1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 104 FEC_QUIRK_NO_HARD_RESET, 105 }; 106 107 static const struct fec_devinfo fec_imx6q_info = { 108 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 109 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 110 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 111 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 112 }; 113 114 static const struct fec_devinfo fec_mvf600_info = { 115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 116 }; 117 118 static const struct fec_devinfo fec_imx6x_info = { 119 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 122 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 123 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 124 FEC_QUIRK_CLEAR_SETUP_MII, 125 }; 126 127 static const struct fec_devinfo fec_imx6ul_info = { 128 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 129 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 130 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 131 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 132 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 133 }; 134 135 static struct platform_device_id fec_devtype[] = { 136 { 137 /* keep it for coldfire */ 138 .name = DRIVER_NAME, 139 .driver_data = 0, 140 }, { 141 .name = "imx25-fec", 142 .driver_data = (kernel_ulong_t)&fec_imx25_info, 143 }, { 144 .name = "imx27-fec", 145 .driver_data = (kernel_ulong_t)&fec_imx27_info, 146 }, { 147 .name = "imx28-fec", 148 .driver_data = (kernel_ulong_t)&fec_imx28_info, 149 }, { 150 .name = "imx6q-fec", 151 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 152 }, { 153 .name = "mvf600-fec", 154 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 155 }, { 156 .name = "imx6sx-fec", 157 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 158 }, { 159 .name = "imx6ul-fec", 160 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 161 }, { 162 /* sentinel */ 163 } 164 }; 165 MODULE_DEVICE_TABLE(platform, fec_devtype); 166 167 enum imx_fec_type { 168 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 169 IMX27_FEC, /* runs on i.mx27/35/51 */ 170 IMX28_FEC, 171 IMX6Q_FEC, 172 MVF600_FEC, 173 IMX6SX_FEC, 174 IMX6UL_FEC, 175 }; 176 177 static const struct of_device_id fec_dt_ids[] = { 178 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 179 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 180 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 181 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 182 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 183 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 184 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 185 { /* sentinel */ } 186 }; 187 MODULE_DEVICE_TABLE(of, fec_dt_ids); 188 189 static unsigned char macaddr[ETH_ALEN]; 190 module_param_array(macaddr, byte, NULL, 0); 191 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 192 193 #if defined(CONFIG_M5272) 194 /* 195 * Some hardware gets it MAC address out of local flash memory. 196 * if this is non-zero then assume it is the address to get MAC from. 197 */ 198 #if defined(CONFIG_NETtel) 199 #define FEC_FLASHMAC 0xf0006006 200 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 201 #define FEC_FLASHMAC 0xf0006000 202 #elif defined(CONFIG_CANCam) 203 #define FEC_FLASHMAC 0xf0020000 204 #elif defined (CONFIG_M5272C3) 205 #define FEC_FLASHMAC (0xffe04000 + 4) 206 #elif defined(CONFIG_MOD5272) 207 #define FEC_FLASHMAC 0xffc0406b 208 #else 209 #define FEC_FLASHMAC 0 210 #endif 211 #endif /* CONFIG_M5272 */ 212 213 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 214 * 215 * 2048 byte skbufs are allocated. However, alignment requirements 216 * varies between FEC variants. Worst case is 64, so round down by 64. 217 */ 218 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 219 #define PKT_MINBUF_SIZE 64 220 221 /* FEC receive acceleration */ 222 #define FEC_RACC_IPDIS (1 << 1) 223 #define FEC_RACC_PRODIS (1 << 2) 224 #define FEC_RACC_SHIFT16 BIT(7) 225 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 226 227 /* MIB Control Register */ 228 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 229 230 /* 231 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 232 * size bits. Other FEC hardware does not, so we need to take that into 233 * account when setting it. 234 */ 235 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 236 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 237 defined(CONFIG_ARM64) 238 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 239 #else 240 #define OPT_FRAME_SIZE 0 241 #endif 242 243 /* FEC MII MMFR bits definition */ 244 #define FEC_MMFR_ST (1 << 30) 245 #define FEC_MMFR_ST_C45 (0) 246 #define FEC_MMFR_OP_READ (2 << 28) 247 #define FEC_MMFR_OP_READ_C45 (3 << 28) 248 #define FEC_MMFR_OP_WRITE (1 << 28) 249 #define FEC_MMFR_OP_ADDR_WRITE (0) 250 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 251 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 252 #define FEC_MMFR_TA (2 << 16) 253 #define FEC_MMFR_DATA(v) (v & 0xffff) 254 /* FEC ECR bits definition */ 255 #define FEC_ECR_MAGICEN (1 << 2) 256 #define FEC_ECR_SLEEP (1 << 3) 257 258 #define FEC_MII_TIMEOUT 30000 /* us */ 259 260 /* Transmitter timeout */ 261 #define TX_TIMEOUT (2 * HZ) 262 263 #define FEC_PAUSE_FLAG_AUTONEG 0x1 264 #define FEC_PAUSE_FLAG_ENABLE 0x2 265 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 266 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 267 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 268 269 #define COPYBREAK_DEFAULT 256 270 271 /* Max number of allowed TCP segments for software TSO */ 272 #define FEC_MAX_TSO_SEGS 100 273 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 274 275 #define IS_TSO_HEADER(txq, addr) \ 276 ((addr >= txq->tso_hdrs_dma) && \ 277 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 278 279 static int mii_cnt; 280 281 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 282 struct bufdesc_prop *bd) 283 { 284 return (bdp >= bd->last) ? bd->base 285 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 286 } 287 288 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 289 struct bufdesc_prop *bd) 290 { 291 return (bdp <= bd->base) ? bd->last 292 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 293 } 294 295 static int fec_enet_get_bd_index(struct bufdesc *bdp, 296 struct bufdesc_prop *bd) 297 { 298 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 299 } 300 301 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 302 { 303 int entries; 304 305 entries = (((const char *)txq->dirty_tx - 306 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 307 308 return entries >= 0 ? entries : entries + txq->bd.ring_size; 309 } 310 311 static void swap_buffer(void *bufaddr, int len) 312 { 313 int i; 314 unsigned int *buf = bufaddr; 315 316 for (i = 0; i < len; i += 4, buf++) 317 swab32s(buf); 318 } 319 320 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 321 { 322 int i; 323 unsigned int *src = src_buf; 324 unsigned int *dst = dst_buf; 325 326 for (i = 0; i < len; i += 4, src++, dst++) 327 *dst = swab32p(src); 328 } 329 330 static void fec_dump(struct net_device *ndev) 331 { 332 struct fec_enet_private *fep = netdev_priv(ndev); 333 struct bufdesc *bdp; 334 struct fec_enet_priv_tx_q *txq; 335 int index = 0; 336 337 netdev_info(ndev, "TX ring dump\n"); 338 pr_info("Nr SC addr len SKB\n"); 339 340 txq = fep->tx_queue[0]; 341 bdp = txq->bd.base; 342 343 do { 344 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 345 index, 346 bdp == txq->bd.cur ? 'S' : ' ', 347 bdp == txq->dirty_tx ? 'H' : ' ', 348 fec16_to_cpu(bdp->cbd_sc), 349 fec32_to_cpu(bdp->cbd_bufaddr), 350 fec16_to_cpu(bdp->cbd_datlen), 351 txq->tx_skbuff[index]); 352 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 353 index++; 354 } while (bdp != txq->bd.base); 355 } 356 357 static inline bool is_ipv4_pkt(struct sk_buff *skb) 358 { 359 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 360 } 361 362 static int 363 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 364 { 365 /* Only run for packets requiring a checksum. */ 366 if (skb->ip_summed != CHECKSUM_PARTIAL) 367 return 0; 368 369 if (unlikely(skb_cow_head(skb, 0))) 370 return -1; 371 372 if (is_ipv4_pkt(skb)) 373 ip_hdr(skb)->check = 0; 374 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 375 376 return 0; 377 } 378 379 static struct bufdesc * 380 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 381 struct sk_buff *skb, 382 struct net_device *ndev) 383 { 384 struct fec_enet_private *fep = netdev_priv(ndev); 385 struct bufdesc *bdp = txq->bd.cur; 386 struct bufdesc_ex *ebdp; 387 int nr_frags = skb_shinfo(skb)->nr_frags; 388 int frag, frag_len; 389 unsigned short status; 390 unsigned int estatus = 0; 391 skb_frag_t *this_frag; 392 unsigned int index; 393 void *bufaddr; 394 dma_addr_t addr; 395 int i; 396 397 for (frag = 0; frag < nr_frags; frag++) { 398 this_frag = &skb_shinfo(skb)->frags[frag]; 399 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 400 ebdp = (struct bufdesc_ex *)bdp; 401 402 status = fec16_to_cpu(bdp->cbd_sc); 403 status &= ~BD_ENET_TX_STATS; 404 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 405 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 406 407 /* Handle the last BD specially */ 408 if (frag == nr_frags - 1) { 409 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 410 if (fep->bufdesc_ex) { 411 estatus |= BD_ENET_TX_INT; 412 if (unlikely(skb_shinfo(skb)->tx_flags & 413 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 414 estatus |= BD_ENET_TX_TS; 415 } 416 } 417 418 if (fep->bufdesc_ex) { 419 if (fep->quirks & FEC_QUIRK_HAS_AVB) 420 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 421 if (skb->ip_summed == CHECKSUM_PARTIAL) 422 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 423 ebdp->cbd_bdu = 0; 424 ebdp->cbd_esc = cpu_to_fec32(estatus); 425 } 426 427 bufaddr = skb_frag_address(this_frag); 428 429 index = fec_enet_get_bd_index(bdp, &txq->bd); 430 if (((unsigned long) bufaddr) & fep->tx_align || 431 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 432 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 433 bufaddr = txq->tx_bounce[index]; 434 435 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 436 swap_buffer(bufaddr, frag_len); 437 } 438 439 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 440 DMA_TO_DEVICE); 441 if (dma_mapping_error(&fep->pdev->dev, addr)) { 442 if (net_ratelimit()) 443 netdev_err(ndev, "Tx DMA memory map failed\n"); 444 goto dma_mapping_error; 445 } 446 447 bdp->cbd_bufaddr = cpu_to_fec32(addr); 448 bdp->cbd_datlen = cpu_to_fec16(frag_len); 449 /* Make sure the updates to rest of the descriptor are 450 * performed before transferring ownership. 451 */ 452 wmb(); 453 bdp->cbd_sc = cpu_to_fec16(status); 454 } 455 456 return bdp; 457 dma_mapping_error: 458 bdp = txq->bd.cur; 459 for (i = 0; i < frag; i++) { 460 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 461 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 462 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 463 } 464 return ERR_PTR(-ENOMEM); 465 } 466 467 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 468 struct sk_buff *skb, struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 int nr_frags = skb_shinfo(skb)->nr_frags; 472 struct bufdesc *bdp, *last_bdp; 473 void *bufaddr; 474 dma_addr_t addr; 475 unsigned short status; 476 unsigned short buflen; 477 unsigned int estatus = 0; 478 unsigned int index; 479 int entries_free; 480 481 entries_free = fec_enet_get_free_txdesc_num(txq); 482 if (entries_free < MAX_SKB_FRAGS + 1) { 483 dev_kfree_skb_any(skb); 484 if (net_ratelimit()) 485 netdev_err(ndev, "NOT enough BD for SG!\n"); 486 return NETDEV_TX_OK; 487 } 488 489 /* Protocol checksum off-load for TCP and UDP. */ 490 if (fec_enet_clear_csum(skb, ndev)) { 491 dev_kfree_skb_any(skb); 492 return NETDEV_TX_OK; 493 } 494 495 /* Fill in a Tx ring entry */ 496 bdp = txq->bd.cur; 497 last_bdp = bdp; 498 status = fec16_to_cpu(bdp->cbd_sc); 499 status &= ~BD_ENET_TX_STATS; 500 501 /* Set buffer length and buffer pointer */ 502 bufaddr = skb->data; 503 buflen = skb_headlen(skb); 504 505 index = fec_enet_get_bd_index(bdp, &txq->bd); 506 if (((unsigned long) bufaddr) & fep->tx_align || 507 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 508 memcpy(txq->tx_bounce[index], skb->data, buflen); 509 bufaddr = txq->tx_bounce[index]; 510 511 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 512 swap_buffer(bufaddr, buflen); 513 } 514 515 /* Push the data cache so the CPM does not get stale memory data. */ 516 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 517 if (dma_mapping_error(&fep->pdev->dev, addr)) { 518 dev_kfree_skb_any(skb); 519 if (net_ratelimit()) 520 netdev_err(ndev, "Tx DMA memory map failed\n"); 521 return NETDEV_TX_OK; 522 } 523 524 if (nr_frags) { 525 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 526 if (IS_ERR(last_bdp)) { 527 dma_unmap_single(&fep->pdev->dev, addr, 528 buflen, DMA_TO_DEVICE); 529 dev_kfree_skb_any(skb); 530 return NETDEV_TX_OK; 531 } 532 } else { 533 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 534 if (fep->bufdesc_ex) { 535 estatus = BD_ENET_TX_INT; 536 if (unlikely(skb_shinfo(skb)->tx_flags & 537 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 538 estatus |= BD_ENET_TX_TS; 539 } 540 } 541 bdp->cbd_bufaddr = cpu_to_fec32(addr); 542 bdp->cbd_datlen = cpu_to_fec16(buflen); 543 544 if (fep->bufdesc_ex) { 545 546 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 547 548 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 549 fep->hwts_tx_en)) 550 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 551 552 if (fep->quirks & FEC_QUIRK_HAS_AVB) 553 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 554 555 if (skb->ip_summed == CHECKSUM_PARTIAL) 556 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 557 558 ebdp->cbd_bdu = 0; 559 ebdp->cbd_esc = cpu_to_fec32(estatus); 560 } 561 562 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 563 /* Save skb pointer */ 564 txq->tx_skbuff[index] = skb; 565 566 /* Make sure the updates to rest of the descriptor are performed before 567 * transferring ownership. 