xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 94cad89ae4505672ae65457d12f77c44ca87655b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx6q_info = {
107 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
110 		  FEC_QUIRK_HAS_RACC,
111 };
112 
113 static const struct fec_devinfo fec_mvf600_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
115 };
116 
117 static const struct fec_devinfo fec_imx6x_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
121 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
123 };
124 
125 static const struct fec_devinfo fec_imx6ul_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
129 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_COALESCE,
131 };
132 
133 static struct platform_device_id fec_devtype[] = {
134 	{
135 		/* keep it for coldfire */
136 		.name = DRIVER_NAME,
137 		.driver_data = 0,
138 	}, {
139 		.name = "imx25-fec",
140 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
141 	}, {
142 		.name = "imx27-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
144 	}, {
145 		.name = "imx28-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
147 	}, {
148 		.name = "imx6q-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
150 	}, {
151 		.name = "mvf600-fec",
152 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
153 	}, {
154 		.name = "imx6sx-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
156 	}, {
157 		.name = "imx6ul-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
159 	}, {
160 		/* sentinel */
161 	}
162 };
163 MODULE_DEVICE_TABLE(platform, fec_devtype);
164 
165 enum imx_fec_type {
166 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
167 	IMX27_FEC,	/* runs on i.mx27/35/51 */
168 	IMX28_FEC,
169 	IMX6Q_FEC,
170 	MVF600_FEC,
171 	IMX6SX_FEC,
172 	IMX6UL_FEC,
173 };
174 
175 static const struct of_device_id fec_dt_ids[] = {
176 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
177 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
178 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
179 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
180 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
181 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
182 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
183 	{ /* sentinel */ }
184 };
185 MODULE_DEVICE_TABLE(of, fec_dt_ids);
186 
187 static unsigned char macaddr[ETH_ALEN];
188 module_param_array(macaddr, byte, NULL, 0);
189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
190 
191 #if defined(CONFIG_M5272)
192 /*
193  * Some hardware gets it MAC address out of local flash memory.
194  * if this is non-zero then assume it is the address to get MAC from.
195  */
196 #if defined(CONFIG_NETtel)
197 #define	FEC_FLASHMAC	0xf0006006
198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
199 #define	FEC_FLASHMAC	0xf0006000
200 #elif defined(CONFIG_CANCam)
201 #define	FEC_FLASHMAC	0xf0020000
202 #elif defined (CONFIG_M5272C3)
203 #define	FEC_FLASHMAC	(0xffe04000 + 4)
204 #elif defined(CONFIG_MOD5272)
205 #define FEC_FLASHMAC	0xffc0406b
206 #else
207 #define	FEC_FLASHMAC	0
208 #endif
209 #endif /* CONFIG_M5272 */
210 
211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
212  *
213  * 2048 byte skbufs are allocated. However, alignment requirements
214  * varies between FEC variants. Worst case is 64, so round down by 64.
215  */
216 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
217 #define PKT_MINBUF_SIZE		64
218 
219 /* FEC receive acceleration */
220 #define FEC_RACC_IPDIS		(1 << 1)
221 #define FEC_RACC_PRODIS		(1 << 2)
222 #define FEC_RACC_SHIFT16	BIT(7)
223 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
224 
225 /* MIB Control Register */
226 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
227 
228 /*
229  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
230  * size bits. Other FEC hardware does not, so we need to take that into
231  * account when setting it.
232  */
233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
234     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
235     defined(CONFIG_ARM64)
236 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
237 #else
238 #define	OPT_FRAME_SIZE	0
239 #endif
240 
241 /* FEC MII MMFR bits definition */
242 #define FEC_MMFR_ST		(1 << 30)
243 #define FEC_MMFR_ST_C45		(0)
244 #define FEC_MMFR_OP_READ	(2 << 28)
245 #define FEC_MMFR_OP_READ_C45	(3 << 28)
246 #define FEC_MMFR_OP_WRITE	(1 << 28)
247 #define FEC_MMFR_OP_ADDR_WRITE	(0)
248 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
249 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
250 #define FEC_MMFR_TA		(2 << 16)
251 #define FEC_MMFR_DATA(v)	(v & 0xffff)
252 /* FEC ECR bits definition */
253 #define FEC_ECR_MAGICEN		(1 << 2)
254 #define FEC_ECR_SLEEP		(1 << 3)
255 
256 #define FEC_MII_TIMEOUT		30000 /* us */
257 
258 /* Transmitter timeout */
259 #define TX_TIMEOUT (2 * HZ)
260 
261 #define FEC_PAUSE_FLAG_AUTONEG	0x1
262 #define FEC_PAUSE_FLAG_ENABLE	0x2
263 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
264 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
265 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
266 
267 #define COPYBREAK_DEFAULT	256
268 
269 /* Max number of allowed TCP segments for software TSO */
270 #define FEC_MAX_TSO_SEGS	100
271 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
272 
273 #define IS_TSO_HEADER(txq, addr) \
274 	((addr >= txq->tso_hdrs_dma) && \
275 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
276 
277 static int mii_cnt;
278 
279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
280 					     struct bufdesc_prop *bd)
281 {
282 	return (bdp >= bd->last) ? bd->base
283 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
284 }
285 
286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
287 					     struct bufdesc_prop *bd)
288 {
289 	return (bdp <= bd->base) ? bd->last
290 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
291 }
292 
293 static int fec_enet_get_bd_index(struct bufdesc *bdp,
294 				 struct bufdesc_prop *bd)
295 {
296 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
297 }
298 
299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
300 {
301 	int entries;
302 
303 	entries = (((const char *)txq->dirty_tx -
304 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
305 
306 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
307 }
308 
309 static void swap_buffer(void *bufaddr, int len)
310 {
311 	int i;
312 	unsigned int *buf = bufaddr;
313 
314 	for (i = 0; i < len; i += 4, buf++)
315 		swab32s(buf);
316 }
317 
318 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
319 {
320 	int i;
321 	unsigned int *src = src_buf;
322 	unsigned int *dst = dst_buf;
323 
324 	for (i = 0; i < len; i += 4, src++, dst++)
325 		*dst = swab32p(src);
326 }
327 
328 static void fec_dump(struct net_device *ndev)
329 {
330 	struct fec_enet_private *fep = netdev_priv(ndev);
331 	struct bufdesc *bdp;
332 	struct fec_enet_priv_tx_q *txq;
333 	int index = 0;
334 
335 	netdev_info(ndev, "TX ring dump\n");
336 	pr_info("Nr     SC     addr       len  SKB\n");
337 
338 	txq = fep->tx_queue[0];
339 	bdp = txq->bd.base;
340 
341 	do {
342 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
343 			index,
344 			bdp == txq->bd.cur ? 'S' : ' ',
345 			bdp == txq->dirty_tx ? 'H' : ' ',
346 			fec16_to_cpu(bdp->cbd_sc),
347 			fec32_to_cpu(bdp->cbd_bufaddr),
348 			fec16_to_cpu(bdp->cbd_datlen),
349 			txq->tx_skbuff[index]);
350 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
351 		index++;
352 	} while (bdp != txq->bd.base);
353 }
354 
355 static inline bool is_ipv4_pkt(struct sk_buff *skb)
356 {
357 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
358 }
359 
360 static int
361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
362 {
363 	/* Only run for packets requiring a checksum. */
364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
365 		return 0;
366 
367 	if (unlikely(skb_cow_head(skb, 0)))
368 		return -1;
369 
370 	if (is_ipv4_pkt(skb))
371 		ip_hdr(skb)->check = 0;
372 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
373 
374 	return 0;
375 }
376 
377 static struct bufdesc *
378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
379 			     struct sk_buff *skb,
380 			     struct net_device *ndev)
381 {
382 	struct fec_enet_private *fep = netdev_priv(ndev);
383 	struct bufdesc *bdp = txq->bd.cur;
384 	struct bufdesc_ex *ebdp;
385 	int nr_frags = skb_shinfo(skb)->nr_frags;
386 	int frag, frag_len;
387 	unsigned short status;
388 	unsigned int estatus = 0;
389 	skb_frag_t *this_frag;
390 	unsigned int index;
391 	void *bufaddr;
392 	dma_addr_t addr;
393 	int i;
394 
395 	for (frag = 0; frag < nr_frags; frag++) {
396 		this_frag = &skb_shinfo(skb)->frags[frag];
397 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
398 		ebdp = (struct bufdesc_ex *)bdp;
399 
400 		status = fec16_to_cpu(bdp->cbd_sc);
401 		status &= ~BD_ENET_TX_STATS;
402 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
403 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
404 
405 		/* Handle the last BD specially */
406 		if (frag == nr_frags - 1) {
407 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
408 			if (fep->bufdesc_ex) {
409 				estatus |= BD_ENET_TX_INT;
410 				if (unlikely(skb_shinfo(skb)->tx_flags &
411 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
412 					estatus |= BD_ENET_TX_TS;
413 			}
414 		}
415 
416 		if (fep->bufdesc_ex) {
417 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
418 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
419 			if (skb->ip_summed == CHECKSUM_PARTIAL)
420 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
421 			ebdp->cbd_bdu = 0;
422 			ebdp->cbd_esc = cpu_to_fec32(estatus);
423 		}
424 
425 		bufaddr = skb_frag_address(this_frag);
426 
427 		index = fec_enet_get_bd_index(bdp, &txq->bd);
428 		if (((unsigned long) bufaddr) & fep->tx_align ||
429 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
430 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
431 			bufaddr = txq->tx_bounce[index];
432 
433 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
434 				swap_buffer(bufaddr, frag_len);
435 		}
436 
437 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
438 				      DMA_TO_DEVICE);
439 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
440 			if (net_ratelimit())
441 				netdev_err(ndev, "Tx DMA memory map failed\n");
442 			goto dma_mapping_error;
443 		}
444 
445 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
446 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
447 		/* Make sure the updates to rest of the descriptor are
448 		 * performed before transferring ownership.
