xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		/* sentinel */
191 	}
192 };
193 MODULE_DEVICE_TABLE(platform, fec_devtype);
194 
195 static const struct of_device_id fec_dt_ids[] = {
196 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
197 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
198 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
199 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
200 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
201 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
202 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
203 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
204 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
205 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
206 	{ /* sentinel */ }
207 };
208 MODULE_DEVICE_TABLE(of, fec_dt_ids);
209 
210 static unsigned char macaddr[ETH_ALEN];
211 module_param_array(macaddr, byte, NULL, 0);
212 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
213 
214 #if defined(CONFIG_M5272)
215 /*
216  * Some hardware gets it MAC address out of local flash memory.
217  * if this is non-zero then assume it is the address to get MAC from.
218  */
219 #if defined(CONFIG_NETtel)
220 #define	FEC_FLASHMAC	0xf0006006
221 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
222 #define	FEC_FLASHMAC	0xf0006000
223 #elif defined(CONFIG_CANCam)
224 #define	FEC_FLASHMAC	0xf0020000
225 #elif defined (CONFIG_M5272C3)
226 #define	FEC_FLASHMAC	(0xffe04000 + 4)
227 #elif defined(CONFIG_MOD5272)
228 #define FEC_FLASHMAC	0xffc0406b
229 #else
230 #define	FEC_FLASHMAC	0
231 #endif
232 #endif /* CONFIG_M5272 */
233 
234 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
235  *
236  * 2048 byte skbufs are allocated. However, alignment requirements
237  * varies between FEC variants. Worst case is 64, so round down by 64.
238  */
239 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
240 #define PKT_MINBUF_SIZE		64
241 
242 /* FEC receive acceleration */
243 #define FEC_RACC_IPDIS		(1 << 1)
244 #define FEC_RACC_PRODIS		(1 << 2)
245 #define FEC_RACC_SHIFT16	BIT(7)
246 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
247 
248 /* MIB Control Register */
249 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
250 
251 /*
252  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
253  * size bits. Other FEC hardware does not, so we need to take that into
254  * account when setting it.
255  */
256 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
257     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
258     defined(CONFIG_ARM64)
259 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
260 #else
261 #define	OPT_FRAME_SIZE	0
262 #endif
263 
264 /* FEC MII MMFR bits definition */
265 #define FEC_MMFR_ST		(1 << 30)
266 #define FEC_MMFR_ST_C45		(0)
267 #define FEC_MMFR_OP_READ	(2 << 28)
268 #define FEC_MMFR_OP_READ_C45	(3 << 28)
269 #define FEC_MMFR_OP_WRITE	(1 << 28)
270 #define FEC_MMFR_OP_ADDR_WRITE	(0)
271 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
272 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
273 #define FEC_MMFR_TA		(2 << 16)
274 #define FEC_MMFR_DATA(v)	(v & 0xffff)
275 /* FEC ECR bits definition */
276 #define FEC_ECR_MAGICEN		(1 << 2)
277 #define FEC_ECR_SLEEP		(1 << 3)
278 
279 #define FEC_MII_TIMEOUT		30000 /* us */
280 
281 /* Transmitter timeout */
282 #define TX_TIMEOUT (2 * HZ)
283 
284 #define FEC_PAUSE_FLAG_AUTONEG	0x1
285 #define FEC_PAUSE_FLAG_ENABLE	0x2
286 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
287 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
288 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
289 
290 /* Max number of allowed TCP segments for software TSO */
291 #define FEC_MAX_TSO_SEGS	100
292 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
293 
294 #define IS_TSO_HEADER(txq, addr) \
295 	((addr >= txq->tso_hdrs_dma) && \
296 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
297 
298 static int mii_cnt;
299 
300 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
301 					     struct bufdesc_prop *bd)
302 {
303 	return (bdp >= bd->last) ? bd->base
304 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
305 }
306 
307 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
308 					     struct bufdesc_prop *bd)
309 {
310 	return (bdp <= bd->base) ? bd->last
311 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
312 }
313 
314 static int fec_enet_get_bd_index(struct bufdesc *bdp,
315 				 struct bufdesc_prop *bd)
316 {
317 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
318 }
319 
320 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
321 {
322 	int entries;
323 
324 	entries = (((const char *)txq->dirty_tx -
325 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
326 
327 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
328 }
329 
330 static void swap_buffer(void *bufaddr, int len)
331 {
332 	int i;
333 	unsigned int *buf = bufaddr;
334 
335 	for (i = 0; i < len; i += 4, buf++)
336 		swab32s(buf);
337 }
338 
339 static void fec_dump(struct net_device *ndev)
340 {
341 	struct fec_enet_private *fep = netdev_priv(ndev);
342 	struct bufdesc *bdp;
343 	struct fec_enet_priv_tx_q *txq;
344 	int index = 0;
345 
346 	netdev_info(ndev, "TX ring dump\n");
347 	pr_info("Nr     SC     addr       len  SKB\n");
348 
349 	txq = fep->tx_queue[0];
350 	bdp = txq->bd.base;
351 
352 	do {
353 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
354 			index,
355 			bdp == txq->bd.cur ? 'S' : ' ',
356 			bdp == txq->dirty_tx ? 'H' : ' ',
357 			fec16_to_cpu(bdp->cbd_sc),
358 			fec32_to_cpu(bdp->cbd_bufaddr),
359 			fec16_to_cpu(bdp->cbd_datlen),
360 			txq->tx_buf[index].buf_p);
361 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
362 		index++;
363 	} while (bdp != txq->bd.base);
364 }
365 
366 /*
367  * Coldfire does not support DMA coherent allocations, and has historically used
368  * a band-aid with a manual flush in fec_enet_rx_queue.
369  */
370 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
371 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
372 		gfp_t gfp)
373 {
374 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
375 }
376 
377 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
378 		dma_addr_t handle)
379 {
380 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
381 }
382 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
383 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
384 		gfp_t gfp)
385 {
386 	return dma_alloc_coherent(dev, size, handle, gfp);
387 }
388 
389 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
390 		dma_addr_t handle)
391 {
392 	dma_free_coherent(dev, size, cpu_addr, handle);
393 }
394 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
395 
396 struct fec_dma_devres {
397 	size_t		size;
398 	void		*vaddr;
399 	dma_addr_t	dma_handle;
400 };
401 
402 static void fec_dmam_release(struct device *dev, void *res)
403 {
404 	struct fec_dma_devres *this = res;
405 
406 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
407 }
408 
409 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
410 		gfp_t gfp)
411 {
412 	struct fec_dma_devres *dr;
413 	void *vaddr;
414 
415 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
416 	if (!dr)
417 		return NULL;
418 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
419 	if (!vaddr) {
420 		devres_free(dr);
421 		return NULL;
422 	}
423 	dr->vaddr = vaddr;
424 	dr->dma_handle = *handle;
425 	dr->size = size;
426 	devres_add(dev, dr);
427 	return vaddr;
428 }
429 
430 static inline bool is_ipv4_pkt(struct sk_buff *skb)
431 {
432 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
433 }
434 
435 static int
436 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
437 {
438 	/* Only run for packets requiring a checksum. */
439 	if (skb->ip_summed != CHECKSUM_PARTIAL)
440 		return 0;
441 
442 	if (unlikely(skb_cow_head(skb, 0)))
443 		return -1;
444 
445 	if (is_ipv4_pkt(skb))
446 		ip_hdr(skb)->check = 0;
447 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
448 
449 	return 0;
450 }
451 
452 static int
453 fec_enet_create_page_pool(struct fec_enet_private *fep,
454 			  struct fec_enet_priv_rx_q *rxq, int size)
455 {
456 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
457 	struct page_pool_params pp_params = {
458 		.order = 0,
459 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
460 		.pool_size = size,
461 		.nid = dev_to_node(&fep->pdev->dev),
462 		.dev = &fep->pdev->dev,
463 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
464 		.offset = FEC_ENET_XDP_HEADROOM,
465 		.max_len = FEC_ENET_RX_FRSIZE,
466 	};
467 	int err;
468 
469 	rxq->page_pool = page_pool_create(&pp_params);
470 	if (IS_ERR(rxq->page_pool)) {
471 		err = PTR_ERR(rxq->page_pool);
472 		rxq->page_pool = NULL;
473 		return err;
474 	}
475 
476 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
477 	if (err < 0)
478 		goto err_free_pp;
479 
480 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
481 					 rxq->page_pool);
482 	if (err)
483 		goto err_unregister_rxq;
484 
485 	return 0;
486 
487 err_unregister_rxq:
488 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
489 err_free_pp:
490 	page_pool_destroy(rxq->page_pool);
491 	rxq->page_pool = NULL;
492 	return err;
493 }
494 
495 static struct bufdesc *
496 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
497 			     struct sk_buff *skb,
498 			     struct net_device *ndev)
499 {
500 	struct fec_enet_private *fep = netdev_priv(ndev);
501 	struct bufdesc *bdp = txq->bd.cur;
502 	struct bufdesc_ex *ebdp;
503 	int nr_frags = skb_shinfo(skb)->nr_frags;
504 	int frag, frag_len;
505 	unsigned short status;
506 	unsigned int estatus = 0;
507 	skb_frag_t *this_frag;
508 	unsigned int index;
509 	void *bufaddr;
510 	dma_addr_t addr;
511 	int i;
512 
513 	for (frag = 0; frag < nr_frags; frag++) {
514 		this_frag = &skb_shinfo(skb)->frags[frag];
515 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
516 		ebdp = (struct bufdesc_ex *)bdp;
517 
518 		status = fec16_to_cpu(bdp->cbd_sc);
519 		status &= ~BD_ENET_TX_STATS;
520 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
521 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
522 
523 		/* Handle the last BD specially */
524 		if (frag == nr_frags - 1) {
525 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
526 			if (fep->bufdesc_ex) {
527 				estatus |= BD_ENET_TX_INT;
528 				if (unlikely(skb_shinfo(skb)->tx_flags &
529 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
530 					estatus |= BD_ENET_TX_TS;
531 			}
532 		}
533 
534 		if (fep->bufdesc_ex) {
535 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
536 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
537 			if (skb->ip_summed == CHECKSUM_PARTIAL)
538 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
539 
540 			ebdp->cbd_bdu = 0;
541 			ebdp->cbd_esc = cpu_to_fec32(estatus);
542 		}
543 
544 		bufaddr = skb_frag_address(this_frag);
545 
546 		index = fec_enet_get_bd_index(bdp, &txq->bd);
547 		if (((unsigned long) bufaddr) & fep->tx_align ||
548 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
549 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
550 			bufaddr = txq->tx_bounce[index];
551 
552 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
553 				swap_buffer(bufaddr, frag_len);
554 		}
555 
556 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
557 				      DMA_TO_DEVICE);
558 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
559 			if (net_ratelimit())
560 				netdev_err(ndev, "Tx DMA memory map failed\n");
561 			goto dma_mapping_error;
562 		}
563 
564 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
565 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
566 		/* Make sure the updates to rest of the descriptor are
567 		 * performed before transferring ownership.
568 		 */
569 		wmb();
570 		bdp->cbd_sc = cpu_to_fec16(status);
571 	}
572 
573 	return bdp;
574 dma_mapping_error:
575 	bdp = txq->bd.cur;
576 	for (i = 0; i < frag; i++) {
577 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
578 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
579 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
580 	}
581 	return ERR_PTR(-ENOMEM);
582 }
583 
584 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
585 				   struct sk_buff *skb, struct net_device *ndev)
586 {
587 	struct fec_enet_private *fep = netdev_priv(ndev);
588 	int nr_frags = skb_shinfo(skb)->nr_frags;
589 	struct bufdesc *bdp, *last_bdp;
590 	void *bufaddr;
591 	dma_addr_t addr;
592 	unsigned short status;
593 	unsigned short buflen;
594 	unsigned int estatus = 0;
595 	unsigned int index;
596 	int entries_free;
597 
598 	entries_free = fec_enet_get_free_txdesc_num(txq);
599 	if (entries_free < MAX_SKB_FRAGS + 1) {
600 		dev_kfree_skb_any(skb);
601 		if (net_ratelimit())
602 			netdev_err(ndev, "NOT enough BD for SG!\n");
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Protocol checksum off-load for TCP and UDP. */
607 	if (fec_enet_clear_csum(skb, ndev)) {
608 		dev_kfree_skb_any(skb);
609 		return NETDEV_TX_OK;
610 	}
611 
612 	/* Fill in a Tx ring entry */
613 	bdp = txq->bd.cur;
614 	last_bdp = bdp;
615 	status = fec16_to_cpu(bdp->cbd_sc);
616 	status &= ~BD_ENET_TX_STATS;
617 
618 	/* Set buffer length and buffer pointer */
619 	bufaddr = skb->data;
620 	buflen = skb_headlen(skb);
621 
622 	index = fec_enet_get_bd_index(bdp, &txq->bd);
623 	if (((unsigned long) bufaddr) & fep->tx_align ||
624 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
625 		memcpy(txq->tx_bounce[index], skb->data, buflen);
626 		bufaddr = txq->tx_bounce[index];
627 
628 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
629 			swap_buffer(bufaddr, buflen);
630 	}
631 
632 	/* Push the data cache so the CPM does not get stale memory data. */
633 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
634 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
635 		dev_kfree_skb_any(skb);
636 		if (net_ratelimit())
637 			netdev_err(ndev, "Tx DMA memory map failed\n");
638 		return NETDEV_TX_OK;
639 	}
640 
641 	if (nr_frags) {
642 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
643 		if (IS_ERR(last_bdp)) {
644 			dma_unmap_single(&fep->pdev->dev, addr,
645 					 buflen, DMA_TO_DEVICE);
646 			dev_kfree_skb_any(skb);
647 			return NETDEV_TX_OK;
648 		}
649 	} else {
650 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
651 		if (fep->bufdesc_ex) {
652 			estatus = BD_ENET_TX_INT;
653 			if (unlikely(skb_shinfo(skb)->tx_flags &
654 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
655 				estatus |= BD_ENET_TX_TS;
656 		}
657 	}
658 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
659 	bdp->cbd_datlen = cpu_to_fec16(buflen);
660 
661 	if (fep->bufdesc_ex) {
662 
663 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
664 
665 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
666 			fep->hwts_tx_en))
667 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
668 
669 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
670 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
671 
672 		if (skb->ip_summed == CHECKSUM_PARTIAL)
673 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
674 
675 		ebdp->cbd_bdu = 0;
676 		ebdp->cbd_esc = cpu_to_fec32(estatus);
677 	}
678 
679 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
680 	/* Save skb pointer */
681 	txq->tx_buf[index].buf_p = skb;
682 
683 	/* Make sure the updates to rest of the descriptor are performed before
684 	 * transferring ownership.
685 	 */
686 	wmb();
687 
688 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
689 	 * it's the last BD of the frame, and to put the CRC on the end.