568 */ 569 wmb(); 570 571 /* Send it on its way. Tell FEC it's ready, interrupt when done, 572 * it's the last BD of the frame, and to put the CRC on the end. 573 */ 574 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 575 bdp->cbd_sc = cpu_to_fec16(status); 576 577 /* If this was the last BD in the ring, start at the beginning again. */ 578 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 579 580 skb_tx_timestamp(skb); 581 582 /* Make sure the update to bdp and tx_skbuff are performed before 583 * txq->bd.cur. 584 */ 585 wmb(); 586 txq->bd.cur = bdp; 587 588 /* Trigger transmission start */ 589 writel(0, txq->bd.reg_desc_active); 590 591 return 0; 592 } 593 594 static int 595 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 596 struct net_device *ndev, 597 struct bufdesc *bdp, int index, char *data, 598 int size, bool last_tcp, bool is_last) 599 { 600 struct fec_enet_private *fep = netdev_priv(ndev); 601 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 602 unsigned short status; 603 unsigned int estatus = 0; 604 dma_addr_t addr; 605 606 status = fec16_to_cpu(bdp->cbd_sc); 607 status &= ~BD_ENET_TX_STATS; 608 609 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 610 611 if (((unsigned long) data) & fep->tx_align || 612 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 613 memcpy(txq->tx_bounce[index], data, size); 614 data = txq->tx_bounce[index]; 615 616 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 617 swap_buffer(data, size); 618 } 619 620 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 621 if (dma_mapping_error(&fep->pdev->dev, addr)) { 622 dev_kfree_skb_any(skb); 623 if (net_ratelimit()) 624 netdev_err(ndev, "Tx DMA memory map failed\n"); 625 return NETDEV_TX_BUSY; 626 } 627 628 bdp->cbd_datlen = cpu_to_fec16(size); 629 bdp->cbd_bufaddr = cpu_to_fec32(addr); 630 631 if (fep->bufdesc_ex) { 632 if (fep->quirks & FEC_QUIRK_HAS_AVB) 633 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 634 if (skb->ip_summed == CHECKSUM_PARTIAL) 635 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 636 ebdp->cbd_bdu = 0; 637 ebdp->cbd_esc = cpu_to_fec32(estatus); 638 } 639 640 /* Handle the last BD specially */ 641 if (last_tcp) 642 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 643 if (is_last) { 644 status |= BD_ENET_TX_INTR; 645 if (fep->bufdesc_ex) 646 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 647 } 648 649 bdp->cbd_sc = cpu_to_fec16(status); 650 651 return 0; 652 } 653 654 static int 655 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 656 struct sk_buff *skb, struct net_device *ndev, 657 struct bufdesc *bdp, int index) 658 { 659 struct fec_enet_private *fep = netdev_priv(ndev); 660 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 661 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 662 void *bufaddr; 663 unsigned long dmabuf; 664 unsigned short status; 665 unsigned int estatus = 0; 666 667 status = fec16_to_cpu(bdp->cbd_sc); 668 status &= ~BD_ENET_TX_STATS; 669 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 670 671 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 672 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 673 if (((unsigned long)bufaddr) & fep->tx_align || 674 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 675 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 676 bufaddr = txq->tx_bounce[index]; 677 678 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 679 swap_buffer(bufaddr, hdr_len); 680 681 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 682 hdr_len, DMA_TO_DEVICE); 683 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 684 dev_kfree_skb_any(skb); 685 if (net_ratelimit()) 686 netdev_err(ndev, "Tx DMA memory map failed\n"); 687 return NETDEV_TX_BUSY; 688 } 689 } 690 691 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 692 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 693 694 if (fep->bufdesc_ex) { 695 if (fep->quirks & FEC_QUIRK_HAS_AVB) 696 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 697 if (skb->ip_summed == CHECKSUM_PARTIAL) 698 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 699 ebdp->cbd_bdu = 0; 700 ebdp->cbd_esc = cpu_to_fec32(estatus); 701 } 702 703 bdp->cbd_sc = cpu_to_fec16(status); 704 705 return 0; 706 } 707 708 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 709 struct sk_buff *skb, 710 struct net_device *ndev) 711 { 712 struct fec_enet_private *fep = netdev_priv(ndev); 713 int hdr_len, total_len, data_left; 714 struct bufdesc *bdp = txq->bd.cur; 715 struct tso_t tso; 716 unsigned int index = 0; 717 int ret; 718 719 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 720 dev_kfree_skb_any(skb); 721 if (net_ratelimit()) 722 netdev_err(ndev, "NOT enough BD for TSO!\n"); 723 return NETDEV_TX_OK; 724 } 725 726 /* Protocol checksum off-load for TCP and UDP. */ 727 if (fec_enet_clear_csum(skb, ndev)) { 728 dev_kfree_skb_any(skb); 729 return NETDEV_TX_OK; 730 } 731 732 /* Initialize the TSO handler, and prepare the first payload */ 733 hdr_len = tso_start(skb, &tso); 734 735 total_len = skb->len - hdr_len; 736 while (total_len > 0) { 737 char *hdr; 738 739 index = fec_enet_get_bd_index(bdp, &txq->bd); 740 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 741 total_len -= data_left; 742 743 /* prepare packet headers: MAC + IP + TCP */ 744 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 745 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 746 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 747 if (ret) 748 goto err_release; 749 750 while (data_left > 0) { 751 int size; 752 753 size = min_t(int, tso.size, data_left); 754 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 755 index = fec_enet_get_bd_index(bdp, &txq->bd); 756 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 757 bdp, index, 758 tso.data, size, 759 size == data_left, 760 total_len == 0); 761 if (ret) 762 goto err_release; 763 764 data_left -= size; 765 tso_build_data(skb, &tso, size); 766 } 767 768 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 769 } 770 771 /* Save skb pointer */ 772 txq->tx_skbuff[index] = skb; 773 774 skb_tx_timestamp(skb); 775 txq->bd.cur = bdp; 776 777 /* Trigger transmission start */ 778 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active) || 781 !readl(txq->bd.reg_desc_active) || 782 !readl(txq->bd.reg_desc_active)) 783 writel(0, txq->bd.reg_desc_active); 784 785 return 0; 786 787 err_release: 788 /* TODO: Release all used data descriptors for TSO */ 789 return ret; 790 } 791 792 static netdev_tx_t 793 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 794 { 795 struct fec_enet_private *fep = netdev_priv(ndev); 796 int entries_free; 797 unsigned short queue; 798 struct fec_enet_priv_tx_q *txq; 799 struct netdev_queue *nq; 800 int ret; 801 802 queue = skb_get_queue_mapping(skb); 803 txq = fep->tx_queue[queue]; 804 nq = netdev_get_tx_queue(ndev, queue); 805 806 if (skb_is_gso(skb)) 807 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 808 else 809 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 810 if (ret) 811 return ret; 812 813 entries_free = fec_enet_get_free_txdesc_num(txq); 814 if (entries_free <= txq->tx_stop_threshold) 815 netif_tx_stop_queue(nq); 816 817 return NETDEV_TX_OK; 818 } 819 820 /* Init RX & TX buffer descriptors 821 */ 822 static void fec_enet_bd_init(struct net_device *dev) 823 { 824 struct fec_enet_private *fep = netdev_priv(dev); 825 struct fec_enet_priv_tx_q *txq; 826 struct fec_enet_priv_rx_q *rxq; 827 struct bufdesc *bdp; 828 unsigned int i; 829 unsigned int q; 830 831 for (q = 0; q < fep->num_rx_queues; q++) { 832 /* Initialize the receive buffer descriptors. */ 833 rxq = fep->rx_queue[q]; 834 bdp = rxq->bd.base; 835 836 for (i = 0; i < rxq->bd.ring_size; i++) { 837 838 /* Initialize the BD for every fragment in the page. */ 839 if (bdp->cbd_bufaddr) 840 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 841 else 842 bdp->cbd_sc = cpu_to_fec16(0); 843 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 844 } 845 846 /* Set the last buffer to wrap */ 847 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 848 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 849 850 rxq->bd.cur = rxq->bd.base; 851 } 852 853 for (q = 0; q < fep->num_tx_queues; q++) { 854 /* ...and the same for transmit */ 855 txq = fep->tx_queue[q]; 856 bdp = txq->bd.base; 857 txq->bd.cur = bdp; 858 859 for (i = 0; i < txq->bd.ring_size; i++) { 860 /* Initialize the BD for every fragment in the page. */ 861 bdp->cbd_sc = cpu_to_fec16(0); 862 if (bdp->cbd_bufaddr && 863 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 864 dma_unmap_single(&fep->pdev->dev, 865 fec32_to_cpu(bdp->cbd_bufaddr), 866 fec16_to_cpu(bdp->cbd_datlen), 867 DMA_TO_DEVICE); 868 if (txq->tx_skbuff[i]) { 869 dev_kfree_skb_any(txq->tx_skbuff[i]); 870 txq->tx_skbuff[i] = NULL; 871 } 872 bdp->cbd_bufaddr = cpu_to_fec32(0); 873 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 874 } 875 876 /* Set the last buffer to wrap */ 877 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 878 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 879 txq->dirty_tx = bdp; 880 } 881 } 882 883 static void fec_enet_active_rxring(struct net_device *ndev) 884 { 885 struct fec_enet_private *fep = netdev_priv(ndev); 886 int i; 887 888 for (i = 0; i < fep->num_rx_queues; i++) 889 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 890 } 891 892 static void fec_enet_enable_ring(struct net_device *ndev) 893 { 894 struct fec_enet_private *fep = netdev_priv(ndev); 895 struct fec_enet_priv_tx_q *txq; 896 struct fec_enet_priv_rx_q *rxq; 897 int i; 898 899 for (i = 0; i < fep->num_rx_queues; i++) { 900 rxq = fep->rx_queue[i]; 901 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 902 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 903 904 /* enable DMA1/2 */ 905 if (i) 906 writel(RCMR_MATCHEN | RCMR_CMP(i), 907 fep->hwp + FEC_RCMR(i)); 908 } 909 910 for (i = 0; i < fep->num_tx_queues; i++) { 911 txq = fep->tx_queue[i]; 912 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 913 914 /* enable DMA1/2 */ 915 if (i) 916 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 917 fep->hwp + FEC_DMA_CFG(i)); 918 } 919 } 920 921 static void fec_enet_reset_skb(struct net_device *ndev) 922 { 923 struct fec_enet_private *fep = netdev_priv(ndev); 924 struct fec_enet_priv_tx_q *txq; 925 int i, j; 926 927 for (i = 0; i < fep->num_tx_queues; i++) { 928 txq = fep->tx_queue[i]; 929 930 for (j = 0; j < txq->bd.ring_size; j++) { 931 if (txq->tx_skbuff[j]) { 932 dev_kfree_skb_any(txq->tx_skbuff[j]); 933 txq->tx_skbuff[j] = NULL; 934 } 935 } 936 } 937 } 938 939 /* 940 * This function is called to start or restart the FEC during a link 941 * change, transmit timeout, or to reconfigure the FEC. The network 942 * packet processing for this device must be stopped before this call. 943 */ 944 static void 945 fec_restart(struct net_device *ndev) 946 { 947 struct fec_enet_private *fep = netdev_priv(ndev); 948 u32 temp_mac[2]; 949 u32 rcntl = OPT_FRAME_SIZE | 0x04; 950 u32 ecntl = 0x2; /* ETHEREN */ 951 952 /* Whack a reset. We should wait for this. 953 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 954 * instead of reset MAC itself. 955 */ 956 if (fep->quirks & FEC_QUIRK_HAS_AVB || 957 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 958 writel(0, fep->hwp + FEC_ECNTRL); 959 } else { 960 writel(1, fep->hwp + FEC_ECNTRL); 961 udelay(10); 962 } 963 964 /* 965 * enet-mac reset will reset mac address registers too, 966 * so need to reconfigure it. 967 */ 968 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 969 writel((__force u32)cpu_to_be32(temp_mac[0]), 970 fep->hwp + FEC_ADDR_LOW); 971 writel((__force u32)cpu_to_be32(temp_mac[1]), 972 fep->hwp + FEC_ADDR_HIGH); 973 974 /* Clear any outstanding interrupt, except MDIO. */ 975 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 976 977 fec_enet_bd_init(ndev); 978 979 fec_enet_enable_ring(ndev); 980 981 /* Reset tx SKB buffers. */ 982 fec_enet_reset_skb(ndev); 983 984 /* Enable MII mode */ 985 if (fep->full_duplex == DUPLEX_FULL) { 986 /* FD enable */ 987 writel(0x04, fep->hwp + FEC_X_CNTRL); 988 } else { 989 /* No Rcv on Xmit */ 990 rcntl |= 0x02; 991 writel(0x0, fep->hwp + FEC_X_CNTRL); 992 } 993 994 /* Set MII speed */ 995 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 996 997 #if !defined(CONFIG_M5272) 998 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 999 u32 val = readl(fep->hwp + FEC_RACC); 1000 1001 /* align IP header */ 1002 val |= FEC_RACC_SHIFT16; 1003 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1004 /* set RX checksum */ 1005 val |= FEC_RACC_OPTIONS; 1006 else 1007 val &= ~FEC_RACC_OPTIONS; 1008 writel(val, fep->hwp + FEC_RACC); 1009 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1010 } 1011 #endif 1012 1013 /* 1014 * The phy interface and speed need to get configured 1015 * differently on enet-mac. 1016 */ 1017 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1018 /* Enable flow control and length check */ 1019 rcntl |= 0x40000000 | 0x00000020; 1020 1021 /* RGMII, RMII or MII */ 1022 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1024 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1025 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1026 rcntl |= (1 << 6); 1027 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1028 rcntl |= (1 << 8); 1029 else 1030 rcntl &= ~(1 << 8); 1031 1032 /* 1G, 100M or 10M */ 1033 if (ndev->phydev) { 1034 if (ndev->phydev->speed == SPEED_1000) 1035 ecntl |= (1 << 5); 1036 else if (ndev->phydev->speed == SPEED_100) 1037 rcntl &= ~(1 << 9); 1038 else 1039 rcntl |= (1 << 9); 1040 } 1041 } else { 1042 #ifdef FEC_MIIGSK_ENR 1043 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1044 u32 cfgr; 1045 /* disable the gasket and wait */ 1046 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1047 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1048 udelay(1); 