xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 96ba9dd65788a0bd2a7d1e57ec78b7642f0ccc25)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/irq.h>
47 #include <linux/clk.h>
48 #include <linux/platform_device.h>
49 #include <linux/phy.h>
50 #include <linux/fec.h>
51 #include <linux/of.h>
52 #include <linux/of_device.h>
53 #include <linux/of_gpio.h>
54 #include <linux/of_net.h>
55 #include <linux/regulator/consumer.h>
56 #include <linux/if_vlan.h>
57 
58 #include <asm/cacheflush.h>
59 
60 #include "fec.h"
61 
62 static void set_multicast_list(struct net_device *ndev);
63 
64 #if defined(CONFIG_ARM)
65 #define FEC_ALIGNMENT	0xf
66 #else
67 #define FEC_ALIGNMENT	0x3
68 #endif
69 
70 #define DRIVER_NAME	"fec"
71 
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE	(1 << 5)
74 #define FEC_ENET_RSEM_V	0x84
75 #define FEC_ENET_RSFL_V	16
76 #define FEC_ENET_RAEM_V	0x8
77 #define FEC_ENET_RAFL_V	0x8
78 #define FEC_ENET_OPD_V	0xFFF0
79 
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC		(1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET		(1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
92 /* Controller has hardware vlan support */
93 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
94 /* ENET IP errata ERR006358
95  *
96  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
97  * detected as not set during a prior frame transmission, then the
98  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
99  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
100  * frames not being transmitted until there is a 0-to-1 transition on
101  * ENET_TDAR[TDAR].
102  */
103 #define FEC_QUIRK_ERR006358            (1 << 7)
104 
105 static struct platform_device_id fec_devtype[] = {
106 	{
107 		/* keep it for coldfire */
108 		.name = DRIVER_NAME,
109 		.driver_data = 0,
110 	}, {
111 		.name = "imx25-fec",
112 		.driver_data = FEC_QUIRK_USE_GASKET,
113 	}, {
114 		.name = "imx27-fec",
115 		.driver_data = 0,
116 	}, {
117 		.name = "imx28-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
119 	}, {
120 		.name = "imx6q-fec",
121 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
122 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
123 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
124 	}, {
125 		.name = "mvf600-fec",
126 		.driver_data = FEC_QUIRK_ENET_MAC,
127 	}, {
128 		/* sentinel */
129 	}
130 };
131 MODULE_DEVICE_TABLE(platform, fec_devtype);
132 
133 enum imx_fec_type {
134 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
135 	IMX27_FEC,	/* runs on i.mx27/35/51 */
136 	IMX28_FEC,
137 	IMX6Q_FEC,
138 	MVF600_FEC,
139 };
140 
141 static const struct of_device_id fec_dt_ids[] = {
142 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
143 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
144 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
145 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
146 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
176 #error "FEC: descriptor ring size constants too large"
177 #endif
178 
179 /* Interrupt events/masks. */
180 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
181 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
182 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
183 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
184 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
185 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
186 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
187 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
188 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
189 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
190 
191 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
192 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
193 
194 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
195  */
196 #define PKT_MAXBUF_SIZE		1522
197 #define PKT_MINBUF_SIZE		64
198 #define PKT_MAXBLR_SIZE		1536
199 
200 /* FEC receive acceleration */
201 #define FEC_RACC_IPDIS		(1 << 1)
202 #define FEC_RACC_PRODIS		(1 << 2)
203 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
204 
205 /*
206  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
207  * size bits. Other FEC hardware does not, so we need to take that into
208  * account when setting it.
209  */
210 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
211     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
212 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
213 #else
214 #define	OPT_FRAME_SIZE	0
215 #endif
216 
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST		(1 << 30)
219 #define FEC_MMFR_OP_READ	(2 << 28)
220 #define FEC_MMFR_OP_WRITE	(1 << 28)
221 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
223 #define FEC_MMFR_TA		(2 << 16)
224 #define FEC_MMFR_DATA(v)	(v & 0xffff)
225 
226 #define FEC_MII_TIMEOUT		30000 /* us */
227 
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
230 
231 #define FEC_PAUSE_FLAG_AUTONEG	0x1
232 #define FEC_PAUSE_FLAG_ENABLE	0x2
233 
234 static int mii_cnt;
235 
236 static inline
237 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
238 {
239 	struct bufdesc *new_bd = bdp + 1;
240 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
241 	struct bufdesc_ex *ex_base;
242 	struct bufdesc *base;
243 	int ring_size;
244 
245 	if (bdp >= fep->tx_bd_base) {
246 		base = fep->tx_bd_base;
247 		ring_size = fep->tx_ring_size;
248 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
249 	} else {
250 		base = fep->rx_bd_base;
251 		ring_size = fep->rx_ring_size;
252 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
253 	}
254 
255 	if (fep->bufdesc_ex)
256 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
257 			ex_base : ex_new_bd);
258 	else
259 		return (new_bd >= (base + ring_size)) ?
260 			base : new_bd;
261 }
262 
263 static inline
264 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
265 {
266 	struct bufdesc *new_bd = bdp - 1;
267 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
268 	struct bufdesc_ex *ex_base;
269 	struct bufdesc *base;
270 	int ring_size;
271 
272 	if (bdp >= fep->tx_bd_base) {
273 		base = fep->tx_bd_base;
274 		ring_size = fep->tx_ring_size;
275 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
276 	} else {
277 		base = fep->rx_bd_base;
278 		ring_size = fep->rx_ring_size;
279 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
280 	}
281 
282 	if (fep->bufdesc_ex)
283 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
284 			(ex_new_bd + ring_size) : ex_new_bd);
285 	else
286 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
287 }
288 
289 static void *swap_buffer(void *bufaddr, int len)
290 {
291 	int i;
292 	unsigned int *buf = bufaddr;
293 
294 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
295 		*buf = cpu_to_be32(*buf);
296 
297 	return bufaddr;
298 }
299 
300 static int
301 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
302 {
303 	/* Only run for packets requiring a checksum. */
304 	if (skb->ip_summed != CHECKSUM_PARTIAL)
305 		return 0;
306 
307 	if (unlikely(skb_cow_head(skb, 0)))
308 		return -1;
309 
310 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
311 
312 	return 0;
313 }
314 
315 static netdev_tx_t
316 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	const struct platform_device_id *id_entry =
320 				platform_get_device_id(fep->pdev);
321 	struct bufdesc *bdp, *bdp_pre;
322 	void *bufaddr;
323 	unsigned short	status;
324 	unsigned int index;
325 
326 	/* Fill in a Tx ring entry */
327 	bdp = fep->cur_tx;
328 
329 	status = bdp->cbd_sc;
330 
331 	if (status & BD_ENET_TX_READY) {
332 		/* Ooops.  All transmit buffers are full.  Bail out.
333 		 * This should not happen, since ndev->tbusy should be set.
334 		 */
335 		netdev_err(ndev, "tx queue full!\n");
336 		return NETDEV_TX_BUSY;
337 	}
338 
339 	/* Protocol checksum off-load for TCP and UDP. */
340 	if (fec_enet_clear_csum(skb, ndev)) {
341 		dev_kfree_skb_any(skb);
342 		return NETDEV_TX_OK;
343 	}
344 
345 	/* Clear all of the status flags */
346 	status &= ~BD_ENET_TX_STATS;
347 
348 	/* Set buffer length and buffer pointer */
349 	bufaddr = skb->data;
350 	bdp->cbd_datlen = skb->len;
351 
352 	/*
353 	 * On some FEC implementations data must be aligned on
354 	 * 4-byte boundaries. Use bounce buffers to copy data
355 	 * and get it aligned. Ugh.
356 	 */
357 	if (fep->bufdesc_ex)
358 		index = (struct bufdesc_ex *)bdp -
359 			(struct bufdesc_ex *)fep->tx_bd_base;
360 	else
361 		index = bdp - fep->tx_bd_base;
362 
363 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
364 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
365 		bufaddr = fep->tx_bounce[index];
366 	}
367 
368 	/*
369 	 * Some design made an incorrect assumption on endian mode of
370 	 * the system that it's running on. As the result, driver has to
371 	 * swap every frame going to and coming from the controller.
372 	 */
373 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
374 		swap_buffer(bufaddr, skb->len);
375 
376 	/* Save skb pointer */
377 	fep->tx_skbuff[index] = skb;
378 
379 	/* Push the data cache so the CPM does not get stale memory
380 	 * data.
381 	 */
382 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
383 			skb->len, DMA_TO_DEVICE);
384 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
385 		bdp->cbd_bufaddr = 0;
386 		fep->tx_skbuff[index] = NULL;
387 		dev_kfree_skb_any(skb);
388 		if (net_ratelimit())
389 			netdev_err(ndev, "Tx DMA memory map failed\n");
390 		return NETDEV_TX_OK;
391 	}
392 
393 	if (fep->bufdesc_ex) {
394 
395 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
396 		ebdp->cbd_bdu = 0;
397 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
398 			fep->hwts_tx_en)) {
399 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
400 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
401 		} else {
402 			ebdp->cbd_esc = BD_ENET_TX_INT;
403 
404 			/* Enable protocol checksum flags
405 			 * We do not bother with the IP Checksum bits as they
406 			 * are done by the kernel
407 			 */
408 			if (skb->ip_summed == CHECKSUM_PARTIAL)
409 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
410 		}
411 	}
412 
413 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
414 	 * it's the last BD of the frame, and to put the CRC on the end.