690 	 */
691 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
692 	bdp->cbd_sc = cpu_to_fec16(status);
693 
694 	/* If this was the last BD in the ring, start at the beginning again. */
695 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
696 
697 	skb_tx_timestamp(skb);
698 
699 	/* Make sure the update to bdp is performed before txq->bd.cur. */
700 	wmb();
701 	txq->bd.cur = bdp;
702 
703 	/* Trigger transmission start */
704 	writel(0, txq->bd.reg_desc_active);
705 
706 	return 0;
707 }
708 
709 static int
710 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
711 			  struct net_device *ndev,
712 			  struct bufdesc *bdp, int index, char *data,
713 			  int size, bool last_tcp, bool is_last)
714 {
715 	struct fec_enet_private *fep = netdev_priv(ndev);
716 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
717 	unsigned short status;
718 	unsigned int estatus = 0;
719 	dma_addr_t addr;
720 
721 	status = fec16_to_cpu(bdp->cbd_sc);
722 	status &= ~BD_ENET_TX_STATS;
723 
724 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
725 
726 	if (((unsigned long) data) & fep->tx_align ||
727 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
728 		memcpy(txq->tx_bounce[index], data, size);
729 		data = txq->tx_bounce[index];
730 
731 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
732 			swap_buffer(data, size);
733 	}
734 
735 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
736 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
737 		dev_kfree_skb_any(skb);
738 		if (net_ratelimit())
739 			netdev_err(ndev, "Tx DMA memory map failed\n");
740 		return NETDEV_TX_OK;
741 	}
742 
743 	bdp->cbd_datlen = cpu_to_fec16(size);
744 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
745 
746 	if (fep->bufdesc_ex) {
747 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
748 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
749 		if (skb->ip_summed == CHECKSUM_PARTIAL)
750 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
751 		ebdp->cbd_bdu = 0;
752 		ebdp->cbd_esc = cpu_to_fec32(estatus);
753 	}
754 
755 	/* Handle the last BD specially */
756 	if (last_tcp)
757 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
758 	if (is_last) {
759 		status |= BD_ENET_TX_INTR;
760 		if (fep->bufdesc_ex)
761 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
762 	}
763 
764 	bdp->cbd_sc = cpu_to_fec16(status);
765 
766 	return 0;
767 }
768 
769 static int
770 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
771 			 struct sk_buff *skb, struct net_device *ndev,
772 			 struct bufdesc *bdp, int index)
773 {
774 	struct fec_enet_private *fep = netdev_priv(ndev);
775 	int hdr_len = skb_tcp_all_headers(skb);
776 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
777 	void *bufaddr;
778 	unsigned long dmabuf;
779 	unsigned short status;
780 	unsigned int estatus = 0;
781 
782 	status = fec16_to_cpu(bdp->cbd_sc);
783 	status &= ~BD_ENET_TX_STATS;
784 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
785 
786 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
787 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
788 	if (((unsigned long)bufaddr) & fep->tx_align ||
789 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
790 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
791 		bufaddr = txq->tx_bounce[index];
792 
793 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
794 			swap_buffer(bufaddr, hdr_len);
795 
796 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
797 					hdr_len, DMA_TO_DEVICE);
798 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
799 			dev_kfree_skb_any(skb);
800 			if (net_ratelimit())
801 				netdev_err(ndev, "Tx DMA memory map failed\n");
802 			return NETDEV_TX_OK;
803 		}
804 	}
805 
806 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
807 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
808 
809 	if (fep->bufdesc_ex) {
810 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
811 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
812 		if (skb->ip_summed == CHECKSUM_PARTIAL)
813 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
814 		ebdp->cbd_bdu = 0;
815 		ebdp->cbd_esc = cpu_to_fec32(estatus);
816 	}
817 
818 	bdp->cbd_sc = cpu_to_fec16(status);
819 
820 	return 0;
821 }
822 
823 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
824 				   struct sk_buff *skb,
825 				   struct net_device *ndev)
826 {
827 	struct fec_enet_private *fep = netdev_priv(ndev);
828 	int hdr_len, total_len, data_left;
829 	struct bufdesc *bdp = txq->bd.cur;
830 	struct tso_t tso;
831 	unsigned int index = 0;
832 	int ret;
833 
834 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
835 		dev_kfree_skb_any(skb);
836 		if (net_ratelimit())
837 			netdev_err(ndev, "NOT enough BD for TSO!\n");
838 		return NETDEV_TX_OK;
839 	}
840 
841 	/* Protocol checksum off-load for TCP and UDP. */
842 	if (fec_enet_clear_csum(skb, ndev)) {
843 		dev_kfree_skb_any(skb);
844 		return NETDEV_TX_OK;
845 	}
846 
847 	/* Initialize the TSO handler, and prepare the first payload */
848 	hdr_len = tso_start(skb, &tso);
849 
850 	total_len = skb->len - hdr_len;
851 	while (total_len > 0) {
852 		char *hdr;
853 
854 		index = fec_enet_get_bd_index(bdp, &txq->bd);
855 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
856 		total_len -= data_left;
857 
858 		/* prepare packet headers: MAC + IP + TCP */
859 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
860 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
861 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
862 		if (ret)
863 			goto err_release;
864 
865 		while (data_left > 0) {
866 			int size;
867 
868 			size = min_t(int, tso.size, data_left);
869 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
870 			index = fec_enet_get_bd_index(bdp, &txq->bd);
871 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
872 							bdp, index,
873 							tso.data, size,
874 							size == data_left,
875 							total_len == 0);
876 			if (ret)
877 				goto err_release;
878 
879 			data_left -= size;
880 			tso_build_data(skb, &tso, size);
881 		}
882 
883 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
884 	}
885 
886 	/* Save skb pointer */
887 	txq->tx_buf[index].buf_p = skb;
888 
889 	skb_tx_timestamp(skb);
890 	txq->bd.cur = bdp;
891 
892 	/* Trigger transmission start */
893 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
894 	    !readl(txq->bd.reg_desc_active) ||
895 	    !readl(txq->bd.reg_desc_active) ||
896 	    !readl(txq->bd.reg_desc_active) ||
897 	    !readl(txq->bd.reg_desc_active))
898 		writel(0, txq->bd.reg_desc_active);
899 
900 	return 0;
901 
902 err_release:
903 	/* TODO: Release all used data descriptors for TSO */
904 	return ret;
905 }
906 
907 static netdev_tx_t
908 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
909 {
910 	struct fec_enet_private *fep = netdev_priv(ndev);
911 	int entries_free;
912 	unsigned short queue;
913 	struct fec_enet_priv_tx_q *txq;
914 	struct netdev_queue *nq;
915 	int ret;
916 
917 	queue = skb_get_queue_mapping(skb);
918 	txq = fep->tx_queue[queue];
919 	nq = netdev_get_tx_queue(ndev, queue);
920 
921 	if (skb_is_gso(skb))
922 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
923 	else
924 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
925 	if (ret)
926 		return ret;
927 
928 	entries_free = fec_enet_get_free_txdesc_num(txq);
929 	if (entries_free <= txq->tx_stop_threshold)
930 		netif_tx_stop_queue(nq);
931 
932 	return NETDEV_TX_OK;
933 }
934 
935 /* Init RX & TX buffer descriptors
936  */
937 static void fec_enet_bd_init(struct net_device *dev)
938 {
939 	struct fec_enet_private *fep = netdev_priv(dev);
940 	struct fec_enet_priv_tx_q *txq;
941 	struct fec_enet_priv_rx_q *rxq;
942 	struct bufdesc *bdp;
943 	unsigned int i;
944 	unsigned int q;
945 
946 	for (q = 0; q < fep->num_rx_queues; q++) {
947 		/* Initialize the receive buffer descriptors. */
948 		rxq = fep->rx_queue[q];
949 		bdp = rxq->bd.base;
950 
951 		for (i = 0; i < rxq->bd.ring_size; i++) {
952 
953 			/* Initialize the BD for every fragment in the page. */
954 			if (bdp->cbd_bufaddr)
955 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
956 			else
957 				bdp->cbd_sc = cpu_to_fec16(0);
958 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
959 		}
960 
961 		/* Set the last buffer to wrap */
962 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
963 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
964 
965 		rxq->bd.cur = rxq->bd.base;
966 	}
967 
968 	for (q = 0; q < fep->num_tx_queues; q++) {
969 		/* ...and the same for transmit */
970 		txq = fep->tx_queue[q];
971 		bdp = txq->bd.base;
972 		txq->bd.cur = bdp;
973 
974 		for (i = 0; i < txq->bd.ring_size; i++) {
975 			/* Initialize the BD for every fragment in the page. */
976 			bdp->cbd_sc = cpu_to_fec16(0);
977 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
978 				if (bdp->cbd_bufaddr &&
979 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
980 					dma_unmap_single(&fep->pdev->dev,
981 							 fec32_to_cpu(bdp->cbd_bufaddr),
982 							 fec16_to_cpu(bdp->cbd_datlen),
983 							 DMA_TO_DEVICE);
984 				if (txq->tx_buf[i].buf_p)
985 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
986 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
987 				if (bdp->cbd_bufaddr)
988 					dma_unmap_single(&fep->pdev->dev,
989 							 fec32_to_cpu(bdp->cbd_bufaddr),
990 							 fec16_to_cpu(bdp->cbd_datlen),
991 							 DMA_TO_DEVICE);
992 
993 				if (txq->tx_buf[i].buf_p)
994 					xdp_return_frame(txq->tx_buf[i].buf_p);
995 			} else {
996 				struct page *page = txq->tx_buf[i].buf_p;
997 
998 				if (page)
999 					page_pool_put_page(page->pp, page, 0, false);
1000 			}
1001 
1002 			txq->tx_buf[i].buf_p = NULL;
1003 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1004 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1005 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1006 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1007 		}
1008 
1009 		/* Set the last buffer to wrap */
1010 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1011 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1012 		txq->dirty_tx = bdp;
1013 	}
1014 }
1015 
1016 static void fec_enet_active_rxring(struct net_device *ndev)
1017 {
1018 	struct fec_enet_private *fep = netdev_priv(ndev);
1019 	int i;
1020 
1021 	for (i = 0; i < fep->num_rx_queues; i++)
1022 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1023 }
1024 
1025 static void fec_enet_enable_ring(struct net_device *ndev)
1026 {
1027 	struct fec_enet_private *fep = netdev_priv(ndev);
1028 	struct fec_enet_priv_tx_q *txq;
1029 	struct fec_enet_priv_rx_q *rxq;
1030 	int i;
1031 
1032 	for (i = 0; i < fep->num_rx_queues; i++) {
1033 		rxq = fep->rx_queue[i];
1034 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1035 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1036 
1037 		/* enable DMA1/2 */
1038 		if (i)
1039 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1040 			       fep->hwp + FEC_RCMR(i));
1041 	}
1042 
1043 	for (i = 0; i < fep->num_tx_queues; i++) {
1044 		txq = fep->tx_queue[i];
1045 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1046 
1047 		/* enable DMA1/2 */
1048 		if (i)
1049 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1050 			       fep->hwp + FEC_DMA_CFG(i));
1051 	}
1052 }
1053 
1054 /*
1055  * This function is called to start or restart the FEC during a link
1056  * change, transmit timeout, or to reconfigure the FEC.  The network
1057  * packet processing for this device must be stopped before this call.
1058  */
1059 static void
1060 fec_restart(struct net_device *ndev)
1061 {
1062 	struct fec_enet_private *fep = netdev_priv(ndev);
1063 	u32 temp_mac[2];
1064 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1065 	u32 ecntl = 0x2; /* ETHEREN */
1066 
1067 	/* Whack a reset.  We should wait for this.
1068 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1069 	 * instead of reset MAC itself.
1070 	 */
1071 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1072 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1073 		writel(0, fep->hwp + FEC_ECNTRL);
1074 	} else {
1075 		writel(1, fep->hwp + FEC_ECNTRL);
1076 		udelay(10);
1077 	}
1078 
1079 	/*
1080 	 * enet-mac reset will reset mac address registers too,
1081 	 * so need to reconfigure it.
1082 	 */
1083 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1084 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1085 	       fep->hwp + FEC_ADDR_LOW);
1086 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1087 	       fep->hwp + FEC_ADDR_HIGH);
1088 
1089 	/* Clear any outstanding interrupt, except MDIO. */
1090 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1091 
1092 	fec_enet_bd_init(ndev);
1093 
1094 	fec_enet_enable_ring(ndev);
1095 
1096 	/* Enable MII mode */
1097 	if (fep->full_duplex == DUPLEX_FULL) {
1098 		/* FD enable */
1099 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1100 	} else {
1101 		/* No Rcv on Xmit */
1102 		rcntl |= 0x02;
1103 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1104 	}
1105 
1106 	/* Set MII speed */
1107 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1108 
1109 #if !defined(CONFIG_M5272)
1110 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1111 		u32 val = readl(fep->hwp + FEC_RACC);
1112 
1113 		/* align IP header */
1114 		val |= FEC_RACC_SHIFT16;
1115 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1116 			/* set RX checksum */
1117 			val |= FEC_RACC_OPTIONS;
1118 		else
1119 			val &= ~FEC_RACC_OPTIONS;
1120 		writel(val, fep->hwp + FEC_RACC);
1121 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1122 	}
1123 #endif
1124 
1125 	/*
1126 	 * The phy interface and speed need to get configured
1127 	 * differently on enet-mac.
1128 	 */
1129 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1130 		/* Enable flow control and length check */
1131 		rcntl |= 0x40000000 | 0x00000020;
1132 
1133 		/* RGMII, RMII or MII */
1134 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1135 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1137 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138 			rcntl |= (1 << 6);
1139 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1140 			rcntl |= (1 << 8);
1141 		else
1142 			rcntl &= ~(1 << 8);
1143 
1144 		/* 1G, 100M or 10M */
1145 		if (ndev->phydev) {
1146 			if (ndev->phydev->speed == SPEED_1000)
1147 				ecntl |= (1 << 5);
1148 			else if (ndev->phydev->speed == SPEED_100)
1149 				rcntl &= ~(1 << 9);
1150 			else
1151 				rcntl |= (1 << 9);
1152 		}
1153 	} else {
1154 #ifdef FEC_MIIGSK_ENR
1155 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1156 			u32 cfgr;
1157 			/* disable the gasket and wait */
1158 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1159 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1160 				udelay(1);
1161 
1162 			/*
1163 			 * configure the gasket:
1164 			 *   RMII, 50 MHz, no loopback, no echo
1165 			 *   MII, 25 MHz, no loopback, no echo
1166 			 */
1167 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1168 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1169 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1170 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1171 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1172 
1173 			/* re-enable the gasket */
1174 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1175 		}
1176 #endif
1177 	}
1178 
1179 #if !defined(CONFIG_M5272)
1180 	/* enable pause frame*/
1181 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1182 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1183 	     ndev->phydev && ndev->phydev->pause)) {
1184 		rcntl |= FEC_ENET_FCE;
1185 
1186 		/* set FIFO threshold parameter to reduce overrun */
1187 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1188 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1189 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1190 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1191 
1192 		/* OPD */
1193 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1194 	} else {
1195 		rcntl &= ~FEC_ENET_FCE;
1196 	}
1197 #endif /* !defined(CONFIG_M5272) */
1198 
1199 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1200 
1201 	/* Setup multicast filter. */
1202 	set_multicast_list(ndev);
1203 #ifndef CONFIG_M5272
1204 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1205 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1206 #endif
1207 
1208 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1209 		/* enable ENET endian swap */
1210 		ecntl |= (1 << 8);
1211 		/* enable ENET store and forward mode */
1212 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1213 	}
1214 
1215 	if (fep->bufdesc_ex)
1216 		ecntl |= (1 << 4);
1217 
1218 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 	    fep->rgmii_txc_dly)
1220 		ecntl |= FEC_ENET_TXC_DLY;
1221 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1222 	    fep->rgmii_rxc_dly)
1223 		ecntl |= FEC_ENET_RXC_DLY;
1224 
1225 #ifndef CONFIG_M5272
1226 	/* Enable the MIB statistic event counters */
1227 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1228 #endif
1229 
1230 	/* And last, enable the transmit and receive processing */
1231 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1232 	fec_enet_active_rxring(ndev);
1233 
1234 	if (fep->bufdesc_ex)
1235 		fec_ptp_start_cyclecounter(ndev);
1236 
1237 	/* Enable interrupts we wish to service */
1238 	if (fep->link)
1239 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1240 	else
1241 		writel(0, fep->hwp + FEC_IMASK);
1242 
1243 	/* Init the interrupt coalescing */
1244 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1245 		fec_enet_itr_coal_set(ndev);
1246 }
1247 
1248 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1249 {
1250 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1251 	      of_machine_is_compatible("fsl,imx8qxp") ||
1252 	      of_machine_is_compatible("fsl,imx8dxl")))
1253 		return 0;
1254 
1255 	return imx_scu_get_handle(&fep->ipc_handle);
1256 }
1257 
1258 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1259 {
1260 	struct device_node *np = fep->pdev->dev.of_node;
1261 	u32 rsrc_id, val;
1262 	int idx;
1263 
1264 	if (!np || !fep->ipc_handle)
1265 		return;
1266 
1267 	idx = of_alias_get_id(np, "ethernet");
1268 	if (idx < 0)
1269 		idx = 0;
1270 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1271 
1272 	val = enabled ? 1 : 0;
1273 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1274 }
1275 
1276 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1277 {
1278 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1279 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1280 
1281 	if (stop_gpr->gpr) {
1282 		if (enabled)
1283 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1284 					   BIT(stop_gpr->bit),
1285 					   BIT(stop_gpr->bit));
1286 		else
1287 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1288 					   BIT(stop_gpr->bit), 0);
1289 	} else if (pdata && pdata->sleep_mode_enable) {
1290 		pdata->sleep_mode_enable(enabled);
1291 	} else {
1292 		fec_enet_ipg_stop_set(fep, enabled);
1293 	}
1294 }
1295 
1296 static void fec_irqs_disable(struct net_device *ndev)
1297 {
1298 	struct fec_enet_private *fep = netdev_priv(ndev);
1299 
1300 	writel(0, fep->hwp + FEC_IMASK);
1301 }
1302 
1303 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1304 {
1305 	struct fec_enet_private *fep = netdev_priv(ndev);
1306 
1307 	writel(0, fep->hwp + FEC_IMASK);
1308 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1309 }
1310 
1311 static void
1312 fec_stop(struct net_device *ndev)
1313 {
1314 	struct fec_enet_private *fep = netdev_priv(ndev);
1315 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1316 	u32 val;
1317 
1318 	/* We cannot expect a graceful transmit stop without link !!! */
1319 	if (fep->link) {
1320 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1321 		udelay(10);
1322 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1323 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1324 	}
1325 
1326 	/* Whack a reset.  We should wait for this.
1327 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328 	 * instead of reset MAC itself.