1049 1050 /* 1051 * configure the gasket: 1052 * RMII, 50 MHz, no loopback, no echo 1053 * MII, 25 MHz, no loopback, no echo 1054 */ 1055 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1056 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1057 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1058 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1059 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1060 1061 /* re-enable the gasket */ 1062 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1063 } 1064 #endif 1065 } 1066 1067 #if !defined(CONFIG_M5272) 1068 /* enable pause frame*/ 1069 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1070 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1071 ndev->phydev && ndev->phydev->pause)) { 1072 rcntl |= FEC_ENET_FCE; 1073 1074 /* set FIFO threshold parameter to reduce overrun */ 1075 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1076 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1077 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1078 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1079 1080 /* OPD */ 1081 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1082 } else { 1083 rcntl &= ~FEC_ENET_FCE; 1084 } 1085 #endif /* !defined(CONFIG_M5272) */ 1086 1087 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1088 1089 /* Setup multicast filter. */ 1090 set_multicast_list(ndev); 1091 #ifndef CONFIG_M5272 1092 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1093 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1094 #endif 1095 1096 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1097 /* enable ENET endian swap */ 1098 ecntl |= (1 << 8); 1099 /* enable ENET store and forward mode */ 1100 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1101 } 1102 1103 if (fep->bufdesc_ex) 1104 ecntl |= (1 << 4); 1105 1106 #ifndef CONFIG_M5272 1107 /* Enable the MIB statistic event counters */ 1108 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1109 #endif 1110 1111 /* And last, enable the transmit and receive processing */ 1112 writel(ecntl, fep->hwp + FEC_ECNTRL); 1113 fec_enet_active_rxring(ndev); 1114 1115 if (fep->bufdesc_ex) 1116 fec_ptp_start_cyclecounter(ndev); 1117 1118 /* Enable interrupts we wish to service */ 1119 if (fep->link) 1120 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1121 else 1122 writel(0, fep->hwp + FEC_IMASK); 1123 1124 /* Init the interrupt coalescing */ 1125 fec_enet_itr_coal_init(ndev); 1126 1127 } 1128 1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1130 { 1131 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1132 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1133 1134 if (stop_gpr->gpr) { 1135 if (enabled) 1136 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1137 BIT(stop_gpr->bit), 1138 BIT(stop_gpr->bit)); 1139 else 1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1141 BIT(stop_gpr->bit), 0); 1142 } else if (pdata && pdata->sleep_mode_enable) { 1143 pdata->sleep_mode_enable(enabled); 1144 } 1145 } 1146 1147 static void 1148 fec_stop(struct net_device *ndev) 1149 { 1150 struct fec_enet_private *fep = netdev_priv(ndev); 1151 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1152 u32 val; 1153 1154 /* We cannot expect a graceful transmit stop without link !!! */ 1155 if (fep->link) { 1156 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1157 udelay(10); 1158 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1159 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1160 } 1161 1162 /* Whack a reset. We should wait for this. 1163 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1164 * instead of reset MAC itself. 1165 */ 1166 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1167 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1168 writel(0, fep->hwp + FEC_ECNTRL); 1169 } else { 1170 writel(1, fep->hwp + FEC_ECNTRL); 1171 udelay(10); 1172 } 1173 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1174 } else { 1175 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1176 val = readl(fep->hwp + FEC_ECNTRL); 1177 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1178 writel(val, fep->hwp + FEC_ECNTRL); 1179 fec_enet_stop_mode(fep, true); 1180 } 1181 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1182 1183 /* We have to keep ENET enabled to have MII interrupt stay working */ 1184 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1185 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1186 writel(2, fep->hwp + FEC_ECNTRL); 1187 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1188 } 1189 } 1190 1191 1192 static void 1193 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1194 { 1195 struct fec_enet_private *fep = netdev_priv(ndev); 1196 1197 fec_dump(ndev); 1198 1199 ndev->stats.tx_errors++; 1200 1201 schedule_work(&fep->tx_timeout_work); 1202 } 1203 1204 static void fec_enet_timeout_work(struct work_struct *work) 1205 { 1206 struct fec_enet_private *fep = 1207 container_of(work, struct fec_enet_private, tx_timeout_work); 1208 struct net_device *ndev = fep->netdev; 1209 1210 rtnl_lock(); 1211 if (netif_device_present(ndev) || netif_running(ndev)) { 1212 napi_disable(&fep->napi); 1213 netif_tx_lock_bh(ndev); 1214 fec_restart(ndev); 1215 netif_tx_wake_all_queues(ndev); 1216 netif_tx_unlock_bh(ndev); 1217 napi_enable(&fep->napi); 1218 } 1219 rtnl_unlock(); 1220 } 1221 1222 static void 1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1224 struct skb_shared_hwtstamps *hwtstamps) 1225 { 1226 unsigned long flags; 1227 u64 ns; 1228 1229 spin_lock_irqsave(&fep->tmreg_lock, flags); 1230 ns = timecounter_cyc2time(&fep->tc, ts); 1231 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1232 1233 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1234 hwtstamps->hwtstamp = ns_to_ktime(ns); 1235 } 1236 1237 static void 1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1239 { 1240 struct fec_enet_private *fep; 1241 struct bufdesc *bdp; 1242 unsigned short status; 1243 struct sk_buff *skb; 1244 struct fec_enet_priv_tx_q *txq; 1245 struct netdev_queue *nq; 1246 int index = 0; 1247 int entries_free; 1248 1249 fep = netdev_priv(ndev); 1250 1251 txq = fep->tx_queue[queue_id]; 1252 /* get next bdp of dirty_tx */ 1253 nq = netdev_get_tx_queue(ndev, queue_id); 1254 bdp = txq->dirty_tx; 1255 1256 /* get next bdp of dirty_tx */ 1257 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1258 1259 while (bdp != READ_ONCE(txq->bd.cur)) { 1260 /* Order the load of bd.cur and cbd_sc */ 1261 rmb(); 1262 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1263 if (status & BD_ENET_TX_READY) 1264 break; 1265 1266 index = fec_enet_get_bd_index(bdp, &txq->bd); 1267 1268 skb = txq->tx_skbuff[index]; 1269 txq->tx_skbuff[index] = NULL; 1270 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1271 dma_unmap_single(&fep->pdev->dev, 1272 fec32_to_cpu(bdp->cbd_bufaddr), 1273 fec16_to_cpu(bdp->cbd_datlen), 1274 DMA_TO_DEVICE); 1275 bdp->cbd_bufaddr = cpu_to_fec32(0); 1276 if (!skb) 1277 goto skb_done; 1278 1279 /* Check for errors. */ 1280 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1281 BD_ENET_TX_RL | BD_ENET_TX_UN | 1282 BD_ENET_TX_CSL)) { 1283 ndev->stats.tx_errors++; 1284 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1285 ndev->stats.tx_heartbeat_errors++; 1286 if (status & BD_ENET_TX_LC) /* Late collision */ 1287 ndev->stats.tx_window_errors++; 1288 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1289 ndev->stats.tx_aborted_errors++; 1290 if (status & BD_ENET_TX_UN) /* Underrun */ 1291 ndev->stats.tx_fifo_errors++; 1292 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1293 ndev->stats.tx_carrier_errors++; 1294 } else { 1295 ndev->stats.tx_packets++; 1296 ndev->stats.tx_bytes += skb->len; 1297 } 1298 1299 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1300 * are to time stamp the packet, so we still need to check time 1301 * stamping enabled flag. 1302 */ 1303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1304 fep->hwts_tx_en) && 1305 fep->bufdesc_ex) { 1306 struct skb_shared_hwtstamps shhwtstamps; 1307 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1308 1309 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1310 skb_tstamp_tx(skb, &shhwtstamps); 1311 } 1312 1313 /* Deferred means some collisions occurred during transmit, 1314 * but we eventually sent the packet OK. 1315 */ 1316 if (status & BD_ENET_TX_DEF) 1317 ndev->stats.collisions++; 1318 1319 /* Free the sk buffer associated with this last transmit */ 1320 dev_kfree_skb_any(skb); 1321 skb_done: 1322 /* Make sure the update to bdp and tx_skbuff are performed 1323 * before dirty_tx 1324 */ 1325 wmb(); 1326 txq->dirty_tx = bdp; 1327 1328 /* Update pointer to next buffer descriptor to be transmitted */ 1329 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1330 1331 /* Since we have freed up a buffer, the ring is no longer full 1332 */ 1333 if (netif_tx_queue_stopped(nq)) { 1334 entries_free = fec_enet_get_free_txdesc_num(txq); 1335 if (entries_free >= txq->tx_wake_threshold) 1336 netif_tx_wake_queue(nq); 1337 } 1338 } 1339 1340 /* ERR006358: Keep the transmitter going */ 1341 if (bdp != txq->bd.cur && 1342 readl(txq->bd.reg_desc_active) == 0) 1343 writel(0, txq->bd.reg_desc_active); 1344 } 1345 1346 static void fec_enet_tx(struct net_device *ndev) 1347 { 1348 struct fec_enet_private *fep = netdev_priv(ndev); 1349 int i; 1350 1351 /* Make sure that AVB queues are processed first. */ 1352 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1353 fec_enet_tx_queue(ndev, i); 1354 } 1355 1356 static int 1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1358 { 1359 struct fec_enet_private *fep = netdev_priv(ndev); 1360 int off; 1361 1362 off = ((unsigned long)skb->data) & fep->rx_align; 1363 if (off) 1364 skb_reserve(skb, fep->rx_align + 1 - off); 1365 1366 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1367 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1368 if (net_ratelimit()) 1369 netdev_err(ndev, "Rx DMA memory map failed\n"); 1370 return -ENOMEM; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1377 struct bufdesc *bdp, u32 length, bool swap) 1378 { 1379 struct fec_enet_private *fep = netdev_priv(ndev); 1380 struct sk_buff *new_skb; 1381 1382 if (length > fep->rx_copybreak) 1383 return false; 1384 1385 new_skb = netdev_alloc_skb(ndev, length); 1386 if (!new_skb) 1387 return false; 1388 1389 dma_sync_single_for_cpu(&fep->pdev->dev, 1390 fec32_to_cpu(bdp->cbd_bufaddr), 1391 FEC_ENET_RX_FRSIZE - fep->rx_align, 1392 DMA_FROM_DEVICE); 1393 if (!swap) 1394 memcpy(new_skb->data, (*skb)->data, length); 1395 else 1396 swap_buffer2(new_skb->data, (*skb)->data, length); 1397 *skb = new_skb; 1398 1399 return true; 1400 } 1401 1402 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1403 * When we update through the ring, if the next incoming buffer has 1404 * not been given to the system, we just set the empty indicator, 1405 * effectively tossing the packet. 1406 */ 1407 static int 1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1409 { 1410 struct fec_enet_private *fep = netdev_priv(ndev); 1411 struct fec_enet_priv_rx_q *rxq; 1412 struct bufdesc *bdp; 1413 unsigned short status; 1414 struct sk_buff *skb_new = NULL; 1415 struct sk_buff *skb; 1416 ushort pkt_len; 1417 __u8 *data; 1418 int pkt_received = 0; 1419 struct bufdesc_ex *ebdp = NULL; 1420 bool vlan_packet_rcvd = false; 1421 u16 vlan_tag; 1422 int index = 0; 1423 bool is_copybreak; 1424 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1425 1426 #ifdef CONFIG_M532x 1427 flush_cache_all(); 1428 #endif 1429 rxq = fep->rx_queue[queue_id]; 1430 1431 /* First, grab all of the stats for the incoming packet. 1432 * These get messed up if we get called due to a busy condition. 1433 */ 1434 bdp = rxq->bd.cur; 1435 1436 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1437 1438 if (pkt_received >= budget) 1439 break; 1440 pkt_received++; 1441 1442 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1443 1444 /* Check for errors. */ 1445 status ^= BD_ENET_RX_LAST; 1446 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1447 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1448 BD_ENET_RX_CL)) { 1449 ndev->stats.rx_errors++; 1450 if (status & BD_ENET_RX_OV) { 1451 /* FIFO overrun */ 1452 ndev->stats.rx_fifo_errors++; 1453 goto rx_processing_done; 1454 } 1455 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1456 | BD_ENET_RX_LAST)) { 1457 /* Frame too long or too short. */ 1458 ndev->stats.rx_length_errors++; 1459 if (status & BD_ENET_RX_LAST) 1460 netdev_err(ndev, "rcv is not +last\n"); 1461 } 1462 if (status & BD_ENET_RX_CR) /* CRC Error */ 1463 ndev->stats.rx_crc_errors++; 1464 /* Report late collisions as a frame error. */ 1465 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1466 ndev->stats.rx_frame_errors++; 1467 goto rx_processing_done; 1468 } 1469 1470 /* Process the incoming frame. */ 1471 ndev->stats.rx_packets++; 1472 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1473 ndev->stats.rx_bytes += pkt_len; 1474 1475 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1476 skb = rxq->rx_skbuff[index]; 1477 1478 /* The packet length includes FCS, but we don't want to 1479 * include that when passing upstream as it messes up 1480 * bridging applications. 