xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6x_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	writel(0, txq->bd.reg_desc_active);
718 
719 	return 0;
720 }
721 
722 static int
723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 			  struct net_device *ndev,
725 			  struct bufdesc *bdp, int index, char *data,
726 			  int size, bool last_tcp, bool is_last)
727 {
728 	struct fec_enet_private *fep = netdev_priv(ndev);
729 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 	unsigned short status;
731 	unsigned int estatus = 0;
732 	dma_addr_t addr;
733 
734 	status = fec16_to_cpu(bdp->cbd_sc);
735 	status &= ~BD_ENET_TX_STATS;
736 
737 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738 
739 	if (((unsigned long) data) & fep->tx_align ||
740 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 		memcpy(txq->tx_bounce[index], data, size);
742 		data = txq->tx_bounce[index];
743 
744 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 			swap_buffer(data, size);
746 	}
747 
748 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 		dev_kfree_skb_any(skb);
751 		if (net_ratelimit())
752 			netdev_err(ndev, "Tx DMA memory map failed\n");
753 		return NETDEV_TX_OK;
754 	}
755 
756 	bdp->cbd_datlen = cpu_to_fec16(size);
757 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
758 
759 	if (fep->bufdesc_ex) {
760 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 		if (skb->ip_summed == CHECKSUM_PARTIAL)
763 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 		ebdp->cbd_bdu = 0;
765 		ebdp->cbd_esc = cpu_to_fec32(estatus);
766 	}
767 
768 	/* Handle the last BD specially */
769 	if (last_tcp)
770 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 	if (is_last) {
772 		status |= BD_ENET_TX_INTR;
773 		if (fep->bufdesc_ex)
774 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 	}
776 
777 	bdp->cbd_sc = cpu_to_fec16(status);
778 
779 	return 0;
780 }
781 
782 static int
783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 			 struct sk_buff *skb, struct net_device *ndev,
785 			 struct bufdesc *bdp, int index)
786 {
787 	struct fec_enet_private *fep = netdev_priv(ndev);
788 	int hdr_len = skb_tcp_all_headers(skb);
789 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 	void *bufaddr;
791 	unsigned long dmabuf;
792 	unsigned short status;
793 	unsigned int estatus = 0;
794 
795 	status = fec16_to_cpu(bdp->cbd_sc);
796 	status &= ~BD_ENET_TX_STATS;
797 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798 
799 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 	if (((unsigned long)bufaddr) & fep->tx_align ||
802 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 		bufaddr = txq->tx_bounce[index];
805 
806 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 			swap_buffer(bufaddr, hdr_len);
808 
809 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 					hdr_len, DMA_TO_DEVICE);
811 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 			dev_kfree_skb_any(skb);
813 			if (net_ratelimit())
814 				netdev_err(ndev, "Tx DMA memory map failed\n");
815 			return NETDEV_TX_OK;
816 		}
817 	}
818 
819 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821 
822 	if (fep->bufdesc_ex) {
823 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 		if (skb->ip_summed == CHECKSUM_PARTIAL)
826 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 		ebdp->cbd_bdu = 0;
828 		ebdp->cbd_esc = cpu_to_fec32(estatus);
829 	}
830 
831 	bdp->cbd_sc = cpu_to_fec16(status);
832 
833 	return 0;
834 }
835 
836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 				   struct sk_buff *skb,
838 				   struct net_device *ndev)
839 {
840 	struct fec_enet_private *fep = netdev_priv(ndev);
841 	int hdr_len, total_len, data_left;
842 	struct bufdesc *bdp = txq->bd.cur;
843 	struct tso_t tso;
844 	unsigned int index = 0;
845 	int ret;
846 
847 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
848 		dev_kfree_skb_any(skb);
849 		if (net_ratelimit())
850 			netdev_err(ndev, "NOT enough BD for TSO!\n");
851 		return NETDEV_TX_OK;
852 	}
853 
854 	/* Protocol checksum off-load for TCP and UDP. */
855 	if (fec_enet_clear_csum(skb, ndev)) {
856 		dev_kfree_skb_any(skb);
857 		return NETDEV_TX_OK;
858 	}
859 
860 	/* Initialize the TSO handler, and prepare the first payload */
861 	hdr_len = tso_start(skb, &tso);
862 
863 	total_len = skb->len - hdr_len;
864 	while (total_len > 0) {
865 		char *hdr;
866 
867 		index = fec_enet_get_bd_index(bdp, &txq->bd);
868 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
869 		total_len -= data_left;
870 
871 		/* prepare packet headers: MAC + IP + TCP */
872 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
873 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
874 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
875 		if (ret)
876 			goto err_release;
877 
878 		while (data_left > 0) {
879 			int size;
880 
881 			size = min_t(int, tso.size, data_left);
882 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
883 			index = fec_enet_get_bd_index(bdp, &txq->bd);
884 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
885 							bdp, index,
886 							tso.data, size,
887 							size == data_left,
888 							total_len == 0);
889 			if (ret)
890 				goto err_release;
891 
892 			data_left -= size;
893 			tso_build_data(skb, &tso, size);
894 		}
895 
896 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
897 	}
898 
899 	/* Save skb pointer */
900 	txq->tx_buf[index].buf_p = skb;
901 
902 	skb_tx_timestamp(skb);
903 	txq->bd.cur = bdp;
904 
905 	/* Trigger transmission start */
906 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
907 	    !readl(txq->bd.reg_desc_active) ||
908 	    !readl(txq->bd.reg_desc_active) ||
909 	    !readl(txq->bd.reg_desc_active) ||
910 	    !readl(txq->bd.reg_desc_active))
911 		writel(0, txq->bd.reg_desc_active);
912 
913 	return 0;
914 
915 err_release:
916 	/* TODO: Release all used data descriptors for TSO */
917 	return ret;
918 }
919 
920 static netdev_tx_t
921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
922 {
923 	struct fec_enet_private *fep = netdev_priv(ndev);
924 	int entries_free;
925 	unsigned short queue;
926 	struct fec_enet_priv_tx_q *txq;
927 	struct netdev_queue *nq;
928 	int ret;
929 
930 	queue = skb_get_queue_mapping(skb);
931 	txq = fep->tx_queue[queue];
932 	nq = netdev_get_tx_queue(ndev, queue);
933 
934 	if (skb_is_gso(skb))
935 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
936 	else
937 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
938 	if (ret)
939 		return ret;
940 
941 	entries_free = fec_enet_get_free_txdesc_num(txq);
942 	if (entries_free <= txq->tx_stop_threshold)
943 		netif_tx_stop_queue(nq);
944 
945 	return NETDEV_TX_OK;
946 }
947 
948 /* Init RX & TX buffer descriptors
949  */
950 static void fec_enet_bd_init(struct net_device *dev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(dev);
953 	struct fec_enet_priv_tx_q *txq;
954 	struct fec_enet_priv_rx_q *rxq;
955 	struct bufdesc *bdp;
956 	unsigned int i;
957 	unsigned int q;
958 
959 	for (q = 0; q < fep->num_rx_queues; q++) {
960 		/* Initialize the receive buffer descriptors. */
961 		rxq = fep->rx_queue[q];
962 		bdp = rxq->bd.base;
963 
964 		for (i = 0; i < rxq->bd.ring_size; i++) {
965 
966 			/* Initialize the BD for every fragment in the page. */
967 			if (bdp->cbd_bufaddr)
968 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
969 			else
970 				bdp->cbd_sc = cpu_to_fec16(0);
971 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
972 		}
973 
974 		/* Set the last buffer to wrap */
975 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
976 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
977 
978 		rxq->bd.cur = rxq->bd.base;
979 	}
980 
981 	for (q = 0; q < fep->num_tx_queues; q++) {
982 		/* ...and the same for transmit */
983 		txq = fep->tx_queue[q];
984 		bdp = txq->bd.base;
985 		txq->bd.cur = bdp;
986 
987 		for (i = 0; i < txq->bd.ring_size; i++) {
988 			/* Initialize the BD for every fragment in the page. */
989 			bdp->cbd_sc = cpu_to_fec16(0);
990 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
991 				if (bdp->cbd_bufaddr &&
992 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
993 					dma_unmap_single(&fep->pdev->dev,
994 							 fec32_to_cpu(bdp->cbd_bufaddr),
995 							 fec16_to_cpu(bdp->cbd_datlen),
996 							 DMA_TO_DEVICE);
997 				if (txq->tx_buf[i].buf_p)
998 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
999 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000 				if (bdp->cbd_bufaddr)
1001 					dma_unmap_single(&fep->pdev->dev,
1002 							 fec32_to_cpu(bdp->cbd_bufaddr),
1003 							 fec16_to_cpu(bdp->cbd_datlen),
1004 							 DMA_TO_DEVICE);
1005 
1006 				if (txq->tx_buf[i].buf_p)
1007 					xdp_return_frame(txq->tx_buf[i].buf_p);
1008 			} else {
1009 				struct page *page = txq->tx_buf[i].buf_p;
1010 
1011 				if (page)
1012 					page_pool_put_page(page->pp, page, 0, false);
1013 			}
1014 
1015 			txq->tx_buf[i].buf_p = NULL;
1016 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1019 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1020 		}
1021 
1022 		/* Set the last buffer to wrap */
1023 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1024 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025 		txq->dirty_tx = bdp;
1026 	}
1027 }
1028 
1029 static void fec_enet_active_rxring(struct net_device *ndev)
1030 {
1031 	struct fec_enet_private *fep = netdev_priv(ndev);
1032 	int i;
1033 
1034 	for (i = 0; i < fep->num_rx_queues; i++)
1035 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1036 }
1037 
1038 static void fec_enet_enable_ring(struct net_device *ndev)
1039 {
1040 	struct fec_enet_private *fep = netdev_priv(ndev);
1041 	struct fec_enet_priv_tx_q *txq;
1042 	struct fec_enet_priv_rx_q *rxq;
1043 	int i;
1044 
1045 	for (i = 0; i < fep->num_rx_queues; i++) {
1046 		rxq = fep->rx_queue[i];
1047 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1048 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1049 
1050 		/* enable DMA1/2 */
1051 		if (i)
1052 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1053 			       fep->hwp + FEC_RCMR(i));
1054 	}
1055 
1056 	for (i = 0; i < fep->num_tx_queues; i++) {
1057 		txq = fep->tx_queue[i];
1058 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1059 
1060 		/* enable DMA1/2 */
1061 		if (i)
1062 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063 			       fep->hwp + FEC_DMA_CFG(i));
1064 	}
1065 }
1066 
1067 /*
1068  * This function is called to start or restart the FEC during a link
1069  * change, transmit timeout, or to reconfigure the FEC.  The network
1070  * packet processing for this device must be stopped before this call.
1071  */
1072 static void
1073 fec_restart(struct net_device *ndev)
1074 {
1075 	struct fec_enet_private *fep = netdev_priv(ndev);
1076 	u32 temp_mac[2];
1077 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078 	u32 ecntl = FEC_ECR_ETHEREN;
1079 
1080 	if (fep->bufdesc_ex)
1081 		fec_ptp_save_state(fep);
1082 
1083 	/* Whack a reset.  We should wait for this.
1084 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1085 	 * instead of reset MAC itself.
1086 	 */
1087 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1088 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1089 		writel(0, fep->hwp + FEC_ECNTRL);
1090 	} else {
1091 		writel(1, fep->hwp + FEC_ECNTRL);
1092 		udelay(10);
1093 	}
1094 
1095 	/*
1096 	 * enet-mac reset will reset mac address registers too,
1097 	 * so need to reconfigure it.
1098 	 */
1099 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1100 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1101 	       fep->hwp + FEC_ADDR_LOW);
1102 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1103 	       fep->hwp + FEC_ADDR_HIGH);
1104 
1105 	/* Clear any outstanding interrupt, except MDIO. */
1106 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1107 
1108 	fec_enet_bd_init(ndev);
1109 
1110 	fec_enet_enable_ring(ndev);
1111 
1112 	/* Enable MII mode */
1113 	if (fep->full_duplex == DUPLEX_FULL) {
1114 		/* FD enable */
1115 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1116 	} else {
1117 		/* No Rcv on Xmit */
1118 		rcntl |= 0x02;
1119 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1120 	}
1121 
1122 	/* Set MII speed */
1123 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1124 
1125 #if !defined(CONFIG_M5272)
1126 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1127 		u32 val = readl(fep->hwp + FEC_RACC);
1128 
1129 		/* align IP header */
1130 		val |= FEC_RACC_SHIFT16;
1131 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1132 			/* set RX checksum */
1133 			val |= FEC_RACC_OPTIONS;
1134 		else
1135 			val &= ~FEC_RACC_OPTIONS;
1136 		writel(val, fep->hwp + FEC_RACC);
1137 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1138 	}
1139 #endif
1140 
1141 	/*
1142 	 * The phy interface and speed need to get configured
1143 	 * differently on enet-mac.