1329 	 */
1330 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332 			writel(0, fep->hwp + FEC_ECNTRL);
1333 		} else {
1334 			writel(1, fep->hwp + FEC_ECNTRL);
1335 			udelay(10);
1336 		}
1337 	} else {
1338 		val = readl(fep->hwp + FEC_ECNTRL);
1339 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340 		writel(val, fep->hwp + FEC_ECNTRL);
1341 	}
1342 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1343 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1344 
1345 	/* We have to keep ENET enabled to have MII interrupt stay working */
1346 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348 		writel(2, fep->hwp + FEC_ECNTRL);
1349 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1350 	}
1351 }
1352 
1353 
1354 static void
1355 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1356 {
1357 	struct fec_enet_private *fep = netdev_priv(ndev);
1358 
1359 	fec_dump(ndev);
1360 
1361 	ndev->stats.tx_errors++;
1362 
1363 	schedule_work(&fep->tx_timeout_work);
1364 }
1365 
1366 static void fec_enet_timeout_work(struct work_struct *work)
1367 {
1368 	struct fec_enet_private *fep =
1369 		container_of(work, struct fec_enet_private, tx_timeout_work);
1370 	struct net_device *ndev = fep->netdev;
1371 
1372 	rtnl_lock();
1373 	if (netif_device_present(ndev) || netif_running(ndev)) {
1374 		napi_disable(&fep->napi);
1375 		netif_tx_lock_bh(ndev);
1376 		fec_restart(ndev);
1377 		netif_tx_wake_all_queues(ndev);
1378 		netif_tx_unlock_bh(ndev);
1379 		napi_enable(&fep->napi);
1380 	}
1381 	rtnl_unlock();
1382 }
1383 
1384 static void
1385 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1386 	struct skb_shared_hwtstamps *hwtstamps)
1387 {
1388 	unsigned long flags;
1389 	u64 ns;
1390 
1391 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1392 	ns = timecounter_cyc2time(&fep->tc, ts);
1393 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1394 
1395 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1396 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1397 }
1398 
1399 static void
1400 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1401 {
1402 	struct	fec_enet_private *fep;
1403 	struct xdp_frame *xdpf;
1404 	struct bufdesc *bdp;
1405 	unsigned short status;
1406 	struct	sk_buff	*skb;
1407 	struct fec_enet_priv_tx_q *txq;
1408 	struct netdev_queue *nq;
1409 	int	index = 0;
1410 	int	entries_free;
1411 	struct page *page;
1412 	int frame_len;
1413 
1414 	fep = netdev_priv(ndev);
1415 
1416 	txq = fep->tx_queue[queue_id];
1417 	/* get next bdp of dirty_tx */
1418 	nq = netdev_get_tx_queue(ndev, queue_id);
1419 	bdp = txq->dirty_tx;
1420 
1421 	/* get next bdp of dirty_tx */
1422 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1423 
1424 	while (bdp != READ_ONCE(txq->bd.cur)) {
1425 		/* Order the load of bd.cur and cbd_sc */
1426 		rmb();
1427 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1428 		if (status & BD_ENET_TX_READY)
1429 			break;
1430 
1431 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1432 
1433 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1434 			skb = txq->tx_buf[index].buf_p;
1435 			if (bdp->cbd_bufaddr &&
1436 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1437 				dma_unmap_single(&fep->pdev->dev,
1438 						 fec32_to_cpu(bdp->cbd_bufaddr),
1439 						 fec16_to_cpu(bdp->cbd_datlen),
1440 						 DMA_TO_DEVICE);
1441 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1442 			if (!skb)
1443 				goto tx_buf_done;
1444 		} else {
1445 			/* Tx processing cannot call any XDP (or page pool) APIs if
1446 			 * the "budget" is 0. Because NAPI is called with budget of
1447 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1448 			 * however, we can't use the page pool from IRQ context.
1449 			 */
1450 			if (unlikely(!budget))
1451 				break;
1452 
1453 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1454 				xdpf = txq->tx_buf[index].buf_p;
1455 				if (bdp->cbd_bufaddr)
1456 					dma_unmap_single(&fep->pdev->dev,
1457 							 fec32_to_cpu(bdp->cbd_bufaddr),
1458 							 fec16_to_cpu(bdp->cbd_datlen),
1459 							 DMA_TO_DEVICE);
1460 			} else {
1461 				page = txq->tx_buf[index].buf_p;
1462 			}
1463 
1464 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1465 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1466 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1467 				goto tx_buf_done;
1468 			}
1469 
1470 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1471 		}
1472 
1473 		/* Check for errors. */
1474 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1475 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1476 				   BD_ENET_TX_CSL)) {
1477 			ndev->stats.tx_errors++;
1478 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1479 				ndev->stats.tx_heartbeat_errors++;
1480 			if (status & BD_ENET_TX_LC)  /* Late collision */
1481 				ndev->stats.tx_window_errors++;
1482 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1483 				ndev->stats.tx_aborted_errors++;
1484 			if (status & BD_ENET_TX_UN)  /* Underrun */
1485 				ndev->stats.tx_fifo_errors++;
1486 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1487 				ndev->stats.tx_carrier_errors++;
1488 		} else {
1489 			ndev->stats.tx_packets++;
1490 
1491 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1492 				ndev->stats.tx_bytes += skb->len;
1493 			else
1494 				ndev->stats.tx_bytes += frame_len;
1495 		}
1496 
1497 		/* Deferred means some collisions occurred during transmit,
1498 		 * but we eventually sent the packet OK.
1499 		 */
1500 		if (status & BD_ENET_TX_DEF)
1501 			ndev->stats.collisions++;
1502 
1503 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1504 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1505 			 * are to time stamp the packet, so we still need to check time
1506 			 * stamping enabled flag.
1507 			 */
1508 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1509 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1510 				struct skb_shared_hwtstamps shhwtstamps;
1511 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512 
1513 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1514 				skb_tstamp_tx(skb, &shhwtstamps);
1515 			}
1516 
1517 			/* Free the sk buffer associated with this last transmit */
1518 			napi_consume_skb(skb, budget);
1519 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520 			xdp_return_frame_rx_napi(xdpf);
1521 		} else { /* recycle pages of XDP_TX frames */
1522 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1523 			page_pool_put_page(page->pp, page, 0, true);
1524 		}
1525 
1526 		txq->tx_buf[index].buf_p = NULL;
1527 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1528 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1529 
1530 tx_buf_done:
1531 		/* Make sure the update to bdp and tx_buf are performed
1532 		 * before dirty_tx
1533 		 */
1534 		wmb();
1535 		txq->dirty_tx = bdp;
1536 
1537 		/* Update pointer to next buffer descriptor to be transmitted */
1538 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1539 
1540 		/* Since we have freed up a buffer, the ring is no longer full
1541 		 */
1542 		if (netif_tx_queue_stopped(nq)) {
1543 			entries_free = fec_enet_get_free_txdesc_num(txq);
1544 			if (entries_free >= txq->tx_wake_threshold)
1545 				netif_tx_wake_queue(nq);
1546 		}
1547 	}
1548 
1549 	/* ERR006358: Keep the transmitter going */
1550 	if (bdp != txq->bd.cur &&
1551 	    readl(txq->bd.reg_desc_active) == 0)
1552 		writel(0, txq->bd.reg_desc_active);
1553 }
1554 
1555 static void fec_enet_tx(struct net_device *ndev, int budget)
1556 {
1557 	struct fec_enet_private *fep = netdev_priv(ndev);
1558 	int i;
1559 
1560 	/* Make sure that AVB queues are processed first. */
1561 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1562 		fec_enet_tx_queue(ndev, i, budget);
1563 }
1564 
1565 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1566 				struct bufdesc *bdp, int index)
1567 {
1568 	struct page *new_page;
1569 	dma_addr_t phys_addr;
1570 
1571 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1572 	WARN_ON(!new_page);
1573 	rxq->rx_skb_info[index].page = new_page;
1574 
1575 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1576 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1577 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1578 }
1579 
1580 static u32
1581 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1582 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1583 {
1584 	unsigned int sync, len = xdp->data_end - xdp->data;
1585 	u32 ret = FEC_ENET_XDP_PASS;
1586 	struct page *page;
1587 	int err;
1588 	u32 act;
1589 
1590 	act = bpf_prog_run_xdp(prog, xdp);
1591 
1592 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1593 	 * max len CPU touch
1594 	 */
1595 	sync = xdp->data_end - xdp->data;
1596 	sync = max(sync, len);
1597 
1598 	switch (act) {
1599 	case XDP_PASS:
1600 		rxq->stats[RX_XDP_PASS]++;
1601 		ret = FEC_ENET_XDP_PASS;
1602 		break;
1603 
1604 	case XDP_REDIRECT:
1605 		rxq->stats[RX_XDP_REDIRECT]++;
1606 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1607 		if (unlikely(err))
1608 			goto xdp_err;
1609 
1610 		ret = FEC_ENET_XDP_REDIR;
1611 		break;
1612 
1613 	case XDP_TX:
1614 		rxq->stats[RX_XDP_TX]++;
1615 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1616 		if (unlikely(err)) {
1617 			rxq->stats[RX_XDP_TX_ERRORS]++;
1618 			goto xdp_err;
1619 		}
1620 
1621 		ret = FEC_ENET_XDP_TX;
1622 		break;
1623 
1624 	default:
1625 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1626 		fallthrough;
1627 
1628 	case XDP_ABORTED:
1629 		fallthrough;    /* handle aborts by dropping packet */
1630 
1631 	case XDP_DROP:
1632 		rxq->stats[RX_XDP_DROP]++;
1633 xdp_err:
1634 		ret = FEC_ENET_XDP_CONSUMED;
1635 		page = virt_to_head_page(xdp->data);
1636 		page_pool_put_page(rxq->page_pool, page, sync, true);
1637 		if (act != XDP_DROP)
1638 			trace_xdp_exception(fep->netdev, prog, act);
1639 		break;
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1646  * When we update through the ring, if the next incoming buffer has
1647  * not been given to the system, we just set the empty indicator,
1648  * effectively tossing the packet.
1649  */
1650 static int
1651 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1652 {
1653 	struct fec_enet_private *fep = netdev_priv(ndev);
1654 	struct fec_enet_priv_rx_q *rxq;
1655 	struct bufdesc *bdp;
1656 	unsigned short status;
1657 	struct  sk_buff *skb;
1658 	ushort	pkt_len;
1659 	__u8 *data;
1660 	int	pkt_received = 0;
1661 	struct	bufdesc_ex *ebdp = NULL;
1662 	bool	vlan_packet_rcvd = false;
1663 	u16	vlan_tag;
1664 	int	index = 0;
1665 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1666 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1667 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1668 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1669 	int cpu = smp_processor_id();
1670 	struct xdp_buff xdp;
1671 	struct page *page;
1672 	u32 sub_len = 4;
1673 
1674 #if !defined(CONFIG_M5272)
1675 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1676 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1677 	 */
1678 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1679 		data_start += 2;
1680 		sub_len += 2;
1681 	}
1682 #endif
1683 
1684 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1685 	/*
1686 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1687 	 * headers.
1688 	 */
1689 	flush_cache_all();
1690 #endif
1691 	rxq = fep->rx_queue[queue_id];
1692 
1693 	/* First, grab all of the stats for the incoming packet.
1694 	 * These get messed up if we get called due to a busy condition.
1695 	 */
1696 	bdp = rxq->bd.cur;
1697 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1698 
1699 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1700 
1701 		if (pkt_received >= budget)
1702 			break;
1703 		pkt_received++;
1704 
1705 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1706 
1707 		/* Check for errors. */
1708 		status ^= BD_ENET_RX_LAST;
1709 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1710 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1711 			   BD_ENET_RX_CL)) {
1712 			ndev->stats.rx_errors++;
1713 			if (status & BD_ENET_RX_OV) {
1714 				/* FIFO overrun */
1715 				ndev->stats.rx_fifo_errors++;
1716 				goto rx_processing_done;
1717 			}
1718 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1719 						| BD_ENET_RX_LAST)) {
1720 				/* Frame too long or too short. */
1721 				ndev->stats.rx_length_errors++;
1722 				if (status & BD_ENET_RX_LAST)
1723 					netdev_err(ndev, "rcv is not +last\n");
1724 			}
1725 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1726 				ndev->stats.rx_crc_errors++;
1727 			/* Report late collisions as a frame error. */
1728 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1729 				ndev->stats.rx_frame_errors++;
1730 			goto rx_processing_done;
1731 		}
1732 
1733 		/* Process the incoming frame. */
1734 		ndev->stats.rx_packets++;
1735 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1736 		ndev->stats.rx_bytes += pkt_len;
1737 
1738 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1739 		page = rxq->rx_skb_info[index].page;
1740 		dma_sync_single_for_cpu(&fep->pdev->dev,
1741 					fec32_to_cpu(bdp->cbd_bufaddr),
1742 					pkt_len,
1743 					DMA_FROM_DEVICE);
1744 		prefetch(page_address(page));
1745 		fec_enet_update_cbd(rxq, bdp, index);
1746 
1747 		if (xdp_prog) {
1748 			xdp_buff_clear_frags_flag(&xdp);
1749 			/* subtract 16bit shift and FCS */
1750 			xdp_prepare_buff(&xdp, page_address(page),
1751 					 data_start, pkt_len - sub_len, false);
1752 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1753 			xdp_result |= ret;
1754 			if (ret != FEC_ENET_XDP_PASS)
1755 				goto rx_processing_done;
1756 		}
1757 
1758 		/* The packet length includes FCS, but we don't want to
1759 		 * include that when passing upstream as it messes up
1760 		 * bridging applications.
1761 		 */
1762 		skb = build_skb(page_address(page), PAGE_SIZE);
1763 		if (unlikely(!skb)) {
1764 			page_pool_recycle_direct(rxq->page_pool, page);
1765 			ndev->stats.rx_dropped++;
1766 
1767 			netdev_err_once(ndev, "build_skb failed!\n");
1768 			goto rx_processing_done;
1769 		}
1770 
1771 		skb_reserve(skb, data_start);
1772 		skb_put(skb, pkt_len - sub_len);
1773 		skb_mark_for_recycle(skb);
1774 
1775 		if (unlikely(need_swap)) {
1776 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1777 			swap_buffer(data, pkt_len);
1778 		}
1779 		data = skb->data;
1780 
1781 		/* Extract the enhanced buffer descriptor */
1782 		ebdp = NULL;
1783 		if (fep->bufdesc_ex)
1784 			ebdp = (struct bufdesc_ex *)bdp;
1785 
1786 		/* If this is a VLAN packet remove the VLAN Tag */
1787 		vlan_packet_rcvd = false;
1788 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1789 		    fep->bufdesc_ex &&
1790 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1791 			/* Push and remove the vlan tag */
1792 			struct vlan_hdr *vlan_header =
1793 					(struct vlan_hdr *) (data + ETH_HLEN);
1794 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1795 
1796 			vlan_packet_rcvd = true;
1797 
1798 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1799 			skb_pull(skb, VLAN_HLEN);
1800 		}
1801 
1802 		skb->protocol = eth_type_trans(skb, ndev);
1803 
1804 		/* Get receive timestamp from the skb */
1805 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1806 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1807 					  skb_hwtstamps(skb));
1808 
1809 		if (fep->bufdesc_ex &&
1810 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1811 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1812 				/* don't check it */
1813 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1814 			} else {
1815 				skb_checksum_none_assert(skb);
1816 			}
1817 		}
1818 
1819 		/* Handle received VLAN packets */
1820 		if (vlan_packet_rcvd)
1821 			__vlan_hwaccel_put_tag(skb,
1822 					       htons(ETH_P_8021Q),
1823 					       vlan_tag);
1824 
1825 		skb_record_rx_queue(skb, queue_id);
1826 		napi_gro_receive(&fep->napi, skb);
1827 
1828 rx_processing_done:
1829 		/* Clear the status flags for this buffer */
1830 		status &= ~BD_ENET_RX_STATS;
1831 
1832 		/* Mark the buffer empty */
1833 		status |= BD_ENET_RX_EMPTY;
1834 
1835 		if (fep->bufdesc_ex) {
1836 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1837 
1838 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1839 			ebdp->cbd_prot = 0;
1840 			ebdp->cbd_bdu = 0;
1841 		}
1842 		/* Make sure the updates to rest of the descriptor are
1843 		 * performed before transferring ownership.
1844 		 */
1845 		wmb();
1846 		bdp->cbd_sc = cpu_to_fec16(status);
1847 
1848 		/* Update BD pointer to next entry */
1849 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1850 
1851 		/* Doing this here will keep the FEC running while we process
1852 		 * incoming frames.  On a heavily loaded network, we should be
1853 		 * able to keep up at the expense of system resources.
