1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx6q_info = { 107 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 108 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 109 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 110 FEC_QUIRK_HAS_RACC, 111 }; 112 113 static const struct fec_devinfo fec_mvf600_info = { 114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 115 }; 116 117 static const struct fec_devinfo fec_imx6x_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 121 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 123 }; 124 125 static const struct fec_devinfo fec_imx6ul_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 127 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 128 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 129 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 130 FEC_QUIRK_HAS_COALESCE, 131 }; 132 133 static struct platform_device_id fec_devtype[] = { 134 { 135 /* keep it for coldfire */ 136 .name = DRIVER_NAME, 137 .driver_data = 0, 138 }, { 139 .name = "imx25-fec", 140 .driver_data = (kernel_ulong_t)&fec_imx25_info, 141 }, { 142 .name = "imx27-fec", 143 .driver_data = (kernel_ulong_t)&fec_imx27_info, 144 }, { 145 .name = "imx28-fec", 146 .driver_data = (kernel_ulong_t)&fec_imx28_info, 147 }, { 148 .name = "imx6q-fec", 149 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 150 }, { 151 .name = "mvf600-fec", 152 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 153 }, { 154 .name = "imx6sx-fec", 155 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 156 }, { 157 .name = "imx6ul-fec", 158 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 159 }, { 160 /* sentinel */ 161 } 162 }; 163 MODULE_DEVICE_TABLE(platform, fec_devtype); 164 165 enum imx_fec_type { 166 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 167 IMX27_FEC, /* runs on i.mx27/35/51 */ 168 IMX28_FEC, 169 IMX6Q_FEC, 170 MVF600_FEC, 171 IMX6SX_FEC, 172 IMX6UL_FEC, 173 }; 174 175 static const struct of_device_id fec_dt_ids[] = { 176 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 177 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 178 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 179 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 180 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 181 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 182 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 183 { /* sentinel */ } 184 }; 185 MODULE_DEVICE_TABLE(of, fec_dt_ids); 186 187 static unsigned char macaddr[ETH_ALEN]; 188 module_param_array(macaddr, byte, NULL, 0); 189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 190 191 #if defined(CONFIG_M5272) 192 /* 193 * Some hardware gets it MAC address out of local flash memory. 194 * if this is non-zero then assume it is the address to get MAC from. 195 */ 196 #if defined(CONFIG_NETtel) 197 #define FEC_FLASHMAC 0xf0006006 198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 199 #define FEC_FLASHMAC 0xf0006000 200 #elif defined(CONFIG_CANCam) 201 #define FEC_FLASHMAC 0xf0020000 202 #elif defined (CONFIG_M5272C3) 203 #define FEC_FLASHMAC (0xffe04000 + 4) 204 #elif defined(CONFIG_MOD5272) 205 #define FEC_FLASHMAC 0xffc0406b 206 #else 207 #define FEC_FLASHMAC 0 208 #endif 209 #endif /* CONFIG_M5272 */ 210 211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 212 * 213 * 2048 byte skbufs are allocated. However, alignment requirements 214 * varies between FEC variants. Worst case is 64, so round down by 64. 215 */ 216 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 217 #define PKT_MINBUF_SIZE 64 218 219 /* FEC receive acceleration */ 220 #define FEC_RACC_IPDIS (1 << 1) 221 #define FEC_RACC_PRODIS (1 << 2) 222 #define FEC_RACC_SHIFT16 BIT(7) 223 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 224 225 /* MIB Control Register */ 226 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 227 228 /* 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 230 * size bits. Other FEC hardware does not, so we need to take that into 231 * account when setting it. 232 */ 233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 234 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 235 defined(CONFIG_ARM64) 236 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 237 #else 238 #define OPT_FRAME_SIZE 0 239 #endif 240 241 /* FEC MII MMFR bits definition */ 242 #define FEC_MMFR_ST (1 << 30) 243 #define FEC_MMFR_ST_C45 (0) 244 #define FEC_MMFR_OP_READ (2 << 28) 245 #define FEC_MMFR_OP_READ_C45 (3 << 28) 246 #define FEC_MMFR_OP_WRITE (1 << 28) 247 #define FEC_MMFR_OP_ADDR_WRITE (0) 248 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 249 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 250 #define FEC_MMFR_TA (2 << 16) 251 #define FEC_MMFR_DATA(v) (v & 0xffff) 252 /* FEC ECR bits definition */ 253 #define FEC_ECR_MAGICEN (1 << 2) 254 #define FEC_ECR_SLEEP (1 << 3) 255 256 #define FEC_MII_TIMEOUT 30000 /* us */ 257 258 /* Transmitter timeout */ 259 #define TX_TIMEOUT (2 * HZ) 260 261 #define FEC_PAUSE_FLAG_AUTONEG 0x1 262 #define FEC_PAUSE_FLAG_ENABLE 0x2 263 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 264 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 265 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 266 267 #define COPYBREAK_DEFAULT 256 268 269 /* Max number of allowed TCP segments for software TSO */ 270 #define FEC_MAX_TSO_SEGS 100 271 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 272 273 #define IS_TSO_HEADER(txq, addr) \ 274 ((addr >= txq->tso_hdrs_dma) && \ 275 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 276 277 static int mii_cnt; 278 279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 280 struct bufdesc_prop *bd) 281 { 282 return (bdp >= bd->last) ? bd->base 283 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 284 } 285 286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 287 struct bufdesc_prop *bd) 288 { 289 return (bdp <= bd->base) ? bd->last 290 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 291 } 292 293 static int fec_enet_get_bd_index(struct bufdesc *bdp, 294 struct bufdesc_prop *bd) 295 { 296 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 297 } 298 299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 300 { 301 int entries; 302 303 entries = (((const char *)txq->dirty_tx - 304 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 305 306 return entries >= 0 ? entries : entries + txq->bd.ring_size; 307 } 308 309 static void swap_buffer(void *bufaddr, int len) 310 { 311 int i; 312 unsigned int *buf = bufaddr; 313 314 for (i = 0; i < len; i += 4, buf++) 315 swab32s(buf); 316 } 317 318 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 319 { 320 int i; 321 unsigned int *src = src_buf; 322 unsigned int *dst = dst_buf; 323 324 for (i = 0; i < len; i += 4, src++, dst++) 325 *dst = swab32p(src); 326 } 327 328 static void fec_dump(struct net_device *ndev) 329 { 330 struct fec_enet_private *fep = netdev_priv(ndev); 331 struct bufdesc *bdp; 332 struct fec_enet_priv_tx_q *txq; 333 int index = 0; 334 335 netdev_info(ndev, "TX ring dump\n"); 336 pr_info("Nr SC addr len SKB\n"); 337 338 txq = fep->tx_queue[0]; 339 bdp = txq->bd.base; 340 341 do { 342 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 343 index, 344 bdp == txq->bd.cur ? 'S' : ' ', 345 bdp == txq->dirty_tx ? 'H' : ' ', 346 fec16_to_cpu(bdp->cbd_sc), 347 fec32_to_cpu(bdp->cbd_bufaddr), 348 fec16_to_cpu(bdp->cbd_datlen), 349 txq->tx_skbuff[index]); 350 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 351 index++; 352 } while (bdp != txq->bd.base); 353 } 354 355 static inline bool is_ipv4_pkt(struct sk_buff *skb) 356 { 357 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 358 } 359 360 static int 361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 362 { 363 /* Only run for packets requiring a checksum. */ 364 if (skb->ip_summed != CHECKSUM_PARTIAL) 365 return 0; 366 367 if (unlikely(skb_cow_head(skb, 0))) 368 return -1; 369 370 if (is_ipv4_pkt(skb)) 371 ip_hdr(skb)->check = 0; 372 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 373 374 return 0; 375 } 376 377 static struct bufdesc * 378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 379 struct sk_buff *skb, 380 struct net_device *ndev) 381 { 382 struct fec_enet_private *fep = netdev_priv(ndev); 383 struct bufdesc *bdp = txq->bd.cur; 384 struct bufdesc_ex *ebdp; 385 int nr_frags = skb_shinfo(skb)->nr_frags; 386 int frag, frag_len; 387 unsigned short status; 388 unsigned int estatus = 0; 389 skb_frag_t *this_frag; 390 unsigned int index; 391 void *bufaddr; 392 dma_addr_t addr; 393 int i; 394 395 for (frag = 0; frag < nr_frags; frag++) { 396 this_frag = &skb_shinfo(skb)->frags[frag]; 397 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 398 ebdp = (struct bufdesc_ex *)bdp; 399 400 status = fec16_to_cpu(bdp->cbd_sc); 401 status &= ~BD_ENET_TX_STATS; 402 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 403 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 404 405 /* Handle the last BD specially */ 406 if (frag == nr_frags - 1) { 407 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 408 if (fep->bufdesc_ex) { 409 estatus |= BD_ENET_TX_INT; 410 if (unlikely(skb_shinfo(skb)->tx_flags & 411 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 412 estatus |= BD_ENET_TX_TS; 413 } 414 } 415 416 if (fep->bufdesc_ex) { 417 if (fep->quirks & FEC_QUIRK_HAS_AVB) 418 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 419 if (skb->ip_summed == CHECKSUM_PARTIAL) 420 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 421 ebdp->cbd_bdu = 0; 422 ebdp->cbd_esc = cpu_to_fec32(estatus); 423 } 424 425 bufaddr = skb_frag_address(this_frag); 426 427 index = fec_enet_get_bd_index(bdp, &txq->bd); 428 if (((unsigned long) bufaddr) & fep->tx_align || 429 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 430 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 431 bufaddr = txq->tx_bounce[index]; 432 433 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 434 swap_buffer(bufaddr, frag_len); 435 } 436 437 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 438 DMA_TO_DEVICE); 439 if (dma_mapping_error(&fep->pdev->dev, addr)) { 440 if (net_ratelimit()) 441 netdev_err(ndev, "Tx DMA memory map failed\n"); 442 goto dma_mapping_error; 443 } 444 445 bdp->cbd_bufaddr = cpu_to_fec32(addr); 446 bdp->cbd_datlen = cpu_to_fec16(frag_len); 447 /* Make sure the updates to rest of the descriptor are 448 * performed before transferring ownership. 449 */ 450 wmb(); 451 bdp->cbd_sc = cpu_to_fec16(status); 452 } 453 454 return bdp; 455 dma_mapping_error: 456 bdp = txq->bd.cur; 457 for (i = 0; i < frag; i++) { 458 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 459 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 460 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 461 } 462 return ERR_PTR(-ENOMEM); 463 } 464 465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 466 struct sk_buff *skb, struct net_device *ndev) 467 { 468 struct fec_enet_private *fep = netdev_priv(ndev); 469 int nr_frags = skb_shinfo(skb)->nr_frags; 470 struct bufdesc *bdp, *last_bdp; 471 void *bufaddr; 472 dma_addr_t addr; 473 unsigned short status; 474 unsigned short buflen; 475 unsigned int estatus = 0; 476 unsigned int index; 477 int entries_free; 478 479 entries_free = fec_enet_get_free_txdesc_num(txq); 480 if (entries_free < MAX_SKB_FRAGS + 1) { 481 dev_kfree_skb_any(skb); 482 if (net_ratelimit()) 483 netdev_err(ndev, "NOT enough BD for SG!\n"); 484 return NETDEV_TX_OK; 485 } 486 487 /* Protocol checksum off-load for TCP and UDP. */ 488 if (fec_enet_clear_csum(skb, ndev)) { 489 dev_kfree_skb_any(skb); 490 return NETDEV_TX_OK; 491 } 492 493 /* Fill in a Tx ring entry */ 494 bdp = txq->bd.cur; 495 last_bdp = bdp; 496 status = fec16_to_cpu(bdp->cbd_sc); 497 status &= ~BD_ENET_TX_STATS; 498 499 /* Set buffer length and buffer pointer */ 500 bufaddr = skb->data; 501 buflen = skb_headlen(skb); 502 503 index = fec_enet_get_bd_index(bdp, &txq->bd); 504 if (((unsigned long) bufaddr) & fep->tx_align || 505 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 506 memcpy(txq->tx_bounce[index], skb->data, buflen); 507 bufaddr = txq->tx_bounce[index]; 508 509 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 510 swap_buffer(bufaddr, buflen); 511 } 512 513 /* Push the data cache so the CPM does not get stale memory data. */ 514 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 515 if (dma_mapping_error(&fep->pdev->dev, addr)) { 516 dev_kfree_skb_any(skb); 517 if (net_ratelimit()) 518 netdev_err(ndev, "Tx DMA memory map failed\n"); 519 return NETDEV_TX_OK; 520 } 521 522 if (nr_frags) { 523 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 524 if (IS_ERR(last_bdp)) { 525 dma_unmap_single(&fep->pdev->dev, addr, 526 buflen, DMA_TO_DEVICE); 527 dev_kfree_skb_any(skb); 528 return NETDEV_TX_OK; 529 } 530 } else { 531 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 532 if (fep->bufdesc_ex) { 533 estatus = BD_ENET_TX_INT; 534 if (unlikely(skb_shinfo(skb)->tx_flags & 535 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 536 estatus |= BD_ENET_TX_TS; 537 } 538 } 539 bdp->cbd_bufaddr = cpu_to_fec32(addr); 540 bdp->cbd_datlen = cpu_to_fec16(buflen); 541 542 if (fep->bufdesc_ex) { 543 544 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 545 546 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 547 fep->hwts_tx_en)) 548 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 549 550 if (fep->quirks & FEC_QUIRK_HAS_AVB) 551 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 552 553 if (skb->ip_summed == CHECKSUM_PARTIAL) 554 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 555 556 ebdp->cbd_bdu = 0; 557 ebdp->cbd_esc = cpu_to_fec32(estatus); 558 } 559 560 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 561 /* Save skb pointer */ 562 txq->tx_skbuff[index] = skb; 563 564 /* Make sure the updates to rest of the descriptor are performed before 565 * transferring ownership. 