estatus |= BD_ENET_TX_INT; 541 if (unlikely(skb_shinfo(skb)->tx_flags & 542 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 543 estatus |= BD_ENET_TX_TS; 544 } 545 } 546 547 if (fep->bufdesc_ex) { 548 if (fep->quirks & FEC_QUIRK_HAS_AVB) 549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 550 if (skb->ip_summed == CHECKSUM_PARTIAL) 551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 552 553 ebdp->cbd_bdu = 0; 554 ebdp->cbd_esc = cpu_to_fec32(estatus); 555 } 556 557 bufaddr = skb_frag_address(this_frag); 558 559 index = fec_enet_get_bd_index(bdp, &txq->bd); 560 if (((unsigned long) bufaddr) & fep->tx_align || 561 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 562 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 563 bufaddr = txq->tx_bounce[index]; 564 565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 566 swap_buffer(bufaddr, frag_len); 567 } 568 569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 570 DMA_TO_DEVICE); 571 if (dma_mapping_error(&fep->pdev->dev, addr)) { 572 if (net_ratelimit()) 573 netdev_err(ndev, "Tx DMA memory map failed\n"); 574 goto dma_mapping_error; 575 } 576 577 bdp->cbd_bufaddr = cpu_to_fec32(addr); 578 bdp->cbd_datlen = cpu_to_fec16(frag_len); 579 /* Make sure the updates to rest of the descriptor are 580 * performed before transferring ownership. 581 */ 582 wmb(); 583 bdp->cbd_sc = cpu_to_fec16(status); 584 } 585 586 return bdp; 587 dma_mapping_error: 588 bdp = txq->bd.cur; 589 for (i = 0; i < frag; i++) { 590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 593 } 594 return ERR_PTR(-ENOMEM); 595 } 596 597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 598 struct sk_buff *skb, struct net_device *ndev) 599 { 600 struct fec_enet_private *fep = netdev_priv(ndev); 601 int nr_frags = skb_shinfo(skb)->nr_frags; 602 struct bufdesc *bdp, *last_bdp; 603 void *bufaddr; 604 dma_addr_t addr; 605 unsigned short status; 606 unsigned short buflen; 607 unsigned int estatus = 0; 608 unsigned int index; 609 int entries_free; 610 611 entries_free = fec_enet_get_free_txdesc_num(txq); 612 if (entries_free < MAX_SKB_FRAGS + 1) { 613 dev_kfree_skb_any(skb); 614 if (net_ratelimit()) 615 netdev_err(ndev, "NOT enough BD for SG!\n"); 616 return NETDEV_TX_OK; 617 } 618 619 /* Protocol checksum off-load for TCP and UDP. */ 620 if (fec_enet_clear_csum(skb, ndev)) { 621 dev_kfree_skb_any(skb); 622 return NETDEV_TX_OK; 623 } 624 625 /* Fill in a Tx ring entry */ 626 bdp = txq->bd.cur; 627 last_bdp = bdp; 628 status = fec16_to_cpu(bdp->cbd_sc); 629 status &= ~BD_ENET_TX_STATS; 630 631 /* Set buffer length and buffer pointer */ 632 bufaddr = skb->data; 633 buflen = skb_headlen(skb); 634 635 index = fec_enet_get_bd_index(bdp, &txq->bd); 636 if (((unsigned long) bufaddr) & fep->tx_align || 637 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 638 memcpy(txq->tx_bounce[index], skb->data, buflen); 639 bufaddr = txq->tx_bounce[index]; 640 641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 642 swap_buffer(bufaddr, buflen); 643 } 644 645 /* Push the data cache so the CPM does not get stale memory data. */ 646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 647 if (dma_mapping_error(&fep->pdev->dev, addr)) { 648 dev_kfree_skb_any(skb); 649 if (net_ratelimit()) 650 netdev_err(ndev, "Tx DMA memory map failed\n"); 651 return NETDEV_TX_OK; 652 } 653 654 if (nr_frags) { 655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 656 if (IS_ERR(last_bdp)) { 657 dma_unmap_single(&fep->pdev->dev, addr, 658 buflen, DMA_TO_DEVICE); 659 dev_kfree_skb_any(skb); 660 return NETDEV_TX_OK; 661 } 662 } else { 663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 664 if (fep->bufdesc_ex) { 665 estatus = BD_ENET_TX_INT; 666 if (unlikely(skb_shinfo(skb)->tx_flags & 667 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 668 estatus |= BD_ENET_TX_TS; 669 } 670 } 671 bdp->cbd_bufaddr = cpu_to_fec32(addr); 672 bdp->cbd_datlen = cpu_to_fec16(buflen); 673 674 if (fep->bufdesc_ex) { 675 676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 677 678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 679 fep->hwts_tx_en)) 680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 681 682 if (fep->quirks & FEC_QUIRK_HAS_AVB) 683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 684 685 if (skb->ip_summed == CHECKSUM_PARTIAL) 686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 687 688 ebdp->cbd_bdu = 0; 689 ebdp->cbd_esc = cpu_to_fec32(estatus); 690 } 691 692 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 693 /* Save skb pointer */ 694 txq->tx_buf[index].buf_p = skb; 695 696 /* Make sure the updates to rest of the descriptor are performed before 697 * transferring ownership. 698 */ 699 wmb(); 700 701 /* Send it on its way. Tell FEC it's ready, interrupt when done, 702 * it's the last BD of the frame, and to put the CRC on the end. 703 */ 704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 705 bdp->cbd_sc = cpu_to_fec16(status); 706 707 /* If this was the last BD in the ring, start at the beginning again. */ 708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 709 710 skb_tx_timestamp(skb); 711 712 /* Make sure the update to bdp is performed before txq->bd.cur. */ 713 wmb(); 714 txq->bd.cur = bdp; 715 716 /* Trigger transmission start */ 717 writel(0, txq->bd.reg_desc_active); 718 719 return 0; 720 } 721 722 static int 723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 724 struct net_device *ndev, 725 struct bufdesc *bdp, int index, char *data, 726 int size, bool last_tcp, bool is_last) 727 { 728 struct fec_enet_private *fep = netdev_priv(ndev); 729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 730 unsigned short status; 731 unsigned int estatus = 0; 732 dma_addr_t addr; 733 734 status = fec16_to_cpu(bdp->cbd_sc); 735 status &= ~BD_ENET_TX_STATS; 736 737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 738 739 if (((unsigned long) data) & fep->tx_align || 740 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 741 memcpy(txq->tx_bounce[index], data, size); 742 data = txq->tx_bounce[index]; 743 744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 745 swap_buffer(data, size); 746 } 747 748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 749 if (dma_mapping_error(&fep->pdev->dev, addr)) { 750 dev_kfree_skb_any(skb); 751 if (net_ratelimit()) 752 netdev_err(ndev, "Tx DMA memory map failed\n"); 753 return NETDEV_TX_OK; 754 } 755 756 bdp->cbd_datlen = cpu_to_fec16(size); 757 bdp->cbd_bufaddr = cpu_to_fec32(addr); 758 759 if (fep->bufdesc_ex) { 760 if (fep->quirks & FEC_QUIRK_HAS_AVB) 761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 762 if (skb->ip_summed == CHECKSUM_PARTIAL) 763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 764 ebdp->cbd_bdu = 0; 765 ebdp->cbd_esc = cpu_to_fec32(estatus); 766 } 767 768 /* Handle the last BD specially */ 769 if (last_tcp) 770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 771 if (is_last) { 772 status |= BD_ENET_TX_INTR; 773 if (fep->bufdesc_ex) 774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 775 } 776 777 bdp->cbd_sc = cpu_to_fec16(status); 778 779 return 0; 780 } 781 782 static int 783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 784 struct sk_buff *skb, struct net_device *ndev, 785 struct bufdesc *bdp, int index) 786 { 787 struct fec_enet_private *fep = netdev_priv(ndev); 788 int hdr_len = skb_tcp_all_headers(skb); 789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 790 void *bufaddr; 791 unsigned long dmabuf; 792 unsigned short status; 793 unsigned int estatus = 0; 794 795 status = fec16_to_cpu(bdp->cbd_sc); 796 status &= ~BD_ENET_TX_STATS; 797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 798 799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 801 if (((unsigned long)bufaddr) & fep->tx_align || 802 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 803 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 804 bufaddr = txq->tx_bounce[index]; 805 806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 807 swap_buffer(bufaddr, hdr_len); 808 809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 810 hdr_len, DMA_TO_DEVICE); 811 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 812 dev_kfree_skb_any(skb); 813 if (net_ratelimit()) 814 netdev_err(ndev, "Tx DMA memory map failed\n"); 815 return NETDEV_TX_OK; 816 } 817 } 818 819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 820 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 821 822 if (fep->bufdesc_ex) { 823 if (fep->quirks & FEC_QUIRK_HAS_AVB) 824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 825 if (skb->ip_summed == CHECKSUM_PARTIAL) 826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 827 ebdp->cbd_bdu = 0; 828 ebdp->cbd_esc = cpu_to_fec32(estatus); 829 } 830 831 bdp->cbd_sc = cpu_to_fec16(status); 832 833 return 0; 834 } 835 836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 837 struct sk_buff *skb, 838 struct net_device *ndev) 839 { 840 struct fec_enet_private *fep = netdev_priv(ndev); 841 int hdr_len, total_len, data_left; 842 struct bufdesc *bdp = txq->bd.cur; 843 struct tso_t tso; 844 unsigned int index = 0; 845 int ret; 846 847 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 848 dev_kfree_skb_any(skb); 849 if (net_ratelimit()) 850 netdev_err(ndev, "NOT enough BD for TSO!\n"); 851 return NETDEV_TX_OK; 852 } 853 854 /* Protocol checksum off-load for TCP and UDP. */ 855 if (fec_enet_clear_csum(skb, ndev)) { 856 dev_kfree_skb_any(skb); 857 return NETDEV_TX_OK; 858 } 859 860 /* Initialize the TSO handler, and prepare the first payload */ 861 hdr_len = tso_start(skb, &tso); 862 863 total_len = skb->len - hdr_len; 864 while (total_len > 0) { 865 char *hdr; 866 867 index = fec_enet_get_bd_index(bdp, &txq->bd); 868 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 869 total_len -= data_left; 870 871 /* prepare packet headers: MAC + IP + TCP */ 872 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 873 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 874 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 875 if (ret) 876 goto err_release; 877 878 while (data_left > 0) { 879 int size; 880 881 size = min_t(int, tso.size, data_left); 882 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 883 index = fec_enet_get_bd_index(bdp, &txq->bd); 884 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 885 bdp, index, 886 tso.data, size, 887 size == data_left, 888 total_len == 0); 889 if (ret) 890 goto err_release; 891 892 data_left -= size; 893 tso_build_data(skb, &tso, size); 894 } 895 896 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 897 } 898 899 /* Save skb pointer */ 900 txq->tx_buf[index].buf_p = skb; 901 902 skb_tx_timestamp(skb); 903 txq->bd.cur = bdp; 904 905 /* Trigger transmission start */ 906 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 907 !readl(txq->bd.reg_desc_active) || 908 !readl(txq->bd.reg_desc_active) || 909 !readl(txq->bd.reg_desc_active) || 910 !readl(txq->bd.reg_desc_active)) 911 writel(0, txq->bd.reg_desc_active); 912 913 return 0; 914 915 err_release: 916 /* TODO: Release all used data descriptors for TSO */ 917 return ret; 918 } 919 920 static netdev_tx_t 921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 922 { 923 struct fec_enet_private *fep = netdev_priv(ndev); 924 int entries_free; 925 unsigned short queue; 926 struct fec_enet_priv_tx_q *txq; 927 struct netdev_queue *nq; 928 int ret; 929 930 queue = skb_get_queue_mapping(skb); 931 txq = fep->tx_queue[queue]; 932 nq = netdev_get_tx_queue(ndev, queue); 933 934 if (skb_is_gso(skb)) 935 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 936 else 937 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 938 if (ret) 939 return ret; 940 941 entries_free = fec_enet_get_free_txdesc_num(txq); 942 if (entries_free <= txq->tx_stop_threshold) 943 netif_tx_stop_queue(nq); 944 945 return NETDEV_TX_OK; 946 } 947 948 /* Init RX & TX buffer descriptors 949 */ 950 static void fec_enet_bd_init(struct net_device *dev) 951 { 952 struct fec_enet_private *fep = netdev_priv(dev); 953 struct fec_enet_priv_tx_q *txq; 954 struct fec_enet_priv_rx_q *rxq; 955 struct bufdesc *bdp; 956 unsigned int i; 957 unsigned int q; 958 959 for (q = 0; q < fep->num_rx_queues; q++) { 960 /* Initialize the receive buffer descriptors. */ 961 rxq = fep->rx_queue[q]; 962 bdp = rxq->bd.base; 963 964 for (i = 0; i < rxq->bd.ring_size; i++) { 965 966 /* Initialize the BD for every fragment in the page. */ 967 if (bdp->cbd_bufaddr) 968 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 969 else 970 bdp->cbd_sc = cpu_to_fec16(0); 971 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 972 } 973 974 /* Set the last buffer to wrap */ 975 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 976 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 977 978 rxq->bd.cur = rxq->bd.base; 979 } 980 981 for (q = 0; q < fep->num_tx_queues; q++) { 982 /* ...and the same for transmit */ 983 txq = fep->tx_queue[q]; 984 bdp = txq->bd.base; 985 txq->bd.cur = bdp; 986 987 for (i = 0; i < txq->bd.ring_size; i++) { 988 /* Initialize the BD for every fragment in the page. */ 989 bdp->cbd_sc = cpu_to_fec16(0); 990 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 991 if (bdp->cbd_bufaddr && 992 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 993 dma_unmap_single(&fep->pdev->dev, 994 fec32_to_cpu(bdp->cbd_bufaddr), 995 fec16_to_cpu(bdp->cbd_datlen), 996 DMA_TO_DEVICE); 997 if (txq->tx_buf[i].buf_p) 998 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 999 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 1000 if (bdp->cbd_bufaddr) 1001 dma_unmap_single(&fep->pdev->dev, 1002 fec32_to_cpu(bdp->cbd_bufaddr), 1003 fec16_to_cpu(bdp->cbd_datlen), 1004 DMA_TO_DEVICE); 1005 1006 if (txq->tx_buf[i].buf_p) 1007 xdp_return_frame(txq->tx_buf[i].buf_p); 1008 } else { 1009 struct page *page = txq->tx_buf[i].buf_p; 1010 1011 if (page) 1012 page_pool_put_page(page->pp, page, 0, false); 1013 } 1014 1015 txq->tx_buf[i].buf_p = NULL; 1016 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1017 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1018 bdp->cbd_bufaddr = cpu_to_fec32(0); 1019 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1020 } 1021 1022 /* Set the last buffer to wrap */ 1023 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1024 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1025 txq->dirty_tx = bdp; 1026 } 1027 } 1028 1029 static void fec_enet_active_rxring(struct net_device *ndev) 1030 { 1031 struct fec_enet_private *fep = netdev_priv(ndev); 1032 int i; 1033 1034 for (i = 0; i < fep->num_rx_queues; i++) 1035 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1036 } 1037 1038 static void fec_enet_enable_ring(struct net_device *ndev) 1039 { 1040 struct fec_enet_private *fep = netdev_priv(ndev); 1041 struct fec_enet_priv_tx_q *txq; 1042 struct fec_enet_priv_rx_q *rxq; 1043 int i; 1044 1045 for (i = 0; i < fep->num_rx_queues; i++) { 1046 rxq = fep->rx_queue[i]; 1047 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1048 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1049 1050 /* enable DMA1/2 */ 1051 if (i) 1052 writel(RCMR_MATCHEN | RCMR_CMP(i), 1053 fep->hwp + FEC_RCMR(i)); 1054 } 1055 1056 for (i = 0; i < fep->num_tx_queues; i++) { 1057 txq = fep->tx_queue[i]; 1058 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1059 1060 /* enable DMA1/2 */ 1061 if (i) 1062 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1063 fep->hwp + FEC_DMA_CFG(i)); 1064 } 1065 } 1066 1067 /* 1068 * This function is called to start or restart the FEC during a link 1069 * change, transmit timeout, or to reconfigure the FEC. The network 1070 * packet processing for this device must be stopped before this call. 1071 */ 1072 static void 1073 fec_restart(struct net_device *ndev) 1074 { 1075 struct fec_enet_private *fep = netdev_priv(ndev); 1076 u32 temp_mac[2]; 1077 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1078 u32 ecntl = FEC_ECR_ETHEREN; 1079 1080 if (fep->bufdesc_ex) 1081 fec_ptp_save_state(fep); 1082 1083 /* Whack a reset. We should wait for this. 1084 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1085 * instead of reset MAC itself. 