1854 		 */
1855 		writel(0, rxq->bd.reg_desc_active);
1856 	}
1857 	rxq->bd.cur = bdp;
1858 
1859 	if (xdp_result & FEC_ENET_XDP_REDIR)
1860 		xdp_do_flush();
1861 
1862 	return pkt_received;
1863 }
1864 
1865 static int fec_enet_rx(struct net_device *ndev, int budget)
1866 {
1867 	struct fec_enet_private *fep = netdev_priv(ndev);
1868 	int i, done = 0;
1869 
1870 	/* Make sure that AVB queues are processed first. */
1871 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1872 		done += fec_enet_rx_queue(ndev, budget - done, i);
1873 
1874 	return done;
1875 }
1876 
1877 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1878 {
1879 	uint int_events;
1880 
1881 	int_events = readl(fep->hwp + FEC_IEVENT);
1882 
1883 	/* Don't clear MDIO events, we poll for those */
1884 	int_events &= ~FEC_ENET_MII;
1885 
1886 	writel(int_events, fep->hwp + FEC_IEVENT);
1887 
1888 	return int_events != 0;
1889 }
1890 
1891 static irqreturn_t
1892 fec_enet_interrupt(int irq, void *dev_id)
1893 {
1894 	struct net_device *ndev = dev_id;
1895 	struct fec_enet_private *fep = netdev_priv(ndev);
1896 	irqreturn_t ret = IRQ_NONE;
1897 
1898 	if (fec_enet_collect_events(fep) && fep->link) {
1899 		ret = IRQ_HANDLED;
1900 
1901 		if (napi_schedule_prep(&fep->napi)) {
1902 			/* Disable interrupts */
1903 			writel(0, fep->hwp + FEC_IMASK);
1904 			__napi_schedule(&fep->napi);
1905 		}
1906 	}
1907 
1908 	return ret;
1909 }
1910 
1911 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1912 {
1913 	struct net_device *ndev = napi->dev;
1914 	struct fec_enet_private *fep = netdev_priv(ndev);
1915 	int done = 0;
1916 
1917 	do {
1918 		done += fec_enet_rx(ndev, budget - done);
1919 		fec_enet_tx(ndev, budget);
1920 	} while ((done < budget) && fec_enet_collect_events(fep));
1921 
1922 	if (done < budget) {
1923 		napi_complete_done(napi, done);
1924 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1925 	}
1926 
1927 	return done;
1928 }
1929 
1930 /* ------------------------------------------------------------------------- */
1931 static int fec_get_mac(struct net_device *ndev)
1932 {
1933 	struct fec_enet_private *fep = netdev_priv(ndev);
1934 	unsigned char *iap, tmpaddr[ETH_ALEN];
1935 	int ret;
1936 
1937 	/*
1938 	 * try to get mac address in following order:
1939 	 *
1940 	 * 1) module parameter via kernel command line in form
1941 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1942 	 */
1943 	iap = macaddr;
1944 
1945 	/*
1946 	 * 2) from device tree data
1947 	 */
1948 	if (!is_valid_ether_addr(iap)) {
1949 		struct device_node *np = fep->pdev->dev.of_node;
1950 		if (np) {
1951 			ret = of_get_mac_address(np, tmpaddr);
1952 			if (!ret)
1953 				iap = tmpaddr;
1954 			else if (ret == -EPROBE_DEFER)
1955 				return ret;
1956 		}
1957 	}
1958 
1959 	/*
1960 	 * 3) from flash or fuse (via platform data)
1961 	 */
1962 	if (!is_valid_ether_addr(iap)) {
1963 #ifdef CONFIG_M5272
1964 		if (FEC_FLASHMAC)
1965 			iap = (unsigned char *)FEC_FLASHMAC;
1966 #else
1967 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1968 
1969 		if (pdata)
1970 			iap = (unsigned char *)&pdata->mac;
1971 #endif
1972 	}
1973 
1974 	/*
1975 	 * 4) FEC mac registers set by bootloader
1976 	 */
1977 	if (!is_valid_ether_addr(iap)) {
1978 		*((__be32 *) &tmpaddr[0]) =
1979 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1980 		*((__be16 *) &tmpaddr[4]) =
1981 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1982 		iap = &tmpaddr[0];
1983 	}
1984 
1985 	/*
1986 	 * 5) random mac address
1987 	 */
1988 	if (!is_valid_ether_addr(iap)) {
1989 		/* Report it and use a random ethernet address instead */
1990 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1991 		eth_hw_addr_random(ndev);
1992 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1993 			 ndev->dev_addr);
1994 		return 0;
1995 	}
1996 
1997 	/* Adjust MAC if using macaddr */
1998 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1999 
2000 	return 0;
2001 }
2002 
2003 /* ------------------------------------------------------------------------- */
2004 
2005 /*
2006  * Phy section
2007  */
2008 static void fec_enet_adjust_link(struct net_device *ndev)
2009 {
2010 	struct fec_enet_private *fep = netdev_priv(ndev);
2011 	struct phy_device *phy_dev = ndev->phydev;
2012 	int status_change = 0;
2013 
2014 	/*
2015 	 * If the netdev is down, or is going down, we're not interested
2016 	 * in link state events, so just mark our idea of the link as down
2017 	 * and ignore the event.
2018 	 */
2019 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2020 		fep->link = 0;
2021 	} else if (phy_dev->link) {
2022 		if (!fep->link) {
2023 			fep->link = phy_dev->link;
2024 			status_change = 1;
2025 		}
2026 
2027 		if (fep->full_duplex != phy_dev->duplex) {
2028 			fep->full_duplex = phy_dev->duplex;
2029 			status_change = 1;
2030 		}
2031 
2032 		if (phy_dev->speed != fep->speed) {
2033 			fep->speed = phy_dev->speed;
2034 			status_change = 1;
2035 		}
2036 
2037 		/* if any of the above changed restart the FEC */
2038 		if (status_change) {
2039 			netif_stop_queue(ndev);
2040 			napi_disable(&fep->napi);
2041 			netif_tx_lock_bh(ndev);
2042 			fec_restart(ndev);
2043 			netif_tx_wake_all_queues(ndev);
2044 			netif_tx_unlock_bh(ndev);
2045 			napi_enable(&fep->napi);
2046 		}
2047 	} else {
2048 		if (fep->link) {
2049 			netif_stop_queue(ndev);
2050 			napi_disable(&fep->napi);
2051 			netif_tx_lock_bh(ndev);
2052 			fec_stop(ndev);
2053 			netif_tx_unlock_bh(ndev);
2054 			napi_enable(&fep->napi);
2055 			fep->link = phy_dev->link;
2056 			status_change = 1;
2057 		}
2058 	}
2059 
2060 	if (status_change)
2061 		phy_print_status(phy_dev);
2062 }
2063 
2064 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2065 {
2066 	uint ievent;
2067 	int ret;
2068 
2069 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2070 					ievent & FEC_ENET_MII, 2, 30000);
2071 
2072 	if (!ret)
2073 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2074 
2075 	return ret;
2076 }
2077 
2078 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2079 {
2080 	struct fec_enet_private *fep = bus->priv;
2081 	struct device *dev = &fep->pdev->dev;
2082 	int ret = 0, frame_start, frame_addr, frame_op;
2083 
2084 	ret = pm_runtime_resume_and_get(dev);
2085 	if (ret < 0)
2086 		return ret;
2087 
2088 	/* C22 read */
2089 	frame_op = FEC_MMFR_OP_READ;
2090 	frame_start = FEC_MMFR_ST;
2091 	frame_addr = regnum;
2092 
2093 	/* start a read op */
2094 	writel(frame_start | frame_op |
2095 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2096 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2097 
2098 	/* wait for end of transfer */
2099 	ret = fec_enet_mdio_wait(fep);
2100 	if (ret) {
2101 		netdev_err(fep->netdev, "MDIO read timeout\n");
2102 		goto out;
2103 	}
2104 
2105 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2106 
2107 out:
2108 	pm_runtime_mark_last_busy(dev);
2109 	pm_runtime_put_autosuspend(dev);
2110 
2111 	return ret;
2112 }
2113 
2114 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2115 				  int devad, int regnum)
2116 {
2117 	struct fec_enet_private *fep = bus->priv;
2118 	struct device *dev = &fep->pdev->dev;
2119 	int ret = 0, frame_start, frame_op;
2120 
2121 	ret = pm_runtime_resume_and_get(dev);
2122 	if (ret < 0)
2123 		return ret;
2124 
2125 	frame_start = FEC_MMFR_ST_C45;
2126 
2127 	/* write address */
2128 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2129 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2130 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2131 	       fep->hwp + FEC_MII_DATA);
2132 
2133 	/* wait for end of transfer */
2134 	ret = fec_enet_mdio_wait(fep);
2135 	if (ret) {
2136 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2137 		goto out;
2138 	}
2139 
2140 	frame_op = FEC_MMFR_OP_READ_C45;
2141 
2142 	/* start a read op */
2143 	writel(frame_start | frame_op |
2144 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2146 
2147 	/* wait for end of transfer */
2148 	ret = fec_enet_mdio_wait(fep);
2149 	if (ret) {
2150 		netdev_err(fep->netdev, "MDIO read timeout\n");
2151 		goto out;
2152 	}
2153 
2154 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2155 
2156 out:
2157 	pm_runtime_mark_last_busy(dev);
2158 	pm_runtime_put_autosuspend(dev);
2159 
2160 	return ret;
2161 }
2162 
2163 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2164 				   u16 value)
2165 {
2166 	struct fec_enet_private *fep = bus->priv;
2167 	struct device *dev = &fep->pdev->dev;
2168 	int ret, frame_start, frame_addr;
2169 
2170 	ret = pm_runtime_resume_and_get(dev);
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	/* C22 write */
2175 	frame_start = FEC_MMFR_ST;
2176 	frame_addr = regnum;
2177 
2178 	/* start a write op */
2179 	writel(frame_start | FEC_MMFR_OP_WRITE |
2180 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2181 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2182 	       fep->hwp + FEC_MII_DATA);
2183 
2184 	/* wait for end of transfer */
2185 	ret = fec_enet_mdio_wait(fep);
2186 	if (ret)
2187 		netdev_err(fep->netdev, "MDIO write timeout\n");
2188 
2189 	pm_runtime_mark_last_busy(dev);
2190 	pm_runtime_put_autosuspend(dev);
2191 
2192 	return ret;
2193 }
2194 
2195 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2196 				   int devad, int regnum, u16 value)
2197 {
2198 	struct fec_enet_private *fep = bus->priv;
2199 	struct device *dev = &fep->pdev->dev;
2200 	int ret, frame_start;
2201 
2202 	ret = pm_runtime_resume_and_get(dev);
2203 	if (ret < 0)
2204 		return ret;
2205 
2206 	frame_start = FEC_MMFR_ST_C45;
2207 
2208 	/* write address */
2209 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2210 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2211 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2212 	       fep->hwp + FEC_MII_DATA);
2213 
2214 	/* wait for end of transfer */
2215 	ret = fec_enet_mdio_wait(fep);
2216 	if (ret) {
2217 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2218 		goto out;
2219 	}
2220 
2221 	/* start a write op */
2222 	writel(frame_start | FEC_MMFR_OP_WRITE |
2223 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2224 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2225 	       fep->hwp + FEC_MII_DATA);
2226 
2227 	/* wait for end of transfer */
2228 	ret = fec_enet_mdio_wait(fep);
2229 	if (ret)
2230 		netdev_err(fep->netdev, "MDIO write timeout\n");
2231 
2232 out:
2233 	pm_runtime_mark_last_busy(dev);
2234 	pm_runtime_put_autosuspend(dev);
2235 
2236 	return ret;
2237 }
2238 
2239 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2240 {
2241 	struct fec_enet_private *fep = netdev_priv(ndev);
2242 	struct phy_device *phy_dev = ndev->phydev;
2243 
2244 	if (phy_dev) {
2245 		phy_reset_after_clk_enable(phy_dev);
2246 	} else if (fep->phy_node) {
2247 		/*
2248 		 * If the PHY still is not bound to the MAC, but there is
2249 		 * OF PHY node and a matching PHY device instance already,
2250 		 * use the OF PHY node to obtain the PHY device instance,
2251 		 * and then use that PHY device instance when triggering
2252 		 * the PHY reset.
2253 		 */
2254 		phy_dev = of_phy_find_device(fep->phy_node);
2255 		phy_reset_after_clk_enable(phy_dev);
2256 		put_device(&phy_dev->mdio.dev);
2257 	}
2258 }
2259 
2260 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2261 {
2262 	struct fec_enet_private *fep = netdev_priv(ndev);
2263 	int ret;
2264 
2265 	if (enable) {
2266 		ret = clk_prepare_enable(fep->clk_enet_out);
2267 		if (ret)
2268 			return ret;
2269 
2270 		if (fep->clk_ptp) {
2271 			mutex_lock(&fep->ptp_clk_mutex);
2272 			ret = clk_prepare_enable(fep->clk_ptp);
2273 			if (ret) {
2274 				mutex_unlock(&fep->ptp_clk_mutex);
2275 				goto failed_clk_ptp;
2276 			} else {
2277 				fep->ptp_clk_on = true;
2278 			}
2279 			mutex_unlock(&fep->ptp_clk_mutex);
2280 		}
2281 
2282 		ret = clk_prepare_enable(fep->clk_ref);
2283 		if (ret)
2284 			goto failed_clk_ref;
2285 
2286 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2287 		if (ret)
2288 			goto failed_clk_2x_txclk;
2289 
2290 		fec_enet_phy_reset_after_clk_enable(ndev);
2291 	} else {
2292 		clk_disable_unprepare(fep->clk_enet_out);
2293 		if (fep->clk_ptp) {
2294 			mutex_lock(&fep->ptp_clk_mutex);
2295 			clk_disable_unprepare(fep->clk_ptp);
2296 			fep->ptp_clk_on = false;
2297 			mutex_unlock(&fep->ptp_clk_mutex);
2298 		}
2299 		clk_disable_unprepare(fep->clk_ref);
2300 		clk_disable_unprepare(fep->clk_2x_txclk);
2301 	}
2302 
2303 	return 0;
2304 
2305 failed_clk_2x_txclk:
2306 	if (fep->clk_ref)
2307 		clk_disable_unprepare(fep->clk_ref);
2308 failed_clk_ref:
2309 	if (fep->clk_ptp) {
2310 		mutex_lock(&fep->ptp_clk_mutex);
2311 		clk_disable_unprepare(fep->clk_ptp);
2312 		fep->ptp_clk_on = false;
2313 		mutex_unlock(&fep->ptp_clk_mutex);
2314 	}
2315 failed_clk_ptp:
2316 	clk_disable_unprepare(fep->clk_enet_out);
2317 
2318 	return ret;
2319 }
2320 
2321 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2322 				      struct device_node *np)
2323 {
2324 	u32 rgmii_tx_delay, rgmii_rx_delay;
2325 
2326 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2327 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2328 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2329 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2330 			return -EINVAL;
2331 		} else if (rgmii_tx_delay == 2000) {
2332 			fep->rgmii_txc_dly = true;
2333 		}
2334 	}
2335 
2336 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2337 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2338 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2339 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2340 			return -EINVAL;
2341 		} else if (rgmii_rx_delay == 2000) {
2342 			fep->rgmii_rxc_dly = true;
2343 		}
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int fec_enet_mii_probe(struct net_device *ndev)
2350 {
2351 	struct fec_enet_private *fep = netdev_priv(ndev);
2352 	struct phy_device *phy_dev = NULL;
2353 	char mdio_bus_id[MII_BUS_ID_SIZE];
2354 	char phy_name[MII_BUS_ID_SIZE + 3];
2355 	int phy_id;
2356 	int dev_id = fep->dev_id;
2357 
2358 	if (fep->phy_node) {
2359 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2360 					 &fec_enet_adjust_link, 0,
2361 					 fep->phy_interface);
2362 		if (!phy_dev) {
2363 			netdev_err(ndev, "Unable to connect to phy\n");
2364 			return -ENODEV;
2365 		}
2366 	} else {
2367 		/* check for attached phy */
2368 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2369 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2370 				continue;
2371 			if (dev_id--)
2372 				continue;
2373 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2374 			break;
2375 		}
2376 
2377 		if (phy_id >= PHY_MAX_ADDR) {
2378 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2379 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2380 			phy_id = 0;
2381 		}
2382 
2383 		snprintf(phy_name, sizeof(phy_name),
2384 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2385 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2386 				      fep->phy_interface);
2387 	}
2388 
2389 	if (IS_ERR(phy_dev)) {
2390 		netdev_err(ndev, "could not attach to PHY\n");
2391 		return PTR_ERR(phy_dev);
2392 	}
2393 
2394 	/* mask with MAC supported features */
2395 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2396 		phy_set_max_speed(phy_dev, 1000);
2397 		phy_remove_link_mode(phy_dev,
2398 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2399 #if !defined(CONFIG_M5272)
2400 		phy_support_sym_pause(phy_dev);
2401 #endif
2402 	}
2403 	else
2404 		phy_set_max_speed(phy_dev, 100);
2405 
2406 	fep->link = 0;
2407 	fep->full_duplex = 0;
2408 
2409 	phy_dev->mac_managed_pm = true;
2410 
2411 	phy_attached_info(phy_dev);
2412 
2413 	return 0;
2414 }
2415 
2416 static int fec_enet_mii_init(struct platform_device *pdev)
2417 {
2418 	static struct mii_bus *fec0_mii_bus;
2419 	struct net_device *ndev = platform_get_drvdata(pdev);
2420 	struct fec_enet_private *fep = netdev_priv(ndev);
2421 	bool suppress_preamble = false;
2422 	struct device_node *node;
2423 	int err = -ENXIO;
2424 	u32 mii_speed, holdtime;
2425 	u32 bus_freq;
2426 
2427 	/*
2428 	 * The i.MX28 dual fec interfaces are not equal.
2429 	 * Here are the differences:
2430 	 *
2431 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2432 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2433 	 *  - external phys can only be configured by fec0
2434 	 *
2435 	 * That is to say fec1 can not work independently. It only works
2436 	 * when fec0 is working. The reason behind this design is that the
2437 	 * second interface is added primarily for Switch mode.
2438 	 *
2439 	 * Because of the last point above, both phys are attached on fec0
2440 	 * mdio interface in board design, and need to be configured by
2441 	 * fec0 mii_bus.