1144 	 */
1145 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1146 		/* Enable flow control and length check */
1147 		rcntl |= 0x40000000 | 0x00000020;
1148 
1149 		/* RGMII, RMII or MII */
1150 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1151 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1152 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1153 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1154 			rcntl |= (1 << 6);
1155 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1156 			rcntl |= FEC_RCR_RMII;
1157 		else
1158 			rcntl &= ~FEC_RCR_RMII;
1159 
1160 		/* 1G, 100M or 10M */
1161 		if (ndev->phydev) {
1162 			if (ndev->phydev->speed == SPEED_1000)
1163 				ecntl |= (1 << 5);
1164 			else if (ndev->phydev->speed == SPEED_100)
1165 				rcntl &= ~FEC_RCR_10BASET;
1166 			else
1167 				rcntl |= FEC_RCR_10BASET;
1168 		}
1169 	} else {
1170 #ifdef FEC_MIIGSK_ENR
1171 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1172 			u32 cfgr;
1173 			/* disable the gasket and wait */
1174 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1175 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1176 				udelay(1);
1177 
1178 			/*
1179 			 * configure the gasket:
1180 			 *   RMII, 50 MHz, no loopback, no echo
1181 			 *   MII, 25 MHz, no loopback, no echo
1182 			 */
1183 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1184 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1185 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1186 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1187 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1188 
1189 			/* re-enable the gasket */
1190 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1191 		}
1192 #endif
1193 	}
1194 
1195 #if !defined(CONFIG_M5272)
1196 	/* enable pause frame*/
1197 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1198 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1199 	     ndev->phydev && ndev->phydev->pause)) {
1200 		rcntl |= FEC_RCR_FLOWCTL;
1201 
1202 		/* set FIFO threshold parameter to reduce overrun */
1203 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1204 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1205 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1206 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1207 
1208 		/* OPD */
1209 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1210 	} else {
1211 		rcntl &= ~FEC_RCR_FLOWCTL;
1212 	}
1213 #endif /* !defined(CONFIG_M5272) */
1214 
1215 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1216 
1217 	/* Setup multicast filter. */
1218 	set_multicast_list(ndev);
1219 #ifndef CONFIG_M5272
1220 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1221 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1222 #endif
1223 
1224 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1225 		/* enable ENET endian swap */
1226 		ecntl |= FEC_ECR_BYTESWP;
1227 		/* enable ENET store and forward mode */
1228 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1229 	}
1230 
1231 	if (fep->bufdesc_ex)
1232 		ecntl |= FEC_ECR_EN1588;
1233 
1234 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235 	    fep->rgmii_txc_dly)
1236 		ecntl |= FEC_ENET_TXC_DLY;
1237 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1238 	    fep->rgmii_rxc_dly)
1239 		ecntl |= FEC_ENET_RXC_DLY;
1240 
1241 #ifndef CONFIG_M5272
1242 	/* Enable the MIB statistic event counters */
1243 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1244 #endif
1245 
1246 	/* And last, enable the transmit and receive processing */
1247 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1248 	fec_enet_active_rxring(ndev);
1249 
1250 	if (fep->bufdesc_ex) {
1251 		fec_ptp_start_cyclecounter(ndev);
1252 		fec_ptp_restore_state(fep);
1253 	}
1254 
1255 	/* Enable interrupts we wish to service */
1256 	if (fep->link)
1257 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1258 	else
1259 		writel(0, fep->hwp + FEC_IMASK);
1260 
1261 	/* Init the interrupt coalescing */
1262 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1263 		fec_enet_itr_coal_set(ndev);
1264 }
1265 
1266 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1267 {
1268 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1269 	      of_machine_is_compatible("fsl,imx8qxp") ||
1270 	      of_machine_is_compatible("fsl,imx8dxl")))
1271 		return 0;
1272 
1273 	return imx_scu_get_handle(&fep->ipc_handle);
1274 }
1275 
1276 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1277 {
1278 	struct device_node *np = fep->pdev->dev.of_node;
1279 	u32 rsrc_id, val;
1280 	int idx;
1281 
1282 	if (!np || !fep->ipc_handle)
1283 		return;
1284 
1285 	idx = of_alias_get_id(np, "ethernet");
1286 	if (idx < 0)
1287 		idx = 0;
1288 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1289 
1290 	val = enabled ? 1 : 0;
1291 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1292 }
1293 
1294 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1295 {
1296 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1297 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1298 
1299 	if (stop_gpr->gpr) {
1300 		if (enabled)
1301 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1302 					   BIT(stop_gpr->bit),
1303 					   BIT(stop_gpr->bit));
1304 		else
1305 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1306 					   BIT(stop_gpr->bit), 0);
1307 	} else if (pdata && pdata->sleep_mode_enable) {
1308 		pdata->sleep_mode_enable(enabled);
1309 	} else {
1310 		fec_enet_ipg_stop_set(fep, enabled);
1311 	}
1312 }
1313 
1314 static void fec_irqs_disable(struct net_device *ndev)
1315 {
1316 	struct fec_enet_private *fep = netdev_priv(ndev);
1317 
1318 	writel(0, fep->hwp + FEC_IMASK);
1319 }
1320 
1321 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1322 {
1323 	struct fec_enet_private *fep = netdev_priv(ndev);
1324 
1325 	writel(0, fep->hwp + FEC_IMASK);
1326 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1327 }
1328 
1329 static void
1330 fec_stop(struct net_device *ndev)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1334 	u32 val;
1335 
1336 	/* We cannot expect a graceful transmit stop without link !!! */
1337 	if (fep->link) {
1338 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1339 		udelay(10);
1340 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1341 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1342 	}
1343 
1344 	if (fep->bufdesc_ex)
1345 		fec_ptp_save_state(fep);
1346 
1347 	/* Whack a reset.  We should wait for this.
1348 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1349 	 * instead of reset MAC itself.
1350 	 */
1351 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1352 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1353 			writel(0, fep->hwp + FEC_ECNTRL);
1354 		} else {
1355 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1356 			udelay(10);
1357 		}
1358 	} else {
1359 		val = readl(fep->hwp + FEC_ECNTRL);
1360 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1361 		writel(val, fep->hwp + FEC_ECNTRL);
1362 	}
1363 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1364 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1365 
1366 	/* We have to keep ENET enabled to have MII interrupt stay working */
1367 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1368 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1369 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1370 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1371 	}
1372 
1373 	if (fep->bufdesc_ex) {
1374 		val = readl(fep->hwp + FEC_ECNTRL);
1375 		val |= FEC_ECR_EN1588;
1376 		writel(val, fep->hwp + FEC_ECNTRL);
1377 
1378 		fec_ptp_start_cyclecounter(ndev);
1379 		fec_ptp_restore_state(fep);
1380 	}
1381 }
1382 
1383 static void
1384 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1385 {
1386 	struct fec_enet_private *fep = netdev_priv(ndev);
1387 
1388 	fec_dump(ndev);
1389 
1390 	ndev->stats.tx_errors++;
1391 
1392 	schedule_work(&fep->tx_timeout_work);
1393 }
1394 
1395 static void fec_enet_timeout_work(struct work_struct *work)
1396 {
1397 	struct fec_enet_private *fep =
1398 		container_of(work, struct fec_enet_private, tx_timeout_work);
1399 	struct net_device *ndev = fep->netdev;
1400 
1401 	rtnl_lock();
1402 	if (netif_device_present(ndev) || netif_running(ndev)) {
1403 		napi_disable(&fep->napi);
1404 		netif_tx_lock_bh(ndev);
1405 		fec_restart(ndev);
1406 		netif_tx_wake_all_queues(ndev);
1407 		netif_tx_unlock_bh(ndev);
1408 		napi_enable(&fep->napi);
1409 	}
1410 	rtnl_unlock();
1411 }
1412 
1413 static void
1414 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1415 	struct skb_shared_hwtstamps *hwtstamps)
1416 {
1417 	unsigned long flags;
1418 	u64 ns;
1419 
1420 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1421 	ns = timecounter_cyc2time(&fep->tc, ts);
1422 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1423 
1424 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1425 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1426 }
1427 
1428 static void
1429 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1430 {
1431 	struct	fec_enet_private *fep;
1432 	struct xdp_frame *xdpf;
1433 	struct bufdesc *bdp;
1434 	unsigned short status;
1435 	struct	sk_buff	*skb;
1436 	struct fec_enet_priv_tx_q *txq;
1437 	struct netdev_queue *nq;
1438 	int	index = 0;
1439 	int	entries_free;
1440 	struct page *page;
1441 	int frame_len;
1442 
1443 	fep = netdev_priv(ndev);
1444 
1445 	txq = fep->tx_queue[queue_id];
1446 	/* get next bdp of dirty_tx */
1447 	nq = netdev_get_tx_queue(ndev, queue_id);
1448 	bdp = txq->dirty_tx;
1449 
1450 	/* get next bdp of dirty_tx */
1451 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1452 
1453 	while (bdp != READ_ONCE(txq->bd.cur)) {
1454 		/* Order the load of bd.cur and cbd_sc */
1455 		rmb();
1456 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1457 		if (status & BD_ENET_TX_READY)
1458 			break;
1459 
1460 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1461 
1462 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1463 			skb = txq->tx_buf[index].buf_p;
1464 			if (bdp->cbd_bufaddr &&
1465 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1466 				dma_unmap_single(&fep->pdev->dev,
1467 						 fec32_to_cpu(bdp->cbd_bufaddr),
1468 						 fec16_to_cpu(bdp->cbd_datlen),
1469 						 DMA_TO_DEVICE);
1470 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1471 			if (!skb)
1472 				goto tx_buf_done;
1473 		} else {
1474 			/* Tx processing cannot call any XDP (or page pool) APIs if
1475 			 * the "budget" is 0. Because NAPI is called with budget of
1476 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1477 			 * however, we can't use the page pool from IRQ context.
1478 			 */
1479 			if (unlikely(!budget))
1480 				break;
1481 
1482 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1483 				xdpf = txq->tx_buf[index].buf_p;
1484 				if (bdp->cbd_bufaddr)
1485 					dma_unmap_single(&fep->pdev->dev,
1486 							 fec32_to_cpu(bdp->cbd_bufaddr),
1487 							 fec16_to_cpu(bdp->cbd_datlen),
1488 							 DMA_TO_DEVICE);
1489 			} else {
1490 				page = txq->tx_buf[index].buf_p;
1491 			}
1492 
1493 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1494 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1495 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1496 				goto tx_buf_done;
1497 			}
1498 
1499 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1500 		}
1501 
1502 		/* Check for errors. */
1503 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1504 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1505 				   BD_ENET_TX_CSL)) {
1506 			ndev->stats.tx_errors++;
1507 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1508 				ndev->stats.tx_heartbeat_errors++;
1509 			if (status & BD_ENET_TX_LC)  /* Late collision */
1510 				ndev->stats.tx_window_errors++;
1511 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1512 				ndev->stats.tx_aborted_errors++;
1513 			if (status & BD_ENET_TX_UN)  /* Underrun */
1514 				ndev->stats.tx_fifo_errors++;
1515 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1516 				ndev->stats.tx_carrier_errors++;
1517 		} else {
1518 			ndev->stats.tx_packets++;
1519 
1520 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1521 				ndev->stats.tx_bytes += skb->len;
1522 			else
1523 				ndev->stats.tx_bytes += frame_len;
1524 		}
1525 
1526 		/* Deferred means some collisions occurred during transmit,
1527 		 * but we eventually sent the packet OK.
1528 		 */
1529 		if (status & BD_ENET_TX_DEF)
1530 			ndev->stats.collisions++;
1531 
1532 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1533 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1534 			 * are to time stamp the packet, so we still need to check time
1535 			 * stamping enabled flag.
1536 			 */
1537 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1538 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1539 				struct skb_shared_hwtstamps shhwtstamps;
1540 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1541 
1542 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1543 				skb_tstamp_tx(skb, &shhwtstamps);
1544 			}
1545 
1546 			/* Free the sk buffer associated with this last transmit */
1547 			napi_consume_skb(skb, budget);
1548 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1549 			xdp_return_frame_rx_napi(xdpf);
1550 		} else { /* recycle pages of XDP_TX frames */
1551 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1552 			page_pool_put_page(page->pp, page, 0, true);
1553 		}
1554 
1555 		txq->tx_buf[index].buf_p = NULL;
1556 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1557 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1558 
1559 tx_buf_done:
1560 		/* Make sure the update to bdp and tx_buf are performed
1561 		 * before dirty_tx
1562 		 */
1563 		wmb();
1564 		txq->dirty_tx = bdp;
1565 
1566 		/* Update pointer to next buffer descriptor to be transmitted */
1567 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1568 
1569 		/* Since we have freed up a buffer, the ring is no longer full
1570 		 */
1571 		if (netif_tx_queue_stopped(nq)) {
1572 			entries_free = fec_enet_get_free_txdesc_num(txq);
1573 			if (entries_free >= txq->tx_wake_threshold)
1574 				netif_tx_wake_queue(nq);
1575 		}
1576 	}
1577 
1578 	/* ERR006358: Keep the transmitter going */
1579 	if (bdp != txq->bd.cur &&
1580 	    readl(txq->bd.reg_desc_active) == 0)
1581 		writel(0, txq->bd.reg_desc_active);
1582 }
1583 
1584 static void fec_enet_tx(struct net_device *ndev, int budget)
1585 {
1586 	struct fec_enet_private *fep = netdev_priv(ndev);
1587 	int i;
1588 
1589 	/* Make sure that AVB queues are processed first. */
1590 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1591 		fec_enet_tx_queue(ndev, i, budget);
1592 }
1593 
1594 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1595 				struct bufdesc *bdp, int index)
1596 {
1597 	struct page *new_page;
1598 	dma_addr_t phys_addr;
1599 
1600 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1601 	if (unlikely(!new_page))
1602 		return -ENOMEM;
1603 
1604 	rxq->rx_skb_info[index].page = new_page;
1605 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1606 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1607 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1608 
1609 	return 0;
1610 }
1611 
1612 static u32
1613 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1614 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1615 {
1616 	unsigned int sync, len = xdp->data_end - xdp->data;
1617 	u32 ret = FEC_ENET_XDP_PASS;
1618 	struct page *page;
1619 	int err;
1620 	u32 act;
1621 
1622 	act = bpf_prog_run_xdp(prog, xdp);
1623 
1624 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1625 	 * max len CPU touch
1626 	 */
1627 	sync = xdp->data_end - xdp->data;
1628 	sync = max(sync, len);
1629 
1630 	switch (act) {
1631 	case XDP_PASS:
1632 		rxq->stats[RX_XDP_PASS]++;
1633 		ret = FEC_ENET_XDP_PASS;
1634 		break;
1635 
1636 	case XDP_REDIRECT:
1637 		rxq->stats[RX_XDP_REDIRECT]++;
1638 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1639 		if (unlikely(err))
1640 			goto xdp_err;
1641 
1642 		ret = FEC_ENET_XDP_REDIR;
1643 		break;
1644 
1645 	case XDP_TX:
1646 		rxq->stats[RX_XDP_TX]++;
1647 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1648 		if (unlikely(err)) {
1649 			rxq->stats[RX_XDP_TX_ERRORS]++;
1650 			goto xdp_err;
1651 		}
1652 
1653 		ret = FEC_ENET_XDP_TX;
1654 		break;
1655 
1656 	default:
1657 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1658 		fallthrough;
1659 
1660 	case XDP_ABORTED:
1661 		fallthrough;    /* handle aborts by dropping packet */
1662 
1663 	case XDP_DROP:
1664 		rxq->stats[RX_XDP_DROP]++;
1665 xdp_err:
1666 		ret = FEC_ENET_XDP_CONSUMED;
1667 		page = virt_to_head_page(xdp->data);
1668 		page_pool_put_page(rxq->page_pool, page, sync, true);
1669 		if (act != XDP_DROP)
1670 			trace_xdp_exception(fep->netdev, prog, act);
1671 		break;
1672 	}
1673 
1674 	return ret;
1675 }
1676 
1677 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1678  * When we update through the ring, if the next incoming buffer has
1679  * not been given to the system, we just set the empty indicator,
1680  * effectively tossing the packet.
1681  */
1682 static int
1683 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1684 {
1685 	struct fec_enet_private *fep = netdev_priv(ndev);
1686 	struct fec_enet_priv_rx_q *rxq;
1687 	struct bufdesc *bdp;
1688 	unsigned short status;
1689 	struct  sk_buff *skb;
1690 	ushort	pkt_len;
1691 	__u8 *data;
1692 	int	pkt_received = 0;
1693 	struct	bufdesc_ex *ebdp = NULL;
1694 	bool	vlan_packet_rcvd = false;
1695 	u16	vlan_tag;
1696 	int	index = 0;
1697 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1698 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1699 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1700 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1701 	int cpu = smp_processor_id();
1702 	struct xdp_buff xdp;
1703 	struct page *page;
1704 	__fec32 cbd_bufaddr;
1705 	u32 sub_len = 4;
1706 
1707 #if !defined(CONFIG_M5272)
1708 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1709 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1710 	 */
1711 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1712 		data_start += 2;
1713 		sub_len += 2;
1714 	}
1715 #endif
1716 
1717 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1718 	/*
1719 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1720 	 * headers.
1721 	 */
1722 	flush_cache_all();
1723 #endif
1724 	rxq = fep->rx_queue[queue_id];
1725 
1726 	/* First, grab all of the stats for the incoming packet.
1727 	 * These get messed up if we get called due to a busy condition.