1086 */ 1087 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1088 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1089 writel(0, fep->hwp + FEC_ECNTRL); 1090 } else { 1091 writel(1, fep->hwp + FEC_ECNTRL); 1092 udelay(10); 1093 } 1094 1095 /* 1096 * enet-mac reset will reset mac address registers too, 1097 * so need to reconfigure it. 1098 */ 1099 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1100 writel((__force u32)cpu_to_be32(temp_mac[0]), 1101 fep->hwp + FEC_ADDR_LOW); 1102 writel((__force u32)cpu_to_be32(temp_mac[1]), 1103 fep->hwp + FEC_ADDR_HIGH); 1104 1105 /* Clear any outstanding interrupt, except MDIO. */ 1106 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1107 1108 fec_enet_bd_init(ndev); 1109 1110 fec_enet_enable_ring(ndev); 1111 1112 /* Enable MII mode */ 1113 if (fep->full_duplex == DUPLEX_FULL) { 1114 /* FD enable */ 1115 writel(0x04, fep->hwp + FEC_X_CNTRL); 1116 } else { 1117 /* No Rcv on Xmit */ 1118 rcntl |= 0x02; 1119 writel(0x0, fep->hwp + FEC_X_CNTRL); 1120 } 1121 1122 /* Set MII speed */ 1123 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1124 1125 #if !defined(CONFIG_M5272) 1126 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1127 u32 val = readl(fep->hwp + FEC_RACC); 1128 1129 /* align IP header */ 1130 val |= FEC_RACC_SHIFT16; 1131 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1132 /* set RX checksum */ 1133 val |= FEC_RACC_OPTIONS; 1134 else 1135 val &= ~FEC_RACC_OPTIONS; 1136 writel(val, fep->hwp + FEC_RACC); 1137 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1138 } 1139 #endif 1140 1141 /* 1142 * The phy interface and speed need to get configured 1143 * differently on enet-mac. 1144 */ 1145 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1146 /* Enable flow control and length check */ 1147 rcntl |= 0x40000000 | 0x00000020; 1148 1149 /* RGMII, RMII or MII */ 1150 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1151 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1152 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1153 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1154 rcntl |= (1 << 6); 1155 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1156 rcntl |= FEC_RCR_RMII; 1157 else 1158 rcntl &= ~FEC_RCR_RMII; 1159 1160 /* 1G, 100M or 10M */ 1161 if (ndev->phydev) { 1162 if (ndev->phydev->speed == SPEED_1000) 1163 ecntl |= (1 << 5); 1164 else if (ndev->phydev->speed == SPEED_100) 1165 rcntl &= ~FEC_RCR_10BASET; 1166 else 1167 rcntl |= FEC_RCR_10BASET; 1168 } 1169 } else { 1170 #ifdef FEC_MIIGSK_ENR 1171 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1172 u32 cfgr; 1173 /* disable the gasket and wait */ 1174 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1175 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1176 udelay(1); 1177 1178 /* 1179 * configure the gasket: 1180 * RMII, 50 MHz, no loopback, no echo 1181 * MII, 25 MHz, no loopback, no echo 1182 */ 1183 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1184 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1185 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1186 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1187 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1188 1189 /* re-enable the gasket */ 1190 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1191 } 1192 #endif 1193 } 1194 1195 #if !defined(CONFIG_M5272) 1196 /* enable pause frame*/ 1197 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1198 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1199 ndev->phydev && ndev->phydev->pause)) { 1200 rcntl |= FEC_RCR_FLOWCTL; 1201 1202 /* set FIFO threshold parameter to reduce overrun */ 1203 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1204 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1205 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1206 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1207 1208 /* OPD */ 1209 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1210 } else { 1211 rcntl &= ~FEC_RCR_FLOWCTL; 1212 } 1213 #endif /* !defined(CONFIG_M5272) */ 1214 1215 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1216 1217 /* Setup multicast filter. */ 1218 set_multicast_list(ndev); 1219 #ifndef CONFIG_M5272 1220 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1221 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1222 #endif 1223 1224 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1225 /* enable ENET endian swap */ 1226 ecntl |= FEC_ECR_BYTESWP; 1227 /* enable ENET store and forward mode */ 1228 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); 1229 } 1230 1231 if (fep->bufdesc_ex) 1232 ecntl |= FEC_ECR_EN1588; 1233 1234 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1235 fep->rgmii_txc_dly) 1236 ecntl |= FEC_ENET_TXC_DLY; 1237 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1238 fep->rgmii_rxc_dly) 1239 ecntl |= FEC_ENET_RXC_DLY; 1240 1241 #ifndef CONFIG_M5272 1242 /* Enable the MIB statistic event counters */ 1243 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1244 #endif 1245 1246 /* And last, enable the transmit and receive processing */ 1247 writel(ecntl, fep->hwp + FEC_ECNTRL); 1248 fec_enet_active_rxring(ndev); 1249 1250 if (fep->bufdesc_ex) { 1251 fec_ptp_start_cyclecounter(ndev); 1252 fec_ptp_restore_state(fep); 1253 } 1254 1255 /* Enable interrupts we wish to service */ 1256 if (fep->link) 1257 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1258 else 1259 writel(0, fep->hwp + FEC_IMASK); 1260 1261 /* Init the interrupt coalescing */ 1262 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1263 fec_enet_itr_coal_set(ndev); 1264 } 1265 1266 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1267 { 1268 if (!(of_machine_is_compatible("fsl,imx8qm") || 1269 of_machine_is_compatible("fsl,imx8qxp") || 1270 of_machine_is_compatible("fsl,imx8dxl"))) 1271 return 0; 1272 1273 return imx_scu_get_handle(&fep->ipc_handle); 1274 } 1275 1276 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1277 { 1278 struct device_node *np = fep->pdev->dev.of_node; 1279 u32 rsrc_id, val; 1280 int idx; 1281 1282 if (!np || !fep->ipc_handle) 1283 return; 1284 1285 idx = of_alias_get_id(np, "ethernet"); 1286 if (idx < 0) 1287 idx = 0; 1288 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1289 1290 val = enabled ? 1 : 0; 1291 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1292 } 1293 1294 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1295 { 1296 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1297 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1298 1299 if (stop_gpr->gpr) { 1300 if (enabled) 1301 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1302 BIT(stop_gpr->bit), 1303 BIT(stop_gpr->bit)); 1304 else 1305 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1306 BIT(stop_gpr->bit), 0); 1307 } else if (pdata && pdata->sleep_mode_enable) { 1308 pdata->sleep_mode_enable(enabled); 1309 } else { 1310 fec_enet_ipg_stop_set(fep, enabled); 1311 } 1312 } 1313 1314 static void fec_irqs_disable(struct net_device *ndev) 1315 { 1316 struct fec_enet_private *fep = netdev_priv(ndev); 1317 1318 writel(0, fep->hwp + FEC_IMASK); 1319 } 1320 1321 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1322 { 1323 struct fec_enet_private *fep = netdev_priv(ndev); 1324 1325 writel(0, fep->hwp + FEC_IMASK); 1326 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1327 } 1328 1329 static void 1330 fec_stop(struct net_device *ndev) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; 1334 u32 val; 1335 1336 /* We cannot expect a graceful transmit stop without link !!! */ 1337 if (fep->link) { 1338 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1339 udelay(10); 1340 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1341 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1342 } 1343 1344 if (fep->bufdesc_ex) 1345 fec_ptp_save_state(fep); 1346 1347 /* Whack a reset. We should wait for this. 1348 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1349 * instead of reset MAC itself. 1350 */ 1351 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1352 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1353 writel(0, fep->hwp + FEC_ECNTRL); 1354 } else { 1355 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); 1356 udelay(10); 1357 } 1358 } else { 1359 val = readl(fep->hwp + FEC_ECNTRL); 1360 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1361 writel(val, fep->hwp + FEC_ECNTRL); 1362 } 1363 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1364 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1365 1366 /* We have to keep ENET enabled to have MII interrupt stay working */ 1367 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1368 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1369 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); 1370 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1371 } 1372 1373 if (fep->bufdesc_ex) { 1374 val = readl(fep->hwp + FEC_ECNTRL); 1375 val |= FEC_ECR_EN1588; 1376 writel(val, fep->hwp + FEC_ECNTRL); 1377 1378 fec_ptp_start_cyclecounter(ndev); 1379 fec_ptp_restore_state(fep); 1380 } 1381 } 1382 1383 static void 1384 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1385 { 1386 struct fec_enet_private *fep = netdev_priv(ndev); 1387 1388 fec_dump(ndev); 1389 1390 ndev->stats.tx_errors++; 1391 1392 schedule_work(&fep->tx_timeout_work); 1393 } 1394 1395 static void fec_enet_timeout_work(struct work_struct *work) 1396 { 1397 struct fec_enet_private *fep = 1398 container_of(work, struct fec_enet_private, tx_timeout_work); 1399 struct net_device *ndev = fep->netdev; 1400 1401 rtnl_lock(); 1402 if (netif_device_present(ndev) || netif_running(ndev)) { 1403 napi_disable(&fep->napi); 1404 netif_tx_lock_bh(ndev); 1405 fec_restart(ndev); 1406 netif_tx_wake_all_queues(ndev); 1407 netif_tx_unlock_bh(ndev); 1408 napi_enable(&fep->napi); 1409 } 1410 rtnl_unlock(); 1411 } 1412 1413 static void 1414 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1415 struct skb_shared_hwtstamps *hwtstamps) 1416 { 1417 unsigned long flags; 1418 u64 ns; 1419 1420 spin_lock_irqsave(&fep->tmreg_lock, flags); 1421 ns = timecounter_cyc2time(&fep->tc, ts); 1422 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1423 1424 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1425 hwtstamps->hwtstamp = ns_to_ktime(ns); 1426 } 1427 1428 static void 1429 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1430 { 1431 struct fec_enet_private *fep; 1432 struct xdp_frame *xdpf; 1433 struct bufdesc *bdp; 1434 unsigned short status; 1435 struct sk_buff *skb; 1436 struct fec_enet_priv_tx_q *txq; 1437 struct netdev_queue *nq; 1438 int index = 0; 1439 int entries_free; 1440 struct page *page; 1441 int frame_len; 1442 1443 fep = netdev_priv(ndev); 1444 1445 txq = fep->tx_queue[queue_id]; 1446 /* get next bdp of dirty_tx */ 1447 nq = netdev_get_tx_queue(ndev, queue_id); 1448 bdp = txq->dirty_tx; 1449 1450 /* get next bdp of dirty_tx */ 1451 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1452 1453 while (bdp != READ_ONCE(txq->bd.cur)) { 1454 /* Order the load of bd.cur and cbd_sc */ 1455 rmb(); 1456 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1457 if (status & BD_ENET_TX_READY) 1458 break; 1459 1460 index = fec_enet_get_bd_index(bdp, &txq->bd); 1461 1462 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1463 skb = txq->tx_buf[index].buf_p; 1464 if (bdp->cbd_bufaddr && 1465 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1466 dma_unmap_single(&fep->pdev->dev, 1467 fec32_to_cpu(bdp->cbd_bufaddr), 1468 fec16_to_cpu(bdp->cbd_datlen), 1469 DMA_TO_DEVICE); 1470 bdp->cbd_bufaddr = cpu_to_fec32(0); 1471 if (!skb) 1472 goto tx_buf_done; 1473 } else { 1474 /* Tx processing cannot call any XDP (or page pool) APIs if 1475 * the "budget" is 0. Because NAPI is called with budget of 1476 * 0 (such as netpoll) indicates we may be in an IRQ context, 1477 * however, we can't use the page pool from IRQ context. 1478 */ 1479 if (unlikely(!budget)) 1480 break; 1481 1482 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1483 xdpf = txq->tx_buf[index].buf_p; 1484 if (bdp->cbd_bufaddr) 1485 dma_unmap_single(&fep->pdev->dev, 1486 fec32_to_cpu(bdp->cbd_bufaddr), 1487 fec16_to_cpu(bdp->cbd_datlen), 1488 DMA_TO_DEVICE); 1489 } else { 1490 page = txq->tx_buf[index].buf_p; 1491 } 1492 1493 bdp->cbd_bufaddr = cpu_to_fec32(0); 1494 if (unlikely(!txq->tx_buf[index].buf_p)) { 1495 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1496 goto tx_buf_done; 1497 } 1498 1499 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1500 } 1501 1502 /* Check for errors. */ 1503 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1504 BD_ENET_TX_RL | BD_ENET_TX_UN | 1505 BD_ENET_TX_CSL)) { 1506 ndev->stats.tx_errors++; 1507 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1508 ndev->stats.tx_heartbeat_errors++; 1509 if (status & BD_ENET_TX_LC) /* Late collision */ 1510 ndev->stats.tx_window_errors++; 1511 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1512 ndev->stats.tx_aborted_errors++; 1513 if (status & BD_ENET_TX_UN) /* Underrun */ 1514 ndev->stats.tx_fifo_errors++; 1515 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1516 ndev->stats.tx_carrier_errors++; 1517 } else { 1518 ndev->stats.tx_packets++; 1519 1520 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1521 ndev->stats.tx_bytes += skb->len; 1522 else 1523 ndev->stats.tx_bytes += frame_len; 1524 } 1525 1526 /* Deferred means some collisions occurred during transmit, 1527 * but we eventually sent the packet OK. 1528 */ 1529 if (status & BD_ENET_TX_DEF) 1530 ndev->stats.collisions++; 1531 1532 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1533 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1534 * are to time stamp the packet, so we still need to check time 1535 * stamping enabled flag. 1536 */ 1537 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1538 fep->hwts_tx_en) && fep->bufdesc_ex) { 1539 struct skb_shared_hwtstamps shhwtstamps; 1540 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1541 1542 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1543 skb_tstamp_tx(skb, &shhwtstamps); 1544 } 1545 1546 /* Free the sk buffer associated with this last transmit */ 1547 napi_consume_skb(skb, budget); 1548 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1549 xdp_return_frame_rx_napi(xdpf); 1550 } else { /* recycle pages of XDP_TX frames */ 1551 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1552 page_pool_put_page(page->pp, page, 0, true); 1553 } 1554 1555 txq->tx_buf[index].buf_p = NULL; 1556 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1557 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1558 1559 tx_buf_done: 1560 /* Make sure the update to bdp and tx_buf are performed 1561 * before dirty_tx 1562 */ 1563 wmb(); 1564 txq->dirty_tx = bdp; 1565 1566 /* Update pointer to next buffer descriptor to be transmitted */ 1567 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1568 1569 /* Since we have freed up a buffer, the ring is no longer full 1570 */ 1571 if (netif_tx_queue_stopped(nq)) { 1572 entries_free = fec_enet_get_free_txdesc_num(txq); 1573 if (entries_free >= txq->tx_wake_threshold) 1574 netif_tx_wake_queue(nq); 1575 } 1576 } 1577 1578 /* ERR006358: Keep the transmitter going */ 1579 if (bdp != txq->bd.cur && 1580 readl(txq->bd.reg_desc_active) == 0) 1581 writel(0, txq->bd.reg_desc_active); 1582 } 1583 1584 static void fec_enet_tx(struct net_device *ndev, int budget) 1585 { 1586 struct fec_enet_private *fep = netdev_priv(ndev); 1587 int i; 1588 1589 /* Make sure that AVB queues are processed first. */ 1590 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1591 fec_enet_tx_queue(ndev, i, budget); 1592 } 1593 1594 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1595 struct bufdesc *bdp, int index) 1596 { 1597 struct page *new_page; 1598 dma_addr_t phys_addr; 1599 1600 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1601 if (unlikely(!new_page)) 1602 return -ENOMEM; 1603 1604 rxq->rx_skb_info[index].page = new_page; 1605 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1606 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1607 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1608 1609 return 0; 1610 } 1611 1612 static u32 1613 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1614 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1615 { 1616 unsigned int sync, len = xdp->data_end - xdp->data; 1617 u32 ret = FEC_ENET_XDP_PASS; 1618 struct page *page; 1619 int err; 1620 u32 act; 1621 1622 act = bpf_prog_run_xdp(prog, xdp); 1623 1624 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1625 * max len CPU touch 1626 */ 1627 sync = xdp->data_end - xdp->data; 1628 sync = max(sync, len); 1629 1630 switch (act) { 1631 case XDP_PASS: 1632 rxq->stats[RX_XDP_PASS]++; 1633 ret = FEC_ENET_XDP_PASS; 1634 break; 1635 1636 case XDP_REDIRECT: 1637 rxq->stats[RX_XDP_REDIRECT]++; 1638 err = xdp_do_redirect(fep->netdev, xdp, prog); 1639 if (unlikely(err)) 1640 goto xdp_err; 1641 1642 ret = FEC_ENET_XDP_REDIR; 1643 break; 1644 1645 case XDP_TX: 1646 rxq->stats[RX_XDP_TX]++; 1647 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1648 if (unlikely(err)) { 1649 rxq->stats[RX_XDP_TX_ERRORS]++; 1650 goto xdp_err; 1651 } 1652 1653 ret = FEC_ENET_XDP_TX; 1654 break; 1655 1656 default: 1657 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1658 fallthrough; 1659 1660 case XDP_ABORTED: 1661 fallthrough; /* handle aborts by dropping packet */ 1662 1663 case XDP_DROP: 1664 rxq->stats[RX_XDP_DROP]++; 1665 xdp_err: 1666 ret = FEC_ENET_XDP_CONSUMED; 1667 page = virt_to_head_page(xdp->data); 1668 page_pool_put_page(rxq->page_pool, page, sync, true); 1669 if (act != XDP_DROP) 1670 trace_xdp_exception(fep->netdev, prog, act); 1671 break; 1672 } 1673 1674 return ret; 1675 } 1676 1677 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1678 * When we update through the ring, if the next incoming buffer has 1679 * not been given to the system, we just set the empty indicator, 1680 * effectively tossing the packet. 1681 */ 1682 static int 1683 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1684 { 1685 struct fec_enet_private *fep = netdev_priv(ndev); 1686 struct fec_enet_priv_rx_q *rxq; 1687 struct bufdesc *bdp; 1688 unsigned short status; 1689 struct sk_buff *skb; 1690 ushort pkt_len; 1691 __u8 *data; 1692 int pkt_received = 0; 1693 struct bufdesc_ex *ebdp = NULL; 1694 bool vlan_packet_rcvd = false; 1695 u16 vlan_tag; 1696 int index = 0; 1697 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1698 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1699 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1700 u32 data_start = FEC_ENET_XDP_HEADROOM; 1701 int cpu = smp_processor_id(); 1702 struct xdp_buff xdp; 1703 struct page *page; 1704 __fec32 cbd_bufaddr; 1705 u32 sub_len = 4; 1706 1707 #if !defined(CONFIG_M5272) 1708 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1709 * FEC_RACC_SHIFT16 is set by default in the probe function. 1710 */ 1711 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1712 data_start += 2; 1713 sub_len += 2; 1714 } 1715 #endif 1716 1717 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1718 /* 1719 * Hacky flush of all caches instead of using the DMA API for the TSO 1720 * headers. 1721 */ 1722 flush_cache_all(); 1723 #endif 1724 rxq = fep->rx_queue[queue_id]; 1725 1726 /* First, grab all of the stats for the incoming packet. 1727 * These get messed up if we get called due to a busy condition. 1728 */ 1729 bdp = rxq->bd.cur; 1730 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1731 1732 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1733 1734 if (pkt_received >= budget) 1735 break; 1736 pkt_received++; 1737 1738 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1739 1740 /* Check for errors. */ 1741 status ^= BD_ENET_RX_LAST; 1742 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1743 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1744 BD_ENET_RX_CL)) { 1745 ndev->stats.rx_errors++; 1746 if (status & BD_ENET_RX_OV) { 1747 /* FIFO overrun */ 1748 ndev->stats.rx_fifo_errors++; 1749 goto rx_processing_done; 1750 } 1751 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1752 | BD_ENET_RX_LAST)) { 1753 /* Frame too long or too short. */ 1754 ndev->stats.rx_length_errors++; 1755 if (status & BD_ENET_RX_LAST) 1756 netdev_err(ndev, "rcv is not +last\n"); 1757 } 1758 if (status & BD_ENET_RX_CR) /* CRC Error */ 1759 ndev->stats.rx_crc_errors++; 1760 /* Report late collisions as a frame error. */ 1761 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1762 ndev->stats.rx_frame_errors++; 1763 goto rx_processing_done; 1764 } 1765 1766 /* Process the incoming frame. */ 1767 ndev->stats.rx_packets++; 1768 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1769 ndev->stats.rx_bytes += pkt_len; 1770 1771 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1772 page = rxq->rx_skb_info[index].page; 1773 cbd_bufaddr = bdp->cbd_bufaddr; 1774 if (fec_enet_update_cbd(rxq, bdp, index)) { 1775 ndev->stats.rx_dropped++; 1776 goto rx_processing_done; 1777 } 1778 1779 dma_sync_single_for_cpu(&fep->pdev->dev, 1780 fec32_to_cpu(cbd_bufaddr), 1781 pkt_len, 1782 DMA_FROM_DEVICE); 1783 prefetch(page_address(page)); 1784 1785 if (xdp_prog) { 1786 xdp_buff_clear_frags_flag(&xdp); 1787 /* subtract 16bit shift and FCS */ 1788 xdp_prepare_buff(&xdp, page_address(page), 1789 data_start, pkt_len - sub_len, false); 1790 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1791 xdp_result |= ret; 1792 if (ret != FEC_ENET_XDP_PASS) 1793 goto rx_processing_done; 1794 } 1795 1796 /* The packet length includes FCS, but we don't want to 1797 * include that when passing upstream as it messes up 1798 * bridging applications. 1799 */ 1800 skb = build_skb(page_address(page), PAGE_SIZE); 1801 if (unlikely(!skb)) { 1802 page_pool_recycle_direct(rxq->page_pool, page); 1803 ndev->stats.rx_dropped++; 1804 1805 netdev_err_once(ndev, "build_skb failed!\n"); 1806 goto rx_processing_done; 1807 } 1808 1809 skb_reserve(skb, data_start); 1810 skb_put(skb, pkt_len - sub_len); 1811 skb_mark_for_recycle(skb); 1812 1813 if (unlikely(need_swap)) { 1814 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1815 swap_buffer(data, pkt_len); 1816 } 1817 data = skb->data; 1818 1819 /* Extract the enhanced buffer descriptor */ 1820 ebdp = NULL; 1821 if (fep->bufdesc_ex) 1822 ebdp = (struct bufdesc_ex *)bdp; 1823 1824 /* If this is a VLAN packet remove the VLAN Tag */ 1825 vlan_packet_rcvd = false; 1826 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1827 fep->bufdesc_ex && 1828 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1829 /* Push and remove the vlan tag */ 1830 struct vlan_hdr *vlan_header = 1831 (struct vlan_hdr *) (data + ETH_HLEN); 1832 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1833 1834 vlan_packet_rcvd = true; 1835 1836 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1837 skb_pull(skb, VLAN_HLEN); 1838 } 1839 1840 skb->protocol = eth_type_trans(skb, ndev); 1841 1842 /* Get receive timestamp from the skb */ 1843 if (fep->hwts_rx_en && fep->bufdesc_ex) 1844 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1845 skb_hwtstamps(skb)); 1846 1847 if (fep->bufdesc_ex && 1848 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1849 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1850 /* don't check it */ 1851 skb->ip_summed = CHECKSUM_UNNECESSARY; 1852 } else { 1853 skb_checksum_none_assert(skb); 1854 } 1855 } 1856 1857 /* Handle received VLAN packets */ 1858 if (vlan_packet_rcvd) 1859 __vlan_hwaccel_put_tag(skb, 1860 htons(ETH_P_8021Q), 1861 vlan_tag); 1862 1863 skb_record_rx_queue(skb, queue_id); 1864 napi_gro_receive(&fep->napi, skb); 1865 1866 rx_processing_done: 1867 /* Clear the status flags for this buffer */ 1868 status &= ~BD_ENET_RX_STATS; 1869 1870 /* Mark the buffer empty */ 1871 status |= BD_ENET_RX_EMPTY; 1872 1873 if (fep->bufdesc_ex) { 1874 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1875 1876 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1877 ebdp->cbd_prot = 0; 1878 ebdp->cbd_bdu = 0; 1879 } 1880 /* Make sure the updates to rest of the descriptor are 1881 * performed before transferring ownership. 1882 */ 1883 wmb(); 1884 bdp->cbd_sc = cpu_to_fec16(status); 1885 1886 /* Update BD pointer to next entry */ 1887 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1888 1889 /* Doing this here will keep the FEC running while we process 1890 * incoming frames. On a heavily loaded network, we should be 1891 * able to keep up at the expense of system resources. 1892 */ 1893 writel(0, rxq->bd.reg_desc_active); 1894 } 1895 rxq->bd.cur = bdp; 1896 1897 if (xdp_result & FEC_ENET_XDP_REDIR) 1898 xdp_do_flush(); 1899 1900 return pkt_received; 1901 } 1902 1903 static int fec_enet_rx(struct net_device *ndev, int budget) 1904 { 1905 struct fec_enet_private *fep = netdev_priv(ndev); 1906 int i, done = 0; 1907 1908 /* Make sure that AVB queues are processed first. */ 1909 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1910 done += fec_enet_rx_queue(ndev, budget - done, i); 1911 1912 return done; 1913 } 1914 1915 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1916 { 1917 uint int_events; 1918 1919 int_events = readl(fep->hwp + FEC_IEVENT); 1920 1921 /* Don't clear MDIO events, we poll for those */ 1922 int_events &= ~FEC_ENET_MII; 1923 1924 writel(int_events, fep->hwp + FEC_IEVENT); 1925 1926 return int_events != 0; 1927 } 1928 1929 static irqreturn_t 1930 fec_enet_interrupt(int irq, void *dev_id) 1931 { 1932 struct net_device *ndev = dev_id; 1933 struct fec_enet_private *fep = netdev_priv(ndev); 1934 irqreturn_t ret = IRQ_NONE; 1935 1936 if (fec_enet_collect_events(fep) && fep->link) { 1937 ret = IRQ_HANDLED; 1938 1939 if (napi_schedule_prep(&fep->napi)) { 1940 /* Disable interrupts */ 1941 writel(0, fep->hwp + FEC_IMASK); 1942 __napi_schedule(&fep->napi); 1943 } 1944 } 1945 1946 return ret; 1947 } 1948 1949 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1950 { 1951 struct net_device *ndev = napi->dev; 1952 struct fec_enet_private *fep = netdev_priv(ndev); 1953 int done = 0; 1954 1955 do { 1956 done += fec_enet_rx(ndev, budget - done); 1957 fec_enet_tx(ndev, budget); 1958 } while ((done < budget) && fec_enet_collect_events(fep)); 1959 1960 if (done < budget) { 1961 napi_complete_done(napi, done); 1962 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1963 } 1964 1965 return done; 1966 } 1967 1968 /* ------------------------------------------------------------------------- */ 1969 static int fec_get_mac(struct net_device *ndev) 1970 { 1971 struct fec_enet_private *fep = netdev_priv(ndev); 1972 unsigned char *iap, tmpaddr[ETH_ALEN]; 1973 int ret; 1974 1975 /* 1976 * try to get mac address in following order: 1977 * 1978 * 1) module parameter via kernel command line in form 1979 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1980 */ 1981 iap = macaddr; 1982 1983 /* 1984 * 2) from device tree data 1985 */ 1986 if (!is_valid_ether_addr(iap)) { 1987 struct device_node *np = fep->pdev->dev.of_node; 1988 if (np) { 1989 ret = of_get_mac_address(np, tmpaddr); 1990 if (!ret) 1991 iap = tmpaddr; 1992 else if (ret == -EPROBE_DEFER) 1993 return ret; 1994 } 1995 } 1996 1997 /* 1998 * 3) from flash or fuse (via platform data) 1999 */ 2000 if (!is_valid_ether_addr(iap)) { 2001 #ifdef CONFIG_M5272 2002 if (FEC_FLASHMAC) 2003 iap = (unsigned char *)FEC_FLASHMAC; 2004 #else 2005 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 2006 2007 if (pdata) 2008 iap = (unsigned char *)&pdata->mac; 2009 #endif 2010 } 2011 2012 /* 2013 * 4) FEC mac registers set by bootloader 2014 */ 2015 if (!is_valid_ether_addr(iap)) { 2016 *((__be32 *) &tmpaddr[0]) = 2017 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 2018 *((__be16 *) &tmpaddr[4]) = 2019 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 2020 iap = &tmpaddr[0]; 2021 } 2022 2023 /* 2024 * 5) random mac address 2025 */ 2026 if (!is_valid_ether_addr(iap)) { 2027 /* Report it and use a random ethernet address instead */ 2028 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 2029 eth_hw_addr_random(ndev); 2030 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 2031 ndev->dev_addr); 2032 return 0; 2033 } 2034 2035 /* Adjust MAC if using macaddr */ 2036 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 2037 2038 return 0; 2039 } 2040 2041 /* ------------------------------------------------------------------------- */ 2042 2043 /* 2044 * Phy section 2045 */ 2046 2047 /* LPI Sleep Ts count base on tx clk (clk_ref). 2048 * The lpi sleep cnt value = X us / (cycle_ns). 2049 */ 2050 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2051 { 2052 struct fec_enet_private *fep = netdev_priv(ndev); 2053 2054 return us * (fep->clk_ref_rate / 1000) / 1000; 2055 } 2056 2057 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2058 { 2059 struct fec_enet_private *fep = netdev_priv(ndev); 2060 struct ethtool_keee *p = &fep->eee; 2061 unsigned int sleep_cycle, wake_cycle; 2062 2063 if (enable) { 2064 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2065 wake_cycle = sleep_cycle; 2066 } else { 2067 sleep_cycle = 0; 2068 wake_cycle = 0; 2069 } 2070 2071 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2072 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2073 2074 return 0; 2075 } 2076 2077 static void fec_enet_adjust_link(struct net_device *ndev) 2078 { 2079 struct fec_enet_private *fep = netdev_priv(ndev); 2080 struct phy_device *phy_dev = ndev->phydev; 2081 int status_change = 0; 2082 2083 /* 2084 * If the netdev is down, or is going down, we're not interested 2085 * in link state events, so just mark our idea of the link as down 2086 * and ignore the event. 