449 		 */
450 		wmb();
451 		bdp->cbd_sc = cpu_to_fec16(status);
452 	}
453 
454 	return bdp;
455 dma_mapping_error:
456 	bdp = txq->bd.cur;
457 	for (i = 0; i < frag; i++) {
458 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
459 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
460 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
461 	}
462 	return ERR_PTR(-ENOMEM);
463 }
464 
465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
466 				   struct sk_buff *skb, struct net_device *ndev)
467 {
468 	struct fec_enet_private *fep = netdev_priv(ndev);
469 	int nr_frags = skb_shinfo(skb)->nr_frags;
470 	struct bufdesc *bdp, *last_bdp;
471 	void *bufaddr;
472 	dma_addr_t addr;
473 	unsigned short status;
474 	unsigned short buflen;
475 	unsigned int estatus = 0;
476 	unsigned int index;
477 	int entries_free;
478 
479 	entries_free = fec_enet_get_free_txdesc_num(txq);
480 	if (entries_free < MAX_SKB_FRAGS + 1) {
481 		dev_kfree_skb_any(skb);
482 		if (net_ratelimit())
483 			netdev_err(ndev, "NOT enough BD for SG!\n");
484 		return NETDEV_TX_OK;
485 	}
486 
487 	/* Protocol checksum off-load for TCP and UDP. */
488 	if (fec_enet_clear_csum(skb, ndev)) {
489 		dev_kfree_skb_any(skb);
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Fill in a Tx ring entry */
494 	bdp = txq->bd.cur;
495 	last_bdp = bdp;
496 	status = fec16_to_cpu(bdp->cbd_sc);
497 	status &= ~BD_ENET_TX_STATS;
498 
499 	/* Set buffer length and buffer pointer */
500 	bufaddr = skb->data;
501 	buflen = skb_headlen(skb);
502 
503 	index = fec_enet_get_bd_index(bdp, &txq->bd);
504 	if (((unsigned long) bufaddr) & fep->tx_align ||
505 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
506 		memcpy(txq->tx_bounce[index], skb->data, buflen);
507 		bufaddr = txq->tx_bounce[index];
508 
509 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
510 			swap_buffer(bufaddr, buflen);
511 	}
512 
513 	/* Push the data cache so the CPM does not get stale memory data. */
514 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
515 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
516 		dev_kfree_skb_any(skb);
517 		if (net_ratelimit())
518 			netdev_err(ndev, "Tx DMA memory map failed\n");
519 		return NETDEV_TX_OK;
520 	}
521 
522 	if (nr_frags) {
523 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
524 		if (IS_ERR(last_bdp)) {
525 			dma_unmap_single(&fep->pdev->dev, addr,
526 					 buflen, DMA_TO_DEVICE);
527 			dev_kfree_skb_any(skb);
528 			return NETDEV_TX_OK;
529 		}
530 	} else {
531 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
532 		if (fep->bufdesc_ex) {
533 			estatus = BD_ENET_TX_INT;
534 			if (unlikely(skb_shinfo(skb)->tx_flags &
535 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
536 				estatus |= BD_ENET_TX_TS;
537 		}
538 	}
539 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
540 	bdp->cbd_datlen = cpu_to_fec16(buflen);
541 
542 	if (fep->bufdesc_ex) {
543 
544 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
545 
546 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
547 			fep->hwts_tx_en))
548 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
549 
550 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 
553 		if (skb->ip_summed == CHECKSUM_PARTIAL)
554 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 		ebdp->cbd_bdu = 0;
557 		ebdp->cbd_esc = cpu_to_fec32(estatus);
558 	}
559 
560 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
561 	/* Save skb pointer */
562 	txq->tx_skbuff[index] = skb;
563 
564 	/* Make sure the updates to rest of the descriptor are performed before
565 	 * transferring ownership.
566 	 */
567 	wmb();
568 
569 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
570 	 * it's the last BD of the frame, and to put the CRC on the end.
571 	 */
572 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
573 	bdp->cbd_sc = cpu_to_fec16(status);
574 
575 	/* If this was the last BD in the ring, start at the beginning again. */
576 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
577 
578 	skb_tx_timestamp(skb);
579 
580 	/* Make sure the update to bdp and tx_skbuff are performed before
581 	 * txq->bd.cur.
582 	 */
583 	wmb();
584 	txq->bd.cur = bdp;
585 
586 	/* Trigger transmission start */
587 	writel(0, txq->bd.reg_desc_active);
588 
589 	return 0;
590 }
591 
592 static int
593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
594 			  struct net_device *ndev,
595 			  struct bufdesc *bdp, int index, char *data,
596 			  int size, bool last_tcp, bool is_last)
597 {
598 	struct fec_enet_private *fep = netdev_priv(ndev);
599 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
600 	unsigned short status;
601 	unsigned int estatus = 0;
602 	dma_addr_t addr;
603 
604 	status = fec16_to_cpu(bdp->cbd_sc);
605 	status &= ~BD_ENET_TX_STATS;
606 
607 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
608 
609 	if (((unsigned long) data) & fep->tx_align ||
610 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
611 		memcpy(txq->tx_bounce[index], data, size);
612 		data = txq->tx_bounce[index];
613 
614 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
615 			swap_buffer(data, size);
616 	}
617 
618 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
619 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
620 		dev_kfree_skb_any(skb);
621 		if (net_ratelimit())
622 			netdev_err(ndev, "Tx DMA memory map failed\n");
623 		return NETDEV_TX_BUSY;
624 	}
625 
626 	bdp->cbd_datlen = cpu_to_fec16(size);
627 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
628 
629 	if (fep->bufdesc_ex) {
630 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
631 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
632 		if (skb->ip_summed == CHECKSUM_PARTIAL)
633 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
634 		ebdp->cbd_bdu = 0;
635 		ebdp->cbd_esc = cpu_to_fec32(estatus);
636 	}
637 
638 	/* Handle the last BD specially */
639 	if (last_tcp)
640 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
641 	if (is_last) {
642 		status |= BD_ENET_TX_INTR;
643 		if (fep->bufdesc_ex)
644 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
645 	}
646 
647 	bdp->cbd_sc = cpu_to_fec16(status);
648 
649 	return 0;
650 }
651 
652 static int
653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
654 			 struct sk_buff *skb, struct net_device *ndev,
655 			 struct bufdesc *bdp, int index)
656 {
657 	struct fec_enet_private *fep = netdev_priv(ndev);
658 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
659 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
660 	void *bufaddr;
661 	unsigned long dmabuf;
662 	unsigned short status;
663 	unsigned int estatus = 0;
664 
665 	status = fec16_to_cpu(bdp->cbd_sc);
666 	status &= ~BD_ENET_TX_STATS;
667 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
668 
669 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
670 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
671 	if (((unsigned long)bufaddr) & fep->tx_align ||
672 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
673 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
674 		bufaddr = txq->tx_bounce[index];
675 
676 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
677 			swap_buffer(bufaddr, hdr_len);
678 
679 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
680 					hdr_len, DMA_TO_DEVICE);
681 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
682 			dev_kfree_skb_any(skb);
683 			if (net_ratelimit())
684 				netdev_err(ndev, "Tx DMA memory map failed\n");
685 			return NETDEV_TX_BUSY;
686 		}
687 	}
688 
689 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
690 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
691 
692 	if (fep->bufdesc_ex) {
693 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
694 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
695 		if (skb->ip_summed == CHECKSUM_PARTIAL)
696 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
697 		ebdp->cbd_bdu = 0;
698 		ebdp->cbd_esc = cpu_to_fec32(estatus);
699 	}
700 
701 	bdp->cbd_sc = cpu_to_fec16(status);
702 
703 	return 0;
704 }
705 
706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
707 				   struct sk_buff *skb,
708 				   struct net_device *ndev)
709 {
710 	struct fec_enet_private *fep = netdev_priv(ndev);
711 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
712 	int total_len, data_left;
713 	struct bufdesc *bdp = txq->bd.cur;
714 	struct tso_t tso;
715 	unsigned int index = 0;
716 	int ret;
717 
718 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
719 		dev_kfree_skb_any(skb);
720 		if (net_ratelimit())
721 			netdev_err(ndev, "NOT enough BD for TSO!\n");
722 		return NETDEV_TX_OK;
723 	}
724 
725 	/* Protocol checksum off-load for TCP and UDP. */
726 	if (fec_enet_clear_csum(skb, ndev)) {
727 		dev_kfree_skb_any(skb);
728 		return NETDEV_TX_OK;
729 	}
730 
731 	/* Initialize the TSO handler, and prepare the first payload */
732 	tso_start(skb, &tso);
733 
734 	total_len = skb->len - hdr_len;
735 	while (total_len > 0) {
736 		char *hdr;
737 
738 		index = fec_enet_get_bd_index(bdp, &txq->bd);
739 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
740 		total_len -= data_left;
741 
742 		/* prepare packet headers: MAC + IP + TCP */
743 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
744 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
745 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
746 		if (ret)
747 			goto err_release;
748 
749 		while (data_left > 0) {
750 			int size;
751 
752 			size = min_t(int, tso.size, data_left);
753 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
754 			index = fec_enet_get_bd_index(bdp, &txq->bd);
755 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
756 							bdp, index,
757 							tso.data, size,
758 							size == data_left,
759 							total_len == 0);
760 			if (ret)
761 				goto err_release;
762 
763 			data_left -= size;
764 			tso_build_data(skb, &tso, size);
765 		}
766 
767 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
768 	}
769 
770 	/* Save skb pointer */
771 	txq->tx_skbuff[index] = skb;
772 
773 	skb_tx_timestamp(skb);
774 	txq->bd.cur = bdp;
775 
776 	/* Trigger transmission start */
777 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
778 	    !readl(txq->bd.reg_desc_active) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active))
782 		writel(0, txq->bd.reg_desc_active);
783 
784 	return 0;
785 
786 err_release:
787 	/* TODO: Release all used data descriptors for TSO */
788 	return ret;
789 }
790 
791 static netdev_tx_t
792 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
793 {
794 	struct fec_enet_private *fep = netdev_priv(ndev);
795 	int entries_free;
796 	unsigned short queue;
797 	struct fec_enet_priv_tx_q *txq;
798 	struct netdev_queue *nq;
799 	int ret;
800 
801 	queue = skb_get_queue_mapping(skb);
802 	txq = fep->tx_queue[queue];
803 	nq = netdev_get_tx_queue(ndev, queue);
804 
805 	if (skb_is_gso(skb))
806 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
807 	else