1728 	 */
1729 	bdp = rxq->bd.cur;
1730 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1731 
1732 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1733 
1734 		if (pkt_received >= budget)
1735 			break;
1736 		pkt_received++;
1737 
1738 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1739 
1740 		/* Check for errors. */
1741 		status ^= BD_ENET_RX_LAST;
1742 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1743 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1744 			   BD_ENET_RX_CL)) {
1745 			ndev->stats.rx_errors++;
1746 			if (status & BD_ENET_RX_OV) {
1747 				/* FIFO overrun */
1748 				ndev->stats.rx_fifo_errors++;
1749 				goto rx_processing_done;
1750 			}
1751 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1752 						| BD_ENET_RX_LAST)) {
1753 				/* Frame too long or too short. */
1754 				ndev->stats.rx_length_errors++;
1755 				if (status & BD_ENET_RX_LAST)
1756 					netdev_err(ndev, "rcv is not +last\n");
1757 			}
1758 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1759 				ndev->stats.rx_crc_errors++;
1760 			/* Report late collisions as a frame error. */
1761 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1762 				ndev->stats.rx_frame_errors++;
1763 			goto rx_processing_done;
1764 		}
1765 
1766 		/* Process the incoming frame. */
1767 		ndev->stats.rx_packets++;
1768 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1769 		ndev->stats.rx_bytes += pkt_len;
1770 
1771 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1772 		page = rxq->rx_skb_info[index].page;
1773 		cbd_bufaddr = bdp->cbd_bufaddr;
1774 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1775 			ndev->stats.rx_dropped++;
1776 			goto rx_processing_done;
1777 		}
1778 
1779 		dma_sync_single_for_cpu(&fep->pdev->dev,
1780 					fec32_to_cpu(cbd_bufaddr),
1781 					pkt_len,
1782 					DMA_FROM_DEVICE);
1783 		prefetch(page_address(page));
1784 
1785 		if (xdp_prog) {
1786 			xdp_buff_clear_frags_flag(&xdp);
1787 			/* subtract 16bit shift and FCS */
1788 			xdp_prepare_buff(&xdp, page_address(page),
1789 					 data_start, pkt_len - sub_len, false);
1790 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1791 			xdp_result |= ret;
1792 			if (ret != FEC_ENET_XDP_PASS)
1793 				goto rx_processing_done;
1794 		}
1795 
1796 		/* The packet length includes FCS, but we don't want to
1797 		 * include that when passing upstream as it messes up
1798 		 * bridging applications.
1799 		 */
1800 		skb = build_skb(page_address(page), PAGE_SIZE);
1801 		if (unlikely(!skb)) {
1802 			page_pool_recycle_direct(rxq->page_pool, page);
1803 			ndev->stats.rx_dropped++;
1804 
1805 			netdev_err_once(ndev, "build_skb failed!\n");
1806 			goto rx_processing_done;
1807 		}
1808 
1809 		skb_reserve(skb, data_start);
1810 		skb_put(skb, pkt_len - sub_len);
1811 		skb_mark_for_recycle(skb);
1812 
1813 		if (unlikely(need_swap)) {
1814 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1815 			swap_buffer(data, pkt_len);
1816 		}
1817 		data = skb->data;
1818 
1819 		/* Extract the enhanced buffer descriptor */
1820 		ebdp = NULL;
1821 		if (fep->bufdesc_ex)
1822 			ebdp = (struct bufdesc_ex *)bdp;
1823 
1824 		/* If this is a VLAN packet remove the VLAN Tag */
1825 		vlan_packet_rcvd = false;
1826 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1827 		    fep->bufdesc_ex &&
1828 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1829 			/* Push and remove the vlan tag */
1830 			struct vlan_hdr *vlan_header =
1831 					(struct vlan_hdr *) (data + ETH_HLEN);
1832 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1833 
1834 			vlan_packet_rcvd = true;
1835 
1836 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1837 			skb_pull(skb, VLAN_HLEN);
1838 		}
1839 
1840 		skb->protocol = eth_type_trans(skb, ndev);
1841 
1842 		/* Get receive timestamp from the skb */
1843 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1844 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1845 					  skb_hwtstamps(skb));
1846 
1847 		if (fep->bufdesc_ex &&
1848 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1849 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1850 				/* don't check it */
1851 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1852 			} else {
1853 				skb_checksum_none_assert(skb);
1854 			}
1855 		}
1856 
1857 		/* Handle received VLAN packets */
1858 		if (vlan_packet_rcvd)
1859 			__vlan_hwaccel_put_tag(skb,
1860 					       htons(ETH_P_8021Q),
1861 					       vlan_tag);
1862 
1863 		skb_record_rx_queue(skb, queue_id);
1864 		napi_gro_receive(&fep->napi, skb);
1865 
1866 rx_processing_done:
1867 		/* Clear the status flags for this buffer */
1868 		status &= ~BD_ENET_RX_STATS;
1869 
1870 		/* Mark the buffer empty */
1871 		status |= BD_ENET_RX_EMPTY;
1872 
1873 		if (fep->bufdesc_ex) {
1874 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1875 
1876 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1877 			ebdp->cbd_prot = 0;
1878 			ebdp->cbd_bdu = 0;
1879 		}
1880 		/* Make sure the updates to rest of the descriptor are
1881 		 * performed before transferring ownership.
1882 		 */
1883 		wmb();
1884 		bdp->cbd_sc = cpu_to_fec16(status);
1885 
1886 		/* Update BD pointer to next entry */
1887 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1888 
1889 		/* Doing this here will keep the FEC running while we process
1890 		 * incoming frames.  On a heavily loaded network, we should be
1891 		 * able to keep up at the expense of system resources.
1892 		 */
1893 		writel(0, rxq->bd.reg_desc_active);
1894 	}
1895 	rxq->bd.cur = bdp;
1896 
1897 	if (xdp_result & FEC_ENET_XDP_REDIR)
1898 		xdp_do_flush();
1899 
1900 	return pkt_received;
1901 }
1902 
1903 static int fec_enet_rx(struct net_device *ndev, int budget)
1904 {
1905 	struct fec_enet_private *fep = netdev_priv(ndev);
1906 	int i, done = 0;
1907 
1908 	/* Make sure that AVB queues are processed first. */
1909 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1910 		done += fec_enet_rx_queue(ndev, budget - done, i);
1911 
1912 	return done;
1913 }
1914 
1915 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1916 {
1917 	uint int_events;
1918 
1919 	int_events = readl(fep->hwp + FEC_IEVENT);
1920 
1921 	/* Don't clear MDIO events, we poll for those */
1922 	int_events &= ~FEC_ENET_MII;
1923 
1924 	writel(int_events, fep->hwp + FEC_IEVENT);
1925 
1926 	return int_events != 0;
1927 }
1928 
1929 static irqreturn_t
1930 fec_enet_interrupt(int irq, void *dev_id)
1931 {
1932 	struct net_device *ndev = dev_id;
1933 	struct fec_enet_private *fep = netdev_priv(ndev);
1934 	irqreturn_t ret = IRQ_NONE;
1935 
1936 	if (fec_enet_collect_events(fep) && fep->link) {
1937 		ret = IRQ_HANDLED;
1938 
1939 		if (napi_schedule_prep(&fep->napi)) {
1940 			/* Disable interrupts */
1941 			writel(0, fep->hwp + FEC_IMASK);
1942 			__napi_schedule(&fep->napi);
1943 		}
1944 	}
1945 
1946 	return ret;
1947 }
1948 
1949 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1950 {
1951 	struct net_device *ndev = napi->dev;
1952 	struct fec_enet_private *fep = netdev_priv(ndev);
1953 	int done = 0;
1954 
1955 	do {
1956 		done += fec_enet_rx(ndev, budget - done);
1957 		fec_enet_tx(ndev, budget);
1958 	} while ((done < budget) && fec_enet_collect_events(fep));
1959 
1960 	if (done < budget) {
1961 		napi_complete_done(napi, done);
1962 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1963 	}
1964 
1965 	return done;
1966 }
1967 
1968 /* ------------------------------------------------------------------------- */
1969 static int fec_get_mac(struct net_device *ndev)
1970 {
1971 	struct fec_enet_private *fep = netdev_priv(ndev);
1972 	unsigned char *iap, tmpaddr[ETH_ALEN];
1973 	int ret;
1974 
1975 	/*
1976 	 * try to get mac address in following order:
1977 	 *
1978 	 * 1) module parameter via kernel command line in form
1979 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1980 	 */
1981 	iap = macaddr;
1982 
1983 	/*
1984 	 * 2) from device tree data
1985 	 */
1986 	if (!is_valid_ether_addr(iap)) {
1987 		struct device_node *np = fep->pdev->dev.of_node;
1988 		if (np) {
1989 			ret = of_get_mac_address(np, tmpaddr);
1990 			if (!ret)
1991 				iap = tmpaddr;
1992 			else if (ret == -EPROBE_DEFER)
1993 				return ret;
1994 		}
1995 	}
1996 
1997 	/*
1998 	 * 3) from flash or fuse (via platform data)
1999 	 */
2000 	if (!is_valid_ether_addr(iap)) {
2001 #ifdef CONFIG_M5272
2002 		if (FEC_FLASHMAC)
2003 			iap = (unsigned char *)FEC_FLASHMAC;
2004 #else
2005 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2006 
2007 		if (pdata)
2008 			iap = (unsigned char *)&pdata->mac;
2009 #endif
2010 	}
2011 
2012 	/*
2013 	 * 4) FEC mac registers set by bootloader
2014 	 */
2015 	if (!is_valid_ether_addr(iap)) {
2016 		*((__be32 *) &tmpaddr[0]) =
2017 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2018 		*((__be16 *) &tmpaddr[4]) =
2019 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2020 		iap = &tmpaddr[0];
2021 	}
2022 
2023 	/*
2024 	 * 5) random mac address
2025 	 */
2026 	if (!is_valid_ether_addr(iap)) {
2027 		/* Report it and use a random ethernet address instead */
2028 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2029 		eth_hw_addr_random(ndev);
2030 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2031 			 ndev->dev_addr);
2032 		return 0;
2033 	}
2034 
2035 	/* Adjust MAC if using macaddr */
2036 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2037 
2038 	return 0;
2039 }
2040 
2041 /* ------------------------------------------------------------------------- */
2042 
2043 /*
2044  * Phy section
2045  */
2046 
2047 /* LPI Sleep Ts count base on tx clk (clk_ref).
2048  * The lpi sleep cnt value = X us / (cycle_ns).
2049  */
2050 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2051 {
2052 	struct fec_enet_private *fep = netdev_priv(ndev);
2053 
2054 	return us * (fep->clk_ref_rate / 1000) / 1000;
2055 }
2056 
2057 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2058 {
2059 	struct fec_enet_private *fep = netdev_priv(ndev);
2060 	struct ethtool_keee *p = &fep->eee;
2061 	unsigned int sleep_cycle, wake_cycle;
2062 
2063 	if (enable) {
2064 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2065 		wake_cycle = sleep_cycle;
2066 	} else {
2067 		sleep_cycle = 0;
2068 		wake_cycle = 0;
2069 	}
2070 
2071 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2072 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2073 
2074 	return 0;
2075 }
2076 
2077 static void fec_enet_adjust_link(struct net_device *ndev)
2078 {
2079 	struct fec_enet_private *fep = netdev_priv(ndev);
2080 	struct phy_device *phy_dev = ndev->phydev;
2081 	int status_change = 0;
2082 
2083 	/*
2084 	 * If the netdev is down, or is going down, we're not interested
2085 	 * in link state events, so just mark our idea of the link as down
2086 	 * and ignore the event.
2087 	 */
2088 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2089 		fep->link = 0;
2090 	} else if (phy_dev->link) {
2091 		if (!fep->link) {
2092 			fep->link = phy_dev->link;
2093 			status_change = 1;
2094 		}
2095 
2096 		if (fep->full_duplex != phy_dev->duplex) {
2097 			fep->full_duplex = phy_dev->duplex;
2098 			status_change = 1;
2099 		}
2100 
2101 		if (phy_dev->speed != fep->speed) {
2102 			fep->speed = phy_dev->speed;
2103 			status_change = 1;
2104 		}
2105 
2106 		/* if any of the above changed restart the FEC */
2107 		if (status_change) {
2108 			netif_stop_queue(ndev);
2109 			napi_disable(&fep->napi);
2110 			netif_tx_lock_bh(ndev);
2111 			fec_restart(ndev);
2112 			netif_tx_wake_all_queues(ndev);
2113 			netif_tx_unlock_bh(ndev);
2114 			napi_enable(&fep->napi);
2115 		}
2116 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2117 			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2118 	} else {
2119 		if (fep->link) {
2120 			netif_stop_queue(ndev);
2121 			napi_disable(&fep->napi);
2122 			netif_tx_lock_bh(ndev);
2123 			fec_stop(ndev);
2124 			netif_tx_unlock_bh(ndev);
2125 			napi_enable(&fep->napi);
2126 			fep->link = phy_dev->link;
2127 			status_change = 1;
2128 		}
2129 	}
2130 
2131 	if (status_change)
2132 		phy_print_status(phy_dev);
2133 }
2134 
2135 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2136 {
2137 	uint ievent;
2138 	int ret;
2139 
2140 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2141 					ievent & FEC_ENET_MII, 2, 30000);
2142 
2143 	if (!ret)
2144 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2145 
2146 	return ret;
2147 }
2148 
2149 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2150 {
2151 	struct fec_enet_private *fep = bus->priv;
2152 	struct device *dev = &fep->pdev->dev;
2153 	int ret = 0, frame_start, frame_addr, frame_op;
2154 
2155 	ret = pm_runtime_resume_and_get(dev);
2156 	if (ret < 0)
2157 		return ret;
2158 
2159 	/* C22 read */
2160 	frame_op = FEC_MMFR_OP_READ;
2161 	frame_start = FEC_MMFR_ST;
2162 	frame_addr = regnum;
2163 
2164 	/* start a read op */
2165 	writel(frame_start | frame_op |
2166 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2167 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2168 
2169 	/* wait for end of transfer */
2170 	ret = fec_enet_mdio_wait(fep);
2171 	if (ret) {
2172 		netdev_err(fep->netdev, "MDIO read timeout\n");
2173 		goto out;
2174 	}
2175 
2176 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2177 
2178 out:
2179 	pm_runtime_mark_last_busy(dev);
2180 	pm_runtime_put_autosuspend(dev);
2181 
2182 	return ret;
2183 }
2184 
2185 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2186 				  int devad, int regnum)
2187 {
2188 	struct fec_enet_private *fep = bus->priv;
2189 	struct device *dev = &fep->pdev->dev;
2190 	int ret = 0, frame_start, frame_op;
2191 
2192 	ret = pm_runtime_resume_and_get(dev);
2193 	if (ret < 0)
2194 		return ret;
2195 
2196 	frame_start = FEC_MMFR_ST_C45;
2197 
2198 	/* write address */
2199 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2200 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2201 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2202 	       fep->hwp + FEC_MII_DATA);
2203 
2204 	/* wait for end of transfer */
2205 	ret = fec_enet_mdio_wait(fep);
2206 	if (ret) {
2207 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2208 		goto out;
2209 	}
2210 
2211 	frame_op = FEC_MMFR_OP_READ_C45;
2212 
2213 	/* start a read op */
2214 	writel(frame_start | frame_op |
2215 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2216 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2217 
2218 	/* wait for end of transfer */
2219 	ret = fec_enet_mdio_wait(fep);
2220 	if (ret) {
2221 		netdev_err(fep->netdev, "MDIO read timeout\n");
2222 		goto out;
2223 	}
2224 
2225 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2226 
2227 out:
2228 	pm_runtime_mark_last_busy(dev);
2229 	pm_runtime_put_autosuspend(dev);
2230 
2231 	return ret;
2232 }
2233 
2234 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2235 				   u16 value)
2236 {
2237 	struct fec_enet_private *fep = bus->priv;
2238 	struct device *dev = &fep->pdev->dev;
2239 	int ret, frame_start, frame_addr;
2240 
2241 	ret = pm_runtime_resume_and_get(dev);
2242 	if (ret < 0)
2243 		return ret;
2244 
2245 	/* C22 write */
2246 	frame_start = FEC_MMFR_ST;
2247 	frame_addr = regnum;
2248 
2249 	/* start a write op */
2250 	writel(frame_start | FEC_MMFR_OP_WRITE |
2251 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2252 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2253 	       fep->hwp + FEC_MII_DATA);
2254 
2255 	/* wait for end of transfer */
2256 	ret = fec_enet_mdio_wait(fep);
2257 	if (ret)
2258 		netdev_err(fep->netdev, "MDIO write timeout\n");
2259 
2260 	pm_runtime_mark_last_busy(dev);
2261 	pm_runtime_put_autosuspend(dev);
2262 
2263 	return ret;
2264 }
2265 
2266 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2267 				   int devad, int regnum, u16 value)
2268 {
2269 	struct fec_enet_private *fep = bus->priv;
2270 	struct device *dev = &fep->pdev->dev;
2271 	int ret, frame_start;
2272 
2273 	ret = pm_runtime_resume_and_get(dev);
2274 	if (ret < 0)
2275 		return ret;
2276 
2277 	frame_start = FEC_MMFR_ST_C45;
2278 
2279 	/* write address */
2280 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2281 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2282 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2283 	       fep->hwp + FEC_MII_DATA);
2284 
2285 	/* wait for end of transfer */
2286 	ret = fec_enet_mdio_wait(fep);
2287 	if (ret) {
2288 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2289 		goto out;
2290 	}
2291 
2292 	/* start a write op */
2293 	writel(frame_start | FEC_MMFR_OP_WRITE |
2294 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2295 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2296 	       fep->hwp + FEC_MII_DATA);
2297 
2298 	/* wait for end of transfer */
2299 	ret = fec_enet_mdio_wait(fep);
2300 	if (ret)
2301 		netdev_err(fep->netdev, "MDIO write timeout\n");
2302 
2303 out:
2304 	pm_runtime_mark_last_busy(dev);
2305 	pm_runtime_put_autosuspend(dev);
2306 
2307 	return ret;
2308 }
2309 
2310 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2311 {
2312 	struct fec_enet_private *fep = netdev_priv(ndev);
2313 	struct phy_device *phy_dev = ndev->phydev;
2314 
2315 	if (phy_dev) {
2316 		phy_reset_after_clk_enable(phy_dev);
2317 	} else if (fep->phy_node) {
2318 		/*
2319 		 * If the PHY still is not bound to the MAC, but there is
2320 		 * OF PHY node and a matching PHY device instance already,
2321 		 * use the OF PHY node to obtain the PHY device instance,
2322 		 * and then use that PHY device instance when triggering
2323 		 * the PHY reset.