2087 */ 2088 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2089 fep->link = 0; 2090 } else if (phy_dev->link) { 2091 if (!fep->link) { 2092 fep->link = phy_dev->link; 2093 status_change = 1; 2094 } 2095 2096 if (fep->full_duplex != phy_dev->duplex) { 2097 fep->full_duplex = phy_dev->duplex; 2098 status_change = 1; 2099 } 2100 2101 if (phy_dev->speed != fep->speed) { 2102 fep->speed = phy_dev->speed; 2103 status_change = 1; 2104 } 2105 2106 /* if any of the above changed restart the FEC */ 2107 if (status_change) { 2108 netif_stop_queue(ndev); 2109 napi_disable(&fep->napi); 2110 netif_tx_lock_bh(ndev); 2111 fec_restart(ndev); 2112 netif_tx_wake_all_queues(ndev); 2113 netif_tx_unlock_bh(ndev); 2114 napi_enable(&fep->napi); 2115 } 2116 if (fep->quirks & FEC_QUIRK_HAS_EEE) 2117 fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi); 2118 } else { 2119 if (fep->link) { 2120 netif_stop_queue(ndev); 2121 napi_disable(&fep->napi); 2122 netif_tx_lock_bh(ndev); 2123 fec_stop(ndev); 2124 netif_tx_unlock_bh(ndev); 2125 napi_enable(&fep->napi); 2126 fep->link = phy_dev->link; 2127 status_change = 1; 2128 } 2129 } 2130 2131 if (status_change) 2132 phy_print_status(phy_dev); 2133 } 2134 2135 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2136 { 2137 uint ievent; 2138 int ret; 2139 2140 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2141 ievent & FEC_ENET_MII, 2, 30000); 2142 2143 if (!ret) 2144 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2145 2146 return ret; 2147 } 2148 2149 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2150 { 2151 struct fec_enet_private *fep = bus->priv; 2152 struct device *dev = &fep->pdev->dev; 2153 int ret = 0, frame_start, frame_addr, frame_op; 2154 2155 ret = pm_runtime_resume_and_get(dev); 2156 if (ret < 0) 2157 return ret; 2158 2159 /* C22 read */ 2160 frame_op = FEC_MMFR_OP_READ; 2161 frame_start = FEC_MMFR_ST; 2162 frame_addr = regnum; 2163 2164 /* start a read op */ 2165 writel(frame_start | frame_op | 2166 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2167 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2168 2169 /* wait for end of transfer */ 2170 ret = fec_enet_mdio_wait(fep); 2171 if (ret) { 2172 netdev_err(fep->netdev, "MDIO read timeout\n"); 2173 goto out; 2174 } 2175 2176 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2177 2178 out: 2179 pm_runtime_mark_last_busy(dev); 2180 pm_runtime_put_autosuspend(dev); 2181 2182 return ret; 2183 } 2184 2185 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2186 int devad, int regnum) 2187 { 2188 struct fec_enet_private *fep = bus->priv; 2189 struct device *dev = &fep->pdev->dev; 2190 int ret = 0, frame_start, frame_op; 2191 2192 ret = pm_runtime_resume_and_get(dev); 2193 if (ret < 0) 2194 return ret; 2195 2196 frame_start = FEC_MMFR_ST_C45; 2197 2198 /* write address */ 2199 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2200 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2201 FEC_MMFR_TA | (regnum & 0xFFFF), 2202 fep->hwp + FEC_MII_DATA); 2203 2204 /* wait for end of transfer */ 2205 ret = fec_enet_mdio_wait(fep); 2206 if (ret) { 2207 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2208 goto out; 2209 } 2210 2211 frame_op = FEC_MMFR_OP_READ_C45; 2212 2213 /* start a read op */ 2214 writel(frame_start | frame_op | 2215 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2216 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2217 2218 /* wait for end of transfer */ 2219 ret = fec_enet_mdio_wait(fep); 2220 if (ret) { 2221 netdev_err(fep->netdev, "MDIO read timeout\n"); 2222 goto out; 2223 } 2224 2225 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2226 2227 out: 2228 pm_runtime_mark_last_busy(dev); 2229 pm_runtime_put_autosuspend(dev); 2230 2231 return ret; 2232 } 2233 2234 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2235 u16 value) 2236 { 2237 struct fec_enet_private *fep = bus->priv; 2238 struct device *dev = &fep->pdev->dev; 2239 int ret, frame_start, frame_addr; 2240 2241 ret = pm_runtime_resume_and_get(dev); 2242 if (ret < 0) 2243 return ret; 2244 2245 /* C22 write */ 2246 frame_start = FEC_MMFR_ST; 2247 frame_addr = regnum; 2248 2249 /* start a write op */ 2250 writel(frame_start | FEC_MMFR_OP_WRITE | 2251 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2252 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2253 fep->hwp + FEC_MII_DATA); 2254 2255 /* wait for end of transfer */ 2256 ret = fec_enet_mdio_wait(fep); 2257 if (ret) 2258 netdev_err(fep->netdev, "MDIO write timeout\n"); 2259 2260 pm_runtime_mark_last_busy(dev); 2261 pm_runtime_put_autosuspend(dev); 2262 2263 return ret; 2264 } 2265 2266 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2267 int devad, int regnum, u16 value) 2268 { 2269 struct fec_enet_private *fep = bus->priv; 2270 struct device *dev = &fep->pdev->dev; 2271 int ret, frame_start; 2272 2273 ret = pm_runtime_resume_and_get(dev); 2274 if (ret < 0) 2275 return ret; 2276 2277 frame_start = FEC_MMFR_ST_C45; 2278 2279 /* write address */ 2280 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2281 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2282 FEC_MMFR_TA | (regnum & 0xFFFF), 2283 fep->hwp + FEC_MII_DATA); 2284 2285 /* wait for end of transfer */ 2286 ret = fec_enet_mdio_wait(fep); 2287 if (ret) { 2288 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2289 goto out; 2290 } 2291 2292 /* start a write op */ 2293 writel(frame_start | FEC_MMFR_OP_WRITE | 2294 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2295 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2296 fep->hwp + FEC_MII_DATA); 2297 2298 /* wait for end of transfer */ 2299 ret = fec_enet_mdio_wait(fep); 2300 if (ret) 2301 netdev_err(fep->netdev, "MDIO write timeout\n"); 2302 2303 out: 2304 pm_runtime_mark_last_busy(dev); 2305 pm_runtime_put_autosuspend(dev); 2306 2307 return ret; 2308 } 2309 2310 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2311 { 2312 struct fec_enet_private *fep = netdev_priv(ndev); 2313 struct phy_device *phy_dev = ndev->phydev; 2314 2315 if (phy_dev) { 2316 phy_reset_after_clk_enable(phy_dev); 2317 } else if (fep->phy_node) { 2318 /* 2319 * If the PHY still is not bound to the MAC, but there is 2320 * OF PHY node and a matching PHY device instance already, 2321 * use the OF PHY node to obtain the PHY device instance, 2322 * and then use that PHY device instance when triggering 2323 * the PHY reset. 2324 */ 2325 phy_dev = of_phy_find_device(fep->phy_node); 2326 phy_reset_after_clk_enable(phy_dev); 2327 put_device(&phy_dev->mdio.dev); 2328 } 2329 } 2330 2331 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2332 { 2333 struct fec_enet_private *fep = netdev_priv(ndev); 2334 int ret; 2335 2336 if (enable) { 2337 ret = clk_prepare_enable(fep->clk_enet_out); 2338 if (ret) 2339 return ret; 2340 2341 if (fep->clk_ptp) { 2342 mutex_lock(&fep->ptp_clk_mutex); 2343 ret = clk_prepare_enable(fep->clk_ptp); 2344 if (ret) { 2345 mutex_unlock(&fep->ptp_clk_mutex); 2346 goto failed_clk_ptp; 2347 } else { 2348 fep->ptp_clk_on = true; 2349 } 2350 mutex_unlock(&fep->ptp_clk_mutex); 2351 } 2352 2353 ret = clk_prepare_enable(fep->clk_ref); 2354 if (ret) 2355 goto failed_clk_ref; 2356 2357 ret = clk_prepare_enable(fep->clk_2x_txclk); 2358 if (ret) 2359 goto failed_clk_2x_txclk; 2360 2361 fec_enet_phy_reset_after_clk_enable(ndev); 2362 } else { 2363 clk_disable_unprepare(fep->clk_enet_out); 2364 if (fep->clk_ptp) { 2365 mutex_lock(&fep->ptp_clk_mutex); 2366 clk_disable_unprepare(fep->clk_ptp); 2367 fep->ptp_clk_on = false; 2368 mutex_unlock(&fep->ptp_clk_mutex); 2369 } 2370 clk_disable_unprepare(fep->clk_ref); 2371 clk_disable_unprepare(fep->clk_2x_txclk); 2372 } 2373 2374 return 0; 2375 2376 failed_clk_2x_txclk: 2377 if (fep->clk_ref) 2378 clk_disable_unprepare(fep->clk_ref); 2379 failed_clk_ref: 2380 if (fep->clk_ptp) { 2381 mutex_lock(&fep->ptp_clk_mutex); 2382 clk_disable_unprepare(fep->clk_ptp); 2383 fep->ptp_clk_on = false; 2384 mutex_unlock(&fep->ptp_clk_mutex); 2385 } 2386 failed_clk_ptp: 2387 clk_disable_unprepare(fep->clk_enet_out); 2388 2389 return ret; 2390 } 2391 2392 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2393 struct device_node *np) 2394 { 2395 u32 rgmii_tx_delay, rgmii_rx_delay; 2396 2397 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2398 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2399 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2400 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2401 return -EINVAL; 2402 } else if (rgmii_tx_delay == 2000) { 2403 fep->rgmii_txc_dly = true; 2404 } 2405 } 2406 2407 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2408 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2409 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2410 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2411 return -EINVAL; 2412 } else if (rgmii_rx_delay == 2000) { 2413 fep->rgmii_rxc_dly = true; 2414 } 2415 } 2416 2417 return 0; 2418 } 2419 2420 static int fec_enet_mii_probe(struct net_device *ndev) 2421 { 2422 struct fec_enet_private *fep = netdev_priv(ndev); 2423 struct phy_device *phy_dev = NULL; 2424 char mdio_bus_id[MII_BUS_ID_SIZE]; 2425 char phy_name[MII_BUS_ID_SIZE + 3]; 2426 int phy_id; 2427 int dev_id = fep->dev_id; 2428 2429 if (fep->phy_node) { 2430 phy_dev = of_phy_connect(ndev, fep->phy_node, 2431 &fec_enet_adjust_link, 0, 2432 fep->phy_interface); 2433 if (!phy_dev) { 2434 netdev_err(ndev, "Unable to connect to phy\n"); 2435 return -ENODEV; 2436 } 2437 } else { 2438 /* check for attached phy */ 2439 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2440 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2441 continue; 2442 if (dev_id--) 2443 continue; 2444 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2445 break; 2446 } 2447 2448 if (phy_id >= PHY_MAX_ADDR) { 2449 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2450 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2451 phy_id = 0; 2452 } 2453 2454 snprintf(phy_name, sizeof(phy_name), 2455 PHY_ID_FMT, mdio_bus_id, phy_id); 2456 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2457 fep->phy_interface); 2458 } 2459 2460 if (IS_ERR(phy_dev)) { 2461 netdev_err(ndev, "could not attach to PHY\n"); 2462 return PTR_ERR(phy_dev); 2463 } 2464 2465 /* mask with MAC supported features */ 2466 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2467 phy_set_max_speed(phy_dev, 1000); 2468 phy_remove_link_mode(phy_dev, 2469 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2470 #if !defined(CONFIG_M5272) 2471 phy_support_sym_pause(phy_dev); 2472 #endif 2473 } 2474 else 2475 phy_set_max_speed(phy_dev, 100); 2476 2477 if (fep->quirks & FEC_QUIRK_HAS_EEE) 2478 phy_support_eee(phy_dev); 2479 2480 fep->link = 0; 2481 fep->full_duplex = 0; 2482 2483 phy_attached_info(phy_dev); 2484 2485 return 0; 2486 } 2487 2488 static int fec_enet_mii_init(struct platform_device *pdev) 2489 { 2490 static struct mii_bus *fec0_mii_bus; 2491 struct net_device *ndev = platform_get_drvdata(pdev); 2492 struct fec_enet_private *fep = netdev_priv(ndev); 2493 bool suppress_preamble = false; 2494 struct phy_device *phydev; 2495 struct device_node *node; 2496 int err = -ENXIO; 2497 u32 mii_speed, holdtime; 2498 u32 bus_freq; 2499 int addr; 2500 2501 /* 2502 * The i.MX28 dual fec interfaces are not equal. 2503 * Here are the differences: 2504 * 2505 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2506 * - fec0 acts as the 1588 time master while fec1 is slave 2507 * - external phys can only be configured by fec0 2508 * 2509 * That is to say fec1 can not work independently. It only works 2510 * when fec0 is working. The reason behind this design is that the 2511 * second interface is added primarily for Switch mode. 2512 * 2513 * Because of the last point above, both phys are attached on fec0 2514 * mdio interface in board design, and need to be configured by 2515 * fec0 mii_bus. 2516 */ 2517 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2518 /* fec1 uses fec0 mii_bus */ 2519 if (mii_cnt && fec0_mii_bus) { 2520 fep->mii_bus = fec0_mii_bus; 2521 mii_cnt++; 2522 return 0; 2523 } 2524 return -ENOENT; 2525 } 2526 2527 bus_freq = 2500000; /* 2.5MHz by default */ 2528 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2529 if (node) { 2530 of_property_read_u32(node, "clock-frequency", &bus_freq); 2531 suppress_preamble = of_property_read_bool(node, 2532 "suppress-preamble"); 2533 } 2534 2535 /* 2536 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2537 * 2538 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2539 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2540 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2541 * document. 2542 */ 2543 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2544 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2545 mii_speed--; 2546 if (mii_speed > 63) { 2547 dev_err(&pdev->dev, 2548 "fec clock (%lu) too fast to get right mii speed\n", 2549 clk_get_rate(fep->clk_ipg)); 2550 err = -EINVAL; 2551 goto err_out; 2552 } 2553 2554 /* 2555 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2556 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2557 * versions are RAZ there, so just ignore the difference and write the 2558 * register always. 2559 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2560 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2561 * output. 2562 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2563 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2564 * holdtime cannot result in a value greater than 3. 2565 */ 2566 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2567 2568 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2569 2570 if (suppress_preamble) 2571 fep->phy_speed |= BIT(7); 2572 2573 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2574 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2575 * MII event generation condition: 2576 * - writing MSCR: 2577 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2578 * mscr_reg_data_in[7:0] != 0 2579 * - writing MMFR: 2580 * - mscr[7:0]_not_zero 2581 */ 2582 writel(0, fep->hwp + FEC_MII_DATA); 2583 } 2584 2585 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2586 2587 /* Clear any pending transaction complete indication */ 2588 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2589 2590 fep->mii_bus = mdiobus_alloc(); 2591 if (fep->mii_bus == NULL) { 2592 err = -ENOMEM; 2593 goto err_out; 2594 } 2595 2596 fep->mii_bus->name = "fec_enet_mii_bus"; 2597 fep->mii_bus->read = fec_enet_mdio_read_c22; 2598 fep->mii_bus->write = fec_enet_mdio_write_c22; 2599 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2600 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2601 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2602 } 2603 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2604 pdev->name, fep->dev_id + 1); 2605 fep->mii_bus->priv = fep; 2606 fep->mii_bus->parent = &pdev->dev; 2607 2608 err = of_mdiobus_register(fep->mii_bus, node); 2609 if (err) 2610 goto err_out_free_mdiobus; 2611 of_node_put(node); 2612 2613 /* find all the PHY devices on the bus and set mac_managed_pm to true */ 2614 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 2615 phydev = mdiobus_get_phy(fep->mii_bus, addr); 2616 if (phydev) 2617 phydev->mac_managed_pm = true; 2618 } 2619 2620 mii_cnt++; 2621 2622 /* save fec0 mii_bus */ 2623 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2624 fec0_mii_bus = fep->mii_bus; 2625 2626 return 0; 2627 2628 err_out_free_mdiobus: 2629 mdiobus_free(fep->mii_bus); 2630 err_out: 2631 of_node_put(node); 2632 return err; 2633 } 2634 2635 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2636 { 2637 if (--mii_cnt == 0) { 2638 mdiobus_unregister(fep->mii_bus); 2639 mdiobus_free(fep->mii_bus); 2640 } 2641 } 2642 2643 static void fec_enet_get_drvinfo(struct net_device *ndev, 2644 struct ethtool_drvinfo *info) 2645 { 2646 struct fec_enet_private *fep = netdev_priv(ndev); 2647 2648 strscpy(info->driver, fep->pdev->dev.driver->name, 2649 sizeof(info->driver)); 2650 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2651 } 2652 2653 static int fec_enet_get_regs_len(struct net_device *ndev) 2654 { 2655 struct fec_enet_private *fep = netdev_priv(ndev); 2656 struct resource *r; 2657 int s = 0; 2658 2659 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2660 if (r) 2661 s = resource_size(r); 2662 2663 return s; 2664 } 2665 2666 /* List of registers that can be safety be read to dump them with ethtool */ 2667 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2668 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2669 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2670 static __u32 fec_enet_register_version = 2; 2671 static u32 