xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
104 		  FEC_QUIRK_NO_HARD_RESET,
105 };
106 
107 static const struct fec_devinfo fec_imx6q_info = {
108 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
109 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
110 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
111 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
112 };
113 
114 static const struct fec_devinfo fec_mvf600_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
116 };
117 
118 static const struct fec_devinfo fec_imx6x_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
122 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
123 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
124 		  FEC_QUIRK_CLEAR_SETUP_MII,
125 };
126 
127 static const struct fec_devinfo fec_imx6ul_info = {
128 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
129 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
130 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
131 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
132 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
133 };
134 
135 static struct platform_device_id fec_devtype[] = {
136 	{
137 		/* keep it for coldfire */
138 		.name = DRIVER_NAME,
139 		.driver_data = 0,
140 	}, {
141 		.name = "imx25-fec",
142 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
143 	}, {
144 		.name = "imx27-fec",
145 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
146 	}, {
147 		.name = "imx28-fec",
148 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
149 	}, {
150 		.name = "imx6q-fec",
151 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
152 	}, {
153 		.name = "mvf600-fec",
154 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
155 	}, {
156 		.name = "imx6sx-fec",
157 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
158 	}, {
159 		.name = "imx6ul-fec",
160 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
161 	}, {
162 		/* sentinel */
163 	}
164 };
165 MODULE_DEVICE_TABLE(platform, fec_devtype);
166 
167 enum imx_fec_type {
168 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
169 	IMX27_FEC,	/* runs on i.mx27/35/51 */
170 	IMX28_FEC,
171 	IMX6Q_FEC,
172 	MVF600_FEC,
173 	IMX6SX_FEC,
174 	IMX6UL_FEC,
175 };
176 
177 static const struct of_device_id fec_dt_ids[] = {
178 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
179 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
180 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
181 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
182 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
183 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
184 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
185 	{ /* sentinel */ }
186 };
187 MODULE_DEVICE_TABLE(of, fec_dt_ids);
188 
189 static unsigned char macaddr[ETH_ALEN];
190 module_param_array(macaddr, byte, NULL, 0);
191 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
192 
193 #if defined(CONFIG_M5272)
194 /*
195  * Some hardware gets it MAC address out of local flash memory.
196  * if this is non-zero then assume it is the address to get MAC from.
197  */
198 #if defined(CONFIG_NETtel)
199 #define	FEC_FLASHMAC	0xf0006006
200 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
201 #define	FEC_FLASHMAC	0xf0006000
202 #elif defined(CONFIG_CANCam)
203 #define	FEC_FLASHMAC	0xf0020000
204 #elif defined (CONFIG_M5272C3)
205 #define	FEC_FLASHMAC	(0xffe04000 + 4)
206 #elif defined(CONFIG_MOD5272)
207 #define FEC_FLASHMAC	0xffc0406b
208 #else
209 #define	FEC_FLASHMAC	0
210 #endif
211 #endif /* CONFIG_M5272 */
212 
213 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
214  *
215  * 2048 byte skbufs are allocated. However, alignment requirements
216  * varies between FEC variants. Worst case is 64, so round down by 64.
217  */
218 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
219 #define PKT_MINBUF_SIZE		64
220 
221 /* FEC receive acceleration */
222 #define FEC_RACC_IPDIS		(1 << 1)
223 #define FEC_RACC_PRODIS		(1 << 2)
224 #define FEC_RACC_SHIFT16	BIT(7)
225 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
226 
227 /* MIB Control Register */
228 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
229 
230 /*
231  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
232  * size bits. Other FEC hardware does not, so we need to take that into
233  * account when setting it.
234  */
235 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
236     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
237     defined(CONFIG_ARM64)
238 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
239 #else
240 #define	OPT_FRAME_SIZE	0
241 #endif
242 
243 /* FEC MII MMFR bits definition */
244 #define FEC_MMFR_ST		(1 << 30)
245 #define FEC_MMFR_ST_C45		(0)
246 #define FEC_MMFR_OP_READ	(2 << 28)
247 #define FEC_MMFR_OP_READ_C45	(3 << 28)
248 #define FEC_MMFR_OP_WRITE	(1 << 28)
249 #define FEC_MMFR_OP_ADDR_WRITE	(0)
250 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
251 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
252 #define FEC_MMFR_TA		(2 << 16)
253 #define FEC_MMFR_DATA(v)	(v & 0xffff)
254 /* FEC ECR bits definition */
255 #define FEC_ECR_MAGICEN		(1 << 2)
256 #define FEC_ECR_SLEEP		(1 << 3)
257 
258 #define FEC_MII_TIMEOUT		30000 /* us */
259 
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
262 
263 #define FEC_PAUSE_FLAG_AUTONEG	0x1
264 #define FEC_PAUSE_FLAG_ENABLE	0x2
265 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
266 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
267 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
268 
269 #define COPYBREAK_DEFAULT	256
270 
271 /* Max number of allowed TCP segments for software TSO */
272 #define FEC_MAX_TSO_SEGS	100
273 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
274 
275 #define IS_TSO_HEADER(txq, addr) \
276 	((addr >= txq->tso_hdrs_dma) && \
277 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
278 
279 static int mii_cnt;
280 
281 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
282 					     struct bufdesc_prop *bd)
283 {
284 	return (bdp >= bd->last) ? bd->base
285 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
286 }
287 
288 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
289 					     struct bufdesc_prop *bd)
290 {
291 	return (bdp <= bd->base) ? bd->last
292 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
293 }
294 
295 static int fec_enet_get_bd_index(struct bufdesc *bdp,
296 				 struct bufdesc_prop *bd)
297 {
298 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
299 }
300 
301 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
302 {
303 	int entries;
304 
305 	entries = (((const char *)txq->dirty_tx -
306 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
307 
308 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
309 }
310 
311 static void swap_buffer(void *bufaddr, int len)
312 {
313 	int i;
314 	unsigned int *buf = bufaddr;
315 
316 	for (i = 0; i < len; i += 4, buf++)
317 		swab32s(buf);
318 }
319 
320 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
321 {
322 	int i;
323 	unsigned int *src = src_buf;
324 	unsigned int *dst = dst_buf;
325 
326 	for (i = 0; i < len; i += 4, src++, dst++)
327 		*dst = swab32p(src);
328 }
329 
330 static void fec_dump(struct net_device *ndev)
331 {
332 	struct fec_enet_private *fep = netdev_priv(ndev);
333 	struct bufdesc *bdp;
334 	struct fec_enet_priv_tx_q *txq;
335 	int index = 0;
336 
337 	netdev_info(ndev, "TX ring dump\n");
338 	pr_info("Nr     SC     addr       len  SKB\n");
339 
340 	txq = fep->tx_queue[0];
341 	bdp = txq->bd.base;
342 
343 	do {
344 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
345 			index,
346 			bdp == txq->bd.cur ? 'S' : ' ',
347 			bdp == txq->dirty_tx ? 'H' : ' ',
348 			fec16_to_cpu(bdp->cbd_sc),
349 			fec32_to_cpu(bdp->cbd_bufaddr),
350 			fec16_to_cpu(bdp->cbd_datlen),
351 			txq->tx_skbuff[index]);
352 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 		index++;
354 	} while (bdp != txq->bd.base);
355 }
356 
357 static inline bool is_ipv4_pkt(struct sk_buff *skb)
358 {
359 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
360 }
361 
362 static int
363 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
364 {
365 	/* Only run for packets requiring a checksum. */
366 	if (skb->ip_summed != CHECKSUM_PARTIAL)
367 		return 0;
368 
369 	if (unlikely(skb_cow_head(skb, 0)))
370 		return -1;
371 
372 	if (is_ipv4_pkt(skb))
373 		ip_hdr(skb)->check = 0;
374 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
375 
376 	return 0;
377 }
378 
379 static struct bufdesc *
380 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
381 			     struct sk_buff *skb,
382 			     struct net_device *ndev)
383 {
384 	struct fec_enet_private *fep = netdev_priv(ndev);
385 	struct bufdesc *bdp = txq->bd.cur;
386 	struct bufdesc_ex *ebdp;
387 	int nr_frags = skb_shinfo(skb)->nr_frags;
388 	int frag, frag_len;
389 	unsigned short status;
390 	unsigned int estatus = 0;
391 	skb_frag_t *this_frag;
392 	unsigned int index;
393 	void *bufaddr;
394 	dma_addr_t addr;
395 	int i;
396 
397 	for (frag = 0; frag < nr_frags; frag++) {
398 		this_frag = &skb_shinfo(skb)->frags[frag];
399 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
400 		ebdp = (struct bufdesc_ex *)bdp;
401 
402 		status = fec16_to_cpu(bdp->cbd_sc);
403 		status &= ~BD_ENET_TX_STATS;
404 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
405 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
406 
407 		/* Handle the last BD specially */
408 		if (frag == nr_frags - 1) {
409 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
410 			if (fep->bufdesc_ex) {
411 				estatus |= BD_ENET_TX_INT;
412 				if (unlikely(skb_shinfo(skb)->tx_flags &
413 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
414 					estatus |= BD_ENET_TX_TS;
415 			}
416 		}
417 
418 		if (fep->bufdesc_ex) {
419 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
420 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
421 			if (skb->ip_summed == CHECKSUM_PARTIAL)
422 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
423 			ebdp->cbd_bdu = 0;
424 			ebdp->cbd_esc = cpu_to_fec32(estatus);
425 		}
426 
427 		bufaddr = skb_frag_address(this_frag);
428 
429 		index = fec_enet_get_bd_index(bdp, &txq->bd);
430 		if (((unsigned long) bufaddr) & fep->tx_align ||
431 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
432 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
433 			bufaddr = txq->tx_bounce[index];
434 
435 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
436 				swap_buffer(bufaddr, frag_len);
437 		}
438 
439 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
440 				      DMA_TO_DEVICE);
441 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
442 			if (net_ratelimit())
443 				netdev_err(ndev, "Tx DMA memory map failed\n");
444 			goto dma_mapping_error;
445 		}
446 
447 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
448 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
449 		/* Make sure the updates to rest of the descriptor are
450 		 * performed before transferring ownership.
451 		 */
452 		wmb();
453 		bdp->cbd_sc = cpu_to_fec16(status);
454 	}
455 
456 	return bdp;
457 dma_mapping_error:
458 	bdp = txq->bd.cur;
459 	for (i = 0; i < frag; i++) {
460 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
461 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
462 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
463 	}
464 	return ERR_PTR(-ENOMEM);
465 }
466 
467 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
468 				   struct sk_buff *skb, struct net_device *ndev)
469 {
470 	struct fec_enet_private *fep = netdev_priv(ndev);
471 	int nr_frags = skb_shinfo(skb)->nr_frags;
472 	struct bufdesc *bdp, *last_bdp;
473 	void *bufaddr;
474 	dma_addr_t addr;
475 	unsigned short status;
476 	unsigned short buflen;
477 	unsigned int estatus = 0;
478 	unsigned int index;
479 	int entries_free;
480 
481 	entries_free = fec_enet_get_free_txdesc_num(txq);
482 	if (entries_free < MAX_SKB_FRAGS + 1) {
483 		dev_kfree_skb_any(skb);
484 		if (net_ratelimit())
485 			netdev_err(ndev, "NOT enough BD for SG!\n");
486 		return NETDEV_TX_OK;
487 	}
488 
489 	/* Protocol checksum off-load for TCP and UDP. */
490 	if (fec_enet_clear_csum(skb, ndev)) {
491 		dev_kfree_skb_any(skb);
492 		return NETDEV_TX_OK;
493 	}
494 
495 	/* Fill in a Tx ring entry */
496 	bdp = txq->bd.cur;
497 	last_bdp = bdp;
498 	status = fec16_to_cpu(bdp->cbd_sc);
499 	status &= ~BD_ENET_TX_STATS;
500 
501 	/* Set buffer length and buffer pointer */
502 	bufaddr = skb->data;
503 	buflen = skb_headlen(skb);
504 
505 	index = fec_enet_get_bd_index(bdp, &txq->bd);
506 	if (((unsigned long) bufaddr) & fep->tx_align ||
507 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
508 		memcpy(txq->tx_bounce[index], skb->data, buflen);
509 		bufaddr = txq->tx_bounce[index];
510 
511 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
512 			swap_buffer(bufaddr, buflen);
513 	}
514 
515 	/* Push the data cache so the CPM does not get stale memory data. */
516 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
517 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
518 		dev_kfree_skb_any(skb);
519 		if (net_ratelimit())
520 			netdev_err(ndev, "Tx DMA memory map failed\n");
521 		return NETDEV_TX_OK;
522 	}
523 
524 	if (nr_frags) {
525 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
526 		if (IS_ERR(last_bdp)) {
527 			dma_unmap_single(&fep->pdev->dev, addr,
528 					 buflen, DMA_TO_DEVICE);
529 			dev_kfree_skb_any(skb);
530 			return NETDEV_TX_OK;
531 		}
532 	} else {
533 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
534 		if (fep->bufdesc_ex) {
535 			estatus = BD_ENET_TX_INT;
536 			if (unlikely(skb_shinfo(skb)->tx_flags &
537 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
538 				estatus |= BD_ENET_TX_TS;
539 		}
540 	}
541 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
542 	bdp->cbd_datlen = cpu_to_fec16(buflen);
543 
544 	if (fep->bufdesc_ex) {
545 
546 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
547 
548 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
549 			fep->hwts_tx_en))
550 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
551 
552 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
553 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
554 
555 		if (skb->ip_summed == CHECKSUM_PARTIAL)
556 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
557 
558 		ebdp->cbd_bdu = 0;
559 		ebdp->cbd_esc = cpu_to_fec32(estatus);
560 	}
561 
562 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
563 	/* Save skb pointer */
564 	txq->tx_skbuff[index] = skb;
565 
566 	/* Make sure the updates to rest of the descriptor are performed before
567 	 * transferring ownership.
568 	 */
569 	wmb();
570 
571 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
572 	 * it's the last BD of the frame, and to put the CRC on the end.
573 	 */
574 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
575 	bdp->cbd_sc = cpu_to_fec16(status);
576 
577 	/* If this was the last BD in the ring, start at the beginning again. */
578 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Make sure the update to bdp and tx_skbuff are performed before
583 	 * txq->bd.cur.