566 */ 567 wmb(); 568 569 /* Send it on its way. Tell FEC it's ready, interrupt when done, 570 * it's the last BD of the frame, and to put the CRC on the end. 571 */ 572 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 573 bdp->cbd_sc = cpu_to_fec16(status); 574 575 /* If this was the last BD in the ring, start at the beginning again. */ 576 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 577 578 skb_tx_timestamp(skb); 579 580 /* Make sure the update to bdp and tx_skbuff are performed before 581 * txq->bd.cur. 582 */ 583 wmb(); 584 txq->bd.cur = bdp; 585 586 /* Trigger transmission start */ 587 writel(0, txq->bd.reg_desc_active); 588 589 return 0; 590 } 591 592 static int 593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 594 struct net_device *ndev, 595 struct bufdesc *bdp, int index, char *data, 596 int size, bool last_tcp, bool is_last) 597 { 598 struct fec_enet_private *fep = netdev_priv(ndev); 599 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 600 unsigned short status; 601 unsigned int estatus = 0; 602 dma_addr_t addr; 603 604 status = fec16_to_cpu(bdp->cbd_sc); 605 status &= ~BD_ENET_TX_STATS; 606 607 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 608 609 if (((unsigned long) data) & fep->tx_align || 610 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 611 memcpy(txq->tx_bounce[index], data, size); 612 data = txq->tx_bounce[index]; 613 614 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 615 swap_buffer(data, size); 616 } 617 618 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 619 if (dma_mapping_error(&fep->pdev->dev, addr)) { 620 dev_kfree_skb_any(skb); 621 if (net_ratelimit()) 622 netdev_err(ndev, "Tx DMA memory map failed\n"); 623 return NETDEV_TX_BUSY; 624 } 625 626 bdp->cbd_datlen = cpu_to_fec16(size); 627 bdp->cbd_bufaddr = cpu_to_fec32(addr); 628 629 if (fep->bufdesc_ex) { 630 if (fep->quirks & FEC_QUIRK_HAS_AVB) 631 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 632 if (skb->ip_summed == CHECKSUM_PARTIAL) 633 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 634 ebdp->cbd_bdu = 0; 635 ebdp->cbd_esc = cpu_to_fec32(estatus); 636 } 637 638 /* Handle the last BD specially */ 639 if (last_tcp) 640 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 641 if (is_last) { 642 status |= BD_ENET_TX_INTR; 643 if (fep->bufdesc_ex) 644 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 645 } 646 647 bdp->cbd_sc = cpu_to_fec16(status); 648 649 return 0; 650 } 651 652 static int 653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 654 struct sk_buff *skb, struct net_device *ndev, 655 struct bufdesc *bdp, int index) 656 { 657 struct fec_enet_private *fep = netdev_priv(ndev); 658 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 659 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 660 void *bufaddr; 661 unsigned long dmabuf; 662 unsigned short status; 663 unsigned int estatus = 0; 664 665 status = fec16_to_cpu(bdp->cbd_sc); 666 status &= ~BD_ENET_TX_STATS; 667 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 668 669 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 670 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 671 if (((unsigned long)bufaddr) & fep->tx_align || 672 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 673 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 674 bufaddr = txq->tx_bounce[index]; 675 676 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 677 swap_buffer(bufaddr, hdr_len); 678 679 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 680 hdr_len, DMA_TO_DEVICE); 681 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 682 dev_kfree_skb_any(skb); 683 if (net_ratelimit()) 684 netdev_err(ndev, "Tx DMA memory map failed\n"); 685 return NETDEV_TX_BUSY; 686 } 687 } 688 689 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 690 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 691 692 if (fep->bufdesc_ex) { 693 if (fep->quirks & FEC_QUIRK_HAS_AVB) 694 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 695 if (skb->ip_summed == CHECKSUM_PARTIAL) 696 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 697 ebdp->cbd_bdu = 0; 698 ebdp->cbd_esc = cpu_to_fec32(estatus); 699 } 700 701 bdp->cbd_sc = cpu_to_fec16(status); 702 703 return 0; 704 } 705 706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 707 struct sk_buff *skb, 708 struct net_device *ndev) 709 { 710 struct fec_enet_private *fep = netdev_priv(ndev); 711 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 712 int total_len, data_left; 713 struct bufdesc *bdp = txq->bd.cur; 714 struct tso_t tso; 715 unsigned int index = 0; 716 int ret; 717 718 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 719 dev_kfree_skb_any(skb); 720 if (net_ratelimit()) 721 netdev_err(ndev, "NOT enough BD for TSO!\n"); 722 return NETDEV_TX_OK; 723 } 724 725 /* Protocol checksum off-load for TCP and UDP. */ 726 if (fec_enet_clear_csum(skb, ndev)) { 727 dev_kfree_skb_any(skb); 728 return NETDEV_TX_OK; 729 } 730 731 /* Initialize the TSO handler, and prepare the first payload */ 732 tso_start(skb, &tso); 733 734 total_len = skb->len - hdr_len; 735 while (total_len > 0) { 736 char *hdr; 737 738 index = fec_enet_get_bd_index(bdp, &txq->bd); 739 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 740 total_len -= data_left; 741 742 /* prepare packet headers: MAC + IP + TCP */ 743 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 744 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 745 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 746 if (ret) 747 goto err_release; 748 749 while (data_left > 0) { 750 int size; 751 752 size = min_t(int, tso.size, data_left); 753 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 754 index = fec_enet_get_bd_index(bdp, &txq->bd); 755 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 756 bdp, index, 757 tso.data, size, 758 size == data_left, 759 total_len == 0); 760 if (ret) 761 goto err_release; 762 763 data_left -= size; 764 tso_build_data(skb, &tso, size); 765 } 766 767 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 768 } 769 770 /* Save skb pointer */ 771 txq->tx_skbuff[index] = skb; 772 773 skb_tx_timestamp(skb); 774 txq->bd.cur = bdp; 775 776 /* Trigger transmission start */ 777 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 778 !readl(txq->bd.reg_desc_active) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active) || 781 !readl(txq->bd.reg_desc_active)) 782 writel(0, txq->bd.reg_desc_active); 783 784 return 0; 785 786 err_release: 787 /* TODO: Release all used data descriptors for TSO */ 788 return ret; 789 } 790 791 static netdev_tx_t 792 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 793 { 794 struct fec_enet_private *fep = netdev_priv(ndev); 795 int entries_free; 796 unsigned short queue; 797 struct fec_enet_priv_tx_q *txq; 798 struct netdev_queue *nq; 799 int ret; 800 801 queue = skb_get_queue_mapping(skb); 802 txq = fep->tx_queue[queue]; 803 nq = netdev_get_tx_queue(ndev, queue); 804 805 if (skb_is_gso(skb)) 806 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 807 else 808 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 809 if (ret) 810 return ret; 811 812 entries_free = fec_enet_get_free_txdesc_num(txq); 813 if (entries_free <= txq->tx_stop_threshold) 814 netif_tx_stop_queue(nq); 815 816 return NETDEV_TX_OK; 817 } 818 819 /* Init RX & TX buffer descriptors 820 */ 821 static void fec_enet_bd_init(struct net_device *dev) 822 { 823 struct fec_enet_private *fep = netdev_priv(dev); 824 struct fec_enet_priv_tx_q *txq; 825 struct fec_enet_priv_rx_q *rxq; 826 struct bufdesc *bdp; 827 unsigned int i; 828 unsigned int q; 829 830 for (q = 0; q < fep->num_rx_queues; q++) { 831 /* Initialize the receive buffer descriptors. */ 832 rxq = fep->rx_queue[q]; 833 bdp = rxq->bd.base; 834 835 for (i = 0; i < rxq->bd.ring_size; i++) { 836 837 /* Initialize the BD for every fragment in the page. */ 838 if (bdp->cbd_bufaddr) 839 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 840 else 841 bdp->cbd_sc = cpu_to_fec16(0); 842 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 843 } 844 845 /* Set the last buffer to wrap */ 846 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 847 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 848 849 rxq->bd.cur = rxq->bd.base; 850 } 851 852 for (q = 0; q < fep->num_tx_queues; q++) { 853 /* ...and the same for transmit */ 854 txq = fep->tx_queue[q]; 855 bdp = txq->bd.base; 856 txq->bd.cur = bdp; 857 858 for (i = 0; i < txq->bd.ring_size; i++) { 859 /* Initialize the BD for every fragment in the page. */ 860 bdp->cbd_sc = cpu_to_fec16(0); 861 if (bdp->cbd_bufaddr && 862 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 863 dma_unmap_single(&fep->pdev->dev, 864 fec32_to_cpu(bdp->cbd_bufaddr), 865 fec16_to_cpu(bdp->cbd_datlen), 866 DMA_TO_DEVICE); 867 if (txq->tx_skbuff[i]) { 868 dev_kfree_skb_any(txq->tx_skbuff[i]); 869 txq->tx_skbuff[i] = NULL; 870 } 871 bdp->cbd_bufaddr = cpu_to_fec32(0); 872 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 873 } 874 875 /* Set the last buffer to wrap */ 876 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 877 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 878 txq->dirty_tx = bdp; 879 } 880 } 881 882 static void fec_enet_active_rxring(struct net_device *ndev) 883 { 884 struct fec_enet_private *fep = netdev_priv(ndev); 885 int i; 886 887 for (i = 0; i < fep->num_rx_queues; i++) 888 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 889 } 890 891 static void fec_enet_enable_ring(struct net_device *ndev) 892 { 893 struct fec_enet_private *fep = netdev_priv(ndev); 894 struct fec_enet_priv_tx_q *txq; 895 struct fec_enet_priv_rx_q *rxq; 896 int i; 897 898 for (i = 0; i < fep->num_rx_queues; i++) { 899 rxq = fep->rx_queue[i]; 900 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 901 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 902 903 /* enable DMA1/2 */ 904 if (i) 905 writel(RCMR_MATCHEN | RCMR_CMP(i), 906 fep->hwp + FEC_RCMR(i)); 907 } 908 909 for (i = 0; i < fep->num_tx_queues; i++) { 910 txq = fep->tx_queue[i]; 911 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 912 913 /* enable DMA1/2 */ 914 if (i) 915 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 916 fep->hwp + FEC_DMA_CFG(i)); 917 } 918 } 919 920 static void fec_enet_reset_skb(struct net_device *ndev) 921 { 922 struct fec_enet_private *fep = netdev_priv(ndev); 923 struct fec_enet_priv_tx_q *txq; 924 int i, j; 925 926 for (i = 0; i < fep->num_tx_queues; i++) { 927 txq = fep->tx_queue[i]; 928 929 for (j = 0; j < txq->bd.ring_size; j++) { 930 if (txq->tx_skbuff[j]) { 931 dev_kfree_skb_any(txq->tx_skbuff[j]); 932 txq->tx_skbuff[j] = NULL; 933 } 934 } 935 } 936 } 937 938 /* 939 * This function is called to start or restart the FEC during a link 940 * change, transmit timeout, or to reconfigure the FEC. The network 941 * packet processing for this device must be stopped before this call. 942 */ 943 static void 944 fec_restart(struct net_device *ndev) 945 { 946 struct fec_enet_private *fep = netdev_priv(ndev); 947 u32 val; 948 u32 temp_mac[2]; 949 u32 rcntl = OPT_FRAME_SIZE | 0x04; 950 u32 ecntl = 0x2; /* ETHEREN */ 951 952 /* Whack a reset. We should wait for this. 953 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 954 * instead of reset MAC itself. 955 */ 956 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 957 writel(0, fep->hwp + FEC_ECNTRL); 958 } else { 959 writel(1, fep->hwp + FEC_ECNTRL); 960 udelay(10); 961 } 962 963 /* 964 * enet-mac reset will reset mac address registers too, 965 * so need to reconfigure it. 966 */ 967 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 968 writel((__force u32)cpu_to_be32(temp_mac[0]), 969 fep->hwp + FEC_ADDR_LOW); 970 writel((__force u32)cpu_to_be32(temp_mac[1]), 971 fep->hwp + FEC_ADDR_HIGH); 972 973 /* Clear any outstanding interrupt, except MDIO. */ 974 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 975 976 fec_enet_bd_init(ndev); 977 978 fec_enet_enable_ring(ndev); 979 980 /* Reset tx SKB buffers. */ 981 fec_enet_reset_skb(ndev); 982 983 /* Enable MII mode */ 984 if (fep->full_duplex == DUPLEX_FULL) { 985 /* FD enable */ 986 writel(0x04, fep->hwp + FEC_X_CNTRL); 987 } else { 988 /* No Rcv on Xmit */ 989 rcntl |= 0x02; 990 writel(0x0, fep->hwp + FEC_X_CNTRL); 991 } 992 993 /* Set MII speed */ 994 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 995 996 #if !defined(CONFIG_M5272) 997 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 998 val = readl(fep->hwp + FEC_RACC); 999 /* align IP header */ 1000 val |= FEC_RACC_SHIFT16; 1001 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1002 /* set RX checksum */ 1003 val |= FEC_RACC_OPTIONS; 1004 else 1005 val &= ~FEC_RACC_OPTIONS; 1006 writel(val, fep->hwp + FEC_RACC); 1007 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1008 } 1009 #endif 1010 1011 /* 1012 * The phy interface and speed need to get configured 1013 * differently on enet-mac. 1014 */ 1015 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1016 /* Enable flow control and length check */ 1017 rcntl |= 0x40000000 | 0x00000020; 1018 1019 /* RGMII, RMII or MII */ 1020 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1021 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1022 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1024 rcntl |= (1 << 6); 1025 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1026 rcntl |= (1 << 8); 1027 else 1028 rcntl &= ~(1 << 8); 1029 1030 /* 1G, 100M or 10M */ 1031 if (ndev->phydev) { 1032 if (ndev->phydev->speed == SPEED_1000) 1033 ecntl |= (1 << 5); 1034 else if (ndev->phydev->speed == SPEED_100) 1035 rcntl &= ~(1 << 9); 1036 else 1037 rcntl |= (1 << 9); 1038 } 1039 } else { 1040 #ifdef FEC_MIIGSK_ENR 1041 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1042 u32 cfgr; 1043 /* disable the gasket