415 	 */
416 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
417 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
418 	bdp->cbd_sc = status;
419 
420 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
421 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
422 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
423 		fep->delay_work.trig_tx = true;
424 		schedule_delayed_work(&(fep->delay_work.delay_work),
425 					msecs_to_jiffies(1));
426 	}
427 
428 	/* If this was the last BD in the ring, start at the beginning again. */
429 	bdp = fec_enet_get_nextdesc(bdp, fep);
430 
431 	skb_tx_timestamp(skb);
432 
433 	fep->cur_tx = bdp;
434 
435 	if (fep->cur_tx == fep->dirty_tx)
436 		netif_stop_queue(ndev);
437 
438 	/* Trigger transmission start */
439 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
440 
441 	return NETDEV_TX_OK;
442 }
443 
444 /* Init RX & TX buffer descriptors
445  */
446 static void fec_enet_bd_init(struct net_device *dev)
447 {
448 	struct fec_enet_private *fep = netdev_priv(dev);
449 	struct bufdesc *bdp;
450 	unsigned int i;
451 
452 	/* Initialize the receive buffer descriptors. */
453 	bdp = fep->rx_bd_base;
454 	for (i = 0; i < fep->rx_ring_size; i++) {
455 
456 		/* Initialize the BD for every fragment in the page. */
457 		if (bdp->cbd_bufaddr)
458 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
459 		else
460 			bdp->cbd_sc = 0;
461 		bdp = fec_enet_get_nextdesc(bdp, fep);
462 	}
463 
464 	/* Set the last buffer to wrap */
465 	bdp = fec_enet_get_prevdesc(bdp, fep);
466 	bdp->cbd_sc |= BD_SC_WRAP;
467 
468 	fep->cur_rx = fep->rx_bd_base;
469 
470 	/* ...and the same for transmit */
471 	bdp = fep->tx_bd_base;
472 	fep->cur_tx = bdp;
473 	for (i = 0; i < fep->tx_ring_size; i++) {
474 
475 		/* Initialize the BD for every fragment in the page. */
476 		bdp->cbd_sc = 0;
477 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
478 			dev_kfree_skb_any(fep->tx_skbuff[i]);
479 			fep->tx_skbuff[i] = NULL;
480 		}
481 		bdp->cbd_bufaddr = 0;
482 		bdp = fec_enet_get_nextdesc(bdp, fep);
483 	}
484 
485 	/* Set the last buffer to wrap */
486 	bdp = fec_enet_get_prevdesc(bdp, fep);
487 	bdp->cbd_sc |= BD_SC_WRAP;
488 	fep->dirty_tx = bdp;
489 }
490 
491 /* This function is called to start or restart the FEC during a link
492  * change.  This only happens when switching between half and full
493  * duplex.
494  */
495 static void
496 fec_restart(struct net_device *ndev, int duplex)
497 {
498 	struct fec_enet_private *fep = netdev_priv(ndev);
499 	const struct platform_device_id *id_entry =
500 				platform_get_device_id(fep->pdev);
501 	int i;
502 	u32 val;
503 	u32 temp_mac[2];
504 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
505 	u32 ecntl = 0x2; /* ETHEREN */
506 
507 	if (netif_running(ndev)) {
508 		netif_device_detach(ndev);
509 		napi_disable(&fep->napi);
510 		netif_stop_queue(ndev);
511 		netif_tx_lock_bh(ndev);
512 	}
513 
514 	/* Whack a reset.  We should wait for this. */
515 	writel(1, fep->hwp + FEC_ECNTRL);
516 	udelay(10);
517 
518 	/*
519 	 * enet-mac reset will reset mac address registers too,
520 	 * so need to reconfigure it.
521 	 */
522 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
523 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
524 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
525 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
526 	}
527 
528 	/* Clear any outstanding interrupt. */
529 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
530 
531 	/* Set maximum receive buffer size. */
532 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
533 
534 	fec_enet_bd_init(ndev);
535 
536 	/* Set receive and transmit descriptor base. */
537 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
538 	if (fep->bufdesc_ex)
539 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
540 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
541 	else
542 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
543 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
544 
545 
546 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
547 		if (fep->tx_skbuff[i]) {
548 			dev_kfree_skb_any(fep->tx_skbuff[i]);
549 			fep->tx_skbuff[i] = NULL;
550 		}
551 	}
552 
553 	/* Enable MII mode */
554 	if (duplex) {
555 		/* FD enable */
556 		writel(0x04, fep->hwp + FEC_X_CNTRL);
557 	} else {
558 		/* No Rcv on Xmit */
559 		rcntl |= 0x02;
560 		writel(0x0, fep->hwp + FEC_X_CNTRL);
561 	}
562 
563 	fep->full_duplex = duplex;
564 
565 	/* Set MII speed */
566 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
567 
568 #if !defined(CONFIG_M5272)
569 	/* set RX checksum */
570 	val = readl(fep->hwp + FEC_RACC);
571 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
572 		val |= FEC_RACC_OPTIONS;
573 	else
574 		val &= ~FEC_RACC_OPTIONS;
575 	writel(val, fep->hwp + FEC_RACC);
576 #endif
577 
578 	/*
579 	 * The phy interface and speed need to get configured
580 	 * differently on enet-mac.
581 	 */
582 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
583 		/* Enable flow control and length check */
584 		rcntl |= 0x40000000 | 0x00000020;
585 
586 		/* RGMII, RMII or MII */
587 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
588 			rcntl |= (1 << 6);
589 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
590 			rcntl |= (1 << 8);
591 		else
592 			rcntl &= ~(1 << 8);
593 
594 		/* 1G, 100M or 10M */
595 		if (fep->phy_dev) {
596 			if (fep->phy_dev->speed == SPEED_1000)
597 				ecntl |= (1 << 5);
598 			else if (fep->phy_dev->speed == SPEED_100)
599 				rcntl &= ~(1 << 9);
600 			else
601 				rcntl |= (1 << 9);
602 		}
603 	} else {
604 #ifdef FEC_MIIGSK_ENR
605 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
606 			u32 cfgr;
607 			/* disable the gasket and wait */
608 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
609 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
610 				udelay(1);
611 
612 			/*
613 			 * configure the gasket:
614 			 *   RMII, 50 MHz, no loopback, no echo
615 			 *   MII, 25 MHz, no loopback, no echo
616 			 */
617 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
618 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
619 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
620 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
621 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
622 
623 			/* re-enable the gasket */
624 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
625 		}
626 #endif
627 	}
628 
629 #if !defined(CONFIG_M5272)
630 	/* enable pause frame*/
631 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
632 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
633 	     fep->phy_dev && fep->phy_dev->pause)) {
634 		rcntl |= FEC_ENET_FCE;
635 
636 		/* set FIFO threshold parameter to reduce overrun */
637 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
638 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
639 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
640 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
641 
642 		/* OPD */
643 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
644 	} else {
645 		rcntl &= ~FEC_ENET_FCE;
646 	}
647 #endif /* !defined(CONFIG_M5272) */
648 
649 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
650 
651 	/* Setup multicast filter. */
652 	set_multicast_list(ndev);
653 #ifndef CONFIG_M5272
654 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
655 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
656 #endif
657 
658 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
659 		/* enable ENET endian swap */
660 		ecntl |= (1 << 8);
661 		/* enable ENET store and forward mode */
662 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
663 	}
664 
665 	if (fep->bufdesc_ex)
666 		ecntl |= (1 << 4);
667 
668 #ifndef CONFIG_M5272
669 	/* Enable the MIB statistic event counters */
670 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
671 #endif
672 
673 	/* And last, enable the transmit and receive processing */
674 	writel(ecntl, fep->hwp + FEC_ECNTRL);
675 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676 
677 	if (fep->bufdesc_ex)
678 		fec_ptp_start_cyclecounter(ndev);
679 
680 	/* Enable interrupts we wish to service */
681 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
682 
683 	if (netif_running(ndev)) {
684 		netif_tx_unlock_bh(ndev);
685 		netif_wake_queue(ndev);
686 		napi_enable(&fep->napi);
687 		netif_device_attach(ndev);
688 	}
689 }
690 
691 static void