808 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
809 	if (ret)
810 		return ret;
811 
812 	entries_free = fec_enet_get_free_txdesc_num(txq);
813 	if (entries_free <= txq->tx_stop_threshold)
814 		netif_tx_stop_queue(nq);
815 
816 	return NETDEV_TX_OK;
817 }
818 
819 /* Init RX & TX buffer descriptors
820  */
821 static void fec_enet_bd_init(struct net_device *dev)
822 {
823 	struct fec_enet_private *fep = netdev_priv(dev);
824 	struct fec_enet_priv_tx_q *txq;
825 	struct fec_enet_priv_rx_q *rxq;
826 	struct bufdesc *bdp;
827 	unsigned int i;
828 	unsigned int q;
829 
830 	for (q = 0; q < fep->num_rx_queues; q++) {
831 		/* Initialize the receive buffer descriptors. */
832 		rxq = fep->rx_queue[q];
833 		bdp = rxq->bd.base;
834 
835 		for (i = 0; i < rxq->bd.ring_size; i++) {
836 
837 			/* Initialize the BD for every fragment in the page. */
838 			if (bdp->cbd_bufaddr)
839 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
840 			else
841 				bdp->cbd_sc = cpu_to_fec16(0);
842 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
843 		}
844 
845 		/* Set the last buffer to wrap */
846 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
847 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
848 
849 		rxq->bd.cur = rxq->bd.base;
850 	}
851 
852 	for (q = 0; q < fep->num_tx_queues; q++) {
853 		/* ...and the same for transmit */
854 		txq = fep->tx_queue[q];
855 		bdp = txq->bd.base;
856 		txq->bd.cur = bdp;
857 
858 		for (i = 0; i < txq->bd.ring_size; i++) {
859 			/* Initialize the BD for every fragment in the page. */
860 			bdp->cbd_sc = cpu_to_fec16(0);
861 			if (bdp->cbd_bufaddr &&
862 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
863 				dma_unmap_single(&fep->pdev->dev,
864 						 fec32_to_cpu(bdp->cbd_bufaddr),
865 						 fec16_to_cpu(bdp->cbd_datlen),
866 						 DMA_TO_DEVICE);
867 			if (txq->tx_skbuff[i]) {
868 				dev_kfree_skb_any(txq->tx_skbuff[i]);
869 				txq->tx_skbuff[i] = NULL;
870 			}
871 			bdp->cbd_bufaddr = cpu_to_fec32(0);
872 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
873 		}
874 
875 		/* Set the last buffer to wrap */
876 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
877 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
878 		txq->dirty_tx = bdp;
879 	}
880 }
881 
882 static void fec_enet_active_rxring(struct net_device *ndev)
883 {
884 	struct fec_enet_private *fep = netdev_priv(ndev);
885 	int i;
886 
887 	for (i = 0; i < fep->num_rx_queues; i++)
888 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
889 }
890 
891 static void fec_enet_enable_ring(struct net_device *ndev)
892 {
893 	struct fec_enet_private *fep = netdev_priv(ndev);
894 	struct fec_enet_priv_tx_q *txq;
895 	struct fec_enet_priv_rx_q *rxq;
896 	int i;
897 
898 	for (i = 0; i < fep->num_rx_queues; i++) {
899 		rxq = fep->rx_queue[i];
900 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
901 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
902 
903 		/* enable DMA1/2 */
904 		if (i)
905 			writel(RCMR_MATCHEN | RCMR_CMP(i),
906 			       fep->hwp + FEC_RCMR(i));
907 	}
908 
909 	for (i = 0; i < fep->num_tx_queues; i++) {
910 		txq = fep->tx_queue[i];
911 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
912 
913 		/* enable DMA1/2 */
914 		if (i)
915 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
916 			       fep->hwp + FEC_DMA_CFG(i));
917 	}
918 }
919 
920 static void fec_enet_reset_skb(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	struct fec_enet_priv_tx_q *txq;
924 	int i, j;
925 
926 	for (i = 0; i < fep->num_tx_queues; i++) {
927 		txq = fep->tx_queue[i];
928 
929 		for (j = 0; j < txq->bd.ring_size; j++) {
930 			if (txq->tx_skbuff[j]) {
931 				dev_kfree_skb_any(txq->tx_skbuff[j]);
932 				txq->tx_skbuff[j] = NULL;
933 			}
934 		}
935 	}
936 }
937 
938 /*
939  * This function is called to start or restart the FEC during a link
940  * change, transmit timeout, or to reconfigure the FEC.  The network
941  * packet processing for this device must be stopped before this call.
942  */
943 static void
944 fec_restart(struct net_device *ndev)
945 {
946 	struct fec_enet_private *fep = netdev_priv(ndev);
947 	u32 val;
948 	u32 temp_mac[2];
949 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
950 	u32 ecntl = 0x2; /* ETHEREN */
951 
952 	/* Whack a reset.  We should wait for this.
953 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
954 	 * instead of reset MAC itself.
955 	 */
956 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
957 		writel(0, fep->hwp + FEC_ECNTRL);
958 	} else {
959 		writel(1, fep->hwp + FEC_ECNTRL);
960 		udelay(10);
961 	}
962 
963 	/*
964 	 * enet-mac reset will reset mac address registers too,
965 	 * so need to reconfigure it.
966 	 */
967 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
968 	writel((__force u32)cpu_to_be32(temp_mac[0]),
969 	       fep->hwp + FEC_ADDR_LOW);
970 	writel((__force u32)cpu_to_be32(temp_mac[1]),
971 	       fep->hwp + FEC_ADDR_HIGH);
972 
973 	/* Clear any outstanding interrupt, except MDIO. */
974 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
975 
976 	fec_enet_bd_init(ndev);
977 
978 	fec_enet_enable_ring(ndev);
979 
980 	/* Reset tx SKB buffers. */
981 	fec_enet_reset_skb(ndev);
982 
983 	/* Enable MII mode */
984 	if (fep->full_duplex == DUPLEX_FULL) {
985 		/* FD enable */
986 		writel(0x04, fep->hwp + FEC_X_CNTRL);
987 	} else {
988 		/* No Rcv on Xmit */
989 		rcntl |= 0x02;
990 		writel(0x0, fep->hwp + FEC_X_CNTRL);
991 	}
992 
993 	/* Set MII speed */
994 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
995 
996 #if !defined(CONFIG_M5272)
997 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
998 		val = readl(fep->hwp + FEC_RACC);
999 		/* align IP header */
1000 		val |= FEC_RACC_SHIFT16;
1001 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1002 			/* set RX checksum */
1003 			val |= FEC_RACC_OPTIONS;
1004 		else
1005 			val &= ~FEC_RACC_OPTIONS;
1006 		writel(val, fep->hwp + FEC_RACC);
1007 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1008 	}
1009 #endif
1010 
1011 	/*
1012 	 * The phy interface and speed need to get configured
1013 	 * differently on enet-mac.
1014 	 */
1015 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1016 		/* Enable flow control and length check */
1017 		rcntl |= 0x40000000 | 0x00000020;
1018 
1019 		/* RGMII, RMII or MII */
1020 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1021 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1024 			rcntl |= (1 << 6);
1025 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1026 			rcntl |= (1 << 8);
1027 		else
1028 			rcntl &= ~(1 << 8);
1029 
1030 		/* 1G, 100M or 10M */
1031 		if (ndev->phydev) {
1032 			if (ndev->phydev->speed == SPEED_1000)
1033 				ecntl |= (1 << 5);
1034 			else if (ndev->phydev->speed == SPEED_100)
1035 				rcntl &= ~(1 << 9);
1036 			else
1037 				rcntl |= (1 << 9);
1038 		}
1039 	} else {
1040 #ifdef FEC_MIIGSK_ENR
1041 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1042 			u32 cfgr;
1043 			/* disable the gasket and wait */
1044 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1045 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1046 				udelay(1);
1047 
1048 			/*
1049 			 * configure the gasket:
1050 			 *   RMII, 50 MHz, no loopback, no echo
1051 			 *   MII, 25 MHz, no loopback, no echo
1052 			 */
1053 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1054 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1055 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1056 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1057 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1058 
1059 			/* re-enable the gasket */
1060 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1061 		}
1062 #endif
1063 	}
1064 
1065 #if !defined(CONFIG_M5272)
1066 	/* enable pause frame*/
1067 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1068 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1069 	     ndev->phydev && ndev->phydev->pause)) {
1070 		rcntl |= FEC_ENET_FCE;
1071 
1072 		/* set FIFO threshold parameter to reduce overrun */
1073 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1074 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1075 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1076 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1077 
1078 		/* OPD */
1079 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1080 	} else {
1081 		rcntl &= ~FEC_ENET_FCE;
1082 	}
1083 #endif /* !defined(CONFIG_M5272) */
1084 
1085 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1086 
1087 	/* Setup multicast filter. */
1088 	set_multicast_list(ndev);
1089 #ifndef CONFIG_M5272
1090 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1091 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1092 #endif
1093 
1094 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1095 		/* enable ENET endian swap */
1096 		ecntl |= (1 << 8);
1097 		/* enable ENET store and forward mode */
1098 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1099 	}
1100 
1101 	if (fep->bufdesc_ex)
1102 		ecntl |= (1 << 4);
1103 
1104 #ifndef CONFIG_M5272
1105 	/* Enable the MIB statistic event counters */
1106 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1107 #endif
1108 
1109 	/* And last, enable the transmit and receive processing */
1110 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1111 	fec_enet_active_rxring(ndev);
1112 
1113 	if (fep->bufdesc_ex)
1114 		fec_ptp_start_cyclecounter(ndev);
1115 
1116 	/* Enable interrupts we wish to service */
1117 	if (fep->link)
1118 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119 	else
1120 		writel(0, fep->hwp + FEC_IMASK);
1121 
1122 	/* Init the interrupt coalescing */
1123 	fec_enet_itr_coal_init(ndev);
1124 
1125 }
1126 
1127 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1128 {
1129 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1130 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1131 
1132 	if (stop_gpr->gpr) {
1133 		if (enabled)
1134 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1135 					   BIT(stop_gpr->bit),
1136 					   BIT(stop_gpr->bit));
1137 		else
1138 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1139 					   BIT(stop_gpr->bit), 0);
1140 	} else if (pdata && pdata->sleep_mode_enable) {
1141 		pdata->sleep_mode_enable(enabled);
1142 	}
1143 }
1144 
1145 static void
1146 fec_stop(struct net_device *ndev)
1147 {
1148 	struct fec_enet_private *fep = netdev_priv(ndev);
1149 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1150 	u32 val;
1151 
1152 	/* We cannot expect a graceful transmit stop without link !!! */
1153 	if (fep->link) {
1154 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1155 		udelay(10);
1156 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1157 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1158 	}
1159 
1160 	/* Whack a reset.  We should wait for this.
1161 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1162 	 * instead of reset MAC itself.