and wait */ 1044 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1045 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1046 udelay(1); 1047 1048 /* 1049 * configure the gasket: 1050 * RMII, 50 MHz, no loopback, no echo 1051 * MII, 25 MHz, no loopback, no echo 1052 */ 1053 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1054 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1055 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1056 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1057 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1058 1059 /* re-enable the gasket */ 1060 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1061 } 1062 #endif 1063 } 1064 1065 #if !defined(CONFIG_M5272) 1066 /* enable pause frame*/ 1067 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1068 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1069 ndev->phydev && ndev->phydev->pause)) { 1070 rcntl |= FEC_ENET_FCE; 1071 1072 /* set FIFO threshold parameter to reduce overrun */ 1073 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1074 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1075 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1076 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1077 1078 /* OPD */ 1079 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1080 } else { 1081 rcntl &= ~FEC_ENET_FCE; 1082 } 1083 #endif /* !defined(CONFIG_M5272) */ 1084 1085 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1086 1087 /* Setup multicast filter. */ 1088 set_multicast_list(ndev); 1089 #ifndef CONFIG_M5272 1090 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1091 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1092 #endif 1093 1094 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1095 /* enable ENET endian swap */ 1096 ecntl |= (1 << 8); 1097 /* enable ENET store and forward mode */ 1098 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1099 } 1100 1101 if (fep->bufdesc_ex) 1102 ecntl |= (1 << 4); 1103 1104 #ifndef CONFIG_M5272 1105 /* Enable the MIB statistic event counters */ 1106 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1107 #endif 1108 1109 /* And last, enable the transmit and receive processing */ 1110 writel(ecntl, fep->hwp + FEC_ECNTRL); 1111 fec_enet_active_rxring(ndev); 1112 1113 if (fep->bufdesc_ex) 1114 fec_ptp_start_cyclecounter(ndev); 1115 1116 /* Enable interrupts we wish to service */ 1117 if (fep->link) 1118 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1119 else 1120 writel(0, fep->hwp + FEC_IMASK); 1121 1122 /* Init the interrupt coalescing */ 1123 fec_enet_itr_coal_init(ndev); 1124 1125 } 1126 1127 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1128 { 1129 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1130 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1131 1132 if (stop_gpr->gpr) { 1133 if (enabled) 1134 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1135 BIT(stop_gpr->bit), 1136 BIT(stop_gpr->bit)); 1137 else 1138 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1139 BIT(stop_gpr->bit), 0); 1140 } else if (pdata && pdata->sleep_mode_enable) { 1141 pdata->sleep_mode_enable(enabled); 1142 } 1143 } 1144 1145 static void 1146 fec_stop(struct net_device *ndev) 1147 { 1148 struct fec_enet_private *fep = netdev_priv(ndev); 1149 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1150 u32 val; 1151 1152 /* We cannot expect a graceful transmit stop without link !!! */ 1153 if (fep->link) { 1154 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1155 udelay(10); 1156 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1157 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1158 } 1159 1160 /* Whack a reset. We should wait for this. 1161 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1162 * instead of reset MAC itself. 1163 */ 1164 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1165 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1166 writel(0, fep->hwp + FEC_ECNTRL); 1167 } else { 1168 writel(1, fep->hwp + FEC_ECNTRL); 1169 udelay(10); 1170 } 1171 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1172 } else { 1173 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1174 val = readl(fep->hwp + FEC_ECNTRL); 1175 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1176 writel(val, fep->hwp + FEC_ECNTRL); 1177 fec_enet_stop_mode(fep, true); 1178 } 1179 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1180 1181 /* We have to keep ENET enabled to have MII interrupt stay working */ 1182 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1183 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1184 writel(2, fep->hwp + FEC_ECNTRL); 1185 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1186 } 1187 } 1188 1189 1190 static void 1191 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1192 { 1193 struct fec_enet_private *fep = netdev_priv(ndev); 1194 1195 fec_dump(ndev); 1196 1197 ndev->stats.tx_errors++; 1198 1199 schedule_work(&fep->tx_timeout_work); 1200 } 1201 1202 static void fec_enet_timeout_work(struct work_struct *work) 1203 { 1204 struct fec_enet_private *fep = 1205 container_of(work, struct fec_enet_private, tx_timeout_work); 1206 struct net_device *ndev = fep->netdev; 1207 1208 rtnl_lock(); 1209 if (netif_device_present(ndev) || netif_running(ndev)) { 1210 napi_disable(&fep->napi); 1211 netif_tx_lock_bh(ndev); 1212 fec_restart(ndev); 1213 netif_tx_wake_all_queues(ndev); 1214 netif_tx_unlock_bh(ndev); 1215 napi_enable(&fep->napi); 1216 } 1217 rtnl_unlock(); 1218 } 1219 1220 static void 1221 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1222 struct skb_shared_hwtstamps *hwtstamps) 1223 { 1224 unsigned long flags; 1225 u64 ns; 1226 1227 spin_lock_irqsave(&fep->tmreg_lock, flags); 1228 ns = timecounter_cyc2time(&fep->tc, ts); 1229 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1230 1231 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1232 hwtstamps->hwtstamp = ns_to_ktime(ns); 1233 } 1234 1235 static void 1236 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1237 { 1238 struct fec_enet_private *fep; 1239 struct bufdesc *bdp; 1240 unsigned short status; 1241 struct sk_buff *skb; 1242 struct fec_enet_priv_tx_q *txq; 1243 struct netdev_queue *nq; 1244 int index = 0; 1245 int entries_free; 1246 1247 fep = netdev_priv(ndev); 1248 1249 txq = fep->tx_queue[queue_id]; 1250 /* get next bdp of dirty_tx */ 1251 nq = netdev_get_tx_queue(ndev, queue_id); 1252 bdp = txq->dirty_tx; 1253 1254 /* get next bdp of dirty_tx */ 1255 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1256 1257 while (bdp != READ_ONCE(txq->bd.cur)) { 1258 /* Order the load of bd.cur and cbd_sc */ 1259 rmb(); 1260 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1261 if (status & BD_ENET_TX_READY) 1262 break; 1263 1264 index = fec_enet_get_bd_index(bdp, &txq->bd); 1265 1266 skb = txq->tx_skbuff[index]; 1267 txq->tx_skbuff[index] = NULL; 1268 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1269 dma_unmap_single(&fep->pdev->dev, 1270 fec32_to_cpu(bdp->cbd_bufaddr), 1271 fec16_to_cpu(bdp->cbd_datlen), 1272 DMA_TO_DEVICE); 1273 bdp->cbd_bufaddr = cpu_to_fec32(0); 1274 if (!skb) 1275 goto skb_done; 1276 1277 /* Check for errors. */ 1278 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1279 BD_ENET_TX_RL | BD_ENET_TX_UN | 1280 BD_ENET_TX_CSL)) { 1281 ndev->stats.tx_errors++; 1282 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1283 ndev->stats.tx_heartbeat_errors++; 1284 if (status & BD_ENET_TX_LC) /* Late collision */ 1285 ndev->stats.tx_window_errors++; 1286 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1287 ndev->stats.tx_aborted_errors++; 1288 if (status & BD_ENET_TX_UN) /* Underrun */ 1289 ndev->stats.tx_fifo_errors++; 1290 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1291 ndev->stats.tx_carrier_errors++; 1292 } else { 1293 ndev->stats.tx_packets++; 1294 ndev->stats.tx_bytes += skb->len; 1295 } 1296 1297 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1298 fep->bufdesc_ex) { 1299 struct skb_shared_hwtstamps shhwtstamps; 1300 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1301 1302 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1303 skb_tstamp_tx(skb, &shhwtstamps); 1304 } 1305 1306 /* Deferred means some collisions occurred during transmit, 1307 * but we eventually sent the packet OK. 1308 */ 1309 if (status & BD_ENET_TX_DEF) 1310 ndev->stats.collisions++; 1311 1312 /* Free the sk buffer associated with this last transmit */ 1313 dev_kfree_skb_any(skb); 1314 skb_done: 1315 /* Make sure the update to bdp and tx_skbuff are performed 1316 * before dirty_tx 1317 */ 1318 wmb(); 1319 txq->dirty_tx = bdp; 1320 1321 /* Update pointer to next buffer descriptor to be transmitted */ 1322 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1323 1324 /* Since we have freed up a buffer, the ring is no longer full 1325 */ 1326 if (netif_tx_queue_stopped(nq)) { 1327 entries_free = fec_enet_get_free_txdesc_num(txq); 1328 if (entries_free >= txq->tx_wake_threshold) 1329 netif_tx_wake_queue(nq); 1330 } 1331 } 1332 1333 /* ERR006358: Keep the transmitter going */ 1334 if (bdp != txq->bd.cur && 1335 readl(txq->bd.reg_desc_active) == 0) 1336 writel(0, txq->bd.reg_desc_active); 1337 } 1338 1339 static void fec_enet_tx(struct net_device *ndev) 1340 { 1341 struct fec_enet_private *fep = netdev_priv(ndev); 1342 int i; 1343 1344 /* Make sure that AVB queues are processed first. */ 1345 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1346 fec_enet_tx_queue(ndev, i); 1347 } 1348 1349 static int 1350 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1351 { 1352 struct fec_enet_private *fep = netdev_priv(ndev); 1353 int off; 1354 1355 off = ((unsigned long)skb->data) & fep->rx_align; 1356 if (off) 1357 skb_reserve(skb, fep->rx_align + 1 - off); 1358 1359 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1360 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1361 if (net_ratelimit()) 1362 netdev_err(ndev, "Rx DMA memory map failed\n"); 1363 return -ENOMEM; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1370 struct bufdesc *bdp, u32 length, bool swap) 1371 { 1372 struct fec_enet_private *fep = netdev_priv(ndev); 1373 struct sk_buff *new_skb; 1374 1375 if (length > fep->rx_copybreak) 1376 return false; 1377 1378 new_skb = netdev_alloc_skb(ndev, length); 1379 if (!new_skb) 1380 return false; 1381 1382 dma_sync_single_for_cpu(&fep->pdev->dev, 1383 fec32_to_cpu(bdp->cbd_bufaddr), 1384 FEC_ENET_RX_FRSIZE - fep->rx_align, 1385 DMA_FROM_DEVICE); 1386 if (!swap) 1387 memcpy(new_skb->data, (*skb)->data, length); 1388 else 1389 swap_buffer2(new_skb->data, (*skb)->data, length); 1390 *skb = new_skb; 1391 1392 return true; 1393 } 1394 1395 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1396 * When we update through the ring, if the next incoming buffer has 1397 * not been given to the system, we just set the empty indicator, 1398 * effectively tossing the packet. 1399 */ 1400 static int 1401 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1402 { 1403 struct fec_enet_private *fep = netdev_priv(ndev); 1404 struct fec_enet_priv_rx_q *rxq; 1405 struct bufdesc *bdp; 1406 unsigned short status; 1407 struct sk_buff *skb_new = NULL; 1408 struct sk_buff *skb; 1409 ushort pkt_len; 1410 __u8 *data; 1411 int pkt_received = 0; 1412 struct bufdesc_ex *ebdp = NULL; 1413 bool vlan_packet_rcvd = false; 1414 u16 vlan_tag; 1415 int index = 0; 1416 bool is_copybreak; 1417 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1418 1419 #ifdef CONFIG_M532x 1420 flush_cache_all(); 1421 #endif 1422 rxq = fep->rx_queue[queue_id]; 1423 1424 /* First, grab all of the stats for the incoming packet. 1425 * These get messed up if we get called due to a busy condition. 1426 */ 1427 bdp = rxq->bd.cur; 1428 1429 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1430 1431 if (pkt_received >= budget) 1432 break; 1433 pkt_received++; 1434 1435 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1436 1437 /* Check for errors. */ 1438 status ^= BD_ENET_RX_LAST; 1439 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1440 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1441 BD_ENET_RX_CL)) { 1442 ndev->stats.rx_errors++; 1443 if (status & BD_ENET_RX_OV) { 1444 /* FIFO overrun */ 1445 ndev->stats.rx_fifo_errors++; 1446 goto rx_processing_done; 1447 } 1448 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1449 | BD_ENET_RX_LAST)) { 1450 /* Frame too long or too short. */ 1451 ndev->stats.rx_length_errors++; 1452 if (status & BD_ENET_RX_LAST) 1453 netdev_err(ndev, "rcv is not +last\n"); 1454 } 1455 if (status & BD_ENET_RX_CR) /* CRC Error */ 1456 ndev->stats.rx_crc_errors++; 1457 /* Report late collisions as a frame error. */ 1458 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1459 ndev->stats.rx_frame_errors++; 1460 goto rx_processing_done; 1461 } 1462 1463 /* Process the incoming frame. */ 1464 ndev->stats.rx_packets++; 1465 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1466 ndev->stats.rx_bytes += pkt_len; 1467 1468 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1469 skb = rxq->rx_skbuff[index]; 1470 1471 /* The packet length includes FCS, but we don't want to 1472 * include that when passing upstream as it messes up 1473 * bridging applications. 