692 fec_stop(struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	const struct platform_device_id *id_entry =
696 				platform_get_device_id(fep->pdev);
697 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
698 
699 	/* We cannot expect a graceful transmit stop without link !!! */
700 	if (fep->link) {
701 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
702 		udelay(10);
703 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
704 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
705 	}
706 
707 	/* Whack a reset.  We should wait for this. */
708 	writel(1, fep->hwp + FEC_ECNTRL);
709 	udelay(10);
710 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
711 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
712 
713 	/* We have to keep ENET enabled to have MII interrupt stay working */
714 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
715 		writel(2, fep->hwp + FEC_ECNTRL);
716 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
717 	}
718 }
719 
720 
721 static void
722 fec_timeout(struct net_device *ndev)
723 {
724 	struct fec_enet_private *fep = netdev_priv(ndev);
725 
726 	ndev->stats.tx_errors++;
727 
728 	fep->delay_work.timeout = true;
729 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
730 }
731 
732 static void fec_enet_work(struct work_struct *work)
733 {
734 	struct fec_enet_private *fep =
735 		container_of(work,
736 			     struct fec_enet_private,
737 			     delay_work.delay_work.work);
738 
739 	if (fep->delay_work.timeout) {
740 		fep->delay_work.timeout = false;
741 		fec_restart(fep->netdev, fep->full_duplex);
742 		netif_wake_queue(fep->netdev);
743 	}
744 
745 	if (fep->delay_work.trig_tx) {
746 		fep->delay_work.trig_tx = false;
747 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
748 	}
749 }
750 
751 static void
752 fec_enet_tx(struct net_device *ndev)
753 {
754 	struct	fec_enet_private *fep;
755 	struct bufdesc *bdp;
756 	unsigned short status;
757 	struct	sk_buff	*skb;
758 	int	index = 0;
759 
760 	fep = netdev_priv(ndev);
761 	bdp = fep->dirty_tx;
762 
763 	/* get next bdp of dirty_tx */
764 	bdp = fec_enet_get_nextdesc(bdp, fep);
765 
766 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
767 
768 		/* current queue is empty */
769 		if (bdp == fep->cur_tx)
770 			break;
771 
772 		if (fep->bufdesc_ex)
773 			index = (struct bufdesc_ex *)bdp -
774 				(struct bufdesc_ex *)fep->tx_bd_base;
775 		else
776 			index = bdp - fep->tx_bd_base;
777 
778 		skb = fep->tx_skbuff[index];
779 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
780 				DMA_TO_DEVICE);
781 		bdp->cbd_bufaddr = 0;
782 
783 		/* Check for errors. */
784 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
785 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
786 				   BD_ENET_TX_CSL)) {
787 			ndev->stats.tx_errors++;
788 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
789 				ndev->stats.tx_heartbeat_errors++;
790 			if (status & BD_ENET_TX_LC)  /* Late collision */
791 				ndev->stats.tx_window_errors++;
792 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
793 				ndev->stats.tx_aborted_errors++;
794 			if (status & BD_ENET_TX_UN)  /* Underrun */
795 				ndev->stats.tx_fifo_errors++;
796 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
797 				ndev->stats.tx_carrier_errors++;
798 		} else {
799 			ndev->stats.tx_packets++;
800 			ndev->stats.tx_bytes += bdp->cbd_datlen;
801 		}
802 
803 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
804 			fep->bufdesc_ex) {
805 			struct skb_shared_hwtstamps shhwtstamps;
806 			unsigned long flags;
807 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
808 
809 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
810 			spin_lock_irqsave(&fep->tmreg_lock, flags);
811 			shhwtstamps.hwtstamp = ns_to_ktime(
812 				timecounter_cyc2time(&fep->tc, ebdp->ts));
813 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
814 			skb_tstamp_tx(skb, &shhwtstamps);
815 		}
816 
817 		if (status & BD_ENET_TX_READY)
818 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
819 
820 		/* Deferred means some collisions occurred during transmit,
821 		 * but we eventually sent the packet OK.
822 		 */
823 		if (status & BD_ENET_TX_DEF)
824 			ndev->stats.collisions++;
825 
826 		/* Free the sk buffer associated with this last transmit */
827 		dev_kfree_skb_any(skb);
828 		fep->tx_skbuff[index] = NULL;
829 
830 		fep->dirty_tx = bdp;
831 
832 		/* Update pointer to next buffer descriptor to be transmitted */
833 		bdp = fec_enet_get_nextdesc(bdp, fep);
834 
835 		/* Since we have freed up a buffer, the ring is no longer full
836 		 */
837 		if (fep->dirty_tx != fep->cur_tx) {
838 			if (netif_queue_stopped(ndev))
839 				netif_wake_queue(ndev);
840 		}
841 	}
842 	return;
843 }
844 
845 
846 /* During a receive, the cur_rx points to the current incoming buffer.
847  * When we update through the ring, if the next incoming buffer has
848  * not been given to the system, we just set the empty indicator,
849  * effectively tossing the packet.
850  */
851 static int
852 fec_enet_rx(struct net_device *ndev, int budget)
853 {
854 	struct fec_enet_private *fep = netdev_priv(ndev);
855 	const struct platform_device_id *id_entry =
856 				platform_get_device_id(fep->pdev);
857 	struct bufdesc *bdp;
858 	unsigned short status;
859 	struct	sk_buff	*skb;
860 	ushort	pkt_len;
861 	__u8 *data;
862 	int	pkt_received = 0;
863 	struct	bufdesc_ex *ebdp = NULL;
864 	bool	vlan_packet_rcvd = false;
865 	u16	vlan_tag;
866 	int	index = 0;
867 
868 #ifdef CONFIG_M532x
869 	flush_cache_all();
870 #endif
871 
872 	/* First, grab all of the stats for the incoming packet.
873 	 * These get messed up if we get called due to a busy condition.
874 	 */
875 	bdp = fep->cur_rx;
876 
877 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
878 
879 		if (pkt_received >= budget)
880 			break;
881 		pkt_received++;
882 
883 		/* Since we have allocated space to hold a complete frame,
884 		 * the last indicator should be set.
885 		 */
886 		if ((status & BD_ENET_RX_LAST) == 0)
887 			netdev_err(ndev, "rcv is not +last\n");
888 
889 		if (!fep->opened)
890 			goto rx_processing_done;
891 
892 		/* Check for errors. */
893 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
894 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
895 			ndev->stats.rx_errors++;
896 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
897 				/* Frame too long or too short. */
898 				ndev->stats.rx_length_errors++;
899 			}
900 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
901 				ndev->stats.rx_frame_errors++;
902 			if (status & BD_ENET_RX_CR)	/* CRC Error */
903 				ndev->stats.rx_crc_errors++;
904 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
905 				ndev->stats.rx_fifo_errors++;
906 		}
907 
908 		/* Report late collisions as a frame error.
909 		 * On this error, the BD is closed, but we don't know what we
910 		 * have in the buffer.  So, just drop this frame on the floor.
911 		 */
912 		if (status & BD_ENET_RX_CL) {
913 			ndev->stats.rx_errors++;
914 			ndev->stats.rx_frame_errors++;
915 			goto rx_processing_done;
916 		}
917 
918 		/* Process the incoming frame. */
919 		ndev->stats.rx_packets++;
920 		pkt_len = bdp->cbd_datlen;
921 		ndev->stats.rx_bytes += pkt_len;
922 
923 		if (fep->bufdesc_ex)
924 			index = (struct bufdesc_ex *)bdp -
925 				(struct bufdesc_ex *)fep->rx_bd_base;
926 		else
927 			index = bdp - fep->rx_bd_base;
928 		data = fep->rx_skbuff[index]->data;
929 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
930 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
931 
932 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
933 			swap_buffer(data, pkt_len);
934 
935 		/* Extract the enhanced buffer descriptor */
936 		ebdp = NULL;
937 		if (fep->bufdesc_ex)
938 			ebdp = (struct bufdesc_ex *)bdp;
939 
940 		/* If this is a VLAN packet remove the VLAN Tag */
941 		vlan_packet_rcvd = false;
942 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
943 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
944 			/* Push and remove the vlan tag */
945 			struct vlan_hdr *vlan_header =
946 					(struct vlan_hdr *) (data + ETH_HLEN);
947 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
948 			pkt_len -= VLAN_HLEN;
949 
950 			vlan_packet_rcvd = true;
951 		}
952 
953 		/* This does 16 byte alignment, exactly what we need.
954 		 * The packet length includes FCS, but we don't want to
955 		 * include that when passing upstream as it messes up
956 		 * bridging applications.