584 	 */
585 	wmb();
586 	txq->bd.cur = bdp;
587 
588 	/* Trigger transmission start */
589 	writel(0, txq->bd.reg_desc_active);
590 
591 	return 0;
592 }
593 
594 static int
595 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
596 			  struct net_device *ndev,
597 			  struct bufdesc *bdp, int index, char *data,
598 			  int size, bool last_tcp, bool is_last)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
602 	unsigned short status;
603 	unsigned int estatus = 0;
604 	dma_addr_t addr;
605 
606 	status = fec16_to_cpu(bdp->cbd_sc);
607 	status &= ~BD_ENET_TX_STATS;
608 
609 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
610 
611 	if (((unsigned long) data) & fep->tx_align ||
612 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
613 		memcpy(txq->tx_bounce[index], data, size);
614 		data = txq->tx_bounce[index];
615 
616 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
617 			swap_buffer(data, size);
618 	}
619 
620 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
621 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
622 		dev_kfree_skb_any(skb);
623 		if (net_ratelimit())
624 			netdev_err(ndev, "Tx DMA memory map failed\n");
625 		return NETDEV_TX_BUSY;
626 	}
627 
628 	bdp->cbd_datlen = cpu_to_fec16(size);
629 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
630 
631 	if (fep->bufdesc_ex) {
632 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
633 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
634 		if (skb->ip_summed == CHECKSUM_PARTIAL)
635 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
636 		ebdp->cbd_bdu = 0;
637 		ebdp->cbd_esc = cpu_to_fec32(estatus);
638 	}
639 
640 	/* Handle the last BD specially */
641 	if (last_tcp)
642 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
643 	if (is_last) {
644 		status |= BD_ENET_TX_INTR;
645 		if (fep->bufdesc_ex)
646 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
647 	}
648 
649 	bdp->cbd_sc = cpu_to_fec16(status);
650 
651 	return 0;
652 }
653 
654 static int
655 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
656 			 struct sk_buff *skb, struct net_device *ndev,
657 			 struct bufdesc *bdp, int index)
658 {
659 	struct fec_enet_private *fep = netdev_priv(ndev);
660 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
661 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
662 	void *bufaddr;
663 	unsigned long dmabuf;
664 	unsigned short status;
665 	unsigned int estatus = 0;
666 
667 	status = fec16_to_cpu(bdp->cbd_sc);
668 	status &= ~BD_ENET_TX_STATS;
669 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
670 
671 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
672 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
673 	if (((unsigned long)bufaddr) & fep->tx_align ||
674 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
675 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
676 		bufaddr = txq->tx_bounce[index];
677 
678 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
679 			swap_buffer(bufaddr, hdr_len);
680 
681 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
682 					hdr_len, DMA_TO_DEVICE);
683 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
684 			dev_kfree_skb_any(skb);
685 			if (net_ratelimit())
686 				netdev_err(ndev, "Tx DMA memory map failed\n");
687 			return NETDEV_TX_BUSY;
688 		}
689 	}
690 
691 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
692 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
693 
694 	if (fep->bufdesc_ex) {
695 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
696 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
697 		if (skb->ip_summed == CHECKSUM_PARTIAL)
698 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
699 		ebdp->cbd_bdu = 0;
700 		ebdp->cbd_esc = cpu_to_fec32(estatus);
701 	}
702 
703 	bdp->cbd_sc = cpu_to_fec16(status);
704 
705 	return 0;
706 }
707 
708 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
709 				   struct sk_buff *skb,
710 				   struct net_device *ndev)
711 {
712 	struct fec_enet_private *fep = netdev_priv(ndev);
713 	int hdr_len, total_len, data_left;
714 	struct bufdesc *bdp = txq->bd.cur;
715 	struct tso_t tso;
716 	unsigned int index = 0;
717 	int ret;
718 
719 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
720 		dev_kfree_skb_any(skb);
721 		if (net_ratelimit())
722 			netdev_err(ndev, "NOT enough BD for TSO!\n");
723 		return NETDEV_TX_OK;
724 	}
725 
726 	/* Protocol checksum off-load for TCP and UDP. */
727 	if (fec_enet_clear_csum(skb, ndev)) {
728 		dev_kfree_skb_any(skb);
729 		return NETDEV_TX_OK;
730 	}
731 
732 	/* Initialize the TSO handler, and prepare the first payload */
733 	hdr_len = tso_start(skb, &tso);
734 
735 	total_len = skb->len - hdr_len;
736 	while (total_len > 0) {
737 		char *hdr;
738 
739 		index = fec_enet_get_bd_index(bdp, &txq->bd);
740 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
741 		total_len -= data_left;
742 
743 		/* prepare packet headers: MAC + IP + TCP */
744 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
745 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
746 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
747 		if (ret)
748 			goto err_release;
749 
750 		while (data_left > 0) {
751 			int size;
752 
753 			size = min_t(int, tso.size, data_left);
754 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
755 			index = fec_enet_get_bd_index(bdp, &txq->bd);
756 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
757 							bdp, index,
758 							tso.data, size,
759 							size == data_left,
760 							total_len == 0);
761 			if (ret)
762 				goto err_release;
763 
764 			data_left -= size;
765 			tso_build_data(skb, &tso, size);
766 		}
767 
768 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
769 	}
770 
771 	/* Save skb pointer */
772 	txq->tx_skbuff[index] = skb;
773 
774 	skb_tx_timestamp(skb);
775 	txq->bd.cur = bdp;
776 
777 	/* Trigger transmission start */
778 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active))
783 		writel(0, txq->bd.reg_desc_active);
784 
785 	return 0;
786 
787 err_release:
788 	/* TODO: Release all used data descriptors for TSO */
789 	return ret;
790 }
791 
792 static netdev_tx_t
793 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
794 {
795 	struct fec_enet_private *fep = netdev_priv(ndev);
796 	int entries_free;
797 	unsigned short queue;
798 	struct fec_enet_priv_tx_q *txq;
799 	struct netdev_queue *nq;
800 	int ret;
801 
802 	queue = skb_get_queue_mapping(skb);
803 	txq = fep->tx_queue[queue];
804 	nq = netdev_get_tx_queue(ndev, queue);
805 
806 	if (skb_is_gso(skb))
807 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
808 	else
809 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
810 	if (ret)
811 		return ret;
812 
813 	entries_free = fec_enet_get_free_txdesc_num(txq);
814 	if (entries_free <= txq->tx_stop_threshold)
815 		netif_tx_stop_queue(nq);
816 
817 	return NETDEV_TX_OK;
818 }
819 
820 /* Init RX & TX buffer descriptors
821  */
822 static void fec_enet_bd_init(struct net_device *dev)
823 {
824 	struct fec_enet_private *fep = netdev_priv(dev);
825 	struct fec_enet_priv_tx_q *txq;
826 	struct fec_enet_priv_rx_q *rxq;
827 	struct bufdesc *bdp;
828 	unsigned int i;
829 	unsigned int q;
830 
831 	for (q = 0; q < fep->num_rx_queues; q++) {
832 		/* Initialize the receive buffer descriptors. */
833 		rxq = fep->rx_queue[q];
834 		bdp = rxq->bd.base;
835 
836 		for (i = 0; i < rxq->bd.ring_size; i++) {
837 
838 			/* Initialize the BD for every fragment in the page. */
839 			if (bdp->cbd_bufaddr)
840 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
841 			else
842 				bdp->cbd_sc = cpu_to_fec16(0);
843 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
844 		}
845 
846 		/* Set the last buffer to wrap */
847 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
848 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
849 
850 		rxq->bd.cur = rxq->bd.base;
851 	}
852 
853 	for (q = 0; q < fep->num_tx_queues; q++) {
854 		/* ...and the same for transmit */
855 		txq = fep->tx_queue[q];
856 		bdp = txq->bd.base;
857 		txq->bd.cur = bdp;
858 
859 		for (i = 0; i < txq->bd.ring_size; i++) {
860 			/* Initialize the BD for every fragment in the page. */
861 			bdp->cbd_sc = cpu_to_fec16(0);
862 			if (bdp->cbd_bufaddr &&
863 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
864 				dma_unmap_single(&fep->pdev->dev,
865 						 fec32_to_cpu(bdp->cbd_bufaddr),
866 						 fec16_to_cpu(bdp->cbd_datlen),
867 						 DMA_TO_DEVICE);
868 			if (txq->tx_skbuff[i]) {
869 				dev_kfree_skb_any(txq->tx_skbuff[i]);
870 				txq->tx_skbuff[i] = NULL;
871 			}
872 			bdp->cbd_bufaddr = cpu_to_fec32(0);
873 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
874 		}
875 
876 		/* Set the last buffer to wrap */
877 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
878 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
879 		txq->dirty_tx = bdp;
880 	}
881 }
882 
883 static void fec_enet_active_rxring(struct net_device *ndev)
884 {
885 	struct fec_enet_private *fep = netdev_priv(ndev);
886 	int i;
887 
888 	for (i = 0; i < fep->num_rx_queues; i++)
889 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
890 }
891 
892 static void fec_enet_enable_ring(struct net_device *ndev)
893 {
894 	struct fec_enet_private *fep = netdev_priv(ndev);
895 	struct fec_enet_priv_tx_q *txq;
896 	struct fec_enet_priv_rx_q *rxq;
897 	int i;
898 
899 	for (i = 0; i < fep->num_rx_queues; i++) {
900 		rxq = fep->rx_queue[i];
901 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
902 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
903 
904 		/* enable DMA1/2 */
905 		if (i)
906 			writel(RCMR_MATCHEN | RCMR_CMP(i),
907 			       fep->hwp + FEC_RCMR(i));
908 	}
909 
910 	for (i = 0; i < fep->num_tx_queues; i++) {
911 		txq = fep->tx_queue[i];
912 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
913 
914 		/* enable DMA1/2 */
915 		if (i)
916 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
917 			       fep->hwp + FEC_DMA_CFG(i));
918 	}
919 }
920 
921 static void fec_enet_reset_skb(struct net_device *ndev)
922 {
923 	struct fec_enet_private *fep = netdev_priv(ndev);
924 	struct fec_enet_priv_tx_q *txq;
925 	int i, j;
926 
927 	for (i = 0; i < fep->num_tx_queues; i++) {
928 		txq = fep->tx_queue[i];
929 
930 		for (j = 0; j < txq->bd.ring_size; j++) {
931 			if (txq->tx_skbuff[j]) {
932 				dev_kfree_skb_any(txq->tx_skbuff[j]);
933 				txq->tx_skbuff[j] = NULL;
934 			}
935 		}
936 	}
937 }
938 
939 /*
940  * This function is called to start or restart the FEC during a link
941  * change, transmit timeout, or to reconfigure the FEC.  The network
942  * packet processing for this device must be stopped before this call.
943  */
944 static void
945 fec_restart(struct net_device *ndev)
946 {
947 	struct fec_enet_private *fep = netdev_priv(ndev);
948 	u32 temp_mac[2];
949 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
950 	u32 ecntl = 0x2; /* ETHEREN */
951 
952 	/* Whack a reset.  We should wait for this.
953 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
954 	 * instead of reset MAC itself.
955 	 */
956 	if (fep->quirks & FEC_QUIRK_HAS_AVB ||
957 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
958 		writel(0, fep->hwp + FEC_ECNTRL);
959 	} else {
960 		writel(1, fep->hwp + FEC_ECNTRL);
961 		udelay(10);
962 	}
963 
964 	/*
965 	 * enet-mac reset will reset mac address registers too,
966 	 * so need to reconfigure it.
967 	 */
968 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
969 	writel((__force u32)cpu_to_be32(temp_mac[0]),
970 	       fep->hwp + FEC_ADDR_LOW);
971 	writel((__force u32)cpu_to_be32(temp_mac[1]),
972 	       fep->hwp + FEC_ADDR_HIGH);
973 
974 	/* Clear any outstanding interrupt, except MDIO. */
975 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
976 
977 	fec_enet_bd_init(ndev);
978 
979 	fec_enet_enable_ring(ndev);
980 
981 	/* Reset tx SKB buffers. */
982 	fec_enet_reset_skb(ndev);
983 
984 	/* Enable MII mode */
985 	if (fep->full_duplex == DUPLEX_FULL) {
986 		/* FD enable */
987 		writel(0x04, fep->hwp + FEC_X_CNTRL);
988 	} else {
989 		/* No Rcv on Xmit */
990 		rcntl |= 0x02;
991 		writel(0x0, fep->hwp + FEC_X_CNTRL);
992 	}
993 
994 	/* Set MII speed */
995 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
996 
997 #if !defined(CONFIG_M5272)
998 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
999 		u32 val = readl(fep->hwp + FEC_RACC);
1000 
1001 		/* align IP header */
1002 		val |= FEC_RACC_SHIFT16;
1003 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 			/* set RX checksum */
1005 			val |= FEC_RACC_OPTIONS;
1006 		else
1007 			val &= ~FEC_RACC_OPTIONS;
1008 		writel(val, fep->hwp + FEC_RACC);
1009 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 	}
1011 #endif
1012 
1013 	/*
1014 	 * The phy interface and speed need to get configured
1015 	 * differently on enet-mac.