2324 		 */
2325 		phy_dev = of_phy_find_device(fep->phy_node);
2326 		phy_reset_after_clk_enable(phy_dev);
2327 		put_device(&phy_dev->mdio.dev);
2328 	}
2329 }
2330 
2331 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2332 {
2333 	struct fec_enet_private *fep = netdev_priv(ndev);
2334 	int ret;
2335 
2336 	if (enable) {
2337 		ret = clk_prepare_enable(fep->clk_enet_out);
2338 		if (ret)
2339 			return ret;
2340 
2341 		if (fep->clk_ptp) {
2342 			mutex_lock(&fep->ptp_clk_mutex);
2343 			ret = clk_prepare_enable(fep->clk_ptp);
2344 			if (ret) {
2345 				mutex_unlock(&fep->ptp_clk_mutex);
2346 				goto failed_clk_ptp;
2347 			} else {
2348 				fep->ptp_clk_on = true;
2349 			}
2350 			mutex_unlock(&fep->ptp_clk_mutex);
2351 		}
2352 
2353 		ret = clk_prepare_enable(fep->clk_ref);
2354 		if (ret)
2355 			goto failed_clk_ref;
2356 
2357 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2358 		if (ret)
2359 			goto failed_clk_2x_txclk;
2360 
2361 		fec_enet_phy_reset_after_clk_enable(ndev);
2362 	} else {
2363 		clk_disable_unprepare(fep->clk_enet_out);
2364 		if (fep->clk_ptp) {
2365 			mutex_lock(&fep->ptp_clk_mutex);
2366 			clk_disable_unprepare(fep->clk_ptp);
2367 			fep->ptp_clk_on = false;
2368 			mutex_unlock(&fep->ptp_clk_mutex);
2369 		}
2370 		clk_disable_unprepare(fep->clk_ref);
2371 		clk_disable_unprepare(fep->clk_2x_txclk);
2372 	}
2373 
2374 	return 0;
2375 
2376 failed_clk_2x_txclk:
2377 	if (fep->clk_ref)
2378 		clk_disable_unprepare(fep->clk_ref);
2379 failed_clk_ref:
2380 	if (fep->clk_ptp) {
2381 		mutex_lock(&fep->ptp_clk_mutex);
2382 		clk_disable_unprepare(fep->clk_ptp);
2383 		fep->ptp_clk_on = false;
2384 		mutex_unlock(&fep->ptp_clk_mutex);
2385 	}
2386 failed_clk_ptp:
2387 	clk_disable_unprepare(fep->clk_enet_out);
2388 
2389 	return ret;
2390 }
2391 
2392 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2393 				      struct device_node *np)
2394 {
2395 	u32 rgmii_tx_delay, rgmii_rx_delay;
2396 
2397 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2398 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2399 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2400 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2401 			return -EINVAL;
2402 		} else if (rgmii_tx_delay == 2000) {
2403 			fep->rgmii_txc_dly = true;
2404 		}
2405 	}
2406 
2407 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2408 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2409 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2410 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2411 			return -EINVAL;
2412 		} else if (rgmii_rx_delay == 2000) {
2413 			fep->rgmii_rxc_dly = true;
2414 		}
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int fec_enet_mii_probe(struct net_device *ndev)
2421 {
2422 	struct fec_enet_private *fep = netdev_priv(ndev);
2423 	struct phy_device *phy_dev = NULL;
2424 	char mdio_bus_id[MII_BUS_ID_SIZE];
2425 	char phy_name[MII_BUS_ID_SIZE + 3];
2426 	int phy_id;
2427 	int dev_id = fep->dev_id;
2428 
2429 	if (fep->phy_node) {
2430 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2431 					 &fec_enet_adjust_link, 0,
2432 					 fep->phy_interface);
2433 		if (!phy_dev) {
2434 			netdev_err(ndev, "Unable to connect to phy\n");
2435 			return -ENODEV;
2436 		}
2437 	} else {
2438 		/* check for attached phy */
2439 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2440 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2441 				continue;
2442 			if (dev_id--)
2443 				continue;
2444 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2445 			break;
2446 		}
2447 
2448 		if (phy_id >= PHY_MAX_ADDR) {
2449 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2450 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2451 			phy_id = 0;
2452 		}
2453 
2454 		snprintf(phy_name, sizeof(phy_name),
2455 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2456 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2457 				      fep->phy_interface);
2458 	}
2459 
2460 	if (IS_ERR(phy_dev)) {
2461 		netdev_err(ndev, "could not attach to PHY\n");
2462 		return PTR_ERR(phy_dev);
2463 	}
2464 
2465 	/* mask with MAC supported features */
2466 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2467 		phy_set_max_speed(phy_dev, 1000);
2468 		phy_remove_link_mode(phy_dev,
2469 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2470 #if !defined(CONFIG_M5272)
2471 		phy_support_sym_pause(phy_dev);
2472 #endif
2473 	}
2474 	else
2475 		phy_set_max_speed(phy_dev, 100);
2476 
2477 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2478 		phy_support_eee(phy_dev);
2479 
2480 	fep->link = 0;
2481 	fep->full_duplex = 0;
2482 
2483 	phy_attached_info(phy_dev);
2484 
2485 	return 0;
2486 }
2487 
2488 static int fec_enet_mii_init(struct platform_device *pdev)
2489 {
2490 	static struct mii_bus *fec0_mii_bus;
2491 	struct net_device *ndev = platform_get_drvdata(pdev);
2492 	struct fec_enet_private *fep = netdev_priv(ndev);
2493 	bool suppress_preamble = false;
2494 	struct phy_device *phydev;
2495 	struct device_node *node;
2496 	int err = -ENXIO;
2497 	u32 mii_speed, holdtime;
2498 	u32 bus_freq;
2499 	int addr;
2500 
2501 	/*
2502 	 * The i.MX28 dual fec interfaces are not equal.
2503 	 * Here are the differences:
2504 	 *
2505 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2506 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2507 	 *  - external phys can only be configured by fec0
2508 	 *
2509 	 * That is to say fec1 can not work independently. It only works
2510 	 * when fec0 is working. The reason behind this design is that the
2511 	 * second interface is added primarily for Switch mode.
2512 	 *
2513 	 * Because of the last point above, both phys are attached on fec0
2514 	 * mdio interface in board design, and need to be configured by
2515 	 * fec0 mii_bus.
2516 	 */
2517 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2518 		/* fec1 uses fec0 mii_bus */
2519 		if (mii_cnt && fec0_mii_bus) {
2520 			fep->mii_bus = fec0_mii_bus;
2521 			mii_cnt++;
2522 			return 0;
2523 		}
2524 		return -ENOENT;
2525 	}
2526 
2527 	bus_freq = 2500000; /* 2.5MHz by default */
2528 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2529 	if (node) {
2530 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2531 		suppress_preamble = of_property_read_bool(node,
2532 							  "suppress-preamble");
2533 	}
2534 
2535 	/*
2536 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2537 	 *
2538 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2539 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2540 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2541 	 * document.
2542 	 */
2543 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2544 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2545 		mii_speed--;
2546 	if (mii_speed > 63) {
2547 		dev_err(&pdev->dev,
2548 			"fec clock (%lu) too fast to get right mii speed\n",
2549 			clk_get_rate(fep->clk_ipg));
2550 		err = -EINVAL;
2551 		goto err_out;
2552 	}
2553 
2554 	/*
2555 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2556 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2557 	 * versions are RAZ there, so just ignore the difference and write the
2558 	 * register always.
2559 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2560 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2561 	 * output.
2562 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2563 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2564 	 * holdtime cannot result in a value greater than 3.
2565 	 */
2566 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2567 
2568 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2569 
2570 	if (suppress_preamble)
2571 		fep->phy_speed |= BIT(7);
2572 
2573 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2574 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2575 		 * MII event generation condition:
2576 		 * - writing MSCR:
2577 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2578 		 *	  mscr_reg_data_in[7:0] != 0
2579 		 * - writing MMFR:
2580 		 *	- mscr[7:0]_not_zero
2581 		 */
2582 		writel(0, fep->hwp + FEC_MII_DATA);
2583 	}
2584 
2585 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2586 
2587 	/* Clear any pending transaction complete indication */
2588 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2589 
2590 	fep->mii_bus = mdiobus_alloc();
2591 	if (fep->mii_bus == NULL) {
2592 		err = -ENOMEM;
2593 		goto err_out;
2594 	}
2595 
2596 	fep->mii_bus->name = "fec_enet_mii_bus";
2597 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2598 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2599 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2600 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2601 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2602 	}
2603 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2604 		pdev->name, fep->dev_id + 1);
2605 	fep->mii_bus->priv = fep;
2606 	fep->mii_bus->parent = &pdev->dev;
2607 
2608 	err = of_mdiobus_register(fep->mii_bus, node);
2609 	if (err)
2610 		goto err_out_free_mdiobus;
2611 	of_node_put(node);
2612 
2613 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2614 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2615 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2616 		if (phydev)
2617 			phydev->mac_managed_pm = true;
2618 	}
2619 
2620 	mii_cnt++;
2621 
2622 	/* save fec0 mii_bus */
2623 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2624 		fec0_mii_bus = fep->mii_bus;
2625 
2626 	return 0;
2627 
2628 err_out_free_mdiobus:
2629 	mdiobus_free(fep->mii_bus);
2630 err_out:
2631 	of_node_put(node);
2632 	return err;
2633 }
2634 
2635 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2636 {
2637 	if (--mii_cnt == 0) {
2638 		mdiobus_unregister(fep->mii_bus);
2639 		mdiobus_free(fep->mii_bus);
2640 	}
2641 }
2642 
2643 static void fec_enet_get_drvinfo(struct net_device *ndev,
2644 				 struct ethtool_drvinfo *info)
2645 {
2646 	struct fec_enet_private *fep = netdev_priv(ndev);
2647 
2648 	strscpy(info->driver, fep->pdev->dev.driver->name,
2649 		sizeof(info->driver));
2650 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2651 }
2652 
2653 static int fec_enet_get_regs_len(struct net_device *ndev)
2654 {
2655 	struct fec_enet_private *fep = netdev_priv(ndev);
2656 	struct resource *r;
2657 	int s = 0;
2658 
2659 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2660 	if (r)
2661 		s = resource_size(r);
2662 
2663 	return s;
2664 }
2665 
2666 /* List of registers that can be safety be read to dump them with ethtool */
2667 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2668 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2669 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2670 static __u32 fec_enet_register_version = 2;
2671 static u32 fec_enet_register_offset[] = {
2672 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2673 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2674 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2675 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2676 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2677 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2678 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2679 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2680 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2681 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2682 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2683 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2684 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2685 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2686 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2687 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2688 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2689 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2690 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2691 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2692 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2693 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2694 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2695 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2696 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2697 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2698 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2699 };
2700 /* for i.MX6ul */
2701 static u32 fec_enet_register_offset_6ul[] = {
2702 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2703 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2704 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2705 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2706 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2707 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2708 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2709 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2710 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2711 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2712 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2713 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2714 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2715 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2716 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2717 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2718 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2719 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2720 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2721 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2722 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2723 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2724 };
2725 #else
2726 static __u32 fec_enet_register_version = 1;
2727 static u32 fec_enet_register_offset[] = {
2728 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2729 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2730 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2731 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2732 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2733 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2734 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2735 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2736 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2737 };
2738 #endif
2739 
2740 static void fec_enet_get_regs(struct net_device *ndev,
2741 			      struct ethtool_regs *regs, void *regbuf)
2742 {
2743 	struct fec_enet_private *fep = netdev_priv(ndev);
2744 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2745 	struct device *dev = &fep->pdev->dev;
2746 	u32 *buf = (u32 *)regbuf;
2747 	u32 i, off;
2748 	int ret;
2749 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2750 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2751 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2752 	u32 *reg_list;
2753 	u32 reg_cnt;
2754 
2755 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2756 		reg_list = fec_enet_register_offset;
2757 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2758 	} else {
2759 		reg_list = fec_enet_register_offset_6ul;
2760 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2761 	}
2762 #else
2763 	/* coldfire */
2764 	static u32 *reg_list = fec_enet_register_offset;
2765 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2766 #endif
2767 	ret = pm_runtime_resume_and_get(dev);
2768 	if (ret < 0)
2769 		return;
2770 
2771 	regs->version = fec_enet_register_version;
2772 
2773 	memset(buf, 0, regs->len);
2774 
2775 	for (i = 0; i < reg_cnt; i++) {
2776 		off = reg_list[i];