fec_enet_register_offset[] = { 2672 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2673 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2674 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2675 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2676 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2677 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2678 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2679 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2680 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2681 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2682 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2683 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2684 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2685 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2686 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2687 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2688 RMON_T_P_GTE2048, RMON_T_OCTETS, 2689 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2690 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2691 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2692 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2693 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2694 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2695 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2696 RMON_R_P_GTE2048, RMON_R_OCTETS, 2697 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2698 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2699 }; 2700 /* for i.MX6ul */ 2701 static u32 fec_enet_register_offset_6ul[] = { 2702 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2703 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2704 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2705 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2706 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2707 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2708 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2709 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2710 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2711 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2712 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2713 RMON_T_P_GTE2048, RMON_T_OCTETS, 2714 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2715 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2716 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2717 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2718 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2719 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2720 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2721 RMON_R_P_GTE2048, RMON_R_OCTETS, 2722 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2723 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2724 }; 2725 #else 2726 static __u32 fec_enet_register_version = 1; 2727 static u32 fec_enet_register_offset[] = { 2728 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2729 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2730 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2731 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2732 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2733 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2734 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2735 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2736 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2737 }; 2738 #endif 2739 2740 static void fec_enet_get_regs(struct net_device *ndev, 2741 struct ethtool_regs *regs, void *regbuf) 2742 { 2743 struct fec_enet_private *fep = netdev_priv(ndev); 2744 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2745 struct device *dev = &fep->pdev->dev; 2746 u32 *buf = (u32 *)regbuf; 2747 u32 i, off; 2748 int ret; 2749 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2750 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2751 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2752 u32 *reg_list; 2753 u32 reg_cnt; 2754 2755 if (!of_machine_is_compatible("fsl,imx6ul")) { 2756 reg_list = fec_enet_register_offset; 2757 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2758 } else { 2759 reg_list = fec_enet_register_offset_6ul; 2760 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2761 } 2762 #else 2763 /* coldfire */ 2764 static u32 *reg_list = fec_enet_register_offset; 2765 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2766 #endif 2767 ret = pm_runtime_resume_and_get(dev); 2768 if (ret < 0) 2769 return; 2770 2771 regs->version = fec_enet_register_version; 2772 2773 memset(buf, 0, regs->len); 2774 2775 for (i = 0; i < reg_cnt; i++) { 2776 off = reg_list[i]; 2777 2778 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2779 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2780 continue; 2781 2782 off >>= 2; 2783 buf[off] = readl(&theregs[off]); 2784 } 2785 2786 pm_runtime_mark_last_busy(dev); 2787 pm_runtime_put_autosuspend(dev); 2788 } 2789 2790 static int fec_enet_get_ts_info(struct net_device *ndev, 2791 struct kernel_ethtool_ts_info *info) 2792 { 2793 struct fec_enet_private *fep = netdev_priv(ndev); 2794 2795 if (fep->bufdesc_ex) { 2796 2797 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2798 SOF_TIMESTAMPING_TX_HARDWARE | 2799 SOF_TIMESTAMPING_RX_HARDWARE | 2800 SOF_TIMESTAMPING_RAW_HARDWARE; 2801 if (fep->ptp_clock) 2802 info->phc_index = ptp_clock_index(fep->ptp_clock); 2803 2804 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2805 (1 << HWTSTAMP_TX_ON); 2806 2807 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2808 (1 << HWTSTAMP_FILTER_ALL); 2809 return 0; 2810 } else { 2811 return ethtool_op_get_ts_info(ndev, info); 2812 } 2813 } 2814 2815 #if !defined(CONFIG_M5272) 2816 2817 static void fec_enet_get_pauseparam(struct net_device *ndev, 2818 struct ethtool_pauseparam *pause) 2819 { 2820 struct fec_enet_private *fep = netdev_priv(ndev); 2821 2822 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2823 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2824 pause->rx_pause = pause->tx_pause; 2825 } 2826 2827 static int fec_enet_set_pauseparam(struct net_device *ndev, 2828 struct ethtool_pauseparam *pause) 2829 { 2830 struct fec_enet_private *fep = netdev_priv(ndev); 2831 2832 if (!ndev->phydev) 2833 return -ENODEV; 2834 2835 if (pause->tx_pause != pause->rx_pause) { 2836 netdev_info(ndev, 2837 "hardware only support enable/disable both tx and rx"); 2838 return -EINVAL; 2839 } 2840 2841 fep->pause_flag = 0; 2842 2843 /* tx pause must be same as rx pause */ 2844 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2845 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2846 2847 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2848 pause->autoneg); 2849 2850 if (pause->autoneg) { 2851 if (netif_running(ndev)) 2852 fec_stop(ndev); 2853 phy_start_aneg(ndev->phydev); 2854 } 2855 if (netif_running(ndev)) { 2856 napi_disable(&fep->napi); 2857 netif_tx_lock_bh(ndev); 2858 fec_restart(ndev); 2859 netif_tx_wake_all_queues(ndev); 2860 netif_tx_unlock_bh(ndev); 2861 napi_enable(&fep->napi); 2862 } 2863 2864 return 0; 2865 } 2866 2867 static const struct fec_stat { 2868 char name[ETH_GSTRING_LEN]; 2869 u16 offset; 2870 } fec_stats[] = { 2871 /* RMON TX */ 2872 { "tx_dropped", RMON_T_DROP }, 2873 { "tx_packets", RMON_T_PACKETS }, 2874 { "tx_broadcast", RMON_T_BC_PKT }, 2875 { "tx_multicast", RMON_T_MC_PKT }, 2876 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2877 { "tx_undersize", RMON_T_UNDERSIZE }, 2878 { "tx_oversize", RMON_T_OVERSIZE }, 2879 { "tx_fragment", RMON_T_FRAG }, 2880 { "tx_jabber", RMON_T_JAB }, 2881 { "tx_collision", RMON_T_COL }, 2882 { "tx_64byte", RMON_T_P64 }, 2883 { "tx_65to127byte", RMON_T_P65TO127 }, 2884 { "tx_128to255byte", RMON_T_P128TO255 }, 2885 { "tx_256to511byte", RMON_T_P256TO511 }, 2886 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2887 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2888 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2889 { "tx_octets", RMON_T_OCTETS }, 2890 2891 /* IEEE TX */ 2892 { "IEEE_tx_drop", IEEE_T_DROP }, 2893 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2894 { "IEEE_tx_1col", IEEE_T_1COL }, 2895 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2896 { "IEEE_tx_def", IEEE_T_DEF }, 2897 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2898 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2899 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2900 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2901 { "IEEE_tx_sqe", IEEE_T_SQE }, 2902 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2903 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2904 2905 /* RMON RX */ 2906 { "rx_packets", RMON_R_PACKETS }, 2907 { "rx_broadcast", RMON_R_BC_PKT }, 2908 { "rx_multicast", RMON_R_MC_PKT }, 2909 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2910 { "rx_undersize", RMON_R_UNDERSIZE }, 2911 { "rx_oversize", RMON_R_OVERSIZE }, 2912 { "rx_fragment", RMON_R_FRAG }, 2913 { "rx_jabber", RMON_R_JAB }, 2914 { "rx_64byte", RMON_R_P64 }, 2915 { "rx_65to127byte", RMON_R_P65TO127 }, 2916 { "rx_128to255byte", RMON_R_P128TO255 }, 2917 { "rx_256to511byte", RMON_R_P256TO511 }, 2918 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2919 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2920 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2921 { "rx_octets", RMON_R_OCTETS }, 2922 2923 /* IEEE RX */ 2924 { "IEEE_rx_drop", IEEE_R_DROP }, 2925 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2926 { "IEEE_rx_crc", IEEE_R_CRC }, 2927 { "IEEE_rx_align", IEEE_R_ALIGN }, 2928 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2929 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2930 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2931 }; 2932 2933 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2934 2935 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2936 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2937 "rx_xdp_pass", /* RX_XDP_PASS, */ 2938 "rx_xdp_drop", /* RX_XDP_DROP, */ 2939 "rx_xdp_tx", /* RX_XDP_TX, */ 2940 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2941 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2942 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2943 }; 2944 2945 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2946 { 2947 struct fec_enet_private *fep = netdev_priv(dev); 2948 int i; 2949 2950 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2951 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2952 } 2953 2954 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2955 { 2956 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2957 struct fec_enet_priv_rx_q *rxq; 2958 int i, j; 2959 2960 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2961 rxq = fep->rx_queue[i]; 2962 2963 for (j = 0; j < XDP_STATS_TOTAL; j++) 2964 xdp_stats[j] += rxq->stats[j]; 2965 } 2966 2967 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2968 } 2969 2970 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2971 { 2972 #ifdef CONFIG_PAGE_POOL_STATS 2973 struct page_pool_stats stats = {}; 2974 struct fec_enet_priv_rx_q *rxq; 2975 int i; 2976 2977 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2978 rxq = fep->rx_queue[i]; 2979 2980 if (!rxq->page_pool) 2981 continue; 2982 2983 page_pool_get_stats(rxq->page_pool, &stats); 2984 } 2985 2986 page_pool_ethtool_stats_get(data, &stats); 2987 #endif 2988 } 2989 2990 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2991 struct ethtool_stats *stats, u64 *data) 2992 { 2993 struct fec_enet_private *fep = netdev_priv(dev); 2994 2995 if (netif_running(dev)) 2996 fec_enet_update_ethtool_stats(dev); 2997 2998 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2999 data += FEC_STATS_SIZE / sizeof(u64); 3000 3001 fec_enet_get_xdp_stats(fep, data); 3002 data += XDP_STATS_TOTAL; 3003 3004 fec_enet_page_pool_stats(fep, data); 3005 } 3006 3007 static void fec_enet_get_strings(struct net_device *netdev, 3008 u32 stringset, u8 *data) 3009 { 3010 int i; 3011 switch (stringset) { 3012 case ETH_SS_STATS: 3013 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 3014 ethtool_puts(&data, fec_stats[i].name); 3015 } 3016 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 3017 ethtool_puts(&data, fec_xdp_stat_strs[i]); 3018 } 3019 page_pool_ethtool_stats_get_strings(data); 3020 3021 break; 3022 case ETH_SS_TEST: 3023 net_selftest_get_strings(data); 3024 break; 3025 } 3026 } 3027 3028 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 3029 { 3030 int count; 3031 3032 switch (sset) { 3033 case ETH_SS_STATS: 3034 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 3035 count += page_pool_ethtool_stats_get_count(); 3036 return count; 3037 3038 case ETH_SS_TEST: 3039 return net_selftest_get_count(); 3040 default: 3041 return -EOPNOTSUPP; 3042 } 3043 } 3044 3045 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 3046 { 3047 struct fec_enet_private *fep = netdev_priv(dev); 3048 struct fec_enet_priv_rx_q *rxq; 3049 int i, j; 3050 3051 /* Disable MIB statistics counters */ 3052 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 3053 3054 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 3055 writel(0, fep->hwp + fec_stats[i].offset); 3056 3057 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 3058 rxq = fep->rx_queue[i]; 3059 for (j = 0; j < XDP_STATS_TOTAL; j++) 3060 rxq->stats[j] = 0; 3061 } 3062 3063 /* Don't disable MIB statistics counters */ 3064 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 3065 } 3066 3067 #else /* !defined(CONFIG_M5272) */ 3068 #define FEC_STATS_SIZE 0 3069 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 3070 { 3071 } 3072 3073 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 3074 { 3075 } 3076 #endif /* !defined(CONFIG_M5272) */ 3077 3078 /* ITR clock source is enet system clock (clk_ahb). 