1016 	 */
1017 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 		/* Enable flow control and length check */
1019 		rcntl |= 0x40000000 | 0x00000020;
1020 
1021 		/* RGMII, RMII or MII */
1022 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 			rcntl |= (1 << 6);
1027 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 			rcntl |= (1 << 8);
1029 		else
1030 			rcntl &= ~(1 << 8);
1031 
1032 		/* 1G, 100M or 10M */
1033 		if (ndev->phydev) {
1034 			if (ndev->phydev->speed == SPEED_1000)
1035 				ecntl |= (1 << 5);
1036 			else if (ndev->phydev->speed == SPEED_100)
1037 				rcntl &= ~(1 << 9);
1038 			else
1039 				rcntl |= (1 << 9);
1040 		}
1041 	} else {
1042 #ifdef FEC_MIIGSK_ENR
1043 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 			u32 cfgr;
1045 			/* disable the gasket and wait */
1046 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 				udelay(1);
1049 
1050 			/*
1051 			 * configure the gasket:
1052 			 *   RMII, 50 MHz, no loopback, no echo
1053 			 *   MII, 25 MHz, no loopback, no echo
1054 			 */
1055 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060 
1061 			/* re-enable the gasket */
1062 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 		}
1064 #endif
1065 	}
1066 
1067 #if !defined(CONFIG_M5272)
1068 	/* enable pause frame*/
1069 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 	     ndev->phydev && ndev->phydev->pause)) {
1072 		rcntl |= FEC_ENET_FCE;
1073 
1074 		/* set FIFO threshold parameter to reduce overrun */
1075 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079 
1080 		/* OPD */
1081 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 	} else {
1083 		rcntl &= ~FEC_ENET_FCE;
1084 	}
1085 #endif /* !defined(CONFIG_M5272) */
1086 
1087 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088 
1089 	/* Setup multicast filter. */
1090 	set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095 
1096 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 		/* enable ENET endian swap */
1098 		ecntl |= (1 << 8);
1099 		/* enable ENET store and forward mode */
1100 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 	}
1102 
1103 	if (fep->bufdesc_ex)
1104 		ecntl |= (1 << 4);
1105 
1106 #ifndef CONFIG_M5272
1107 	/* Enable the MIB statistic event counters */
1108 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110 
1111 	/* And last, enable the transmit and receive processing */
1112 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 	fec_enet_active_rxring(ndev);
1114 
1115 	if (fep->bufdesc_ex)
1116 		fec_ptp_start_cyclecounter(ndev);
1117 
1118 	/* Enable interrupts we wish to service */
1119 	if (fep->link)
1120 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 	else
1122 		writel(0, fep->hwp + FEC_IMASK);
1123 
1124 	/* Init the interrupt coalescing */
1125 	fec_enet_itr_coal_init(ndev);
1126 
1127 }
1128 
1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133 
1134 	if (stop_gpr->gpr) {
1135 		if (enabled)
1136 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 					   BIT(stop_gpr->bit),
1138 					   BIT(stop_gpr->bit));
1139 		else
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit), 0);
1142 	} else if (pdata && pdata->sleep_mode_enable) {
1143 		pdata->sleep_mode_enable(enabled);
1144 	}
1145 }
1146 
1147 static void
1148 fec_stop(struct net_device *ndev)
1149 {
1150 	struct fec_enet_private *fep = netdev_priv(ndev);
1151 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 	u32 val;
1153 
1154 	/* We cannot expect a graceful transmit stop without link !!! */
1155 	if (fep->link) {
1156 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 		udelay(10);
1158 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 	}
1161 
1162 	/* Whack a reset.  We should wait for this.
1163 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 	 * instead of reset MAC itself.
1165 	 */
1166 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 			writel(0, fep->hwp + FEC_ECNTRL);
1169 		} else {
1170 			writel(1, fep->hwp + FEC_ECNTRL);
1171 			udelay(10);
1172 		}
1173 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 	} else {
1175 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 		val = readl(fep->hwp + FEC_ECNTRL);
1177 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 		writel(val, fep->hwp + FEC_ECNTRL);
1179 		fec_enet_stop_mode(fep, true);
1180 	}
1181 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182 
1183 	/* We have to keep ENET enabled to have MII interrupt stay working */
1184 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 		writel(2, fep->hwp + FEC_ECNTRL);
1187 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 	}
1189 }
1190 
1191 
1192 static void
1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 	struct fec_enet_private *fep = netdev_priv(ndev);
1196 
1197 	fec_dump(ndev);
1198 
1199 	ndev->stats.tx_errors++;
1200 
1201 	schedule_work(&fep->tx_timeout_work);
1202 }
1203 
1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 	struct fec_enet_private *fep =
1207 		container_of(work, struct fec_enet_private, tx_timeout_work);
1208 	struct net_device *ndev = fep->netdev;
1209 
1210 	rtnl_lock();
1211 	if (netif_device_present(ndev) || netif_running(ndev)) {
1212 		napi_disable(&fep->napi);
1213 		netif_tx_lock_bh(ndev);
1214 		fec_restart(ndev);
1215 		netif_tx_wake_all_queues(ndev);
1216 		netif_tx_unlock_bh(ndev);
1217 		napi_enable(&fep->napi);
1218 	}
1219 	rtnl_unlock();
1220 }
1221 
1222 static void
1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 	struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 	unsigned long flags;
1227 	u64 ns;
1228 
1229 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 	ns = timecounter_cyc2time(&fep->tc, ts);
1231 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232 
1233 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236 
1237 static void
1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 	struct	fec_enet_private *fep;
1241 	struct bufdesc *bdp;
1242 	unsigned short status;
1243 	struct	sk_buff	*skb;
1244 	struct fec_enet_priv_tx_q *txq;
1245 	struct netdev_queue *nq;
1246 	int	index = 0;
1247 	int	entries_free;
1248 
1249 	fep = netdev_priv(ndev);
1250 
1251 	txq = fep->tx_queue[queue_id];
1252 	/* get next bdp of dirty_tx */
1253 	nq = netdev_get_tx_queue(ndev, queue_id);
1254 	bdp = txq->dirty_tx;
1255 
1256 	/* get next bdp of dirty_tx */
1257 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258 
1259 	while (bdp != READ_ONCE(txq->bd.cur)) {
1260 		/* Order the load of bd.cur and cbd_sc */
1261 		rmb();
1262 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263 		if (status & BD_ENET_TX_READY)
1264 			break;
1265 
1266 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1267 
1268 		skb = txq->tx_skbuff[index];
1269 		txq->tx_skbuff[index] = NULL;
1270 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271 			dma_unmap_single(&fep->pdev->dev,
1272 					 fec32_to_cpu(bdp->cbd_bufaddr),
1273 					 fec16_to_cpu(bdp->cbd_datlen),
1274 					 DMA_TO_DEVICE);
1275 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1276 		if (!skb)
1277 			goto skb_done;
1278 
1279 		/* Check for errors. */
1280 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1282 				   BD_ENET_TX_CSL)) {
1283 			ndev->stats.tx_errors++;
1284 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1285 				ndev->stats.tx_heartbeat_errors++;
1286 			if (status & BD_ENET_TX_LC)  /* Late collision */
1287 				ndev->stats.tx_window_errors++;
1288 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1289 				ndev->stats.tx_aborted_errors++;
1290 			if (status & BD_ENET_TX_UN)  /* Underrun */
1291 				ndev->stats.tx_fifo_errors++;
1292 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293 				ndev->stats.tx_carrier_errors++;
1294 		} else {
1295 			ndev->stats.tx_packets++;
1296 			ndev->stats.tx_bytes += skb->len;
1297 		}
1298 
1299 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300 		 * are to time stamp the packet, so we still need to check time
1301 		 * stamping enabled flag.
1302 		 */
1303 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304 			     fep->hwts_tx_en) &&
1305 		    fep->bufdesc_ex) {
1306 			struct skb_shared_hwtstamps shhwtstamps;
1307 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308 
1309 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310 			skb_tstamp_tx(skb, &shhwtstamps);
1311 		}
1312 
1313 		/* Deferred means some collisions occurred during transmit,
1314 		 * but we eventually sent the packet OK.
1315 		 */
1316 		if (status & BD_ENET_TX_DEF)
1317 			ndev->stats.collisions++;
1318 
1319 		/* Free the sk buffer associated with this last transmit */
1320 		dev_kfree_skb_any(skb);
1321 skb_done:
1322 		/* Make sure the update to bdp and tx_skbuff are performed
1323 		 * before dirty_tx
1324 		 */
1325 		wmb();
1326 		txq->dirty_tx = bdp;
1327 
1328 		/* Update pointer to next buffer descriptor to be transmitted */
1329 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330 
1331 		/* Since we have freed up a buffer, the ring is no longer full
1332 		 */
1333 		if (netif_tx_queue_stopped(nq)) {
1334 			entries_free = fec_enet_get_free_txdesc_num(txq);
1335 			if (entries_free >= txq->tx_wake_threshold)
1336 				netif_tx_wake_queue(nq);
1337 		}
1338 	}
1339 
1340 	/* ERR006358: Keep the transmitter going */
1341 	if (bdp != txq->bd.cur &&
1342 	    readl(txq->bd.reg_desc_active) == 0)
1343 		writel(0, txq->bd.reg_desc_active);
1344 }
1345 
1346 static void fec_enet_tx(struct net_device *ndev)
1347 {
1348 	struct fec_enet_private *fep = netdev_priv(ndev);
1349 	int i;
1350 
1351 	/* Make sure that AVB queues are processed first. */
1352 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353 		fec_enet_tx_queue(ndev, i);
1354 }
1355 
1356 static int
1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 	struct  fec_enet_private *fep = netdev_priv(ndev);
1360 	int off;
1361 
1362 	off = ((unsigned long)skb->data) & fep->rx_align;
1363 	if (off)
1364 		skb_reserve(skb, fep->rx_align + 1 - off);
1365 
1366 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 		if (net_ratelimit())
1369 			netdev_err(ndev, "Rx DMA memory map failed\n");
1370 		return -ENOMEM;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 			       struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 	struct  fec_enet_private *fep = netdev_priv(ndev);
1380 	struct sk_buff *new_skb;
1381 
1382 	if (length > fep->rx_copybreak)
1383 		return false;
1384 
1385 	new_skb = netdev_alloc_skb(ndev, length);
1386 	if (!new_skb)
1387 		return false;
1388 
1389 	dma_sync_single_for_cpu(&fep->pdev->dev,
1390 				fec32_to_cpu(bdp->cbd_bufaddr),
1391 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 				DMA_FROM_DEVICE);
1393 	if (!swap)
1394 		memcpy(new_skb->data, (*skb)->data, length);
1395 	else
1396 		swap_buffer2(new_skb->data, (*skb)->data, length);
1397 	*skb = new_skb;
1398 
1399 	return true;
1400 }
1401 
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403  * When we update through the ring, if the next incoming buffer has
1404  * not been given to the system, we just set the empty indicator,
1405  * effectively tossing the packet.
1406  */
1407 static int
1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 	struct fec_enet_private *fep = netdev_priv(ndev);
1411 	struct fec_enet_priv_rx_q *rxq;
1412 	struct bufdesc *bdp;
1413 	unsigned short status;
1414 	struct  sk_buff *skb_new = NULL;
1415 	struct  sk_buff *skb;
1416 	ushort	pkt_len;
1417 	__u8 *data;
1418 	int	pkt_received = 0;
1419 	struct	bufdesc_ex *ebdp = NULL;
1420 	bool	vlan_packet_rcvd = false;
1421 	u16	vlan_tag;
1422 	int	index = 0;
1423 	bool	is_copybreak;
1424 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425 
1426 #ifdef CONFIG_M532x
1427 	flush_cache_all();
1428 #endif
1429 	rxq = fep->rx_queue[queue_id];
1430 
1431 	/* First, grab all of the stats for the incoming packet.
1432 	 * These get messed up if we get called due to a busy condition.
1433 	 */
1434 	bdp = rxq->bd.cur;
1435 
1436 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437 
1438 		if (pkt_received >= budget)
1439 			break;
1440 		pkt_received++;
1441 
1442 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1443 
1444 		/* Check for errors. */
1445 		status ^= BD_ENET_RX_LAST;
1446 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 			   BD_ENET_RX_CL)) {
1449 			ndev->stats.rx_errors++;
1450 			if (status & BD_ENET_RX_OV) {
1451 				/* FIFO overrun */
1452 				ndev->stats.rx_fifo_errors++;
1453 				goto rx_processing_done;
1454 			}
1455 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 						| BD_ENET_RX_LAST)) {
1457 				/* Frame too long or too short. */
1458 				ndev->stats.rx_length_errors++;
1459 				if (status & BD_ENET_RX_LAST)
1460 					netdev_err(ndev, "rcv is not +last\n");
1461 			}
1462 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1463 				ndev->stats.rx_crc_errors++;
1464 			/* Report late collisions as a frame error. */
1465 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 				ndev->stats.rx_frame_errors++;
1467 			goto rx_processing_done;
1468 		}
1469 
1470 		/* Process the incoming frame. */
1471 		ndev->stats.rx_packets++;
1472 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 		ndev->stats.rx_bytes += pkt_len;
1474 
1475 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 		skb = rxq->rx_skbuff[index];
1477 
1478 		/* The packet length includes FCS, but we don't want to
1479 		 * include that when passing upstream as it messes up
1480 		 * bridging applications.
1481 		 */
1482 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 						  need_swap);
1484 		if (!is_copybreak) {
1485 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 			if (unlikely(!skb_new)) {
1487 				ndev->stats.rx_dropped++;
1488 				goto rx_processing_done;
1489 			}
1490 			dma_unmap_single(&fep->pdev->dev,
1491 					 fec32_to_cpu(bdp->cbd_bufaddr),
1492 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 					 DMA_FROM_DEVICE);
1494 		}
1495 
1496 		prefetch(skb->data - NET_IP_ALIGN);
1497 		skb_put(skb, pkt_len - 4);
1498 		data = skb->data;
1499 
1500 		if (!is_copybreak && need_swap)
1501 			swap_buffer(data, pkt_len);
1502 
1503 #if !defined(CONFIG_M5272)
1504 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 			data = skb_pull_inline(skb, 2);
1506 #endif
1507 
1508 		/* Extract the enhanced buffer descriptor */
1509 		ebdp = NULL;
1510 		if (fep->bufdesc_ex)
1511 			ebdp = (struct bufdesc_ex *)bdp;
1512 
1513 		/* If this is a VLAN packet remove the VLAN Tag */
1514 		vlan_packet_rcvd = false;
1515 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 		    fep->bufdesc_ex &&
1517 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 			/* Push and remove the vlan tag */
1519 			struct vlan_hdr *vlan_header =
1520 					(struct vlan_hdr *) (data + ETH_HLEN);
1521 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522 
1523 			vlan_packet_rcvd = true;
1524 
1525 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 			skb_pull(skb, VLAN_HLEN);
1527 		}
1528 
1529 		skb->protocol = eth_type_trans(skb, ndev);
1530 
1531 		/* Get receive timestamp from the skb */
1532 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 					  skb_hwtstamps(skb));
1535 
1536 		if (fep->bufdesc_ex &&
1537 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 				/* don't check it */
1540 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 			} else {
1542 				skb_checksum_none_assert(skb);
1543 			}
1544 		}
1545 
1546 		/* Handle received VLAN packets */
1547 		if (vlan_packet_rcvd)
1548 			__vlan_hwaccel_put_tag(skb,
1549 					       htons(ETH_P_8021Q),
1550 					       vlan_tag);
1551 
1552 		skb_record_rx_queue(skb, queue_id);
1553 		napi_gro_receive(&fep->napi, skb);
1554 
1555 		if (is_copybreak) {
1556 			dma_sync_single_for_device(&fep->pdev->dev,
1557 						   fec32_to_cpu(bdp->cbd_bufaddr),
1558 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 						   DMA_FROM_DEVICE);
1560 		} else {
1561 			rxq->rx_skbuff[index] = skb_new;
1562 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 		}
1564 
1565 rx_processing_done:
1566 		/* Clear the status flags for this buffer */
1567 		status &= ~BD_ENET_RX_STATS;
1568 
1569 		/* Mark the buffer empty */
1570 		status |= BD_ENET_RX_EMPTY;
1571 
1572 		if (fep->bufdesc_ex) {
1573 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574 
1575 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 			ebdp->cbd_prot = 0;
1577 			ebdp->cbd_bdu = 0;
1578 		}
1579 		/* Make sure the updates to rest of the descriptor are
1580 		 * performed before transferring ownership.