2777 
2778 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2779 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2780 			continue;
2781 
2782 		off >>= 2;
2783 		buf[off] = readl(&theregs[off]);
2784 	}
2785 
2786 	pm_runtime_mark_last_busy(dev);
2787 	pm_runtime_put_autosuspend(dev);
2788 }
2789 
2790 static int fec_enet_get_ts_info(struct net_device *ndev,
2791 				struct kernel_ethtool_ts_info *info)
2792 {
2793 	struct fec_enet_private *fep = netdev_priv(ndev);
2794 
2795 	if (fep->bufdesc_ex) {
2796 
2797 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2798 					SOF_TIMESTAMPING_TX_HARDWARE |
2799 					SOF_TIMESTAMPING_RX_HARDWARE |
2800 					SOF_TIMESTAMPING_RAW_HARDWARE;
2801 		if (fep->ptp_clock)
2802 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2803 
2804 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2805 				 (1 << HWTSTAMP_TX_ON);
2806 
2807 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2808 				   (1 << HWTSTAMP_FILTER_ALL);
2809 		return 0;
2810 	} else {
2811 		return ethtool_op_get_ts_info(ndev, info);
2812 	}
2813 }
2814 
2815 #if !defined(CONFIG_M5272)
2816 
2817 static void fec_enet_get_pauseparam(struct net_device *ndev,
2818 				    struct ethtool_pauseparam *pause)
2819 {
2820 	struct fec_enet_private *fep = netdev_priv(ndev);
2821 
2822 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2823 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2824 	pause->rx_pause = pause->tx_pause;
2825 }
2826 
2827 static int fec_enet_set_pauseparam(struct net_device *ndev,
2828 				   struct ethtool_pauseparam *pause)
2829 {
2830 	struct fec_enet_private *fep = netdev_priv(ndev);
2831 
2832 	if (!ndev->phydev)
2833 		return -ENODEV;
2834 
2835 	if (pause->tx_pause != pause->rx_pause) {
2836 		netdev_info(ndev,
2837 			"hardware only support enable/disable both tx and rx");
2838 		return -EINVAL;
2839 	}
2840 
2841 	fep->pause_flag = 0;
2842 
2843 	/* tx pause must be same as rx pause */
2844 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2845 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2846 
2847 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2848 			  pause->autoneg);
2849 
2850 	if (pause->autoneg) {
2851 		if (netif_running(ndev))
2852 			fec_stop(ndev);
2853 		phy_start_aneg(ndev->phydev);
2854 	}
2855 	if (netif_running(ndev)) {
2856 		napi_disable(&fep->napi);
2857 		netif_tx_lock_bh(ndev);
2858 		fec_restart(ndev);
2859 		netif_tx_wake_all_queues(ndev);
2860 		netif_tx_unlock_bh(ndev);
2861 		napi_enable(&fep->napi);
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 static const struct fec_stat {
2868 	char name[ETH_GSTRING_LEN];
2869 	u16 offset;
2870 } fec_stats[] = {
2871 	/* RMON TX */
2872 	{ "tx_dropped", RMON_T_DROP },
2873 	{ "tx_packets", RMON_T_PACKETS },
2874 	{ "tx_broadcast", RMON_T_BC_PKT },
2875 	{ "tx_multicast", RMON_T_MC_PKT },
2876 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2877 	{ "tx_undersize", RMON_T_UNDERSIZE },
2878 	{ "tx_oversize", RMON_T_OVERSIZE },
2879 	{ "tx_fragment", RMON_T_FRAG },
2880 	{ "tx_jabber", RMON_T_JAB },
2881 	{ "tx_collision", RMON_T_COL },
2882 	{ "tx_64byte", RMON_T_P64 },
2883 	{ "tx_65to127byte", RMON_T_P65TO127 },
2884 	{ "tx_128to255byte", RMON_T_P128TO255 },
2885 	{ "tx_256to511byte", RMON_T_P256TO511 },
2886 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2887 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2888 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2889 	{ "tx_octets", RMON_T_OCTETS },
2890 
2891 	/* IEEE TX */
2892 	{ "IEEE_tx_drop", IEEE_T_DROP },
2893 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2894 	{ "IEEE_tx_1col", IEEE_T_1COL },
2895 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2896 	{ "IEEE_tx_def", IEEE_T_DEF },
2897 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2898 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2899 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2900 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2901 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2902 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2903 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2904 
2905 	/* RMON RX */
2906 	{ "rx_packets", RMON_R_PACKETS },
2907 	{ "rx_broadcast", RMON_R_BC_PKT },
2908 	{ "rx_multicast", RMON_R_MC_PKT },
2909 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2910 	{ "rx_undersize", RMON_R_UNDERSIZE },
2911 	{ "rx_oversize", RMON_R_OVERSIZE },
2912 	{ "rx_fragment", RMON_R_FRAG },
2913 	{ "rx_jabber", RMON_R_JAB },
2914 	{ "rx_64byte", RMON_R_P64 },
2915 	{ "rx_65to127byte", RMON_R_P65TO127 },
2916 	{ "rx_128to255byte", RMON_R_P128TO255 },
2917 	{ "rx_256to511byte", RMON_R_P256TO511 },
2918 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2919 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2920 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2921 	{ "rx_octets", RMON_R_OCTETS },
2922 
2923 	/* IEEE RX */
2924 	{ "IEEE_rx_drop", IEEE_R_DROP },
2925 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2926 	{ "IEEE_rx_crc", IEEE_R_CRC },
2927 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2928 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2929 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2930 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2931 };
2932 
2933 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2934 
2935 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2936 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2937 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2938 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2939 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2940 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2941 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2942 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2943 };
2944 
2945 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2946 {
2947 	struct fec_enet_private *fep = netdev_priv(dev);
2948 	int i;
2949 
2950 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2951 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2952 }
2953 
2954 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2955 {
2956 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2957 	struct fec_enet_priv_rx_q *rxq;
2958 	int i, j;
2959 
2960 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2961 		rxq = fep->rx_queue[i];
2962 
2963 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2964 			xdp_stats[j] += rxq->stats[j];
2965 	}
2966 
2967 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2968 }
2969 
2970 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2971 {
2972 #ifdef CONFIG_PAGE_POOL_STATS
2973 	struct page_pool_stats stats = {};
2974 	struct fec_enet_priv_rx_q *rxq;
2975 	int i;
2976 
2977 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2978 		rxq = fep->rx_queue[i];
2979 
2980 		if (!rxq->page_pool)
2981 			continue;
2982 
2983 		page_pool_get_stats(rxq->page_pool, &stats);
2984 	}
2985 
2986 	page_pool_ethtool_stats_get(data, &stats);
2987 #endif
2988 }
2989 
2990 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2991 				       struct ethtool_stats *stats, u64 *data)
2992 {
2993 	struct fec_enet_private *fep = netdev_priv(dev);
2994 
2995 	if (netif_running(dev))
2996 		fec_enet_update_ethtool_stats(dev);
2997 
2998 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2999 	data += FEC_STATS_SIZE / sizeof(u64);
3000 
3001 	fec_enet_get_xdp_stats(fep, data);
3002 	data += XDP_STATS_TOTAL;
3003 
3004 	fec_enet_page_pool_stats(fep, data);
3005 }
3006 
3007 static void fec_enet_get_strings(struct net_device *netdev,
3008 	u32 stringset, u8 *data)
3009 {
3010 	int i;
3011 	switch (stringset) {
3012 	case ETH_SS_STATS:
3013 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3014 			ethtool_puts(&data, fec_stats[i].name);
3015 		}
3016 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3017 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3018 		}
3019 		page_pool_ethtool_stats_get_strings(data);
3020 
3021 		break;
3022 	case ETH_SS_TEST:
3023 		net_selftest_get_strings(data);
3024 		break;
3025 	}
3026 }
3027 
3028 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3029 {
3030 	int count;
3031 
3032 	switch (sset) {
3033 	case ETH_SS_STATS:
3034 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3035 		count += page_pool_ethtool_stats_get_count();
3036 		return count;
3037 
3038 	case ETH_SS_TEST:
3039 		return net_selftest_get_count();
3040 	default:
3041 		return -EOPNOTSUPP;
3042 	}
3043 }
3044 
3045 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3046 {
3047 	struct fec_enet_private *fep = netdev_priv(dev);
3048 	struct fec_enet_priv_rx_q *rxq;
3049 	int i, j;
3050 
3051 	/* Disable MIB statistics counters */
3052 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3053 
3054 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3055 		writel(0, fep->hwp + fec_stats[i].offset);
3056 
3057 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3058 		rxq = fep->rx_queue[i];
3059 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3060 			rxq->stats[j] = 0;
3061 	}
3062 
3063 	/* Don't disable MIB statistics counters */
3064 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3065 }
3066 
3067 #else	/* !defined(CONFIG_M5272) */
3068 #define FEC_STATS_SIZE	0
3069 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3070 {
3071 }
3072 
3073 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3074 {
3075 }
3076 #endif /* !defined(CONFIG_M5272) */
3077 
3078 /* ITR clock source is enet system clock (clk_ahb).
3079  * TCTT unit is cycle_ns * 64 cycle
3080  * So, the ICTT value = X us / (cycle_ns * 64)
3081  */
3082 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3083 {
3084 	struct fec_enet_private *fep = netdev_priv(ndev);
3085 
3086 	return us * (fep->itr_clk_rate / 64000) / 1000;
3087 }
3088 
3089 /* Set threshold for interrupt coalescing */
3090 static void fec_enet_itr_coal_set(struct net_device *ndev)
3091 {
3092 	struct fec_enet_private *fep = netdev_priv(ndev);
3093 	int rx_itr, tx_itr;
3094 
3095 	/* Must be greater than zero to avoid unpredictable behavior */
3096 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3097 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3098 		return;
3099 
3100 	/* Select enet system clock as Interrupt Coalescing
3101 	 * timer Clock Source
3102 	 */
3103 	rx_itr = FEC_ITR_CLK_SEL;
3104 	tx_itr = FEC_ITR_CLK_SEL;
3105 
3106 	/* set ICFT and ICTT */
3107 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3108 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3109 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3110 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3111 
3112 	rx_itr |= FEC_ITR_EN;
3113 	tx_itr |= FEC_ITR_EN;
3114 
3115 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3116 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3117 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3118 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3119 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3120 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3121 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3122 	}
3123 }
3124 
3125 static int fec_enet_get_coalesce(struct net_device *ndev,
3126 				 struct ethtool_coalesce *ec,
3127 				 struct kernel_ethtool_coalesce *kernel_coal,
3128 				 struct netlink_ext_ack *extack)
3129 {
3130 	struct fec_enet_private *fep = netdev_priv(ndev);
3131 
3132 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3133 		return -EOPNOTSUPP;
3134 
3135 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3136 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3137 
3138 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3139 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3140 
3141 	return 0;
3142 }
3143 
3144 static int fec_enet_set_coalesce(struct net_device *ndev,
3145 				 struct ethtool_coalesce *ec,
3146 				 struct kernel_ethtool_coalesce *kernel_coal,
3147 				 struct netlink_ext_ack *extack)
3148 {
3149 	struct fec_enet_private *fep = netdev_priv(ndev);
3150 	struct device *dev = &fep->pdev->dev;
3151 	unsigned int cycle;
3152 
3153 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3154 		return -EOPNOTSUPP;
3155 
3156 	if (ec->rx_max_coalesced_frames > 255) {
3157 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3158 		return -EINVAL;
3159 	}
3160 
3161 	if (ec->tx_max_coalesced_frames > 255) {
3162 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3163 		return -EINVAL;
3164 	}
3165 
3166 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3167 	if (cycle > 0xFFFF) {
3168 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3169 		return -EINVAL;
3170 	}
3171 
3172 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3173 	if (cycle > 0xFFFF) {
3174 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3175 		return -EINVAL;
3176 	}
3177 
3178 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3179 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3180 
3181 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3182 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3183 
3184 	fec_enet_itr_coal_set(ndev);
3185 
3186 	return 0;
3187 }
3188 
3189 static int
3190 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3191 {
3192 	struct fec_enet_private *fep = netdev_priv(ndev);
3193 	struct ethtool_keee *p = &fep->eee;
3194 
3195 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3196 		return -EOPNOTSUPP;
3197 
3198 	if (!netif_running(ndev))
3199 		return -ENETDOWN;
3200 
3201 	edata->tx_lpi_timer = p->tx_lpi_timer;
3202 
3203 	return phy_ethtool_get_eee(ndev->phydev, edata);
3204 }
3205 
3206 static int
3207 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3208 {
3209 	struct fec_enet_private *fep = netdev_priv(ndev);
3210 	struct ethtool_keee *p = &fep->eee;
3211 
3212 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3213 		return -EOPNOTSUPP;
3214 
3215 	if (!netif_running(ndev))
3216 		return -ENETDOWN;
3217 
3218 	p->tx_lpi_timer = edata->tx_lpi_timer;
3219 
3220 	return phy_ethtool_set_eee(ndev->phydev, edata);
3221 }
3222 
3223 static void
3224 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3225 {
3226 	struct fec_enet_private *fep = netdev_priv(ndev);
3227 
3228 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3229 		wol->supported = WAKE_MAGIC;
3230 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3231 	} else {
3232 		wol->supported = wol->wolopts = 0;
3233 	}
3234 }
3235 
3236 static int
3237 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3238 {
3239 	struct fec_enet_private *fep = netdev_priv(ndev);
3240 
3241 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3242 		return -EINVAL;
3243 
3244 	if (wol->wolopts & ~WAKE_MAGIC)
3245 		return -EINVAL;
3246 
3247 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3248 	if (device_may_wakeup(&ndev->dev))
3249 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3250 	else
3251 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3252 
3253 	return 0;
3254 }
3255 
3256 static const struct ethtool_ops fec_enet_ethtool_ops = {
3257 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3258 				     ETHTOOL_COALESCE_MAX_FRAMES,
3259 	.get_drvinfo		= fec_enet_get_drvinfo,
3260 	.get_regs_len		= fec_enet_get_regs_len,
3261 	.get_regs		= fec_enet_get_regs,
3262 	.nway_reset		= phy_ethtool_nway_reset,
3263 	.get_link		= ethtool_op_get_link,
3264 	.get_coalesce		= fec_enet_get_coalesce,
3265 	.set_coalesce		= fec_enet_set_coalesce,
3266 #ifndef CONFIG_M5272
3267 	.get_pauseparam		= fec_enet_get_pauseparam,
3268 	.set_pauseparam		= fec_enet_set_pauseparam,