2442 	 */
2443 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2444 		/* fec1 uses fec0 mii_bus */
2445 		if (mii_cnt && fec0_mii_bus) {
2446 			fep->mii_bus = fec0_mii_bus;
2447 			mii_cnt++;
2448 			return 0;
2449 		}
2450 		return -ENOENT;
2451 	}
2452 
2453 	bus_freq = 2500000; /* 2.5MHz by default */
2454 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2455 	if (node) {
2456 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2457 		suppress_preamble = of_property_read_bool(node,
2458 							  "suppress-preamble");
2459 	}
2460 
2461 	/*
2462 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2463 	 *
2464 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2465 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2466 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2467 	 * document.
2468 	 */
2469 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2470 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2471 		mii_speed--;
2472 	if (mii_speed > 63) {
2473 		dev_err(&pdev->dev,
2474 			"fec clock (%lu) too fast to get right mii speed\n",
2475 			clk_get_rate(fep->clk_ipg));
2476 		err = -EINVAL;
2477 		goto err_out;
2478 	}
2479 
2480 	/*
2481 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2482 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2483 	 * versions are RAZ there, so just ignore the difference and write the
2484 	 * register always.
2485 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2486 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2487 	 * output.
2488 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2489 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2490 	 * holdtime cannot result in a value greater than 3.
2491 	 */
2492 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2493 
2494 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2495 
2496 	if (suppress_preamble)
2497 		fep->phy_speed |= BIT(7);
2498 
2499 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2500 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2501 		 * MII event generation condition:
2502 		 * - writing MSCR:
2503 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2504 		 *	  mscr_reg_data_in[7:0] != 0
2505 		 * - writing MMFR:
2506 		 *	- mscr[7:0]_not_zero
2507 		 */
2508 		writel(0, fep->hwp + FEC_MII_DATA);
2509 	}
2510 
2511 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2512 
2513 	/* Clear any pending transaction complete indication */
2514 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2515 
2516 	fep->mii_bus = mdiobus_alloc();
2517 	if (fep->mii_bus == NULL) {
2518 		err = -ENOMEM;
2519 		goto err_out;
2520 	}
2521 
2522 	fep->mii_bus->name = "fec_enet_mii_bus";
2523 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2524 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2525 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2526 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2527 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2528 	}
2529 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2530 		pdev->name, fep->dev_id + 1);
2531 	fep->mii_bus->priv = fep;
2532 	fep->mii_bus->parent = &pdev->dev;
2533 
2534 	err = of_mdiobus_register(fep->mii_bus, node);
2535 	if (err)
2536 		goto err_out_free_mdiobus;
2537 	of_node_put(node);
2538 
2539 	mii_cnt++;
2540 
2541 	/* save fec0 mii_bus */
2542 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2543 		fec0_mii_bus = fep->mii_bus;
2544 
2545 	return 0;
2546 
2547 err_out_free_mdiobus:
2548 	mdiobus_free(fep->mii_bus);
2549 err_out:
2550 	of_node_put(node);
2551 	return err;
2552 }
2553 
2554 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2555 {
2556 	if (--mii_cnt == 0) {
2557 		mdiobus_unregister(fep->mii_bus);
2558 		mdiobus_free(fep->mii_bus);
2559 	}
2560 }
2561 
2562 static void fec_enet_get_drvinfo(struct net_device *ndev,
2563 				 struct ethtool_drvinfo *info)
2564 {
2565 	struct fec_enet_private *fep = netdev_priv(ndev);
2566 
2567 	strscpy(info->driver, fep->pdev->dev.driver->name,
2568 		sizeof(info->driver));
2569 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2570 }
2571 
2572 static int fec_enet_get_regs_len(struct net_device *ndev)
2573 {
2574 	struct fec_enet_private *fep = netdev_priv(ndev);
2575 	struct resource *r;
2576 	int s = 0;
2577 
2578 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2579 	if (r)
2580 		s = resource_size(r);
2581 
2582 	return s;
2583 }
2584 
2585 /* List of registers that can be safety be read to dump them with ethtool */
2586 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2587 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2588 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2589 static __u32 fec_enet_register_version = 2;
2590 static u32 fec_enet_register_offset[] = {
2591 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2592 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2593 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2594 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2595 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2596 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2597 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2598 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2599 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2600 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2601 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2602 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2603 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2604 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2605 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2606 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2607 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2608 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2609 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2610 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2611 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2612 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2613 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2614 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2615 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2616 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2617 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2618 };
2619 /* for i.MX6ul */
2620 static u32 fec_enet_register_offset_6ul[] = {
2621 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2622 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2623 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2624 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2625 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2626 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2627 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2628 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2629 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2630 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2631 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2632 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2633 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2634 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2635 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2636 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2637 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2638 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2639 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2640 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2641 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2642 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2643 };
2644 #else
2645 static __u32 fec_enet_register_version = 1;
2646 static u32 fec_enet_register_offset[] = {
2647 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2648 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2649 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2650 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2651 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2652 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2653 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2654 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2655 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2656 };
2657 #endif
2658 
2659 static void fec_enet_get_regs(struct net_device *ndev,
2660 			      struct ethtool_regs *regs, void *regbuf)
2661 {
2662 	struct fec_enet_private *fep = netdev_priv(ndev);
2663 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2664 	struct device *dev = &fep->pdev->dev;
2665 	u32 *buf = (u32 *)regbuf;
2666 	u32 i, off;
2667 	int ret;
2668 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2669 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2670 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2671 	u32 *reg_list;
2672 	u32 reg_cnt;
2673 
2674 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2675 		reg_list = fec_enet_register_offset;
2676 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2677 	} else {
2678 		reg_list = fec_enet_register_offset_6ul;
2679 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2680 	}
2681 #else
2682 	/* coldfire */
2683 	static u32 *reg_list = fec_enet_register_offset;
2684 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2685 #endif
2686 	ret = pm_runtime_resume_and_get(dev);
2687 	if (ret < 0)
2688 		return;
2689 
2690 	regs->version = fec_enet_register_version;
2691 
2692 	memset(buf, 0, regs->len);
2693 
2694 	for (i = 0; i < reg_cnt; i++) {
2695 		off = reg_list[i];
2696 
2697 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2698 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2699 			continue;
2700 
2701 		off >>= 2;
2702 		buf[off] = readl(&theregs[off]);
2703 	}
2704 
2705 	pm_runtime_mark_last_busy(dev);
2706 	pm_runtime_put_autosuspend(dev);
2707 }
2708 
2709 static int fec_enet_get_ts_info(struct net_device *ndev,
2710 				struct ethtool_ts_info *info)
2711 {
2712 	struct fec_enet_private *fep = netdev_priv(ndev);
2713 
2714 	if (fep->bufdesc_ex) {
2715 
2716 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2717 					SOF_TIMESTAMPING_RX_SOFTWARE |
2718 					SOF_TIMESTAMPING_SOFTWARE |
2719 					SOF_TIMESTAMPING_TX_HARDWARE |
2720 					SOF_TIMESTAMPING_RX_HARDWARE |
2721 					SOF_TIMESTAMPING_RAW_HARDWARE;
2722 		if (fep->ptp_clock)
2723 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2724 		else
2725 			info->phc_index = -1;
2726 
2727 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2728 				 (1 << HWTSTAMP_TX_ON);
2729 
2730 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2731 				   (1 << HWTSTAMP_FILTER_ALL);
2732 		return 0;
2733 	} else {
2734 		return ethtool_op_get_ts_info(ndev, info);
2735 	}
2736 }
2737 
2738 #if !defined(CONFIG_M5272)
2739 
2740 static void fec_enet_get_pauseparam(struct net_device *ndev,
2741 				    struct ethtool_pauseparam *pause)
2742 {
2743 	struct fec_enet_private *fep = netdev_priv(ndev);
2744 
2745 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2746 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2747 	pause->rx_pause = pause->tx_pause;
2748 }
2749 
2750 static int fec_enet_set_pauseparam(struct net_device *ndev,
2751 				   struct ethtool_pauseparam *pause)
2752 {
2753 	struct fec_enet_private *fep = netdev_priv(ndev);
2754 
2755 	if (!ndev->phydev)
2756 		return -ENODEV;
2757 
2758 	if (pause->tx_pause != pause->rx_pause) {
2759 		netdev_info(ndev,
2760 			"hardware only support enable/disable both tx and rx");
2761 		return -EINVAL;
2762 	}
2763 
2764 	fep->pause_flag = 0;
2765 
2766 	/* tx pause must be same as rx pause */
2767 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2768 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2769 
2770 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2771 			  pause->autoneg);
2772 
2773 	if (pause->autoneg) {
2774 		if (netif_running(ndev))
2775 			fec_stop(ndev);
2776 		phy_start_aneg(ndev->phydev);
2777 	}
2778 	if (netif_running(ndev)) {
2779 		napi_disable(&fep->napi);
2780 		netif_tx_lock_bh(ndev);
2781 		fec_restart(ndev);
2782 		netif_tx_wake_all_queues(ndev);
2783 		netif_tx_unlock_bh(ndev);
2784 		napi_enable(&fep->napi);
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static const struct fec_stat {
2791 	char name[ETH_GSTRING_LEN];
2792 	u16 offset;
2793 } fec_stats[] = {
2794 	/* RMON TX */
2795 	{ "tx_dropped", RMON_T_DROP },
2796 	{ "tx_packets", RMON_T_PACKETS },
2797 	{ "tx_broadcast", RMON_T_BC_PKT },
2798 	{ "tx_multicast", RMON_T_MC_PKT },
2799 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2800 	{ "tx_undersize", RMON_T_UNDERSIZE },
2801 	{ "tx_oversize", RMON_T_OVERSIZE },
2802 	{ "tx_fragment", RMON_T_FRAG },
2803 	{ "tx_jabber", RMON_T_JAB },
2804 	{ "tx_collision", RMON_T_COL },
2805 	{ "tx_64byte", RMON_T_P64 },
2806 	{ "tx_65to127byte", RMON_T_P65TO127 },
2807 	{ "tx_128to255byte", RMON_T_P128TO255 },
2808 	{ "tx_256to511byte", RMON_T_P256TO511 },
2809 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2810 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2811 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2812 	{ "tx_octets", RMON_T_OCTETS },
2813 
2814 	/* IEEE TX */
2815 	{ "IEEE_tx_drop", IEEE_T_DROP },
2816 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2817 	{ "IEEE_tx_1col", IEEE_T_1COL },
2818 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2819 	{ "IEEE_tx_def", IEEE_T_DEF },
2820 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2821 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2822 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2823 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2824 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2825 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2826 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2827 
2828 	/* RMON RX */
2829 	{ "rx_packets", RMON_R_PACKETS },
2830 	{ "rx_broadcast", RMON_R_BC_PKT },
2831 	{ "rx_multicast", RMON_R_MC_PKT },
2832 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2833 	{ "rx_undersize", RMON_R_UNDERSIZE },
2834 	{ "rx_oversize", RMON_R_OVERSIZE },
2835 	{ "rx_fragment", RMON_R_FRAG },
2836 	{ "rx_jabber", RMON_R_JAB },
2837 	{ "rx_64byte", RMON_R_P64 },
2838 	{ "rx_65to127byte", RMON_R_P65TO127 },
2839 	{ "rx_128to255byte", RMON_R_P128TO255 },
2840 	{ "rx_256to511byte", RMON_R_P256TO511 },
2841 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2842 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2843 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2844 	{ "rx_octets", RMON_R_OCTETS },
2845 
2846 	/* IEEE RX */
2847 	{ "IEEE_rx_drop", IEEE_R_DROP },
2848 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2849 	{ "IEEE_rx_crc", IEEE_R_CRC },
2850 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2851 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2852 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2853 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2854 };
2855 
2856 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2857 
2858 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2859 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2860 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2861 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2862 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2863 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2864 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2865 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2866 };
2867 
2868 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2869 {
2870 	struct fec_enet_private *fep = netdev_priv(dev);
2871 	int i;
2872 
2873 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2874 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2875 }
2876 
2877 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2878 {
2879 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2880 	struct fec_enet_priv_rx_q *rxq;
2881 	int i, j;
2882 
2883 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2884 		rxq = fep->rx_queue[i];
2885 
2886 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2887 			xdp_stats[j] += rxq->stats[j];
2888 	}
2889 
2890 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2891 }
2892 
2893 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2894 {
2895 #ifdef CONFIG_PAGE_POOL_STATS
2896 	struct page_pool_stats stats = {};
2897 	struct fec_enet_priv_rx_q *rxq;
2898 	int i;
2899 
2900 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2901 		rxq = fep->rx_queue[i];
2902 
2903 		if (!rxq->page_pool)
2904 			continue;
2905 
2906 		page_pool_get_stats(rxq->page_pool, &stats);
2907 	}
2908 
2909 	page_pool_ethtool_stats_get(data, &stats);
2910 #endif
2911 }
2912 
2913 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2914 				       struct ethtool_stats *stats, u64 *data)
2915 {
2916 	struct fec_enet_private *fep = netdev_priv(dev);
2917 
2918 	if (netif_running(dev))
2919 		fec_enet_update_ethtool_stats(dev);
2920 
2921 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2922 	data += FEC_STATS_SIZE / sizeof(u64);
2923 
2924 	fec_enet_get_xdp_stats(fep, data);
2925 	data += XDP_STATS_TOTAL;
2926 
2927 	fec_enet_page_pool_stats(fep, data);
2928 }
2929 
2930 static void fec_enet_get_strings(struct net_device *netdev,
2931 	u32 stringset, u8 *data)
2932 {
2933 	int i;
2934 	switch (stringset) {
2935 	case ETH_SS_STATS:
2936 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2937 			ethtool_puts(&data, fec_stats[i].name);
2938 		}
2939 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2940 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2941 		}
2942 		page_pool_ethtool_stats_get_strings(data);
2943 
2944 		break;
2945 	case ETH_SS_TEST:
2946 		net_selftest_get_strings(data);
2947 		break;
2948 	}
2949 }
2950 
2951 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2952 {
2953 	int count;
2954 
2955 	switch (sset) {
2956 	case ETH_SS_STATS:
2957 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2958 		count += page_pool_ethtool_stats_get_count();
2959 		return count;
2960 
2961 	case ETH_SS_TEST:
2962 		return net_selftest_get_count();
2963 	default:
2964 		return -EOPNOTSUPP;
2965 	}
2966 }
2967 
2968 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2969 {
2970 	struct fec_enet_private *fep = netdev_priv(dev);
2971 	struct fec_enet_priv_rx_q *rxq;
2972 	int i, j;
2973 
2974 	/* Disable MIB statistics counters */
2975 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2976 
2977 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2978 		writel(0, fep->hwp + fec_stats[i].offset);
2979 
2980 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2981 		rxq = fep->rx_queue[i];
2982 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2983 			rxq->stats[j] = 0;
2984 	}
2985 
2986 	/* Don't disable MIB statistics counters */
2987 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2988 }
2989 
2990 #else	/* !defined(CONFIG_M5272) */
2991 #define FEC_STATS_SIZE	0
2992 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2993 {
2994 }
2995 
2996 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2997 {
2998 }
2999 #endif /* !defined(CONFIG_M5272) */
3000 
3001 /* ITR clock source is enet system clock (clk_ahb).
3002  * TCTT unit is cycle_ns * 64 cycle
3003  * So, the ICTT value = X us / (cycle_ns * 64)
3004  */
3005 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3006 {
3007 	struct fec_enet_private *fep = netdev_priv(ndev);
3008 
3009 	return us * (fep->itr_clk_rate / 64000) / 1000;
3010 }
3011 
3012 /* Set threshold for interrupt coalescing */
3013 static void fec_enet_itr_coal_set(struct net_device *ndev)
3014 {
3015 	struct fec_enet_private *fep = netdev_priv(ndev);
3016 	int rx_itr, tx_itr;
3017 
3018 	/* Must be greater than zero to avoid unpredictable behavior */
3019 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3020 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3021 		return;
3022 
3023 	/* Select enet system clock as Interrupt Coalescing
3024 	 * timer Clock Source
3025 	 */
3026 	rx_itr = FEC_ITR_CLK_SEL;
3027 	tx_itr = FEC_ITR_CLK_SEL;
3028 
3029 	/* set ICFT and ICTT */
3030 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3031 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3032 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3033 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3034 
3035 	rx_itr |= FEC_ITR_EN;
3036 	tx_itr |= FEC_ITR_EN;
3037 
3038 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3039 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3040 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3041 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3042 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3043 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3044 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3045 	}
3046 }
3047 
3048 static int fec_enet_get_coalesce(struct net_device *ndev,
3049 				 struct ethtool_coalesce *ec,
3050 				 struct kernel_ethtool_coalesce *kernel_coal,
3051 				 struct netlink_ext_ack *extack)
3052 {
3053 	struct fec_enet_private *fep = netdev_priv(ndev);
3054 
3055 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3056 		return -EOPNOTSUPP;
3057 
3058 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3059 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3060 
3061 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3062 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3063 
3064 	return 0;
3065 }
3066 
3067 static int fec_enet_set_coalesce(struct net_device *ndev,
3068 				 struct ethtool_coalesce *ec,
3069 				 struct kernel_ethtool_coalesce *kernel_coal,
3070 				 struct netlink_ext_ack *extack)
3071 {
3072 	struct fec_enet_private *fep = netdev_priv(ndev);
3073 	struct device *dev = &fep->pdev->dev;
3074 	unsigned int cycle;
3075 
3076 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3077 		return -EOPNOTSUPP;
3078 
3079 	if (ec->rx_max_coalesced_frames > 255) {
3080 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3081 		return -EINVAL;
3082 	}
3083 
3084 	if (ec->tx_max_coalesced_frames > 255) {
3085 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3086 		return -EINVAL;
3087 	}
3088 
3089 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3090 	if (cycle > 0xFFFF) {
3091 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3092 		return -EINVAL;
3093 	}
3094 
3095 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3096 	if (cycle > 0xFFFF) {
3097 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3098 		return -EINVAL;
3099 	}
3100 
3101 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3102 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3103 
3104 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3105 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3106 
3107 	fec_enet_itr_coal_set(ndev);
3108 
3109 	return 0;
3110 }
3111 
3112 /* LPI Sleep Ts count base on tx clk (clk_ref).