3079 * TCTT unit is cycle_ns * 64 cycle 3080 * So, the ICTT value = X us / (cycle_ns * 64) 3081 */ 3082 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3083 { 3084 struct fec_enet_private *fep = netdev_priv(ndev); 3085 3086 return us * (fep->itr_clk_rate / 64000) / 1000; 3087 } 3088 3089 /* Set threshold for interrupt coalescing */ 3090 static void fec_enet_itr_coal_set(struct net_device *ndev) 3091 { 3092 struct fec_enet_private *fep = netdev_priv(ndev); 3093 int rx_itr, tx_itr; 3094 3095 /* Must be greater than zero to avoid unpredictable behavior */ 3096 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3097 !fep->tx_time_itr || !fep->tx_pkts_itr) 3098 return; 3099 3100 /* Select enet system clock as Interrupt Coalescing 3101 * timer Clock Source 3102 */ 3103 rx_itr = FEC_ITR_CLK_SEL; 3104 tx_itr = FEC_ITR_CLK_SEL; 3105 3106 /* set ICFT and ICTT */ 3107 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3108 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3109 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3110 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3111 3112 rx_itr |= FEC_ITR_EN; 3113 tx_itr |= FEC_ITR_EN; 3114 3115 writel(tx_itr, fep->hwp + FEC_TXIC0); 3116 writel(rx_itr, fep->hwp + FEC_RXIC0); 3117 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3118 writel(tx_itr, fep->hwp + FEC_TXIC1); 3119 writel(rx_itr, fep->hwp + FEC_RXIC1); 3120 writel(tx_itr, fep->hwp + FEC_TXIC2); 3121 writel(rx_itr, fep->hwp + FEC_RXIC2); 3122 } 3123 } 3124 3125 static int fec_enet_get_coalesce(struct net_device *ndev, 3126 struct ethtool_coalesce *ec, 3127 struct kernel_ethtool_coalesce *kernel_coal, 3128 struct netlink_ext_ack *extack) 3129 { 3130 struct fec_enet_private *fep = netdev_priv(ndev); 3131 3132 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3133 return -EOPNOTSUPP; 3134 3135 ec->rx_coalesce_usecs = fep->rx_time_itr; 3136 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3137 3138 ec->tx_coalesce_usecs = fep->tx_time_itr; 3139 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3140 3141 return 0; 3142 } 3143 3144 static int fec_enet_set_coalesce(struct net_device *ndev, 3145 struct ethtool_coalesce *ec, 3146 struct kernel_ethtool_coalesce *kernel_coal, 3147 struct netlink_ext_ack *extack) 3148 { 3149 struct fec_enet_private *fep = netdev_priv(ndev); 3150 struct device *dev = &fep->pdev->dev; 3151 unsigned int cycle; 3152 3153 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3154 return -EOPNOTSUPP; 3155 3156 if (ec->rx_max_coalesced_frames > 255) { 3157 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3158 return -EINVAL; 3159 } 3160 3161 if (ec->tx_max_coalesced_frames > 255) { 3162 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3163 return -EINVAL; 3164 } 3165 3166 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3167 if (cycle > 0xFFFF) { 3168 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3169 return -EINVAL; 3170 } 3171 3172 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3173 if (cycle > 0xFFFF) { 3174 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3175 return -EINVAL; 3176 } 3177 3178 fep->rx_time_itr = ec->rx_coalesce_usecs; 3179 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3180 3181 fep->tx_time_itr = ec->tx_coalesce_usecs; 3182 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3183 3184 fec_enet_itr_coal_set(ndev); 3185 3186 return 0; 3187 } 3188 3189 static int 3190 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata) 3191 { 3192 struct fec_enet_private *fep = netdev_priv(ndev); 3193 struct ethtool_keee *p = &fep->eee; 3194 3195 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3196 return -EOPNOTSUPP; 3197 3198 if (!netif_running(ndev)) 3199 return -ENETDOWN; 3200 3201 edata->tx_lpi_timer = p->tx_lpi_timer; 3202 3203 return phy_ethtool_get_eee(ndev->phydev, edata); 3204 } 3205 3206 static int 3207 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata) 3208 { 3209 struct fec_enet_private *fep = netdev_priv(ndev); 3210 struct ethtool_keee *p = &fep->eee; 3211 3212 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3213 return -EOPNOTSUPP; 3214 3215 if (!netif_running(ndev)) 3216 return -ENETDOWN; 3217 3218 p->tx_lpi_timer = edata->tx_lpi_timer; 3219 3220 return phy_ethtool_set_eee(ndev->phydev, edata); 3221 } 3222 3223 static void 3224 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3225 { 3226 struct fec_enet_private *fep = netdev_priv(ndev); 3227 3228 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3229 wol->supported = WAKE_MAGIC; 3230 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3231 } else { 3232 wol->supported = wol->wolopts = 0; 3233 } 3234 } 3235 3236 static int 3237 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3238 { 3239 struct fec_enet_private *fep = netdev_priv(ndev); 3240 3241 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3242 return -EINVAL; 3243 3244 if (wol->wolopts & ~WAKE_MAGIC) 3245 return -EINVAL; 3246 3247 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3248 if (device_may_wakeup(&ndev->dev)) 3249 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3250 else 3251 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3252 3253 return 0; 3254 } 3255 3256 static const struct ethtool_ops fec_enet_ethtool_ops = { 3257 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3258 ETHTOOL_COALESCE_MAX_FRAMES, 3259 .get_drvinfo = fec_enet_get_drvinfo, 3260 .get_regs_len = fec_enet_get_regs_len, 3261 .get_regs = fec_enet_get_regs, 3262 .nway_reset = phy_ethtool_nway_reset, 3263 .get_link = ethtool_op_get_link, 3264 .get_coalesce = fec_enet_get_coalesce, 3265 .set_coalesce = fec_enet_set_coalesce, 3266 #ifndef CONFIG_M5272 3267 .get_pauseparam = fec_enet_get_pauseparam, 3268 .set_pauseparam = fec_enet_set_pauseparam, 3269 .get_strings = fec_enet_get_strings, 3270 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3271 .get_sset_count = fec_enet_get_sset_count, 3272 #endif 3273 .get_ts_info = fec_enet_get_ts_info, 3274 .get_wol = fec_enet_get_wol, 3275 .set_wol = fec_enet_set_wol, 3276 .get_eee = fec_enet_get_eee, 3277 .set_eee = fec_enet_set_eee, 3278 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3279 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3280 .self_test = net_selftest, 3281 }; 3282 3283 static void fec_enet_free_buffers(struct net_device *ndev) 3284 { 3285 struct fec_enet_private *fep = netdev_priv(ndev); 3286 unsigned int i; 3287 struct fec_enet_priv_tx_q *txq; 3288 struct fec_enet_priv_rx_q *rxq; 3289 unsigned int q; 3290 3291 for (q = 0; q < fep->num_rx_queues; q++) { 3292 rxq = fep->rx_queue[q]; 3293 for (i = 0; i < rxq->bd.ring_size; i++) 3294 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3295 3296 for (i = 0; i < XDP_STATS_TOTAL; i++) 3297 rxq->stats[i] = 0; 3298 3299 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3300 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3301 page_pool_destroy(rxq->page_pool); 3302 rxq->page_pool = NULL; 3303 } 3304 3305 for (q = 0; q < fep->num_tx_queues; q++) { 3306 txq = fep->tx_queue[q]; 3307 for (i = 0; i < txq->bd.ring_size; i++) { 3308 kfree(txq->tx_bounce[i]); 3309 txq->tx_bounce[i] = NULL; 3310 3311 if (!txq->tx_buf[i].buf_p) { 3312 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3313 continue; 3314 } 3315 3316 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3317 dev_kfree_skb(txq->tx_buf[i].buf_p); 3318 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3319 xdp_return_frame(txq->tx_buf[i].buf_p); 3320 } else { 3321 struct page *page = txq->tx_buf[i].buf_p; 3322 3323 page_pool_put_page(page->pp, page, 0, false); 3324 } 3325 3326 txq->tx_buf[i].buf_p = NULL; 3327 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3328 } 3329 } 3330 } 3331 3332 static void fec_enet_free_queue(struct net_device *ndev) 3333 { 3334 struct fec_enet_private *fep = netdev_priv(ndev); 3335 int i; 3336 struct fec_enet_priv_tx_q *txq; 3337 3338 for (i = 0; i < fep->num_tx_queues; i++) 3339 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3340 txq = fep->tx_queue[i]; 3341 fec_dma_free(&fep->pdev->dev, 3342 txq->bd.ring_size * TSO_HEADER_SIZE, 3343 txq->tso_hdrs, txq->tso_hdrs_dma); 3344 } 3345 3346 for (i = 0; i < fep->num_rx_queues; i++) 3347 kfree(fep->rx_queue[i]); 3348 for (i = 0; i < fep->num_tx_queues; i++) 3349 kfree(fep->tx_queue[i]); 3350 } 3351 3352 static int fec_enet_alloc_queue(struct net_device *ndev) 3353 { 3354 struct fec_enet_private *fep = netdev_priv(ndev); 3355 int i; 3356 int ret = 0; 3357 struct fec_enet_priv_tx_q *txq; 3358 3359 for (i = 0; i < fep->num_tx_queues; i++) { 3360 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3361 if (!txq) { 3362 ret = -ENOMEM; 3363 goto alloc_failed; 3364 } 3365 3366 fep->tx_queue[i] = txq; 3367 txq->bd.ring_size = TX_RING_SIZE; 3368 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3369 3370 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3371 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3372 3373 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3374 txq->bd.ring_size * TSO_HEADER_SIZE, 3375 &txq->tso_hdrs_dma, GFP_KERNEL); 3376 if (!txq->tso_hdrs) { 3377 ret = -ENOMEM; 3378 goto alloc_failed; 3379 } 3380 } 3381 3382 for (i = 0; i < fep->num_rx_queues; i++) { 3383 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3384 GFP_KERNEL); 3385 if (!fep->rx_queue[i]) { 3386 ret = -ENOMEM; 3387 goto alloc_failed; 3388 } 3389 3390 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3391 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3392 } 3393 return ret; 3394 3395 alloc_failed: 3396 fec_enet_free_queue(ndev); 3397 return ret; 3398 } 3399 3400 static int 3401 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3402 { 3403 struct fec_enet_private *fep = netdev_priv(ndev); 3404 struct fec_enet_priv_rx_q *rxq; 3405 dma_addr_t phys_addr; 3406 struct bufdesc *bdp; 3407 struct page *page; 3408 int i, err; 3409 3410 rxq = fep->rx_queue[queue]; 3411 bdp = rxq->bd.base; 3412 3413 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3414 if (err < 0) { 3415 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3416 return err; 3417 } 3418 3419 for (i = 0; i < rxq->bd.ring_size; i++) { 3420 page = page_pool_dev_alloc_pages(rxq->page_pool); 3421 if (!page) 3422 goto err_alloc; 3423 3424 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3425 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3426 3427 rxq->rx_skb_info[i].page = page; 3428 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3429 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3430 3431 if (fep->bufdesc_ex) { 3432 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3433 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3434 } 3435 3436 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3437 } 3438 3439 /* Set the last buffer to wrap. */ 3440 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3441 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3442 return 0; 3443 3444 err_alloc: 3445 fec_enet_free_buffers(ndev); 3446 return -ENOMEM; 3447 } 3448 3449 static int 3450 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3451 { 3452 struct fec_enet_private *fep = netdev_priv(ndev); 3453 unsigned int i; 3454 struct bufdesc *bdp; 3455 struct fec_enet_priv_tx_q *txq; 3456 3457 txq = fep->tx_queue[queue]; 3458 bdp = txq->bd.base; 3459 for (i = 0; i < txq->bd.ring_size; i++) { 3460 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3461 if (!txq->tx_bounce[i]) 3462 goto err_alloc; 3463 3464 bdp->cbd_sc = cpu_to_fec16(0); 3465 bdp->cbd_bufaddr = cpu_to_fec32(0); 3466 3467 if (fep->bufdesc_ex) { 3468 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3469 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3470 } 3471 3472 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3473 } 3474 3475 /* Set the last buffer to wrap. */ 3476 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3477 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3478 3479 return 0; 3480 3481 err_alloc: 3482 fec_enet_free_buffers(ndev); 3483 return -ENOMEM; 3484 } 3485 3486 static int fec_enet_alloc_buffers(struct net_device *ndev) 3487 { 3488 struct fec_enet_private *fep = netdev_priv(ndev); 3489 unsigned int i; 3490 3491 for (i = 0; i < fep->num_rx_queues; i++) 3492 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3493 return -ENOMEM; 3494 3495 for (i = 0; i < fep->num_tx_queues; i++) 3496 if (fec_enet_alloc_txq_buffers(ndev, i)) 3497 return -ENOMEM; 3498 return 0; 3499 } 3500 3501 static int 3502 fec_enet_open(struct net_device *ndev) 3503 { 3504 struct fec_enet_private *fep = netdev_priv(ndev); 3505 int ret; 3506 bool reset_again; 3507 3508 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3509 if (ret < 0) 3510 return ret; 3511 3512 pinctrl_pm_select_default_state(&fep->pdev->dev); 3513 ret = fec_enet_clk_enable(ndev, true); 3514 if (ret) 3515 goto clk_enable; 3516 3517 /* During the first fec_enet_open call the PHY isn't probed at this 3518 * point. Therefore the phy_reset_after_clk_enable() call within 3519 * fec_enet_clk_enable() fails. As we need this reset in order to be 3520 * sure the PHY is working correctly we check if we need to reset again 3521 * later when the PHY is probed 3522 */ 3523 if (ndev->phydev && ndev->phydev->drv) 3524 reset_again = false; 3525 else 3526 reset_again = true; 3527 3528 /* I should reset the ring buffers here, but I don't yet know 3529 * a simple way to do that. 3530 */ 3531 3532 ret = fec_enet_alloc_buffers(ndev); 3533 if (ret) 3534 goto err_enet_alloc; 3535 3536 /* Init MAC prior to mii bus probe */ 3537 fec_restart(ndev); 3538 3539 /* Call phy_reset_after_clk_enable() again if it failed during 3540 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3541 */ 3542 if (reset_again) 3543 fec_enet_phy_reset_after_clk_enable(ndev); 3544 3545 /* Probe and connect to PHY when open the interface */ 3546 ret = fec_enet_mii_probe(ndev); 3547 if (ret) 3548 goto err_enet_mii_probe; 3549 3550 if (fep->quirks & FEC_QUIRK_ERR006687) 3551 imx6q_cpuidle_fec_irqs_used(); 3552 3553 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3554 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3555 3556 napi_enable(&fep->napi); 3557 phy_start(ndev->phydev); 3558 netif_tx_start_all_queues(ndev); 3559 3560 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3561 FEC_WOL_FLAG_ENABLE); 3562 3563 return 0; 3564 3565 err_enet_mii_probe: 3566 fec_enet_free_buffers(ndev); 3567 err_enet_alloc: 3568 fec_enet_clk_enable(ndev, false); 3569 clk_enable: 3570 pm_runtime_mark_last_busy(&fep->pdev->dev); 3571 pm_runtime_put_autosuspend(&fep->pdev->dev); 3572 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3573 return ret; 3574 } 3575 3576 static int 3577 fec_enet_close(struct net_device *ndev) 3578 { 3579 struct fec_enet_private *fep = netdev_priv(ndev); 3580 3581 phy_stop(ndev->phydev); 3582 3583 if (netif_device_present(ndev)) { 3584 napi_disable(&fep->napi); 3585 netif_tx_disable(ndev); 3586 fec_stop(ndev); 3587 } 3588 3589 phy_disconnect(ndev->phydev); 3590 3591 if (fep->quirks & FEC_QUIRK_ERR006687) 3592 imx6q_cpuidle_fec_irqs_unused(); 3593 3594 fec_enet_update_ethtool_stats(ndev); 3595 3596 fec_enet_clk_enable(ndev, false); 3597 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3598 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3599 3600 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3601 pm_runtime_mark_last_busy(&fep->pdev->dev); 3602 pm_runtime_put_autosuspend(&fep->pdev->dev); 3603 3604 fec_enet_free_buffers(ndev); 3605 3606 return 0; 3607 } 3608 3609 /* Set or clear the multicast filter for this adaptor. 3610 * Skeleton taken from sunlance driver. 3611 * The CPM Ethernet implementation allows Multicast as well as individual 3612 * MAC address filtering. Some of the drivers check to make sure it is 3613 * a group multicast address, and discard those that are not. I guess I 3614 * will do the same for now, but just remove the test if you want 3615 * individual filtering as well (do the upper net layers want or support 3616 * this kind of feature?). 