957 		 */
958 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
959 
960 		if (unlikely(!skb)) {
961 			ndev->stats.rx_dropped++;
962 		} else {
963 			int payload_offset = (2 * ETH_ALEN);
964 			skb_reserve(skb, NET_IP_ALIGN);
965 			skb_put(skb, pkt_len - 4);	/* Make room */
966 
967 			/* Extract the frame data without the VLAN header. */
968 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
969 			if (vlan_packet_rcvd)
970 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
971 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
972 						       data + payload_offset,
973 						       pkt_len - 4 - (2 * ETH_ALEN));
974 
975 			skb->protocol = eth_type_trans(skb, ndev);
976 
977 			/* Get receive timestamp from the skb */
978 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
979 				struct skb_shared_hwtstamps *shhwtstamps =
980 							    skb_hwtstamps(skb);
981 				unsigned long flags;
982 
983 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
984 
985 				spin_lock_irqsave(&fep->tmreg_lock, flags);
986 				shhwtstamps->hwtstamp = ns_to_ktime(
987 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
988 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
989 			}
990 
991 			if (fep->bufdesc_ex &&
992 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
993 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
994 					/* don't check it */
995 					skb->ip_summed = CHECKSUM_UNNECESSARY;
996 				} else {
997 					skb_checksum_none_assert(skb);
998 				}
999 			}
1000 
1001 			/* Handle received VLAN packets */
1002 			if (vlan_packet_rcvd)
1003 				__vlan_hwaccel_put_tag(skb,
1004 						       htons(ETH_P_8021Q),
1005 						       vlan_tag);
1006 
1007 			napi_gro_receive(&fep->napi, skb);
1008 		}
1009 
1010 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012 rx_processing_done:
1013 		/* Clear the status flags for this buffer */
1014 		status &= ~BD_ENET_RX_STATS;
1015 
1016 		/* Mark the buffer empty */
1017 		status |= BD_ENET_RX_EMPTY;
1018 		bdp->cbd_sc = status;
1019 
1020 		if (fep->bufdesc_ex) {
1021 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022 
1023 			ebdp->cbd_esc = BD_ENET_RX_INT;
1024 			ebdp->cbd_prot = 0;
1025 			ebdp->cbd_bdu = 0;
1026 		}
1027 
1028 		/* Update BD pointer to next entry */
1029 		bdp = fec_enet_get_nextdesc(bdp, fep);
1030 
1031 		/* Doing this here will keep the FEC running while we process
1032 		 * incoming frames.  On a heavily loaded network, we should be
1033 		 * able to keep up at the expense of system resources.
1034 		 */
1035 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036 	}
1037 	fep->cur_rx = bdp;
1038 
1039 	return pkt_received;
1040 }
1041 
1042 static irqreturn_t
1043 fec_enet_interrupt(int irq, void *dev_id)
1044 {
1045 	struct net_device *ndev = dev_id;
1046 	struct fec_enet_private *fep = netdev_priv(ndev);
1047 	uint int_events;
1048 	irqreturn_t ret = IRQ_NONE;
1049 
1050 	do {
1051 		int_events = readl(fep->hwp + FEC_IEVENT);
1052 		writel(int_events, fep->hwp + FEC_IEVENT);
1053 
1054 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055 			ret = IRQ_HANDLED;
1056 
1057 			/* Disable the RX interrupt */
1058 			if (napi_schedule_prep(&fep->napi)) {
1059 				writel(FEC_RX_DISABLED_IMASK,
1060 					fep->hwp + FEC_IMASK);
1061 				__napi_schedule(&fep->napi);
1062 			}
1063 		}
1064 
1065 		if (int_events & FEC_ENET_MII) {
1066 			ret = IRQ_HANDLED;
1067 			complete(&fep->mdio_done);
1068 		}
1069 	} while (int_events);
1070 
1071 	return ret;
1072 }
1073 
1074 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075 {
1076 	struct net_device *ndev = napi->dev;
1077 	int pkts = fec_enet_rx(ndev, budget);
1078 	struct fec_enet_private *fep = netdev_priv(ndev);
1079 
1080 	fec_enet_tx(ndev);
1081 
1082 	if (pkts < budget) {
1083 		napi_complete(napi);
1084 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 	}
1086 	return pkts;
1087 }
1088 
1089 /* ------------------------------------------------------------------------- */
1090 static void fec_get_mac(struct net_device *ndev)
1091 {
1092 	struct fec_enet_private *fep = netdev_priv(ndev);
1093 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094 	unsigned char *iap, tmpaddr[ETH_ALEN];
1095 
1096 	/*
1097 	 * try to get mac address in following order:
1098 	 *
1099 	 * 1) module parameter via kernel command line in form
1100 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101 	 */
1102 	iap = macaddr;
1103 
1104 	/*
1105 	 * 2) from device tree data
1106 	 */
1107 	if (!is_valid_ether_addr(iap)) {
1108 		struct device_node *np = fep->pdev->dev.of_node;
1109 		if (np) {
1110 			const char *mac = of_get_mac_address(np);
1111 			if (mac)
1112 				iap = (unsigned char *) mac;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * 3) from flash or fuse (via platform data)
1118 	 */
1119 	if (!is_valid_ether_addr(iap)) {
1120 #ifdef CONFIG_M5272
1121 		if (FEC_FLASHMAC)
1122 			iap = (unsigned char *)FEC_FLASHMAC;
1123 #else
1124 		if (pdata)
1125 			iap = (unsigned char *)&pdata->mac;
1126 #endif
1127 	}
1128 
1129 	/*
1130 	 * 4) FEC mac registers set by bootloader
1131 	 */
1132 	if (!is_valid_ether_addr(iap)) {
1133 		*((__be32 *) &tmpaddr[0]) =
1134 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135 		*((__be16 *) &tmpaddr[4]) =
1136 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137 		iap = &tmpaddr[0];
1138 	}
1139 
1140 	/*
1141 	 * 5) random mac address
1142 	 */
1143 	if (!is_valid_ether_addr(iap)) {
1144 		/* Report it and use a random ethernet address instead */
1145 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146 		eth_hw_addr_random(ndev);
1147 		netdev_info(ndev, "Using random MAC address: %pM\n",
1148 			    ndev->dev_addr);
1149 		return;
1150 	}
1151 
1152 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153 
1154 	/* Adjust MAC if using macaddr */
1155 	if (iap == macaddr)
1156 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157 }
1158 
1159 /* ------------------------------------------------------------------------- */
1160 
1161 /*
1162  * Phy section
1163  */
1164 static void fec_enet_adjust_link(struct net_device *ndev)
1165 {
1166 	struct fec_enet_private *fep = netdev_priv(ndev);
1167 	struct phy_device *phy_dev = fep->phy_dev;
1168 	int status_change = 0;
1169 
1170 	/* Prevent a state halted on mii error */
1171 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172 		phy_dev->state = PHY_RESUMING;
1173 		return;
1174 	}
1175 
1176 	if (phy_dev->link) {
1177 		if (!fep->link) {
1178 			fep->link = phy_dev->link;
1179 			status_change = 1;
1180 		}
1181 
1182 		if (fep->full_duplex != phy_dev->duplex)
1183 			status_change = 1;
1184 
1185 		if (phy_dev->speed != fep->speed) {
1186 			fep->speed = phy_dev->speed;
1187 			status_change = 1;
1188 		}
1189 
1190 		/* if any of the above changed restart the FEC */
1191 		if (status_change)
1192 			fec_restart(ndev, phy_dev->duplex);
1193 	} else {
1194 		if (fep->link) {
1195 			fec_stop(ndev);
1196 			fep->link = phy_dev->link;
1197 			status_change = 1;
1198 		}
1199 	}
1200 
1201 	if (status_change)
1202 		phy_print_status(phy_dev);
1203 }
1204 
1205 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206 {
1207 	struct fec_enet_private *fep = bus->priv;
1208 	unsigned long time_left;
1209 
1210 	fep->mii_timeout = 0;
1211 	init_completion(&fep->mdio_done);
1212 
1213 	/* start a read op */
1214 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217 
1218 	/* wait for end of transfer */
1219 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221 	if (time_left == 0) {
1222 		fep->mii_timeout = 1;
1223 		netdev_err(fep->netdev, "MDIO read timeout\n");
1224 		return -ETIMEDOUT;
1225 	}
1226 
1227 	/* return value */
1228 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229 }
1230 
1231 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232 			   u16 value)
1233 {
1234 	struct fec_enet_private *fep = bus->priv;
1235 	unsigned long time_left;
1236 
1237 	fep->mii_timeout = 0;
1238 	init_completion(&fep->mdio_done);
1239 
1240 	/* start a write op */
1241 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244 		fep->hwp + FEC_MII_DATA);
1245 
1246 	/* wait for end of transfer */
1247 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249 	if (time_left == 0) {
1250 		fep->mii_timeout = 1;
1251 		netdev_err(fep->netdev, "MDIO write timeout\n");
1252 		return -ETIMEDOUT;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int fec_enet_mii_probe(struct net_device *ndev)
1259 {
1260 	struct fec_enet_private *fep = netdev_priv(ndev);
1261 	const struct platform_device_id *id_entry =
1262 				platform_get_device_id(fep->pdev);
1263 	struct phy_device *phy_dev = NULL;
1264 	char mdio_bus_id[MII_BUS_ID_SIZE];
1265 	char phy_name[MII_BUS_ID_SIZE + 3];
1266 	int phy_id;
1267 	int dev_id = fep->dev_id;
1268 
1269 	fep->phy_dev = NULL;
1270 
1271 	/* check for attached phy */
1272 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1273 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1274 			continue;
1275 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1276 			continue;
1277 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1278 			continue;
1279 		if (dev_id--)
1280 			continue;
1281 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1282 		break;
1283 	}
1284 
1285 	if (phy_id >= PHY_MAX_ADDR) {
1286 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1287 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1288 		phy_id = 0;
1289 	}
1290 
1291 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1292 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1293 			      fep->phy_interface);
1294 	if (IS_ERR(phy_dev)) {
1295 		netdev_err(ndev, "could not attach to PHY\n");
1296 		return PTR_ERR(phy_dev);
1297 	}
1298 
1299 	/* mask with MAC supported features */
1300 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1301 		phy_dev->supported &= PHY_GBIT_FEATURES;
1302 #if !defined(CONFIG_M5272)
1303 		phy_dev->supported |= SUPPORTED_Pause;
1304 #endif
1305 	}
1306 	else
1307 		phy_dev->supported &= PHY_BASIC_FEATURES;
1308 
1309 	phy_dev->advertising = phy_dev->supported;
1310 
1311 	fep->phy_dev = phy_dev;
1312 	fep->link = 0;
1313 	fep->full_duplex = 0;
1314 
1315 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1316 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1317 		    fep->phy_dev->irq);
1318 
1319 	return 0;
1320 }
1321 
1322 static int fec_enet_mii_init(struct platform_device *pdev)
1323 {
1324 	static struct mii_bus *fec0_mii_bus;
1325 	struct net_device *ndev = platform_get_drvdata(pdev);
1326 	struct fec_enet_private *fep = netdev_priv(ndev);
1327 	const struct platform_device_id *id_entry =
1328 				platform_get_device_id(fep->pdev);
1329 	int err = -ENXIO, i;
1330 
1331 	/*
1332 	 * The dual fec interfaces are not equivalent with enet-mac.