1163 	 */
1164 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1165 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1166 			writel(0, fep->hwp + FEC_ECNTRL);
1167 		} else {
1168 			writel(1, fep->hwp + FEC_ECNTRL);
1169 			udelay(10);
1170 		}
1171 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1172 	} else {
1173 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1174 		val = readl(fep->hwp + FEC_ECNTRL);
1175 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1176 		writel(val, fep->hwp + FEC_ECNTRL);
1177 		fec_enet_stop_mode(fep, true);
1178 	}
1179 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1180 
1181 	/* We have to keep ENET enabled to have MII interrupt stay working */
1182 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1183 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1184 		writel(2, fep->hwp + FEC_ECNTRL);
1185 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1186 	}
1187 }
1188 
1189 
1190 static void
1191 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1192 {
1193 	struct fec_enet_private *fep = netdev_priv(ndev);
1194 
1195 	fec_dump(ndev);
1196 
1197 	ndev->stats.tx_errors++;
1198 
1199 	schedule_work(&fep->tx_timeout_work);
1200 }
1201 
1202 static void fec_enet_timeout_work(struct work_struct *work)
1203 {
1204 	struct fec_enet_private *fep =
1205 		container_of(work, struct fec_enet_private, tx_timeout_work);
1206 	struct net_device *ndev = fep->netdev;
1207 
1208 	rtnl_lock();
1209 	if (netif_device_present(ndev) || netif_running(ndev)) {
1210 		napi_disable(&fep->napi);
1211 		netif_tx_lock_bh(ndev);
1212 		fec_restart(ndev);
1213 		netif_tx_wake_all_queues(ndev);
1214 		netif_tx_unlock_bh(ndev);
1215 		napi_enable(&fep->napi);
1216 	}
1217 	rtnl_unlock();
1218 }
1219 
1220 static void
1221 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1222 	struct skb_shared_hwtstamps *hwtstamps)
1223 {
1224 	unsigned long flags;
1225 	u64 ns;
1226 
1227 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1228 	ns = timecounter_cyc2time(&fep->tc, ts);
1229 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1230 
1231 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1232 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1233 }
1234 
1235 static void
1236 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1237 {
1238 	struct	fec_enet_private *fep;
1239 	struct bufdesc *bdp;
1240 	unsigned short status;
1241 	struct	sk_buff	*skb;
1242 	struct fec_enet_priv_tx_q *txq;
1243 	struct netdev_queue *nq;
1244 	int	index = 0;
1245 	int	entries_free;
1246 
1247 	fep = netdev_priv(ndev);
1248 
1249 	txq = fep->tx_queue[queue_id];
1250 	/* get next bdp of dirty_tx */
1251 	nq = netdev_get_tx_queue(ndev, queue_id);
1252 	bdp = txq->dirty_tx;
1253 
1254 	/* get next bdp of dirty_tx */
1255 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1256 
1257 	while (bdp != READ_ONCE(txq->bd.cur)) {
1258 		/* Order the load of bd.cur and cbd_sc */
1259 		rmb();
1260 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1261 		if (status & BD_ENET_TX_READY)
1262 			break;
1263 
1264 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1265 
1266 		skb = txq->tx_skbuff[index];
1267 		txq->tx_skbuff[index] = NULL;
1268 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1269 			dma_unmap_single(&fep->pdev->dev,
1270 					 fec32_to_cpu(bdp->cbd_bufaddr),
1271 					 fec16_to_cpu(bdp->cbd_datlen),
1272 					 DMA_TO_DEVICE);
1273 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1274 		if (!skb)
1275 			goto skb_done;
1276 
1277 		/* Check for errors. */
1278 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1279 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1280 				   BD_ENET_TX_CSL)) {
1281 			ndev->stats.tx_errors++;
1282 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1283 				ndev->stats.tx_heartbeat_errors++;
1284 			if (status & BD_ENET_TX_LC)  /* Late collision */
1285 				ndev->stats.tx_window_errors++;
1286 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1287 				ndev->stats.tx_aborted_errors++;
1288 			if (status & BD_ENET_TX_UN)  /* Underrun */
1289 				ndev->stats.tx_fifo_errors++;
1290 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1291 				ndev->stats.tx_carrier_errors++;
1292 		} else {
1293 			ndev->stats.tx_packets++;
1294 			ndev->stats.tx_bytes += skb->len;
1295 		}
1296 
1297 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1298 			fep->bufdesc_ex) {
1299 			struct skb_shared_hwtstamps shhwtstamps;
1300 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1301 
1302 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1303 			skb_tstamp_tx(skb, &shhwtstamps);
1304 		}
1305 
1306 		/* Deferred means some collisions occurred during transmit,
1307 		 * but we eventually sent the packet OK.
1308 		 */
1309 		if (status & BD_ENET_TX_DEF)
1310 			ndev->stats.collisions++;
1311 
1312 		/* Free the sk buffer associated with this last transmit */
1313 		dev_kfree_skb_any(skb);
1314 skb_done:
1315 		/* Make sure the update to bdp and tx_skbuff are performed
1316 		 * before dirty_tx
1317 		 */
1318 		wmb();
1319 		txq->dirty_tx = bdp;
1320 
1321 		/* Update pointer to next buffer descriptor to be transmitted */
1322 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1323 
1324 		/* Since we have freed up a buffer, the ring is no longer full
1325 		 */
1326 		if (netif_tx_queue_stopped(nq)) {
1327 			entries_free = fec_enet_get_free_txdesc_num(txq);
1328 			if (entries_free >= txq->tx_wake_threshold)
1329 				netif_tx_wake_queue(nq);
1330 		}
1331 	}
1332 
1333 	/* ERR006358: Keep the transmitter going */
1334 	if (bdp != txq->bd.cur &&
1335 	    readl(txq->bd.reg_desc_active) == 0)
1336 		writel(0, txq->bd.reg_desc_active);
1337 }
1338 
1339 static void fec_enet_tx(struct net_device *ndev)
1340 {
1341 	struct fec_enet_private *fep = netdev_priv(ndev);
1342 	int i;
1343 
1344 	/* Make sure that AVB queues are processed first. */
1345 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1346 		fec_enet_tx_queue(ndev, i);
1347 }
1348 
1349 static int
1350 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1351 {
1352 	struct  fec_enet_private *fep = netdev_priv(ndev);
1353 	int off;
1354 
1355 	off = ((unsigned long)skb->data) & fep->rx_align;
1356 	if (off)
1357 		skb_reserve(skb, fep->rx_align + 1 - off);
1358 
1359 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1360 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1361 		if (net_ratelimit())
1362 			netdev_err(ndev, "Rx DMA memory map failed\n");
1363 		return -ENOMEM;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1370 			       struct bufdesc *bdp, u32 length, bool swap)
1371 {
1372 	struct  fec_enet_private *fep = netdev_priv(ndev);
1373 	struct sk_buff *new_skb;
1374 
1375 	if (length > fep->rx_copybreak)
1376 		return false;
1377 
1378 	new_skb = netdev_alloc_skb(ndev, length);
1379 	if (!new_skb)
1380 		return false;
1381 
1382 	dma_sync_single_for_cpu(&fep->pdev->dev,
1383 				fec32_to_cpu(bdp->cbd_bufaddr),
1384 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1385 				DMA_FROM_DEVICE);
1386 	if (!swap)
1387 		memcpy(new_skb->data, (*skb)->data, length);
1388 	else
1389 		swap_buffer2(new_skb->data, (*skb)->data, length);
1390 	*skb = new_skb;
1391 
1392 	return true;
1393 }
1394 
1395 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1396  * When we update through the ring, if the next incoming buffer has
1397  * not been given to the system, we just set the empty indicator,
1398  * effectively tossing the packet.
1399  */
1400 static int
1401 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1402 {
1403 	struct fec_enet_private *fep = netdev_priv(ndev);
1404 	struct fec_enet_priv_rx_q *rxq;
1405 	struct bufdesc *bdp;
1406 	unsigned short status;
1407 	struct  sk_buff *skb_new = NULL;
1408 	struct  sk_buff *skb;
1409 	ushort	pkt_len;
1410 	__u8 *data;
1411 	int	pkt_received = 0;
1412 	struct	bufdesc_ex *ebdp = NULL;
1413 	bool	vlan_packet_rcvd = false;
1414 	u16	vlan_tag;
1415 	int	index = 0;
1416 	bool	is_copybreak;
1417 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1418 
1419 #ifdef CONFIG_M532x
1420 	flush_cache_all();
1421 #endif
1422 	rxq = fep->rx_queue[queue_id];
1423 
1424 	/* First, grab all of the stats for the incoming packet.
1425 	 * These get messed up if we get called due to a busy condition.
1426 	 */
1427 	bdp = rxq->bd.cur;
1428 
1429 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1430 
1431 		if (pkt_received >= budget)
1432 			break;
1433 		pkt_received++;
1434 
1435 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1436 
1437 		/* Check for errors. */
1438 		status ^= BD_ENET_RX_LAST;
1439 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1440 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1441 			   BD_ENET_RX_CL)) {
1442 			ndev->stats.rx_errors++;
1443 			if (status & BD_ENET_RX_OV) {
1444 				/* FIFO overrun */
1445 				ndev->stats.rx_fifo_errors++;
1446 				goto rx_processing_done;
1447 			}
1448 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1449 						| BD_ENET_RX_LAST)) {
1450 				/* Frame too long or too short. */
1451 				ndev->stats.rx_length_errors++;
1452 				if (status & BD_ENET_RX_LAST)
1453 					netdev_err(ndev, "rcv is not +last\n");
1454 			}
1455 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1456 				ndev->stats.rx_crc_errors++;
1457 			/* Report late collisions as a frame error. */
1458 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1459 				ndev->stats.rx_frame_errors++;
1460 			goto rx_processing_done;
1461 		}
1462 
1463 		/* Process the incoming frame. */
1464 		ndev->stats.rx_packets++;
1465 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1466 		ndev->stats.rx_bytes += pkt_len;
1467 
1468 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1469 		skb = rxq->rx_skbuff[index];
1470 
1471 		/* The packet length includes FCS, but we don't want to
1472 		 * include that when passing upstream as it messes up
1473 		 * bridging applications.