3617 */ 3618 3619 #define FEC_HASH_BITS 6 /* #bits in hash */ 3620 3621 static void set_multicast_list(struct net_device *ndev) 3622 { 3623 struct fec_enet_private *fep = netdev_priv(ndev); 3624 struct netdev_hw_addr *ha; 3625 unsigned int crc, tmp; 3626 unsigned char hash; 3627 unsigned int hash_high = 0, hash_low = 0; 3628 3629 if (ndev->flags & IFF_PROMISC) { 3630 tmp = readl(fep->hwp + FEC_R_CNTRL); 3631 tmp |= 0x8; 3632 writel(tmp, fep->hwp + FEC_R_CNTRL); 3633 return; 3634 } 3635 3636 tmp = readl(fep->hwp + FEC_R_CNTRL); 3637 tmp &= ~0x8; 3638 writel(tmp, fep->hwp + FEC_R_CNTRL); 3639 3640 if (ndev->flags & IFF_ALLMULTI) { 3641 /* Catch all multicast addresses, so set the 3642 * filter to all 1's 3643 */ 3644 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3645 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3646 3647 return; 3648 } 3649 3650 /* Add the addresses in hash register */ 3651 netdev_for_each_mc_addr(ha, ndev) { 3652 /* calculate crc32 value of mac address */ 3653 crc = ether_crc_le(ndev->addr_len, ha->addr); 3654 3655 /* only upper 6 bits (FEC_HASH_BITS) are used 3656 * which point to specific bit in the hash registers 3657 */ 3658 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3659 3660 if (hash > 31) 3661 hash_high |= 1 << (hash - 32); 3662 else 3663 hash_low |= 1 << hash; 3664 } 3665 3666 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3667 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3668 } 3669 3670 /* Set a MAC change in hardware. */ 3671 static int 3672 fec_set_mac_address(struct net_device *ndev, void *p) 3673 { 3674 struct fec_enet_private *fep = netdev_priv(ndev); 3675 struct sockaddr *addr = p; 3676 3677 if (addr) { 3678 if (!is_valid_ether_addr(addr->sa_data)) 3679 return -EADDRNOTAVAIL; 3680 eth_hw_addr_set(ndev, addr->sa_data); 3681 } 3682 3683 /* Add netif status check here to avoid system hang in below case: 3684 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3685 * After ethx down, fec all clocks are gated off and then register 3686 * access causes system hang. 3687 */ 3688 if (!netif_running(ndev)) 3689 return 0; 3690 3691 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3692 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3693 fep->hwp + FEC_ADDR_LOW); 3694 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3695 fep->hwp + FEC_ADDR_HIGH); 3696 return 0; 3697 } 3698 3699 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3700 netdev_features_t features) 3701 { 3702 struct fec_enet_private *fep = netdev_priv(netdev); 3703 netdev_features_t changed = features ^ netdev->features; 3704 3705 netdev->features = features; 3706 3707 /* Receive checksum has been changed */ 3708 if (changed & NETIF_F_RXCSUM) { 3709 if (features & NETIF_F_RXCSUM) 3710 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3711 else 3712 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3713 } 3714 } 3715 3716 static int fec_set_features(struct net_device *netdev, 3717 netdev_features_t features) 3718 { 3719 struct fec_enet_private *fep = netdev_priv(netdev); 3720 netdev_features_t changed = features ^ netdev->features; 3721 3722 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3723 napi_disable(&fep->napi); 3724 netif_tx_lock_bh(netdev); 3725 fec_stop(netdev); 3726 fec_enet_set_netdev_features(netdev, features); 3727 fec_restart(netdev); 3728 netif_tx_wake_all_queues(netdev); 3729 netif_tx_unlock_bh(netdev); 3730 napi_enable(&fep->napi); 3731 } else { 3732 fec_enet_set_netdev_features(netdev, features); 3733 } 3734 3735 return 0; 3736 } 3737 3738 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3739 struct net_device *sb_dev) 3740 { 3741 struct fec_enet_private *fep = netdev_priv(ndev); 3742 u16 vlan_tag = 0; 3743 3744 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3745 return netdev_pick_tx(ndev, skb, NULL); 3746 3747 /* VLAN is present in the payload.*/ 3748 if (eth_type_vlan(skb->protocol)) { 3749 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3750 3751 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3752 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3753 } else if (skb_vlan_tag_present(skb)) { 3754 vlan_tag = skb->vlan_tci; 3755 } else { 3756 return vlan_tag; 3757 } 3758 3759 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3760 } 3761 3762 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3763 { 3764 struct fec_enet_private *fep = netdev_priv(dev); 3765 bool is_run = netif_running(dev); 3766 struct bpf_prog *old_prog; 3767 3768 switch (bpf->command) { 3769 case XDP_SETUP_PROG: 3770 /* No need to support the SoCs that require to 3771 * do the frame swap because the performance wouldn't be 3772 * better than the skb mode. 3773 */ 3774 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3775 return -EOPNOTSUPP; 3776 3777 if (!bpf->prog) 3778 xdp_features_clear_redirect_target(dev); 3779 3780 if (is_run) { 3781 napi_disable(&fep->napi); 3782 netif_tx_disable(dev); 3783 } 3784 3785 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3786 if (old_prog) 3787 bpf_prog_put(old_prog); 3788 3789 fec_restart(dev); 3790 3791 if (is_run) { 3792 napi_enable(&fep->napi); 3793 netif_tx_start_all_queues(dev); 3794 } 3795 3796 if (bpf->prog) 3797 xdp_features_set_redirect_target(dev, false); 3798 3799 return 0; 3800 3801 case XDP_SETUP_XSK_POOL: 3802 return -EOPNOTSUPP; 3803 3804 default: 3805 return -EOPNOTSUPP; 3806 } 3807 } 3808 3809 static int 3810 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3811 { 3812 if (unlikely(index < 0)) 3813 return 0; 3814 3815 return (index % fep->num_tx_queues); 3816 } 3817 3818 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3819 struct fec_enet_priv_tx_q *txq, 3820 void *frame, u32 dma_sync_len, 3821 bool ndo_xmit) 3822 { 3823 unsigned int index, status, estatus; 3824 struct bufdesc *bdp; 3825 dma_addr_t dma_addr; 3826 int entries_free; 3827 u16 frame_len; 3828 3829 entries_free = fec_enet_get_free_txdesc_num(txq); 3830 if (entries_free < MAX_SKB_FRAGS + 1) { 3831 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3832 return -EBUSY; 3833 } 3834 3835 /* Fill in a Tx ring entry */ 3836 bdp = txq->bd.cur; 3837 status = fec16_to_cpu(bdp->cbd_sc); 3838 status &= ~BD_ENET_TX_STATS; 3839 3840 index = fec_enet_get_bd_index(bdp, &txq->bd); 3841 3842 if (ndo_xmit) { 3843 struct xdp_frame *xdpf = frame; 3844 3845 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3846 xdpf->len, DMA_TO_DEVICE); 3847 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3848 return -ENOMEM; 3849 3850 frame_len = xdpf->len; 3851 txq->tx_buf[index].buf_p = xdpf; 3852 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3853 } else { 3854 struct xdp_buff *xdpb = frame; 3855 struct page *page; 3856 3857 page = virt_to_page(xdpb->data); 3858 dma_addr = page_pool_get_dma_addr(page) + 3859 (xdpb->data - xdpb->data_hard_start); 3860 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3861 dma_sync_len, DMA_BIDIRECTIONAL); 3862 frame_len = xdpb->data_end - xdpb->data; 3863 txq->tx_buf[index].buf_p = page; 3864 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3865 } 3866 3867 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3868 if (fep->bufdesc_ex) 3869 estatus = BD_ENET_TX_INT; 3870 3871 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3872 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3873 3874 if (fep->bufdesc_ex) { 3875 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3876 3877 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3878 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3879 3880 ebdp->cbd_bdu = 0; 3881 ebdp->cbd_esc = cpu_to_fec32(estatus); 3882 } 3883 3884 /* Make sure the updates to rest of the descriptor are performed before 3885 * transferring ownership. 3886 */ 3887 dma_wmb(); 3888 3889 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3890 * it's the last BD of the frame, and to put the CRC on the end. 3891 */ 3892 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3893 bdp->cbd_sc = cpu_to_fec16(status); 3894 3895 /* If this was the last BD in the ring, start at the beginning again. */ 3896 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3897 3898 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3899 dma_wmb(); 3900 3901 txq->bd.cur = bdp; 3902 3903 /* Trigger transmission start */ 3904 writel(0, txq->bd.reg_desc_active); 3905 3906 return 0; 3907 } 3908 3909 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3910 int cpu, struct xdp_buff *xdp, 3911 u32 dma_sync_len) 3912 { 3913 struct fec_enet_priv_tx_q *txq; 3914 struct netdev_queue *nq; 3915 int queue, ret; 3916 3917 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3918 txq = fep->tx_queue[queue]; 3919 nq = netdev_get_tx_queue(fep->netdev, queue); 3920 3921 __netif_tx_lock(nq, cpu); 3922 3923 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3924 txq_trans_cond_update(nq); 3925 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3926 3927 __netif_tx_unlock(nq); 3928 3929 return ret; 3930 } 3931 3932 static int fec_enet_xdp_xmit(struct net_device *dev, 3933 int num_frames, 3934 struct xdp_frame **frames, 3935 u32 flags) 3936 { 3937 struct fec_enet_private *fep = netdev_priv(dev); 3938 struct fec_enet_priv_tx_q *txq; 3939 int cpu = smp_processor_id(); 3940 unsigned int sent_frames = 0; 3941 struct netdev_queue *nq; 3942 unsigned int queue; 3943 int i; 3944 3945 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3946 txq = fep->tx_queue[queue]; 3947 nq = netdev_get_tx_queue(fep->netdev, queue); 3948 3949 __netif_tx_lock(nq, cpu); 3950 3951 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3952 txq_trans_cond_update(nq); 3953 for (i = 0; i < num_frames; i++) { 3954 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3955 break; 3956 sent_frames++; 3957 } 3958 3959 __netif_tx_unlock(nq); 3960 3961 return sent_frames; 3962 } 3963 3964 static int fec_hwtstamp_get(struct net_device *ndev, 3965 struct kernel_hwtstamp_config *config) 3966 { 3967 struct fec_enet_private *fep = netdev_priv(ndev); 3968 3969 if (!netif_running(ndev)) 3970 return -EINVAL; 3971 3972 if (!fep->bufdesc_ex) 3973 return -EOPNOTSUPP; 3974 3975 fec_ptp_get(ndev, config); 3976 3977 return 0; 3978 } 3979 3980 static int fec_hwtstamp_set(struct net_device *ndev, 3981 struct kernel_hwtstamp_config *config, 3982 struct netlink_ext_ack *extack) 3983 { 3984 struct fec_enet_private *fep = netdev_priv(ndev); 3985 3986 if (!netif_running(ndev)) 3987 return -EINVAL; 3988 3989 if (!fep->bufdesc_ex) 3990 return -EOPNOTSUPP; 3991 3992 return fec_ptp_set(ndev, config, extack); 3993 } 3994 3995 static const struct net_device_ops fec_netdev_ops = { 3996 .ndo_open = fec_enet_open, 3997 .ndo_stop = fec_enet_close, 3998 .ndo_start_xmit = fec_enet_start_xmit, 3999 .ndo_select_queue = fec_enet_select_queue, 4000 .ndo_set_rx_mode = set_multicast_list, 4001 .ndo_validate_addr = eth_validate_addr, 4002 .ndo_tx_timeout = fec_timeout, 4003 .ndo_set_mac_address = fec_set_mac_address, 4004 .ndo_eth_ioctl = phy_do_ioctl_running, 4005 .ndo_set_features = fec_set_features, 4006 .ndo_bpf = fec_enet_bpf, 4007 .ndo_xdp_xmit = fec_enet_xdp_xmit, 4008 .ndo_hwtstamp_get = fec_hwtstamp_get, 4009 .ndo_hwtstamp_set = fec_hwtstamp_set, 4010 }; 4011 4012 static const unsigned short offset_des_active_rxq[] = { 4013 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4014 }; 4015 4016 static const unsigned short offset_des_active_txq[] = { 4017 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4018 }; 4019 4020 /* 4021 * XXX: We need to clean up on failure exits here. 4022 * 4023 */ 4024 static int fec_enet_init(struct net_device *ndev) 4025 { 4026 struct fec_enet_private *fep = netdev_priv(ndev); 4027 struct bufdesc *cbd_base; 4028 dma_addr_t bd_dma; 4029 int bd_size; 4030 unsigned int i; 4031 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4032 sizeof(struct bufdesc); 4033 unsigned dsize_log2 = __fls(dsize); 4034 int ret; 4035 4036 WARN_ON(dsize != (1 << dsize_log2)); 4037 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4038 fep->rx_align = 0xf; 4039 fep->tx_align = 0xf; 4040 #else 4041 fep->rx_align = 0x3; 4042 fep->tx_align = 0x3; 4043 #endif 4044 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4045 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4046 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4047 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4048 4049 /* Check mask of the streaming and coherent API */ 4050 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4051 if (ret < 0) { 4052 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4053 return ret; 4054 } 4055 4056 ret = fec_enet_alloc_queue(ndev); 4057 if (ret) 4058 return ret; 4059 4060 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4061 4062 /* Allocate memory for buffer descriptors. */ 4063 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4064 GFP_KERNEL); 4065 if (!cbd_base) { 4066 ret = -ENOMEM; 4067 goto free_queue_mem; 4068 } 4069 4070 /* Get the Ethernet address */ 4071 ret = fec_get_mac(ndev); 4072 if (ret) 4073 goto free_queue_mem; 4074 4075 /* Set receive and transmit descriptor base. */ 4076 for (i = 0; i < fep->num_rx_queues; i++) { 4077 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4078 unsigned size = dsize * rxq->bd.ring_size; 4079 4080 rxq->bd.qid = i; 4081 rxq->bd.base = cbd_base; 4082 rxq->bd.cur = cbd_base; 4083 rxq->bd.dma = bd_dma; 4084 rxq->bd.dsize = dsize; 4085 rxq->bd.dsize_log2 = dsize_log2; 4086 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4087 bd_dma += size; 4088 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4089 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4090 } 4091 4092 for (i = 0; i < fep->num_tx_queues; i++) { 4093 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4094 unsigned size = dsize * txq->bd.ring_size; 4095 4096 txq->bd.qid = i; 4097 txq->bd.base = cbd_base; 4098 txq->bd.cur = cbd_base; 4099 txq->bd.dma = bd_dma; 4100 txq->bd.dsize = dsize; 4101 txq->bd.dsize_log2 = dsize_log2; 4102 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4103 bd_dma += size; 4104 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4105 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4106 } 4107 4108 4109 /* The FEC Ethernet specific entries in the device structure */ 4110 ndev->watchdog_timeo = TX_TIMEOUT; 4111 ndev->netdev_ops = &fec_netdev_ops; 4112 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4113 4114 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4115 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4116 4117 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4118 /* enable hw VLAN support */ 4119 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4120 4121 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4122 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4123 4124 /* enable hw accelerator */ 4125 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4126 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4127 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4128 } 4129 4130 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4131 fep->tx_align = 0; 4132 fep->rx_align = 0x3f; 4133 } 4134 4135 ndev->hw_features = ndev->features; 4136 4137 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4138 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4139 NETDEV_XDP_ACT_REDIRECT; 4140 4141 fec_restart(ndev); 4142 4143 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4144 fec_enet_clear_ethtool_stats(ndev); 4145 else 4146 fec_enet_update_ethtool_stats(ndev); 4147 4148 return 0; 4149 4150 free_queue_mem: 4151 fec_enet_free_queue(ndev); 4152 return ret; 4153 } 4154 4155 static void fec_enet_deinit(struct net_device *ndev) 4156 { 4157 struct fec_enet_private *fep = netdev_priv(ndev); 4158 4159 netif_napi_del(&fep->napi); 4160 fec_enet_free_queue(ndev); 4161 } 4162 4163 #ifdef CONFIG_OF 4164 static int fec_reset_phy(struct platform_device *pdev) 4165 { 4166 struct gpio_desc *phy_reset; 4167 int msec = 1, phy_post_delay = 0; 4168 struct device_node *np = pdev->dev.of_node; 4169 int err; 4170 4171 if (!np) 4172 return 0; 4173 4174 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4175 /* A sane reset duration should not be longer than 1s */ 4176 if (!err && msec > 1000) 4177 msec = 1; 4178 4179 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4180 /* valid reset duration should be less than 1s */ 4181 if (!err && phy_post_delay > 1000) 4182 return -EINVAL; 4183 4184 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4185 GPIOD_OUT_HIGH); 4186 if (IS_ERR(phy_reset)) 4187 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4188 "failed to get phy-reset-gpios\n"); 4189 4190 if (!phy_reset) 4191 return 0; 4192 4193 if (msec > 20) 4194 msleep(msec); 4195 else 4196 usleep_range(msec * 1000, msec * 1000 + 1000); 4197 4198 gpiod_set_value_cansleep(phy_reset, 0); 4199 4200 if (!phy_post_delay) 4201 return 0; 4202 4203 if (phy_post_delay > 20) 4204 msleep(phy_post_delay); 4205 else 4206 usleep_range(phy_post_delay * 1000, 4207 phy_post_delay * 1000 + 