1333 	 * Here are the differences:
1334 	 *
1335 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1336 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1337 	 *  - external phys can only be configured by fec0
1338 	 *
1339 	 * That is to say fec1 can not work independently. It only works
1340 	 * when fec0 is working. The reason behind this design is that the
1341 	 * second interface is added primarily for Switch mode.
1342 	 *
1343 	 * Because of the last point above, both phys are attached on fec0
1344 	 * mdio interface in board design, and need to be configured by
1345 	 * fec0 mii_bus.
1346 	 */
1347 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1348 		/* fec1 uses fec0 mii_bus */
1349 		if (mii_cnt && fec0_mii_bus) {
1350 			fep->mii_bus = fec0_mii_bus;
1351 			mii_cnt++;
1352 			return 0;
1353 		}
1354 		return -ENOENT;
1355 	}
1356 
1357 	fep->mii_timeout = 0;
1358 
1359 	/*
1360 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1361 	 *
1362 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1363 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1364 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1365 	 * document.
1366 	 */
1367 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1368 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1369 		fep->phy_speed--;
1370 	fep->phy_speed <<= 1;
1371 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1372 
1373 	fep->mii_bus = mdiobus_alloc();
1374 	if (fep->mii_bus == NULL) {
1375 		err = -ENOMEM;
1376 		goto err_out;
1377 	}
1378 
1379 	fep->mii_bus->name = "fec_enet_mii_bus";
1380 	fep->mii_bus->read = fec_enet_mdio_read;
1381 	fep->mii_bus->write = fec_enet_mdio_write;
1382 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1383 		pdev->name, fep->dev_id + 1);
1384 	fep->mii_bus->priv = fep;
1385 	fep->mii_bus->parent = &pdev->dev;
1386 
1387 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1388 	if (!fep->mii_bus->irq) {
1389 		err = -ENOMEM;
1390 		goto err_out_free_mdiobus;
1391 	}
1392 
1393 	for (i = 0; i < PHY_MAX_ADDR; i++)
1394 		fep->mii_bus->irq[i] = PHY_POLL;
1395 
1396 	if (mdiobus_register(fep->mii_bus))
1397 		goto err_out_free_mdio_irq;
1398 
1399 	mii_cnt++;
1400 
1401 	/* save fec0 mii_bus */
1402 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1403 		fec0_mii_bus = fep->mii_bus;
1404 
1405 	return 0;
1406 
1407 err_out_free_mdio_irq:
1408 	kfree(fep->mii_bus->irq);
1409 err_out_free_mdiobus:
1410 	mdiobus_free(fep->mii_bus);
1411 err_out:
1412 	return err;
1413 }
1414 
1415 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1416 {
1417 	if (--mii_cnt == 0) {
1418 		mdiobus_unregister(fep->mii_bus);
1419 		kfree(fep->mii_bus->irq);
1420 		mdiobus_free(fep->mii_bus);
1421 	}
1422 }
1423 
1424 static int fec_enet_get_settings(struct net_device *ndev,
1425 				  struct ethtool_cmd *cmd)
1426 {
1427 	struct fec_enet_private *fep = netdev_priv(ndev);
1428 	struct phy_device *phydev = fep->phy_dev;
1429 
1430 	if (!phydev)
1431 		return -ENODEV;
1432 
1433 	return phy_ethtool_gset(phydev, cmd);
1434 }
1435 
1436 static int fec_enet_set_settings(struct net_device *ndev,
1437 				 struct ethtool_cmd *cmd)
1438 {
1439 	struct fec_enet_private *fep = netdev_priv(ndev);
1440 	struct phy_device *phydev = fep->phy_dev;
1441 
1442 	if (!phydev)
1443 		return -ENODEV;
1444 
1445 	return phy_ethtool_sset(phydev, cmd);
1446 }
1447 
1448 static void fec_enet_get_drvinfo(struct net_device *ndev,
1449 				 struct ethtool_drvinfo *info)
1450 {
1451 	struct fec_enet_private *fep = netdev_priv(ndev);
1452 
1453 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1454 		sizeof(info->driver));
1455 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1456 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1457 }
1458 
1459 static int fec_enet_get_ts_info(struct net_device *ndev,
1460 				struct ethtool_ts_info *info)
1461 {
1462 	struct fec_enet_private *fep = netdev_priv(ndev);
1463 
1464 	if (fep->bufdesc_ex) {
1465 
1466 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1467 					SOF_TIMESTAMPING_RX_SOFTWARE |
1468 					SOF_TIMESTAMPING_SOFTWARE |
1469 					SOF_TIMESTAMPING_TX_HARDWARE |
1470 					SOF_TIMESTAMPING_RX_HARDWARE |
1471 					SOF_TIMESTAMPING_RAW_HARDWARE;
1472 		if (fep->ptp_clock)
1473 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1474 		else
1475 			info->phc_index = -1;
1476 
1477 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1478 				 (1 << HWTSTAMP_TX_ON);
1479 
1480 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1481 				   (1 << HWTSTAMP_FILTER_ALL);
1482 		return 0;
1483 	} else {
1484 		return ethtool_op_get_ts_info(ndev, info);
1485 	}
1486 }
1487 
1488 #if !defined(CONFIG_M5272)
1489 
1490 static void fec_enet_get_pauseparam(struct net_device *ndev,
1491 				    struct ethtool_pauseparam *pause)
1492 {
1493 	struct fec_enet_private *fep = netdev_priv(ndev);
1494 
1495 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1496 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1497 	pause->rx_pause = pause->tx_pause;
1498 }
1499 
1500 static int fec_enet_set_pauseparam(struct net_device *ndev,
1501 				   struct ethtool_pauseparam *pause)
1502 {
1503 	struct fec_enet_private *fep = netdev_priv(ndev);
1504 
1505 	if (pause->tx_pause != pause->rx_pause) {
1506 		netdev_info(ndev,
1507 			"hardware only support enable/disable both tx and rx");
1508 		return -EINVAL;
1509 	}
1510 
1511 	fep->pause_flag = 0;
1512 
1513 	/* tx pause must be same as rx pause */
1514 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1515 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1516 
1517 	if (pause->rx_pause || pause->autoneg) {
1518 		fep->phy_dev->supported |= ADVERTISED_Pause;
1519 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1520 	} else {
1521 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1522 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1523 	}
1524 
1525 	if (pause->autoneg) {
1526 		if (netif_running(ndev))
1527 			fec_stop(ndev);
1528 		phy_start_aneg(fep->phy_dev);
1529 	}
1530 	if (netif_running(ndev))
1531 		fec_restart(ndev, 0);
1532 
1533 	return 0;
1534 }
1535 
1536 static const struct fec_stat {
1537 	char name[ETH_GSTRING_LEN];
1538 	u16 offset;
1539 } fec_stats[] = {
1540 	/* RMON TX */
1541 	{ "tx_dropped", RMON_T_DROP },
1542 	{ "tx_packets", RMON_T_PACKETS },
1543 	{ "tx_broadcast", RMON_T_BC_PKT },
1544 	{ "tx_multicast", RMON_T_MC_PKT },
1545 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1546 	{ "tx_undersize", RMON_T_UNDERSIZE },
1547 	{ "tx_oversize", RMON_T_OVERSIZE },
1548 	{ "tx_fragment", RMON_T_FRAG },
1549 	{ "tx_jabber", RMON_T_JAB },
1550 	{ "tx_collision", RMON_T_COL },
1551 	{ "tx_64byte", RMON_T_P64 },
1552 	{ "tx_65to127byte", RMON_T_P65TO127 },
1553 	{ "tx_128to255byte", RMON_T_P128TO255 },
1554 	{ "tx_256to511byte", RMON_T_P256TO511 },
1555 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1556 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1557 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1558 	{ "tx_octets", RMON_T_OCTETS },
1559 
1560 	/* IEEE TX */
1561 	{ "IEEE_tx_drop", IEEE_T_DROP },
1562 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1563 	{ "IEEE_tx_1col", IEEE_T_1COL },
1564 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1565 	{ "IEEE_tx_def", IEEE_T_DEF },
1566 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1567 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1568 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1569 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1570 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1571 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1572 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1573 