1474 */ 1475 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1476 need_swap); 1477 if (!is_copybreak) { 1478 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1479 if (unlikely(!skb_new)) { 1480 ndev->stats.rx_dropped++; 1481 goto rx_processing_done; 1482 } 1483 dma_unmap_single(&fep->pdev->dev, 1484 fec32_to_cpu(bdp->cbd_bufaddr), 1485 FEC_ENET_RX_FRSIZE - fep->rx_align, 1486 DMA_FROM_DEVICE); 1487 } 1488 1489 prefetch(skb->data - NET_IP_ALIGN); 1490 skb_put(skb, pkt_len - 4); 1491 data = skb->data; 1492 1493 if (!is_copybreak && need_swap) 1494 swap_buffer(data, pkt_len); 1495 1496 #if !defined(CONFIG_M5272) 1497 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1498 data = skb_pull_inline(skb, 2); 1499 #endif 1500 1501 /* Extract the enhanced buffer descriptor */ 1502 ebdp = NULL; 1503 if (fep->bufdesc_ex) 1504 ebdp = (struct bufdesc_ex *)bdp; 1505 1506 /* If this is a VLAN packet remove the VLAN Tag */ 1507 vlan_packet_rcvd = false; 1508 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1509 fep->bufdesc_ex && 1510 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1511 /* Push and remove the vlan tag */ 1512 struct vlan_hdr *vlan_header = 1513 (struct vlan_hdr *) (data + ETH_HLEN); 1514 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1515 1516 vlan_packet_rcvd = true; 1517 1518 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1519 skb_pull(skb, VLAN_HLEN); 1520 } 1521 1522 skb->protocol = eth_type_trans(skb, ndev); 1523 1524 /* Get receive timestamp from the skb */ 1525 if (fep->hwts_rx_en && fep->bufdesc_ex) 1526 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1527 skb_hwtstamps(skb)); 1528 1529 if (fep->bufdesc_ex && 1530 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1531 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1532 /* don't check it */ 1533 skb->ip_summed = CHECKSUM_UNNECESSARY; 1534 } else { 1535 skb_checksum_none_assert(skb); 1536 } 1537 } 1538 1539 /* Handle received VLAN packets */ 1540 if (vlan_packet_rcvd) 1541 __vlan_hwaccel_put_tag(skb, 1542 htons(ETH_P_8021Q), 1543 vlan_tag); 1544 1545 skb_record_rx_queue(skb, queue_id); 1546 napi_gro_receive(&fep->napi, skb); 1547 1548 if (is_copybreak) { 1549 dma_sync_single_for_device(&fep->pdev->dev, 1550 fec32_to_cpu(bdp->cbd_bufaddr), 1551 FEC_ENET_RX_FRSIZE - fep->rx_align, 1552 DMA_FROM_DEVICE); 1553 } else { 1554 rxq->rx_skbuff[index] = skb_new; 1555 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1556 } 1557 1558 rx_processing_done: 1559 /* Clear the status flags for this buffer */ 1560 status &= ~BD_ENET_RX_STATS; 1561 1562 /* Mark the buffer empty */ 1563 status |= BD_ENET_RX_EMPTY; 1564 1565 if (fep->bufdesc_ex) { 1566 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1567 1568 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1569 ebdp->cbd_prot = 0; 1570 ebdp->cbd_bdu = 0; 1571 } 1572 /* Make sure the updates to rest of the descriptor are 1573 * performed before transferring ownership. 1574 */ 1575 wmb(); 1576 bdp->cbd_sc = cpu_to_fec16(status); 1577 1578 /* Update BD pointer to next entry */ 1579 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1580 1581 /* Doing this here will keep the FEC running while we process 1582 * incoming frames. On a heavily loaded network, we should be 1583 * able to keep up at the expense of system resources. 1584 */ 1585 writel(0, rxq->bd.reg_desc_active); 1586 } 1587 rxq->bd.cur = bdp; 1588 return pkt_received; 1589 } 1590 1591 static int fec_enet_rx(struct net_device *ndev, int budget) 1592 { 1593 struct fec_enet_private *fep = netdev_priv(ndev); 1594 int i, done = 0; 1595 1596 /* Make sure that AVB queues are processed first. */ 1597 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1598 done += fec_enet_rx_queue(ndev, budget - done, i); 1599 1600 return done; 1601 } 1602 1603 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1604 { 1605 uint int_events; 1606 1607 int_events = readl(fep->hwp + FEC_IEVENT); 1608 1609 /* Don't clear MDIO events, we poll for those */ 1610 int_events &= ~FEC_ENET_MII; 1611 1612 writel(int_events, fep->hwp + FEC_IEVENT); 1613 1614 return int_events != 0; 1615 } 1616 1617 static irqreturn_t 1618 fec_enet_interrupt(int irq, void *dev_id) 1619 { 1620 struct net_device *ndev = dev_id; 1621 struct fec_enet_private *fep = netdev_priv(ndev); 1622 irqreturn_t ret = IRQ_NONE; 1623 1624 if (fec_enet_collect_events(fep) && fep->link) { 1625 ret = IRQ_HANDLED; 1626 1627 if (napi_schedule_prep(&fep->napi)) { 1628 /* Disable interrupts */ 1629 writel(0, fep->hwp + FEC_IMASK); 1630 __napi_schedule(&fep->napi); 1631 } 1632 } 1633 1634 return ret; 1635 } 1636 1637 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1638 { 1639 struct net_device *ndev = napi->dev; 1640 struct fec_enet_private *fep = netdev_priv(ndev); 1641 int done = 0; 1642 1643 do { 1644 done += fec_enet_rx(ndev, budget - done); 1645 fec_enet_tx(ndev); 1646 } while ((done < budget) && fec_enet_collect_events(fep)); 1647 1648 if (done < budget) { 1649 napi_complete_done(napi, done); 1650 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1651 } 1652 1653 return done; 1654 } 1655 1656 /* ------------------------------------------------------------------------- */ 1657 static void fec_get_mac(struct net_device *ndev) 1658 { 1659 struct fec_enet_private *fep = netdev_priv(ndev); 1660 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1661 unsigned char *iap, tmpaddr[ETH_ALEN]; 1662 1663 /* 1664 * try to get mac address in following order: 1665 * 1666 * 1) module parameter via kernel command line in form 1667 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1668 */ 1669 iap = macaddr; 1670 1671 /* 1672 * 2) from device tree data 1673 */ 1674 if (!is_valid_ether_addr(iap)) { 1675 struct device_node *np = fep->pdev->dev.of_node; 1676 if (np) { 1677 const char *mac = of_get_mac_address(np); 1678 if (!IS_ERR(mac)) 1679 iap = (unsigned char *) mac; 1680 } 1681 } 1682 1683 /* 1684 * 3) from flash or fuse (via platform data) 1685 */ 1686 if (!is_valid_ether_addr(iap)) { 1687 #ifdef CONFIG_M5272 1688 if (FEC_FLASHMAC) 1689 iap = (unsigned char *)FEC_FLASHMAC; 1690 #else 1691 if (pdata) 1692 iap = (unsigned char *)&pdata->mac; 1693 #endif 1694 } 1695 1696 /* 1697 * 4) FEC mac registers set by bootloader 1698 */ 1699 if (!is_valid_ether_addr(iap)) { 1700 *((__be32 *) &tmpaddr[0]) = 1701 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1702 *((__be16 *) &tmpaddr[4]) = 1703 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1704 iap = &tmpaddr[0]; 1705 } 1706 1707 /* 1708 * 5) random mac address 1709 */ 1710 if (!is_valid_ether_addr(iap)) { 1711 /* Report it and use a random ethernet address instead */ 1712 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1713 eth_hw_addr_random(ndev); 1714 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1715 ndev->dev_addr); 1716 return; 1717 } 1718 1719 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1720 1721 /* Adjust MAC if using macaddr */ 1722 if (iap == macaddr) 1723 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1724 } 1725 1726 /* ------------------------------------------------------------------------- */ 1727 1728 /* 1729 * Phy section 1730 */ 1731 static void fec_enet_adjust_link(struct net_device *ndev) 1732 { 1733 struct fec_enet_private *fep = netdev_priv(ndev); 1734 struct phy_device *phy_dev = ndev->phydev; 1735 int status_change = 0; 1736 1737 /* 1738 * If the netdev is down, or is going down, we're not interested 1739 * in link state events, so just mark our idea of the link as down 1740 * and ignore the event. 1741 */ 1742 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1743 fep->link = 0; 1744 } else if (phy_dev->link) { 1745 if (!fep->link) { 1746 fep->link = phy_dev->link; 1747 status_change = 1; 1748 } 1749 1750 if (fep->full_duplex != phy_dev->duplex) { 1751 fep->full_duplex = phy_dev->duplex; 1752 status_change = 1; 1753 } 1754 1755 if (phy_dev->speed != fep->speed) { 1756 fep->speed = phy_dev->speed; 1757 status_change = 1; 1758 } 1759 1760 /* if any of the above changed restart the FEC */ 1761 if (status_change) { 1762 napi_disable(&fep->napi); 1763 netif_tx_lock_bh(ndev); 1764 fec_restart(ndev); 1765 netif_tx_wake_all_queues(ndev); 1766 netif_tx_unlock_bh(ndev); 1767 napi_enable(&fep->napi); 1768 } 1769 } else { 1770 if (fep->link) { 1771 napi_disable(&fep->napi); 1772 netif_tx_lock_bh(ndev); 1773 fec_stop(ndev); 1774 netif_tx_unlock_bh(ndev); 1775 napi_enable(&fep->napi); 1776 fep->link = phy_dev->link; 1777 status_change = 1; 1778 } 1779 } 1780 1781 if (status_change) 1782 phy_print_status(phy_dev); 1783 } 1784 1785 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1786 { 1787 uint ievent; 1788 int ret; 1789 1790 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1791 ievent & FEC_ENET_MII, 2, 30000); 1792 1793 if (!ret) 1794 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1795 1796 return ret; 1797 } 1798 1799 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1800 { 1801 struct fec_enet_private *fep = bus->priv; 1802 struct device *dev = &fep->pdev->dev; 1803 int ret = 0, frame_start, frame_addr, frame_op; 1804 bool is_c45 = !!(regnum & MII_ADDR_C45); 1805 1806 ret = pm_runtime_get_sync(dev); 1807 if (ret < 0) 1808 return ret; 1809 1810 if (is_c45) { 1811 frame_start = FEC_MMFR_ST_C45; 1812 1813 /* write address */ 1814 frame_addr = (regnum >> 16); 1815 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1816 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1817 FEC_MMFR_TA | (regnum & 0xFFFF), 1818 fep->hwp + FEC_MII_DATA); 1819 1820 /* wait for end of transfer */ 1821 ret = fec_enet_mdio_wait(fep); 1822 if (ret) { 1823 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1824 goto out; 1825 } 1826 1827 frame_op = FEC_MMFR_OP_READ_C45; 1828 1829 } else { 1830 /* C22 read */ 1831 frame_op = FEC_MMFR_OP_READ; 1832 frame_start = FEC_MMFR_ST; 1833 frame_addr = regnum; 1834 } 1835 1836 /* start a read op */ 1837 writel(frame_start | frame_op | 1838 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1839 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1840 1841 /* wait for end of transfer */ 1842 ret = fec_enet_mdio_wait(fep); 1843 if (ret) { 1844 netdev_err(fep->netdev, "MDIO read timeout\n"); 1845 goto out; 1846 } 1847 1848 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1849 1850 out: 1851 pm_runtime_mark_last_busy(dev); 1852 pm_runtime_put_autosuspend(dev); 1853 1854 return ret; 1855 } 1856 1857 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1858 u16 value) 1859 { 1860 struct fec_enet_private *fep = bus->priv; 1861 struct device *dev = &fep->pdev->dev; 1862 int ret, frame_start, frame_addr; 1863 bool is_c45 = !!(regnum & MII_ADDR_C45); 1864 1865 ret = pm_runtime_get_sync(dev); 1866 if (ret < 0) 1867 return ret; 1868 else 1869 ret = 0; 1870 1871 if (is_c45) { 1872 frame_start = FEC_MMFR_ST_C45; 1873 1874 /* write address */ 1875 frame_addr = (regnum >> 16); 1876 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1877 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1878 FEC_MMFR_TA | (regnum & 0xFFFF), 1879 fep->hwp + FEC_MII_DATA); 1880 1881 /* wait for end of transfer */ 1882 ret = fec_enet_mdio_wait(fep); 1883 if (ret) { 1884 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1885 goto out; 1886 } 1887 } else { 1888 /* C22 write */ 1889 frame_start = FEC_MMFR_ST; 1890 frame_addr = regnum; 1891 } 1892 1893 /* start a write op */ 1894 writel(frame_start | FEC_MMFR_OP_WRITE | 1895 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1896 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1897 fep->hwp + FEC_MII_DATA); 1898 1899 /* wait for end of transfer */ 1900 ret = fec_enet_mdio_wait(fep); 1901 if (ret) 1902 netdev_err(fep->netdev, "MDIO write timeout\n"); 1903 1904 out: 1905 pm_runtime_mark_last_busy(dev); 1906 pm_runtime_put_autosuspend(dev); 1907 1908 return ret; 1909 } 1910 1911 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1912 { 1913 struct fec_enet_private *fep = netdev_priv(ndev); 1914 int ret; 1915 1916 if (enable) { 1917 ret = clk_prepare_enable(fep->clk_enet_out); 1918 if (ret) 1919 return ret; 1920 1921 if (fep->clk_ptp) { 1922 mutex_lock(&fep->ptp_clk_mutex); 1923 ret = clk_prepare_enable(fep->clk_ptp); 1924 if (ret) { 1925 mutex_unlock(&fep->ptp_clk_mutex); 1926 goto failed_clk_ptp; 1927 } else { 1928 fep->ptp_clk_on = true; 1929 } 1930 mutex_unlock(&fep->ptp_clk_mutex); 1931 } 1932 1933 ret = clk_prepare_enable(fep->clk_ref); 1934 if (ret) 1935 goto failed_clk_ref; 1936 1937 phy_reset_after_clk_enable(ndev->phydev); 1938 } else { 1939 clk_disable_unprepare(fep->clk_enet_out); 1940 if (fep->clk_ptp) { 1941 mutex_lock(&fep->ptp_clk_mutex); 1942 clk_disable_unprepare(fep->clk_ptp); 1943 fep->ptp_clk_on = false; 1944 mutex_unlock(&fep->ptp_clk_mutex); 1945 } 1946 clk_disable_unprepare(fep->clk_ref); 1947 } 1948 1949 return 0; 1950 1951 failed_clk_ref: 1952 if (fep->clk_ptp) { 1953 mutex_lock(&fep->ptp_clk_mutex); 1954 clk_disable_unprepare(fep->clk_ptp); 1955 fep->ptp_clk_on = false; 1956 mutex_unlock(&fep->ptp_clk_mutex); 1957 } 1958 failed_clk_ptp: 1959 if (fep->clk_enet_out) 1960 clk_disable_unprepare(fep->clk_enet_out); 1961 1962 return ret; 1963 } 1964 1965 static int fec_enet_mii_probe(struct net_device *ndev) 1966 { 1967 struct fec_enet_private *fep = netdev_priv(ndev); 1968 struct phy_device *phy_dev = NULL; 1969 char mdio_bus_id[MII_BUS_ID_SIZE]; 1970 char phy_name[MII_BUS_ID_SIZE + 3]; 1971 int phy_id; 1972 int dev_id = fep->dev_id; 1973 1974 if (fep->phy_node) { 1975 phy_dev = of_phy_connect(ndev, fep->phy_node, 1976 &fec_enet_adjust_link, 0, 1977 fep->phy_interface); 1978 if (!phy_dev) { 1979 netdev_err(ndev, "Unable to connect to phy\n"); 1980 return -ENODEV; 1981 } 1982 } else { 1983 /* check for attached phy */ 1984 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1985 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1986 continue; 1987 if (dev_id--) 1988 continue; 1989 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1990 break; 1991 } 1992 1993 if (phy_id >= PHY_MAX_ADDR) { 1994 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1995 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1996 phy_id = 0; 1997 } 1998 1999 snprintf(phy_name, sizeof(phy_name), 2000 PHY_ID_FMT, mdio_bus_id, phy_id); 2001 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2002 fep->phy_interface); 2003 } 2004 2005 if (IS_ERR(phy_dev)) { 2006 netdev_err(ndev, "could not attach to PHY\n"); 2007 return PTR_ERR(phy_dev); 2008 } 2009 2010 /* mask with MAC supported features */ 2011 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2012 phy_set_max_speed(phy_dev, 1000); 2013 phy_remove_link_mode(phy_dev, 2014 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2015 #if !defined(CONFIG_M5272) 2016 phy_support_sym_pause(phy_dev); 2017 #endif 2018 } 2019 else 2020 phy_set_max_speed(phy_dev, 100); 2021 2022 fep->link = 0; 2023 fep->full_duplex = 0; 2024 2025 phy_attached_info(phy_dev); 2026 2027 return 0; 2028 } 2029 2030 static int fec_enet_mii_init(struct platform_device *pdev) 2031 { 2032 static struct mii_bus *fec0_mii_bus; 2033 struct net_device *ndev = platform_get_drvdata(pdev); 2034 struct fec_enet_private *fep = netdev_priv(ndev); 2035 bool suppress_preamble = false; 2036 struct device_node *node; 2037 int err = -ENXIO; 2038 u32 mii_speed, holdtime; 2039 u32 bus_freq; 2040 2041 /* 2042 * The i.MX28 dual fec interfaces are not equal. 