3113  * The lpi sleep cnt value = X us / (cycle_ns).
3114  */
3115 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3116 {
3117 	struct fec_enet_private *fep = netdev_priv(ndev);
3118 
3119 	return us * (fep->clk_ref_rate / 1000) / 1000;
3120 }
3121 
3122 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3123 {
3124 	struct fec_enet_private *fep = netdev_priv(ndev);
3125 	struct ethtool_keee *p = &fep->eee;
3126 	unsigned int sleep_cycle, wake_cycle;
3127 	int ret = 0;
3128 
3129 	if (enable) {
3130 		ret = phy_init_eee(ndev->phydev, false);
3131 		if (ret)
3132 			return ret;
3133 
3134 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3135 		wake_cycle = sleep_cycle;
3136 	} else {
3137 		sleep_cycle = 0;
3138 		wake_cycle = 0;
3139 	}
3140 
3141 	p->tx_lpi_enabled = enable;
3142 	p->eee_enabled = enable;
3143 	p->eee_active = enable;
3144 
3145 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3146 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3147 
3148 	return 0;
3149 }
3150 
3151 static int
3152 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3153 {
3154 	struct fec_enet_private *fep = netdev_priv(ndev);
3155 	struct ethtool_keee *p = &fep->eee;
3156 
3157 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3158 		return -EOPNOTSUPP;
3159 
3160 	if (!netif_running(ndev))
3161 		return -ENETDOWN;
3162 
3163 	edata->eee_enabled = p->eee_enabled;
3164 	edata->eee_active = p->eee_active;
3165 	edata->tx_lpi_timer = p->tx_lpi_timer;
3166 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3167 
3168 	return phy_ethtool_get_eee(ndev->phydev, edata);
3169 }
3170 
3171 static int
3172 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3173 {
3174 	struct fec_enet_private *fep = netdev_priv(ndev);
3175 	struct ethtool_keee *p = &fep->eee;
3176 	int ret = 0;
3177 
3178 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3179 		return -EOPNOTSUPP;
3180 
3181 	if (!netif_running(ndev))
3182 		return -ENETDOWN;
3183 
3184 	p->tx_lpi_timer = edata->tx_lpi_timer;
3185 
3186 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3187 	    !edata->tx_lpi_timer)
3188 		ret = fec_enet_eee_mode_set(ndev, false);
3189 	else
3190 		ret = fec_enet_eee_mode_set(ndev, true);
3191 
3192 	if (ret)
3193 		return ret;
3194 
3195 	return phy_ethtool_set_eee(ndev->phydev, edata);
3196 }
3197 
3198 static void
3199 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3200 {
3201 	struct fec_enet_private *fep = netdev_priv(ndev);
3202 
3203 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3204 		wol->supported = WAKE_MAGIC;
3205 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3206 	} else {
3207 		wol->supported = wol->wolopts = 0;
3208 	}
3209 }
3210 
3211 static int
3212 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3213 {
3214 	struct fec_enet_private *fep = netdev_priv(ndev);
3215 
3216 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3217 		return -EINVAL;
3218 
3219 	if (wol->wolopts & ~WAKE_MAGIC)
3220 		return -EINVAL;
3221 
3222 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3223 	if (device_may_wakeup(&ndev->dev))
3224 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3225 	else
3226 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3227 
3228 	return 0;
3229 }
3230 
3231 static const struct ethtool_ops fec_enet_ethtool_ops = {
3232 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3233 				     ETHTOOL_COALESCE_MAX_FRAMES,
3234 	.get_drvinfo		= fec_enet_get_drvinfo,
3235 	.get_regs_len		= fec_enet_get_regs_len,
3236 	.get_regs		= fec_enet_get_regs,
3237 	.nway_reset		= phy_ethtool_nway_reset,
3238 	.get_link		= ethtool_op_get_link,
3239 	.get_coalesce		= fec_enet_get_coalesce,
3240 	.set_coalesce		= fec_enet_set_coalesce,
3241 #ifndef CONFIG_M5272
3242 	.get_pauseparam		= fec_enet_get_pauseparam,
3243 	.set_pauseparam		= fec_enet_set_pauseparam,
3244 	.get_strings		= fec_enet_get_strings,
3245 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3246 	.get_sset_count		= fec_enet_get_sset_count,
3247 #endif
3248 	.get_ts_info		= fec_enet_get_ts_info,
3249 	.get_wol		= fec_enet_get_wol,
3250 	.set_wol		= fec_enet_set_wol,
3251 	.get_eee		= fec_enet_get_eee,
3252 	.set_eee		= fec_enet_set_eee,
3253 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3254 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3255 	.self_test		= net_selftest,
3256 };
3257 
3258 static void fec_enet_free_buffers(struct net_device *ndev)
3259 {
3260 	struct fec_enet_private *fep = netdev_priv(ndev);
3261 	unsigned int i;
3262 	struct fec_enet_priv_tx_q *txq;
3263 	struct fec_enet_priv_rx_q *rxq;
3264 	unsigned int q;
3265 
3266 	for (q = 0; q < fep->num_rx_queues; q++) {
3267 		rxq = fep->rx_queue[q];
3268 		for (i = 0; i < rxq->bd.ring_size; i++)
3269 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3270 
3271 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3272 			rxq->stats[i] = 0;
3273 
3274 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3275 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3276 		page_pool_destroy(rxq->page_pool);
3277 		rxq->page_pool = NULL;
3278 	}
3279 
3280 	for (q = 0; q < fep->num_tx_queues; q++) {
3281 		txq = fep->tx_queue[q];
3282 		for (i = 0; i < txq->bd.ring_size; i++) {
3283 			kfree(txq->tx_bounce[i]);
3284 			txq->tx_bounce[i] = NULL;
3285 
3286 			if (!txq->tx_buf[i].buf_p) {
3287 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3288 				continue;
3289 			}
3290 
3291 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3292 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3293 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3294 				xdp_return_frame(txq->tx_buf[i].buf_p);
3295 			} else {
3296 				struct page *page = txq->tx_buf[i].buf_p;
3297 
3298 				page_pool_put_page(page->pp, page, 0, false);
3299 			}
3300 
3301 			txq->tx_buf[i].buf_p = NULL;
3302 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303 		}
3304 	}
3305 }
3306 
3307 static void fec_enet_free_queue(struct net_device *ndev)
3308 {
3309 	struct fec_enet_private *fep = netdev_priv(ndev);
3310 	int i;
3311 	struct fec_enet_priv_tx_q *txq;
3312 
3313 	for (i = 0; i < fep->num_tx_queues; i++)
3314 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3315 			txq = fep->tx_queue[i];
3316 			fec_dma_free(&fep->pdev->dev,
3317 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3318 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3319 		}
3320 
3321 	for (i = 0; i < fep->num_rx_queues; i++)
3322 		kfree(fep->rx_queue[i]);
3323 	for (i = 0; i < fep->num_tx_queues; i++)
3324 		kfree(fep->tx_queue[i]);
3325 }
3326 
3327 static int fec_enet_alloc_queue(struct net_device *ndev)
3328 {
3329 	struct fec_enet_private *fep = netdev_priv(ndev);
3330 	int i;
3331 	int ret = 0;
3332 	struct fec_enet_priv_tx_q *txq;
3333 
3334 	for (i = 0; i < fep->num_tx_queues; i++) {
3335 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3336 		if (!txq) {
3337 			ret = -ENOMEM;
3338 			goto alloc_failed;
3339 		}
3340 
3341 		fep->tx_queue[i] = txq;
3342 		txq->bd.ring_size = TX_RING_SIZE;
3343 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3344 
3345 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3346 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3347 
3348 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3349 					txq->bd.ring_size * TSO_HEADER_SIZE,
3350 					&txq->tso_hdrs_dma, GFP_KERNEL);
3351 		if (!txq->tso_hdrs) {
3352 			ret = -ENOMEM;
3353 			goto alloc_failed;
3354 		}
3355 	}
3356 
3357 	for (i = 0; i < fep->num_rx_queues; i++) {
3358 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3359 					   GFP_KERNEL);
3360 		if (!fep->rx_queue[i]) {
3361 			ret = -ENOMEM;
3362 			goto alloc_failed;
3363 		}
3364 
3365 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3366 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3367 	}
3368 	return ret;
3369 
3370 alloc_failed:
3371 	fec_enet_free_queue(ndev);
3372 	return ret;
3373 }
3374 
3375 static int
3376 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3377 {
3378 	struct fec_enet_private *fep = netdev_priv(ndev);
3379 	struct fec_enet_priv_rx_q *rxq;
3380 	dma_addr_t phys_addr;
3381 	struct bufdesc	*bdp;
3382 	struct page *page;
3383 	int i, err;
3384 
3385 	rxq = fep->rx_queue[queue];
3386 	bdp = rxq->bd.base;
3387 
3388 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3389 	if (err < 0) {
3390 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3391 		return err;
3392 	}
3393 
3394 	for (i = 0; i < rxq->bd.ring_size; i++) {
3395 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3396 		if (!page)
3397 			goto err_alloc;
3398 
3399 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3400 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3401 
3402 		rxq->rx_skb_info[i].page = page;
3403 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3404 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3405 
3406 		if (fep->bufdesc_ex) {
3407 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3408 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3409 		}
3410 
3411 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3412 	}
3413 
3414 	/* Set the last buffer to wrap. */
3415 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3416 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3417 	return 0;
3418 
3419  err_alloc:
3420 	fec_enet_free_buffers(ndev);
3421 	return -ENOMEM;
3422 }
3423 
3424 static int
3425 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3426 {
3427 	struct fec_enet_private *fep = netdev_priv(ndev);
3428 	unsigned int i;
3429 	struct bufdesc  *bdp;
3430 	struct fec_enet_priv_tx_q *txq;
3431 
3432 	txq = fep->tx_queue[queue];
3433 	bdp = txq->bd.base;
3434 	for (i = 0; i < txq->bd.ring_size; i++) {
3435 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3436 		if (!txq->tx_bounce[i])
3437 			goto err_alloc;
3438 
3439 		bdp->cbd_sc = cpu_to_fec16(0);
3440 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3441 
3442 		if (fep->bufdesc_ex) {
3443 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3444 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3445 		}
3446 
3447 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3448 	}
3449 
3450 	/* Set the last buffer to wrap. */
3451 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3452 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3453 
3454 	return 0;
3455 
3456  err_alloc:
3457 	fec_enet_free_buffers(ndev);
3458 	return -ENOMEM;
3459 }
3460 
3461 static int fec_enet_alloc_buffers(struct net_device *ndev)
3462 {
3463 	struct fec_enet_private *fep = netdev_priv(ndev);
3464 	unsigned int i;
3465 
3466 	for (i = 0; i < fep->num_rx_queues; i++)
3467 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3468 			return -ENOMEM;
3469 
3470 	for (i = 0; i < fep->num_tx_queues; i++)
3471 		if (fec_enet_alloc_txq_buffers(ndev, i))
3472 			return -ENOMEM;
3473 	return 0;
3474 }
3475 
3476 static int
3477 fec_enet_open(struct net_device *ndev)
3478 {
3479 	struct fec_enet_private *fep = netdev_priv(ndev);
3480 	int ret;
3481 	bool reset_again;
3482 
3483 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3484 	if (ret < 0)
3485 		return ret;
3486 
3487 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3488 	ret = fec_enet_clk_enable(ndev, true);
3489 	if (ret)
3490 		goto clk_enable;
3491 
3492 	/* During the first fec_enet_open call the PHY isn't probed at this
3493 	 * point. Therefore the phy_reset_after_clk_enable() call within
3494 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3495 	 * sure the PHY is working correctly we check if we need to reset again
3496 	 * later when the PHY is probed
3497 	 */
3498 	if (ndev->phydev && ndev->phydev->drv)
3499 		reset_again = false;
3500 	else
3501 		reset_again = true;
3502 
3503 	/* I should reset the ring buffers here, but I don't yet know
3504 	 * a simple way to do that.
3505 	 */
3506 
3507 	ret = fec_enet_alloc_buffers(ndev);
3508 	if (ret)
3509 		goto err_enet_alloc;
3510 
3511 	/* Init MAC prior to mii bus probe */
3512 	fec_restart(ndev);
3513 
3514 	/* Call phy_reset_after_clk_enable() again if it failed during
3515 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3516 	 */
3517 	if (reset_again)
3518 		fec_enet_phy_reset_after_clk_enable(ndev);
3519 
3520 	/* Probe and connect to PHY when open the interface */
3521 	ret = fec_enet_mii_probe(ndev);
3522 	if (ret)
3523 		goto err_enet_mii_probe;
3524 
3525 	if (fep->quirks & FEC_QUIRK_ERR006687)
3526 		imx6q_cpuidle_fec_irqs_used();
3527 
3528 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3529 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3530 
3531 	napi_enable(&fep->napi);
3532 	phy_start(ndev->phydev);
3533 	netif_tx_start_all_queues(ndev);
3534 
3535 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3536 				 FEC_WOL_FLAG_ENABLE);
3537 
3538 	return 0;
3539 
3540 err_enet_mii_probe:
3541 	fec_enet_free_buffers(ndev);
3542 err_enet_alloc:
3543 	fec_enet_clk_enable(ndev, false);
3544 clk_enable:
3545 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3546 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3547 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3548 	return ret;
3549 }
3550 
3551 static int
3552 fec_enet_close(struct net_device *ndev)
3553 {
3554 	struct fec_enet_private *fep = netdev_priv(ndev);
3555 
3556 	phy_stop(ndev->phydev);
3557 
3558 	if (netif_device_present(ndev)) {
3559 		napi_disable(&fep->napi);
3560 		netif_tx_disable(ndev);
3561 		fec_stop(ndev);
3562 	}
3563 
3564 	phy_disconnect(ndev->phydev);
3565 
3566 	if (fep->quirks & FEC_QUIRK_ERR006687)
3567 		imx6q_cpuidle_fec_irqs_unused();
3568 
3569 	fec_enet_update_ethtool_stats(ndev);
3570 
3571 	fec_enet_clk_enable(ndev, false);
3572 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3573 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3574 
3575 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3576 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3577 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3578 
3579 	fec_enet_free_buffers(ndev);
3580 
3581 	return 0;
3582 }
3583 
3584 /* Set or clear the multicast filter for this adaptor.
3585  * Skeleton taken from sunlance driver.
3586  * The CPM Ethernet implementation allows Multicast as well as individual
3587  * MAC address filtering.  Some of the drivers check to make sure it is
3588  * a group multicast address, and discard those that are not.  I guess I
3589  * will do the same for now, but just remove the test if you want
3590  * individual filtering as well (do the upper net layers want or support
3591  * this kind of feature?).
3592  */
3593 
3594 #define FEC_HASH_BITS	6		/* #bits in hash */
3595 
3596 static void set_multicast_list(struct net_device *ndev)
3597 {
3598 	struct fec_enet_private *fep = netdev_priv(ndev);
3599 	struct netdev_hw_addr *ha;
3600 	unsigned int crc, tmp;
3601 	unsigned char hash;
3602 	unsigned int hash_high = 0, hash_low = 0;
3603 
3604 	if (ndev->flags & IFF_PROMISC) {
3605 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3606 		tmp |= 0x8;
3607 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3608 		return;
3609 	}
3610 
3611 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3612 	tmp &= ~0x8;
3613 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3614 
3615 	if (ndev->flags & IFF_ALLMULTI) {
3616 		/* Catch all multicast addresses, so set the
3617 		 * filter to all 1's
3618 		 */
3619 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3620 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3621 
3622 		return;
3623 	}
3624 
3625 	/* Add the addresses in hash register */
3626 	netdev_for_each_mc_addr(ha, ndev) {
3627 		/* calculate crc32 value of mac address */
3628 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3629 
3630 		/* only upper 6 bits (FEC_HASH_BITS) are used
3631 		 * which point to specific bit in the hash registers
3632 		 */
3633 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3634 
3635 		if (hash > 31)
3636 			hash_high |= 1 << (hash - 32);
3637 		else
3638 			hash_low |= 1 << hash;
3639 	}
3640 
3641 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3642 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3643 }
3644 
3645 /* Set a MAC change in hardware. */
3646 static int
3647 fec_set_mac_address(struct net_device *ndev, void *p)
3648 {
3649 	struct fec_enet_private *fep = netdev_priv(ndev);
3650 	struct sockaddr *addr = p;
3651 
3652 	if (addr) {
3653 		if (!is_valid_ether_addr(addr->sa_data))
3654 			return -EADDRNOTAVAIL;
3655 		eth_hw_addr_set(ndev, addr->sa_data);
3656 	}
3657 
3658 	/* Add netif status check here to avoid system hang in below case:
3659 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3660 	 * After ethx down, fec all clocks are gated off and then register
3661 	 * access causes system hang.