1574 	/* RMON RX */
1575 	{ "rx_packets", RMON_R_PACKETS },
1576 	{ "rx_broadcast", RMON_R_BC_PKT },
1577 	{ "rx_multicast", RMON_R_MC_PKT },
1578 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1579 	{ "rx_undersize", RMON_R_UNDERSIZE },
1580 	{ "rx_oversize", RMON_R_OVERSIZE },
1581 	{ "rx_fragment", RMON_R_FRAG },
1582 	{ "rx_jabber", RMON_R_JAB },
1583 	{ "rx_64byte", RMON_R_P64 },
1584 	{ "rx_65to127byte", RMON_R_P65TO127 },
1585 	{ "rx_128to255byte", RMON_R_P128TO255 },
1586 	{ "rx_256to511byte", RMON_R_P256TO511 },
1587 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1588 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1589 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1590 	{ "rx_octets", RMON_R_OCTETS },
1591 
1592 	/* IEEE RX */
1593 	{ "IEEE_rx_drop", IEEE_R_DROP },
1594 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1595 	{ "IEEE_rx_crc", IEEE_R_CRC },
1596 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1597 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1598 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1599 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1600 };
1601 
1602 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1603 	struct ethtool_stats *stats, u64 *data)
1604 {
1605 	struct fec_enet_private *fep = netdev_priv(dev);
1606 	int i;
1607 
1608 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1609 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1610 }
1611 
1612 static void fec_enet_get_strings(struct net_device *netdev,
1613 	u32 stringset, u8 *data)
1614 {
1615 	int i;
1616 	switch (stringset) {
1617 	case ETH_SS_STATS:
1618 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1619 			memcpy(data + i * ETH_GSTRING_LEN,
1620 				fec_stats[i].name, ETH_GSTRING_LEN);
1621 		break;
1622 	}
1623 }
1624 
1625 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1626 {
1627 	switch (sset) {
1628 	case ETH_SS_STATS:
1629 		return ARRAY_SIZE(fec_stats);
1630 	default:
1631 		return -EOPNOTSUPP;
1632 	}
1633 }
1634 #endif /* !defined(CONFIG_M5272) */
1635 
1636 static int fec_enet_nway_reset(struct net_device *dev)
1637 {
1638 	struct fec_enet_private *fep = netdev_priv(dev);
1639 	struct phy_device *phydev = fep->phy_dev;
1640 
1641 	if (!phydev)
1642 		return -ENODEV;
1643 
1644 	return genphy_restart_aneg(phydev);
1645 }
1646 
1647 static const struct ethtool_ops fec_enet_ethtool_ops = {
1648 #if !defined(CONFIG_M5272)
1649 	.get_pauseparam		= fec_enet_get_pauseparam,
1650 	.set_pauseparam		= fec_enet_set_pauseparam,
1651 #endif
1652 	.get_settings		= fec_enet_get_settings,
1653 	.set_settings		= fec_enet_set_settings,
1654 	.get_drvinfo		= fec_enet_get_drvinfo,
1655 	.get_link		= ethtool_op_get_link,
1656 	.get_ts_info		= fec_enet_get_ts_info,
1657 	.nway_reset		= fec_enet_nway_reset,
1658 #ifndef CONFIG_M5272
1659 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1660 	.get_strings		= fec_enet_get_strings,
1661 	.get_sset_count		= fec_enet_get_sset_count,
1662 #endif
1663 };
1664 
1665 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1666 {
1667 	struct fec_enet_private *fep = netdev_priv(ndev);
1668 	struct phy_device *phydev = fep->phy_dev;
1669 
1670 	if (!netif_running(ndev))
1671 		return -EINVAL;
1672 
1673 	if (!phydev)
1674 		return -ENODEV;
1675 
1676 	if (fep->bufdesc_ex) {
1677 		if (cmd == SIOCSHWTSTAMP)
1678 			return fec_ptp_set(ndev, rq);
1679 		if (cmd == SIOCGHWTSTAMP)
1680 			return fec_ptp_get(ndev, rq);
1681 	}
1682 
1683 	return phy_mii_ioctl(phydev, rq, cmd);
1684 }
1685 
1686 static void fec_enet_free_buffers(struct net_device *ndev)
1687 {
1688 	struct fec_enet_private *fep = netdev_priv(ndev);
1689 	unsigned int i;
1690 	struct sk_buff *skb;
1691 	struct bufdesc	*bdp;
1692 
1693 	bdp = fep->rx_bd_base;
1694 	for (i = 0; i < fep->rx_ring_size; i++) {
1695 		skb = fep->rx_skbuff[i];
1696 
1697 		if (bdp->cbd_bufaddr)
1698 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1699 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700 		if (skb)
1701 			dev_kfree_skb(skb);
1702 		bdp = fec_enet_get_nextdesc(bdp, fep);
1703 	}
1704 
1705 	bdp = fep->tx_bd_base;
1706 	for (i = 0; i < fep->tx_ring_size; i++)
1707 		kfree(fep->tx_bounce[i]);
1708 }
1709 
1710 static int fec_enet_alloc_buffers(struct net_device *ndev)
1711 {
1712 	struct fec_enet_private *fep = netdev_priv(ndev);
1713 	unsigned int i;
1714 	struct sk_buff *skb;
1715 	struct bufdesc	*bdp;
1716 
1717 	bdp = fep->rx_bd_base;
1718 	for (i = 0; i < fep->rx_ring_size; i++) {
1719 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1720 		if (!skb) {
1721 			fec_enet_free_buffers(ndev);
1722 			return -ENOMEM;
1723 		}
1724 		fep->rx_skbuff[i] = skb;
1725 
1726 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1727 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1728 		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1729 			fec_enet_free_buffers(ndev);
1730 			if (net_ratelimit())
1731 				netdev_err(ndev, "Rx DMA memory map failed\n");
1732 			return -ENOMEM;
1733 		}
1734 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1735 
1736 		if (fep->bufdesc_ex) {
1737 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1738 			ebdp->cbd_esc = BD_ENET_RX_INT;
1739 		}
1740 
1741 		bdp = fec_enet_get_nextdesc(bdp, fep);
1742 	}
1743 
1744 	/* Set the last buffer to wrap. */
1745 	bdp = fec_enet_get_prevdesc(bdp, fep);
1746 	bdp->cbd_sc |= BD_SC_WRAP;
1747 
1748 	bdp = fep->tx_bd_base;
1749 	for (i = 0; i < fep->tx_ring_size; i++) {
1750 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1751 
1752 		bdp->cbd_sc = 0;
1753 		bdp->cbd_bufaddr = 0;
1754 
1755 		if (fep->bufdesc_ex) {
1756 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1757 			ebdp->cbd_esc = BD_ENET_TX_INT;
1758 		}
1759 
1760 		bdp = fec_enet_get_nextdesc(bdp, fep);
1761 	}
1762 
1763 	/* Set the last buffer to wrap. */
1764 	bdp = fec_enet_get_prevdesc(bdp, fep);
1765 	bdp->cbd_sc |= BD_SC_WRAP;
1766 
1767 	return 0;
1768 }
1769 
1770 static int
1771 fec_enet_open(struct net_device *ndev)
1772 {
1773 	struct fec_enet_private *fep = netdev_priv(ndev);
1774 	int ret;
1775 
1776 	/* I should reset the ring buffers here, but I don't yet know
1777 	 * a simple way to do that.
1778 	 */
1779 
1780 	ret = fec_enet_alloc_buffers(ndev);
1781 	if (ret)
1782 		return ret;
1783 
1784 	/* Probe and connect to PHY when open the interface */
1785 	ret = fec_enet_mii_probe(ndev);
1786 	if (ret) {
1787 		fec_enet_free_buffers(ndev);
1788 		return ret;
1789 	}
1790 
1791 	napi_enable(&fep->napi);
1792 	phy_start(fep->phy_dev);
1793 	netif_start_queue(ndev);
1794 	fep->opened = 1;
1795 	return 0;
1796 }
1797 
1798 static int
1799 fec_enet_close(struct net_device *ndev)
1800 {
1801 	struct fec_enet_private *fep = netdev_priv(ndev);
1802 
1803 	/* Don't know what to do yet. */
1804 	napi_disable(&fep->napi);
1805 	fep->opened = 0;
1806 	netif_stop_queue(ndev);
1807 	fec_stop(ndev);
1808 
1809 	if (fep->phy_dev) {
1810 		phy_stop(fep->phy_dev);
1811 		phy_disconnect(fep->phy_dev);
1812 	}
1813 
1814 	fec_enet_free_buffers(ndev);
1815 
1816 	return 0;
1817 }
1818 
1819 /* Set or clear the multicast filter for this adaptor.
1820  * Skeleton taken from sunlance driver.
1821  * The CPM Ethernet implementation allows Multicast as well as individual
1822  * MAC address filtering.  Some of the drivers check to make sure it is
1823  * a group multicast address, and discard those that are not.  I guess I
1824  * will do the same for now, but just remove the test if you want
1825  * individual filtering as well (do the upper net layers want or support
1826  * this kind of feature?).