1581 		 */
1582 		wmb();
1583 		bdp->cbd_sc = cpu_to_fec16(status);
1584 
1585 		/* Update BD pointer to next entry */
1586 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587 
1588 		/* Doing this here will keep the FEC running while we process
1589 		 * incoming frames.  On a heavily loaded network, we should be
1590 		 * able to keep up at the expense of system resources.
1591 		 */
1592 		writel(0, rxq->bd.reg_desc_active);
1593 	}
1594 	rxq->bd.cur = bdp;
1595 	return pkt_received;
1596 }
1597 
1598 static int fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 	struct fec_enet_private *fep = netdev_priv(ndev);
1601 	int i, done = 0;
1602 
1603 	/* Make sure that AVB queues are processed first. */
1604 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605 		done += fec_enet_rx_queue(ndev, budget - done, i);
1606 
1607 	return done;
1608 }
1609 
1610 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611 {
1612 	uint int_events;
1613 
1614 	int_events = readl(fep->hwp + FEC_IEVENT);
1615 
1616 	/* Don't clear MDIO events, we poll for those */
1617 	int_events &= ~FEC_ENET_MII;
1618 
1619 	writel(int_events, fep->hwp + FEC_IEVENT);
1620 
1621 	return int_events != 0;
1622 }
1623 
1624 static irqreturn_t
1625 fec_enet_interrupt(int irq, void *dev_id)
1626 {
1627 	struct net_device *ndev = dev_id;
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	irqreturn_t ret = IRQ_NONE;
1630 
1631 	if (fec_enet_collect_events(fep) && fep->link) {
1632 		ret = IRQ_HANDLED;
1633 
1634 		if (napi_schedule_prep(&fep->napi)) {
1635 			/* Disable interrupts */
1636 			writel(0, fep->hwp + FEC_IMASK);
1637 			__napi_schedule(&fep->napi);
1638 		}
1639 	}
1640 
1641 	return ret;
1642 }
1643 
1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645 {
1646 	struct net_device *ndev = napi->dev;
1647 	struct fec_enet_private *fep = netdev_priv(ndev);
1648 	int done = 0;
1649 
1650 	do {
1651 		done += fec_enet_rx(ndev, budget - done);
1652 		fec_enet_tx(ndev);
1653 	} while ((done < budget) && fec_enet_collect_events(fep));
1654 
1655 	if (done < budget) {
1656 		napi_complete_done(napi, done);
1657 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658 	}
1659 
1660 	return done;
1661 }
1662 
1663 /* ------------------------------------------------------------------------- */
1664 static void fec_get_mac(struct net_device *ndev)
1665 {
1666 	struct fec_enet_private *fep = netdev_priv(ndev);
1667 	unsigned char *iap, tmpaddr[ETH_ALEN];
1668 
1669 	/*
1670 	 * try to get mac address in following order:
1671 	 *
1672 	 * 1) module parameter via kernel command line in form
1673 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1674 	 */
1675 	iap = macaddr;
1676 
1677 	/*
1678 	 * 2) from device tree data
1679 	 */
1680 	if (!is_valid_ether_addr(iap)) {
1681 		struct device_node *np = fep->pdev->dev.of_node;
1682 		if (np) {
1683 			const char *mac = of_get_mac_address(np);
1684 			if (!IS_ERR(mac))
1685 				iap = (unsigned char *) mac;
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * 3) from flash or fuse (via platform data)
1691 	 */
1692 	if (!is_valid_ether_addr(iap)) {
1693 #ifdef CONFIG_M5272
1694 		if (FEC_FLASHMAC)
1695 			iap = (unsigned char *)FEC_FLASHMAC;
1696 #else
1697 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1698 
1699 		if (pdata)
1700 			iap = (unsigned char *)&pdata->mac;
1701 #endif
1702 	}
1703 
1704 	/*
1705 	 * 4) FEC mac registers set by bootloader
1706 	 */
1707 	if (!is_valid_ether_addr(iap)) {
1708 		*((__be32 *) &tmpaddr[0]) =
1709 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1710 		*((__be16 *) &tmpaddr[4]) =
1711 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1712 		iap = &tmpaddr[0];
1713 	}
1714 
1715 	/*
1716 	 * 5) random mac address
1717 	 */
1718 	if (!is_valid_ether_addr(iap)) {
1719 		/* Report it and use a random ethernet address instead */
1720 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1721 		eth_hw_addr_random(ndev);
1722 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1723 			 ndev->dev_addr);
1724 		return;
1725 	}
1726 
1727 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1728 
1729 	/* Adjust MAC if using macaddr */
1730 	if (iap == macaddr)
1731 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1732 }
1733 
1734 /* ------------------------------------------------------------------------- */
1735 
1736 /*
1737  * Phy section
1738  */
1739 static void fec_enet_adjust_link(struct net_device *ndev)
1740 {
1741 	struct fec_enet_private *fep = netdev_priv(ndev);
1742 	struct phy_device *phy_dev = ndev->phydev;
1743 	int status_change = 0;
1744 
1745 	/*
1746 	 * If the netdev is down, or is going down, we're not interested
1747 	 * in link state events, so just mark our idea of the link as down
1748 	 * and ignore the event.
1749 	 */
1750 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1751 		fep->link = 0;
1752 	} else if (phy_dev->link) {
1753 		if (!fep->link) {
1754 			fep->link = phy_dev->link;
1755 			status_change = 1;
1756 		}
1757 
1758 		if (fep->full_duplex != phy_dev->duplex) {
1759 			fep->full_duplex = phy_dev->duplex;
1760 			status_change = 1;
1761 		}
1762 
1763 		if (phy_dev->speed != fep->speed) {
1764 			fep->speed = phy_dev->speed;
1765 			status_change = 1;
1766 		}
1767 
1768 		/* if any of the above changed restart the FEC */
1769 		if (status_change) {
1770 			napi_disable(&fep->napi);
1771 			netif_tx_lock_bh(ndev);
1772 			fec_restart(ndev);
1773 			netif_tx_wake_all_queues(ndev);
1774 			netif_tx_unlock_bh(ndev);
1775 			napi_enable(&fep->napi);
1776 		}
1777 	} else {
1778 		if (fep->link) {
1779 			napi_disable(&fep->napi);
1780 			netif_tx_lock_bh(ndev);
1781 			fec_stop(ndev);
1782 			netif_tx_unlock_bh(ndev);
1783 			napi_enable(&fep->napi);
1784 			fep->link = phy_dev->link;
1785 			status_change = 1;
1786 		}
1787 	}
1788 
1789 	if (status_change)
1790 		phy_print_status(phy_dev);
1791 }
1792 
1793 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1794 {
1795 	uint ievent;
1796 	int ret;
1797 
1798 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1799 					ievent & FEC_ENET_MII, 2, 30000);
1800 
1801 	if (!ret)
1802 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1803 
1804 	return ret;
1805 }
1806 
1807 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1808 {
1809 	struct fec_enet_private *fep = bus->priv;
1810 	struct device *dev = &fep->pdev->dev;
1811 	int ret = 0, frame_start, frame_addr, frame_op;
1812 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1813 
1814 	ret = pm_runtime_resume_and_get(dev);
1815 	if (ret < 0)
1816 		return ret;
1817 
1818 	if (is_c45) {
1819 		frame_start = FEC_MMFR_ST_C45;
1820 
1821 		/* write address */
1822 		frame_addr = (regnum >> 16);
1823 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1824 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1825 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1826 		       fep->hwp + FEC_MII_DATA);
1827 
1828 		/* wait for end of transfer */
1829 		ret = fec_enet_mdio_wait(fep);
1830 		if (ret) {
1831 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1832 			goto out;
1833 		}
1834 
1835 		frame_op = FEC_MMFR_OP_READ_C45;
1836 
1837 	} else {
1838 		/* C22 read */
1839 		frame_op = FEC_MMFR_OP_READ;
1840 		frame_start = FEC_MMFR_ST;
1841 		frame_addr = regnum;
1842 	}
1843 
1844 	/* start a read op */
1845 	writel(frame_start | frame_op |
1846 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1847 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1848 
1849 	/* wait for end of transfer */
1850 	ret = fec_enet_mdio_wait(fep);
1851 	if (ret) {
1852 		netdev_err(fep->netdev, "MDIO read timeout\n");
1853 		goto out;
1854 	}
1855 
1856 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1857 
1858 out:
1859 	pm_runtime_mark_last_busy(dev);
1860 	pm_runtime_put_autosuspend(dev);
1861 
1862 	return ret;
1863 }
1864 
1865 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1866 			   u16 value)
1867 {
1868 	struct fec_enet_private *fep = bus->priv;
1869 	struct device *dev = &fep->pdev->dev;
1870 	int ret, frame_start, frame_addr;
1871 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1872 
1873 	ret = pm_runtime_resume_and_get(dev);
1874 	if (ret < 0)
1875 		return ret;
1876 
1877 	if (is_c45) {
1878 		frame_start = FEC_MMFR_ST_C45;
1879 
1880 		/* write address */
1881 		frame_addr = (regnum >> 16);
1882 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1883 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1884 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1885 		       fep->hwp + FEC_MII_DATA);
1886 
1887 		/* wait for end of transfer */
1888 		ret = fec_enet_mdio_wait(fep);
1889 		if (ret) {
1890 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1891 			goto out;
1892 		}
1893 	} else {
1894 		/* C22 write */
1895 		frame_start = FEC_MMFR_ST;
1896 		frame_addr = regnum;
1897 	}
1898 
1899 	/* start a write op */
1900 	writel(frame_start | FEC_MMFR_OP_WRITE |
1901 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1902 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1903 		fep->hwp + FEC_MII_DATA);
1904 
1905 	/* wait for end of transfer */
1906 	ret = fec_enet_mdio_wait(fep);
1907 	if (ret)
1908 		netdev_err(fep->netdev, "MDIO write timeout\n");
1909 
1910 out:
1911 	pm_runtime_mark_last_busy(dev);
1912 	pm_runtime_put_autosuspend(dev);
1913 
1914 	return ret;
1915 }
1916 
1917 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1918 {
1919 	struct fec_enet_private *fep = netdev_priv(ndev);
1920 	struct phy_device *phy_dev = ndev->phydev;
1921 
1922 	if (phy_dev) {
1923 		phy_reset_after_clk_enable(phy_dev);
1924 	} else if (fep->phy_node) {
1925 		/*
1926 		 * If the PHY still is not bound to the MAC, but there is
1927 		 * OF PHY node and a matching PHY device instance already,
1928 		 * use the OF PHY node to obtain the PHY device instance,
1929 		 * and then use that PHY device instance when triggering
1930 		 * the PHY reset.
1931 		 */
1932 		phy_dev = of_phy_find_device(fep->phy_node);
1933 		phy_reset_after_clk_enable(phy_dev);
1934 		put_device(&phy_dev->mdio.dev);
1935 	}
1936 }
1937 
1938 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1939 {
1940 	struct fec_enet_private *fep = netdev_priv(ndev);
1941 	int ret;
1942 
1943 	if (enable) {
1944 		ret = clk_prepare_enable(fep->clk_enet_out);
1945 		if (ret)
1946 			return ret;
1947 
1948 		if (fep->clk_ptp) {
1949 			mutex_lock(&fep->ptp_clk_mutex);
1950 			ret = clk_prepare_enable(fep->clk_ptp);
1951 			if (ret) {
1952 				mutex_unlock(&fep->ptp_clk_mutex);
1953 				goto failed_clk_ptp;
1954 			} else {
1955 				fep->ptp_clk_on = true;
1956 			}
1957 			mutex_unlock(&fep->ptp_clk_mutex);
1958 		}
1959 
1960 		ret = clk_prepare_enable(fep->clk_ref);
1961 		if (ret)
1962 			goto failed_clk_ref;
1963 
1964 		fec_enet_phy_reset_after_clk_enable(ndev);
1965 	} else {
1966 		clk_disable_unprepare(fep->clk_enet_out);
1967 		if (fep->clk_ptp) {
1968 			mutex_lock(&fep->ptp_clk_mutex);
1969 			clk_disable_unprepare(fep->clk_ptp);
1970 			fep->ptp_clk_on = false;
1971 			mutex_unlock(&fep->ptp_clk_mutex);
1972 		}
1973 		clk_disable_unprepare(fep->clk_ref);
1974 	}
1975 
1976 	return 0;
1977 
1978 failed_clk_ref:
1979 	if (fep->clk_ptp) {
1980 		mutex_lock(&fep->ptp_clk_mutex);
1981 		clk_disable_unprepare(fep->clk_ptp);
1982 		fep->ptp_clk_on = false;
1983 		mutex_unlock(&fep->ptp_clk_mutex);
1984 	}
1985 failed_clk_ptp:
1986 	clk_disable_unprepare(fep->clk_enet_out);
1987 
1988 	return ret;
1989 }
1990 
1991 static int fec_enet_mii_probe(struct net_device *ndev)
1992 {
1993 	struct fec_enet_private *fep = netdev_priv(ndev);
1994 	struct phy_device *phy_dev = NULL;
1995 	char mdio_bus_id[MII_BUS_ID_SIZE];
1996 	char phy_name[MII_BUS_ID_SIZE + 3];
1997 	int phy_id;
1998 	int dev_id = fep->dev_id;
1999 
2000 	if (fep->phy_node) {
2001 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2002 					 &fec_enet_adjust_link, 0,
2003 					 fep->phy_interface);
2004 		if (!phy_dev) {
2005 			netdev_err(ndev, "Unable to connect to phy\n");
2006 			return -ENODEV;
2007 		}
2008 	} else {
2009 		/* check for attached phy */
2010 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2011 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2012 				continue;
2013 			if (dev_id--)
2014 				continue;
2015 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2016 			break;
2017 		}
2018 
2019 		if (phy_id >= PHY_MAX_ADDR) {
2020 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2021 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2022 			phy_id = 0;
2023 		}
2024 
2025 		snprintf(phy_name, sizeof(phy_name),
2026 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2027 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2028 				      fep->phy_interface);
2029 	}
2030 
2031 	if (IS_ERR(phy_dev)) {
2032 		netdev_err(ndev, "could not attach to PHY\n");
2033 		return PTR_ERR(phy_dev);
2034 	}
2035 
2036 	/* mask with MAC supported features */
2037 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2038 		phy_set_max_speed(phy_dev, 1000);
2039 		phy_remove_link_mode(phy_dev,
2040 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2041 #if !defined(CONFIG_M5272)
2042 		phy_support_sym_pause(phy_dev);
2043 #endif
2044 	}
2045 	else
2046 		phy_set_max_speed(phy_dev, 100);
2047 
2048 	fep->link = 0;
2049 	fep->full_duplex = 0;
2050 
2051 	phy_attached_info(phy_dev);
2052 
2053 	return 0;
2054 }
2055 
2056 static int fec_enet_mii_init(struct platform_device *pdev)
2057 {
2058 	static struct mii_bus *fec0_mii_bus;
2059 	struct net_device *ndev = platform_get_drvdata(pdev);
2060 	struct fec_enet_private *fep = netdev_priv(ndev);
2061 	bool suppress_preamble = false;
2062 	struct device_node *node;
2063 	int err = -ENXIO;
2064 	u32 mii_speed, holdtime;
2065 	u32 bus_freq;
2066 
2067 	/*
2068 	 * The i.MX28 dual fec interfaces are not equal.