1474 		 */
1475 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1476 						  need_swap);
1477 		if (!is_copybreak) {
1478 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1479 			if (unlikely(!skb_new)) {
1480 				ndev->stats.rx_dropped++;
1481 				goto rx_processing_done;
1482 			}
1483 			dma_unmap_single(&fep->pdev->dev,
1484 					 fec32_to_cpu(bdp->cbd_bufaddr),
1485 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1486 					 DMA_FROM_DEVICE);
1487 		}
1488 
1489 		prefetch(skb->data - NET_IP_ALIGN);
1490 		skb_put(skb, pkt_len - 4);
1491 		data = skb->data;
1492 
1493 		if (!is_copybreak && need_swap)
1494 			swap_buffer(data, pkt_len);
1495 
1496 #if !defined(CONFIG_M5272)
1497 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1498 			data = skb_pull_inline(skb, 2);
1499 #endif
1500 
1501 		/* Extract the enhanced buffer descriptor */
1502 		ebdp = NULL;
1503 		if (fep->bufdesc_ex)
1504 			ebdp = (struct bufdesc_ex *)bdp;
1505 
1506 		/* If this is a VLAN packet remove the VLAN Tag */
1507 		vlan_packet_rcvd = false;
1508 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1509 		    fep->bufdesc_ex &&
1510 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1511 			/* Push and remove the vlan tag */
1512 			struct vlan_hdr *vlan_header =
1513 					(struct vlan_hdr *) (data + ETH_HLEN);
1514 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1515 
1516 			vlan_packet_rcvd = true;
1517 
1518 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1519 			skb_pull(skb, VLAN_HLEN);
1520 		}
1521 
1522 		skb->protocol = eth_type_trans(skb, ndev);
1523 
1524 		/* Get receive timestamp from the skb */
1525 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1526 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1527 					  skb_hwtstamps(skb));
1528 
1529 		if (fep->bufdesc_ex &&
1530 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1531 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1532 				/* don't check it */
1533 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1534 			} else {
1535 				skb_checksum_none_assert(skb);
1536 			}
1537 		}
1538 
1539 		/* Handle received VLAN packets */
1540 		if (vlan_packet_rcvd)
1541 			__vlan_hwaccel_put_tag(skb,
1542 					       htons(ETH_P_8021Q),
1543 					       vlan_tag);
1544 
1545 		skb_record_rx_queue(skb, queue_id);
1546 		napi_gro_receive(&fep->napi, skb);
1547 
1548 		if (is_copybreak) {
1549 			dma_sync_single_for_device(&fep->pdev->dev,
1550 						   fec32_to_cpu(bdp->cbd_bufaddr),
1551 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1552 						   DMA_FROM_DEVICE);
1553 		} else {
1554 			rxq->rx_skbuff[index] = skb_new;
1555 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1556 		}
1557 
1558 rx_processing_done:
1559 		/* Clear the status flags for this buffer */
1560 		status &= ~BD_ENET_RX_STATS;
1561 
1562 		/* Mark the buffer empty */
1563 		status |= BD_ENET_RX_EMPTY;
1564 
1565 		if (fep->bufdesc_ex) {
1566 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1567 
1568 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1569 			ebdp->cbd_prot = 0;
1570 			ebdp->cbd_bdu = 0;
1571 		}
1572 		/* Make sure the updates to rest of the descriptor are
1573 		 * performed before transferring ownership.
1574 		 */
1575 		wmb();
1576 		bdp->cbd_sc = cpu_to_fec16(status);
1577 
1578 		/* Update BD pointer to next entry */
1579 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1580 
1581 		/* Doing this here will keep the FEC running while we process
1582 		 * incoming frames.  On a heavily loaded network, we should be
1583 		 * able to keep up at the expense of system resources.
1584 		 */
1585 		writel(0, rxq->bd.reg_desc_active);
1586 	}
1587 	rxq->bd.cur = bdp;
1588 	return pkt_received;
1589 }
1590 
1591 static int fec_enet_rx(struct net_device *ndev, int budget)
1592 {
1593 	struct fec_enet_private *fep = netdev_priv(ndev);
1594 	int i, done = 0;
1595 
1596 	/* Make sure that AVB queues are processed first. */
1597 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1598 		done += fec_enet_rx_queue(ndev, budget - done, i);
1599 
1600 	return done;
1601 }
1602 
1603 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1604 {
1605 	uint int_events;
1606 
1607 	int_events = readl(fep->hwp + FEC_IEVENT);
1608 
1609 	/* Don't clear MDIO events, we poll for those */
1610 	int_events &= ~FEC_ENET_MII;
1611 
1612 	writel(int_events, fep->hwp + FEC_IEVENT);
1613 
1614 	return int_events != 0;
1615 }
1616 
1617 static irqreturn_t
1618 fec_enet_interrupt(int irq, void *dev_id)
1619 {
1620 	struct net_device *ndev = dev_id;
1621 	struct fec_enet_private *fep = netdev_priv(ndev);
1622 	irqreturn_t ret = IRQ_NONE;
1623 
1624 	if (fec_enet_collect_events(fep) && fep->link) {
1625 		ret = IRQ_HANDLED;
1626 
1627 		if (napi_schedule_prep(&fep->napi)) {
1628 			/* Disable interrupts */
1629 			writel(0, fep->hwp + FEC_IMASK);
1630 			__napi_schedule(&fep->napi);
1631 		}
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1638 {
1639 	struct net_device *ndev = napi->dev;
1640 	struct fec_enet_private *fep = netdev_priv(ndev);
1641 	int done = 0;
1642 
1643 	do {
1644 		done += fec_enet_rx(ndev, budget - done);
1645 		fec_enet_tx(ndev);
1646 	} while ((done < budget) && fec_enet_collect_events(fep));
1647 
1648 	if (done < budget) {
1649 		napi_complete_done(napi, done);
1650 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1651 	}
1652 
1653 	return done;
1654 }
1655 
1656 /* ------------------------------------------------------------------------- */
1657 static void fec_get_mac(struct net_device *ndev)
1658 {
1659 	struct fec_enet_private *fep = netdev_priv(ndev);
1660 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1661 	unsigned char *iap, tmpaddr[ETH_ALEN];
1662 
1663 	/*
1664 	 * try to get mac address in following order:
1665 	 *
1666 	 * 1) module parameter via kernel command line in form
1667 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1668 	 */
1669 	iap = macaddr;
1670 
1671 	/*
1672 	 * 2) from device tree data
1673 	 */
1674 	if (!is_valid_ether_addr(iap)) {
1675 		struct device_node *np = fep->pdev->dev.of_node;
1676 		if (np) {
1677 			const char *mac = of_get_mac_address(np);
1678 			if (!IS_ERR(mac))
1679 				iap = (unsigned char *) mac;
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * 3) from flash or fuse (via platform data)
1685 	 */
1686 	if (!is_valid_ether_addr(iap)) {
1687 #ifdef CONFIG_M5272
1688 		if (FEC_FLASHMAC)
1689 			iap = (unsigned char *)FEC_FLASHMAC;
1690 #else
1691 		if (pdata)
1692 			iap = (unsigned char *)&pdata->mac;
1693 #endif
1694 	}
1695 
1696 	/*
1697 	 * 4) FEC mac registers set by bootloader
1698 	 */
1699 	if (!is_valid_ether_addr(iap)) {
1700 		*((__be32 *) &tmpaddr[0]) =
1701 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1702 		*((__be16 *) &tmpaddr[4]) =
1703 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1704 		iap = &tmpaddr[0];
1705 	}
1706 
1707 	/*
1708 	 * 5) random mac address
1709 	 */
1710 	if (!is_valid_ether_addr(iap)) {
1711 		/* Report it and use a random ethernet address instead */
1712 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1713 		eth_hw_addr_random(ndev);
1714 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1715 			 ndev->dev_addr);
1716 		return;
1717 	}
1718 
1719 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1720 
1721 	/* Adjust MAC if using macaddr */
1722 	if (iap == macaddr)
1723 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1724 }
1725 
1726 /* ------------------------------------------------------------------------- */
1727 
1728 /*
1729  * Phy section
1730  */
1731 static void fec_enet_adjust_link(struct net_device *ndev)
1732 {
1733 	struct fec_enet_private *fep = netdev_priv(ndev);
1734 	struct phy_device *phy_dev = ndev->phydev;
1735 	int status_change = 0;
1736 
1737 	/*
1738 	 * If the netdev is down, or is going down, we're not interested
1739 	 * in link state events, so just mark our idea of the link as down
1740 	 * and ignore the event.
1741 	 */
1742 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1743 		fep->link = 0;
1744 	} else if (phy_dev->link) {
1745 		if (!fep->link) {
1746 			fep->link = phy_dev->link;
1747 			status_change = 1;
1748 		}
1749 
1750 		if (fep->full_duplex != phy_dev->duplex) {
1751 			fep->full_duplex = phy_dev->duplex;
1752 			status_change = 1;
1753 		}
1754 
1755 		if (phy_dev->speed != fep->speed) {
1756 			fep->speed = phy_dev->speed;
1757 			status_change = 1;
1758 		}
1759 
1760 		/* if any of the above changed restart the FEC */
1761 		if (status_change) {
1762 			napi_disable(&fep->napi);
1763 			netif_tx_lock_bh(ndev);
1764 			fec_restart(ndev);
1765 			netif_tx_wake_all_queues(ndev);
1766 			netif_tx_unlock_bh(ndev);
1767 			napi_enable(&fep->napi);
1768 		}
1769 	} else {
1770 		if (fep->link) {
1771 			napi_disable(&fep->napi);
1772 			netif_tx_lock_bh(ndev);
1773 			fec_stop(ndev);
1774 			netif_tx_unlock_bh(ndev);
1775 			napi_enable(&fep->napi);
1776 			fep->link = phy_dev->link;
1777 			status_change = 1;
1778 		}
1779 	}
1780 
1781 	if (status_change)
1782 		phy_print_status(phy_dev);
1783 }
1784 
1785 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1786 {
1787 	uint ievent;
1788 	int ret;
1789 
1790 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1791 					ievent & FEC_ENET_MII, 2, 30000);
1792 
1793 	if (!ret)