1827  */
1828 
1829 #define HASH_BITS	6		/* #bits in hash */
1830 #define CRC32_POLY	0xEDB88320
1831 
1832 static void set_multicast_list(struct net_device *ndev)
1833 {
1834 	struct fec_enet_private *fep = netdev_priv(ndev);
1835 	struct netdev_hw_addr *ha;
1836 	unsigned int i, bit, data, crc, tmp;
1837 	unsigned char hash;
1838 
1839 	if (ndev->flags & IFF_PROMISC) {
1840 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1841 		tmp |= 0x8;
1842 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1843 		return;
1844 	}
1845 
1846 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1847 	tmp &= ~0x8;
1848 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1849 
1850 	if (ndev->flags & IFF_ALLMULTI) {
1851 		/* Catch all multicast addresses, so set the
1852 		 * filter to all 1's
1853 		 */
1854 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1855 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856 
1857 		return;
1858 	}
1859 
1860 	/* Clear filter and add the addresses in hash register
1861 	 */
1862 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1863 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1864 
1865 	netdev_for_each_mc_addr(ha, ndev) {
1866 		/* calculate crc32 value of mac address */
1867 		crc = 0xffffffff;
1868 
1869 		for (i = 0; i < ndev->addr_len; i++) {
1870 			data = ha->addr[i];
1871 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1872 				crc = (crc >> 1) ^
1873 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1874 			}
1875 		}
1876 
1877 		/* only upper 6 bits (HASH_BITS) are used
1878 		 * which point to specific bit in he hash registers
1879 		 */
1880 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1881 
1882 		if (hash > 31) {
1883 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1884 			tmp |= 1 << (hash - 32);
1885 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886 		} else {
1887 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1888 			tmp |= 1 << hash;
1889 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890 		}
1891 	}
1892 }
1893 
1894 /* Set a MAC change in hardware. */
1895 static int
1896 fec_set_mac_address(struct net_device *ndev, void *p)
1897 {
1898 	struct fec_enet_private *fep = netdev_priv(ndev);
1899 	struct sockaddr *addr = p;
1900 
1901 	if (addr) {
1902 		if (!is_valid_ether_addr(addr->sa_data))
1903 			return -EADDRNOTAVAIL;
1904 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1905 	}
1906 
1907 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1908 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1909 		fep->hwp + FEC_ADDR_LOW);
1910 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1911 		fep->hwp + FEC_ADDR_HIGH);
1912 	return 0;
1913 }
1914 
1915 #ifdef CONFIG_NET_POLL_CONTROLLER
1916 /**
1917  * fec_poll_controller - FEC Poll controller function
1918  * @dev: The FEC network adapter
1919  *
1920  * Polled functionality used by netconsole and others in non interrupt mode
1921  *
1922  */
1923 static void fec_poll_controller(struct net_device *dev)
1924 {
1925 	int i;
1926 	struct fec_enet_private *fep = netdev_priv(dev);
1927 
1928 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1929 		if (fep->irq[i] > 0) {
1930 			disable_irq(fep->irq[i]);
1931 			fec_enet_interrupt(fep->irq[i], dev);
1932 			enable_irq(fep->irq[i]);
1933 		}
1934 	}
1935 }
1936 #endif
1937 
1938 static int fec_set_features(struct net_device *netdev,
1939 	netdev_features_t features)
1940 {
1941 	struct fec_enet_private *fep = netdev_priv(netdev);
1942 	netdev_features_t changed = features ^ netdev->features;
1943 
1944 	netdev->features = features;
1945 
1946 	/* Receive checksum has been changed */
1947 	if (changed & NETIF_F_RXCSUM) {
1948 		if (features & NETIF_F_RXCSUM)
1949 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1950 		else
1951 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1952 
1953 		if (netif_running(netdev)) {
1954 			fec_stop(netdev);
1955 			fec_restart(netdev, fep->phy_dev->duplex);
1956 			netif_wake_queue(netdev);
1957 		} else {
1958 			fec_restart(netdev, fep->phy_dev->duplex);
1959 		}
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static const struct net_device_ops fec_netdev_ops = {
1966 	.ndo_open		= fec_enet_open,
1967 	.ndo_stop		= fec_enet_close,
1968 	.ndo_start_xmit		= fec_enet_start_xmit,
1969 	.ndo_set_rx_mode	= set_multicast_list,
1970 	.ndo_change_mtu		= eth_change_mtu,
1971 	.ndo_validate_addr	= eth_validate_addr,
1972 	.ndo_tx_timeout		= fec_timeout,
1973 	.ndo_set_mac_address	= fec_set_mac_address,
1974 	.ndo_do_ioctl		= fec_enet_ioctl,
1975 #ifdef CONFIG_NET_POLL_CONTROLLER
1976 	.ndo_poll_controller	= fec_poll_controller,
1977 #endif
1978 	.ndo_set_features	= fec_set_features,
1979 };
1980 
1981  /*
1982   * XXX:  We need to clean up on failure exits here.
1983   *
1984   */
1985 static int fec_enet_init(struct net_device *ndev)
1986 {
1987 	struct fec_enet_private *fep = netdev_priv(ndev);
1988 	const struct platform_device_id *id_entry =
1989 				platform_get_device_id(fep->pdev);
1990 	struct bufdesc *cbd_base;
1991 
1992 	/* Allocate memory for buffer descriptors. */
1993 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1994 				      GFP_KERNEL);
1995 	if (!cbd_base)
1996 		return -ENOMEM;
1997 
1998 	memset(cbd_base, 0, PAGE_SIZE);
1999 
2000 	fep->netdev = ndev;
2001 
2002 	/* Get the Ethernet address */
2003 	fec_get_mac(ndev);
2004 	/* make sure MAC we just acquired is programmed into the hw */
2005 	fec_set_mac_address(ndev, NULL);
2006 
2007 	/* init the tx & rx ring size */
2008 	fep->tx_ring_size = TX_RING_SIZE;
2009 	fep->rx_ring_size = RX_RING_SIZE;
2010 
2011 	/* Set receive and transmit descriptor base. */
2012 	fep->rx_bd_base = cbd_base;
2013 	if (fep->bufdesc_ex)
2014 		fep->tx_bd_base = (struct bufdesc *)
2015 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2016 	else
2017 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2018 
2019 	/* The FEC Ethernet specific entries in the device structure */
2020 	ndev->watchdog_timeo = TX_TIMEOUT;
2021 	ndev->netdev_ops = &fec_netdev_ops;
2022 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2023 
2024 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2025 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2026 
2027 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2028 		/* enable hw VLAN support */
2029 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2030 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2031 	}
2032 
2033 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2034 		/* enable hw accelerator */
2035 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2036 				| NETIF_F_RXCSUM);
2037 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038 				| NETIF_F_RXCSUM);
2039 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2040 	}
2041 
2042 	fec_restart(ndev, 0);
2043 
2044 	return 0;
2045 }
2046 
2047 #ifdef CONFIG_OF
2048 static void fec_reset_phy(struct platform_device *pdev)
2049 {
2050 	int err, phy_reset;
2051 	int msec = 1;
2052 	struct device_node *np = pdev->dev.of_node;
2053 
2054 	if (!np)
2055 		return;
2056 
2057 	of_property_read_u32(np, "phy-reset-duration", &msec);
2058 	/* A sane reset duration should not be longer than 1s */
2059 	if (msec > 1000)
2060 		msec = 1;
2061 
2062 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2063 	if (!gpio_is_valid(phy_reset))
2064 		return;
2065 
2066 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2067 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2068 	if (err) {
2069 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2070 		return;
2071 	}
2072 	msleep(msec);
2073 	gpio_set_value(phy_reset, 1);
2074 }
2075 #else /* CONFIG_OF */
2076 static void fec_reset_phy(struct platform_device *pdev)
2077 {
2078 	/*
2079 	 * In case of platform probe, the reset has been done
2080 	 * by machine code.