2069 	 * Here are the differences:
2070 	 *
2071 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2072 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2073 	 *  - external phys can only be configured by fec0
2074 	 *
2075 	 * That is to say fec1 can not work independently. It only works
2076 	 * when fec0 is working. The reason behind this design is that the
2077 	 * second interface is added primarily for Switch mode.
2078 	 *
2079 	 * Because of the last point above, both phys are attached on fec0
2080 	 * mdio interface in board design, and need to be configured by
2081 	 * fec0 mii_bus.
2082 	 */
2083 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2084 		/* fec1 uses fec0 mii_bus */
2085 		if (mii_cnt && fec0_mii_bus) {
2086 			fep->mii_bus = fec0_mii_bus;
2087 			mii_cnt++;
2088 			return 0;
2089 		}
2090 		return -ENOENT;
2091 	}
2092 
2093 	bus_freq = 2500000; /* 2.5MHz by default */
2094 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2095 	if (node) {
2096 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2097 		suppress_preamble = of_property_read_bool(node,
2098 							  "suppress-preamble");
2099 	}
2100 
2101 	/*
2102 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2103 	 *
2104 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2105 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2106 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2107 	 * document.
2108 	 */
2109 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2110 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2111 		mii_speed--;
2112 	if (mii_speed > 63) {
2113 		dev_err(&pdev->dev,
2114 			"fec clock (%lu) too fast to get right mii speed\n",
2115 			clk_get_rate(fep->clk_ipg));
2116 		err = -EINVAL;
2117 		goto err_out;
2118 	}
2119 
2120 	/*
2121 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2122 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2123 	 * versions are RAZ there, so just ignore the difference and write the
2124 	 * register always.
2125 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2126 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2127 	 * output.
2128 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2129 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2130 	 * holdtime cannot result in a value greater than 3.
2131 	 */
2132 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2133 
2134 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2135 
2136 	if (suppress_preamble)
2137 		fep->phy_speed |= BIT(7);
2138 
2139 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2140 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2141 		 * MII event generation condition:
2142 		 * - writing MSCR:
2143 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2144 		 *	  mscr_reg_data_in[7:0] != 0
2145 		 * - writing MMFR:
2146 		 *	- mscr[7:0]_not_zero
2147 		 */
2148 		writel(0, fep->hwp + FEC_MII_DATA);
2149 	}
2150 
2151 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2152 
2153 	/* Clear any pending transaction complete indication */
2154 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2155 
2156 	fep->mii_bus = mdiobus_alloc();
2157 	if (fep->mii_bus == NULL) {
2158 		err = -ENOMEM;
2159 		goto err_out;
2160 	}
2161 
2162 	fep->mii_bus->name = "fec_enet_mii_bus";
2163 	fep->mii_bus->read = fec_enet_mdio_read;
2164 	fep->mii_bus->write = fec_enet_mdio_write;
2165 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2166 		pdev->name, fep->dev_id + 1);
2167 	fep->mii_bus->priv = fep;
2168 	fep->mii_bus->parent = &pdev->dev;
2169 
2170 	err = of_mdiobus_register(fep->mii_bus, node);
2171 	if (err)
2172 		goto err_out_free_mdiobus;
2173 	of_node_put(node);
2174 
2175 	mii_cnt++;
2176 
2177 	/* save fec0 mii_bus */
2178 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2179 		fec0_mii_bus = fep->mii_bus;
2180 
2181 	return 0;
2182 
2183 err_out_free_mdiobus:
2184 	mdiobus_free(fep->mii_bus);
2185 err_out:
2186 	of_node_put(node);
2187 	return err;
2188 }
2189 
2190 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2191 {
2192 	if (--mii_cnt == 0) {
2193 		mdiobus_unregister(fep->mii_bus);
2194 		mdiobus_free(fep->mii_bus);
2195 	}
2196 }
2197 
2198 static void fec_enet_get_drvinfo(struct net_device *ndev,
2199 				 struct ethtool_drvinfo *info)
2200 {
2201 	struct fec_enet_private *fep = netdev_priv(ndev);
2202 
2203 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2204 		sizeof(info->driver));
2205 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2206 }
2207 
2208 static int fec_enet_get_regs_len(struct net_device *ndev)
2209 {
2210 	struct fec_enet_private *fep = netdev_priv(ndev);
2211 	struct resource *r;
2212 	int s = 0;
2213 
2214 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2215 	if (r)
2216 		s = resource_size(r);
2217 
2218 	return s;
2219 }
2220 
2221 /* List of registers that can be safety be read to dump them with ethtool */
2222 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2223 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2224 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2225 static __u32 fec_enet_register_version = 2;
2226 static u32 fec_enet_register_offset[] = {
2227 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2228 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2229 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2230 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2231 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2232 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2233 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2234 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2235 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2236 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2237 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2238 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2239 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2240 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2241 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2242 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2243 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2244 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2245 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2246 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2247 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2248 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2249 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2250 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2251 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2252 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2253 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2254 };
2255 #else
2256 static __u32 fec_enet_register_version = 1;
2257 static u32 fec_enet_register_offset[] = {
2258 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2259 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2260 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2261 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2262 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2263 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2264 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2265 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2266 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2267 };
2268 #endif
2269 
2270 static void fec_enet_get_regs(struct net_device *ndev,
2271 			      struct ethtool_regs *regs, void *regbuf)
2272 {
2273 	struct fec_enet_private *fep = netdev_priv(ndev);
2274 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2275 	struct device *dev = &fep->pdev->dev;
2276 	u32 *buf = (u32 *)regbuf;
2277 	u32 i, off;
2278 	int ret;
2279 
2280 	ret = pm_runtime_resume_and_get(dev);
2281 	if (ret < 0)
2282 		return;
2283 
2284 	regs->version = fec_enet_register_version;
2285 
2286 	memset(buf, 0, regs->len);
2287 
2288 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2289 		off = fec_enet_register_offset[i];
2290 
2291 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2292 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2293 			continue;
2294 
2295 		off >>= 2;
2296 		buf[off] = readl(&theregs[off]);
2297 	}
2298 
2299 	pm_runtime_mark_last_busy(dev);
2300 	pm_runtime_put_autosuspend(dev);
2301 }
2302 
2303 static int fec_enet_get_ts_info(struct net_device *ndev,
2304 				struct ethtool_ts_info *info)
2305 {
2306 	struct fec_enet_private *fep = netdev_priv(ndev);
2307 
2308 	if (fep->bufdesc_ex) {
2309 
2310 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2311 					SOF_TIMESTAMPING_RX_SOFTWARE |
2312 					SOF_TIMESTAMPING_SOFTWARE |
2313 					SOF_TIMESTAMPING_TX_HARDWARE |
2314 					SOF_TIMESTAMPING_RX_HARDWARE |
2315 					SOF_TIMESTAMPING_RAW_HARDWARE;
2316 		if (fep->ptp_clock)
2317 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2318 		else
2319 			info->phc_index = -1;
2320 
2321 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2322 				 (1 << HWTSTAMP_TX_ON);
2323 
2324 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2325 				   (1 << HWTSTAMP_FILTER_ALL);
2326 		return 0;
2327 	} else {
2328 		return ethtool_op_get_ts_info(ndev, info);
2329 	}
2330 }
2331 
2332 #if !defined(CONFIG_M5272)
2333 
2334 static void fec_enet_get_pauseparam(struct net_device *ndev,
2335 				    struct ethtool_pauseparam *pause)
2336 {
2337 	struct fec_enet_private *fep = netdev_priv(ndev);
2338 
2339 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2340 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2341 	pause->rx_pause = pause->tx_pause;
2342 }
2343 
2344 static int fec_enet_set_pauseparam(struct net_device *ndev,
2345 				   struct ethtool_pauseparam *pause)
2346 {
2347 	struct fec_enet_private *fep = netdev_priv(ndev);
2348 
2349 	if (!ndev->phydev)
2350 		return -ENODEV;
2351 
2352 	if (pause->tx_pause != pause->rx_pause) {
2353 		netdev_info(ndev,
2354 			"hardware only support enable/disable both tx and rx");
2355 		return -EINVAL;
2356 	}
2357 
2358 	fep->pause_flag = 0;
2359 
2360 	/* tx pause must be same as rx pause */
2361 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2362 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2363 
2364 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2365 			  pause->autoneg);
2366 
2367 	if (pause->autoneg) {
2368 		if (netif_running(ndev))
2369 			fec_stop(ndev);
2370 		phy_start_aneg(ndev->phydev);
2371 	}
2372 	if (netif_running(ndev)) {
2373 		napi_disable(&fep->napi);
2374 		netif_tx_lock_bh(ndev);
2375 		fec_restart(ndev);
2376 		netif_tx_wake_all_queues(ndev);
2377 		netif_tx_unlock_bh(ndev);
2378 		napi_enable(&fep->napi);
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static const struct fec_stat {
2385 	char name[ETH_GSTRING_LEN];
2386 	u16 offset;
2387 } fec_stats[] = {
2388 	/* RMON TX */
2389 	{ "tx_dropped", RMON_T_DROP },
2390 	{ "tx_packets", RMON_T_PACKETS },
2391 	{ "tx_broadcast", RMON_T_BC_PKT },
2392 	{ "tx_multicast", RMON_T_MC_PKT },
2393 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2394 	{ "tx_undersize", RMON_T_UNDERSIZE },
2395 	{ "tx_oversize", RMON_T_OVERSIZE },
2396 	{ "tx_fragment", RMON_T_FRAG },
2397 	{ "tx_jabber", RMON_T_JAB },
2398 	{ "tx_collision", RMON_T_COL },
2399 	{ "tx_64byte", RMON_T_P64 },
2400 	{ "tx_65to127byte", RMON_T_P65TO127 },
2401 	{ "tx_128to255byte", RMON_T_P128TO255 },
2402 	{ "tx_256to511byte", RMON_T_P256TO511 },
2403 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2404 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2405 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2406 	{ "tx_octets", RMON_T_OCTETS },
2407 
2408 	/* IEEE TX */
2409 	{ "IEEE_tx_drop", IEEE_T_DROP },
2410 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2411 	{ "IEEE_tx_1col", IEEE_T_1COL },
2412 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2413 	{ "IEEE_tx_def", IEEE_T_DEF },
2414 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2415 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2416 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2417 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2418 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2419 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2420 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2421 
2422 	/* RMON RX */
2423 	{ "rx_packets", RMON_R_PACKETS },
2424 	{ "rx_broadcast", RMON_R_BC_PKT },
2425 	{ "rx_multicast", RMON_R_MC_PKT },
2426 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2427 	{ "rx_undersize", RMON_R_UNDERSIZE },
2428 	{ "rx_oversize", RMON_R_OVERSIZE },
2429 	{ "rx_fragment", RMON_R_FRAG },
2430 	{ "rx_jabber", RMON_R_JAB },
2431 	{ "rx_64byte", RMON_R_P64 },
2432 	{ "rx_65to127byte", RMON_R_P65TO127 },
2433 	{ "rx_128to255byte", RMON_R_P128TO255 },
2434 	{ "rx_256to511byte", RMON_R_P256TO511 },
2435 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2436 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2437 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2438 	{ "rx_octets", RMON_R_OCTETS },
2439 
2440 	/* IEEE RX */
2441 	{ "IEEE_rx_drop", IEEE_R_DROP },
2442 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2443 	{ "IEEE_rx_crc", IEEE_R_CRC },
2444 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2445 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2446 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2447 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2448 };
2449 
2450 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2451 
2452 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2453 {
2454 	struct fec_enet_private *fep = netdev_priv(dev);
2455 	int i;
2456 
2457 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2458 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2459 }
2460 
2461 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2462 				       struct ethtool_stats *stats, u64 *data)
2463 {
2464 	struct fec_enet_private *fep = netdev_priv(dev);
2465 
2466 	if (netif_running(dev))
2467 		fec_enet_update_ethtool_stats(dev);
2468 
2469 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2470 }
2471 
2472 static void fec_enet_get_strings(struct net_device *netdev,
2473 	u32 stringset, u8 *data)
2474 {
2475 	int i;
2476 	switch (stringset) {
2477 	case ETH_SS_STATS:
2478 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2479 			memcpy(data + i * ETH_GSTRING_LEN,
2480 				fec_stats[i].name, ETH_GSTRING_LEN);
2481 		break;
2482 	}
2483 }
2484 
2485 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2486 {
2487 	switch (sset) {
2488 	case ETH_SS_STATS:
2489 		return ARRAY_SIZE(fec_stats);
2490 	default:
2491 		return -EOPNOTSUPP;
2492 	}
2493 }
2494 
2495 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2496 {
2497 	struct fec_enet_private *fep = netdev_priv(dev);
2498 	int i;
2499 
2500 	/* Disable MIB statistics counters */
2501 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2502 
2503 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2504 		writel(0, fep->hwp + fec_stats[i].offset);
2505 
2506 	/* Don't disable MIB statistics counters */
2507 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2508 }
2509 
2510 #else	/* !defined(CONFIG_M5272) */
2511 #define FEC_STATS_SIZE	0
2512 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2513 {
2514 }
2515 
2516 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2517 {
2518 }
2519 #endif /* !defined(CONFIG_M5272) */
2520 
2521 /* ITR clock source is enet system clock (clk_ahb).