2043 * Here are the differences: 2044 * 2045 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2046 * - fec0 acts as the 1588 time master while fec1 is slave 2047 * - external phys can only be configured by fec0 2048 * 2049 * That is to say fec1 can not work independently. It only works 2050 * when fec0 is working. The reason behind this design is that the 2051 * second interface is added primarily for Switch mode. 2052 * 2053 * Because of the last point above, both phys are attached on fec0 2054 * mdio interface in board design, and need to be configured by 2055 * fec0 mii_bus. 2056 */ 2057 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2058 /* fec1 uses fec0 mii_bus */ 2059 if (mii_cnt && fec0_mii_bus) { 2060 fep->mii_bus = fec0_mii_bus; 2061 mii_cnt++; 2062 return 0; 2063 } 2064 return -ENOENT; 2065 } 2066 2067 bus_freq = 2500000; /* 2.5MHz by default */ 2068 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2069 if (node) { 2070 of_property_read_u32(node, "clock-frequency", &bus_freq); 2071 suppress_preamble = of_property_read_bool(node, 2072 "suppress-preamble"); 2073 } 2074 2075 /* 2076 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2077 * 2078 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2079 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2080 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2081 * document. 2082 */ 2083 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2084 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2085 mii_speed--; 2086 if (mii_speed > 63) { 2087 dev_err(&pdev->dev, 2088 "fec clock (%lu) too fast to get right mii speed\n", 2089 clk_get_rate(fep->clk_ipg)); 2090 err = -EINVAL; 2091 goto err_out; 2092 } 2093 2094 /* 2095 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2096 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2097 * versions are RAZ there, so just ignore the difference and write the 2098 * register always. 2099 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2100 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2101 * output. 2102 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2103 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2104 * holdtime cannot result in a value greater than 3. 2105 */ 2106 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2107 2108 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2109 2110 if (suppress_preamble) 2111 fep->phy_speed |= BIT(7); 2112 2113 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2114 * MII event generation condition: 2115 * - writing MSCR: 2116 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2117 * mscr_reg_data_in[7:0] != 0 2118 * - writing MMFR: 2119 * - mscr[7:0]_not_zero 2120 */ 2121 writel(0, fep->hwp + FEC_MII_DATA); 2122 2123 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2124 2125 /* Clear any pending transaction complete indication */ 2126 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2127 2128 fep->mii_bus = mdiobus_alloc(); 2129 if (fep->mii_bus == NULL) { 2130 err = -ENOMEM; 2131 goto err_out; 2132 } 2133 2134 fep->mii_bus->name = "fec_enet_mii_bus"; 2135 fep->mii_bus->read = fec_enet_mdio_read; 2136 fep->mii_bus->write = fec_enet_mdio_write; 2137 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2138 pdev->name, fep->dev_id + 1); 2139 fep->mii_bus->priv = fep; 2140 fep->mii_bus->parent = &pdev->dev; 2141 2142 err = of_mdiobus_register(fep->mii_bus, node); 2143 of_node_put(node); 2144 if (err) 2145 goto err_out_free_mdiobus; 2146 2147 mii_cnt++; 2148 2149 /* save fec0 mii_bus */ 2150 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2151 fec0_mii_bus = fep->mii_bus; 2152 2153 return 0; 2154 2155 err_out_free_mdiobus: 2156 mdiobus_free(fep->mii_bus); 2157 err_out: 2158 return err; 2159 } 2160 2161 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2162 { 2163 if (--mii_cnt == 0) { 2164 mdiobus_unregister(fep->mii_bus); 2165 mdiobus_free(fep->mii_bus); 2166 } 2167 } 2168 2169 static void fec_enet_get_drvinfo(struct net_device *ndev, 2170 struct ethtool_drvinfo *info) 2171 { 2172 struct fec_enet_private *fep = netdev_priv(ndev); 2173 2174 strlcpy(info->driver, fep->pdev->dev.driver->name, 2175 sizeof(info->driver)); 2176 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2177 } 2178 2179 static int fec_enet_get_regs_len(struct net_device *ndev) 2180 { 2181 struct fec_enet_private *fep = netdev_priv(ndev); 2182 struct resource *r; 2183 int s = 0; 2184 2185 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2186 if (r) 2187 s = resource_size(r); 2188 2189 return s; 2190 } 2191 2192 /* List of registers that can be safety be read to dump them with ethtool */ 2193 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2194 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2195 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2196 static __u32 fec_enet_register_version = 2; 2197 static u32 fec_enet_register_offset[] = { 2198 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2199 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2200 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2201 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2202 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2203 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2204 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2205 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2206 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2207 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2208 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2209 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2210 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2211 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2212 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2213 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2214 RMON_T_P_GTE2048, RMON_T_OCTETS, 2215 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2216 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2217 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2218 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2219 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2220 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2221 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2222 RMON_R_P_GTE2048, RMON_R_OCTETS, 2223 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2224 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2225 }; 2226 #else 2227 static __u32 fec_enet_register_version = 1; 2228 static u32 fec_enet_register_offset[] = { 2229 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2230 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2231 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2232 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2233 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2234 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2235 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2236 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2237 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2238 }; 2239 #endif 2240 2241 static void fec_enet_get_regs(struct net_device *ndev, 2242 struct ethtool_regs *regs, void *regbuf) 2243 { 2244 struct fec_enet_private *fep = netdev_priv(ndev); 2245 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2246 struct device *dev = &fep->pdev->dev; 2247 u32 *buf = (u32 *)regbuf; 2248 u32 i, off; 2249 int ret; 2250 2251 ret = pm_runtime_get_sync(dev); 2252 if (ret < 0) 2253 return; 2254 2255 regs->version = fec_enet_register_version; 2256 2257 memset(buf, 0, regs->len); 2258 2259 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2260 off = fec_enet_register_offset[i]; 2261 2262 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2263 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2264 continue; 2265 2266 off >>= 2; 2267 buf[off] = readl(&theregs[off]); 2268 } 2269 2270 pm_runtime_mark_last_busy(dev); 2271 pm_runtime_put_autosuspend(dev); 2272 } 2273 2274 static int fec_enet_get_ts_info(struct net_device *ndev, 2275 struct ethtool_ts_info *info) 2276 { 2277 struct fec_enet_private *fep = netdev_priv(ndev); 2278 2279 if (fep->bufdesc_ex) { 2280 2281 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2282 SOF_TIMESTAMPING_RX_SOFTWARE | 2283 SOF_TIMESTAMPING_SOFTWARE | 2284 SOF_TIMESTAMPING_TX_HARDWARE | 2285 SOF_TIMESTAMPING_RX_HARDWARE | 2286 SOF_TIMESTAMPING_RAW_HARDWARE; 2287 if (fep->ptp_clock) 2288 info->phc_index = ptp_clock_index(fep->ptp_clock); 2289 else 2290 info->phc_index = -1; 2291 2292 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2293 (1 << HWTSTAMP_TX_ON); 2294 2295 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2296 (1 << HWTSTAMP_FILTER_ALL); 2297 return 0; 2298 } else { 2299 return ethtool_op_get_ts_info(ndev, info); 2300 } 2301 } 2302 2303 #if !defined(CONFIG_M5272) 2304 2305 static void fec_enet_get_pauseparam(struct net_device *ndev, 2306 struct ethtool_pauseparam *pause) 2307 { 2308 struct fec_enet_private *fep = netdev_priv(ndev); 2309 2310 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2311 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2312 pause->rx_pause = pause->tx_pause; 2313 } 2314 2315 static int fec_enet_set_pauseparam(struct net_device *ndev, 2316 struct ethtool_pauseparam *pause) 2317 { 2318 struct fec_enet_private *fep = netdev_priv(ndev); 2319 2320 if (!ndev->phydev) 2321 return -ENODEV; 2322 2323 if (pause->tx_pause != pause->rx_pause) { 2324 netdev_info(ndev, 2325 "hardware only support enable/disable both tx and rx"); 2326 return -EINVAL; 2327 } 2328 2329 fep->pause_flag = 0; 2330 2331 /* tx pause must be same as rx pause */ 2332 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2333 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2334 2335 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2336 pause->autoneg); 2337 2338 if (pause->autoneg) { 2339 if (netif_running(ndev)) 2340 fec_stop(ndev); 2341 phy_start_aneg(ndev->phydev); 2342 } 2343 if (netif_running(ndev)) { 2344 napi_disable(&fep->napi); 2345 netif_tx_lock_bh(ndev); 2346 fec_restart(ndev); 2347 netif_tx_wake_all_queues(ndev); 2348 netif_tx_unlock_bh(ndev); 2349 napi_enable(&fep->napi); 2350 } 2351 2352 return 0; 2353 } 2354 2355 static const struct fec_stat { 2356 char name[ETH_GSTRING_LEN]; 2357 u16 offset; 2358 } fec_stats[] = { 2359 /* RMON TX */ 2360 { "tx_dropped", RMON_T_DROP }, 2361 { "tx_packets", RMON_T_PACKETS }, 2362 { "tx_broadcast", RMON_T_BC_PKT }, 2363 { "tx_multicast", RMON_T_MC_PKT }, 2364 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2365 { "tx_undersize", RMON_T_UNDERSIZE }, 2366 { "tx_oversize", RMON_T_OVERSIZE }, 2367 { "tx_fragment", RMON_T_FRAG }, 2368 { "tx_jabber", RMON_T_JAB }, 2369 { "tx_collision", RMON_T_COL }, 2370 { "tx_64byte", RMON_T_P64 }, 2371 { "tx_65to127byte", RMON_T_P65TO127 }, 2372 { "tx_128to255byte", RMON_T_P128TO255 }, 2373 { "tx_256to511byte", RMON_T_P256TO511 }, 2374 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2375 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2376 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2377 { "tx_octets", RMON_T_OCTETS }, 2378 2379 /* IEEE TX */ 2380 { "IEEE_tx_drop", IEEE_T_DROP }, 2381 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2382 { "IEEE_tx_1col", IEEE_T_1COL }, 2383 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2384 { "IEEE_tx_def", IEEE_T_DEF }, 2385 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2386 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2387 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2388 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2389 { "IEEE_tx_sqe", IEEE_T_SQE }, 2390 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2391 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2392 2393 /* RMON RX */ 2394 { "rx_packets", RMON_R_PACKETS }, 2395 { "rx_broadcast", RMON_R_BC_PKT }, 2396 { "rx_multicast", RMON_R_MC_PKT }, 2397 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2398 { "rx_undersize", RMON_R_UNDERSIZE }, 2399 { "rx_oversize", RMON_R_OVERSIZE }, 2400 { "rx_fragment", RMON_R_FRAG }, 2401 { "rx_jabber", RMON_R_JAB }, 2402 { "rx_64byte", RMON_R_P64 }, 2403 { "rx_65to127byte", RMON_R_P65TO127 }, 2404 { "rx_128to255byte", RMON_R_P128TO255 }, 2405 { "rx_256to511byte", RMON_R_P256TO511 }, 2406 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2407 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2408 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2409 { "rx_octets", RMON_R_OCTETS }, 2410 2411 /* IEEE RX */ 2412 { "IEEE_rx_drop", IEEE_R_DROP }, 2413 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2414 { "IEEE_rx_crc", IEEE_R_CRC }, 2415 { "IEEE_rx_align", IEEE_R_ALIGN }, 2416 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2417 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2418 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2419 }; 2420 2421 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2422 2423 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2424 { 2425 struct fec_enet_private *fep = netdev_priv(dev); 2426 int i; 2427 2428 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2429 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2430 } 2431 2432 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2433 struct ethtool_stats *stats, u64 *data) 2434 { 2435 struct fec_enet_private *fep = netdev_priv(dev); 2436 2437 if (netif_running(dev)) 2438 fec_enet_update_ethtool_stats(dev); 2439 2440 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2441 } 2442 2443 static void fec_enet_get_strings(struct net_device *netdev, 2444 u32 stringset, u8 *data) 2445 { 2446 int i; 2447 switch (stringset) { 2448 case ETH_SS_STATS: 2449 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2450 memcpy(data + i * ETH_GSTRING_LEN, 2451 fec_stats[i].name, ETH_GSTRING_LEN); 2452 break; 2453 } 2454 } 2455 2456 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2457 { 2458 switch (sset) { 2459 case ETH_SS_STATS: 2460 return ARRAY_SIZE(fec_stats); 2461 default: 2462 return -EOPNOTSUPP; 2463 } 2464 } 2465 2466 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2467 { 2468 struct fec_enet_private *fep = netdev_priv(dev); 2469 int i; 2470 2471 /* Disable MIB statistics counters */ 2472 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2473 2474 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2475 writel(0, fep->hwp + fec_stats[i].offset); 2476 2477 /* Don't disable MIB statistics counters */ 2478 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2479 } 2480 2481 #else /* !defined(CONFIG_M5272) */ 2482 #define FEC_STATS_SIZE 0 2483 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2484 { 2485 } 2486 2487 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2488 { 2489 } 2490 #endif /* !defined(CONFIG_M5272) */ 2491 2492 /* ITR clock source is enet system clock (clk_ahb). 