1481 */ 1482 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1483 need_swap); 1484 if (!is_copybreak) { 1485 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1486 if (unlikely(!skb_new)) { 1487 ndev->stats.rx_dropped++; 1488 goto rx_processing_done; 1489 } 1490 dma_unmap_single(&fep->pdev->dev, 1491 fec32_to_cpu(bdp->cbd_bufaddr), 1492 FEC_ENET_RX_FRSIZE - fep->rx_align, 1493 DMA_FROM_DEVICE); 1494 } 1495 1496 prefetch(skb->data - NET_IP_ALIGN); 1497 skb_put(skb, pkt_len - 4); 1498 data = skb->data; 1499 1500 if (!is_copybreak && need_swap) 1501 swap_buffer(data, pkt_len); 1502 1503 #if !defined(CONFIG_M5272) 1504 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1505 data = skb_pull_inline(skb, 2); 1506 #endif 1507 1508 /* Extract the enhanced buffer descriptor */ 1509 ebdp = NULL; 1510 if (fep->bufdesc_ex) 1511 ebdp = (struct bufdesc_ex *)bdp; 1512 1513 /* If this is a VLAN packet remove the VLAN Tag */ 1514 vlan_packet_rcvd = false; 1515 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1516 fep->bufdesc_ex && 1517 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1518 /* Push and remove the vlan tag */ 1519 struct vlan_hdr *vlan_header = 1520 (struct vlan_hdr *) (data + ETH_HLEN); 1521 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1522 1523 vlan_packet_rcvd = true; 1524 1525 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1526 skb_pull(skb, VLAN_HLEN); 1527 } 1528 1529 skb->protocol = eth_type_trans(skb, ndev); 1530 1531 /* Get receive timestamp from the skb */ 1532 if (fep->hwts_rx_en && fep->bufdesc_ex) 1533 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1534 skb_hwtstamps(skb)); 1535 1536 if (fep->bufdesc_ex && 1537 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1538 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1539 /* don't check it */ 1540 skb->ip_summed = CHECKSUM_UNNECESSARY; 1541 } else { 1542 skb_checksum_none_assert(skb); 1543 } 1544 } 1545 1546 /* Handle received VLAN packets */ 1547 if (vlan_packet_rcvd) 1548 __vlan_hwaccel_put_tag(skb, 1549 htons(ETH_P_8021Q), 1550 vlan_tag); 1551 1552 skb_record_rx_queue(skb, queue_id); 1553 napi_gro_receive(&fep->napi, skb); 1554 1555 if (is_copybreak) { 1556 dma_sync_single_for_device(&fep->pdev->dev, 1557 fec32_to_cpu(bdp->cbd_bufaddr), 1558 FEC_ENET_RX_FRSIZE - fep->rx_align, 1559 DMA_FROM_DEVICE); 1560 } else { 1561 rxq->rx_skbuff[index] = skb_new; 1562 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1563 } 1564 1565 rx_processing_done: 1566 /* Clear the status flags for this buffer */ 1567 status &= ~BD_ENET_RX_STATS; 1568 1569 /* Mark the buffer empty */ 1570 status |= BD_ENET_RX_EMPTY; 1571 1572 if (fep->bufdesc_ex) { 1573 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1574 1575 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1576 ebdp->cbd_prot = 0; 1577 ebdp->cbd_bdu = 0; 1578 } 1579 /* Make sure the updates to rest of the descriptor are 1580 * performed before transferring ownership. 1581 */ 1582 wmb(); 1583 bdp->cbd_sc = cpu_to_fec16(status); 1584 1585 /* Update BD pointer to next entry */ 1586 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1587 1588 /* Doing this here will keep the FEC running while we process 1589 * incoming frames. On a heavily loaded network, we should be 1590 * able to keep up at the expense of system resources. 1591 */ 1592 writel(0, rxq->bd.reg_desc_active); 1593 } 1594 rxq->bd.cur = bdp; 1595 return pkt_received; 1596 } 1597 1598 static int fec_enet_rx(struct net_device *ndev, int budget) 1599 { 1600 struct fec_enet_private *fep = netdev_priv(ndev); 1601 int i, done = 0; 1602 1603 /* Make sure that AVB queues are processed first. */ 1604 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1605 done += fec_enet_rx_queue(ndev, budget - done, i); 1606 1607 return done; 1608 } 1609 1610 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1611 { 1612 uint int_events; 1613 1614 int_events = readl(fep->hwp + FEC_IEVENT); 1615 1616 /* Don't clear MDIO events, we poll for those */ 1617 int_events &= ~FEC_ENET_MII; 1618 1619 writel(int_events, fep->hwp + FEC_IEVENT); 1620 1621 return int_events != 0; 1622 } 1623 1624 static irqreturn_t 1625 fec_enet_interrupt(int irq, void *dev_id) 1626 { 1627 struct net_device *ndev = dev_id; 1628 struct fec_enet_private *fep = netdev_priv(ndev); 1629 irqreturn_t ret = IRQ_NONE; 1630 1631 if (fec_enet_collect_events(fep) && fep->link) { 1632 ret = IRQ_HANDLED; 1633 1634 if (napi_schedule_prep(&fep->napi)) { 1635 /* Disable interrupts */ 1636 writel(0, fep->hwp + FEC_IMASK); 1637 __napi_schedule(&fep->napi); 1638 } 1639 } 1640 1641 return ret; 1642 } 1643 1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1645 { 1646 struct net_device *ndev = napi->dev; 1647 struct fec_enet_private *fep = netdev_priv(ndev); 1648 int done = 0; 1649 1650 do { 1651 done += fec_enet_rx(ndev, budget - done); 1652 fec_enet_tx(ndev); 1653 } while ((done < budget) && fec_enet_collect_events(fep)); 1654 1655 if (done < budget) { 1656 napi_complete_done(napi, done); 1657 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1658 } 1659 1660 return done; 1661 } 1662 1663 /* ------------------------------------------------------------------------- */ 1664 static void fec_get_mac(struct net_device *ndev) 1665 { 1666 struct fec_enet_private *fep = netdev_priv(ndev); 1667 unsigned char *iap, tmpaddr[ETH_ALEN]; 1668 1669 /* 1670 * try to get mac address in following order: 1671 * 1672 * 1) module parameter via kernel command line in form 1673 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1674 */ 1675 iap = macaddr; 1676 1677 /* 1678 * 2) from device tree data 1679 */ 1680 if (!is_valid_ether_addr(iap)) { 1681 struct device_node *np = fep->pdev->dev.of_node; 1682 if (np) { 1683 const char *mac = of_get_mac_address(np); 1684 if (!IS_ERR(mac)) 1685 iap = (unsigned char *) mac; 1686 } 1687 } 1688 1689 /* 1690 * 3) from flash or fuse (via platform data) 1691 */ 1692 if (!is_valid_ether_addr(iap)) { 1693 #ifdef CONFIG_M5272 1694 if (FEC_FLASHMAC) 1695 iap = (unsigned char *)FEC_FLASHMAC; 1696 #else 1697 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1698 1699 if (pdata) 1700 iap = (unsigned char *)&pdata->mac; 1701 #endif 1702 } 1703 1704 /* 1705 * 4) FEC mac registers set by bootloader 1706 */ 1707 if (!is_valid_ether_addr(iap)) { 1708 *((__be32 *) &tmpaddr[0]) = 1709 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1710 *((__be16 *) &tmpaddr[4]) = 1711 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1712 iap = &tmpaddr[0]; 1713 } 1714 1715 /* 1716 * 5) random mac address 1717 */ 1718 if (!is_valid_ether_addr(iap)) { 1719 /* Report it and use a random ethernet address instead */ 1720 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1721 eth_hw_addr_random(ndev); 1722 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1723 ndev->dev_addr); 1724 return; 1725 } 1726 1727 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1728 1729 /* Adjust MAC if using macaddr */ 1730 if (iap == macaddr) 1731 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1732 } 1733 1734 /* ------------------------------------------------------------------------- */ 1735 1736 /* 1737 * Phy section 1738 */ 1739 static void fec_enet_adjust_link(struct net_device *ndev) 1740 { 1741 struct fec_enet_private *fep = netdev_priv(ndev); 1742 struct phy_device *phy_dev = ndev->phydev; 1743 int status_change = 0; 1744 1745 /* 1746 * If the netdev is down, or is going down, we're not interested 1747 * in link state events, so just mark our idea of the link as down 1748 * and ignore the event. 1749 */ 1750 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1751 fep->link = 0; 1752 } else if (phy_dev->link) { 1753 if (!fep->link) { 1754 fep->link = phy_dev->link; 1755 status_change = 1; 1756 } 1757 1758 if (fep->full_duplex != phy_dev->duplex) { 1759 fep->full_duplex = phy_dev->duplex; 1760 status_change = 1; 1761 } 1762 1763 if (phy_dev->speed != fep->speed) { 1764 fep->speed = phy_dev->speed; 1765 status_change = 1; 1766 } 1767 1768 /* if any of the above changed restart the FEC */ 1769 if (status_change) { 1770 napi_disable(&fep->napi); 1771 netif_tx_lock_bh(ndev); 1772 fec_restart(ndev); 1773 netif_tx_wake_all_queues(ndev); 1774 netif_tx_unlock_bh(ndev); 1775 napi_enable(&fep->napi); 1776 } 1777 } else { 1778 if (fep->link) { 1779 napi_disable(&fep->napi); 1780 netif_tx_lock_bh(ndev); 1781 fec_stop(ndev); 1782 netif_tx_unlock_bh(ndev); 1783 napi_enable(&fep->napi); 1784 fep->link = phy_dev->link; 1785 status_change = 1; 1786 } 1787 } 1788 1789 if (status_change) 1790 phy_print_status(phy_dev); 1791 } 1792 1793 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1794 { 1795 uint ievent; 1796 int ret; 1797 1798 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1799 ievent & FEC_ENET_MII, 2, 30000); 1800 1801 if (!ret) 1802 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1803 1804 return ret; 1805 } 1806 1807 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1808 { 1809 struct fec_enet_private *fep = bus->priv; 1810 struct device *dev = &fep->pdev->dev; 1811 int ret = 0, frame_start, frame_addr, frame_op; 1812 bool is_c45 = !!(regnum & MII_ADDR_C45); 1813 1814 ret = pm_runtime_resume_and_get(dev); 1815 if (ret < 0) 1816 return ret; 1817 1818 if (is_c45) { 1819 frame_start = FEC_MMFR_ST_C45; 1820 1821 /* write address */ 1822 frame_addr = (regnum >> 16); 1823 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1824 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1825 FEC_MMFR_TA | (regnum & 0xFFFF), 1826 fep->hwp + FEC_MII_DATA); 1827 1828 /* wait for end of transfer */ 1829 ret = fec_enet_mdio_wait(fep); 1830 if (ret) { 1831 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1832 goto out; 1833 } 1834 1835 frame_op = FEC_MMFR_OP_READ_C45; 1836 1837 } else { 1838 /* C22 read */ 1839 frame_op = FEC_MMFR_OP_READ; 1840 frame_start = FEC_MMFR_ST; 1841 frame_addr = regnum; 1842 } 1843 1844 /* start a read op */ 1845 writel(frame_start | frame_op | 1846 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1847 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1848 1849 /* wait for end of transfer */ 1850 ret = fec_enet_mdio_wait(fep); 1851 if (ret) { 1852 netdev_err(fep->netdev, "MDIO read timeout\n"); 1853 goto out; 1854 } 1855 1856 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1857 1858 out: 1859 pm_runtime_mark_last_busy(dev); 1860 pm_runtime_put_autosuspend(dev); 1861 1862 return ret; 1863 } 1864 1865 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1866 u16 value) 1867 { 1868 struct fec_enet_private *fep = bus->priv; 1869 struct device *dev = &fep->pdev->dev; 1870 int ret, frame_start, frame_addr; 1871 bool is_c45 = !!(regnum & MII_ADDR_C45); 1872 1873 ret = pm_runtime_resume_and_get(dev); 1874 if (ret < 0) 1875 return ret; 1876 1877 if (is_c45) { 1878 frame_start = FEC_MMFR_ST_C45; 1879 1880 /* write address */ 1881 frame_addr = (regnum >> 16); 1882 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1883 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1884 FEC_MMFR_TA | (regnum & 0xFFFF), 1885 fep->hwp + FEC_MII_DATA); 1886 1887 /* wait for end of transfer */ 1888 ret = fec_enet_mdio_wait(fep); 1889 if (ret) { 1890 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1891 goto out; 1892 } 1893 } else { 1894 /* C22 write */ 1895 frame_start = FEC_MMFR_ST; 1896 frame_addr = regnum; 1897 } 1898 1899 /* start a write op */ 1900 writel(frame_start | FEC_MMFR_OP_WRITE | 1901 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1902 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1903 fep->hwp + FEC_MII_DATA); 1904 1905 /* wait for end of transfer */ 1906 ret = fec_enet_mdio_wait(fep); 1907 if (ret) 1908 netdev_err(fep->netdev, "MDIO write timeout\n"); 1909 1910 out: 1911 pm_runtime_mark_last_busy(dev); 1912 pm_runtime_put_autosuspend(dev); 1913 1914 return ret; 1915 } 1916 1917 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1918 { 1919 struct fec_enet_private *fep = netdev_priv(ndev); 1920 struct phy_device *phy_dev = ndev->phydev; 1921 1922 if (phy_dev) { 1923 phy_reset_after_clk_enable(phy_dev); 1924 } else if (fep->phy_node) { 1925 /* 1926 * If the PHY still is not bound to the MAC, but there is 1927 * OF PHY node and a matching PHY device instance already, 1928 * use the OF PHY node to obtain the PHY device instance, 1929 * and then use that PHY device instance when triggering 1930 * the PHY reset. 1931 */ 1932 phy_dev = of_phy_find_device(fep->phy_node); 1933 phy_reset_after_clk_enable(phy_dev); 1934 put_device(&phy_dev->mdio.dev); 1935 } 1936 } 1937 1938 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1939 { 1940 struct fec_enet_private *fep = netdev_priv(ndev); 1941 int ret; 1942 1943 if (enable) { 1944 ret = clk_prepare_enable(fep->clk_enet_out); 1945 if (ret) 1946 return ret; 1947 1948 if (fep->clk_ptp) { 1949 mutex_lock(&fep->ptp_clk_mutex); 1950 ret = clk_prepare_enable(fep->clk_ptp); 1951 if (ret) { 1952 mutex_unlock(&fep->ptp_clk_mutex); 1953 goto failed_clk_ptp; 1954 } else { 1955 fep->ptp_clk_on = true; 1956 } 1957 mutex_unlock(&fep->ptp_clk_mutex); 1958 } 1959 1960 ret = clk_prepare_enable(fep->clk_ref); 1961 if (ret) 1962 goto failed_clk_ref; 1963 1964 fec_enet_phy_reset_after_clk_enable(ndev); 1965 } else { 1966 clk_disable_unprepare(fep->clk_enet_out); 1967 if (fep->clk_ptp) { 1968 mutex_lock(&fep->ptp_clk_mutex); 1969 clk_disable_unprepare(fep->clk_ptp); 1970 fep->ptp_clk_on = false; 1971 mutex_unlock(&fep->ptp_clk_mutex); 1972 } 1973 clk_disable_unprepare(fep->clk_ref); 1974 } 1975 1976 return 0; 1977 1978 failed_clk_ref: 1979 if (fep->clk_ptp) { 1980 mutex_lock(&fep->ptp_clk_mutex); 1981 clk_disable_unprepare(fep->clk_ptp); 1982 fep->ptp_clk_on = false; 1983 mutex_unlock(&fep->ptp_clk_mutex); 1984 } 1985 failed_clk_ptp: 1986 clk_disable_unprepare(fep->clk_enet_out); 1987 1988 return ret; 1989 } 1990 1991 static int fec_enet_mii_probe(struct net_device *ndev) 1992 { 1993 struct fec_enet_private *fep = netdev_priv(ndev); 1994 struct phy_device *phy_dev = NULL; 1995 char mdio_bus_id[MII_BUS_ID_SIZE]; 1996 char phy_name[MII_BUS_ID_SIZE + 3]; 1997 int phy_id; 1998 int dev_id = fep->dev_id; 1999 2000 if (fep->phy_node) { 2001 phy_dev = of_phy_connect(ndev, fep->phy_node, 2002 &fec_enet_adjust_link, 0, 2003 fep->phy_interface); 2004 if (!phy_dev) { 2005 netdev_err(ndev, "Unable to connect to phy\n"); 2006 return -ENODEV; 2007 } 2008 } else { 2009 /* check for attached phy */ 2010 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2011 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2012 continue; 2013 if (dev_id--) 2014 continue; 2015 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2016 break; 2017 } 2018 2019 if (phy_id >= PHY_MAX_ADDR) { 2020 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2021 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2022 phy_id = 0; 2023 } 2024 2025 snprintf(phy_name, sizeof(phy_name), 2026 PHY_ID_FMT, mdio_bus_id, phy_id); 2027 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2028 fep->phy_interface); 2029 } 2030 2031 if (IS_ERR(phy_dev)) { 2032 netdev_err(ndev, "could not attach to PHY\n"); 2033 return PTR_ERR(phy_dev); 2034 } 2035 2036 /* mask with MAC supported features */ 2037 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2038 phy_set_max_speed(phy_dev, 1000); 2039 phy_remove_link_mode(phy_dev, 2040 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2041 #if !defined(CONFIG_M5272) 2042 phy_support_sym_pause(phy_dev); 2043 #endif 2044 } 2045 else 2046 phy_set_max_speed(phy_dev, 100); 2047 2048 fep->link = 0; 2049 fep->full_duplex = 0; 2050 2051 phy_attached_info(phy_dev); 2052 2053 return 0; 2054 } 2055 2056 static int fec_enet_mii_init(struct platform_device *pdev) 2057 { 2058 static struct mii_bus *fec0_mii_bus; 2059 struct net_device *ndev = platform_get_drvdata(pdev); 2060 struct fec_enet_private *fep = netdev_priv(ndev); 2061 bool suppress_preamble = false; 2062 struct device_node *node; 2063 int err = -ENXIO; 2064 u32 mii_speed, holdtime; 2065 u32 bus_freq; 2066 2067 /* 2068 * The i.MX28 dual fec interfaces are not equal. 