2522  * TCTT unit is cycle_ns * 64 cycle
2523  * So, the ICTT value = X us / (cycle_ns * 64)
2524  */
2525 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2526 {
2527 	struct fec_enet_private *fep = netdev_priv(ndev);
2528 
2529 	return us * (fep->itr_clk_rate / 64000) / 1000;
2530 }
2531 
2532 /* Set threshold for interrupt coalescing */
2533 static void fec_enet_itr_coal_set(struct net_device *ndev)
2534 {
2535 	struct fec_enet_private *fep = netdev_priv(ndev);
2536 	int rx_itr, tx_itr;
2537 
2538 	/* Must be greater than zero to avoid unpredictable behavior */
2539 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2540 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2541 		return;
2542 
2543 	/* Select enet system clock as Interrupt Coalescing
2544 	 * timer Clock Source
2545 	 */
2546 	rx_itr = FEC_ITR_CLK_SEL;
2547 	tx_itr = FEC_ITR_CLK_SEL;
2548 
2549 	/* set ICFT and ICTT */
2550 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2551 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2552 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2553 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2554 
2555 	rx_itr |= FEC_ITR_EN;
2556 	tx_itr |= FEC_ITR_EN;
2557 
2558 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2559 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2560 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2561 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2562 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2563 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2564 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2565 	}
2566 }
2567 
2568 static int
2569 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2570 {
2571 	struct fec_enet_private *fep = netdev_priv(ndev);
2572 
2573 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2574 		return -EOPNOTSUPP;
2575 
2576 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2577 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2578 
2579 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2580 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2581 
2582 	return 0;
2583 }
2584 
2585 static int
2586 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2587 {
2588 	struct fec_enet_private *fep = netdev_priv(ndev);
2589 	struct device *dev = &fep->pdev->dev;
2590 	unsigned int cycle;
2591 
2592 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2593 		return -EOPNOTSUPP;
2594 
2595 	if (ec->rx_max_coalesced_frames > 255) {
2596 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2597 		return -EINVAL;
2598 	}
2599 
2600 	if (ec->tx_max_coalesced_frames > 255) {
2601 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2602 		return -EINVAL;
2603 	}
2604 
2605 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2606 	if (cycle > 0xFFFF) {
2607 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2608 		return -EINVAL;
2609 	}
2610 
2611 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2612 	if (cycle > 0xFFFF) {
2613 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2614 		return -EINVAL;
2615 	}
2616 
2617 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2618 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2619 
2620 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2621 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2622 
2623 	fec_enet_itr_coal_set(ndev);
2624 
2625 	return 0;
2626 }
2627 
2628 static void fec_enet_itr_coal_init(struct net_device *ndev)
2629 {
2630 	struct ethtool_coalesce ec;
2631 
2632 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2633 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2634 
2635 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2636 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2637 
2638 	fec_enet_set_coalesce(ndev, &ec);
2639 }
2640 
2641 static int fec_enet_get_tunable(struct net_device *netdev,
2642 				const struct ethtool_tunable *tuna,
2643 				void *data)
2644 {
2645 	struct fec_enet_private *fep = netdev_priv(netdev);
2646 	int ret = 0;
2647 
2648 	switch (tuna->id) {
2649 	case ETHTOOL_RX_COPYBREAK:
2650 		*(u32 *)data = fep->rx_copybreak;
2651 		break;
2652 	default:
2653 		ret = -EINVAL;
2654 		break;
2655 	}
2656 
2657 	return ret;
2658 }
2659 
2660 static int fec_enet_set_tunable(struct net_device *netdev,
2661 				const struct ethtool_tunable *tuna,
2662 				const void *data)
2663 {
2664 	struct fec_enet_private *fep = netdev_priv(netdev);
2665 	int ret = 0;
2666 
2667 	switch (tuna->id) {
2668 	case ETHTOOL_RX_COPYBREAK:
2669 		fep->rx_copybreak = *(u32 *)data;
2670 		break;
2671 	default:
2672 		ret = -EINVAL;
2673 		break;
2674 	}
2675 
2676 	return ret;
2677 }
2678 
2679 static void
2680 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2681 {
2682 	struct fec_enet_private *fep = netdev_priv(ndev);
2683 
2684 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2685 		wol->supported = WAKE_MAGIC;
2686 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2687 	} else {
2688 		wol->supported = wol->wolopts = 0;
2689 	}
2690 }
2691 
2692 static int
2693 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2694 {
2695 	struct fec_enet_private *fep = netdev_priv(ndev);
2696 
2697 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2698 		return -EINVAL;
2699 
2700 	if (wol->wolopts & ~WAKE_MAGIC)
2701 		return -EINVAL;
2702 
2703 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2704 	if (device_may_wakeup(&ndev->dev)) {
2705 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2706 		if (fep->irq[0] > 0)
2707 			enable_irq_wake(fep->irq[0]);
2708 	} else {
2709 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2710 		if (fep->irq[0] > 0)
2711 			disable_irq_wake(fep->irq[0]);
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 static const struct ethtool_ops fec_enet_ethtool_ops = {
2718 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2719 				     ETHTOOL_COALESCE_MAX_FRAMES,
2720 	.get_drvinfo		= fec_enet_get_drvinfo,
2721 	.get_regs_len		= fec_enet_get_regs_len,
2722 	.get_regs		= fec_enet_get_regs,
2723 	.nway_reset		= phy_ethtool_nway_reset,
2724 	.get_link		= ethtool_op_get_link,
2725 	.get_coalesce		= fec_enet_get_coalesce,
2726 	.set_coalesce		= fec_enet_set_coalesce,
2727 #ifndef CONFIG_M5272
2728 	.get_pauseparam		= fec_enet_get_pauseparam,
2729 	.set_pauseparam		= fec_enet_set_pauseparam,
2730 	.get_strings		= fec_enet_get_strings,
2731 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2732 	.get_sset_count		= fec_enet_get_sset_count,
2733 #endif
2734 	.get_ts_info		= fec_enet_get_ts_info,
2735 	.get_tunable		= fec_enet_get_tunable,
2736 	.set_tunable		= fec_enet_set_tunable,
2737 	.get_wol		= fec_enet_get_wol,
2738 	.set_wol		= fec_enet_set_wol,
2739 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2740 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2741 };
2742 
2743 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2744 {
2745 	struct fec_enet_private *fep = netdev_priv(ndev);
2746 	struct phy_device *phydev = ndev->phydev;
2747 
2748 	if (!netif_running(ndev))
2749 		return -EINVAL;
2750 
2751 	if (!phydev)
2752 		return -ENODEV;
2753 
2754 	if (fep->bufdesc_ex) {
2755 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2756 
2757 		if (cmd == SIOCSHWTSTAMP) {
2758 			if (use_fec_hwts)
2759 				return fec_ptp_set(ndev, rq);
2760 			fec_ptp_disable_hwts(ndev);
2761 		} else if (cmd == SIOCGHWTSTAMP) {
2762 			if (use_fec_hwts)
2763 				return fec_ptp_get(ndev, rq);
2764 		}
2765 	}
2766 
2767 	return phy_mii_ioctl(phydev, rq, cmd);
2768 }
2769 
2770 static void fec_enet_free_buffers(struct net_device *ndev)
2771 {
2772 	struct fec_enet_private *fep = netdev_priv(ndev);
2773 	unsigned int i;
2774 	struct sk_buff *skb;
2775 	struct bufdesc	*bdp;
2776 	struct fec_enet_priv_tx_q *txq;
2777 	struct fec_enet_priv_rx_q *rxq;
2778 	unsigned int q;
2779 
2780 	for (q = 0; q < fep->num_rx_queues; q++) {
2781 		rxq = fep->rx_queue[q];
2782 		bdp = rxq->bd.base;
2783 		for (i = 0; i < rxq->bd.ring_size; i++) {
2784 			skb = rxq->rx_skbuff[i];
2785 			rxq->rx_skbuff[i] = NULL;
2786 			if (skb) {
2787 				dma_unmap_single(&fep->pdev->dev,
2788 						 fec32_to_cpu(bdp->cbd_bufaddr),
2789 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2790 						 DMA_FROM_DEVICE);
2791 				dev_kfree_skb(skb);
2792 			}
2793 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2794 		}
2795 	}
2796 
2797 	for (q = 0; q < fep->num_tx_queues; q++) {
2798 		txq = fep->tx_queue[q];
2799 		for (i = 0; i < txq->bd.ring_size; i++) {
2800 			kfree(txq->tx_bounce[i]);
2801 			txq->tx_bounce[i] = NULL;
2802 			skb = txq->tx_skbuff[i];
2803 			txq->tx_skbuff[i] = NULL;
2804 			dev_kfree_skb(skb);
2805 		}
2806 	}
2807 }
2808 
2809 static void fec_enet_free_queue(struct net_device *ndev)
2810 {
2811 	struct fec_enet_private *fep = netdev_priv(ndev);
2812 	int i;
2813 	struct fec_enet_priv_tx_q *txq;
2814 
2815 	for (i = 0; i < fep->num_tx_queues; i++)
2816 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2817 			txq = fep->tx_queue[i];
2818 			dma_free_coherent(&fep->pdev->dev,
2819 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2820 					  txq->tso_hdrs,
2821 					  txq->tso_hdrs_dma);
2822 		}
2823 
2824 	for (i = 0; i < fep->num_rx_queues; i++)
2825 		kfree(fep->rx_queue[i]);
2826 	for (i = 0; i < fep->num_tx_queues; i++)
2827 		kfree(fep->tx_queue[i]);
2828 }
2829 
2830 static int fec_enet_alloc_queue(struct net_device *ndev)
2831 {
2832 	struct fec_enet_private *fep = netdev_priv(ndev);
2833 	int i;
2834 	int ret = 0;
2835 	struct fec_enet_priv_tx_q *txq;
2836 
2837 	for (i = 0; i < fep->num_tx_queues; i++) {
2838 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2839 		if (!txq) {
2840 			ret = -ENOMEM;
2841 			goto alloc_failed;
2842 		}
2843 
2844 		fep->tx_queue[i] = txq;
2845 		txq->bd.ring_size = TX_RING_SIZE;
2846 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2847 
2848 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2849 		txq->tx_wake_threshold =
2850 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2851 
2852 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2853 					txq->bd.ring_size * TSO_HEADER_SIZE,
2854 					&txq->tso_hdrs_dma,
2855 					GFP_KERNEL);
2856 		if (!txq->tso_hdrs) {
2857 			ret = -ENOMEM;
2858 			goto alloc_failed;
2859 		}
2860 	}
2861 
2862 	for (i = 0; i < fep->num_rx_queues; i++) {
2863 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2864 					   GFP_KERNEL);
2865 		if (!fep->rx_queue[i]) {
2866 			ret = -ENOMEM;
2867 			goto alloc_failed;
2868 		}
2869 
2870 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2871 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2872 	}
2873 	return ret;
2874 
2875 alloc_failed:
2876 	fec_enet_free_queue(ndev);
2877 	return ret;
2878 }
2879 
2880 static int
2881 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2882 {
2883 	struct fec_enet_private *fep = netdev_priv(ndev);
2884 	unsigned int i;
2885 	struct sk_buff *skb;
2886 	struct bufdesc	*bdp;
2887 	struct fec_enet_priv_rx_q *rxq;
2888 
2889 	rxq = fep->rx_queue[queue];
2890 	bdp = rxq->bd.base;
2891 	for (i = 0; i < rxq->bd.ring_size; i++) {
2892 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2893 		if (!skb)
2894 			goto err_alloc;
2895 
2896 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2897 			dev_kfree_skb(skb);
2898 			goto err_alloc;
2899 		}
2900 
2901 		rxq->rx_skbuff[i] = skb;
2902 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2903 
2904 		if (fep->bufdesc_ex) {
2905 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2906 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2907 		}
2908 
2909 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2910 	}
2911 
2912 	/* Set the last buffer to wrap. */
2913 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2914 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2915 	return 0;
2916 
2917  err_alloc:
2918 	fec_enet_free_buffers(ndev);
2919 	return -ENOMEM;
2920 }
2921 
2922 static int
2923 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2924 {
2925 	struct fec_enet_private *fep = netdev_priv(ndev);
2926 	unsigned int i;
2927 	struct bufdesc  *bdp;
2928 	struct fec_enet_priv_tx_q *txq;
2929 
2930 	txq = fep->tx_queue[queue];
2931 	bdp = txq->bd.base;
2932 	for (i = 0; i < txq->bd.ring_size; i++) {
2933 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2934 		if (!txq->tx_bounce[i])
2935 			goto err_alloc;
2936 
2937 		bdp->cbd_sc = cpu_to_fec16(0);
2938 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2939 
2940 		if (fep->bufdesc_ex) {
2941 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2942 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2943 		}
2944 
2945 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2946 	}
2947 
2948 	/* Set the last buffer to wrap. */
2949 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2950 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2951 
2952 	return 0;
2953 
2954  err_alloc:
2955 	fec_enet_free_buffers(ndev);
2956 	return -ENOMEM;
2957 }
2958 
2959 static int fec_enet_alloc_buffers(struct net_device *ndev)
2960 {
2961 	struct fec_enet_private *fep = netdev_priv(ndev);
2962 	unsigned int i;
2963 
2964 	for (i = 0; i < fep->num_rx_queues; i++)
2965 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2966 			return -ENOMEM;
2967 
2968 	for (i = 0; i < fep->num_tx_queues; i++)
2969 		if (fec_enet_alloc_txq_buffers(ndev, i))
2970 			return -ENOMEM;
2971 	return 0;
2972 }
2973 
2974 static int
2975 fec_enet_open(struct net_device *ndev)
2976 {
2977 	struct fec_enet_private *fep = netdev_priv(ndev);
2978 	int ret;
2979 	bool reset_again;
2980 
2981 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
2982 	if (ret < 0)
2983 		return ret;
2984 
2985 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2986 	ret = fec_enet_clk_enable(ndev, true);
2987 	if (ret)
2988 		goto clk_enable;
2989 
2990 	/* During the first fec_enet_open call the PHY isn't probed at this
2991 	 * point. Therefore the phy_reset_after_clk_enable() call within
2992 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2993 	 * sure the PHY is working correctly we check if we need to reset again
2994 	 * later when the PHY is probed
2995 	 */
2996 	if (ndev->phydev && ndev->phydev->drv)
2997 		reset_again = false;
2998 	else
2999 		reset_again = true;
3000 
3001 	/* I should reset the ring buffers here, but I don't yet know
3002 	 * a simple way to do that.