2081 	 */
2082 }
2083 #endif /* CONFIG_OF */
2084 
2085 static int
2086 fec_probe(struct platform_device *pdev)
2087 {
2088 	struct fec_enet_private *fep;
2089 	struct fec_platform_data *pdata;
2090 	struct net_device *ndev;
2091 	int i, irq, ret = 0;
2092 	struct resource *r;
2093 	const struct of_device_id *of_id;
2094 	static int dev_id;
2095 
2096 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2097 	if (of_id)
2098 		pdev->id_entry = of_id->data;
2099 
2100 	/* Init network device */
2101 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2102 	if (!ndev)
2103 		return -ENOMEM;
2104 
2105 	SET_NETDEV_DEV(ndev, &pdev->dev);
2106 
2107 	/* setup board info structure */
2108 	fep = netdev_priv(ndev);
2109 
2110 #if !defined(CONFIG_M5272)
2111 	/* default enable pause frame auto negotiation */
2112 	if (pdev->id_entry &&
2113 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2114 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2115 #endif
2116 
2117 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2118 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2119 	if (IS_ERR(fep->hwp)) {
2120 		ret = PTR_ERR(fep->hwp);
2121 		goto failed_ioremap;
2122 	}
2123 
2124 	fep->pdev = pdev;
2125 	fep->dev_id = dev_id++;
2126 
2127 	fep->bufdesc_ex = 0;
2128 
2129 	platform_set_drvdata(pdev, ndev);
2130 
2131 	ret = of_get_phy_mode(pdev->dev.of_node);
2132 	if (ret < 0) {
2133 		pdata = dev_get_platdata(&pdev->dev);
2134 		if (pdata)
2135 			fep->phy_interface = pdata->phy;
2136 		else
2137 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2138 	} else {
2139 		fep->phy_interface = ret;
2140 	}
2141 
2142 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2143 	if (IS_ERR(fep->clk_ipg)) {
2144 		ret = PTR_ERR(fep->clk_ipg);
2145 		goto failed_clk;
2146 	}
2147 
2148 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2149 	if (IS_ERR(fep->clk_ahb)) {
2150 		ret = PTR_ERR(fep->clk_ahb);
2151 		goto failed_clk;
2152 	}
2153 
2154 	/* enet_out is optional, depends on board */
2155 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2156 	if (IS_ERR(fep->clk_enet_out))
2157 		fep->clk_enet_out = NULL;
2158 
2159 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2160 	fep->bufdesc_ex =
2161 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2162 	if (IS_ERR(fep->clk_ptp)) {
2163 		fep->clk_ptp = NULL;
2164 		fep->bufdesc_ex = 0;
2165 	}
2166 
2167 	ret = clk_prepare_enable(fep->clk_ahb);
2168 	if (ret)
2169 		goto failed_clk;
2170 
2171 	ret = clk_prepare_enable(fep->clk_ipg);
2172 	if (ret)
2173 		goto failed_clk_ipg;
2174 
2175 	if (fep->clk_enet_out) {
2176 		ret = clk_prepare_enable(fep->clk_enet_out);
2177 		if (ret)
2178 			goto failed_clk_enet_out;
2179 	}
2180 
2181 	if (fep->clk_ptp) {
2182 		ret = clk_prepare_enable(fep->clk_ptp);
2183 		if (ret)
2184 			goto failed_clk_ptp;
2185 	}
2186 
2187 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2188 	if (!IS_ERR(fep->reg_phy)) {
2189 		ret = regulator_enable(fep->reg_phy);
2190 		if (ret) {
2191 			dev_err(&pdev->dev,
2192 				"Failed to enable phy regulator: %d\n", ret);
2193 			goto failed_regulator;
2194 		}
2195 	} else {
2196 		fep->reg_phy = NULL;
2197 	}
2198 
2199 	fec_reset_phy(pdev);
2200 
2201 	if (fep->bufdesc_ex)
2202 		fec_ptp_init(pdev);
2203 
2204 	ret = fec_enet_init(ndev);
2205 	if (ret)
2206 		goto failed_init;
2207 
2208 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2209 		irq = platform_get_irq(pdev, i);
2210 		if (irq < 0) {
2211 			if (i)
2212 				break;
2213 			ret = irq;
2214 			goto failed_irq;
2215 		}
2216 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2217 				       0, pdev->name, ndev);
2218 		if (ret)
2219 			goto failed_irq;
2220 	}
2221 
2222 	ret = fec_enet_mii_init(pdev);
2223 	if (ret)
2224 		goto failed_mii_init;
2225 
2226 	/* Carrier starts down, phylib will bring it up */
2227 	netif_carrier_off(ndev);
2228 
2229 	ret = register_netdev(ndev);
2230 	if (ret)
2231 		goto failed_register;
2232 
2233 	if (fep->bufdesc_ex && fep->ptp_clock)
2234 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2235 
2236 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2237 	return 0;
2238 
2239 failed_register:
2240 	fec_enet_mii_remove(fep);
2241 failed_mii_init:
2242 failed_irq:
2243 failed_init:
2244 	if (fep->reg_phy)
2245 		regulator_disable(fep->reg_phy);
2246 failed_regulator:
2247 	if (fep->clk_ptp)
2248 		clk_disable_unprepare(fep->clk_ptp);
2249 failed_clk_ptp:
2250 	if (fep->clk_enet_out)
2251 		clk_disable_unprepare(fep->clk_enet_out);
2252 failed_clk_enet_out:
2253 	clk_disable_unprepare(fep->clk_ipg);
2254 failed_clk_ipg:
2255 	clk_disable_unprepare(fep->clk_ahb);
2256 failed_clk:
2257 failed_ioremap:
2258 	free_netdev(ndev);
2259 
2260 	return ret;
2261 }
2262 
2263 static int
2264 fec_drv_remove(struct platform_device *pdev)
2265 {
2266 	struct net_device *ndev = platform_get_drvdata(pdev);
2267 	struct fec_enet_private *fep = netdev_priv(ndev);
2268 
2269 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2270 	unregister_netdev(ndev);
2271 	fec_enet_mii_remove(fep);
2272 	del_timer_sync(&fep->time_keep);
2273 	if (fep->reg_phy)
2274 		regulator_disable(fep->reg_phy);
2275 	if (fep->clk_ptp)
2276 		clk_disable_unprepare(fep->clk_ptp);
2277 	if (fep->ptp_clock)
2278 		ptp_clock_unregister(fep->ptp_clock);
2279 	if (fep->clk_enet_out)
2280 		clk_disable_unprepare(fep->clk_enet_out);
2281 	clk_disable_unprepare(fep->clk_ipg);
2282 	clk_disable_unprepare(fep->clk_ahb);
2283 	free_netdev(ndev);
2284 
2285 	return 0;
2286 }
2287 
2288 #ifdef CONFIG_PM_SLEEP
2289 static int
2290 fec_suspend(struct device *dev)
2291 {
2292 	struct net_device *ndev = dev_get_drvdata(dev);
2293 	struct fec_enet_private *fep = netdev_priv(ndev);
2294 
2295 	if (netif_running(ndev)) {
2296 		fec_stop(ndev);
2297 		netif_device_detach(ndev);
2298 	}
2299 	if (fep->clk_ptp)
2300 		clk_disable_unprepare(fep->clk_ptp);
2301 	if (fep->clk_enet_out)
2302 		clk_disable_unprepare(fep->clk_enet_out);
2303 	clk_disable_unprepare(fep->clk_ipg);
2304 	clk_disable_unprepare(fep->clk_ahb);
2305 
2306 	if (fep->reg_phy)
2307 		regulator_disable(fep->reg_phy);
2308 
2309 	return 0;
2310 }
2311 
2312 static int
2313 fec_resume(struct device *dev)
2314 {
2315 	struct net_device *ndev = dev_get_drvdata(dev);
2316 	struct fec_enet_private *fep = netdev_priv(ndev);
2317 	int ret;
2318 
2319 	if (fep->reg_phy) {
2320 		ret = regulator_enable(fep->reg_phy);
2321 		if (ret)
2322 			return ret;
2323 	}
2324 
2325 	ret = clk_prepare_enable(fep->clk_ahb);
2326 	if (ret)
2327 		goto failed_clk_ahb;
2328 
2329 	ret = clk_prepare_enable(fep->clk_ipg);
2330 	if (ret)
2331 		goto failed_clk_ipg;
2332 
2333 	if (fep->clk_enet_out) {
2334 		ret = clk_prepare_enable(fep->clk_enet_out);
2335 		if (ret)
2336 			goto failed_clk_enet_out;
2337 	}
2338 
2339 	if (fep->clk_ptp) {
2340 		ret = clk_prepare_enable(fep->clk_ptp);
2341 		if (ret)
2342 			goto failed_clk_ptp;
2343 	}
2344 
2345 	if (netif_running(ndev)) {
2346 		fec_restart(ndev, fep->full_duplex);
2347 		netif_device_attach(ndev);
2348 	}
2349 
2350 	return 0;
2351 
2352 failed_clk_ptp:
2353 	if (fep->clk_enet_out)
2354 		clk_disable_unprepare(fep->clk_enet_out);
2355 failed_clk_enet_out:
2356 	clk_disable_unprepare(fep->clk_ipg);
2357 failed_clk_ipg:
2358 	clk_disable_unprepare(fep->clk_ahb);
2359 failed_clk_ahb:
2360 	if (fep->reg_phy)
2361 		regulator_disable(fep->reg_phy);
2362 	return ret;
2363 }
2364 #endif /* CONFIG_PM_SLEEP */
2365 
2366 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2367 
2368 static struct platform_driver fec_driver = {
2369 	.driver	= {
2370 		.name	= DRIVER_NAME,
2371 		.owner	= THIS_MODULE,
2372 		.pm	= &fec_pm_ops,
2373 		.of_match_table = fec_dt_ids,
2374 	},
2375 	.id_table = fec_devtype,
2376 	.probe	= fec_probe,
2377 	.remove	= fec_drv_remove,
2378 };
2379 
2380 module_platform_driver(fec_driver);
2381 
2382 MODULE_ALIAS("platform:"DRIVER_NAME);
2383 MODULE_LICENSE("GPL");
2384