2069 * Here are the differences: 2070 * 2071 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2072 * - fec0 acts as the 1588 time master while fec1 is slave 2073 * - external phys can only be configured by fec0 2074 * 2075 * That is to say fec1 can not work independently. It only works 2076 * when fec0 is working. The reason behind this design is that the 2077 * second interface is added primarily for Switch mode. 2078 * 2079 * Because of the last point above, both phys are attached on fec0 2080 * mdio interface in board design, and need to be configured by 2081 * fec0 mii_bus. 2082 */ 2083 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2084 /* fec1 uses fec0 mii_bus */ 2085 if (mii_cnt && fec0_mii_bus) { 2086 fep->mii_bus = fec0_mii_bus; 2087 mii_cnt++; 2088 return 0; 2089 } 2090 return -ENOENT; 2091 } 2092 2093 bus_freq = 2500000; /* 2.5MHz by default */ 2094 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2095 if (node) { 2096 of_property_read_u32(node, "clock-frequency", &bus_freq); 2097 suppress_preamble = of_property_read_bool(node, 2098 "suppress-preamble"); 2099 } 2100 2101 /* 2102 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2103 * 2104 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2105 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2106 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2107 * document. 2108 */ 2109 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2110 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2111 mii_speed--; 2112 if (mii_speed > 63) { 2113 dev_err(&pdev->dev, 2114 "fec clock (%lu) too fast to get right mii speed\n", 2115 clk_get_rate(fep->clk_ipg)); 2116 err = -EINVAL; 2117 goto err_out; 2118 } 2119 2120 /* 2121 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2122 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2123 * versions are RAZ there, so just ignore the difference and write the 2124 * register always. 2125 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2126 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2127 * output. 2128 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2129 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2130 * holdtime cannot result in a value greater than 3. 2131 */ 2132 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2133 2134 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2135 2136 if (suppress_preamble) 2137 fep->phy_speed |= BIT(7); 2138 2139 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2140 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2141 * MII event generation condition: 2142 * - writing MSCR: 2143 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2144 * mscr_reg_data_in[7:0] != 0 2145 * - writing MMFR: 2146 * - mscr[7:0]_not_zero 2147 */ 2148 writel(0, fep->hwp + FEC_MII_DATA); 2149 } 2150 2151 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2152 2153 /* Clear any pending transaction complete indication */ 2154 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2155 2156 fep->mii_bus = mdiobus_alloc(); 2157 if (fep->mii_bus == NULL) { 2158 err = -ENOMEM; 2159 goto err_out; 2160 } 2161 2162 fep->mii_bus->name = "fec_enet_mii_bus"; 2163 fep->mii_bus->read = fec_enet_mdio_read; 2164 fep->mii_bus->write = fec_enet_mdio_write; 2165 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2166 pdev->name, fep->dev_id + 1); 2167 fep->mii_bus->priv = fep; 2168 fep->mii_bus->parent = &pdev->dev; 2169 2170 err = of_mdiobus_register(fep->mii_bus, node); 2171 if (err) 2172 goto err_out_free_mdiobus; 2173 of_node_put(node); 2174 2175 mii_cnt++; 2176 2177 /* save fec0 mii_bus */ 2178 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2179 fec0_mii_bus = fep->mii_bus; 2180 2181 return 0; 2182 2183 err_out_free_mdiobus: 2184 mdiobus_free(fep->mii_bus); 2185 err_out: 2186 of_node_put(node); 2187 return err; 2188 } 2189 2190 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2191 { 2192 if (--mii_cnt == 0) { 2193 mdiobus_unregister(fep->mii_bus); 2194 mdiobus_free(fep->mii_bus); 2195 } 2196 } 2197 2198 static void fec_enet_get_drvinfo(struct net_device *ndev, 2199 struct ethtool_drvinfo *info) 2200 { 2201 struct fec_enet_private *fep = netdev_priv(ndev); 2202 2203 strlcpy(info->driver, fep->pdev->dev.driver->name, 2204 sizeof(info->driver)); 2205 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2206 } 2207 2208 static int fec_enet_get_regs_len(struct net_device *ndev) 2209 { 2210 struct fec_enet_private *fep = netdev_priv(ndev); 2211 struct resource *r; 2212 int s = 0; 2213 2214 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2215 if (r) 2216 s = resource_size(r); 2217 2218 return s; 2219 } 2220 2221 /* List of registers that can be safety be read to dump them with ethtool */ 2222 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2223 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2224 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2225 static __u32 fec_enet_register_version = 2; 2226 static u32 fec_enet_register_offset[] = { 2227 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2228 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2229 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2230 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2231 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2232 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2233 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2234 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2235 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2236 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2237 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2238 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2239 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2240 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2241 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2242 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2243 RMON_T_P_GTE2048, RMON_T_OCTETS, 2244 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2245 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2246 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2247 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2248 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2249 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2250 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2251 RMON_R_P_GTE2048, RMON_R_OCTETS, 2252 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2253 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2254 }; 2255 #else 2256 static __u32 fec_enet_register_version = 1; 2257 static u32 fec_enet_register_offset[] = { 2258 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2259 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2260 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2261 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2262 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2263 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2264 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2265 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2266 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2267 }; 2268 #endif 2269 2270 static void fec_enet_get_regs(struct net_device *ndev, 2271 struct ethtool_regs *regs, void *regbuf) 2272 { 2273 struct fec_enet_private *fep = netdev_priv(ndev); 2274 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2275 struct device *dev = &fep->pdev->dev; 2276 u32 *buf = (u32 *)regbuf; 2277 u32 i, off; 2278 int ret; 2279 2280 ret = pm_runtime_resume_and_get(dev); 2281 if (ret < 0) 2282 return; 2283 2284 regs->version = fec_enet_register_version; 2285 2286 memset(buf, 0, regs->len); 2287 2288 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2289 off = fec_enet_register_offset[i]; 2290 2291 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2292 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2293 continue; 2294 2295 off >>= 2; 2296 buf[off] = readl(&theregs[off]); 2297 } 2298 2299 pm_runtime_mark_last_busy(dev); 2300 pm_runtime_put_autosuspend(dev); 2301 } 2302 2303 static int fec_enet_get_ts_info(struct net_device *ndev, 2304 struct ethtool_ts_info *info) 2305 { 2306 struct fec_enet_private *fep = netdev_priv(ndev); 2307 2308 if (fep->bufdesc_ex) { 2309 2310 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2311 SOF_TIMESTAMPING_RX_SOFTWARE | 2312 SOF_TIMESTAMPING_SOFTWARE | 2313 SOF_TIMESTAMPING_TX_HARDWARE | 2314 SOF_TIMESTAMPING_RX_HARDWARE | 2315 SOF_TIMESTAMPING_RAW_HARDWARE; 2316 if (fep->ptp_clock) 2317 info->phc_index = ptp_clock_index(fep->ptp_clock); 2318 else 2319 info->phc_index = -1; 2320 2321 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2322 (1 << HWTSTAMP_TX_ON); 2323 2324 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2325 (1 << HWTSTAMP_FILTER_ALL); 2326 return 0; 2327 } else { 2328 return ethtool_op_get_ts_info(ndev, info); 2329 } 2330 } 2331 2332 #if !defined(CONFIG_M5272) 2333 2334 static void fec_enet_get_pauseparam(struct net_device *ndev, 2335 struct ethtool_pauseparam *pause) 2336 { 2337 struct fec_enet_private *fep = netdev_priv(ndev); 2338 2339 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2340 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2341 pause->rx_pause = pause->tx_pause; 2342 } 2343 2344 static int fec_enet_set_pauseparam(struct net_device *ndev, 2345 struct ethtool_pauseparam *pause) 2346 { 2347 struct fec_enet_private *fep = netdev_priv(ndev); 2348 2349 if (!ndev->phydev) 2350 return -ENODEV; 2351 2352 if (pause->tx_pause != pause->rx_pause) { 2353 netdev_info(ndev, 2354 "hardware only support enable/disable both tx and rx"); 2355 return -EINVAL; 2356 } 2357 2358 fep->pause_flag = 0; 2359 2360 /* tx pause must be same as rx pause */ 2361 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2362 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2363 2364 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2365 pause->autoneg); 2366 2367 if (pause->autoneg) { 2368 if (netif_running(ndev)) 2369 fec_stop(ndev); 2370 phy_start_aneg(ndev->phydev); 2371 } 2372 if (netif_running(ndev)) { 2373 napi_disable(&fep->napi); 2374 netif_tx_lock_bh(ndev); 2375 fec_restart(ndev); 2376 netif_tx_wake_all_queues(ndev); 2377 netif_tx_unlock_bh(ndev); 2378 napi_enable(&fep->napi); 2379 } 2380 2381 return 0; 2382 } 2383 2384 static const struct fec_stat { 2385 char name[ETH_GSTRING_LEN]; 2386 u16 offset; 2387 } fec_stats[] = { 2388 /* RMON TX */ 2389 { "tx_dropped", RMON_T_DROP }, 2390 { "tx_packets", RMON_T_PACKETS }, 2391 { "tx_broadcast", RMON_T_BC_PKT }, 2392 { "tx_multicast", RMON_T_MC_PKT }, 2393 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2394 { "tx_undersize", RMON_T_UNDERSIZE }, 2395 { "tx_oversize", RMON_T_OVERSIZE }, 2396 { "tx_fragment", RMON_T_FRAG }, 2397 { "tx_jabber", RMON_T_JAB }, 2398 { "tx_collision", RMON_T_COL }, 2399 { "tx_64byte", RMON_T_P64 }, 2400 { "tx_65to127byte", RMON_T_P65TO127 }, 2401 { "tx_128to255byte", RMON_T_P128TO255 }, 2402 { "tx_256to511byte", RMON_T_P256TO511 }, 2403 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2404 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2405 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2406 { "tx_octets", RMON_T_OCTETS }, 2407 2408 /* IEEE TX */ 2409 { "IEEE_tx_drop", IEEE_T_DROP }, 2410 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2411 { "IEEE_tx_1col", IEEE_T_1COL }, 2412 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2413 { "IEEE_tx_def", IEEE_T_DEF }, 2414 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2415 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2416 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2417 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2418 { "IEEE_tx_sqe", IEEE_T_SQE }, 2419 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2420 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2421 2422 /* RMON RX */ 2423 { "rx_packets", RMON_R_PACKETS }, 2424 { "rx_broadcast", RMON_R_BC_PKT }, 2425 { "rx_multicast", RMON_R_MC_PKT }, 2426 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2427 { "rx_undersize", RMON_R_UNDERSIZE }, 2428 { "rx_oversize", RMON_R_OVERSIZE }, 2429 { "rx_fragment", RMON_R_FRAG }, 2430 { "rx_jabber", RMON_R_JAB }, 2431 { "rx_64byte", RMON_R_P64 }, 2432 { "rx_65to127byte", RMON_R_P65TO127 }, 2433 { "rx_128to255byte", RMON_R_P128TO255 }, 2434 { "rx_256to511byte", RMON_R_P256TO511 }, 2435 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2436 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2437 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2438 { "rx_octets", RMON_R_OCTETS }, 2439 2440 /* IEEE RX */ 2441 { "IEEE_rx_drop", IEEE_R_DROP }, 2442 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2443 { "IEEE_rx_crc", IEEE_R_CRC }, 2444 { "IEEE_rx_align", IEEE_R_ALIGN }, 2445 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2446 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2447 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2448 }; 2449 2450 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2451 2452 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2453 { 2454 struct fec_enet_private *fep = netdev_priv(dev); 2455 int i; 2456 2457 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2458 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2459 } 2460 2461 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2462 struct ethtool_stats *stats, u64 *data) 2463 { 2464 struct fec_enet_private *fep = netdev_priv(dev); 2465 2466 if (netif_running(dev)) 2467 fec_enet_update_ethtool_stats(dev); 2468 2469 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2470 } 2471 2472 static void fec_enet_get_strings(struct net_device *netdev, 2473 u32 stringset, u8 *data) 2474 { 2475 int i; 2476 switch (stringset) { 2477 case ETH_SS_STATS: 2478 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2479 memcpy(data + i * ETH_GSTRING_LEN, 2480 fec_stats[i].name, ETH_GSTRING_LEN); 2481 break; 2482 } 2483 } 2484 2485 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2486 { 2487 switch (sset) { 2488 case ETH_SS_STATS: 2489 return ARRAY_SIZE(fec_stats); 2490 default: 2491 return -EOPNOTSUPP; 2492 } 2493 } 2494 2495 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2496 { 2497 struct fec_enet_private *fep = netdev_priv(dev); 2498 int i; 2499 2500 /* Disable MIB statistics counters */ 2501 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2502 2503 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2504 writel(0, fep->hwp + fec_stats[i].offset); 2505 2506 /* Don't disable MIB statistics counters */ 2507 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2508 } 2509 2510 #else /* !defined(CONFIG_M5272) */ 2511 #define FEC_STATS_SIZE 0 2512 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2513 { 2514 } 2515 2516 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2517 { 2518 } 2519 #endif /* !defined(CONFIG_M5272) */ 2520 2521 /* ITR clock source is enet system clock (clk_ahb). 2522 * TCTT unit is cycle_ns * 64 cycle 2523 * So, the ICTT value = X us / (cycle_ns * 64) 2524 */ 2525 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2526 { 2527 struct fec_enet_private *fep = netdev_priv(ndev); 2528 2529 return us * (fep->itr_clk_rate / 64000) / 1000; 2530 } 2531 2532 /* Set threshold for interrupt coalescing */ 2533 static void fec_enet_itr_coal_set(struct net_device *ndev) 2534 { 2535 struct fec_enet_private *fep = netdev_priv(ndev); 2536 int rx_itr, tx_itr; 2537 2538 /* Must be greater than zero to avoid unpredictable behavior */ 2539 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2540 !fep->tx_time_itr || !fep->tx_pkts_itr) 2541 return; 2542 2543 /* Select enet system clock as Interrupt Coalescing 2544 * timer Clock Source 2545 */ 2546 rx_itr = FEC_ITR_CLK_SEL; 2547 tx_itr = FEC_ITR_CLK_SEL; 2548 2549 /* set ICFT and ICTT */ 2550 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2551 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2552 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2553 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2554 2555 rx_itr |= FEC_ITR_EN; 2556 tx_itr |= FEC_ITR_EN; 2557 2558 writel(tx_itr, fep->hwp + FEC_TXIC0); 2559 writel(rx_itr, fep->hwp + FEC_RXIC0); 2560 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2561 writel(tx_itr, fep->hwp + FEC_TXIC1); 2562 writel(rx_itr, fep->hwp + FEC_RXIC1); 2563 writel(tx_itr, fep->hwp + FEC_TXIC2); 2564 writel(rx_itr, fep->hwp + FEC_RXIC2); 2565 } 2566 } 2567 2568 static int 2569 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2570 { 2571 struct fec_enet_private *fep = netdev_priv(ndev); 2572 2573 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2574 return -EOPNOTSUPP; 2575 2576 ec->rx_coalesce_usecs = fep->rx_time_itr; 2577 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2578 2579 ec->tx_coalesce_usecs = fep->tx_time_itr; 2580 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2581 2582 return 0; 2583 } 2584 2585 static int 2586 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2587 { 2588 struct fec_enet_private *fep = netdev_priv(ndev); 2589 struct device *dev = &fep->pdev->dev; 2590 unsigned int cycle; 2591 2592 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2593 return -EOPNOTSUPP; 2594 2595 if (ec->rx_max_coalesced_frames > 255) { 2596 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2597 return -EINVAL; 2598 } 2599 2600 if (ec->tx_max_coalesced_frames > 255) { 2601 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2602 return -EINVAL; 2603 } 2604 2605 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2606 if (cycle > 0xFFFF) { 2607 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2608 return -EINVAL; 2609 } 2610 2611 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2612 if (cycle > 0xFFFF) { 2613 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2614 return -EINVAL; 2615 } 2616 2617 fep->rx_time_itr = ec->rx_coalesce_usecs; 2618 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2619 2620 fep->tx_time_itr = ec->tx_coalesce_usecs; 2621 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2622 2623 fec_enet_itr_coal_set(ndev); 2624 2625 return 0; 2626 } 2627 2628 static void fec_enet_itr_coal_init(struct net_device *ndev) 2629 { 2630 struct ethtool_coalesce ec; 2631 2632 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2633 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2634 2635 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2636 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2637 2638 fec_enet_set_coalesce(ndev, &ec); 2639 } 2640 2641 static int fec_enet_get_tunable(struct net_device *netdev, 2642 const struct ethtool_tunable *tuna, 2643 void *data) 2644 { 2645 struct fec_enet_private *fep = netdev_priv(netdev); 2646 int ret = 0; 2647 2648 switch (tuna->id) { 2649 case ETHTOOL_RX_COPYBREAK: 2650 *(u32 *)data = fep->rx_copybreak; 2651 break; 2652 default: 2653 ret = -EINVAL; 2654 break; 2655 } 2656 2657 return ret; 2658 } 2659 2660 static int fec_enet_set_tunable(struct net_device *netdev, 2661 const struct ethtool_tunable *tuna, 2662 const void *data) 2663 { 2664 struct fec_enet_private *fep = netdev_priv(netdev); 2665 int ret = 0; 2666 2667 switch (tuna->id) { 2668 case ETHTOOL_RX_COPYBREAK: 2669 fep->rx_copybreak = *(u32 *)data; 2670 break; 2671 default: 2672 ret = -EINVAL; 2673 break; 2674 } 2675 2676 return ret; 2677 } 2678 2679 static void 2680 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2681 { 2682 struct fec_enet_private *fep = netdev_priv(ndev); 2683 2684 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2685 wol->supported = WAKE_MAGIC; 2686 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2687 } else { 2688 wol->supported = wol->wolopts = 0; 2689 } 2690 } 2691 2692 static int 2693 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2694 { 2695 struct fec_enet_private *fep = netdev_priv(ndev); 2696 2697 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2698 return -EINVAL; 2699 2700 if (wol->wolopts & ~WAKE_MAGIC) 2701 return -EINVAL; 2702 2703 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2704 if (device_may_wakeup(&ndev->dev)) { 2705 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2706 if (fep->irq[0] > 0) 2707 enable_irq_wake(fep->irq[0]); 2708 } else { 2709 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2710 if (fep->irq[0] > 0) 2711 disable_irq_wake(fep->irq[0]); 2712 } 2713 2714 return 0; 2715 } 2716 2717 static const struct ethtool_ops fec_enet_ethtool_ops = { 2718 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2719 ETHTOOL_COALESCE_MAX_FRAMES, 2720 .get_drvinfo = fec_enet_get_drvinfo, 2721 .get_regs_len = fec_enet_get_regs_len, 2722 .get_regs = fec_enet_get_regs, 2723 .nway_reset = phy_ethtool_nway_reset, 2724 .get_link = ethtool_op_get_link, 2725 .get_coalesce = fec_enet_get_coalesce, 2726 .set_coalesce = fec_enet_set_coalesce, 2727 #ifndef CONFIG_M5272 2728 .get_pauseparam = fec_enet_get_pauseparam, 2729 .set_pauseparam = fec_enet_set_pauseparam, 2730 .get_strings = fec_enet_get_strings, 2731 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2732 .get_sset_count = fec_enet_get_sset_count, 2733 #endif 2734 .get_ts_info = fec_enet_get_ts_info, 2735 .get_tunable = fec_enet_get_tunable, 2736 .set_tunable = fec_enet_set_tunable, 2737 .get_wol = fec_enet_get_wol, 2738 .set_wol = fec_enet_set_wol, 2739 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2740 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2741 }; 2742 2743 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2744 { 2745 struct fec_enet_private *fep = netdev_priv(ndev); 2746 struct phy_device *phydev = ndev->phydev; 2747 2748 if (!netif_running(ndev)) 2749 return -EINVAL; 2750 2751 if (!phydev) 2752 return -ENODEV; 2753 2754 if (fep->bufdesc_ex) { 2755 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2756 2757 if (cmd == SIOCSHWTSTAMP) { 2758 if (use_fec_hwts) 2759 return fec_ptp_set(ndev, rq); 2760 fec_ptp_disable_hwts(ndev); 2761 } else if (cmd == SIOCGHWTSTAMP) { 2762 if (use_fec_hwts) 2763 return fec_ptp_get(ndev, rq); 2764 } 2765 } 2766 2767 return phy_mii_ioctl(phydev, rq, cmd); 2768 } 2769 2770 static void fec_enet_free_buffers(struct net_device *ndev) 2771 { 2772 struct fec_enet_private *fep = netdev_priv(ndev); 2773 unsigned int i; 2774 struct sk_buff *skb; 2775 struct bufdesc *bdp; 2776 struct fec_enet_priv_tx_q *txq; 2777 struct fec_enet_priv_rx_q *rxq; 2778 unsigned int q; 2779 2780 for (q = 0; q < fep->num_rx_queues; q++) { 2781 rxq = fep->rx_queue[q]; 2782 bdp = rxq->bd.base; 2783 for (i = 0; i < rxq->bd.ring_size; i++) { 2784 skb = rxq->rx_skbuff[i]; 2785 rxq->rx_skbuff[i] = NULL; 2786 if (skb) { 2787 dma_unmap_single(&fep->pdev->dev, 2788 fec32_to_cpu(bdp->cbd_bufaddr), 2789 FEC_ENET_RX_FRSIZE - fep->rx_align, 2790 DMA_FROM_DEVICE); 2791 dev_kfree_skb(skb); 2792 } 2793 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2794 } 2795 } 2796 2797 for (q = 0; q < fep->num_tx_queues; q++) { 2798 txq = fep->tx_queue[q]; 2799 for (i = 0; i < txq->bd.ring_size; i++) { 2800 kfree(txq->tx_bounce[i]); 2801 txq->tx_bounce[i] = NULL; 2802 skb = txq->tx_skbuff[i]; 2803 txq->tx_skbuff[i] = NULL; 2804 dev_kfree_skb(skb); 2805 } 2806 } 2807 } 2808 2809 static void fec_enet_free_queue(struct net_device *ndev) 2810 { 2811 struct fec_enet_private *fep = netdev_priv(ndev); 2812 int i; 2813 struct fec_enet_priv_tx_q *txq; 2814 2815 for (i = 0; i < fep->num_tx_queues; i++) 2816 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2817 txq = fep->tx_queue[i]; 2818 dma_free_coherent(&fep->pdev->dev, 2819 txq->bd.ring_size * TSO_HEADER_SIZE, 2820 txq->tso_hdrs, 2821 txq->tso_hdrs_dma); 2822 } 2823 2824 for (i = 0; i < fep->num_rx_queues; i++) 2825 kfree(fep->rx_queue[i]); 2826 for (i = 0; i < fep->num_tx_queues; i++) 2827 kfree(fep->tx_queue[i]); 2828 } 2829 2830 static int fec_enet_alloc_queue(struct net_device *ndev) 2831 { 2832 struct fec_enet_private *fep = netdev_priv(ndev); 2833 int i; 2834 int ret = 0; 2835 struct fec_enet_priv_tx_q *txq; 2836 2837 for (i = 0; i < fep->num_tx_queues; i++) { 2838 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2839 if (!txq) { 2840 ret = -ENOMEM; 2841 goto alloc_failed; 2842 } 2843 2844 fep->tx_queue[i] = txq; 2845 txq->bd.ring_size = TX_RING_SIZE; 2846 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2847 2848 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2849 txq->tx_wake_threshold = 2850 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2851 2852 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2853 txq->bd.ring_size * TSO_HEADER_SIZE, 2854 &txq->tso_hdrs_dma, 2855 GFP_KERNEL); 2856 if (!txq->tso_hdrs) { 2857 ret = -ENOMEM; 2858 goto alloc_failed; 2859 } 2860 } 2861 2862 for (i = 0; i < fep->num_rx_queues; i++) { 2863 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2864 GFP_KERNEL); 2865 if (!fep->rx_queue[i]) { 2866 ret = -ENOMEM; 2867 goto alloc_failed; 2868 } 2869 2870 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2871 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2872 } 2873 return ret; 2874 2875 alloc_failed: 2876 fec_enet_free_queue(ndev); 2877 return ret; 2878 } 2879 2880 static int 2881 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2882 { 2883 struct fec_enet_private *fep = netdev_priv(ndev); 2884 unsigned int i; 2885 struct sk_buff *skb; 2886 struct bufdesc *bdp; 2887 struct fec_enet_priv_rx_q *rxq; 2888 2889 rxq = fep->rx_queue[queue]; 2890 bdp = rxq->bd.base; 2891 for (i = 0; i < rxq->bd.ring_size; i++) { 2892 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2893 if (!skb) 2894 goto err_alloc; 2895 2896 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2897 dev_kfree_skb(skb); 2898 goto err_alloc; 2899 } 2900 2901 rxq->rx_skbuff[i] = skb; 2902 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2903 2904 if (fep->bufdesc_ex) { 2905 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2906 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2907 } 2908 2909 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2910 } 2911 2912 /* Set the last buffer to wrap. */ 2913 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2914 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2915 return 0; 2916 2917 err_alloc: 2918 fec_enet_free_buffers(ndev); 2919 return -ENOMEM; 2920 } 2921 2922 static int 2923 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2924 { 2925 struct fec_enet_private *fep = netdev_priv(ndev); 2926 unsigned int i; 2927 struct bufdesc *bdp; 2928 struct fec_enet_priv_tx_q *txq; 2929 2930 txq = fep->tx_queue[queue]; 2931 bdp = txq->bd.base; 2932 for (i = 0; i < txq->bd.ring_size; i++) { 2933 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2934 if (!txq->tx_bounce[i]) 2935 goto err_alloc; 2936 2937 bdp->cbd_sc = cpu_to_fec16(0); 2938 bdp->cbd_bufaddr = cpu_to_fec32(0); 2939 2940 if (fep->bufdesc_ex) { 2941 