3003 	 */
3004 
3005 	ret = fec_enet_alloc_buffers(ndev);
3006 	if (ret)
3007 		goto err_enet_alloc;
3008 
3009 	/* Init MAC prior to mii bus probe */
3010 	fec_restart(ndev);
3011 
3012 	/* Call phy_reset_after_clk_enable() again if it failed during
3013 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3014 	 */
3015 	if (reset_again)
3016 		fec_enet_phy_reset_after_clk_enable(ndev);
3017 
3018 	/* Probe and connect to PHY when open the interface */
3019 	ret = fec_enet_mii_probe(ndev);
3020 	if (ret)
3021 		goto err_enet_mii_probe;
3022 
3023 	if (fep->quirks & FEC_QUIRK_ERR006687)
3024 		imx6q_cpuidle_fec_irqs_used();
3025 
3026 	napi_enable(&fep->napi);
3027 	phy_start(ndev->phydev);
3028 	netif_tx_start_all_queues(ndev);
3029 
3030 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3031 				 FEC_WOL_FLAG_ENABLE);
3032 
3033 	return 0;
3034 
3035 err_enet_mii_probe:
3036 	fec_enet_free_buffers(ndev);
3037 err_enet_alloc:
3038 	fec_enet_clk_enable(ndev, false);
3039 clk_enable:
3040 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3041 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3042 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3043 	return ret;
3044 }
3045 
3046 static int
3047 fec_enet_close(struct net_device *ndev)
3048 {
3049 	struct fec_enet_private *fep = netdev_priv(ndev);
3050 
3051 	phy_stop(ndev->phydev);
3052 
3053 	if (netif_device_present(ndev)) {
3054 		napi_disable(&fep->napi);
3055 		netif_tx_disable(ndev);
3056 		fec_stop(ndev);
3057 	}
3058 
3059 	phy_disconnect(ndev->phydev);
3060 
3061 	if (fep->quirks & FEC_QUIRK_ERR006687)
3062 		imx6q_cpuidle_fec_irqs_unused();
3063 
3064 	fec_enet_update_ethtool_stats(ndev);
3065 
3066 	fec_enet_clk_enable(ndev, false);
3067 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3068 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3069 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3070 
3071 	fec_enet_free_buffers(ndev);
3072 
3073 	return 0;
3074 }
3075 
3076 /* Set or clear the multicast filter for this adaptor.
3077  * Skeleton taken from sunlance driver.
3078  * The CPM Ethernet implementation allows Multicast as well as individual
3079  * MAC address filtering.  Some of the drivers check to make sure it is
3080  * a group multicast address, and discard those that are not.  I guess I
3081  * will do the same for now, but just remove the test if you want
3082  * individual filtering as well (do the upper net layers want or support
3083  * this kind of feature?).
3084  */
3085 
3086 #define FEC_HASH_BITS	6		/* #bits in hash */
3087 
3088 static void set_multicast_list(struct net_device *ndev)
3089 {
3090 	struct fec_enet_private *fep = netdev_priv(ndev);
3091 	struct netdev_hw_addr *ha;
3092 	unsigned int crc, tmp;
3093 	unsigned char hash;
3094 	unsigned int hash_high = 0, hash_low = 0;
3095 
3096 	if (ndev->flags & IFF_PROMISC) {
3097 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3098 		tmp |= 0x8;
3099 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3100 		return;
3101 	}
3102 
3103 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3104 	tmp &= ~0x8;
3105 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3106 
3107 	if (ndev->flags & IFF_ALLMULTI) {
3108 		/* Catch all multicast addresses, so set the
3109 		 * filter to all 1's
3110 		 */
3111 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3112 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3113 
3114 		return;
3115 	}
3116 
3117 	/* Add the addresses in hash register */
3118 	netdev_for_each_mc_addr(ha, ndev) {
3119 		/* calculate crc32 value of mac address */
3120 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3121 
3122 		/* only upper 6 bits (FEC_HASH_BITS) are used
3123 		 * which point to specific bit in the hash registers
3124 		 */
3125 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3126 
3127 		if (hash > 31)
3128 			hash_high |= 1 << (hash - 32);
3129 		else
3130 			hash_low |= 1 << hash;
3131 	}
3132 
3133 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3134 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3135 }
3136 
3137 /* Set a MAC change in hardware. */
3138 static int
3139 fec_set_mac_address(struct net_device *ndev, void *p)
3140 {
3141 	struct fec_enet_private *fep = netdev_priv(ndev);
3142 	struct sockaddr *addr = p;
3143 
3144 	if (addr) {
3145 		if (!is_valid_ether_addr(addr->sa_data))
3146 			return -EADDRNOTAVAIL;
3147 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3148 	}
3149 
3150 	/* Add netif status check here to avoid system hang in below case:
3151 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3152 	 * After ethx down, fec all clocks are gated off and then register
3153 	 * access causes system hang.
3154 	 */
3155 	if (!netif_running(ndev))
3156 		return 0;
3157 
3158 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3159 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3160 		fep->hwp + FEC_ADDR_LOW);
3161 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3162 		fep->hwp + FEC_ADDR_HIGH);
3163 	return 0;
3164 }
3165 
3166 #ifdef CONFIG_NET_POLL_CONTROLLER
3167 /**
3168  * fec_poll_controller - FEC Poll controller function
3169  * @dev: The FEC network adapter
3170  *
3171  * Polled functionality used by netconsole and others in non interrupt mode
3172  *
3173  */
3174 static void fec_poll_controller(struct net_device *dev)
3175 {
3176 	int i;
3177 	struct fec_enet_private *fep = netdev_priv(dev);
3178 
3179 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3180 		if (fep->irq[i] > 0) {
3181 			disable_irq(fep->irq[i]);
3182 			fec_enet_interrupt(fep->irq[i], dev);
3183 			enable_irq(fep->irq[i]);
3184 		}
3185 	}
3186 }
3187 #endif
3188 
3189 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3190 	netdev_features_t features)
3191 {
3192 	struct fec_enet_private *fep = netdev_priv(netdev);
3193 	netdev_features_t changed = features ^ netdev->features;
3194 
3195 	netdev->features = features;
3196 
3197 	/* Receive checksum has been changed */
3198 	if (changed & NETIF_F_RXCSUM) {
3199 		if (features & NETIF_F_RXCSUM)
3200 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3201 		else
3202 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3203 	}
3204 }
3205 
3206 static int fec_set_features(struct net_device *netdev,
3207 	netdev_features_t features)
3208 {
3209 	struct fec_enet_private *fep = netdev_priv(netdev);
3210 	netdev_features_t changed = features ^ netdev->features;
3211 
3212 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3213 		napi_disable(&fep->napi);
3214 		netif_tx_lock_bh(netdev);
3215 		fec_stop(netdev);
3216 		fec_enet_set_netdev_features(netdev, features);
3217 		fec_restart(netdev);
3218 		netif_tx_wake_all_queues(netdev);
3219 		netif_tx_unlock_bh(netdev);
3220 		napi_enable(&fep->napi);
3221 	} else {
3222 		fec_enet_set_netdev_features(netdev, features);
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 static const struct net_device_ops fec_netdev_ops = {
3229 	.ndo_open		= fec_enet_open,
3230 	.ndo_stop		= fec_enet_close,
3231 	.ndo_start_xmit		= fec_enet_start_xmit,
3232 	.ndo_set_rx_mode	= set_multicast_list,
3233 	.ndo_validate_addr	= eth_validate_addr,
3234 	.ndo_tx_timeout		= fec_timeout,
3235 	.ndo_set_mac_address	= fec_set_mac_address,
3236 	.ndo_do_ioctl		= fec_enet_ioctl,
3237 #ifdef CONFIG_NET_POLL_CONTROLLER
3238 	.ndo_poll_controller	= fec_poll_controller,
3239 #endif
3240 	.ndo_set_features	= fec_set_features,
3241 };
3242 
3243 static const unsigned short offset_des_active_rxq[] = {
3244 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3245 };
3246 
3247 static const unsigned short offset_des_active_txq[] = {
3248 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3249 };
3250 
3251  /*
3252   * XXX:  We need to clean up on failure exits here.
3253   *
3254   */
3255 static int fec_enet_init(struct net_device *ndev)
3256 {
3257 	struct fec_enet_private *fep = netdev_priv(ndev);
3258 	struct bufdesc *cbd_base;
3259 	dma_addr_t bd_dma;
3260 	int bd_size;
3261 	unsigned int i;
3262 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3263 			sizeof(struct bufdesc);
3264 	unsigned dsize_log2 = __fls(dsize);
3265 	int ret;
3266 
3267 	WARN_ON(dsize != (1 << dsize_log2));
3268 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3269 	fep->rx_align = 0xf;
3270 	fep->tx_align = 0xf;
3271 #else
3272 	fep->rx_align = 0x3;
3273 	fep->tx_align = 0x3;
3274 #endif
3275 
3276 	/* Check mask of the streaming and coherent API */
3277 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3278 	if (ret < 0) {
3279 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3280 		return ret;
3281 	}
3282 
3283 	fec_enet_alloc_queue(ndev);
3284 
3285 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3286 
3287 	/* Allocate memory for buffer descriptors. */
3288 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3289 				       GFP_KERNEL);
3290 	if (!cbd_base) {
3291 		return -ENOMEM;
3292 	}
3293 
3294 	/* Get the Ethernet address */
3295 	fec_get_mac(ndev);
3296 	/* make sure MAC we just acquired is programmed into the hw */
3297 	fec_set_mac_address(ndev, NULL);
3298 
3299 	/* Set receive and transmit descriptor base. */
3300 	for (i = 0; i < fep->num_rx_queues; i++) {
3301 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3302 		unsigned size = dsize * rxq->bd.ring_size;
3303 
3304 		rxq->bd.qid = i;
3305 		rxq->bd.base = cbd_base;
3306 		rxq->bd.cur = cbd_base;
3307 		rxq->bd.dma = bd_dma;
3308 		rxq->bd.dsize = dsize;
3309 		rxq->bd.dsize_log2 = dsize_log2;
3310 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3311 		bd_dma += size;
3312 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3313 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3314 	}
3315 
3316 	for (i = 0; i < fep->num_tx_queues; i++) {
3317 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3318 		unsigned size = dsize * txq->bd.ring_size;
3319 
3320 		txq->bd.qid = i;
3321 		txq->bd.base = cbd_base;
3322 		txq->bd.cur = cbd_base;
3323 		txq->bd.dma = bd_dma;
3324 		txq->bd.dsize = dsize;
3325 		txq->bd.dsize_log2 = dsize_log2;
3326 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3327 		bd_dma += size;
3328 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3329 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3330 	}
3331 
3332 
3333 	/* The FEC Ethernet specific entries in the device structure */
3334 	ndev->watchdog_timeo = TX_TIMEOUT;
3335 	ndev->netdev_ops = &fec_netdev_ops;
3336 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3337 
3338 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3339 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3340 
3341 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3342 		/* enable hw VLAN support */
3343 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3344 
3345 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3346 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3347 
3348 		/* enable hw accelerator */
3349 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3350 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3351 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3352 	}
3353 
3354 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3355 		fep->tx_align = 0;
3356 		fep->rx_align = 0x3f;
3357 	}
3358 
3359 	ndev->hw_features = ndev->features;
3360 
3361 	fec_restart(ndev);
3362 
3363 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3364 		fec_enet_clear_ethtool_stats(ndev);
3365 	else
3366 		fec_enet_update_ethtool_stats(ndev);
3367 
3368 	return 0;
3369 }
3370 
3371 #ifdef CONFIG_OF
3372 static int fec_reset_phy(struct platform_device *pdev)
3373 {
3374 	int err, phy_reset;
3375 	bool active_high = false;
3376 	int msec = 1, phy_post_delay = 0;
3377 	struct device_node *np = pdev->dev.of_node;
3378 
3379 	if (!np)
3380 		return 0;
3381 
3382 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3383 	/* A sane reset duration should not be longer than 1s */
3384 	if (!err && msec > 1000)
3385 		msec = 1;
3386 
3387 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3388 	if (phy_reset == -EPROBE_DEFER)
3389 		return phy_reset;
3390 	else if (!gpio_is_valid(phy_reset))
3391 		return 0;
3392 
3393 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3394 	/* valid reset duration should be less than 1s */
3395 	if (!err && phy_post_delay > 1000)
3396 		return -EINVAL;
3397 
3398 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3399 
3400 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3401 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3402 			"phy-reset");
3403 	if (err) {
3404 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3405 		return err;
3406 	}
3407 
3408 	if (msec > 20)
3409 		msleep(msec);
3410 	else
3411 		usleep_range(msec * 1000, msec * 1000 + 1000);
3412 
3413 	gpio_set_value_cansleep(phy_reset, !active_high);
3414 
3415 	if (!phy_post_delay)
3416 		return 0;
3417 
3418 	if (phy_post_delay > 20)
3419 		msleep(phy_post_delay);
3420 	else
3421 		usleep_range(phy_post_delay * 1000,
3422 			     phy_post_delay * 1000 + 1000);
3423 
3424 	return 0;
3425 }
3426 #else /* CONFIG_OF */
3427 static int fec_reset_phy(struct platform_device *pdev)
3428 {
3429 	/*
3430 	 * In case of platform probe, the reset has been done
3431 	 * by machine code.