1794 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1795 
1796 	return ret;
1797 }
1798 
1799 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1800 {
1801 	struct fec_enet_private *fep = bus->priv;
1802 	struct device *dev = &fep->pdev->dev;
1803 	int ret = 0, frame_start, frame_addr, frame_op;
1804 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1805 
1806 	ret = pm_runtime_get_sync(dev);
1807 	if (ret < 0)
1808 		return ret;
1809 
1810 	if (is_c45) {
1811 		frame_start = FEC_MMFR_ST_C45;
1812 
1813 		/* write address */
1814 		frame_addr = (regnum >> 16);
1815 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1816 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1817 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1818 		       fep->hwp + FEC_MII_DATA);
1819 
1820 		/* wait for end of transfer */
1821 		ret = fec_enet_mdio_wait(fep);
1822 		if (ret) {
1823 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1824 			goto out;
1825 		}
1826 
1827 		frame_op = FEC_MMFR_OP_READ_C45;
1828 
1829 	} else {
1830 		/* C22 read */
1831 		frame_op = FEC_MMFR_OP_READ;
1832 		frame_start = FEC_MMFR_ST;
1833 		frame_addr = regnum;
1834 	}
1835 
1836 	/* start a read op */
1837 	writel(frame_start | frame_op |
1838 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1839 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1840 
1841 	/* wait for end of transfer */
1842 	ret = fec_enet_mdio_wait(fep);
1843 	if (ret) {
1844 		netdev_err(fep->netdev, "MDIO read timeout\n");
1845 		goto out;
1846 	}
1847 
1848 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1849 
1850 out:
1851 	pm_runtime_mark_last_busy(dev);
1852 	pm_runtime_put_autosuspend(dev);
1853 
1854 	return ret;
1855 }
1856 
1857 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1858 			   u16 value)
1859 {
1860 	struct fec_enet_private *fep = bus->priv;
1861 	struct device *dev = &fep->pdev->dev;
1862 	int ret, frame_start, frame_addr;
1863 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1864 
1865 	ret = pm_runtime_get_sync(dev);
1866 	if (ret < 0)
1867 		return ret;
1868 	else
1869 		ret = 0;
1870 
1871 	if (is_c45) {
1872 		frame_start = FEC_MMFR_ST_C45;
1873 
1874 		/* write address */
1875 		frame_addr = (regnum >> 16);
1876 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1877 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1878 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1879 		       fep->hwp + FEC_MII_DATA);
1880 
1881 		/* wait for end of transfer */
1882 		ret = fec_enet_mdio_wait(fep);
1883 		if (ret) {
1884 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1885 			goto out;
1886 		}
1887 	} else {
1888 		/* C22 write */
1889 		frame_start = FEC_MMFR_ST;
1890 		frame_addr = regnum;
1891 	}
1892 
1893 	/* start a write op */
1894 	writel(frame_start | FEC_MMFR_OP_WRITE |
1895 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1896 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1897 		fep->hwp + FEC_MII_DATA);
1898 
1899 	/* wait for end of transfer */
1900 	ret = fec_enet_mdio_wait(fep);
1901 	if (ret)
1902 		netdev_err(fep->netdev, "MDIO write timeout\n");
1903 
1904 out:
1905 	pm_runtime_mark_last_busy(dev);
1906 	pm_runtime_put_autosuspend(dev);
1907 
1908 	return ret;
1909 }
1910 
1911 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1912 {
1913 	struct fec_enet_private *fep = netdev_priv(ndev);
1914 	int ret;
1915 
1916 	if (enable) {
1917 		ret = clk_prepare_enable(fep->clk_enet_out);
1918 		if (ret)
1919 			return ret;
1920 
1921 		if (fep->clk_ptp) {
1922 			mutex_lock(&fep->ptp_clk_mutex);
1923 			ret = clk_prepare_enable(fep->clk_ptp);
1924 			if (ret) {
1925 				mutex_unlock(&fep->ptp_clk_mutex);
1926 				goto failed_clk_ptp;
1927 			} else {
1928 				fep->ptp_clk_on = true;
1929 			}
1930 			mutex_unlock(&fep->ptp_clk_mutex);
1931 		}
1932 
1933 		ret = clk_prepare_enable(fep->clk_ref);
1934 		if (ret)
1935 			goto failed_clk_ref;
1936 
1937 		phy_reset_after_clk_enable(ndev->phydev);
1938 	} else {
1939 		clk_disable_unprepare(fep->clk_enet_out);
1940 		if (fep->clk_ptp) {
1941 			mutex_lock(&fep->ptp_clk_mutex);
1942 			clk_disable_unprepare(fep->clk_ptp);
1943 			fep->ptp_clk_on = false;
1944 			mutex_unlock(&fep->ptp_clk_mutex);
1945 		}
1946 		clk_disable_unprepare(fep->clk_ref);
1947 	}
1948 
1949 	return 0;
1950 
1951 failed_clk_ref:
1952 	if (fep->clk_ptp) {
1953 		mutex_lock(&fep->ptp_clk_mutex);
1954 		clk_disable_unprepare(fep->clk_ptp);
1955 		fep->ptp_clk_on = false;
1956 		mutex_unlock(&fep->ptp_clk_mutex);
1957 	}
1958 failed_clk_ptp:
1959 	if (fep->clk_enet_out)
1960 		clk_disable_unprepare(fep->clk_enet_out);
1961 
1962 	return ret;
1963 }
1964 
1965 static int fec_enet_mii_probe(struct net_device *ndev)
1966 {
1967 	struct fec_enet_private *fep = netdev_priv(ndev);
1968 	struct phy_device *phy_dev = NULL;
1969 	char mdio_bus_id[MII_BUS_ID_SIZE];
1970 	char phy_name[MII_BUS_ID_SIZE + 3];
1971 	int phy_id;
1972 	int dev_id = fep->dev_id;
1973 
1974 	if (fep->phy_node) {
1975 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1976 					 &fec_enet_adjust_link, 0,
1977 					 fep->phy_interface);
1978 		if (!phy_dev) {
1979 			netdev_err(ndev, "Unable to connect to phy\n");
1980 			return -ENODEV;
1981 		}
1982 	} else {
1983 		/* check for attached phy */
1984 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1985 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1986 				continue;
1987 			if (dev_id--)
1988 				continue;
1989 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1990 			break;
1991 		}
1992 
1993 		if (phy_id >= PHY_MAX_ADDR) {
1994 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1995 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1996 			phy_id = 0;
1997 		}
1998 
1999 		snprintf(phy_name, sizeof(phy_name),
2000 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2001 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2002 				      fep->phy_interface);
2003 	}
2004 
2005 	if (IS_ERR(phy_dev)) {
2006 		netdev_err(ndev, "could not attach to PHY\n");
2007 		return PTR_ERR(phy_dev);
2008 	}
2009 
2010 	/* mask with MAC supported features */
2011 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2012 		phy_set_max_speed(phy_dev, 1000);
2013 		phy_remove_link_mode(phy_dev,
2014 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2015 #if !defined(CONFIG_M5272)
2016 		phy_support_sym_pause(phy_dev);
2017 #endif
2018 	}
2019 	else
2020 		phy_set_max_speed(phy_dev, 100);
2021 
2022 	fep->link = 0;
2023 	fep->full_duplex = 0;
2024 
2025 	phy_attached_info(phy_dev);
2026 
2027 	return 0;
2028 }
2029 
2030 static int fec_enet_mii_init(struct platform_device *pdev)
2031 {
2032 	static struct mii_bus *fec0_mii_bus;
2033 	struct net_device *ndev = platform_get_drvdata(pdev);
2034 	struct fec_enet_private *fep = netdev_priv(ndev);
2035 	bool suppress_preamble = false;
2036 	struct device_node *node;
2037 	int err = -ENXIO;
2038 	u32 mii_speed, holdtime;
2039 	u32 bus_freq;
2040 
2041 	/*
2042 	 * The i.MX28 dual fec interfaces are not equal.
2043 	 * Here are the differences:
2044 	 *
2045 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2046 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2047 	 *  - external phys can only be configured by fec0
2048 	 *
2049 	 * That is to say fec1 can not work independently. It only works
2050 	 * when fec0 is working. The reason behind this design is that the
2051 	 * second interface is added primarily for Switch mode.
2052 	 *
2053 	 * Because of the last point above, both phys are attached on fec0
2054 	 * mdio interface in board design, and need to be configured by
2055 	 * fec0 mii_bus.
2056 	 */
2057 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2058 		/* fec1 uses fec0 mii_bus */
2059 		if (mii_cnt && fec0_mii_bus) {
2060 			fep->mii_bus = fec0_mii_bus;
2061 			mii_cnt++;
2062 			return 0;
2063 		}
2064 		return -ENOENT;
2065 	}
2066 
2067 	bus_freq = 2500000; /* 2.5MHz by default */
2068 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2069 	if (node) {
2070 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2071 		suppress_preamble = of_property_read_bool(node,
2072 							  "suppress-preamble");
2073 	}
2074 
2075 	/*
2076 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2077 	 *
2078 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2079 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2080 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2081 	 * document.
2082 	 */
2083 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2084 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2085 		mii_speed--;
2086 	if (mii_speed > 63) {
2087 		dev_err(&pdev->dev,
2088 			"fec clock (%lu) too fast to get right mii speed\n",
2089 			clk_get_rate(fep->clk_ipg));
2090 		err = -EINVAL;
2091 		goto err_out;
2092 	}
2093 
2094 	/*
2095 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2096 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2097 	 * versions are RAZ there, so just ignore the difference and write the
2098 	 * register always.
2099 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2100 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2101 	 * output.
2102 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2103 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2104 	 * holdtime cannot result in a value greater than 3.