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2942 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2943 } 2944 2945 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2946 } 2947 2948 /* Set the last buffer to wrap. */ 2949 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2950 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2951 2952 return 0; 2953 2954 err_alloc: 2955 fec_enet_free_buffers(ndev); 2956 return -ENOMEM; 2957 } 2958 2959 static int fec_enet_alloc_buffers(struct net_device *ndev) 2960 { 2961 struct fec_enet_private *fep = netdev_priv(ndev); 2962 unsigned int i; 2963 2964 for (i = 0; i < fep->num_rx_queues; i++) 2965 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2966 return -ENOMEM; 2967 2968 for (i = 0; i < fep->num_tx_queues; i++) 2969 if (fec_enet_alloc_txq_buffers(ndev, i)) 2970 return -ENOMEM; 2971 return 0; 2972 } 2973 2974 static int 2975 fec_enet_open(struct net_device *ndev) 2976 { 2977 struct fec_enet_private *fep = netdev_priv(ndev); 2978 int ret; 2979 bool reset_again; 2980 2981 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 2982 if (ret < 0) 2983 return ret; 2984 2985 pinctrl_pm_select_default_state(&fep->pdev->dev); 2986 ret = fec_enet_clk_enable(ndev, true); 2987 if (ret) 2988 goto clk_enable; 2989 2990 /* During the first fec_enet_open call the PHY isn't probed at this 2991 * point. Therefore the phy_reset_after_clk_enable() call within 2992 * fec_enet_clk_enable() fails. As we need this reset in order to be 2993 * sure the PHY is working correctly we check if we need to reset again 2994 * later when the PHY is probed 2995 */ 2996 if (ndev->phydev && ndev->phydev->drv) 2997 reset_again = false; 2998 else 2999 reset_again = true; 3000 3001 /* I should reset the ring buffers here, but I don't yet know 3002 * a simple way to do that. 3003 */ 3004 3005 ret = fec_enet_alloc_buffers(ndev); 3006 if (ret) 3007 goto err_enet_alloc; 3008 3009 /* Init MAC prior to mii bus probe */ 3010 fec_restart(ndev); 3011 3012 /* Call phy_reset_after_clk_enable() again if it failed during 3013 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3014 */ 3015 if (reset_again) 3016 fec_enet_phy_reset_after_clk_enable(ndev); 3017 3018 /* Probe and connect to PHY when open the interface */ 3019 ret = fec_enet_mii_probe(ndev); 3020 if (ret) 3021 goto err_enet_mii_probe; 3022 3023 if (fep->quirks & FEC_QUIRK_ERR006687) 3024 imx6q_cpuidle_fec_irqs_used(); 3025 3026 napi_enable(&fep->napi); 3027 phy_start(ndev->phydev); 3028 netif_tx_start_all_queues(ndev); 3029 3030 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3031 FEC_WOL_FLAG_ENABLE); 3032 3033 return 0; 3034 3035 err_enet_mii_probe: 3036 fec_enet_free_buffers(ndev); 3037 err_enet_alloc: 3038 fec_enet_clk_enable(ndev, false); 3039 clk_enable: 3040 pm_runtime_mark_last_busy(&fep->pdev->dev); 3041 pm_runtime_put_autosuspend(&fep->pdev->dev); 3042 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3043 return ret; 3044 } 3045 3046 static int 3047 fec_enet_close(struct net_device *ndev) 3048 { 3049 struct fec_enet_private *fep = netdev_priv(ndev); 3050 3051 phy_stop(ndev->phydev); 3052 3053 if (netif_device_present(ndev)) { 3054 napi_disable(&fep->napi); 3055 netif_tx_disable(ndev); 3056 fec_stop(ndev); 3057 } 3058 3059 phy_disconnect(ndev->phydev); 3060 3061 if (fep->quirks & FEC_QUIRK_ERR006687) 3062 imx6q_cpuidle_fec_irqs_unused(); 3063 3064 fec_enet_update_ethtool_stats(ndev); 3065 3066 fec_enet_clk_enable(ndev, false); 3067 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3068 pm_runtime_mark_last_busy(&fep->pdev->dev); 3069 pm_runtime_put_autosuspend(&fep->pdev->dev); 3070 3071 fec_enet_free_buffers(ndev); 3072 3073 return 0; 3074 } 3075 3076 /* Set or clear the multicast filter for this adaptor. 3077 * Skeleton taken from sunlance driver. 3078 * The CPM Ethernet implementation allows Multicast as well as individual 3079 * MAC address filtering. Some of the drivers check to make sure it is 3080 * a group multicast address, and discard those that are not. I guess I 3081 * will do the same for now, but just remove the test if you want 3082 * individual filtering as well (do the upper net layers want or support 3083 * this kind of feature?). 3084 */ 3085 3086 #define FEC_HASH_BITS 6 /* #bits in hash */ 3087 3088 static void set_multicast_list(struct net_device *ndev) 3089 { 3090 struct fec_enet_private *fep = netdev_priv(ndev); 3091 struct netdev_hw_addr *ha; 3092 unsigned int crc, tmp; 3093 unsigned char hash; 3094 unsigned int hash_high = 0, hash_low = 0; 3095 3096 if (ndev->flags & IFF_PROMISC) { 3097 tmp = readl(fep->hwp + FEC_R_CNTRL); 3098 tmp |= 0x8; 3099 writel(tmp, fep->hwp + FEC_R_CNTRL); 3100 return; 3101 } 3102 3103 tmp = readl(fep->hwp + FEC_R_CNTRL); 3104 tmp &= ~0x8; 3105 writel(tmp, fep->hwp + FEC_R_CNTRL); 3106 3107 if (ndev->flags & IFF_ALLMULTI) { 3108 /* Catch all multicast addresses, so set the 3109 * filter to all 1's 3110 */ 3111 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3112 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3113 3114 return; 3115 } 3116 3117 /* Add the addresses in hash register */ 3118 netdev_for_each_mc_addr(ha, ndev) { 3119 /* calculate crc32 value of mac address */ 3120 crc = ether_crc_le(ndev->addr_len, ha->addr); 3121 3122 /* only upper 6 bits (FEC_HASH_BITS) are used 3123 * which point to specific bit in the hash registers 3124 */ 3125 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3126 3127 if (hash > 31) 3128 hash_high |= 1 << (hash - 32); 3129 else 3130 hash_low |= 1 << hash; 3131 } 3132 3133 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3134 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3135 } 3136 3137 /* Set a MAC change in hardware. */ 3138 static int 3139 fec_set_mac_address(struct net_device *ndev, void *p) 3140 { 3141 struct fec_enet_private *fep = netdev_priv(ndev); 3142 struct sockaddr *addr = p; 3143 3144 if (addr) { 3145 if (!is_valid_ether_addr(addr->sa_data)) 3146 return -EADDRNOTAVAIL; 3147 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3148 } 3149 3150 /* Add netif status check here to avoid system hang in below case: 3151 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3152 * After ethx down, fec all clocks are gated off and then register 3153 * access causes system hang. 3154 */ 3155 if (!netif_running(ndev)) 3156 return 0; 3157 3158 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3159 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3160 fep->hwp + FEC_ADDR_LOW); 3161 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3162 fep->hwp + FEC_ADDR_HIGH); 3163 return 0; 3164 } 3165 3166 #ifdef CONFIG_NET_POLL_CONTROLLER 3167 /** 3168 * fec_poll_controller - FEC Poll controller function 3169 * @dev: The FEC network adapter 3170 * 3171 * Polled functionality used by netconsole and others in non interrupt mode 3172 * 3173 */ 3174 static void fec_poll_controller(struct net_device *dev) 3175 { 3176 int i; 3177 struct fec_enet_private *fep = netdev_priv(dev); 3178 3179 for (i = 0; i < FEC_IRQ_NUM; i++) { 3180 if (fep->irq[i] > 0) { 3181 disable_irq(fep->irq[i]); 3182 fec_enet_interrupt(fep->irq[i], dev); 3183 enable_irq(fep->irq[i]); 3184 } 3185 } 3186 } 3187 #endif 3188 3189 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3190 netdev_features_t features) 3191 { 3192 struct fec_enet_private *fep = netdev_priv(netdev); 3193 netdev_features_t changed = features ^ netdev->features; 3194 3195 netdev->features = features; 3196 3197 /* Receive checksum has been changed */ 3198 if (changed & NETIF_F_RXCSUM) { 3199 if (features & NETIF_F_RXCSUM) 3200 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3201 else 3202 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3203 } 3204 } 3205 3206 static int fec_set_features(struct net_device *netdev, 3207 netdev_features_t features) 3208 { 3209 struct fec_enet_private *fep = netdev_priv(netdev); 3210 netdev_features_t changed = features ^ netdev->features; 3211 3212 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3213 napi_disable(&fep->napi); 3214 netif_tx_lock_bh(netdev); 3215 fec_stop(netdev); 3216 fec_enet_set_netdev_features(netdev, features); 3217 fec_restart(netdev); 3218 netif_tx_wake_all_queues(netdev); 3219 netif_tx_unlock_bh(netdev); 3220 napi_enable(&fep->napi); 3221 } else { 3222 fec_enet_set_netdev_features(netdev, features); 3223 } 3224 3225 return 0; 3226 } 3227 3228 static const struct net_device_ops fec_netdev_ops = { 3229 .ndo_open = fec_enet_open, 3230 .ndo_stop = fec_enet_close, 3231 .ndo_start_xmit = fec_enet_start_xmit, 3232 .ndo_set_rx_mode = set_multicast_list, 3233 .ndo_validate_addr = eth_validate_addr, 3234 .ndo_tx_timeout = fec_timeout, 3235 .ndo_set_mac_address = fec_set_mac_address, 3236 .ndo_do_ioctl = fec_enet_ioctl, 3237 #ifdef CONFIG_NET_POLL_CONTROLLER 3238 .ndo_poll_controller = fec_poll_controller, 3239 #endif 3240 .ndo_set_features = fec_set_features, 3241 }; 3242 3243 static const unsigned short offset_des_active_rxq[] = { 3244 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3245 }; 3246 3247 static const unsigned short offset_des_active_txq[] = { 3248 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3249 }; 3250 3251 /* 3252 * XXX: We need to clean up on failure exits here. 3253 * 3254 */ 3255 static int fec_enet_init(struct net_device *ndev) 3256 { 3257 struct fec_enet_private *fep = netdev_priv(ndev); 3258 struct bufdesc *cbd_base; 3259 dma_addr_t bd_dma; 3260 int bd_size; 3261 unsigned int i; 3262 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3263 sizeof(struct bufdesc); 3264 unsigned dsize_log2 = __fls(dsize); 3265 int ret; 3266 3267 WARN_ON(dsize != (1 << dsize_log2)); 3268 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3269 fep->rx_align = 0xf; 3270 fep->tx_align = 0xf; 3271 #else 3272 fep->rx_align = 0x3; 3273 fep->tx_align = 0x3; 3274 #endif 3275 3276 /* Check mask of the streaming and coherent API */ 3277 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3278 if (ret < 0) { 3279 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3280 return ret; 3281 } 3282 3283 fec_enet_alloc_queue(ndev); 3284 3285 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3286 3287 /* Allocate memory for buffer descriptors. */ 3288 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3289 GFP_KERNEL); 3290 if (!cbd_base) { 3291 return -ENOMEM; 3292 } 3293 3294 /* Get the Ethernet address */ 3295 fec_get_mac(ndev); 3296 /* make sure MAC we just acquired is programmed into the hw */ 3297 fec_set_mac_address(ndev, NULL); 3298 3299 /* Set receive and transmit descriptor base. */ 3300 for (i = 0; i < fep->num_rx_queues; i++) { 3301 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3302 unsigned size = dsize * rxq->bd.ring_size; 3303 3304 rxq->bd.qid = i; 3305 rxq->bd.base = cbd_base; 3306 rxq->bd.cur = cbd_base; 3307 rxq->bd.dma = bd_dma; 3308 rxq->bd.dsize = dsize; 3309 rxq->bd.dsize_log2 = dsize_log2; 3310 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3311 bd_dma += size; 3312 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3313 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3314 } 3315 3316 for (i = 0; i < fep->num_tx_queues; i++) { 3317 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3318 unsigned size = dsize * txq->bd.ring_size; 3319 3320 txq->bd.qid = i; 3321 txq->bd.base = cbd_base; 3322 txq->bd.cur = cbd_base; 3323 txq->bd.dma = bd_dma; 3324 txq->bd.dsize = dsize; 3325 txq->bd.dsize_log2 = dsize_log2; 3326 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3327 bd_dma += size; 3328 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3329 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3330 } 3331 3332 3333 /* The FEC Ethernet specific entries in the device structure */ 3334 ndev->watchdog_timeo = TX_TIMEOUT; 3335 ndev->netdev_ops = &fec_netdev_ops; 3336 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3337 3338 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3339 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3340 3341 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3342 /* enable hw VLAN support */ 3343 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3344 3345 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3346 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3347 3348 /* enable hw accelerator */ 3349 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3350 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3351 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3352 } 3353 3354 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3355 fep->tx_align = 0; 3356 fep->rx_align = 0x3f; 3357 } 3358 3359 ndev->hw_features = ndev->features; 3360 3361 fec_restart(ndev); 3362 3363 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3364 fec_enet_clear_ethtool_stats(ndev); 3365 else 3366 fec_enet_update_ethtool_stats(ndev); 3367 3368 return 0; 3369 } 3370 3371 #ifdef CONFIG_OF 3372 static int fec_reset_phy(struct platform_device *pdev) 3373 { 3374 int err, phy_reset; 3375 bool active_high = false; 3376 int msec = 1, phy_post_delay = 0; 3377 struct device_node *np = pdev->dev.of_node; 3378 3379 if (!np) 3380 return 0; 3381 3382 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3383 /* A sane reset duration should not be longer than 1s */ 3384 if (!err && msec > 1000) 3385 msec = 1; 3386 3387 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3388 if (phy_reset == -EPROBE_DEFER) 3389 return phy_reset; 3390 else if (!gpio_is_valid(phy_reset)) 3391 return 0; 3392 3393 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3394 /* valid reset duration should be less than 1s */ 3395 if (!err && phy_post_delay > 1000) 3396 return -EINVAL; 3397 3398 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3399 3400 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3401 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3402 "phy-reset"); 3403 if (err) { 3404 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3405 return err; 3406 } 3407 3408 if (msec > 20) 3409 msleep(msec); 3410 else 3411 usleep_range(msec * 