3269 	.get_strings		= fec_enet_get_strings,
3270 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3271 	.get_sset_count		= fec_enet_get_sset_count,
3272 #endif
3273 	.get_ts_info		= fec_enet_get_ts_info,
3274 	.get_wol		= fec_enet_get_wol,
3275 	.set_wol		= fec_enet_set_wol,
3276 	.get_eee		= fec_enet_get_eee,
3277 	.set_eee		= fec_enet_set_eee,
3278 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3279 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3280 	.self_test		= net_selftest,
3281 };
3282 
3283 static void fec_enet_free_buffers(struct net_device *ndev)
3284 {
3285 	struct fec_enet_private *fep = netdev_priv(ndev);
3286 	unsigned int i;
3287 	struct fec_enet_priv_tx_q *txq;
3288 	struct fec_enet_priv_rx_q *rxq;
3289 	unsigned int q;
3290 
3291 	for (q = 0; q < fep->num_rx_queues; q++) {
3292 		rxq = fep->rx_queue[q];
3293 		for (i = 0; i < rxq->bd.ring_size; i++)
3294 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3295 
3296 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3297 			rxq->stats[i] = 0;
3298 
3299 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3300 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3301 		page_pool_destroy(rxq->page_pool);
3302 		rxq->page_pool = NULL;
3303 	}
3304 
3305 	for (q = 0; q < fep->num_tx_queues; q++) {
3306 		txq = fep->tx_queue[q];
3307 		for (i = 0; i < txq->bd.ring_size; i++) {
3308 			kfree(txq->tx_bounce[i]);
3309 			txq->tx_bounce[i] = NULL;
3310 
3311 			if (!txq->tx_buf[i].buf_p) {
3312 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3313 				continue;
3314 			}
3315 
3316 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3317 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3318 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3319 				xdp_return_frame(txq->tx_buf[i].buf_p);
3320 			} else {
3321 				struct page *page = txq->tx_buf[i].buf_p;
3322 
3323 				page_pool_put_page(page->pp, page, 0, false);
3324 			}
3325 
3326 			txq->tx_buf[i].buf_p = NULL;
3327 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3328 		}
3329 	}
3330 }
3331 
3332 static void fec_enet_free_queue(struct net_device *ndev)
3333 {
3334 	struct fec_enet_private *fep = netdev_priv(ndev);
3335 	int i;
3336 	struct fec_enet_priv_tx_q *txq;
3337 
3338 	for (i = 0; i < fep->num_tx_queues; i++)
3339 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3340 			txq = fep->tx_queue[i];
3341 			fec_dma_free(&fep->pdev->dev,
3342 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3343 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3344 		}
3345 
3346 	for (i = 0; i < fep->num_rx_queues; i++)
3347 		kfree(fep->rx_queue[i]);
3348 	for (i = 0; i < fep->num_tx_queues; i++)
3349 		kfree(fep->tx_queue[i]);
3350 }
3351 
3352 static int fec_enet_alloc_queue(struct net_device *ndev)
3353 {
3354 	struct fec_enet_private *fep = netdev_priv(ndev);
3355 	int i;
3356 	int ret = 0;
3357 	struct fec_enet_priv_tx_q *txq;
3358 
3359 	for (i = 0; i < fep->num_tx_queues; i++) {
3360 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3361 		if (!txq) {
3362 			ret = -ENOMEM;
3363 			goto alloc_failed;
3364 		}
3365 
3366 		fep->tx_queue[i] = txq;
3367 		txq->bd.ring_size = TX_RING_SIZE;
3368 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3369 
3370 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3371 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3372 
3373 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3374 					txq->bd.ring_size * TSO_HEADER_SIZE,
3375 					&txq->tso_hdrs_dma, GFP_KERNEL);
3376 		if (!txq->tso_hdrs) {
3377 			ret = -ENOMEM;
3378 			goto alloc_failed;
3379 		}
3380 	}
3381 
3382 	for (i = 0; i < fep->num_rx_queues; i++) {
3383 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3384 					   GFP_KERNEL);
3385 		if (!fep->rx_queue[i]) {
3386 			ret = -ENOMEM;
3387 			goto alloc_failed;
3388 		}
3389 
3390 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3391 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3392 	}
3393 	return ret;
3394 
3395 alloc_failed:
3396 	fec_enet_free_queue(ndev);
3397 	return ret;
3398 }
3399 
3400 static int
3401 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3402 {
3403 	struct fec_enet_private *fep = netdev_priv(ndev);
3404 	struct fec_enet_priv_rx_q *rxq;
3405 	dma_addr_t phys_addr;
3406 	struct bufdesc	*bdp;
3407 	struct page *page;
3408 	int i, err;
3409 
3410 	rxq = fep->rx_queue[queue];
3411 	bdp = rxq->bd.base;
3412 
3413 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3414 	if (err < 0) {
3415 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3416 		return err;
3417 	}
3418 
3419 	for (i = 0; i < rxq->bd.ring_size; i++) {
3420 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3421 		if (!page)
3422 			goto err_alloc;
3423 
3424 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3425 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3426 
3427 		rxq->rx_skb_info[i].page = page;
3428 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3429 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3430 
3431 		if (fep->bufdesc_ex) {
3432 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3433 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3434 		}
3435 
3436 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3437 	}
3438 
3439 	/* Set the last buffer to wrap. */
3440 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3441 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3442 	return 0;
3443 
3444  err_alloc:
3445 	fec_enet_free_buffers(ndev);
3446 	return -ENOMEM;
3447 }
3448 
3449 static int
3450 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3451 {
3452 	struct fec_enet_private *fep = netdev_priv(ndev);
3453 	unsigned int i;
3454 	struct bufdesc  *bdp;
3455 	struct fec_enet_priv_tx_q *txq;
3456 
3457 	txq = fep->tx_queue[queue];
3458 	bdp = txq->bd.base;
3459 	for (i = 0; i < txq->bd.ring_size; i++) {
3460 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3461 		if (!txq->tx_bounce[i])
3462 			goto err_alloc;
3463 
3464 		bdp->cbd_sc = cpu_to_fec16(0);
3465 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3466 
3467 		if (fep->bufdesc_ex) {
3468 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3469 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3470 		}
3471 
3472 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3473 	}
3474 
3475 	/* Set the last buffer to wrap. */
3476 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3477 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3478 
3479 	return 0;
3480 
3481  err_alloc:
3482 	fec_enet_free_buffers(ndev);
3483 	return -ENOMEM;
3484 }
3485 
3486 static int fec_enet_alloc_buffers(struct net_device *ndev)
3487 {
3488 	struct fec_enet_private *fep = netdev_priv(ndev);
3489 	unsigned int i;
3490 
3491 	for (i = 0; i < fep->num_rx_queues; i++)
3492 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3493 			return -ENOMEM;
3494 
3495 	for (i = 0; i < fep->num_tx_queues; i++)
3496 		if (fec_enet_alloc_txq_buffers(ndev, i))
3497 			return -ENOMEM;
3498 	return 0;
3499 }
3500 
3501 static int
3502 fec_enet_open(struct net_device *ndev)
3503 {
3504 	struct fec_enet_private *fep = netdev_priv(ndev);
3505 	int ret;
3506 	bool reset_again;
3507 
3508 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3509 	if (ret < 0)
3510 		return ret;
3511 
3512 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3513 	ret = fec_enet_clk_enable(ndev, true);
3514 	if (ret)
3515 		goto clk_enable;
3516 
3517 	/* During the first fec_enet_open call the PHY isn't probed at this
3518 	 * point. Therefore the phy_reset_after_clk_enable() call within
3519 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3520 	 * sure the PHY is working correctly we check if we need to reset again
3521 	 * later when the PHY is probed
3522 	 */
3523 	if (ndev->phydev && ndev->phydev->drv)
3524 		reset_again = false;
3525 	else
3526 		reset_again = true;
3527 
3528 	/* I should reset the ring buffers here, but I don't yet know
3529 	 * a simple way to do that.
3530 	 */
3531 
3532 	ret = fec_enet_alloc_buffers(ndev);
3533 	if (ret)
3534 		goto err_enet_alloc;
3535 
3536 	/* Init MAC prior to mii bus probe */
3537 	fec_restart(ndev);
3538 
3539 	/* Call phy_reset_after_clk_enable() again if it failed during
3540 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3541 	 */
3542 	if (reset_again)
3543 		fec_enet_phy_reset_after_clk_enable(ndev);
3544 
3545 	/* Probe and connect to PHY when open the interface */
3546 	ret = fec_enet_mii_probe(ndev);
3547 	if (ret)
3548 		goto err_enet_mii_probe;
3549 
3550 	if (fep->quirks & FEC_QUIRK_ERR006687)
3551 		imx6q_cpuidle_fec_irqs_used();
3552 
3553 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3554 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3555 
3556 	napi_enable(&fep->napi);
3557 	phy_start(ndev->phydev);
3558 	netif_tx_start_all_queues(ndev);
3559 
3560 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3561 				 FEC_WOL_FLAG_ENABLE);
3562 
3563 	return 0;
3564 
3565 err_enet_mii_probe:
3566 	fec_enet_free_buffers(ndev);
3567 err_enet_alloc:
3568 	fec_enet_clk_enable(ndev, false);
3569 clk_enable:
3570 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3571 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3572 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3573 	return ret;
3574 }
3575 
3576 static int
3577 fec_enet_close(struct net_device *ndev)
3578 {
3579 	struct fec_enet_private *fep = netdev_priv(ndev);
3580 
3581 	phy_stop(ndev->phydev);
3582 
3583 	if (netif_device_present(ndev)) {
3584 		napi_disable(&fep->napi);
3585 		netif_tx_disable(ndev);
3586 		fec_stop(ndev);
3587 	}
3588 
3589 	phy_disconnect(ndev->phydev);
3590 
3591 	if (fep->quirks & FEC_QUIRK_ERR006687)
3592 		imx6q_cpuidle_fec_irqs_unused();
3593 
3594 	fec_enet_update_ethtool_stats(ndev);
3595 
3596 	fec_enet_clk_enable(ndev, false);
3597 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3598 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3599 
3600 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3601 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3602 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3603 
3604 	fec_enet_free_buffers(ndev);
3605 
3606 	return 0;
3607 }
3608 
3609 /* Set or clear the multicast filter for this adaptor.
3610  * Skeleton taken from sunlance driver.
3611  * The CPM Ethernet implementation allows Multicast as well as individual
3612  * MAC address filtering.  Some of the drivers check to make sure it is
3613  * a group multicast address, and discard those that are not.  I guess I
3614  * will do the same for now, but just remove the test if you want
3615  * individual filtering as well (do the upper net layers want or support
3616  * this kind of feature?).
3617  */
3618 
3619 #define FEC_HASH_BITS	6		/* #bits in hash */
3620 
3621 static void set_multicast_list(struct net_device *ndev)
3622 {
3623 	struct fec_enet_private *fep = netdev_priv(ndev);
3624 	struct netdev_hw_addr *ha;
3625 	unsigned int crc, tmp;
3626 	unsigned char hash;
3627 	unsigned int hash_high = 0, hash_low = 0;
3628 
3629 	if (ndev->flags & IFF_PROMISC) {
3630 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3631 		tmp |= 0x8;
3632 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3633 		return;
3634 	}
3635 
3636 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3637 	tmp &= ~0x8;
3638 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3639 
3640 	if (ndev->flags & IFF_ALLMULTI) {
3641 		/* Catch all multicast addresses, so set the
3642 		 * filter to all 1's
3643 		 */
3644 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3645 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3646 
3647 		return;
3648 	}
3649 
3650 	/* Add the addresses in hash register */
3651 	netdev_for_each_mc_addr(ha, ndev) {
3652 		/* calculate crc32 value of mac address */
3653 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3654 
3655 		/* only upper 6 bits (FEC_HASH_BITS) are used
3656 		 * which point to specific bit in the hash registers
3657 		 */
3658 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3659 
3660 		if (hash > 31)
3661 			hash_high |= 1 << (hash - 32);
3662 		else
3663 			hash_low |= 1 << hash;
3664 	}
3665 
3666 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3667 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3668 }
3669 
3670 /* Set a MAC change in hardware. */
3671 static int
3672 fec_set_mac_address(struct net_device *ndev, void *p)
3673 {
3674 	struct fec_enet_private *fep = netdev_priv(ndev);
3675 	struct sockaddr *addr = p;
3676 
3677 	if (addr) {
3678 		if (!is_valid_ether_addr(addr->sa_data))
3679 			return -EADDRNOTAVAIL;
3680 		eth_hw_addr_set(ndev, addr->sa_data);
3681 	}
3682 
3683 	/* Add netif status check here to avoid system hang in below case:
3684 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3685 	 * After ethx down, fec all clocks are gated off and then register
3686 	 * access causes system hang.
3687 	 */
3688 	if (!netif_running(ndev))
3689 		return 0;
3690 
3691 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3692 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3693 		fep->hwp + FEC_ADDR_LOW);
3694 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3695 		fep->hwp + FEC_ADDR_HIGH);
3696 	return 0;
3697 }
3698 
3699 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3700 	netdev_features_t features)
3701 {
3702 	struct fec_enet_private *fep = netdev_priv(netdev);
3703 	netdev_features_t changed = features ^ netdev->features;
3704 
3705 	netdev->features = features;
3706 
3707 	/* Receive checksum has been changed */
3708 	if (changed & NETIF_F_RXCSUM) {
3709 		if (features & NETIF_F_RXCSUM)
3710 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3711 		else
3712 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3713 	}
3714 }
3715 
3716 static int fec_set_features(struct net_device *netdev,
3717 	netdev_features_t features)
3718 {
3719 	struct fec_enet_private *fep = netdev_priv(netdev);
3720 	netdev_features_t changed = features ^ netdev->features;
3721 
3722 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3723 		napi_disable(&fep->napi);
3724 		netif_tx_lock_bh(netdev);
3725 		fec_stop(netdev);
3726 		fec_enet_set_netdev_features(netdev, features);
3727 		fec_restart(netdev);
3728 		netif_tx_wake_all_queues(netdev);
3729 		netif_tx_unlock_bh(netdev);
3730 		napi_enable(&fep->napi);
3731 	} else {
3732 		fec_enet_set_netdev_features(netdev, features);
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3739 				 struct net_device *sb_dev)
3740 {
3741 	struct fec_enet_private *fep = netdev_priv(ndev);
3742 	u16 vlan_tag = 0;
3743 
3744 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3745 		return netdev_pick_tx(ndev, skb, NULL);
3746 
3747 	/* VLAN is present in the payload.*/
3748 	if (eth_type_vlan(skb->protocol)) {
3749 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3750 
3751 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3752 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3753 	} else if (skb_vlan_tag_present(skb)) {
3754 		vlan_tag = skb->vlan_tci;
3755 	} else {
3756 		return vlan_tag;
3757 	}
3758 
3759 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3760 }
3761 
3762 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3763 {
3764 	struct fec_enet_private *fep = netdev_priv(dev);
3765 	bool is_run = netif_running(dev);
3766 	struct bpf_prog *old_prog;
3767 
3768 	switch (bpf->command) {
3769 	case XDP_SETUP_PROG:
3770 		/* No need to support the SoCs that require to
3771 		 * do the frame swap because the performance wouldn't be
3772 		 * better than the skb mode.