3432 	 */
3433 	return 0;
3434 }
3435 #endif /* CONFIG_OF */
3436 
3437 static void
3438 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3439 {
3440 	struct device_node *np = pdev->dev.of_node;
3441 
3442 	*num_tx = *num_rx = 1;
3443 
3444 	if (!np || !of_device_is_available(np))
3445 		return;
3446 
3447 	/* parse the num of tx and rx queues */
3448 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3449 
3450 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3451 
3452 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3453 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3454 			 *num_tx);
3455 		*num_tx = 1;
3456 		return;
3457 	}
3458 
3459 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3460 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3461 			 *num_rx);
3462 		*num_rx = 1;
3463 		return;
3464 	}
3465 
3466 }
3467 
3468 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3469 {
3470 	int irq_cnt = platform_irq_count(pdev);
3471 
3472 	if (irq_cnt > FEC_IRQ_NUM)
3473 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3474 	else if (irq_cnt == 2)
3475 		irq_cnt = 1;	/* last for pps */
3476 	else if (irq_cnt <= 0)
3477 		irq_cnt = 1;	/* At least 1 irq is needed */
3478 	return irq_cnt;
3479 }
3480 
3481 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3482 				   struct device_node *np)
3483 {
3484 	struct device_node *gpr_np;
3485 	u32 out_val[3];
3486 	int ret = 0;
3487 
3488 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3489 	if (!gpr_np)
3490 		return 0;
3491 
3492 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3493 					 ARRAY_SIZE(out_val));
3494 	if (ret) {
3495 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3496 		return ret;
3497 	}
3498 
3499 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3500 	if (IS_ERR(fep->stop_gpr.gpr)) {
3501 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3502 		ret = PTR_ERR(fep->stop_gpr.gpr);
3503 		fep->stop_gpr.gpr = NULL;
3504 		goto out;
3505 	}
3506 
3507 	fep->stop_gpr.reg = out_val[1];
3508 	fep->stop_gpr.bit = out_val[2];
3509 
3510 out:
3511 	of_node_put(gpr_np);
3512 
3513 	return ret;
3514 }
3515 
3516 static int
3517 fec_probe(struct platform_device *pdev)
3518 {
3519 	struct fec_enet_private *fep;
3520 	struct fec_platform_data *pdata;
3521 	phy_interface_t interface;
3522 	struct net_device *ndev;
3523 	int i, irq, ret = 0;
3524 	const struct of_device_id *of_id;
3525 	static int dev_id;
3526 	struct device_node *np = pdev->dev.of_node, *phy_node;
3527 	int num_tx_qs;
3528 	int num_rx_qs;
3529 	char irq_name[8];
3530 	int irq_cnt;
3531 	struct fec_devinfo *dev_info;
3532 
3533 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3534 
3535 	/* Init network device */
3536 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3537 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3538 	if (!ndev)
3539 		return -ENOMEM;
3540 
3541 	SET_NETDEV_DEV(ndev, &pdev->dev);
3542 
3543 	/* setup board info structure */
3544 	fep = netdev_priv(ndev);
3545 
3546 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3547 	if (of_id)
3548 		pdev->id_entry = of_id->data;
3549 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3550 	if (dev_info)
3551 		fep->quirks = dev_info->quirks;
3552 
3553 	fep->netdev = ndev;
3554 	fep->num_rx_queues = num_rx_qs;
3555 	fep->num_tx_queues = num_tx_qs;
3556 
3557 #if !defined(CONFIG_M5272)
3558 	/* default enable pause frame auto negotiation */
3559 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3560 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3561 #endif
3562 
3563 	/* Select default pin state */
3564 	pinctrl_pm_select_default_state(&pdev->dev);
3565 
3566 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3567 	if (IS_ERR(fep->hwp)) {
3568 		ret = PTR_ERR(fep->hwp);
3569 		goto failed_ioremap;
3570 	}
3571 
3572 	fep->pdev = pdev;
3573 	fep->dev_id = dev_id++;
3574 
3575 	platform_set_drvdata(pdev, ndev);
3576 
3577 	if ((of_machine_is_compatible("fsl,imx6q") ||
3578 	     of_machine_is_compatible("fsl,imx6dl")) &&
3579 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3580 		fep->quirks |= FEC_QUIRK_ERR006687;
3581 
3582 	if (of_get_property(np, "fsl,magic-packet", NULL))
3583 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3584 
3585 	ret = fec_enet_init_stop_mode(fep, np);
3586 	if (ret)
3587 		goto failed_stop_mode;
3588 
3589 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3590 	if (!phy_node && of_phy_is_fixed_link(np)) {
3591 		ret = of_phy_register_fixed_link(np);
3592 		if (ret < 0) {
3593 			dev_err(&pdev->dev,
3594 				"broken fixed-link specification\n");
3595 			goto failed_phy;
3596 		}
3597 		phy_node = of_node_get(np);
3598 	}
3599 	fep->phy_node = phy_node;
3600 
3601 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3602 	if (ret) {
3603 		pdata = dev_get_platdata(&pdev->dev);
3604 		if (pdata)
3605 			fep->phy_interface = pdata->phy;
3606 		else
3607 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3608 	} else {
3609 		fep->phy_interface = interface;
3610 	}
3611 
3612 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3613 	if (IS_ERR(fep->clk_ipg)) {
3614 		ret = PTR_ERR(fep->clk_ipg);
3615 		goto failed_clk;
3616 	}
3617 
3618 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3619 	if (IS_ERR(fep->clk_ahb)) {
3620 		ret = PTR_ERR(fep->clk_ahb);
3621 		goto failed_clk;
3622 	}
3623 
3624 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3625 
3626 	/* enet_out is optional, depends on board */
3627 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3628 	if (IS_ERR(fep->clk_enet_out))
3629 		fep->clk_enet_out = NULL;
3630 
3631 	fep->ptp_clk_on = false;
3632 	mutex_init(&fep->ptp_clk_mutex);
3633 
3634 	/* clk_ref is optional, depends on board */
3635 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3636 	if (IS_ERR(fep->clk_ref))
3637 		fep->clk_ref = NULL;
3638 
3639 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3640 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3641 	if (IS_ERR(fep->clk_ptp)) {
3642 		fep->clk_ptp = NULL;
3643 		fep->bufdesc_ex = false;
3644 	}
3645 
3646 	ret = fec_enet_clk_enable(ndev, true);
3647 	if (ret)
3648 		goto failed_clk;
3649 
3650 	ret = clk_prepare_enable(fep->clk_ipg);
3651 	if (ret)
3652 		goto failed_clk_ipg;
3653 	ret = clk_prepare_enable(fep->clk_ahb);
3654 	if (ret)
3655 		goto failed_clk_ahb;
3656 
3657 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3658 	if (!IS_ERR(fep->reg_phy)) {
3659 		ret = regulator_enable(fep->reg_phy);
3660 		if (ret) {
3661 			dev_err(&pdev->dev,
3662 				"Failed to enable phy regulator: %d\n", ret);
3663 			goto failed_regulator;
3664 		}
3665 	} else {
3666 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3667 			ret = -EPROBE_DEFER;
3668 			goto failed_regulator;
3669 		}
3670 		fep->reg_phy = NULL;
3671 	}
3672 
3673 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3674 	pm_runtime_use_autosuspend(&pdev->dev);
3675 	pm_runtime_get_noresume(&pdev->dev);
3676 	pm_runtime_set_active(&pdev->dev);
3677 	pm_runtime_enable(&pdev->dev);
3678 
3679 	ret = fec_reset_phy(pdev);
3680 	if (ret)
3681 		goto failed_reset;
3682 
3683 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3684 	if (fep->bufdesc_ex)
3685 		fec_ptp_init(pdev, irq_cnt);
3686 
3687 	ret = fec_enet_init(ndev);
3688 	if (ret)
3689 		goto failed_init;
3690 
3691 	for (i = 0; i < irq_cnt; i++) {
3692 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3693 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3694 		if (irq < 0)
3695 			irq = platform_get_irq(pdev, i);
3696 		if (irq < 0) {
3697 			ret = irq;
3698 			goto failed_irq;
3699 		}
3700 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3701 				       0, pdev->name, ndev);
3702 		if (ret)
3703 			goto failed_irq;
3704 
3705 		fep->irq[i] = irq;
3706 	}
3707 
3708 	ret = fec_enet_mii_init(pdev);
3709 	if (ret)
3710 		goto failed_mii_init;
3711 
3712 	/* Carrier starts down, phylib will bring it up */
3713 	netif_carrier_off(ndev);
3714 	fec_enet_clk_enable(ndev, false);
3715 	pinctrl_pm_select_sleep_state(&pdev->dev);
3716 
3717 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3718 
3719 	ret = register_netdev(ndev);
3720 	if (ret)
3721 		goto failed_register;
3722 
3723 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3724 			   FEC_WOL_HAS_MAGIC_PACKET);
3725 
3726 	if (fep->bufdesc_ex && fep->ptp_clock)
3727 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3728 
3729 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3730 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3731 
3732 	pm_runtime_mark_last_busy(&pdev->dev);
3733 	pm_runtime_put_autosuspend(&pdev->dev);
3734 
3735 	return 0;
3736 
3737 failed_register:
3738 	fec_enet_mii_remove(fep);
3739 failed_mii_init:
3740 failed_irq:
3741 failed_init:
3742 	fec_ptp_stop(pdev);
3743 failed_reset:
3744 	pm_runtime_put_noidle(&pdev->dev);
3745 	pm_runtime_disable(&pdev->dev);
3746 	if (fep->reg_phy)
3747 		regulator_disable(fep->reg_phy);
3748 failed_regulator:
3749 	clk_disable_unprepare(fep->clk_ahb);
3750 failed_clk_ahb:
3751 	clk_disable_unprepare(fep->clk_ipg);
3752 failed_clk_ipg:
3753 	fec_enet_clk_enable(ndev, false);
3754 failed_clk:
3755 	if (of_phy_is_fixed_link(np))
3756 		of_phy_deregister_fixed_link(np);
3757 	of_node_put(phy_node);
3758 failed_stop_mode:
3759 failed_phy:
3760 	dev_id--;
3761 failed_ioremap:
3762 	free_netdev(ndev);
3763 
3764 	return ret;
3765 }
3766 
3767 static int
3768 fec_drv_remove(struct platform_device *pdev)
3769 {
3770 	struct net_device *ndev = platform_get_drvdata(pdev);
3771 	struct fec_enet_private *fep = netdev_priv(ndev);
3772 	struct device_node *np = pdev->dev.of_node;
3773 	int ret;
3774 
3775 	ret = pm_runtime_resume_and_get(&pdev->dev);
3776 	if (ret < 0)
3777 		return ret;
3778 
3779 	cancel_work_sync(&fep->tx_timeout_work);
3780 	fec_ptp_stop(pdev);
3781 	unregister_netdev(ndev);
3782 	fec_enet_mii_remove(fep);
3783 	if (fep->reg_phy)
3784 		regulator_disable(fep->reg_phy);
3785 
3786 	if (of_phy_is_fixed_link(np))
3787 		of_phy_deregister_fixed_link(np);
3788 	of_node_put(fep->phy_node);
3789 	free_netdev(ndev);
3790 
3791 	clk_disable_unprepare(fep->clk_ahb);
3792 	clk_disable_unprepare(fep->clk_ipg);
3793 	pm_runtime_put_noidle(&pdev->dev);
3794 	pm_runtime_disable(&pdev->dev);
3795 
3796 	return 0;
3797 }
3798 
3799 static int __maybe_unused fec_suspend(struct device *dev)
3800 {
3801 	struct net_device *ndev = dev_get_drvdata(dev);
3802 	struct fec_enet_private *fep = netdev_priv(ndev);
3803 
3804 	rtnl_lock();
3805 	if (netif_running(ndev)) {
3806 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3807 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3808 		phy_stop(ndev->phydev);
3809 		napi_disable(&fep->napi);
3810 		netif_tx_lock_bh(ndev);
3811 		netif_device_detach(ndev);
3812 		netif_tx_unlock_bh(ndev);
3813 		fec_stop(ndev);
3814 		fec_enet_clk_enable(ndev, false);
3815 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3816 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3817 	}
3818 	rtnl_unlock();
3819 
3820 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3821 		regulator_disable(fep->reg_phy);
3822 
3823 	/* SOC supply clock to phy, when clock is disabled, phy link down
3824 	 * SOC control phy regulator, when regulator is disabled, phy link down
3825 	 */
3826 	if (fep->clk_enet_out || fep->reg_phy)
3827 		fep->link = 0;
3828 
3829 	return 0;
3830 }
3831 
3832 static int __maybe_unused fec_resume(struct device *dev)
3833 {
3834 	struct net_device *ndev = dev_get_drvdata(dev);
3835 	struct fec_enet_private *fep = netdev_priv(ndev);
3836 	int ret;
3837 	int val;
3838 
3839 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3840 		ret = regulator_enable(fep->reg_phy);
3841 		if (ret)
3842 			return ret;
3843 	}
3844 
3845 	rtnl_lock();
3846 	if (netif_running(ndev)) {
3847 		ret = fec_enet_clk_enable(ndev, true);
3848 		if (ret) {
3849 			rtnl_unlock();
3850 			goto failed_clk;
3851 		}
3852 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3853 			fec_enet_stop_mode(fep, false);
3854 
3855 			val = readl(fep->hwp + FEC_ECNTRL);
3856 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3857 			writel(val, fep->hwp + FEC_ECNTRL);
3858 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3859 		} else {
3860 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3861 		}
3862 		fec_restart(ndev);
3863 		netif_tx_lock_bh(ndev);
3864 		netif_device_attach(ndev);
3865 		netif_tx_unlock_bh(ndev);
3866 		napi_enable(&fep->napi);
3867 		phy_start(ndev->phydev);
3868 	}
3869 	rtnl_unlock();
3870 
3871 	return 0;
3872 
3873 failed_clk:
3874 	if (fep->reg_phy)
3875 		regulator_disable(fep->reg_phy);
3876 	return ret;
3877 }
3878 
3879 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3880 {
3881 	struct net_device *ndev = dev_get_drvdata(dev);
3882 	struct fec_enet_private *fep = netdev_priv(ndev);
3883 
3884 	clk_disable_unprepare(fep->clk_ahb);
3885 	clk_disable_unprepare(fep->clk_ipg);
3886 
3887 	return 0;
3888 }
3889 
3890 static int __maybe_unused fec_runtime_resume(struct device *dev)
3891 {
3892 	struct net_device *ndev = dev_get_drvdata(dev);
3893 	struct fec_enet_private *fep = netdev_priv(ndev);
3894 	int ret;
3895 
3896 	ret = clk_prepare_enable(fep->clk_ahb);
3897 	if (ret)
3898 		return ret;
3899 	ret = clk_prepare_enable(fep->clk_ipg);
3900 	if (ret)
3901 		goto failed_clk_ipg;
3902 
3903 	return 0;
3904 
3905 failed_clk_ipg:
3906 	clk_disable_unprepare(fep->clk_ahb);
3907 	return ret;
3908 }
3909 
3910 static const struct dev_pm_ops fec_pm_ops = {
3911 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3912 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3913 };
3914 
3915 static struct platform_driver fec_driver = {
3916 	.driver	= {
3917 		.name	= DRIVER_NAME,
3918 		.pm	= &fec_pm_ops,
3919 		.of_match_table = fec_dt_ids,
3920 		.suppress_bind_attrs = true,
3921 	},
3922 	.id_table = fec_devtype,
3923 	.probe	= fec_probe,
3924 	.remove	= fec_drv_remove,
3925 };
3926 
3927 module_platform_driver(fec_driver);
3928 
3929 MODULE_ALIAS("platform:"DRIVER_NAME);
3930 MODULE_LICENSE("GPL");
3931