2105 	 */
2106 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2107 
2108 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2109 
2110 	if (suppress_preamble)
2111 		fep->phy_speed |= BIT(7);
2112 
2113 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2114 	 * MII event generation condition:
2115 	 * - writing MSCR:
2116 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2117 	 *	  mscr_reg_data_in[7:0] != 0
2118 	 * - writing MMFR:
2119 	 *	- mscr[7:0]_not_zero
2120 	 */
2121 	writel(0, fep->hwp + FEC_MII_DATA);
2122 
2123 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2124 
2125 	/* Clear any pending transaction complete indication */
2126 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2127 
2128 	fep->mii_bus = mdiobus_alloc();
2129 	if (fep->mii_bus == NULL) {
2130 		err = -ENOMEM;
2131 		goto err_out;
2132 	}
2133 
2134 	fep->mii_bus->name = "fec_enet_mii_bus";
2135 	fep->mii_bus->read = fec_enet_mdio_read;
2136 	fep->mii_bus->write = fec_enet_mdio_write;
2137 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2138 		pdev->name, fep->dev_id + 1);
2139 	fep->mii_bus->priv = fep;
2140 	fep->mii_bus->parent = &pdev->dev;
2141 
2142 	err = of_mdiobus_register(fep->mii_bus, node);
2143 	of_node_put(node);
2144 	if (err)
2145 		goto err_out_free_mdiobus;
2146 
2147 	mii_cnt++;
2148 
2149 	/* save fec0 mii_bus */
2150 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2151 		fec0_mii_bus = fep->mii_bus;
2152 
2153 	return 0;
2154 
2155 err_out_free_mdiobus:
2156 	mdiobus_free(fep->mii_bus);
2157 err_out:
2158 	return err;
2159 }
2160 
2161 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2162 {
2163 	if (--mii_cnt == 0) {
2164 		mdiobus_unregister(fep->mii_bus);
2165 		mdiobus_free(fep->mii_bus);
2166 	}
2167 }
2168 
2169 static void fec_enet_get_drvinfo(struct net_device *ndev,
2170 				 struct ethtool_drvinfo *info)
2171 {
2172 	struct fec_enet_private *fep = netdev_priv(ndev);
2173 
2174 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2175 		sizeof(info->driver));
2176 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2177 }
2178 
2179 static int fec_enet_get_regs_len(struct net_device *ndev)
2180 {
2181 	struct fec_enet_private *fep = netdev_priv(ndev);
2182 	struct resource *r;
2183 	int s = 0;
2184 
2185 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2186 	if (r)
2187 		s = resource_size(r);
2188 
2189 	return s;
2190 }
2191 
2192 /* List of registers that can be safety be read to dump them with ethtool */
2193 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2194 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2195 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2196 static __u32 fec_enet_register_version = 2;
2197 static u32 fec_enet_register_offset[] = {
2198 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2199 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2200 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2201 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2202 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2203 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2204 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2205 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2206 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2207 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2208 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2209 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2210 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2211 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2212 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2213 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2214 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2215 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2216 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2217 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2218 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2219 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2220 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2221 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2222 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2223 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2224 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2225 };
2226 #else
2227 static __u32 fec_enet_register_version = 1;
2228 static u32 fec_enet_register_offset[] = {
2229 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2230 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2231 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2232 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2233 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2234 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2235 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2236 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2237 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2238 };
2239 #endif
2240 
2241 static void fec_enet_get_regs(struct net_device *ndev,
2242 			      struct ethtool_regs *regs, void *regbuf)
2243 {
2244 	struct fec_enet_private *fep = netdev_priv(ndev);
2245 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2246 	struct device *dev = &fep->pdev->dev;
2247 	u32 *buf = (u32 *)regbuf;
2248 	u32 i, off;
2249 	int ret;
2250 
2251 	ret = pm_runtime_get_sync(dev);
2252 	if (ret < 0)
2253 		return;
2254 
2255 	regs->version = fec_enet_register_version;
2256 
2257 	memset(buf, 0, regs->len);
2258 
2259 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2260 		off = fec_enet_register_offset[i];
2261 
2262 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2263 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2264 			continue;
2265 
2266 		off >>= 2;
2267 		buf[off] = readl(&theregs[off]);
2268 	}
2269 
2270 	pm_runtime_mark_last_busy(dev);
2271 	pm_runtime_put_autosuspend(dev);
2272 }
2273 
2274 static int fec_enet_get_ts_info(struct net_device *ndev,
2275 				struct ethtool_ts_info *info)
2276 {
2277 	struct fec_enet_private *fep = netdev_priv(ndev);
2278 
2279 	if (fep->bufdesc_ex) {
2280 
2281 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2282 					SOF_TIMESTAMPING_RX_SOFTWARE |
2283 					SOF_TIMESTAMPING_SOFTWARE |
2284 					SOF_TIMESTAMPING_TX_HARDWARE |
2285 					SOF_TIMESTAMPING_RX_HARDWARE |
2286 					SOF_TIMESTAMPING_RAW_HARDWARE;
2287 		if (fep->ptp_clock)
2288 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2289 		else
2290 			info->phc_index = -1;
2291 
2292 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2293 				 (1 << HWTSTAMP_TX_ON);
2294 
2295 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2296 				   (1 << HWTSTAMP_FILTER_ALL);
2297 		return 0;
2298 	} else {
2299 		return ethtool_op_get_ts_info(ndev, info);
2300 	}
2301 }
2302 
2303 #if !defined(CONFIG_M5272)
2304 
2305 static void fec_enet_get_pauseparam(struct net_device *ndev,
2306 				    struct ethtool_pauseparam *pause)
2307 {
2308 	struct fec_enet_private *fep = netdev_priv(ndev);
2309 
2310 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2311 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2312 	pause->rx_pause = pause->tx_pause;
2313 }
2314 
2315 static int fec_enet_set_pauseparam(struct net_device *ndev,
2316 				   struct ethtool_pauseparam *pause)
2317 {
2318 	struct fec_enet_private *fep = netdev_priv(ndev);
2319 
2320 	if (!ndev->phydev)
2321 		return -ENODEV;
2322 
2323 	if (pause->tx_pause != pause->rx_pause) {
2324 		netdev_info(ndev,
2325 			"hardware only support enable/disable both tx and rx");
2326 		return -EINVAL;
2327 	}
2328 
2329 	fep->pause_flag = 0;
2330 
2331 	/* tx pause must be same as rx pause */
2332 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2333 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2334 
2335 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2336 			  pause->autoneg);
2337 
2338 	if (pause->autoneg) {
2339 		if (netif_running(ndev))
2340 			fec_stop(ndev);
2341 		phy_start_aneg(ndev->phydev);
2342 	}
2343 	if (netif_running(ndev)) {
2344 		napi_disable(&fep->napi);
2345 		netif_tx_lock_bh(ndev);
2346 		fec_restart(ndev);
2347 		netif_tx_wake_all_queues(ndev);
2348 		netif_tx_unlock_bh(ndev);
2349 		napi_enable(&fep->napi);
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static const struct fec_stat {
2356 	char name[ETH_GSTRING_LEN];
2357 	u16 offset;
2358 } fec_stats[] = {
2359 	/* RMON TX */
2360 	{ "tx_dropped", RMON_T_DROP },
2361 	{ "tx_packets", RMON_T_PACKETS },
2362 	{ "tx_broadcast", RMON_T_BC_PKT },
2363 	{ "tx_multicast", RMON_T_MC_PKT },
2364 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2365 	{ "tx_undersize", RMON_T_UNDERSIZE },
2366 	{ "tx_oversize", RMON_T_OVERSIZE },
2367 	{ "tx_fragment", RMON_T_FRAG },
2368 	{ "tx_jabber", RMON_T_JAB },
2369 	{ "tx_collision", RMON_T_COL },
2370 	{ "tx_64byte", RMON_T_P64 },
2371 	{ "tx_65to127byte", RMON_T_P65TO127 },
2372 	{ "tx_128to255byte", RMON_T_P128TO255 },
2373 	{ "tx_256to511byte", RMON_T_P256TO511 },
2374 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2375 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2376 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2377 	{ "tx_octets", RMON_T_OCTETS },
2378 
2379 	/* IEEE TX */
2380 	{ "IEEE_tx_drop", IEEE_T_DROP },
2381 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2382 	{ "IEEE_tx_1col", IEEE_T_1COL },
2383 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2384 	{ "IEEE_tx_def", IEEE_T_DEF },
2385 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2386 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2387 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2388 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2389 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2390 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2391 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2392 
2393 	/* RMON RX */
2394 	{ "rx_packets", RMON_R_PACKETS },
2395 	{ "rx_broadcast", RMON_R_BC_PKT },
2396 	{ "rx_multicast", RMON_R_MC_PKT },
2397 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2398 	{ "rx_undersize", RMON_R_UNDERSIZE },
2399 	{ "rx_oversize", RMON_R_OVERSIZE },
2400 	{ "rx_fragment", RMON_R_FRAG },
2401 	{ "rx_jabber", RMON_R_JAB },
2402 	{ "rx_64byte", RMON_R_P64 },
2403 	{ "rx_65to127byte", RMON_R_P65TO127 },
2404 	{ "rx_128to255byte", RMON_R_P128TO255 },
2405 	{ "rx_256to511byte", RMON_R_P256TO511 },
2406 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2407 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2408 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2409 	{ "rx_octets", RMON_R_OCTETS },
2410 
2411 	/* IEEE RX */
2412 	{ "IEEE_rx_drop", IEEE_R_DROP },
2413 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2414 	{ "IEEE_rx_crc", IEEE_R_CRC },
2415 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2416 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2417 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2418 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2419 };
2420 
2421 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2422 
2423 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2424 {
2425 	struct fec_enet_private *fep = netdev_priv(dev);
2426 	int i;
2427 
2428 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2429 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2430 }
2431 
2432 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2433 				       struct ethtool_stats *stats, u64 *data)
2434 {
2435 	struct fec_enet_private *fep = netdev_priv(dev);
2436 
2437 	if (netif_running(dev))
2438 		fec_enet_update_ethtool_stats(dev);
2439 
2440 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2441 }
2442 
2443 static void fec_enet_get_strings(struct net_device *netdev,
2444 	u32 stringset, u8 *data)
2445 {
2446 	int i;
2447 	switch (stringset) {
2448 	case ETH_SS_STATS:
2449 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2450 			memcpy(data + i * ETH_GSTRING_LEN,
2451 				fec_stats[i].name, ETH_GSTRING_LEN);
2452 		break;
2453 	}
2454 }
2455 
2456 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2457 {
2458 	switch (sset) {
2459 	case ETH_SS_STATS:
2460 		return ARRAY_SIZE(fec_stats);
2461 	default:
2462 		return -EOPNOTSUPP;
2463 	}
2464 }
2465 
2466 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2467 {
2468 	struct fec_enet_private *fep = netdev_priv(dev);
2469 	int i;
2470 
2471 	/* Disable MIB statistics counters */
2472 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2473 
2474 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2475 		writel(0, fep->hwp + fec_stats[i].offset);
2476 
2477 	/* Don't disable MIB statistics counters */
2478 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2479 }
2480 
2481 #else	/* !defined(CONFIG_M5272) */
2482 #define FEC_STATS_SIZE	0
2483 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2484 {
2485 }
2486 
2487 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2488 {
2489 }
2490 #endif /* !defined(CONFIG_M5272) */
2491 
2492 /* ITR clock source is enet system clock (clk_ahb).