3773 		 */
3774 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3775 			return -EOPNOTSUPP;
3776 
3777 		if (!bpf->prog)
3778 			xdp_features_clear_redirect_target(dev);
3779 
3780 		if (is_run) {
3781 			napi_disable(&fep->napi);
3782 			netif_tx_disable(dev);
3783 		}
3784 
3785 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3786 		if (old_prog)
3787 			bpf_prog_put(old_prog);
3788 
3789 		fec_restart(dev);
3790 
3791 		if (is_run) {
3792 			napi_enable(&fep->napi);
3793 			netif_tx_start_all_queues(dev);
3794 		}
3795 
3796 		if (bpf->prog)
3797 			xdp_features_set_redirect_target(dev, false);
3798 
3799 		return 0;
3800 
3801 	case XDP_SETUP_XSK_POOL:
3802 		return -EOPNOTSUPP;
3803 
3804 	default:
3805 		return -EOPNOTSUPP;
3806 	}
3807 }
3808 
3809 static int
3810 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3811 {
3812 	if (unlikely(index < 0))
3813 		return 0;
3814 
3815 	return (index % fep->num_tx_queues);
3816 }
3817 
3818 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3819 				   struct fec_enet_priv_tx_q *txq,
3820 				   void *frame, u32 dma_sync_len,
3821 				   bool ndo_xmit)
3822 {
3823 	unsigned int index, status, estatus;
3824 	struct bufdesc *bdp;
3825 	dma_addr_t dma_addr;
3826 	int entries_free;
3827 	u16 frame_len;
3828 
3829 	entries_free = fec_enet_get_free_txdesc_num(txq);
3830 	if (entries_free < MAX_SKB_FRAGS + 1) {
3831 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3832 		return -EBUSY;
3833 	}
3834 
3835 	/* Fill in a Tx ring entry */
3836 	bdp = txq->bd.cur;
3837 	status = fec16_to_cpu(bdp->cbd_sc);
3838 	status &= ~BD_ENET_TX_STATS;
3839 
3840 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3841 
3842 	if (ndo_xmit) {
3843 		struct xdp_frame *xdpf = frame;
3844 
3845 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3846 					  xdpf->len, DMA_TO_DEVICE);
3847 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3848 			return -ENOMEM;
3849 
3850 		frame_len = xdpf->len;
3851 		txq->tx_buf[index].buf_p = xdpf;
3852 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3853 	} else {
3854 		struct xdp_buff *xdpb = frame;
3855 		struct page *page;
3856 
3857 		page = virt_to_page(xdpb->data);
3858 		dma_addr = page_pool_get_dma_addr(page) +
3859 			   (xdpb->data - xdpb->data_hard_start);
3860 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3861 					   dma_sync_len, DMA_BIDIRECTIONAL);
3862 		frame_len = xdpb->data_end - xdpb->data;
3863 		txq->tx_buf[index].buf_p = page;
3864 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3865 	}
3866 
3867 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3868 	if (fep->bufdesc_ex)
3869 		estatus = BD_ENET_TX_INT;
3870 
3871 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3872 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3873 
3874 	if (fep->bufdesc_ex) {
3875 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3876 
3877 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3878 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3879 
3880 		ebdp->cbd_bdu = 0;
3881 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3882 	}
3883 
3884 	/* Make sure the updates to rest of the descriptor are performed before
3885 	 * transferring ownership.
3886 	 */
3887 	dma_wmb();
3888 
3889 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3890 	 * it's the last BD of the frame, and to put the CRC on the end.
3891 	 */
3892 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3893 	bdp->cbd_sc = cpu_to_fec16(status);
3894 
3895 	/* If this was the last BD in the ring, start at the beginning again. */
3896 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3897 
3898 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3899 	dma_wmb();
3900 
3901 	txq->bd.cur = bdp;
3902 
3903 	/* Trigger transmission start */
3904 	writel(0, txq->bd.reg_desc_active);
3905 
3906 	return 0;
3907 }
3908 
3909 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3910 				int cpu, struct xdp_buff *xdp,
3911 				u32 dma_sync_len)
3912 {
3913 	struct fec_enet_priv_tx_q *txq;
3914 	struct netdev_queue *nq;
3915 	int queue, ret;
3916 
3917 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3918 	txq = fep->tx_queue[queue];
3919 	nq = netdev_get_tx_queue(fep->netdev, queue);
3920 
3921 	__netif_tx_lock(nq, cpu);
3922 
3923 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3924 	txq_trans_cond_update(nq);
3925 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3926 
3927 	__netif_tx_unlock(nq);
3928 
3929 	return ret;
3930 }
3931 
3932 static int fec_enet_xdp_xmit(struct net_device *dev,
3933 			     int num_frames,
3934 			     struct xdp_frame **frames,
3935 			     u32 flags)
3936 {
3937 	struct fec_enet_private *fep = netdev_priv(dev);
3938 	struct fec_enet_priv_tx_q *txq;
3939 	int cpu = smp_processor_id();
3940 	unsigned int sent_frames = 0;
3941 	struct netdev_queue *nq;
3942 	unsigned int queue;
3943 	int i;
3944 
3945 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3946 	txq = fep->tx_queue[queue];
3947 	nq = netdev_get_tx_queue(fep->netdev, queue);
3948 
3949 	__netif_tx_lock(nq, cpu);
3950 
3951 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3952 	txq_trans_cond_update(nq);
3953 	for (i = 0; i < num_frames; i++) {
3954 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3955 			break;
3956 		sent_frames++;
3957 	}
3958 
3959 	__netif_tx_unlock(nq);
3960 
3961 	return sent_frames;
3962 }
3963 
3964 static int fec_hwtstamp_get(struct net_device *ndev,
3965 			    struct kernel_hwtstamp_config *config)
3966 {
3967 	struct fec_enet_private *fep = netdev_priv(ndev);
3968 
3969 	if (!netif_running(ndev))
3970 		return -EINVAL;
3971 
3972 	if (!fep->bufdesc_ex)
3973 		return -EOPNOTSUPP;
3974 
3975 	fec_ptp_get(ndev, config);
3976 
3977 	return 0;
3978 }
3979 
3980 static int fec_hwtstamp_set(struct net_device *ndev,
3981 			    struct kernel_hwtstamp_config *config,
3982 			    struct netlink_ext_ack *extack)
3983 {
3984 	struct fec_enet_private *fep = netdev_priv(ndev);
3985 
3986 	if (!netif_running(ndev))
3987 		return -EINVAL;
3988 
3989 	if (!fep->bufdesc_ex)
3990 		return -EOPNOTSUPP;
3991 
3992 	return fec_ptp_set(ndev, config, extack);
3993 }
3994 
3995 static const struct net_device_ops fec_netdev_ops = {
3996 	.ndo_open		= fec_enet_open,
3997 	.ndo_stop		= fec_enet_close,
3998 	.ndo_start_xmit		= fec_enet_start_xmit,
3999 	.ndo_select_queue       = fec_enet_select_queue,
4000 	.ndo_set_rx_mode	= set_multicast_list,
4001 	.ndo_validate_addr	= eth_validate_addr,
4002 	.ndo_tx_timeout		= fec_timeout,
4003 	.ndo_set_mac_address	= fec_set_mac_address,
4004 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4005 	.ndo_set_features	= fec_set_features,
4006 	.ndo_bpf		= fec_enet_bpf,
4007 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4008 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4009 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4010 };
4011 
4012 static const unsigned short offset_des_active_rxq[] = {
4013 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4014 };
4015 
4016 static const unsigned short offset_des_active_txq[] = {
4017 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4018 };
4019 
4020  /*
4021   * XXX:  We need to clean up on failure exits here.
4022   *
4023   */
4024 static int fec_enet_init(struct net_device *ndev)
4025 {
4026 	struct fec_enet_private *fep = netdev_priv(ndev);
4027 	struct bufdesc *cbd_base;
4028 	dma_addr_t bd_dma;
4029 	int bd_size;
4030 	unsigned int i;
4031 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4032 			sizeof(struct bufdesc);
4033 	unsigned dsize_log2 = __fls(dsize);
4034 	int ret;
4035 
4036 	WARN_ON(dsize != (1 << dsize_log2));
4037 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4038 	fep->rx_align = 0xf;
4039 	fep->tx_align = 0xf;
4040 #else
4041 	fep->rx_align = 0x3;
4042 	fep->tx_align = 0x3;
4043 #endif
4044 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4045 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4047 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048 
4049 	/* Check mask of the streaming and coherent API */
4050 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4051 	if (ret < 0) {
4052 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4053 		return ret;
4054 	}
4055 
4056 	ret = fec_enet_alloc_queue(ndev);
4057 	if (ret)
4058 		return ret;
4059 
4060 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4061 
4062 	/* Allocate memory for buffer descriptors. */
4063 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4064 				  GFP_KERNEL);
4065 	if (!cbd_base) {
4066 		ret = -ENOMEM;
4067 		goto free_queue_mem;
4068 	}
4069 
4070 	/* Get the Ethernet address */
4071 	ret = fec_get_mac(ndev);
4072 	if (ret)
4073 		goto free_queue_mem;
4074 
4075 	/* Set receive and transmit descriptor base. */
4076 	for (i = 0; i < fep->num_rx_queues; i++) {
4077 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4078 		unsigned size = dsize * rxq->bd.ring_size;
4079 
4080 		rxq->bd.qid = i;
4081 		rxq->bd.base = cbd_base;
4082 		rxq->bd.cur = cbd_base;
4083 		rxq->bd.dma = bd_dma;
4084 		rxq->bd.dsize = dsize;
4085 		rxq->bd.dsize_log2 = dsize_log2;
4086 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4087 		bd_dma += size;
4088 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4089 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4090 	}
4091 
4092 	for (i = 0; i < fep->num_tx_queues; i++) {
4093 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4094 		unsigned size = dsize * txq->bd.ring_size;
4095 
4096 		txq->bd.qid = i;
4097 		txq->bd.base = cbd_base;
4098 		txq->bd.cur = cbd_base;
4099 		txq->bd.dma = bd_dma;
4100 		txq->bd.dsize = dsize;
4101 		txq->bd.dsize_log2 = dsize_log2;
4102 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4103 		bd_dma += size;
4104 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4105 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4106 	}
4107 
4108 
4109 	/* The FEC Ethernet specific entries in the device structure */
4110 	ndev->watchdog_timeo = TX_TIMEOUT;
4111 	ndev->netdev_ops = &fec_netdev_ops;
4112 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4113 
4114 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4115 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4116 
4117 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4118 		/* enable hw VLAN support */
4119 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4120 
4121 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4122 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4123 
4124 		/* enable hw accelerator */
4125 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4126 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4127 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4128 	}
4129 
4130 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4131 		fep->tx_align = 0;
4132 		fep->rx_align = 0x3f;
4133 	}
4134 
4135 	ndev->hw_features = ndev->features;
4136 
4137 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4138 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4139 				     NETDEV_XDP_ACT_REDIRECT;
4140 
4141 	fec_restart(ndev);
4142 
4143 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4144 		fec_enet_clear_ethtool_stats(ndev);
4145 	else
4146 		fec_enet_update_ethtool_stats(ndev);
4147 
4148 	return 0;
4149 
4150 free_queue_mem:
4151 	fec_enet_free_queue(ndev);
4152 	return ret;
4153 }
4154 
4155 static void fec_enet_deinit(struct net_device *ndev)
4156 {
4157 	struct fec_enet_private *fep = netdev_priv(ndev);
4158 
4159 	netif_napi_del(&fep->napi);
4160 	fec_enet_free_queue(ndev);
4161 }
4162 
4163 #ifdef CONFIG_OF
4164 static int fec_reset_phy(struct platform_device *pdev)
4165 {
4166 	struct gpio_desc *phy_reset;
4167 	int msec = 1, phy_post_delay = 0;
4168 	struct device_node *np = pdev->dev.of_node;
4169 	int err;
4170 
4171 	if (!np)
4172 		return 0;
4173 
4174 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4175 	/* A sane reset duration should not be longer than 1s */
4176 	if (!err && msec > 1000)
4177 		msec = 1;
4178 
4179 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4180 	/* valid reset duration should be less than 1s */
4181 	if (!err && phy_post_delay > 1000)
4182 		return -EINVAL;
4183 
4184 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4185 					    GPIOD_OUT_HIGH);
4186 	if (IS_ERR(phy_reset))
4187 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4188 				     "failed to get phy-reset-gpios\n");
4189 
4190 	if (!phy_reset)
4191 		return 0;
4192 
4193 	if (msec > 20)
4194 		msleep(msec);
4195 	else
4196 		usleep_range(msec * 1000, msec * 1000 + 1000);
4197 
4198 	gpiod_set_value_cansleep(phy_reset, 0);
4199 
4200 	if (!phy_post_delay)
4201 		return 0;
4202 
4203 	if (phy_post_delay > 20)
4204 		msleep(phy_post_delay);
4205 	else
4206 		usleep_range(phy_post_delay * 1000,
4207 			     phy_post_delay * 1000 + 1000);
4208 
4209 	return 0;
4210 }
4211 #else /* CONFIG_OF */
4212 static int fec_reset_phy(struct platform_device *pdev)
4213 {
4214 	/*
4215 	 * In case of platform probe, the reset has been done
4216 	 * by machine code.