2493 * TCTT unit is cycle_ns * 64 cycle 2494 * So, the ICTT value = X us / (cycle_ns * 64) 2495 */ 2496 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2497 { 2498 struct fec_enet_private *fep = netdev_priv(ndev); 2499 2500 return us * (fep->itr_clk_rate / 64000) / 1000; 2501 } 2502 2503 /* Set threshold for interrupt coalescing */ 2504 static void fec_enet_itr_coal_set(struct net_device *ndev) 2505 { 2506 struct fec_enet_private *fep = netdev_priv(ndev); 2507 int rx_itr, tx_itr; 2508 2509 /* Must be greater than zero to avoid unpredictable behavior */ 2510 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2511 !fep->tx_time_itr || !fep->tx_pkts_itr) 2512 return; 2513 2514 /* Select enet system clock as Interrupt Coalescing 2515 * timer Clock Source 2516 */ 2517 rx_itr = FEC_ITR_CLK_SEL; 2518 tx_itr = FEC_ITR_CLK_SEL; 2519 2520 /* set ICFT and ICTT */ 2521 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2522 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2523 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2524 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2525 2526 rx_itr |= FEC_ITR_EN; 2527 tx_itr |= FEC_ITR_EN; 2528 2529 writel(tx_itr, fep->hwp + FEC_TXIC0); 2530 writel(rx_itr, fep->hwp + FEC_RXIC0); 2531 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2532 writel(tx_itr, fep->hwp + FEC_TXIC1); 2533 writel(rx_itr, fep->hwp + FEC_RXIC1); 2534 writel(tx_itr, fep->hwp + FEC_TXIC2); 2535 writel(rx_itr, fep->hwp + FEC_RXIC2); 2536 } 2537 } 2538 2539 static int 2540 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2541 { 2542 struct fec_enet_private *fep = netdev_priv(ndev); 2543 2544 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2545 return -EOPNOTSUPP; 2546 2547 ec->rx_coalesce_usecs = fep->rx_time_itr; 2548 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2549 2550 ec->tx_coalesce_usecs = fep->tx_time_itr; 2551 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2552 2553 return 0; 2554 } 2555 2556 static int 2557 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2558 { 2559 struct fec_enet_private *fep = netdev_priv(ndev); 2560 struct device *dev = &fep->pdev->dev; 2561 unsigned int cycle; 2562 2563 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2564 return -EOPNOTSUPP; 2565 2566 if (ec->rx_max_coalesced_frames > 255) { 2567 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2568 return -EINVAL; 2569 } 2570 2571 if (ec->tx_max_coalesced_frames > 255) { 2572 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2573 return -EINVAL; 2574 } 2575 2576 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2577 if (cycle > 0xFFFF) { 2578 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2579 return -EINVAL; 2580 } 2581 2582 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2583 if (cycle > 0xFFFF) { 2584 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2585 return -EINVAL; 2586 } 2587 2588 fep->rx_time_itr = ec->rx_coalesce_usecs; 2589 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2590 2591 fep->tx_time_itr = ec->tx_coalesce_usecs; 2592 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2593 2594 fec_enet_itr_coal_set(ndev); 2595 2596 return 0; 2597 } 2598 2599 static void fec_enet_itr_coal_init(struct net_device *ndev) 2600 { 2601 struct ethtool_coalesce ec; 2602 2603 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2604 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2605 2606 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2607 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2608 2609 fec_enet_set_coalesce(ndev, &ec); 2610 } 2611 2612 static int fec_enet_get_tunable(struct net_device *netdev, 2613 const struct ethtool_tunable *tuna, 2614 void *data) 2615 { 2616 struct fec_enet_private *fep = netdev_priv(netdev); 2617 int ret = 0; 2618 2619 switch (tuna->id) { 2620 case ETHTOOL_RX_COPYBREAK: 2621 *(u32 *)data = fep->rx_copybreak; 2622 break; 2623 default: 2624 ret = -EINVAL; 2625 break; 2626 } 2627 2628 return ret; 2629 } 2630 2631 static int fec_enet_set_tunable(struct net_device *netdev, 2632 const struct ethtool_tunable *tuna, 2633 const void *data) 2634 { 2635 struct fec_enet_private *fep = netdev_priv(netdev); 2636 int ret = 0; 2637 2638 switch (tuna->id) { 2639 case ETHTOOL_RX_COPYBREAK: 2640 fep->rx_copybreak = *(u32 *)data; 2641 break; 2642 default: 2643 ret = -EINVAL; 2644 break; 2645 } 2646 2647 return ret; 2648 } 2649 2650 static void 2651 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2652 { 2653 struct fec_enet_private *fep = netdev_priv(ndev); 2654 2655 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2656 wol->supported = WAKE_MAGIC; 2657 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2658 } else { 2659 wol->supported = wol->wolopts = 0; 2660 } 2661 } 2662 2663 static int 2664 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2665 { 2666 struct fec_enet_private *fep = netdev_priv(ndev); 2667 2668 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2669 return -EINVAL; 2670 2671 if (wol->wolopts & ~WAKE_MAGIC) 2672 return -EINVAL; 2673 2674 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2675 if (device_may_wakeup(&ndev->dev)) { 2676 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2677 if (fep->irq[0] > 0) 2678 enable_irq_wake(fep->irq[0]); 2679 } else { 2680 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2681 if (fep->irq[0] > 0) 2682 disable_irq_wake(fep->irq[0]); 2683 } 2684 2685 return 0; 2686 } 2687 2688 static const struct ethtool_ops fec_enet_ethtool_ops = { 2689 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2690 ETHTOOL_COALESCE_MAX_FRAMES, 2691 .get_drvinfo = fec_enet_get_drvinfo, 2692 .get_regs_len = fec_enet_get_regs_len, 2693 .get_regs = fec_enet_get_regs, 2694 .nway_reset = phy_ethtool_nway_reset, 2695 .get_link = ethtool_op_get_link, 2696 .get_coalesce = fec_enet_get_coalesce, 2697 .set_coalesce = fec_enet_set_coalesce, 2698 #ifndef CONFIG_M5272 2699 .get_pauseparam = fec_enet_get_pauseparam, 2700 .set_pauseparam = fec_enet_set_pauseparam, 2701 .get_strings = fec_enet_get_strings, 2702 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2703 .get_sset_count = fec_enet_get_sset_count, 2704 #endif 2705 .get_ts_info = fec_enet_get_ts_info, 2706 .get_tunable = fec_enet_get_tunable, 2707 .set_tunable = fec_enet_set_tunable, 2708 .get_wol = fec_enet_get_wol, 2709 .set_wol = fec_enet_set_wol, 2710 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2711 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2712 }; 2713 2714 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2715 { 2716 struct fec_enet_private *fep = netdev_priv(ndev); 2717 struct phy_device *phydev = ndev->phydev; 2718 2719 if (!netif_running(ndev)) 2720 return -EINVAL; 2721 2722 if (!phydev) 2723 return -ENODEV; 2724 2725 if (fep->bufdesc_ex) { 2726 if (cmd == SIOCSHWTSTAMP) 2727 return fec_ptp_set(ndev, rq); 2728 if (cmd == SIOCGHWTSTAMP) 2729 return fec_ptp_get(ndev, rq); 2730 } 2731 2732 return phy_mii_ioctl(phydev, rq, cmd); 2733 } 2734 2735 static void fec_enet_free_buffers(struct net_device *ndev) 2736 { 2737 struct fec_enet_private *fep = netdev_priv(ndev); 2738 unsigned int i; 2739 struct sk_buff *skb; 2740 struct bufdesc *bdp; 2741 struct fec_enet_priv_tx_q *txq; 2742 struct fec_enet_priv_rx_q *rxq; 2743 unsigned int q; 2744 2745 for (q = 0; q < fep->num_rx_queues; q++) { 2746 rxq = fep->rx_queue[q]; 2747 bdp = rxq->bd.base; 2748 for (i = 0; i < rxq->bd.ring_size; i++) { 2749 skb = rxq->rx_skbuff[i]; 2750 rxq->rx_skbuff[i] = NULL; 2751 if (skb) { 2752 dma_unmap_single(&fep->pdev->dev, 2753 fec32_to_cpu(bdp->cbd_bufaddr), 2754 FEC_ENET_RX_FRSIZE - fep->rx_align, 2755 DMA_FROM_DEVICE); 2756 dev_kfree_skb(skb); 2757 } 2758 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2759 } 2760 } 2761 2762 for (q = 0; q < fep->num_tx_queues; q++) { 2763 txq = fep->tx_queue[q]; 2764 for (i = 0; i < txq->bd.ring_size; i++) { 2765 kfree(txq->tx_bounce[i]); 2766 txq->tx_bounce[i] = NULL; 2767 skb = txq->tx_skbuff[i]; 2768 txq->tx_skbuff[i] = NULL; 2769 dev_kfree_skb(skb); 2770 } 2771 } 2772 } 2773 2774 static void fec_enet_free_queue(struct net_device *ndev) 2775 { 2776 struct fec_enet_private *fep = netdev_priv(ndev); 2777 int i; 2778 struct fec_enet_priv_tx_q *txq; 2779 2780 for (i = 0; i < fep->num_tx_queues; i++) 2781 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2782 txq = fep->tx_queue[i]; 2783 dma_free_coherent(&fep->pdev->dev, 2784 txq->bd.ring_size * TSO_HEADER_SIZE, 2785 txq->tso_hdrs, 2786 txq->tso_hdrs_dma); 2787 } 2788 2789 for (i = 0; i < fep->num_rx_queues; i++) 2790 kfree(fep->rx_queue[i]); 2791 for (i = 0; i < fep->num_tx_queues; i++) 2792 kfree(fep->tx_queue[i]); 2793 } 2794 2795 static int fec_enet_alloc_queue(struct net_device *ndev) 2796 { 2797 struct fec_enet_private *fep = netdev_priv(ndev); 2798 int i; 2799 int ret = 0; 2800 struct fec_enet_priv_tx_q *txq; 2801 2802 for (i = 0; i < fep->num_tx_queues; i++) { 2803 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2804 if (!txq) { 2805 ret = -ENOMEM; 2806 goto alloc_failed; 2807 } 2808 2809 fep->tx_queue[i] = txq; 2810 txq->bd.ring_size = TX_RING_SIZE; 2811 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2812 2813 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2814 txq->tx_wake_threshold = 2815 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2816 2817 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2818 txq->bd.ring_size * TSO_HEADER_SIZE, 2819 &txq->tso_hdrs_dma, 2820 GFP_KERNEL); 2821 if (!txq->tso_hdrs) { 2822 ret = -ENOMEM; 2823 goto alloc_failed; 2824 } 2825 } 2826 2827 for (i = 0; i < fep->num_rx_queues; i++) { 2828 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2829 GFP_KERNEL); 2830 if (!fep->rx_queue[i]) { 2831 ret = -ENOMEM; 2832 goto alloc_failed; 2833 } 2834 2835 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2836 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2837 } 2838 return ret; 2839 2840 alloc_failed: 2841 fec_enet_free_queue(ndev); 2842 return ret; 2843 } 2844 2845 static int 2846 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2847 { 2848 struct fec_enet_private *fep = netdev_priv(ndev); 2849 unsigned int i; 2850 struct sk_buff *skb; 2851 struct bufdesc *bdp; 2852 struct fec_enet_priv_rx_q *rxq; 2853 2854 rxq = fep->rx_queue[queue]; 2855 bdp = rxq->bd.base; 2856 for (i = 0; i < rxq->bd.ring_size; i++) { 2857 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2858 if (!skb) 2859 goto err_alloc; 2860 2861 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2862 dev_kfree_skb(skb); 2863 goto err_alloc; 2864 } 2865 2866 rxq->rx_skbuff[i] = skb; 2867 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2868 2869 if (fep->bufdesc_ex) { 2870 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2871 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2872 } 2873 2874 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2875 } 2876 2877 /* Set the last buffer to wrap. */ 2878 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2879 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2880 return 0; 2881 2882 err_alloc: 2883 fec_enet_free_buffers(ndev); 2884 return -ENOMEM; 2885 } 2886 2887 static int 2888 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2889 { 2890 struct fec_enet_private *fep = netdev_priv(ndev); 2891 unsigned int i; 2892 struct bufdesc *bdp; 2893 struct fec_enet_priv_tx_q *txq; 2894 2895 txq = fep->tx_queue[queue]; 2896 bdp = txq->bd.base; 2897 for (i = 0; i < txq->bd.ring_size; i++) { 2898 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2899 if (!txq->tx_bounce[i]) 2900 goto err_alloc; 2901 2902 bdp->cbd_sc = cpu_to_fec16(0); 2903 bdp->cbd_bufaddr = cpu_to_fec32(0); 2904 2905 if (fep->bufdesc_ex) { 2906 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2907 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2908 } 2909 2910 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2911 } 2912 2913 /* Set the last buffer to wrap. */ 2914 