1000, msec * 1000 + 1000); 3412 3413 gpio_set_value_cansleep(phy_reset, !active_high); 3414 3415 if (!phy_post_delay) 3416 return 0; 3417 3418 if (phy_post_delay > 20) 3419 msleep(phy_post_delay); 3420 else 3421 usleep_range(phy_post_delay * 1000, 3422 phy_post_delay * 1000 + 1000); 3423 3424 return 0; 3425 } 3426 #else /* CONFIG_OF */ 3427 static int fec_reset_phy(struct platform_device *pdev) 3428 { 3429 /* 3430 * In case of platform probe, the reset has been done 3431 * by machine code. 3432 */ 3433 return 0; 3434 } 3435 #endif /* CONFIG_OF */ 3436 3437 static void 3438 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3439 { 3440 struct device_node *np = pdev->dev.of_node; 3441 3442 *num_tx = *num_rx = 1; 3443 3444 if (!np || !of_device_is_available(np)) 3445 return; 3446 3447 /* parse the num of tx and rx queues */ 3448 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3449 3450 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3451 3452 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3453 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3454 *num_tx); 3455 *num_tx = 1; 3456 return; 3457 } 3458 3459 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3460 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3461 *num_rx); 3462 *num_rx = 1; 3463 return; 3464 } 3465 3466 } 3467 3468 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3469 { 3470 int irq_cnt = platform_irq_count(pdev); 3471 3472 if (irq_cnt > FEC_IRQ_NUM) 3473 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3474 else if (irq_cnt == 2) 3475 irq_cnt = 1; /* last for pps */ 3476 else if (irq_cnt <= 0) 3477 irq_cnt = 1; /* At least 1 irq is needed */ 3478 return irq_cnt; 3479 } 3480 3481 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3482 struct device_node *np) 3483 { 3484 struct device_node *gpr_np; 3485 u32 out_val[3]; 3486 int ret = 0; 3487 3488 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3489 if (!gpr_np) 3490 return 0; 3491 3492 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3493 ARRAY_SIZE(out_val)); 3494 if (ret) { 3495 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3496 return ret; 3497 } 3498 3499 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3500 if (IS_ERR(fep->stop_gpr.gpr)) { 3501 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3502 ret = PTR_ERR(fep->stop_gpr.gpr); 3503 fep->stop_gpr.gpr = NULL; 3504 goto out; 3505 } 3506 3507 fep->stop_gpr.reg = out_val[1]; 3508 fep->stop_gpr.bit = out_val[2]; 3509 3510 out: 3511 of_node_put(gpr_np); 3512 3513 return ret; 3514 } 3515 3516 static int 3517 fec_probe(struct platform_device *pdev) 3518 { 3519 struct fec_enet_private *fep; 3520 struct fec_platform_data *pdata; 3521 phy_interface_t interface; 3522 struct net_device *ndev; 3523 int i, irq, ret = 0; 3524 const struct of_device_id *of_id; 3525 static int dev_id; 3526 struct device_node *np = pdev->dev.of_node, *phy_node; 3527 int num_tx_qs; 3528 int num_rx_qs; 3529 char irq_name[8]; 3530 int irq_cnt; 3531 struct fec_devinfo *dev_info; 3532 3533 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3534 3535 /* Init network device */ 3536 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3537 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3538 if (!ndev) 3539 return -ENOMEM; 3540 3541 SET_NETDEV_DEV(ndev, &pdev->dev); 3542 3543 /* setup board info structure */ 3544 fep = netdev_priv(ndev); 3545 3546 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3547 if (of_id) 3548 pdev->id_entry = of_id->data; 3549 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3550 if (dev_info) 3551 fep->quirks = dev_info->quirks; 3552 3553 fep->netdev = ndev; 3554 fep->num_rx_queues = num_rx_qs; 3555 fep->num_tx_queues = num_tx_qs; 3556 3557 #if !defined(CONFIG_M5272) 3558 /* default enable pause frame auto negotiation */ 3559 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3560 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3561 #endif 3562 3563 /* Select default pin state */ 3564 pinctrl_pm_select_default_state(&pdev->dev); 3565 3566 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3567 if (IS_ERR(fep->hwp)) { 3568 ret = PTR_ERR(fep->hwp); 3569 goto failed_ioremap; 3570 } 3571 3572 fep->pdev = pdev; 3573 fep->dev_id = dev_id++; 3574 3575 platform_set_drvdata(pdev, ndev); 3576 3577 if ((of_machine_is_compatible("fsl,imx6q") || 3578 of_machine_is_compatible("fsl,imx6dl")) && 3579 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3580 fep->quirks |= FEC_QUIRK_ERR006687; 3581 3582 if (of_get_property(np, "fsl,magic-packet", NULL)) 3583 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3584 3585 ret = fec_enet_init_stop_mode(fep, np); 3586 if (ret) 3587 goto failed_stop_mode; 3588 3589 phy_node = of_parse_phandle(np, "phy-handle", 0); 3590 if (!phy_node && of_phy_is_fixed_link(np)) { 3591 ret = of_phy_register_fixed_link(np); 3592 if (ret < 0) { 3593 dev_err(&pdev->dev, 3594 "broken fixed-link specification\n"); 3595 goto failed_phy; 3596 } 3597 phy_node = of_node_get(np); 3598 } 3599 fep->phy_node = phy_node; 3600 3601 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3602 if (ret) { 3603 pdata = dev_get_platdata(&pdev->dev); 3604 if (pdata) 3605 fep->phy_interface = pdata->phy; 3606 else 3607 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3608 } else { 3609 fep->phy_interface = interface; 3610 } 3611 3612 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3613 if (IS_ERR(fep->clk_ipg)) { 3614 ret = PTR_ERR(fep->clk_ipg); 3615 goto failed_clk; 3616 } 3617 3618 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3619 if (IS_ERR(fep->clk_ahb)) { 3620 ret = PTR_ERR(fep->clk_ahb); 3621 goto failed_clk; 3622 } 3623 3624 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3625 3626 /* enet_out is optional, depends on board */ 3627 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3628 if (IS_ERR(fep->clk_enet_out)) 3629 fep->clk_enet_out = NULL; 3630 3631 fep->ptp_clk_on = false; 3632 mutex_init(&fep->ptp_clk_mutex); 3633 3634 /* clk_ref is optional, depends on board */ 3635 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3636 if (IS_ERR(fep->clk_ref)) 3637 fep->clk_ref = NULL; 3638 3639 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3640 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3641 if (IS_ERR(fep->clk_ptp)) { 3642 fep->clk_ptp = NULL; 3643 fep->bufdesc_ex = false; 3644 } 3645 3646 ret = fec_enet_clk_enable(ndev, true); 3647 if (ret) 3648 goto failed_clk; 3649 3650 ret = clk_prepare_enable(fep->clk_ipg); 3651 if (ret) 3652 goto failed_clk_ipg; 3653 ret = clk_prepare_enable(fep->clk_ahb); 3654 if (ret) 3655 goto failed_clk_ahb; 3656 3657 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3658 if (!IS_ERR(fep->reg_phy)) { 3659 ret = regulator_enable(fep->reg_phy); 3660 if (ret) { 3661 dev_err(&pdev->dev, 3662 "Failed to enable phy regulator: %d\n", ret); 3663 goto failed_regulator; 3664 } 3665 } else { 3666 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3667 ret = -EPROBE_DEFER; 3668 goto failed_regulator; 3669 } 3670 fep->reg_phy = NULL; 3671 } 3672 3673 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3674 pm_runtime_use_autosuspend(&pdev->dev); 3675 pm_runtime_get_noresume(&pdev->dev); 3676 pm_runtime_set_active(&pdev->dev); 3677 pm_runtime_enable(&pdev->dev); 3678 3679 ret = fec_reset_phy(pdev); 3680 if (ret) 3681 goto failed_reset; 3682 3683 irq_cnt = fec_enet_get_irq_cnt(pdev); 3684 if (fep->bufdesc_ex) 3685 fec_ptp_init(pdev, irq_cnt); 3686 3687 ret = fec_enet_init(ndev); 3688 if (ret) 3689 goto failed_init; 3690 3691 for (i = 0; i < irq_cnt; i++) { 3692 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3693 irq = platform_get_irq_byname_optional(pdev, irq_name); 3694 if (irq < 0) 3695 irq = platform_get_irq(pdev, i); 3696 if (irq < 0) { 3697 ret = irq; 3698 goto failed_irq; 3699 } 3700 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3701 0, pdev->name, ndev); 3702 if (ret) 3703 goto failed_irq; 3704 3705 fep->irq[i] = irq; 3706 } 3707 3708 ret = fec_enet_mii_init(pdev); 3709 if (ret) 3710 goto failed_mii_init; 3711 3712 /* Carrier starts down, phylib will bring it up */ 3713 netif_carrier_off(ndev); 3714 fec_enet_clk_enable(ndev, false); 3715 pinctrl_pm_select_sleep_state(&pdev->dev); 3716 3717 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3718 3719 ret = register_netdev(ndev); 3720 if (ret) 3721 goto failed_register; 3722 3723 device_init_wakeup(&ndev->dev, fep->wol_flag & 3724 FEC_WOL_HAS_MAGIC_PACKET); 3725 3726 if (fep->bufdesc_ex && fep->ptp_clock) 3727 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3728 3729 fep->rx_copybreak = COPYBREAK_DEFAULT; 3730 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3731 3732 pm_runtime_mark_last_busy(&pdev->dev); 3733 pm_runtime_put_autosuspend(&pdev->dev); 3734 3735 return 0; 3736 3737 failed_register: 3738 fec_enet_mii_remove(fep); 3739 failed_mii_init: 3740 failed_irq: 3741 failed_init: 3742 fec_ptp_stop(pdev); 3743 failed_reset: 3744 pm_runtime_put_noidle(&pdev->dev); 3745 pm_runtime_disable(&pdev->dev); 3746 if (fep->reg_phy) 3747 regulator_disable(fep->reg_phy); 3748 failed_regulator: 3749 clk_disable_unprepare(fep->clk_ahb); 3750 failed_clk_ahb: 3751 clk_disable_unprepare(fep->clk_ipg); 3752 failed_clk_ipg: 3753 fec_enet_clk_enable(ndev, false); 3754 failed_clk: 3755 if (of_phy_is_fixed_link(np)) 3756 of_phy_deregister_fixed_link(np); 3757 of_node_put(phy_node); 3758 failed_stop_mode: 3759 failed_phy: 3760 dev_id--; 3761 failed_ioremap: 3762 free_netdev(ndev); 3763 3764 return ret; 3765 } 3766 3767 static int 3768 fec_drv_remove(struct platform_device *pdev) 3769 { 3770 struct net_device *ndev = platform_get_drvdata(pdev); 3771 struct fec_enet_private *fep = netdev_priv(ndev); 3772 struct device_node *np = pdev->dev.of_node; 3773 int ret; 3774 3775 ret = pm_runtime_resume_and_get(&pdev->dev); 3776 if (ret < 0) 3777 return ret; 3778 3779 cancel_work_sync(&fep->tx_timeout_work); 3780 fec_ptp_stop(pdev); 3781 unregister_netdev(ndev); 3782 fec_enet_mii_remove(fep); 3783 if (fep->reg_phy) 3784 regulator_disable(fep->reg_phy); 3785 3786 if (of_phy_is_fixed_link(np)) 3787 of_phy_deregister_fixed_link(np); 3788 of_node_put(fep->phy_node); 3789 free_netdev(ndev); 3790 3791 clk_disable_unprepare(fep->clk_ahb); 3792 clk_disable_unprepare(fep->clk_ipg); 3793 pm_runtime_put_noidle(&pdev->dev); 3794 pm_runtime_disable(&pdev->dev); 3795 3796 return 0; 3797 } 3798 3799 static int __maybe_unused fec_suspend(struct device *dev) 3800 { 3801 struct net_device *ndev = dev_get_drvdata(dev); 3802 struct fec_enet_private *fep = netdev_priv(ndev); 3803 3804 rtnl_lock(); 3805 if (netif_running(ndev)) { 3806 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3807 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3808 phy_stop(ndev->phydev); 3809 napi_disable(&fep->napi); 3810 netif_tx_lock_bh(ndev); 3811 netif_device_detach(ndev); 3812 netif_tx_unlock_bh(ndev); 3813 fec_stop(ndev); 3814 fec_enet_clk_enable(ndev, false); 3815 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3816 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3817 } 3818 rtnl_unlock(); 3819 3820 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3821 regulator_disable(fep->reg_phy); 3822 3823 /* SOC supply clock to phy, when clock is disabled, phy link down 3824 * SOC control phy regulator, when regulator is disabled, phy link down 3825 */ 3826 if (fep->clk_enet_out || fep->reg_phy) 3827 fep->link = 0; 3828 3829 return 0; 3830 } 3831 3832 static int __maybe_unused fec_resume(struct device *dev) 3833 { 3834 struct net_device *ndev = dev_get_drvdata(dev); 3835 struct fec_enet_private *fep = netdev_priv(ndev); 3836 int ret; 3837 int val; 3838 3839 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3840 ret = regulator_enable(fep->reg_phy); 3841 if (ret) 3842 return ret; 3843 } 3844 3845 rtnl_lock(); 3846 if (netif_running(ndev)) { 3847 ret = fec_enet_clk_enable(ndev, true); 3848 if (ret) { 3849 rtnl_unlock(); 3850 goto failed_clk; 3851 } 3852 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3853 fec_enet_stop_mode(fep, false); 3854 3855 val = readl(fep->hwp + FEC_ECNTRL); 3856 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3857 writel(val, fep->hwp + FEC_ECNTRL); 3858 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3859 } else { 3860 pinctrl_pm_select_default_state(&fep->pdev->dev); 3861 } 3862 fec_restart(ndev); 3863 netif_tx_lock_bh(ndev); 3864 netif_device_attach(ndev); 3865 netif_tx_unlock_bh(ndev); 3866 napi_enable(&fep->napi); 3867 phy_start(ndev->phydev); 3868 } 3869 rtnl_unlock(); 3870 3871 return 0; 3872 3873 failed_clk: 3874 if (fep->reg_phy) 3875 regulator_disable(fep->reg_phy); 3876 return ret; 3877 } 3878 3879 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3880 { 3881 struct net_device *ndev = dev_get_drvdata(dev); 3882 struct fec_enet_private *fep = netdev_priv(ndev); 3883 3884 clk_disable_unprepare(fep->clk_ahb); 3885 clk_disable_unprepare(fep->clk_ipg); 3886 3887 return 0; 3888 } 3889 3890 static int __maybe_unused fec_runtime_resume(struct device *dev) 3891 { 3892 struct net_device *ndev = dev_get_drvdata(dev); 3893 struct fec_enet_private *fep = netdev_priv(ndev); 3894 int ret; 3895 3896 ret = clk_prepare_enable(fep->clk_ahb); 3897 if (ret) 3898 return ret; 3899 ret = clk_prepare_enable(fep->clk_ipg); 3900 if (ret) 3901 goto failed_clk_ipg; 3902 3903 return 0; 3904 3905 failed_clk_ipg: 3906 clk_disable_unprepare(fep->clk_ahb); 3907 return ret; 3908 } 3909 3910 static const struct dev_pm_ops fec_pm_ops = { 3911 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3912 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3913 }; 3914 3915 static struct platform_driver fec_driver = { 3916 .driver = { 3917 .name = DRIVER_NAME, 3918 .pm = &fec_pm_ops, 3919 .of_match_table = fec_dt_ids, 3920 .suppress_bind_attrs = true, 3921 }, 3922 .id_table = fec_devtype, 3923 .probe = fec_probe, 3924 .remove = fec_drv_remove, 3925 }; 3926 3927 module_platform_driver(fec_driver); 3928 3929 MODULE_ALIAS("platform:"DRIVER_NAME); 3930 MODULE_LICENSE("GPL"); 3931