4217 	 */
4218 	return 0;
4219 }
4220 #endif /* CONFIG_OF */
4221 
4222 static void
4223 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4224 {
4225 	struct device_node *np = pdev->dev.of_node;
4226 
4227 	*num_tx = *num_rx = 1;
4228 
4229 	if (!np || !of_device_is_available(np))
4230 		return;
4231 
4232 	/* parse the num of tx and rx queues */
4233 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4234 
4235 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4236 
4237 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4238 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4239 			 *num_tx);
4240 		*num_tx = 1;
4241 		return;
4242 	}
4243 
4244 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4245 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4246 			 *num_rx);
4247 		*num_rx = 1;
4248 		return;
4249 	}
4250 
4251 }
4252 
4253 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4254 {
4255 	int irq_cnt = platform_irq_count(pdev);
4256 
4257 	if (irq_cnt > FEC_IRQ_NUM)
4258 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4259 	else if (irq_cnt == 2)
4260 		irq_cnt = 1;	/* last for pps */
4261 	else if (irq_cnt <= 0)
4262 		irq_cnt = 1;	/* At least 1 irq is needed */
4263 	return irq_cnt;
4264 }
4265 
4266 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4267 {
4268 	struct net_device *ndev = platform_get_drvdata(pdev);
4269 	struct fec_enet_private *fep = netdev_priv(ndev);
4270 
4271 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4272 		fep->wake_irq = fep->irq[2];
4273 	else
4274 		fep->wake_irq = fep->irq[0];
4275 }
4276 
4277 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4278 				   struct device_node *np)
4279 {
4280 	struct device_node *gpr_np;
4281 	u32 out_val[3];
4282 	int ret = 0;
4283 
4284 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4285 	if (!gpr_np)
4286 		return 0;
4287 
4288 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4289 					 ARRAY_SIZE(out_val));
4290 	if (ret) {
4291 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4292 		goto out;
4293 	}
4294 
4295 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4296 	if (IS_ERR(fep->stop_gpr.gpr)) {
4297 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4298 		ret = PTR_ERR(fep->stop_gpr.gpr);
4299 		fep->stop_gpr.gpr = NULL;
4300 		goto out;
4301 	}
4302 
4303 	fep->stop_gpr.reg = out_val[1];
4304 	fep->stop_gpr.bit = out_val[2];
4305 
4306 out:
4307 	of_node_put(gpr_np);
4308 
4309 	return ret;
4310 }
4311 
4312 static int
4313 fec_probe(struct platform_device *pdev)
4314 {
4315 	struct fec_enet_private *fep;
4316 	struct fec_platform_data *pdata;
4317 	phy_interface_t interface;
4318 	struct net_device *ndev;
4319 	int i, irq, ret = 0;
4320 	static int dev_id;
4321 	struct device_node *np = pdev->dev.of_node, *phy_node;
4322 	int num_tx_qs;
4323 	int num_rx_qs;
4324 	char irq_name[8];
4325 	int irq_cnt;
4326 	const struct fec_devinfo *dev_info;
4327 
4328 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4329 
4330 	/* Init network device */
4331 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4332 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4333 	if (!ndev)
4334 		return -ENOMEM;
4335 
4336 	SET_NETDEV_DEV(ndev, &pdev->dev);
4337 
4338 	/* setup board info structure */
4339 	fep = netdev_priv(ndev);
4340 
4341 	dev_info = device_get_match_data(&pdev->dev);
4342 	if (!dev_info)
4343 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4344 	if (dev_info)
4345 		fep->quirks = dev_info->quirks;
4346 
4347 	fep->netdev = ndev;
4348 	fep->num_rx_queues = num_rx_qs;
4349 	fep->num_tx_queues = num_tx_qs;
4350 
4351 #if !defined(CONFIG_M5272)
4352 	/* default enable pause frame auto negotiation */
4353 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4354 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4355 #endif
4356 
4357 	/* Select default pin state */
4358 	pinctrl_pm_select_default_state(&pdev->dev);
4359 
4360 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4361 	if (IS_ERR(fep->hwp)) {
4362 		ret = PTR_ERR(fep->hwp);
4363 		goto failed_ioremap;
4364 	}
4365 
4366 	fep->pdev = pdev;
4367 	fep->dev_id = dev_id++;
4368 
4369 	platform_set_drvdata(pdev, ndev);
4370 
4371 	if ((of_machine_is_compatible("fsl,imx6q") ||
4372 	     of_machine_is_compatible("fsl,imx6dl")) &&
4373 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4374 		fep->quirks |= FEC_QUIRK_ERR006687;
4375 
4376 	ret = fec_enet_ipc_handle_init(fep);
4377 	if (ret)
4378 		goto failed_ipc_init;
4379 
4380 	if (of_property_read_bool(np, "fsl,magic-packet"))
4381 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4382 
4383 	ret = fec_enet_init_stop_mode(fep, np);
4384 	if (ret)
4385 		goto failed_stop_mode;
4386 
4387 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4388 	if (!phy_node && of_phy_is_fixed_link(np)) {
4389 		ret = of_phy_register_fixed_link(np);
4390 		if (ret < 0) {
4391 			dev_err(&pdev->dev,
4392 				"broken fixed-link specification\n");
4393 			goto failed_phy;
4394 		}
4395 		phy_node = of_node_get(np);
4396 	}
4397 	fep->phy_node = phy_node;
4398 
4399 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4400 	if (ret) {
4401 		pdata = dev_get_platdata(&pdev->dev);
4402 		if (pdata)
4403 			fep->phy_interface = pdata->phy;
4404 		else
4405 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4406 	} else {
4407 		fep->phy_interface = interface;
4408 	}
4409 
4410 	ret = fec_enet_parse_rgmii_delay(fep, np);
4411 	if (ret)
4412 		goto failed_rgmii_delay;
4413 
4414 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4415 	if (IS_ERR(fep->clk_ipg)) {
4416 		ret = PTR_ERR(fep->clk_ipg);
4417 		goto failed_clk;
4418 	}
4419 
4420 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4421 	if (IS_ERR(fep->clk_ahb)) {
4422 		ret = PTR_ERR(fep->clk_ahb);
4423 		goto failed_clk;
4424 	}
4425 
4426 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4427 
4428 	/* enet_out is optional, depends on board */
4429 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4430 	if (IS_ERR(fep->clk_enet_out)) {
4431 		ret = PTR_ERR(fep->clk_enet_out);
4432 		goto failed_clk;
4433 	}
4434 
4435 	fep->ptp_clk_on = false;
4436 	mutex_init(&fep->ptp_clk_mutex);
4437 
4438 	/* clk_ref is optional, depends on board */
4439 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4440 	if (IS_ERR(fep->clk_ref)) {
4441 		ret = PTR_ERR(fep->clk_ref);
4442 		goto failed_clk;
4443 	}
4444 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4445 
4446 	/* clk_2x_txclk is optional, depends on board */
4447 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4448 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4449 		if (IS_ERR(fep->clk_2x_txclk))
4450 			fep->clk_2x_txclk = NULL;
4451 	}
4452 
4453 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4454 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4455 	if (IS_ERR(fep->clk_ptp)) {
4456 		fep->clk_ptp = NULL;
4457 		fep->bufdesc_ex = false;
4458 	}
4459 
4460 	ret = fec_enet_clk_enable(ndev, true);
4461 	if (ret)
4462 		goto failed_clk;
4463 
4464 	ret = clk_prepare_enable(fep->clk_ipg);
4465 	if (ret)
4466 		goto failed_clk_ipg;
4467 	ret = clk_prepare_enable(fep->clk_ahb);
4468 	if (ret)
4469 		goto failed_clk_ahb;
4470 
4471 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4472 	if (!IS_ERR(fep->reg_phy)) {
4473 		ret = regulator_enable(fep->reg_phy);
4474 		if (ret) {
4475 			dev_err(&pdev->dev,
4476 				"Failed to enable phy regulator: %d\n", ret);
4477 			goto failed_regulator;
4478 		}
4479 	} else {
4480 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4481 			ret = -EPROBE_DEFER;
4482 			goto failed_regulator;
4483 		}
4484 		fep->reg_phy = NULL;
4485 	}
4486 
4487 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4488 	pm_runtime_use_autosuspend(&pdev->dev);
4489 	pm_runtime_get_noresume(&pdev->dev);
4490 	pm_runtime_set_active(&pdev->dev);
4491 	pm_runtime_enable(&pdev->dev);
4492 
4493 	ret = fec_reset_phy(pdev);
4494 	if (ret)
4495 		goto failed_reset;
4496 
4497 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4498 	if (fep->bufdesc_ex)
4499 		fec_ptp_init(pdev, irq_cnt);
4500 
4501 	ret = fec_enet_init(ndev);
4502 	if (ret)
4503 		goto failed_init;
4504 
4505 	for (i = 0; i < irq_cnt; i++) {
4506 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4507 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4508 		if (irq < 0)
4509 			irq = platform_get_irq(pdev, i);
4510 		if (irq < 0) {
4511 			ret = irq;
4512 			goto failed_irq;
4513 		}
4514 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4515 				       0, pdev->name, ndev);
4516 		if (ret)
4517 			goto failed_irq;
4518 
4519 		fep->irq[i] = irq;
4520 	}
4521 
4522 	/* Decide which interrupt line is wakeup capable */
4523 	fec_enet_get_wakeup_irq(pdev);
4524 
4525 	ret = fec_enet_mii_init(pdev);
4526 	if (ret)
4527 		goto failed_mii_init;
4528 
4529 	/* Carrier starts down, phylib will bring it up */
4530 	netif_carrier_off(ndev);
4531 	fec_enet_clk_enable(ndev, false);
4532 	pinctrl_pm_select_sleep_state(&pdev->dev);
4533 
4534 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4535 
4536 	ret = register_netdev(ndev);
4537 	if (ret)
4538 		goto failed_register;
4539 
4540 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4541 			   FEC_WOL_HAS_MAGIC_PACKET);
4542 
4543 	if (fep->bufdesc_ex && fep->ptp_clock)
4544 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4545 
4546 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4547 
4548 	pm_runtime_mark_last_busy(&pdev->dev);
4549 	pm_runtime_put_autosuspend(&pdev->dev);
4550 
4551 	return 0;
4552 
4553 failed_register:
4554 	fec_enet_mii_remove(fep);
4555 failed_mii_init:
4556 failed_irq:
4557 	fec_enet_deinit(ndev);
4558 failed_init:
4559 	fec_ptp_stop(pdev);
4560 failed_reset:
4561 	pm_runtime_put_noidle(&pdev->dev);
4562 	pm_runtime_disable(&pdev->dev);
4563 	if (fep->reg_phy)
4564 		regulator_disable(fep->reg_phy);
4565 failed_regulator:
4566 	clk_disable_unprepare(fep->clk_ahb);
4567 failed_clk_ahb:
4568 	clk_disable_unprepare(fep->clk_ipg);
4569 failed_clk_ipg:
4570 	fec_enet_clk_enable(ndev, false);
4571 failed_clk:
4572 failed_rgmii_delay:
4573 	if (of_phy_is_fixed_link(np))
4574 		of_phy_deregister_fixed_link(np);
4575 	of_node_put(phy_node);
4576 failed_stop_mode:
4577 failed_ipc_init:
4578 failed_phy:
4579 	dev_id--;
4580 failed_ioremap:
4581 	free_netdev(ndev);
4582 
4583 	return ret;
4584 }
4585 
4586 static void
4587 fec_drv_remove(struct platform_device *pdev)
4588 {
4589 	struct net_device *ndev = platform_get_drvdata(pdev);
4590 	struct fec_enet_private *fep = netdev_priv(ndev);
4591 	struct device_node *np = pdev->dev.of_node;
4592 	int ret;
4593 
4594 	ret = pm_runtime_get_sync(&pdev->dev);
4595 	if (ret < 0)
4596 		dev_err(&pdev->dev,
4597 			"Failed to resume device in remove callback (%pe)\n",
4598 			ERR_PTR(ret));
4599 
4600 	cancel_work_sync(&fep->tx_timeout_work);
4601 	fec_ptp_stop(pdev);
4602 	unregister_netdev(ndev);
4603 	fec_enet_mii_remove(fep);
4604 	if (fep->reg_phy)
4605 		regulator_disable(fep->reg_phy);
4606 
4607 	if (of_phy_is_fixed_link(np))
4608 		of_phy_deregister_fixed_link(np);
4609 	of_node_put(fep->phy_node);
4610 
4611 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4612 	 * disabling them again.
4613 	 */
4614 	if (ret >= 0) {
4615 		clk_disable_unprepare(fep->clk_ahb);
4616 		clk_disable_unprepare(fep->clk_ipg);
4617 	}
4618 	pm_runtime_put_noidle(&pdev->dev);
4619 	pm_runtime_disable(&pdev->dev);
4620 
4621 	fec_enet_deinit(ndev);
4622 	free_netdev(ndev);
4623 }
4624 
4625 static int fec_suspend(struct device *dev)
4626 {
4627 	struct net_device *ndev = dev_get_drvdata(dev);
4628 	struct fec_enet_private *fep = netdev_priv(ndev);
4629 	int ret;
4630 
4631 	rtnl_lock();
4632 	if (netif_running(ndev)) {
4633 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4634 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4635 		phy_stop(ndev->phydev);
4636 		napi_disable(&fep->napi);
4637 		netif_tx_lock_bh(ndev);
4638 		netif_device_detach(ndev);
4639 		netif_tx_unlock_bh(ndev);
4640 		fec_stop(ndev);
4641 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4642 			fec_irqs_disable(ndev);
4643 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4644 		} else {
4645 			fec_irqs_disable_except_wakeup(ndev);
4646 			if (fep->wake_irq > 0) {
4647 				disable_irq(fep->wake_irq);
4648 				enable_irq_wake(fep->wake_irq);
4649 			}
4650 			fec_enet_stop_mode(fep, true);
4651 		}
4652 		/* It's safe to disable clocks since interrupts are masked */
4653 		fec_enet_clk_enable(ndev, false);
4654 
4655 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4656 		if (fep->rpm_active) {
4657 			ret = pm_runtime_force_suspend(dev);
4658 			if (ret < 0) {
4659 				rtnl_unlock();
4660 				return ret;
4661 			}
4662 		}
4663 	}
4664 	rtnl_unlock();
4665 
4666 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4667 		regulator_disable(fep->reg_phy);
4668 
4669 	/* SOC supply clock to phy, when clock is disabled, phy link down
4670 	 * SOC control phy regulator, when regulator is disabled, phy link down
4671 	 */
4672 	if (fep->clk_enet_out || fep->reg_phy)
4673 		fep->link = 0;
4674 
4675 	return 0;
4676 }
4677 
4678 static int fec_resume(struct device *dev)
4679 {
4680 	struct net_device *ndev = dev_get_drvdata(dev);
4681 	struct fec_enet_private *fep = netdev_priv(ndev);
4682 	int ret;
4683 	int val;
4684 
4685 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4686 		ret = regulator_enable(fep->reg_phy);
4687 		if (ret)
4688 			return ret;
4689 	}
4690 
4691 	rtnl_lock();
4692 	if (netif_running(ndev)) {
4693 		if (fep->rpm_active)
4694 			pm_runtime_force_resume(dev);
4695 
4696 		ret = fec_enet_clk_enable(ndev, true);
4697 		if (ret) {
4698 			rtnl_unlock();
4699 			goto failed_clk;
4700 		}
4701 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4702 			fec_enet_stop_mode(fep, false);
4703 			if (fep->wake_irq) {
4704 				disable_irq_wake(fep->wake_irq);
4705 				enable_irq(fep->wake_irq);
4706 			}
4707 
4708 			val = readl(fep->hwp + FEC_ECNTRL);
4709 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4710 			writel(val, fep->hwp + FEC_ECNTRL);
4711 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4712 		} else {
4713 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4714 		}
4715 		fec_restart(ndev);
4716 		netif_tx_lock_bh(ndev);
4717 		netif_device_attach(ndev);
4718 		netif_tx_unlock_bh(ndev);
4719 		napi_enable(&fep->napi);
4720 		phy_init_hw(ndev->phydev);
4721 		phy_start(ndev->phydev);
4722 	}
4723 	rtnl_unlock();
4724 
4725 	return 0;
4726 
4727 failed_clk:
4728 	if (fep->reg_phy)
4729 		regulator_disable(fep->reg_phy);
4730 	return ret;
4731 }
4732 
4733 static int fec_runtime_suspend(struct device *dev)
4734 {
4735 	struct net_device *ndev = dev_get_drvdata(dev);
4736 	struct fec_enet_private *fep = netdev_priv(ndev);
4737 
4738 	clk_disable_unprepare(fep->clk_ahb);
4739 	clk_disable_unprepare(fep->clk_ipg);
4740 
4741 	return 0;
4742 }
4743 
4744 static int fec_runtime_resume(struct device *dev)
4745 {
4746 	struct net_device *ndev = dev_get_drvdata(dev);
4747 	struct fec_enet_private *fep = netdev_priv(ndev);
4748 	int ret;
4749 
4750 	ret = clk_prepare_enable(fep->clk_ahb);
4751 	if (ret)
4752 		return ret;
4753 	ret = clk_prepare_enable(fep->clk_ipg);
4754 	if (ret)
4755 		goto failed_clk_ipg;
4756 
4757 	return 0;
4758 
4759 failed_clk_ipg:
4760 	clk_disable_unprepare(fep->clk_ahb);
4761 	return ret;
4762 }
4763 
4764 static const struct dev_pm_ops fec_pm_ops = {
4765 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4766 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4767 };
4768 
4769 static struct platform_driver fec_driver = {
4770 	.driver	= {
4771 		.name	= DRIVER_NAME,
4772 		.pm	= pm_ptr(&fec_pm_ops),
4773 		.of_match_table = fec_dt_ids,
4774 		.suppress_bind_attrs = true,
4775 	},
4776 	.id_table = fec_devtype,
4777 	.probe	= fec_probe,
4778 	.remove = fec_drv_remove,
4779 };
4780 
4781 module_platform_driver(fec_driver);
4782 
4783 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4784 MODULE_LICENSE("GPL");
4785