1000); 4208 4209 return 0; 4210 } 4211 #else /* CONFIG_OF */ 4212 static int fec_reset_phy(struct platform_device *pdev) 4213 { 4214 /* 4215 * In case of platform probe, the reset has been done 4216 * by machine code. 4217 */ 4218 return 0; 4219 } 4220 #endif /* CONFIG_OF */ 4221 4222 static void 4223 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4224 { 4225 struct device_node *np = pdev->dev.of_node; 4226 4227 *num_tx = *num_rx = 1; 4228 4229 if (!np || !of_device_is_available(np)) 4230 return; 4231 4232 /* parse the num of tx and rx queues */ 4233 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4234 4235 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4236 4237 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4238 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4239 *num_tx); 4240 *num_tx = 1; 4241 return; 4242 } 4243 4244 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4245 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4246 *num_rx); 4247 *num_rx = 1; 4248 return; 4249 } 4250 4251 } 4252 4253 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4254 { 4255 int irq_cnt = platform_irq_count(pdev); 4256 4257 if (irq_cnt > FEC_IRQ_NUM) 4258 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4259 else if (irq_cnt == 2) 4260 irq_cnt = 1; /* last for pps */ 4261 else if (irq_cnt <= 0) 4262 irq_cnt = 1; /* At least 1 irq is needed */ 4263 return irq_cnt; 4264 } 4265 4266 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4267 { 4268 struct net_device *ndev = platform_get_drvdata(pdev); 4269 struct fec_enet_private *fep = netdev_priv(ndev); 4270 4271 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4272 fep->wake_irq = fep->irq[2]; 4273 else 4274 fep->wake_irq = fep->irq[0]; 4275 } 4276 4277 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4278 struct device_node *np) 4279 { 4280 struct device_node *gpr_np; 4281 u32 out_val[3]; 4282 int ret = 0; 4283 4284 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4285 if (!gpr_np) 4286 return 0; 4287 4288 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4289 ARRAY_SIZE(out_val)); 4290 if (ret) { 4291 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4292 goto out; 4293 } 4294 4295 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4296 if (IS_ERR(fep->stop_gpr.gpr)) { 4297 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4298 ret = PTR_ERR(fep->stop_gpr.gpr); 4299 fep->stop_gpr.gpr = NULL; 4300 goto out; 4301 } 4302 4303 fep->stop_gpr.reg = out_val[1]; 4304 fep->stop_gpr.bit = out_val[2]; 4305 4306 out: 4307 of_node_put(gpr_np); 4308 4309 return ret; 4310 } 4311 4312 static int 4313 fec_probe(struct platform_device *pdev) 4314 { 4315 struct fec_enet_private *fep; 4316 struct fec_platform_data *pdata; 4317 phy_interface_t interface; 4318 struct net_device *ndev; 4319 int i, irq, ret = 0; 4320 static int dev_id; 4321 struct device_node *np = pdev->dev.of_node, *phy_node; 4322 int num_tx_qs; 4323 int num_rx_qs; 4324 char irq_name[8]; 4325 int irq_cnt; 4326 const struct fec_devinfo *dev_info; 4327 4328 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4329 4330 /* Init network device */ 4331 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4332 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4333 if (!ndev) 4334 return -ENOMEM; 4335 4336 SET_NETDEV_DEV(ndev, &pdev->dev); 4337 4338 /* setup board info structure */ 4339 fep = netdev_priv(ndev); 4340 4341 dev_info = device_get_match_data(&pdev->dev); 4342 if (!dev_info) 4343 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 4344 if (dev_info) 4345 fep->quirks = dev_info->quirks; 4346 4347 fep->netdev = ndev; 4348 fep->num_rx_queues = num_rx_qs; 4349 fep->num_tx_queues = num_tx_qs; 4350 4351 #if !defined(CONFIG_M5272) 4352 /* default enable pause frame auto negotiation */ 4353 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4354 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4355 #endif 4356 4357 /* Select default pin state */ 4358 pinctrl_pm_select_default_state(&pdev->dev); 4359 4360 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4361 if (IS_ERR(fep->hwp)) { 4362 ret = PTR_ERR(fep->hwp); 4363 goto failed_ioremap; 4364 } 4365 4366 fep->pdev = pdev; 4367 fep->dev_id = dev_id++; 4368 4369 platform_set_drvdata(pdev, ndev); 4370 4371 if ((of_machine_is_compatible("fsl,imx6q") || 4372 of_machine_is_compatible("fsl,imx6dl")) && 4373 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4374 fep->quirks |= FEC_QUIRK_ERR006687; 4375 4376 ret = fec_enet_ipc_handle_init(fep); 4377 if (ret) 4378 goto failed_ipc_init; 4379 4380 if (of_property_read_bool(np, "fsl,magic-packet")) 4381 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4382 4383 ret = fec_enet_init_stop_mode(fep, np); 4384 if (ret) 4385 goto failed_stop_mode; 4386 4387 phy_node = of_parse_phandle(np, "phy-handle", 0); 4388 if (!phy_node && of_phy_is_fixed_link(np)) { 4389 ret = of_phy_register_fixed_link(np); 4390 if (ret < 0) { 4391 dev_err(&pdev->dev, 4392 "broken fixed-link specification\n"); 4393 goto failed_phy; 4394 } 4395 phy_node = of_node_get(np); 4396 } 4397 fep->phy_node = phy_node; 4398 4399 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4400 if (ret) { 4401 pdata = dev_get_platdata(&pdev->dev); 4402 if (pdata) 4403 fep->phy_interface = pdata->phy; 4404 else 4405 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4406 } else { 4407 fep->phy_interface = interface; 4408 } 4409 4410 ret = fec_enet_parse_rgmii_delay(fep, np); 4411 if (ret) 4412 goto failed_rgmii_delay; 4413 4414 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4415 if (IS_ERR(fep->clk_ipg)) { 4416 ret = PTR_ERR(fep->clk_ipg); 4417 goto failed_clk; 4418 } 4419 4420 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4421 if (IS_ERR(fep->clk_ahb)) { 4422 ret = PTR_ERR(fep->clk_ahb); 4423 goto failed_clk; 4424 } 4425 4426 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4427 4428 /* enet_out is optional, depends on board */ 4429 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4430 if (IS_ERR(fep->clk_enet_out)) { 4431 ret = PTR_ERR(fep->clk_enet_out); 4432 goto failed_clk; 4433 } 4434 4435 fep->ptp_clk_on = false; 4436 mutex_init(&fep->ptp_clk_mutex); 4437 4438 /* clk_ref is optional, depends on board */ 4439 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4440 if (IS_ERR(fep->clk_ref)) { 4441 ret = PTR_ERR(fep->clk_ref); 4442 goto failed_clk; 4443 } 4444 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4445 4446 /* clk_2x_txclk is optional, depends on board */ 4447 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4448 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4449 if (IS_ERR(fep->clk_2x_txclk)) 4450 fep->clk_2x_txclk = NULL; 4451 } 4452 4453 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4454 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4455 if (IS_ERR(fep->clk_ptp)) { 4456 fep->clk_ptp = NULL; 4457 fep->bufdesc_ex = false; 4458 } 4459 4460 ret = fec_enet_clk_enable(ndev, true); 4461 if (ret) 4462 goto failed_clk; 4463 4464 ret = clk_prepare_enable(fep->clk_ipg); 4465 if (ret) 4466 goto failed_clk_ipg; 4467 ret = clk_prepare_enable(fep->clk_ahb); 4468 if (ret) 4469 goto failed_clk_ahb; 4470 4471 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4472 if (!IS_ERR(fep->reg_phy)) { 4473 ret = regulator_enable(fep->reg_phy); 4474 if (ret) { 4475 dev_err(&pdev->dev, 4476 "Failed to enable phy regulator: %d\n", ret); 4477 goto failed_regulator; 4478 } 4479 } else { 4480 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4481 ret = -EPROBE_DEFER; 4482 goto failed_regulator; 4483 } 4484 fep->reg_phy = NULL; 4485 } 4486 4487 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4488 pm_runtime_use_autosuspend(&pdev->dev); 4489 pm_runtime_get_noresume(&pdev->dev); 4490 pm_runtime_set_active(&pdev->dev); 4491 pm_runtime_enable(&pdev->dev); 4492 4493 ret = fec_reset_phy(pdev); 4494 if (ret) 4495 goto failed_reset; 4496 4497 irq_cnt = fec_enet_get_irq_cnt(pdev); 4498 if (fep->bufdesc_ex) 4499 fec_ptp_init(pdev, irq_cnt); 4500 4501 ret = fec_enet_init(ndev); 4502 if (ret) 4503 goto failed_init; 4504 4505 for (i = 0; i < irq_cnt; i++) { 4506 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4507 irq = platform_get_irq_byname_optional(pdev, irq_name); 4508 if (irq < 0) 4509 irq = platform_get_irq(pdev, i); 4510 if (irq < 0) { 4511 ret = irq; 4512 goto failed_irq; 4513 } 4514 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4515 0, pdev->name, ndev); 4516 if (ret) 4517 goto failed_irq; 4518 4519 fep->irq[i] = irq; 4520 } 4521 4522 /* Decide which interrupt line is wakeup capable */ 4523 fec_enet_get_wakeup_irq(pdev); 4524 4525 ret = fec_enet_mii_init(pdev); 4526 if (ret) 4527 goto failed_mii_init; 4528 4529 /* Carrier starts down, phylib will bring it up */ 4530 netif_carrier_off(ndev); 4531 fec_enet_clk_enable(ndev, false); 4532 pinctrl_pm_select_sleep_state(&pdev->dev); 4533 4534 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4535 4536 ret = register_netdev(ndev); 4537 if (ret) 4538 goto failed_register; 4539 4540 device_init_wakeup(&ndev->dev, fep->wol_flag & 4541 FEC_WOL_HAS_MAGIC_PACKET); 4542 4543 if (fep->bufdesc_ex && fep->ptp_clock) 4544 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4545 4546 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4547 4548 pm_runtime_mark_last_busy(&pdev->dev); 4549 pm_runtime_put_autosuspend(&pdev->dev); 4550 4551 return 0; 4552 4553 failed_register: 4554 fec_enet_mii_remove(fep); 4555 failed_mii_init: 4556 failed_irq: 4557 fec_enet_deinit(ndev); 4558 failed_init: 4559 fec_ptp_stop(pdev); 4560 failed_reset: 4561 pm_runtime_put_noidle(&pdev->dev); 4562 pm_runtime_disable(&pdev->dev); 4563 if (fep->reg_phy) 4564 regulator_disable(fep->reg_phy); 4565 failed_regulator: 4566 clk_disable_unprepare(fep->clk_ahb); 4567 failed_clk_ahb: 4568 clk_disable_unprepare(fep->clk_ipg); 4569 failed_clk_ipg: 4570 fec_enet_clk_enable(ndev, false); 4571 failed_clk: 4572 failed_rgmii_delay: 4573 if (of_phy_is_fixed_link(np)) 4574 of_phy_deregister_fixed_link(np); 4575 of_node_put(phy_node); 4576 failed_stop_mode: 4577 failed_ipc_init: 4578 failed_phy: 4579 dev_id--; 4580 failed_ioremap: 4581 free_netdev(ndev); 4582 4583 return ret; 4584 } 4585 4586 static void 4587 fec_drv_remove(struct platform_device *pdev) 4588 { 4589 struct net_device *ndev = platform_get_drvdata(pdev); 4590 struct fec_enet_private *fep = netdev_priv(ndev); 4591 struct device_node *np = pdev->dev.of_node; 4592 int ret; 4593 4594 ret = pm_runtime_get_sync(&pdev->dev); 4595 if (ret < 0) 4596 dev_err(&pdev->dev, 4597 "Failed to resume device in remove callback (%pe)\n", 4598 ERR_PTR(ret)); 4599 4600 cancel_work_sync(&fep->tx_timeout_work); 4601 fec_ptp_stop(pdev); 4602 unregister_netdev(ndev); 4603 fec_enet_mii_remove(fep); 4604 if (fep->reg_phy) 4605 regulator_disable(fep->reg_phy); 4606 4607 if (of_phy_is_fixed_link(np)) 4608 of_phy_deregister_fixed_link(np); 4609 of_node_put(fep->phy_node); 4610 4611 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4612 * disabling them again. 4613 */ 4614 if (ret >= 0) { 4615 clk_disable_unprepare(fep->clk_ahb); 4616 clk_disable_unprepare(fep->clk_ipg); 4617 } 4618 pm_runtime_put_noidle(&pdev->dev); 4619 pm_runtime_disable(&pdev->dev); 4620 4621 fec_enet_deinit(ndev); 4622 free_netdev(ndev); 4623 } 4624 4625 static int fec_suspend(struct device *dev) 4626 { 4627 struct net_device *ndev = dev_get_drvdata(dev); 4628 struct fec_enet_private *fep = netdev_priv(ndev); 4629 int ret; 4630 4631 rtnl_lock(); 4632 if (netif_running(ndev)) { 4633 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4634 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4635 phy_stop(ndev->phydev); 4636 napi_disable(&fep->napi); 4637 netif_tx_lock_bh(ndev); 4638 netif_device_detach(ndev); 4639 netif_tx_unlock_bh(ndev); 4640 fec_stop(ndev); 4641 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4642 fec_irqs_disable(ndev); 4643 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4644 } else { 4645 fec_irqs_disable_except_wakeup(ndev); 4646 if (fep->wake_irq > 0) { 4647 disable_irq(fep->wake_irq); 4648 enable_irq_wake(fep->wake_irq); 4649 } 4650 fec_enet_stop_mode(fep, true); 4651 } 4652 /* It's safe to disable clocks since interrupts are masked */ 4653 fec_enet_clk_enable(ndev, false); 4654 4655 fep->rpm_active = !pm_runtime_status_suspended(dev); 4656 if (fep->rpm_active) { 4657 ret = pm_runtime_force_suspend(dev); 4658 if (ret < 0) { 4659 rtnl_unlock(); 4660 return ret; 4661 } 4662 } 4663 } 4664 rtnl_unlock(); 4665 4666 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4667 regulator_disable(fep->reg_phy); 4668 4669 /* SOC supply clock to phy, when clock is disabled, phy link down 4670 * SOC control phy regulator, when regulator is disabled, phy link down 4671 */ 4672 if (fep->clk_enet_out || fep->reg_phy) 4673 fep->link = 0; 4674 4675 return 0; 4676 } 4677 4678 static int fec_resume(struct device *dev) 4679 { 4680 struct net_device *ndev = dev_get_drvdata(dev); 4681 struct fec_enet_private *fep = netdev_priv(ndev); 4682 int ret; 4683 int val; 4684 4685 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4686 ret = regulator_enable(fep->reg_phy); 4687 if (ret) 4688 return ret; 4689 } 4690 4691 rtnl_lock(); 4692 if (netif_running(ndev)) { 4693 if (fep->rpm_active) 4694 pm_runtime_force_resume(dev); 4695 4696 ret = fec_enet_clk_enable(ndev, true); 4697 if (ret) { 4698 rtnl_unlock(); 4699 goto failed_clk; 4700 } 4701 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4702 fec_enet_stop_mode(fep, false); 4703 if (fep->wake_irq) { 4704 disable_irq_wake(fep->wake_irq); 4705 enable_irq(fep->wake_irq); 4706 } 4707 4708 val = readl(fep->hwp + FEC_ECNTRL); 4709 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4710 writel(val, fep->hwp + FEC_ECNTRL); 4711 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4712 } else { 4713 pinctrl_pm_select_default_state(&fep->pdev->dev); 4714 } 4715 fec_restart(ndev); 4716 netif_tx_lock_bh(ndev); 4717 netif_device_attach(ndev); 4718 netif_tx_unlock_bh(ndev); 4719 napi_enable(&fep->napi); 4720 phy_init_hw(ndev->phydev); 4721 phy_start(ndev->phydev); 4722 } 4723 rtnl_unlock(); 4724 4725 return 0; 4726 4727 failed_clk: 4728 if (fep->reg_phy) 4729 regulator_disable(fep->reg_phy); 4730 return ret; 4731 } 4732 4733 static int fec_runtime_suspend(struct device *dev) 4734 { 4735 struct net_device *ndev = dev_get_drvdata(dev); 4736 struct fec_enet_private *fep = netdev_priv(ndev); 4737 4738 clk_disable_unprepare(fep->clk_ahb); 4739 clk_disable_unprepare(fep->clk_ipg); 4740 4741 return 0; 4742 } 4743 4744 static int fec_runtime_resume(struct device *dev) 4745 { 4746 struct net_device *ndev = dev_get_drvdata(dev); 4747 struct fec_enet_private *fep = netdev_priv(ndev); 4748 int ret; 4749 4750 ret = clk_prepare_enable(fep->clk_ahb); 4751 if (ret) 4752 return ret; 4753 ret = clk_prepare_enable(fep->clk_ipg); 4754 if (ret) 4755 goto failed_clk_ipg; 4756 4757 return 0; 4758 4759 failed_clk_ipg: 4760 clk_disable_unprepare(fep->clk_ahb); 4761 return ret; 4762 } 4763 4764 static const struct dev_pm_ops fec_pm_ops = { 4765 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4766 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4767 }; 4768 4769 static struct platform_driver fec_driver = { 4770 .driver = { 4771 .name = DRIVER_NAME, 4772 .pm = pm_ptr(&fec_pm_ops), 4773 .of_match_table = fec_dt_ids, 4774 .suppress_bind_attrs = true, 4775 }, 4776 .id_table = fec_devtype, 4777 .probe = fec_probe, 4778 .remove = fec_drv_remove, 4779 }; 4780 4781 module_platform_driver(fec_driver); 4782 4783 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver"); 4784 MODULE_LICENSE("GPL"); 4785