3662 	 */
3663 	if (!netif_running(ndev))
3664 		return 0;
3665 
3666 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3667 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3668 		fep->hwp + FEC_ADDR_LOW);
3669 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3670 		fep->hwp + FEC_ADDR_HIGH);
3671 	return 0;
3672 }
3673 
3674 #ifdef CONFIG_NET_POLL_CONTROLLER
3675 /**
3676  * fec_poll_controller - FEC Poll controller function
3677  * @dev: The FEC network adapter
3678  *
3679  * Polled functionality used by netconsole and others in non interrupt mode
3680  *
3681  */
3682 static void fec_poll_controller(struct net_device *dev)
3683 {
3684 	int i;
3685 	struct fec_enet_private *fep = netdev_priv(dev);
3686 
3687 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3688 		if (fep->irq[i] > 0) {
3689 			disable_irq(fep->irq[i]);
3690 			fec_enet_interrupt(fep->irq[i], dev);
3691 			enable_irq(fep->irq[i]);
3692 		}
3693 	}
3694 }
3695 #endif
3696 
3697 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3698 	netdev_features_t features)
3699 {
3700 	struct fec_enet_private *fep = netdev_priv(netdev);
3701 	netdev_features_t changed = features ^ netdev->features;
3702 
3703 	netdev->features = features;
3704 
3705 	/* Receive checksum has been changed */
3706 	if (changed & NETIF_F_RXCSUM) {
3707 		if (features & NETIF_F_RXCSUM)
3708 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3709 		else
3710 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3711 	}
3712 }
3713 
3714 static int fec_set_features(struct net_device *netdev,
3715 	netdev_features_t features)
3716 {
3717 	struct fec_enet_private *fep = netdev_priv(netdev);
3718 	netdev_features_t changed = features ^ netdev->features;
3719 
3720 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3721 		napi_disable(&fep->napi);
3722 		netif_tx_lock_bh(netdev);
3723 		fec_stop(netdev);
3724 		fec_enet_set_netdev_features(netdev, features);
3725 		fec_restart(netdev);
3726 		netif_tx_wake_all_queues(netdev);
3727 		netif_tx_unlock_bh(netdev);
3728 		napi_enable(&fep->napi);
3729 	} else {
3730 		fec_enet_set_netdev_features(netdev, features);
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3737 				 struct net_device *sb_dev)
3738 {
3739 	struct fec_enet_private *fep = netdev_priv(ndev);
3740 	u16 vlan_tag = 0;
3741 
3742 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3743 		return netdev_pick_tx(ndev, skb, NULL);
3744 
3745 	/* VLAN is present in the payload.*/
3746 	if (eth_type_vlan(skb->protocol)) {
3747 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3748 
3749 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3750 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3751 	} else if (skb_vlan_tag_present(skb)) {
3752 		vlan_tag = skb->vlan_tci;
3753 	} else {
3754 		return vlan_tag;
3755 	}
3756 
3757 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3758 }
3759 
3760 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3761 {
3762 	struct fec_enet_private *fep = netdev_priv(dev);
3763 	bool is_run = netif_running(dev);
3764 	struct bpf_prog *old_prog;
3765 
3766 	switch (bpf->command) {
3767 	case XDP_SETUP_PROG:
3768 		/* No need to support the SoCs that require to
3769 		 * do the frame swap because the performance wouldn't be
3770 		 * better than the skb mode.
3771 		 */
3772 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3773 			return -EOPNOTSUPP;
3774 
3775 		if (!bpf->prog)
3776 			xdp_features_clear_redirect_target(dev);
3777 
3778 		if (is_run) {
3779 			napi_disable(&fep->napi);
3780 			netif_tx_disable(dev);
3781 		}
3782 
3783 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3784 		if (old_prog)
3785 			bpf_prog_put(old_prog);
3786 
3787 		fec_restart(dev);
3788 
3789 		if (is_run) {
3790 			napi_enable(&fep->napi);
3791 			netif_tx_start_all_queues(dev);
3792 		}
3793 
3794 		if (bpf->prog)
3795 			xdp_features_set_redirect_target(dev, false);
3796 
3797 		return 0;
3798 
3799 	case XDP_SETUP_XSK_POOL:
3800 		return -EOPNOTSUPP;
3801 
3802 	default:
3803 		return -EOPNOTSUPP;
3804 	}
3805 }
3806 
3807 static int
3808 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3809 {
3810 	if (unlikely(index < 0))
3811 		return 0;
3812 
3813 	return (index % fep->num_tx_queues);
3814 }
3815 
3816 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3817 				   struct fec_enet_priv_tx_q *txq,
3818 				   void *frame, u32 dma_sync_len,
3819 				   bool ndo_xmit)
3820 {
3821 	unsigned int index, status, estatus;
3822 	struct bufdesc *bdp;
3823 	dma_addr_t dma_addr;
3824 	int entries_free;
3825 	u16 frame_len;
3826 
3827 	entries_free = fec_enet_get_free_txdesc_num(txq);
3828 	if (entries_free < MAX_SKB_FRAGS + 1) {
3829 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3830 		return -EBUSY;
3831 	}
3832 
3833 	/* Fill in a Tx ring entry */
3834 	bdp = txq->bd.cur;
3835 	status = fec16_to_cpu(bdp->cbd_sc);
3836 	status &= ~BD_ENET_TX_STATS;
3837 
3838 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3839 
3840 	if (ndo_xmit) {
3841 		struct xdp_frame *xdpf = frame;
3842 
3843 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3844 					  xdpf->len, DMA_TO_DEVICE);
3845 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3846 			return -ENOMEM;
3847 
3848 		frame_len = xdpf->len;
3849 		txq->tx_buf[index].buf_p = xdpf;
3850 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3851 	} else {
3852 		struct xdp_buff *xdpb = frame;
3853 		struct page *page;
3854 
3855 		page = virt_to_page(xdpb->data);
3856 		dma_addr = page_pool_get_dma_addr(page) +
3857 			   (xdpb->data - xdpb->data_hard_start);
3858 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3859 					   dma_sync_len, DMA_BIDIRECTIONAL);
3860 		frame_len = xdpb->data_end - xdpb->data;
3861 		txq->tx_buf[index].buf_p = page;
3862 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3863 	}
3864 
3865 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3866 	if (fep->bufdesc_ex)
3867 		estatus = BD_ENET_TX_INT;
3868 
3869 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3870 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3871 
3872 	if (fep->bufdesc_ex) {
3873 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3874 
3875 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3876 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3877 
3878 		ebdp->cbd_bdu = 0;
3879 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3880 	}
3881 
3882 	/* Make sure the updates to rest of the descriptor are performed before
3883 	 * transferring ownership.
3884 	 */
3885 	dma_wmb();
3886 
3887 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3888 	 * it's the last BD of the frame, and to put the CRC on the end.
3889 	 */
3890 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3891 	bdp->cbd_sc = cpu_to_fec16(status);
3892 
3893 	/* If this was the last BD in the ring, start at the beginning again. */
3894 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3895 
3896 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3897 	dma_wmb();
3898 
3899 	txq->bd.cur = bdp;
3900 
3901 	/* Trigger transmission start */
3902 	writel(0, txq->bd.reg_desc_active);
3903 
3904 	return 0;
3905 }
3906 
3907 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3908 				int cpu, struct xdp_buff *xdp,
3909 				u32 dma_sync_len)
3910 {
3911 	struct fec_enet_priv_tx_q *txq;
3912 	struct netdev_queue *nq;
3913 	int queue, ret;
3914 
3915 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3916 	txq = fep->tx_queue[queue];
3917 	nq = netdev_get_tx_queue(fep->netdev, queue);
3918 
3919 	__netif_tx_lock(nq, cpu);
3920 
3921 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3922 	txq_trans_cond_update(nq);
3923 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3924 
3925 	__netif_tx_unlock(nq);
3926 
3927 	return ret;
3928 }
3929 
3930 static int fec_enet_xdp_xmit(struct net_device *dev,
3931 			     int num_frames,
3932 			     struct xdp_frame **frames,
3933 			     u32 flags)
3934 {
3935 	struct fec_enet_private *fep = netdev_priv(dev);
3936 	struct fec_enet_priv_tx_q *txq;
3937 	int cpu = smp_processor_id();
3938 	unsigned int sent_frames = 0;
3939 	struct netdev_queue *nq;
3940 	unsigned int queue;
3941 	int i;
3942 
3943 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3944 	txq = fep->tx_queue[queue];
3945 	nq = netdev_get_tx_queue(fep->netdev, queue);
3946 
3947 	__netif_tx_lock(nq, cpu);
3948 
3949 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3950 	txq_trans_cond_update(nq);
3951 	for (i = 0; i < num_frames; i++) {
3952 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3953 			break;
3954 		sent_frames++;
3955 	}
3956 
3957 	__netif_tx_unlock(nq);
3958 
3959 	return sent_frames;
3960 }
3961 
3962 static int fec_hwtstamp_get(struct net_device *ndev,
3963 			    struct kernel_hwtstamp_config *config)
3964 {
3965 	struct fec_enet_private *fep = netdev_priv(ndev);
3966 
3967 	if (!netif_running(ndev))
3968 		return -EINVAL;
3969 
3970 	if (!fep->bufdesc_ex)
3971 		return -EOPNOTSUPP;
3972 
3973 	fec_ptp_get(ndev, config);
3974 
3975 	return 0;
3976 }
3977 
3978 static int fec_hwtstamp_set(struct net_device *ndev,
3979 			    struct kernel_hwtstamp_config *config,
3980 			    struct netlink_ext_ack *extack)
3981 {
3982 	struct fec_enet_private *fep = netdev_priv(ndev);
3983 
3984 	if (!netif_running(ndev))
3985 		return -EINVAL;
3986 
3987 	if (!fep->bufdesc_ex)
3988 		return -EOPNOTSUPP;
3989 
3990 	return fec_ptp_set(ndev, config, extack);
3991 }
3992 
3993 static const struct net_device_ops fec_netdev_ops = {
3994 	.ndo_open		= fec_enet_open,
3995 	.ndo_stop		= fec_enet_close,
3996 	.ndo_start_xmit		= fec_enet_start_xmit,
3997 	.ndo_select_queue       = fec_enet_select_queue,
3998 	.ndo_set_rx_mode	= set_multicast_list,
3999 	.ndo_validate_addr	= eth_validate_addr,
4000 	.ndo_tx_timeout		= fec_timeout,
4001 	.ndo_set_mac_address	= fec_set_mac_address,
4002 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4003 #ifdef CONFIG_NET_POLL_CONTROLLER
4004 	.ndo_poll_controller	= fec_poll_controller,
4005 #endif
4006 	.ndo_set_features	= fec_set_features,
4007 	.ndo_bpf		= fec_enet_bpf,
4008 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4009 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4010 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4011 };
4012 
4013 static const unsigned short offset_des_active_rxq[] = {
4014 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015 };
4016 
4017 static const unsigned short offset_des_active_txq[] = {
4018 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019 };
4020 
4021  /*
4022   * XXX:  We need to clean up on failure exits here.
4023   *
4024   */
4025 static int fec_enet_init(struct net_device *ndev)
4026 {
4027 	struct fec_enet_private *fep = netdev_priv(ndev);
4028 	struct bufdesc *cbd_base;
4029 	dma_addr_t bd_dma;
4030 	int bd_size;
4031 	unsigned int i;
4032 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033 			sizeof(struct bufdesc);
4034 	unsigned dsize_log2 = __fls(dsize);
4035 	int ret;
4036 
4037 	WARN_ON(dsize != (1 << dsize_log2));
4038 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039 	fep->rx_align = 0xf;
4040 	fep->tx_align = 0xf;
4041 #else
4042 	fep->rx_align = 0x3;
4043 	fep->tx_align = 0x3;
4044 #endif
4045 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049 
4050 	/* Check mask of the streaming and coherent API */
4051 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052 	if (ret < 0) {
4053 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054 		return ret;
4055 	}
4056 
4057 	ret = fec_enet_alloc_queue(ndev);
4058 	if (ret)
4059 		return ret;
4060 
4061 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062 
4063 	/* Allocate memory for buffer descriptors. */
4064 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4065 				  GFP_KERNEL);
4066 	if (!cbd_base) {
4067 		ret = -ENOMEM;
4068 		goto free_queue_mem;
4069 	}
4070 
4071 	/* Get the Ethernet address */
4072 	ret = fec_get_mac(ndev);
4073 	if (ret)
4074 		goto free_queue_mem;
4075 
4076 	/* Set receive and transmit descriptor base. */
4077 	for (i = 0; i < fep->num_rx_queues; i++) {
4078 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079 		unsigned size = dsize * rxq->bd.ring_size;
4080 
4081 		rxq->bd.qid = i;
4082 		rxq->bd.base = cbd_base;
4083 		rxq->bd.cur = cbd_base;
4084 		rxq->bd.dma = bd_dma;
4085 		rxq->bd.dsize = dsize;
4086 		rxq->bd.dsize_log2 = dsize_log2;
4087 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088 		bd_dma += size;
4089 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091 	}
4092 
4093 	for (i = 0; i < fep->num_tx_queues; i++) {
4094 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095 		unsigned size = dsize * txq->bd.ring_size;
4096 
4097 		txq->bd.qid = i;
4098 		txq->bd.base = cbd_base;
4099 		txq->bd.cur = cbd_base;
4100 		txq->bd.dma = bd_dma;
4101 		txq->bd.dsize = dsize;
4102 		txq->bd.dsize_log2 = dsize_log2;
4103 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104 		bd_dma += size;
4105 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107 	}
4108 
4109 
4110 	/* The FEC Ethernet specific entries in the device structure */
4111 	ndev->watchdog_timeo = TX_TIMEOUT;
4112 	ndev->netdev_ops = &fec_netdev_ops;
4113 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114 
4115 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117 
4118 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119 		/* enable hw VLAN support */
4120 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4121 
4122 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124 
4125 		/* enable hw accelerator */
4126 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4128 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129 	}
4130 
4131 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132 		fep->tx_align = 0;
4133 		fep->rx_align = 0x3f;
4134 	}
4135 
4136 	ndev->hw_features = ndev->features;
4137 
4138 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140 				     NETDEV_XDP_ACT_REDIRECT;
4141 
4142 	fec_restart(ndev);
4143 
4144 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145 		fec_enet_clear_ethtool_stats(ndev);
4146 	else
4147 		fec_enet_update_ethtool_stats(ndev);
4148 
4149 	return 0;
4150 
4151 free_queue_mem:
4152 	fec_enet_free_queue(ndev);
4153 	return ret;
4154 }
4155 
4156 #ifdef CONFIG_OF
4157 static int fec_reset_phy(struct platform_device *pdev)
4158 {
4159 	struct gpio_desc *phy_reset;
4160 	int msec = 1, phy_post_delay = 0;
4161 	struct device_node *np = pdev->dev.of_node;
4162 	int err;
4163 
4164 	if (!np)
4165 		return 0;
4166 
4167 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4168 	/* A sane reset duration should not be longer than 1s */
4169 	if (!err && msec > 1000)
4170 		msec = 1;
4171 
4172 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4173 	/* valid reset duration should be less than 1s */
4174 	if (!err && phy_post_delay > 1000)
4175 		return -EINVAL;
4176 
4177 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4178 					    GPIOD_OUT_HIGH);
4179 	if (IS_ERR(phy_reset))
4180 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4181 				     "failed to get phy-reset-gpios\n");
4182 
4183 	if (!phy_reset)
4184 		return 0;
4185 
4186 	if (msec > 20)
4187 		msleep(msec);
4188 	else
4189 		usleep_range(msec * 1000, msec * 1000 + 1000);
4190 
4191 	gpiod_set_value_cansleep(phy_reset, 0);
4192 
4193 	if (!phy_post_delay)
4194 		return 0;
4195 
4196 	if (phy_post_delay > 20)
4197 		msleep(phy_post_delay);
4198 	else
4199 		usleep_range(phy_post_delay * 1000,
4200 			     phy_post_delay * 1000 + 1000);
4201 
4202 	return 0;
4203 }
4204 #else /* CONFIG_OF */
4205 static int fec_reset_phy(struct platform_device *pdev)
4206 {
4207 	/*
4208 	 * In case of platform probe, the reset has been done
4209 	 * by machine code.