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2915 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2916 2917 return 0; 2918 2919 err_alloc: 2920 fec_enet_free_buffers(ndev); 2921 return -ENOMEM; 2922 } 2923 2924 static int fec_enet_alloc_buffers(struct net_device *ndev) 2925 { 2926 struct fec_enet_private *fep = netdev_priv(ndev); 2927 unsigned int i; 2928 2929 for (i = 0; i < fep->num_rx_queues; i++) 2930 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2931 return -ENOMEM; 2932 2933 for (i = 0; i < fep->num_tx_queues; i++) 2934 if (fec_enet_alloc_txq_buffers(ndev, i)) 2935 return -ENOMEM; 2936 return 0; 2937 } 2938 2939 static int 2940 fec_enet_open(struct net_device *ndev) 2941 { 2942 struct fec_enet_private *fep = netdev_priv(ndev); 2943 int ret; 2944 bool reset_again; 2945 2946 ret = pm_runtime_get_sync(&fep->pdev->dev); 2947 if (ret < 0) 2948 return ret; 2949 2950 pinctrl_pm_select_default_state(&fep->pdev->dev); 2951 ret = fec_enet_clk_enable(ndev, true); 2952 if (ret) 2953 goto clk_enable; 2954 2955 /* During the first fec_enet_open call the PHY isn't probed at this 2956 * point. Therefore the phy_reset_after_clk_enable() call within 2957 * fec_enet_clk_enable() fails. As we need this reset in order to be 2958 * sure the PHY is working correctly we check if we need to reset again 2959 * later when the PHY is probed 2960 */ 2961 if (ndev->phydev && ndev->phydev->drv) 2962 reset_again = false; 2963 else 2964 reset_again = true; 2965 2966 /* I should reset the ring buffers here, but I don't yet know 2967 * a simple way to do that. 2968 */ 2969 2970 ret = fec_enet_alloc_buffers(ndev); 2971 if (ret) 2972 goto err_enet_alloc; 2973 2974 /* Init MAC prior to mii bus probe */ 2975 fec_restart(ndev); 2976 2977 /* Probe and connect to PHY when open the interface */ 2978 ret = fec_enet_mii_probe(ndev); 2979 if (ret) 2980 goto err_enet_mii_probe; 2981 2982 /* Call phy_reset_after_clk_enable() again if it failed during 2983 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 2984 */ 2985 if (reset_again) 2986 phy_reset_after_clk_enable(ndev->phydev); 2987 2988 if (fep->quirks & FEC_QUIRK_ERR006687) 2989 imx6q_cpuidle_fec_irqs_used(); 2990 2991 napi_enable(&fep->napi); 2992 phy_start(ndev->phydev); 2993 netif_tx_start_all_queues(ndev); 2994 2995 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2996 FEC_WOL_FLAG_ENABLE); 2997 2998 return 0; 2999 3000 err_enet_mii_probe: 3001 fec_enet_free_buffers(ndev); 3002 err_enet_alloc: 3003 fec_enet_clk_enable(ndev, false); 3004 clk_enable: 3005 pm_runtime_mark_last_busy(&fep->pdev->dev); 3006 pm_runtime_put_autosuspend(&fep->pdev->dev); 3007 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3008 return ret; 3009 } 3010 3011 static int 3012 fec_enet_close(struct net_device *ndev) 3013 { 3014 struct fec_enet_private *fep = netdev_priv(ndev); 3015 3016 phy_stop(ndev->phydev); 3017 3018 if (netif_device_present(ndev)) { 3019 napi_disable(&fep->napi); 3020 netif_tx_disable(ndev); 3021 fec_stop(ndev); 3022 } 3023 3024 phy_disconnect(ndev->phydev); 3025 3026 if (fep->quirks & FEC_QUIRK_ERR006687) 3027 imx6q_cpuidle_fec_irqs_unused(); 3028 3029 fec_enet_update_ethtool_stats(ndev); 3030 3031 fec_enet_clk_enable(ndev, false); 3032 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3033 pm_runtime_mark_last_busy(&fep->pdev->dev); 3034 pm_runtime_put_autosuspend(&fep->pdev->dev); 3035 3036 fec_enet_free_buffers(ndev); 3037 3038 return 0; 3039 } 3040 3041 /* Set or clear the multicast filter for this adaptor. 3042 * Skeleton taken from sunlance driver. 3043 * The CPM Ethernet implementation allows Multicast as well as individual 3044 * MAC address filtering. Some of the drivers check to make sure it is 3045 * a group multicast address, and discard those that are not. I guess I 3046 * will do the same for now, but just remove the test if you want 3047 * individual filtering as well (do the upper net layers want or support 3048 * this kind of feature?). 3049 */ 3050 3051 #define FEC_HASH_BITS 6 /* #bits in hash */ 3052 3053 static void set_multicast_list(struct net_device *ndev) 3054 { 3055 struct fec_enet_private *fep = netdev_priv(ndev); 3056 struct netdev_hw_addr *ha; 3057 unsigned int crc, tmp; 3058 unsigned char hash; 3059 unsigned int hash_high = 0, hash_low = 0; 3060 3061 if (ndev->flags & IFF_PROMISC) { 3062 tmp = readl(fep->hwp + FEC_R_CNTRL); 3063 tmp |= 0x8; 3064 writel(tmp, fep->hwp + FEC_R_CNTRL); 3065 return; 3066 } 3067 3068 tmp = readl(fep->hwp + FEC_R_CNTRL); 3069 tmp &= ~0x8; 3070 writel(tmp, fep->hwp + FEC_R_CNTRL); 3071 3072 if (ndev->flags & IFF_ALLMULTI) { 3073 /* Catch all multicast addresses, so set the 3074 * filter to all 1's 3075 */ 3076 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3077 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3078 3079 return; 3080 } 3081 3082 /* Add the addresses in hash register */ 3083 netdev_for_each_mc_addr(ha, ndev) { 3084 /* calculate crc32 value of mac address */ 3085 crc = ether_crc_le(ndev->addr_len, ha->addr); 3086 3087 /* only upper 6 bits (FEC_HASH_BITS) are used 3088 * which point to specific bit in the hash registers 3089 */ 3090 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3091 3092 if (hash > 31) 3093 hash_high |= 1 << (hash - 32); 3094 else 3095 hash_low |= 1 << hash; 3096 } 3097 3098 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3099 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3100 } 3101 3102 /* Set a MAC change in hardware. */ 3103 static int 3104 fec_set_mac_address(struct net_device *ndev, void *p) 3105 { 3106 struct fec_enet_private *fep = netdev_priv(ndev); 3107 struct sockaddr *addr = p; 3108 3109 if (addr) { 3110 if (!is_valid_ether_addr(addr->sa_data)) 3111 return -EADDRNOTAVAIL; 3112 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3113 } 3114 3115 /* Add netif status check here to avoid system hang in below case: 3116 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3117 * After ethx down, fec all clocks are gated off and then register 3118 * access causes system hang. 3119 */ 3120 if (!netif_running(ndev)) 3121 return 0; 3122 3123 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3124 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3125 fep->hwp + FEC_ADDR_LOW); 3126 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3127 fep->hwp + FEC_ADDR_HIGH); 3128 return 0; 3129 } 3130 3131 #ifdef CONFIG_NET_POLL_CONTROLLER 3132 /** 3133 * fec_poll_controller - FEC Poll controller function 3134 * @dev: The FEC network adapter 3135 * 3136 * Polled functionality used by netconsole and others in non interrupt mode 3137 * 3138 */ 3139 static void fec_poll_controller(struct net_device *dev) 3140 { 3141 int i; 3142 struct fec_enet_private *fep = netdev_priv(dev); 3143 3144 for (i = 0; i < FEC_IRQ_NUM; i++) { 3145 if (fep->irq[i] > 0) { 3146 disable_irq(fep->irq[i]); 3147 fec_enet_interrupt(fep->irq[i], dev); 3148 enable_irq(fep->irq[i]); 3149 } 3150 } 3151 } 3152 #endif 3153 3154 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3155 netdev_features_t features) 3156 { 3157 struct fec_enet_private *fep = netdev_priv(netdev); 3158 netdev_features_t changed = features ^ netdev->features; 3159 3160 netdev->features = features; 3161 3162 /* Receive checksum has been changed */ 3163 if (changed & NETIF_F_RXCSUM) { 3164 if (features & NETIF_F_RXCSUM) 3165 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3166 else 3167 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3168 } 3169 } 3170 3171 static int fec_set_features(struct net_device *netdev, 3172 netdev_features_t features) 3173 { 3174 struct fec_enet_private *fep = netdev_priv(netdev); 3175 netdev_features_t changed = features ^ netdev->features; 3176 3177 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3178 napi_disable(&fep->napi); 3179 netif_tx_lock_bh(netdev); 3180 fec_stop(netdev); 3181 fec_enet_set_netdev_features(netdev, features); 3182 fec_restart(netdev); 3183 netif_tx_wake_all_queues(netdev); 3184 netif_tx_unlock_bh(netdev); 3185 napi_enable(&fep->napi); 3186 } else { 3187 fec_enet_set_netdev_features(netdev, features); 3188 } 3189 3190 return 0; 3191 } 3192 3193 static const struct net_device_ops fec_netdev_ops = { 3194 .ndo_open = fec_enet_open, 3195 .ndo_stop = fec_enet_close, 3196 .ndo_start_xmit = fec_enet_start_xmit, 3197 .ndo_set_rx_mode = set_multicast_list, 3198 .ndo_validate_addr = eth_validate_addr, 3199 .ndo_tx_timeout = fec_timeout, 3200 .ndo_set_mac_address = fec_set_mac_address, 3201 .ndo_do_ioctl = fec_enet_ioctl, 3202 #ifdef CONFIG_NET_POLL_CONTROLLER 3203 .ndo_poll_controller = fec_poll_controller, 3204 #endif 3205 .ndo_set_features = fec_set_features, 3206 }; 3207 3208 static const unsigned short offset_des_active_rxq[] = { 3209 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3210 }; 3211 3212 static const unsigned short offset_des_active_txq[] = { 3213 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3214 }; 3215 3216 /* 3217 * XXX: We need to clean up on failure exits here. 3218 * 3219 */ 3220 static int fec_enet_init(struct net_device *ndev) 3221 { 3222 struct fec_enet_private *fep = netdev_priv(ndev); 3223 struct bufdesc *cbd_base; 3224 dma_addr_t bd_dma; 3225 int bd_size; 3226 unsigned int i; 3227 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3228 sizeof(struct bufdesc); 3229 unsigned dsize_log2 = __fls(dsize); 3230 int ret; 3231 3232 WARN_ON(dsize != (1 << dsize_log2)); 3233 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3234 fep->rx_align = 0xf; 3235 fep->tx_align = 0xf; 3236 #else 3237 fep->rx_align = 0x3; 3238 fep->tx_align = 0x3; 3239 #endif 3240 3241 /* Check mask of the streaming and coherent API */ 3242 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3243 if (ret < 0) { 3244 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3245 return ret; 3246 } 3247 3248 fec_enet_alloc_queue(ndev); 3249 3250 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3251 3252 /* Allocate memory for buffer descriptors. */ 3253 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3254 GFP_KERNEL); 3255 if (!cbd_base) { 3256 return -ENOMEM; 3257 } 3258 3259 /* Get the Ethernet address */ 3260 fec_get_mac(ndev); 3261 /* make sure MAC we just acquired is programmed into the hw */ 3262 fec_set_mac_address(ndev, NULL); 3263 3264 /* Set receive and transmit descriptor base. */ 3265 for (i = 0; i < fep->num_rx_queues; i++) { 3266 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3267 unsigned size = dsize * rxq->bd.ring_size; 3268 3269 rxq->bd.qid = i; 3270 rxq->bd.base = cbd_base; 3271 rxq->bd.cur = cbd_base; 3272 rxq->bd.dma = bd_dma; 3273 rxq->bd.dsize = dsize; 3274 rxq->bd.dsize_log2 = dsize_log2; 3275 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3276 bd_dma += size; 3277 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3278 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3279 } 3280 3281 for (i = 0; i < fep->num_tx_queues; i++) { 3282 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3283 unsigned size = dsize * txq->bd.ring_size; 3284 3285 txq->bd.qid = i; 3286 txq->bd.base = cbd_base; 3287 txq->bd.cur = cbd_base; 3288 txq->bd.dma = bd_dma; 3289 txq->bd.dsize = dsize; 3290 txq->bd.dsize_log2 = dsize_log2; 3291 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3292 bd_dma += size; 3293 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3294 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3295 } 3296 3297 3298 /* The FEC Ethernet specific entries in the device structure */ 3299 ndev->watchdog_timeo = TX_TIMEOUT; 3300 ndev->netdev_ops = &fec_netdev_ops; 3301 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3302 3303 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3304 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3305 3306 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3307 /* enable hw VLAN support */ 3308 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3309 3310 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3311 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3312 3313 /* enable hw accelerator */ 3314 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3315 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3316 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3317 } 3318 3319 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3320 fep->tx_align = 0; 3321 fep->rx_align = 0x3f; 3322 } 3323 3324 ndev->hw_features = ndev->features; 3325 3326 fec_restart(ndev); 3327 3328 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3329 fec_enet_clear_ethtool_stats(ndev); 3330 else 3331 fec_enet_update_ethtool_stats(ndev); 3332 3333 return 0; 3334 } 3335 3336 #ifdef CONFIG_OF 3337 static int fec_reset_phy(struct platform_device *pdev) 3338 { 3339 int err, phy_reset; 3340 bool active_high = false; 3341 int msec = 1, phy_post_delay = 0; 3342 struct device_node *np = pdev->dev.of_node; 3343 3344 if (!np) 3345 return 0; 3346 3347 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3348 /* A sane reset duration should not be longer than 1s */ 3349 if (!err && msec > 1000) 3350 msec = 1; 3351 3352 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3353 if (phy_reset == -EPROBE_DEFER) 3354 return phy_reset; 3355 else if (!gpio_is_valid(phy_reset)) 3356 return 0; 3357 3358 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3359 /* valid reset duration should be less than 1s */ 3360 if (!err && phy_post_delay > 1000) 3361 return -EINVAL; 3362 3363 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3364 3365 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3366 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3367 "phy-reset"); 3368 if (err) { 3369 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3370 return err; 3371 } 3372 3373 if (msec > 20) 3374 msleep(msec); 3375 else 3376 usleep_range(msec * 1000, msec * 1000 + 1000); 3377 3378 gpio_set_value_cansleep(phy_reset, !active_high); 3379 3380 if (!phy_post_delay) 3381 return 0; 3382 3383 if (phy_post_delay > 20) 3384 msleep(phy_post_delay); 3385 else 3386 usleep_range(phy_post_delay * 1000, 3387 phy_post_delay * 1000 + 1000); 3388 3389 return 0; 3390 } 3391 #else /* CONFIG_OF */ 3392 static int fec_reset_phy(struct platform_device *pdev) 3393 { 3394 /* 3395 * In case of platform probe, the reset has been done 3396 * by machine code. 3397 */ 3398 return 0; 3399 } 3400 #endif /* CONFIG_OF */ 3401 3402 static void 3403 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3404 { 3405 struct device_node *np = pdev->dev.of_node; 3406 3407 *num_tx = *num_rx = 1; 3408 3409 if (!np || !of_device_is_available(np)) 3410 return; 3411 3412 /* parse the num of tx and rx queues */ 3413 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3414 3415 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3416 3417 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3418 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3419 *num_tx); 3420 *num_tx = 1; 3421 return; 3422 } 3423 3424 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3425 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3426 *num_rx); 3427 *num_rx = 1; 3428 return; 3429 } 3430 3431 } 3432 3433 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3434 { 3435 int irq_cnt = platform_irq_count(pdev); 3436 3437 if (irq_cnt > FEC_IRQ_NUM) 3438 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3439 else if (irq_cnt == 2) 3440 irq_cnt = 1; /* last for pps */ 3441 else if (irq_cnt <= 0) 3442 irq_cnt = 1; /* At least 1 irq is needed */ 3443 return irq_cnt; 3444 } 3445 3446 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3447 struct device_node *np) 3448 { 3449 struct device_node *gpr_np; 3450 u32 out_val[3]; 3451 int ret = 0; 3452 3453 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3454 if (!gpr_np) 3455 return 0; 3456 3457 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3458 ARRAY_SIZE(out_val)); 3459 if (ret) { 3460 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3461 return ret; 3462 } 3463 3464 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3465 if (IS_ERR(fep->stop_gpr.gpr)) { 3466 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3467 ret = PTR_ERR(fep->stop_gpr.gpr); 3468 fep->stop_gpr.gpr = NULL; 3469 goto out; 3470 } 3471 3472 fep->stop_gpr.reg = out_val[1]; 3473 fep->stop_gpr.bit = out_val[2]; 3474 3475 out: 3476 of_node_put(gpr_np); 3477 3478 return ret; 3479 } 3480 3481 static int 3482 fec_probe(struct platform_device *pdev) 3483 { 3484 struct fec_enet_private *fep; 3485 struct fec_platform_data *pdata; 3486 phy_interface_t interface; 3487 struct net_device *ndev; 3488 int i, irq, ret = 0; 3489 const struct of_device_id *of_id; 3490 static int dev_id; 3491 struct device_node *np = pdev->dev.of_node, *phy_node; 3492 int num_tx_qs; 3493 int num_rx_qs; 3494 char irq_name[8]; 3495 int irq_cnt; 3496 struct fec_devinfo *dev_info; 3497 3498 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3499 3500 /* Init network device */ 3501 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3502 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3503 if (!ndev) 3504 return -ENOMEM; 3505 3506 SET_NETDEV_DEV(ndev, &pdev->dev); 3507 3508 /* setup board info structure */ 3509 fep = netdev_priv(ndev); 3510 3511 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3512 if (of_id) 3513 pdev->id_entry = of_id->data; 3514 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3515 if (dev_info) 3516 fep->quirks = dev_info->quirks; 3517 3518 fep->netdev = ndev; 3519 fep->num_rx_queues = num_rx_qs; 3520 fep->num_tx_queues = num_tx_qs; 3521 3522 #if !defined(CONFIG_M5272) 3523 /* default enable pause frame auto negotiation */ 3524 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3525 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3526 #endif 3527 3528 /* Select default pin state */ 3529 pinctrl_pm_select_default_state(&pdev->dev); 3530 3531 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3532 if (IS_ERR(fep->hwp)) { 3533 ret = PTR_ERR(fep->hwp); 3534 goto failed_ioremap; 3535 } 3536 3537 fep->pdev = pdev; 3538 fep->dev_id = dev_id++; 3539 3540 platform_set_drvdata(pdev, ndev); 3541 3542 if ((of_machine_is_compatible("fsl,imx6q") || 3543 of_machine_is_compatible("fsl,imx6dl")) && 3544 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3545 fep->quirks |= FEC_QUIRK_ERR006687; 3546 3547 if (of_get_property(np, "fsl,magic-packet", NULL)) 3548 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3549 3550 ret = fec_enet_init_stop_mode(fep, np); 3551 if (ret) 3552 goto failed_stop_mode; 3553 3554 phy_node = of_parse_phandle(np, "phy-handle", 0); 3555 if (!phy_node && of_phy_is_fixed_link(np)) { 3556 ret = of_phy_register_fixed_link(np); 3557 if (ret < 0) { 3558 dev_err(&pdev->dev, 3559 "broken fixed-link specification\n"); 3560 goto failed_phy; 3561 } 3562 phy_node = of_node_get(np); 3563 } 3564 fep->phy_node = phy_node; 3565 3566 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3567 if (ret) { 3568 pdata = dev_get_platdata(&pdev->dev); 3569 if (pdata) 3570 fep->phy_interface = pdata->phy; 3571 else 3572 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3573 } else { 3574 fep->phy_interface = interface; 3575 } 3576 3577 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3578 if (IS_ERR(fep->clk_ipg)) { 3579 ret = PTR_ERR(fep->clk_ipg); 3580 goto failed_clk; 3581 } 3582 3583 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3584 if (IS_ERR(fep->clk_ahb)) { 3585 ret = PTR_ERR(fep->clk_ahb); 3586 goto failed_clk; 3587 } 3588 3589 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3590 3591 /* enet_out is optional, depends on board */ 3592 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3593 if (IS_ERR(fep->clk_enet_out)) 3594 fep->clk_enet_out = NULL; 3595 3596 fep->ptp_clk_on = false; 3597 mutex_init(&fep->ptp_clk_mutex); 3598 3599 /* clk_ref is optional, depends on board */ 3600 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3601 if (IS_ERR(fep->clk_ref)) 3602 fep->clk_ref = NULL; 3603 3604 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3605 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3606 if (IS_ERR(fep->clk_ptp)) { 3607 fep->clk_ptp = NULL; 3608 fep->bufdesc_ex = false; 3609 } 3610 3611 ret = fec_enet_clk_enable(ndev, true); 3612 if (ret) 3613 goto failed_clk; 3614 3615 ret = clk_prepare_enable(fep->clk_ipg); 3616 if (ret) 3617 goto failed_clk_ipg; 3618 ret = clk_prepare_enable(fep->clk_ahb); 3619 if (ret) 3620 goto failed_clk_ahb; 3621 3622 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3623 if (!IS_ERR(fep->reg_phy)) { 3624 ret = regulator_enable(fep->reg_phy); 3625 if (ret) { 3626 dev_err(&pdev->dev, 3627 "Failed to enable phy regulator: %d\n", ret); 3628 goto failed_regulator; 3629 } 3630 } else { 3631 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3632 ret = -EPROBE_DEFER; 3633 goto failed_regulator; 3634 } 3635 fep->reg_phy = NULL; 3636 } 3637 3638 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3639 pm_runtime_use_autosuspend(&pdev->dev); 3640 pm_runtime_get_noresume(&pdev->dev); 3641 pm_runtime_set_active(&pdev->dev); 3642 pm_runtime_enable(&pdev->dev); 3643 3644 ret = fec_reset_phy(pdev); 3645 if (ret) 3646 goto failed_reset; 3647 3648 irq_cnt = fec_enet_get_irq_cnt(pdev); 3649 if (fep->bufdesc_ex) 3650 fec_ptp_init(pdev, irq_cnt); 3651 3652 ret = fec_enet_init(ndev); 3653 if (ret) 3654 goto failed_init; 3655 3656 for (i = 0; i < irq_cnt; i++) { 3657 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3658 irq = platform_get_irq_byname_optional(pdev, irq_name); 3659 if (irq < 0) 3660 irq = platform_get_irq(pdev, i); 3661 if (irq < 0) { 3662 ret = irq; 3663 goto failed_irq; 3664 } 3665 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3666 0, pdev->name, ndev); 3667 if (ret) 3668 goto failed_irq; 3669 3670 fep->irq[i] = irq; 3671 } 3672 3673 ret = fec_enet_mii_init(pdev); 3674 if (ret) 3675 goto failed_mii_init; 3676 3677 /* Carrier starts down, phylib will bring it up */ 3678 netif_carrier_off(ndev); 3679 fec_enet_clk_enable(ndev, false); 3680 pinctrl_pm_select_sleep_state(&pdev->dev); 3681 3682 ret = register_netdev(ndev); 3683 if (ret) 3684 goto failed_register; 3685 3686 device_init_wakeup(&ndev->dev, fep->wol_flag & 3687 FEC_WOL_HAS_MAGIC_PACKET); 3688 3689 if (fep->bufdesc_ex && fep->ptp_clock) 3690 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3691 3692 fep->rx_copybreak = COPYBREAK_DEFAULT; 3693 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3694 3695 pm_runtime_mark_last_busy(&pdev->dev); 3696 pm_runtime_put_autosuspend(&pdev->dev); 3697 3698 return 0; 3699 3700 failed_register: 3701 fec_enet_mii_remove(fep); 3702 failed_mii_init: 3703 failed_irq: 3704 failed_init: 3705 fec_ptp_stop(pdev); 3706 if (fep->reg_phy) 3707 regulator_disable(fep->reg_phy); 3708 failed_reset: 3709 pm_runtime_put_noidle(&pdev->dev); 3710 pm_runtime_disable(&pdev->dev); 3711 failed_regulator: 3712 clk_disable_unprepare(fep->clk_ahb); 3713 failed_clk_ahb: 3714 clk_disable_unprepare(fep->clk_ipg); 3715 failed_clk_ipg: 3716 fec_enet_clk_enable(ndev, false); 3717 failed_clk: 3718 if (of_phy_is_fixed_link(np)) 3719 of_phy_deregister_fixed_link(np); 3720 of_node_put(phy_node); 3721 failed_stop_mode: 3722 failed_phy: 3723 dev_id--; 3724 failed_ioremap: 3725 free_netdev(ndev); 3726 3727 return ret; 3728 } 3729 3730 static int 3731 fec_drv_remove(struct platform_device *pdev) 3732 { 3733 struct net_device *ndev = platform_get_drvdata(pdev); 3734 struct fec_enet_private *fep = netdev_priv(ndev); 3735 struct device_node *np = pdev->dev.of_node; 3736 int ret; 3737 3738 ret = pm_runtime_get_sync(&pdev->dev); 3739 if (ret < 0) 3740 return ret; 3741 3742 cancel_work_sync(&fep->tx_timeout_work); 3743 fec_ptp_stop(pdev); 3744 unregister_netdev(ndev); 3745 fec_enet_mii_remove(fep); 3746 if (fep->reg_phy) 3747 regulator_disable(fep->reg_phy); 3748 3749 if (of_phy_is_fixed_link(np)) 3750 of_phy_deregister_fixed_link(np); 3751 of_node_put(fep->phy_node); 3752 free_netdev(ndev); 3753 3754 clk_disable_unprepare(fep->clk_ahb); 3755 clk_disable_unprepare(fep->clk_ipg); 3756 pm_runtime_put_noidle(&pdev->dev); 3757 pm_runtime_disable(&pdev->dev); 3758 3759 return 0; 3760 } 3761 3762 static int __maybe_unused fec_suspend(struct device *dev) 3763 { 3764 struct net_device *ndev = dev_get_drvdata(dev); 3765 struct fec_enet_private *fep = netdev_priv(ndev); 3766 3767 rtnl_lock(); 3768 if (netif_running(ndev)) { 3769 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3770 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3771 phy_stop(ndev->phydev); 3772 napi_disable(&fep->napi); 3773 netif_tx_lock_bh(ndev); 3774 netif_device_detach(ndev); 3775 netif_tx_unlock_bh(ndev); 3776 fec_stop(ndev); 3777 fec_enet_clk_enable(ndev, false); 3778 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3779 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3780 } 3781 rtnl_unlock(); 3782 3783 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3784 regulator_disable(fep->reg_phy); 3785 3786 /* SOC supply clock to phy, when clock is disabled, phy link down 3787 * SOC control phy regulator, when regulator is disabled, phy link down 3788 */ 3789 if (fep->clk_enet_out || fep->reg_phy) 3790 fep->link = 0; 3791 3792 return 0; 3793 } 3794 3795 static int __maybe_unused fec_resume(struct device *dev) 3796 { 3797 struct net_device *ndev = dev_get_drvdata(dev); 3798 struct fec_enet_private *fep = netdev_priv(ndev); 3799 int ret; 3800 int val; 3801 3802 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3803 ret = regulator_enable(fep->reg_phy); 3804 if (ret) 3805 return ret; 3806 } 3807 3808 rtnl_lock(); 3809 if (netif_running(ndev)) { 3810 ret = fec_enet_clk_enable(ndev, true); 3811 if (ret) { 3812 rtnl_unlock(); 3813 goto failed_clk; 3814 } 3815 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3816 fec_enet_stop_mode(fep, false); 3817 3818 val = readl(fep->hwp + FEC_ECNTRL); 3819 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3820 writel(val, fep->hwp + FEC_ECNTRL); 3821 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3822 } else { 3823 pinctrl_pm_select_default_state(&fep->pdev->dev); 3824 } 3825 fec_restart(ndev); 3826 netif_tx_lock_bh(ndev); 3827 netif_device_attach(ndev); 3828 netif_tx_unlock_bh(ndev); 3829 napi_enable(&fep->napi); 3830 phy_start(ndev->phydev); 3831 } 3832 rtnl_unlock(); 3833 3834 return 0; 3835 3836 failed_clk: 3837 if (fep->reg_phy) 3838 regulator_disable(fep->reg_phy); 3839 return ret; 3840 } 3841 3842 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3843 { 3844 struct net_device *ndev = dev_get_drvdata(dev); 3845 struct fec_enet_private *fep = netdev_priv(ndev); 3846 3847 clk_disable_unprepare(fep->clk_ahb); 3848 clk_disable_unprepare(fep->clk_ipg); 3849 3850 return 0; 3851 } 3852 3853 static int __maybe_unused fec_runtime_resume(struct device *dev) 3854 { 3855 struct net_device *ndev = dev_get_drvdata(dev); 3856 struct fec_enet_private *fep = netdev_priv(ndev); 3857 int ret; 3858 3859 ret = clk_prepare_enable(fep->clk_ahb); 3860 if (ret) 3861 return ret; 3862 ret = clk_prepare_enable(fep->clk_ipg); 3863 if (ret) 3864 goto failed_clk_ipg; 3865 3866 return 0; 3867 3868 failed_clk_ipg: 3869 clk_disable_unprepare(fep->clk_ahb); 3870 return ret; 3871 } 3872 3873 static const struct dev_pm_ops fec_pm_ops = { 3874 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3875 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3876 }; 3877 3878 static struct platform_driver fec_driver = { 3879 .driver = { 3880 .name = DRIVER_NAME, 3881 .pm = &fec_pm_ops, 3882 .of_match_table = fec_dt_ids, 3883 .suppress_bind_attrs = true, 3884 }, 3885 .id_table = fec_devtype, 3886 .probe = fec_probe, 3887 .remove = fec_drv_remove, 3888 }; 3889 3890 module_platform_driver(fec_driver); 3891 3892 MODULE_ALIAS("platform:"DRIVER_NAME); 3893 MODULE_LICENSE("GPL"); 3894