4210 	 */
4211 	return 0;
4212 }
4213 #endif /* CONFIG_OF */
4214 
4215 static void
4216 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4217 {
4218 	struct device_node *np = pdev->dev.of_node;
4219 
4220 	*num_tx = *num_rx = 1;
4221 
4222 	if (!np || !of_device_is_available(np))
4223 		return;
4224 
4225 	/* parse the num of tx and rx queues */
4226 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4227 
4228 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4229 
4230 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4231 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4232 			 *num_tx);
4233 		*num_tx = 1;
4234 		return;
4235 	}
4236 
4237 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4238 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4239 			 *num_rx);
4240 		*num_rx = 1;
4241 		return;
4242 	}
4243 
4244 }
4245 
4246 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4247 {
4248 	int irq_cnt = platform_irq_count(pdev);
4249 
4250 	if (irq_cnt > FEC_IRQ_NUM)
4251 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4252 	else if (irq_cnt == 2)
4253 		irq_cnt = 1;	/* last for pps */
4254 	else if (irq_cnt <= 0)
4255 		irq_cnt = 1;	/* At least 1 irq is needed */
4256 	return irq_cnt;
4257 }
4258 
4259 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4260 {
4261 	struct net_device *ndev = platform_get_drvdata(pdev);
4262 	struct fec_enet_private *fep = netdev_priv(ndev);
4263 
4264 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4265 		fep->wake_irq = fep->irq[2];
4266 	else
4267 		fep->wake_irq = fep->irq[0];
4268 }
4269 
4270 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4271 				   struct device_node *np)
4272 {
4273 	struct device_node *gpr_np;
4274 	u32 out_val[3];
4275 	int ret = 0;
4276 
4277 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4278 	if (!gpr_np)
4279 		return 0;
4280 
4281 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4282 					 ARRAY_SIZE(out_val));
4283 	if (ret) {
4284 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4285 		goto out;
4286 	}
4287 
4288 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4289 	if (IS_ERR(fep->stop_gpr.gpr)) {
4290 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4291 		ret = PTR_ERR(fep->stop_gpr.gpr);
4292 		fep->stop_gpr.gpr = NULL;
4293 		goto out;
4294 	}
4295 
4296 	fep->stop_gpr.reg = out_val[1];
4297 	fep->stop_gpr.bit = out_val[2];
4298 
4299 out:
4300 	of_node_put(gpr_np);
4301 
4302 	return ret;
4303 }
4304 
4305 static int
4306 fec_probe(struct platform_device *pdev)
4307 {
4308 	struct fec_enet_private *fep;
4309 	struct fec_platform_data *pdata;
4310 	phy_interface_t interface;
4311 	struct net_device *ndev;
4312 	int i, irq, ret = 0;
4313 	static int dev_id;
4314 	struct device_node *np = pdev->dev.of_node, *phy_node;
4315 	int num_tx_qs;
4316 	int num_rx_qs;
4317 	char irq_name[8];
4318 	int irq_cnt;
4319 	const struct fec_devinfo *dev_info;
4320 
4321 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4322 
4323 	/* Init network device */
4324 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326 	if (!ndev)
4327 		return -ENOMEM;
4328 
4329 	SET_NETDEV_DEV(ndev, &pdev->dev);
4330 
4331 	/* setup board info structure */
4332 	fep = netdev_priv(ndev);
4333 
4334 	dev_info = device_get_match_data(&pdev->dev);
4335 	if (!dev_info)
4336 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4337 	if (dev_info)
4338 		fep->quirks = dev_info->quirks;
4339 
4340 	fep->netdev = ndev;
4341 	fep->num_rx_queues = num_rx_qs;
4342 	fep->num_tx_queues = num_tx_qs;
4343 
4344 #if !defined(CONFIG_M5272)
4345 	/* default enable pause frame auto negotiation */
4346 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4347 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4348 #endif
4349 
4350 	/* Select default pin state */
4351 	pinctrl_pm_select_default_state(&pdev->dev);
4352 
4353 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4354 	if (IS_ERR(fep->hwp)) {
4355 		ret = PTR_ERR(fep->hwp);
4356 		goto failed_ioremap;
4357 	}
4358 
4359 	fep->pdev = pdev;
4360 	fep->dev_id = dev_id++;
4361 
4362 	platform_set_drvdata(pdev, ndev);
4363 
4364 	if ((of_machine_is_compatible("fsl,imx6q") ||
4365 	     of_machine_is_compatible("fsl,imx6dl")) &&
4366 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4367 		fep->quirks |= FEC_QUIRK_ERR006687;
4368 
4369 	ret = fec_enet_ipc_handle_init(fep);
4370 	if (ret)
4371 		goto failed_ipc_init;
4372 
4373 	if (of_property_read_bool(np, "fsl,magic-packet"))
4374 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4375 
4376 	ret = fec_enet_init_stop_mode(fep, np);
4377 	if (ret)
4378 		goto failed_stop_mode;
4379 
4380 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4381 	if (!phy_node && of_phy_is_fixed_link(np)) {
4382 		ret = of_phy_register_fixed_link(np);
4383 		if (ret < 0) {
4384 			dev_err(&pdev->dev,
4385 				"broken fixed-link specification\n");
4386 			goto failed_phy;
4387 		}
4388 		phy_node = of_node_get(np);
4389 	}
4390 	fep->phy_node = phy_node;
4391 
4392 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4393 	if (ret) {
4394 		pdata = dev_get_platdata(&pdev->dev);
4395 		if (pdata)
4396 			fep->phy_interface = pdata->phy;
4397 		else
4398 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4399 	} else {
4400 		fep->phy_interface = interface;
4401 	}
4402 
4403 	ret = fec_enet_parse_rgmii_delay(fep, np);
4404 	if (ret)
4405 		goto failed_rgmii_delay;
4406 
4407 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4408 	if (IS_ERR(fep->clk_ipg)) {
4409 		ret = PTR_ERR(fep->clk_ipg);
4410 		goto failed_clk;
4411 	}
4412 
4413 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4414 	if (IS_ERR(fep->clk_ahb)) {
4415 		ret = PTR_ERR(fep->clk_ahb);
4416 		goto failed_clk;
4417 	}
4418 
4419 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4420 
4421 	/* enet_out is optional, depends on board */
4422 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4423 	if (IS_ERR(fep->clk_enet_out)) {
4424 		ret = PTR_ERR(fep->clk_enet_out);
4425 		goto failed_clk;
4426 	}
4427 
4428 	fep->ptp_clk_on = false;
4429 	mutex_init(&fep->ptp_clk_mutex);
4430 
4431 	/* clk_ref is optional, depends on board */
4432 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4433 	if (IS_ERR(fep->clk_ref)) {
4434 		ret = PTR_ERR(fep->clk_ref);
4435 		goto failed_clk;
4436 	}
4437 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4438 
4439 	/* clk_2x_txclk is optional, depends on board */
4440 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4441 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4442 		if (IS_ERR(fep->clk_2x_txclk))
4443 			fep->clk_2x_txclk = NULL;
4444 	}
4445 
4446 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4447 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4448 	if (IS_ERR(fep->clk_ptp)) {
4449 		fep->clk_ptp = NULL;
4450 		fep->bufdesc_ex = false;
4451 	}
4452 
4453 	ret = fec_enet_clk_enable(ndev, true);
4454 	if (ret)
4455 		goto failed_clk;
4456 
4457 	ret = clk_prepare_enable(fep->clk_ipg);
4458 	if (ret)
4459 		goto failed_clk_ipg;
4460 	ret = clk_prepare_enable(fep->clk_ahb);
4461 	if (ret)
4462 		goto failed_clk_ahb;
4463 
4464 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4465 	if (!IS_ERR(fep->reg_phy)) {
4466 		ret = regulator_enable(fep->reg_phy);
4467 		if (ret) {
4468 			dev_err(&pdev->dev,
4469 				"Failed to enable phy regulator: %d\n", ret);
4470 			goto failed_regulator;
4471 		}
4472 	} else {
4473 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4474 			ret = -EPROBE_DEFER;
4475 			goto failed_regulator;
4476 		}
4477 		fep->reg_phy = NULL;
4478 	}
4479 
4480 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4481 	pm_runtime_use_autosuspend(&pdev->dev);
4482 	pm_runtime_get_noresume(&pdev->dev);
4483 	pm_runtime_set_active(&pdev->dev);
4484 	pm_runtime_enable(&pdev->dev);
4485 
4486 	ret = fec_reset_phy(pdev);
4487 	if (ret)
4488 		goto failed_reset;
4489 
4490 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4491 	if (fep->bufdesc_ex)
4492 		fec_ptp_init(pdev, irq_cnt);
4493 
4494 	ret = fec_enet_init(ndev);
4495 	if (ret)
4496 		goto failed_init;
4497 
4498 	for (i = 0; i < irq_cnt; i++) {
4499 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4500 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4501 		if (irq < 0)
4502 			irq = platform_get_irq(pdev, i);
4503 		if (irq < 0) {
4504 			ret = irq;
4505 			goto failed_irq;
4506 		}
4507 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4508 				       0, pdev->name, ndev);
4509 		if (ret)
4510 			goto failed_irq;
4511 
4512 		fep->irq[i] = irq;
4513 	}
4514 
4515 	/* Decide which interrupt line is wakeup capable */
4516 	fec_enet_get_wakeup_irq(pdev);
4517 
4518 	ret = fec_enet_mii_init(pdev);
4519 	if (ret)
4520 		goto failed_mii_init;
4521 
4522 	/* Carrier starts down, phylib will bring it up */
4523 	netif_carrier_off(ndev);
4524 	fec_enet_clk_enable(ndev, false);
4525 	pinctrl_pm_select_sleep_state(&pdev->dev);
4526 
4527 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4528 
4529 	ret = register_netdev(ndev);
4530 	if (ret)
4531 		goto failed_register;
4532 
4533 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4534 			   FEC_WOL_HAS_MAGIC_PACKET);
4535 
4536 	if (fep->bufdesc_ex && fep->ptp_clock)
4537 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4538 
4539 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4540 
4541 	pm_runtime_mark_last_busy(&pdev->dev);
4542 	pm_runtime_put_autosuspend(&pdev->dev);
4543 
4544 	return 0;
4545 
4546 failed_register:
4547 	fec_enet_mii_remove(fep);
4548 failed_mii_init:
4549 failed_irq:
4550 failed_init:
4551 	fec_ptp_stop(pdev);
4552 failed_reset:
4553 	pm_runtime_put_noidle(&pdev->dev);
4554 	pm_runtime_disable(&pdev->dev);
4555 	if (fep->reg_phy)
4556 		regulator_disable(fep->reg_phy);
4557 failed_regulator:
4558 	clk_disable_unprepare(fep->clk_ahb);
4559 failed_clk_ahb:
4560 	clk_disable_unprepare(fep->clk_ipg);
4561 failed_clk_ipg:
4562 	fec_enet_clk_enable(ndev, false);
4563 failed_clk:
4564 failed_rgmii_delay:
4565 	if (of_phy_is_fixed_link(np))
4566 		of_phy_deregister_fixed_link(np);
4567 	of_node_put(phy_node);
4568 failed_stop_mode:
4569 failed_ipc_init:
4570 failed_phy:
4571 	dev_id--;
4572 failed_ioremap:
4573 	free_netdev(ndev);
4574 
4575 	return ret;
4576 }
4577 
4578 static void
4579 fec_drv_remove(struct platform_device *pdev)
4580 {
4581 	struct net_device *ndev = platform_get_drvdata(pdev);
4582 	struct fec_enet_private *fep = netdev_priv(ndev);
4583 	struct device_node *np = pdev->dev.of_node;
4584 	int ret;
4585 
4586 	ret = pm_runtime_get_sync(&pdev->dev);
4587 	if (ret < 0)
4588 		dev_err(&pdev->dev,
4589 			"Failed to resume device in remove callback (%pe)\n",
4590 			ERR_PTR(ret));
4591 
4592 	cancel_work_sync(&fep->tx_timeout_work);
4593 	fec_ptp_stop(pdev);
4594 	unregister_netdev(ndev);
4595 	fec_enet_mii_remove(fep);
4596 	if (fep->reg_phy)
4597 		regulator_disable(fep->reg_phy);
4598 
4599 	if (of_phy_is_fixed_link(np))
4600 		of_phy_deregister_fixed_link(np);
4601 	of_node_put(fep->phy_node);
4602 
4603 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4604 	 * disabling them again.
4605 	 */
4606 	if (ret >= 0) {
4607 		clk_disable_unprepare(fep->clk_ahb);
4608 		clk_disable_unprepare(fep->clk_ipg);
4609 	}
4610 	pm_runtime_put_noidle(&pdev->dev);
4611 	pm_runtime_disable(&pdev->dev);
4612 
4613 	free_netdev(ndev);
4614 }
4615 
4616 static int __maybe_unused fec_suspend(struct device *dev)
4617 {
4618 	struct net_device *ndev = dev_get_drvdata(dev);
4619 	struct fec_enet_private *fep = netdev_priv(ndev);
4620 	int ret;
4621 
4622 	rtnl_lock();
4623 	if (netif_running(ndev)) {
4624 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4625 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4626 		phy_stop(ndev->phydev);
4627 		napi_disable(&fep->napi);
4628 		netif_tx_lock_bh(ndev);
4629 		netif_device_detach(ndev);
4630 		netif_tx_unlock_bh(ndev);
4631 		fec_stop(ndev);
4632 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4633 			fec_irqs_disable(ndev);
4634 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4635 		} else {
4636 			fec_irqs_disable_except_wakeup(ndev);
4637 			if (fep->wake_irq > 0) {
4638 				disable_irq(fep->wake_irq);
4639 				enable_irq_wake(fep->wake_irq);
4640 			}
4641 			fec_enet_stop_mode(fep, true);
4642 		}
4643 		/* It's safe to disable clocks since interrupts are masked */
4644 		fec_enet_clk_enable(ndev, false);
4645 
4646 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4647 		if (fep->rpm_active) {
4648 			ret = pm_runtime_force_suspend(dev);
4649 			if (ret < 0) {
4650 				rtnl_unlock();
4651 				return ret;
4652 			}
4653 		}
4654 	}
4655 	rtnl_unlock();
4656 
4657 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4658 		regulator_disable(fep->reg_phy);
4659 
4660 	/* SOC supply clock to phy, when clock is disabled, phy link down
4661 	 * SOC control phy regulator, when regulator is disabled, phy link down
4662 	 */
4663 	if (fep->clk_enet_out || fep->reg_phy)
4664 		fep->link = 0;
4665 
4666 	return 0;
4667 }
4668 
4669 static int __maybe_unused fec_resume(struct device *dev)
4670 {
4671 	struct net_device *ndev = dev_get_drvdata(dev);
4672 	struct fec_enet_private *fep = netdev_priv(ndev);
4673 	int ret;
4674 	int val;
4675 
4676 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4677 		ret = regulator_enable(fep->reg_phy);
4678 		if (ret)
4679 			return ret;
4680 	}
4681 
4682 	rtnl_lock();
4683 	if (netif_running(ndev)) {
4684 		if (fep->rpm_active)
4685 			pm_runtime_force_resume(dev);
4686 
4687 		ret = fec_enet_clk_enable(ndev, true);
4688 		if (ret) {
4689 			rtnl_unlock();
4690 			goto failed_clk;
4691 		}
4692 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4693 			fec_enet_stop_mode(fep, false);
4694 			if (fep->wake_irq) {
4695 				disable_irq_wake(fep->wake_irq);
4696 				enable_irq(fep->wake_irq);
4697 			}
4698 
4699 			val = readl(fep->hwp + FEC_ECNTRL);
4700 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4701 			writel(val, fep->hwp + FEC_ECNTRL);
4702 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4703 		} else {
4704 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4705 		}
4706 		fec_restart(ndev);
4707 		netif_tx_lock_bh(ndev);
4708 		netif_device_attach(ndev);
4709 		netif_tx_unlock_bh(ndev);
4710 		napi_enable(&fep->napi);
4711 		phy_init_hw(ndev->phydev);
4712 		phy_start(ndev->phydev);
4713 	}
4714 	rtnl_unlock();
4715 
4716 	return 0;
4717 
4718 failed_clk:
4719 	if (fep->reg_phy)
4720 		regulator_disable(fep->reg_phy);
4721 	return ret;
4722 }
4723 
4724 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4725 {
4726 	struct net_device *ndev = dev_get_drvdata(dev);
4727 	struct fec_enet_private *fep = netdev_priv(ndev);
4728 
4729 	clk_disable_unprepare(fep->clk_ahb);
4730 	clk_disable_unprepare(fep->clk_ipg);
4731 
4732 	return 0;
4733 }
4734 
4735 static int __maybe_unused fec_runtime_resume(struct device *dev)
4736 {
4737 	struct net_device *ndev = dev_get_drvdata(dev);
4738 	struct fec_enet_private *fep = netdev_priv(ndev);
4739 	int ret;
4740 
4741 	ret = clk_prepare_enable(fep->clk_ahb);
4742 	if (ret)
4743 		return ret;
4744 	ret = clk_prepare_enable(fep->clk_ipg);
4745 	if (ret)
4746 		goto failed_clk_ipg;
4747 
4748 	return 0;
4749 
4750 failed_clk_ipg:
4751 	clk_disable_unprepare(fep->clk_ahb);
4752 	return ret;
4753 }
4754 
4755 static const struct dev_pm_ops fec_pm_ops = {
4756 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4757 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4758 };
4759 
4760 static struct platform_driver fec_driver = {
4761 	.driver	= {
4762 		.name	= DRIVER_NAME,
4763 		.pm	= &fec_pm_ops,
4764 		.of_match_table = fec_dt_ids,
4765 		.suppress_bind_attrs = true,
4766 	},
4767 	.id_table = fec_devtype,
4768 	.probe	= fec_probe,
4769 	.remove_new = fec_drv_remove,
4770 };
4771 
4772 module_platform_driver(fec_driver);
4773 
4774 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4775 MODULE_LICENSE("GPL");
4776