2493  * TCTT unit is cycle_ns * 64 cycle
2494  * So, the ICTT value = X us / (cycle_ns * 64)
2495  */
2496 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2497 {
2498 	struct fec_enet_private *fep = netdev_priv(ndev);
2499 
2500 	return us * (fep->itr_clk_rate / 64000) / 1000;
2501 }
2502 
2503 /* Set threshold for interrupt coalescing */
2504 static void fec_enet_itr_coal_set(struct net_device *ndev)
2505 {
2506 	struct fec_enet_private *fep = netdev_priv(ndev);
2507 	int rx_itr, tx_itr;
2508 
2509 	/* Must be greater than zero to avoid unpredictable behavior */
2510 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2511 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2512 		return;
2513 
2514 	/* Select enet system clock as Interrupt Coalescing
2515 	 * timer Clock Source
2516 	 */
2517 	rx_itr = FEC_ITR_CLK_SEL;
2518 	tx_itr = FEC_ITR_CLK_SEL;
2519 
2520 	/* set ICFT and ICTT */
2521 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2522 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2523 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2524 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2525 
2526 	rx_itr |= FEC_ITR_EN;
2527 	tx_itr |= FEC_ITR_EN;
2528 
2529 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2530 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2531 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2532 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2533 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2534 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2535 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2536 	}
2537 }
2538 
2539 static int
2540 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2541 {
2542 	struct fec_enet_private *fep = netdev_priv(ndev);
2543 
2544 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2545 		return -EOPNOTSUPP;
2546 
2547 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2548 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2549 
2550 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2551 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2552 
2553 	return 0;
2554 }
2555 
2556 static int
2557 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2558 {
2559 	struct fec_enet_private *fep = netdev_priv(ndev);
2560 	struct device *dev = &fep->pdev->dev;
2561 	unsigned int cycle;
2562 
2563 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2564 		return -EOPNOTSUPP;
2565 
2566 	if (ec->rx_max_coalesced_frames > 255) {
2567 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2568 		return -EINVAL;
2569 	}
2570 
2571 	if (ec->tx_max_coalesced_frames > 255) {
2572 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2573 		return -EINVAL;
2574 	}
2575 
2576 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2577 	if (cycle > 0xFFFF) {
2578 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2579 		return -EINVAL;
2580 	}
2581 
2582 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2583 	if (cycle > 0xFFFF) {
2584 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2585 		return -EINVAL;
2586 	}
2587 
2588 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2589 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2590 
2591 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2592 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2593 
2594 	fec_enet_itr_coal_set(ndev);
2595 
2596 	return 0;
2597 }
2598 
2599 static void fec_enet_itr_coal_init(struct net_device *ndev)
2600 {
2601 	struct ethtool_coalesce ec;
2602 
2603 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2604 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2605 
2606 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2607 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2608 
2609 	fec_enet_set_coalesce(ndev, &ec);
2610 }
2611 
2612 static int fec_enet_get_tunable(struct net_device *netdev,
2613 				const struct ethtool_tunable *tuna,
2614 				void *data)
2615 {
2616 	struct fec_enet_private *fep = netdev_priv(netdev);
2617 	int ret = 0;
2618 
2619 	switch (tuna->id) {
2620 	case ETHTOOL_RX_COPYBREAK:
2621 		*(u32 *)data = fep->rx_copybreak;
2622 		break;
2623 	default:
2624 		ret = -EINVAL;
2625 		break;
2626 	}
2627 
2628 	return ret;
2629 }
2630 
2631 static int fec_enet_set_tunable(struct net_device *netdev,
2632 				const struct ethtool_tunable *tuna,
2633 				const void *data)
2634 {
2635 	struct fec_enet_private *fep = netdev_priv(netdev);
2636 	int ret = 0;
2637 
2638 	switch (tuna->id) {
2639 	case ETHTOOL_RX_COPYBREAK:
2640 		fep->rx_copybreak = *(u32 *)data;
2641 		break;
2642 	default:
2643 		ret = -EINVAL;
2644 		break;
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 static void
2651 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2652 {
2653 	struct fec_enet_private *fep = netdev_priv(ndev);
2654 
2655 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2656 		wol->supported = WAKE_MAGIC;
2657 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2658 	} else {
2659 		wol->supported = wol->wolopts = 0;
2660 	}
2661 }
2662 
2663 static int
2664 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2665 {
2666 	struct fec_enet_private *fep = netdev_priv(ndev);
2667 
2668 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2669 		return -EINVAL;
2670 
2671 	if (wol->wolopts & ~WAKE_MAGIC)
2672 		return -EINVAL;
2673 
2674 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2675 	if (device_may_wakeup(&ndev->dev)) {
2676 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2677 		if (fep->irq[0] > 0)
2678 			enable_irq_wake(fep->irq[0]);
2679 	} else {
2680 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2681 		if (fep->irq[0] > 0)
2682 			disable_irq_wake(fep->irq[0]);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static const struct ethtool_ops fec_enet_ethtool_ops = {
2689 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2690 				     ETHTOOL_COALESCE_MAX_FRAMES,
2691 	.get_drvinfo		= fec_enet_get_drvinfo,
2692 	.get_regs_len		= fec_enet_get_regs_len,
2693 	.get_regs		= fec_enet_get_regs,
2694 	.nway_reset		= phy_ethtool_nway_reset,
2695 	.get_link		= ethtool_op_get_link,
2696 	.get_coalesce		= fec_enet_get_coalesce,
2697 	.set_coalesce		= fec_enet_set_coalesce,
2698 #ifndef CONFIG_M5272
2699 	.get_pauseparam		= fec_enet_get_pauseparam,
2700 	.set_pauseparam		= fec_enet_set_pauseparam,
2701 	.get_strings		= fec_enet_get_strings,
2702 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2703 	.get_sset_count		= fec_enet_get_sset_count,
2704 #endif
2705 	.get_ts_info		= fec_enet_get_ts_info,
2706 	.get_tunable		= fec_enet_get_tunable,
2707 	.set_tunable		= fec_enet_set_tunable,
2708 	.get_wol		= fec_enet_get_wol,
2709 	.set_wol		= fec_enet_set_wol,
2710 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2711 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2712 };
2713 
2714 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2715 {
2716 	struct fec_enet_private *fep = netdev_priv(ndev);
2717 	struct phy_device *phydev = ndev->phydev;
2718 
2719 	if (!netif_running(ndev))
2720 		return -EINVAL;
2721 
2722 	if (!phydev)
2723 		return -ENODEV;
2724 
2725 	if (fep->bufdesc_ex) {
2726 		if (cmd == SIOCSHWTSTAMP)
2727 			return fec_ptp_set(ndev, rq);
2728 		if (cmd == SIOCGHWTSTAMP)
2729 			return fec_ptp_get(ndev, rq);
2730 	}
2731 
2732 	return phy_mii_ioctl(phydev, rq, cmd);
2733 }
2734 
2735 static void fec_enet_free_buffers(struct net_device *ndev)
2736 {
2737 	struct fec_enet_private *fep = netdev_priv(ndev);
2738 	unsigned int i;
2739 	struct sk_buff *skb;
2740 	struct bufdesc	*bdp;
2741 	struct fec_enet_priv_tx_q *txq;
2742 	struct fec_enet_priv_rx_q *rxq;
2743 	unsigned int q;
2744 
2745 	for (q = 0; q < fep->num_rx_queues; q++) {
2746 		rxq = fep->rx_queue[q];
2747 		bdp = rxq->bd.base;
2748 		for (i = 0; i < rxq->bd.ring_size; i++) {
2749 			skb = rxq->rx_skbuff[i];
2750 			rxq->rx_skbuff[i] = NULL;
2751 			if (skb) {
2752 				dma_unmap_single(&fep->pdev->dev,
2753 						 fec32_to_cpu(bdp->cbd_bufaddr),
2754 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2755 						 DMA_FROM_DEVICE);
2756 				dev_kfree_skb(skb);
2757 			}
2758 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2759 		}
2760 	}
2761 
2762 	for (q = 0; q < fep->num_tx_queues; q++) {
2763 		txq = fep->tx_queue[q];
2764 		for (i = 0; i < txq->bd.ring_size; i++) {
2765 			kfree(txq->tx_bounce[i]);
2766 			txq->tx_bounce[i] = NULL;
2767 			skb = txq->tx_skbuff[i];
2768 			txq->tx_skbuff[i] = NULL;
2769 			dev_kfree_skb(skb);
2770 		}
2771 	}
2772 }
2773 
2774 static void fec_enet_free_queue(struct net_device *ndev)
2775 {
2776 	struct fec_enet_private *fep = netdev_priv(ndev);
2777 	int i;
2778 	struct fec_enet_priv_tx_q *txq;
2779 
2780 	for (i = 0; i < fep->num_tx_queues; i++)
2781 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2782 			txq = fep->tx_queue[i];
2783 			dma_free_coherent(&fep->pdev->dev,
2784 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2785 					  txq->tso_hdrs,
2786 					  txq->tso_hdrs_dma);
2787 		}
2788 
2789 	for (i = 0; i < fep->num_rx_queues; i++)
2790 		kfree(fep->rx_queue[i]);
2791 	for (i = 0; i < fep->num_tx_queues; i++)
2792 		kfree(fep->tx_queue[i]);
2793 }
2794 
2795 static int fec_enet_alloc_queue(struct net_device *ndev)
2796 {
2797 	struct fec_enet_private *fep = netdev_priv(ndev);
2798 	int i;
2799 	int ret = 0;
2800 	struct fec_enet_priv_tx_q *txq;
2801 
2802 	for (i = 0; i < fep->num_tx_queues; i++) {
2803 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2804 		if (!txq) {
2805 			ret = -ENOMEM;
2806 			goto alloc_failed;
2807 		}
2808 
2809 		fep->tx_queue[i] = txq;
2810 		txq->bd.ring_size = TX_RING_SIZE;
2811 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2812 
2813 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2814 		txq->tx_wake_threshold =
2815 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2816 
2817 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2818 					txq->bd.ring_size * TSO_HEADER_SIZE,
2819 					&txq->tso_hdrs_dma,
2820 					GFP_KERNEL);
2821 		if (!txq->tso_hdrs) {
2822 			ret = -ENOMEM;
2823 			goto alloc_failed;
2824 		}
2825 	}
2826 
2827 	for (i = 0; i < fep->num_rx_queues; i++) {
2828 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2829 					   GFP_KERNEL);
2830 		if (!fep->rx_queue[i]) {
2831 			ret = -ENOMEM;
2832 			goto alloc_failed;
2833 		}
2834 
2835 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2836 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2837 	}
2838 	return ret;
2839 
2840 alloc_failed:
2841 	fec_enet_free_queue(ndev);
2842 	return ret;
2843 }
2844 
2845 static int
2846 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2847 {
2848 	struct fec_enet_private *fep = netdev_priv(ndev);
2849 	unsigned int i;
2850 	struct sk_buff *skb;
2851 	struct bufdesc	*bdp;
2852 	struct fec_enet_priv_rx_q *rxq;
2853 
2854 	rxq = fep->rx_queue[queue];
2855 	bdp = rxq->bd.base;
2856 	for (i = 0; i < rxq->bd.ring_size; i++) {
2857 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2858 		if (!skb)
2859 			goto err_alloc;
2860 
2861 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2862 			dev_kfree_skb(skb);
2863 			goto err_alloc;
2864 		}
2865 
2866 		rxq->rx_skbuff[i] = skb;
2867 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2868 
2869 		if (fep->bufdesc_ex) {
2870 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2871 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2872 		}
2873 
2874 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2875 	}
2876 
2877 	/* Set the last buffer to wrap. */
2878 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2879 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2880 	return 0;
2881 
2882  err_alloc:
2883 	fec_enet_free_buffers(ndev);
2884 	return -ENOMEM;
2885 }
2886 
2887 static int
2888 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2889 {
2890 	struct fec_enet_private *fep = netdev_priv(ndev);
2891 	unsigned int i;
2892 	struct bufdesc  *bdp;
2893 	struct fec_enet_priv_tx_q *txq;
2894 
2895 	txq = fep->tx_queue[queue];
2896 	bdp = txq->bd.base;
2897 	for (i = 0; i < txq->bd.ring_size; i++) {
2898 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2899 		if (!txq->tx_bounce[i])
2900 			goto err_alloc;
2901 
2902 		bdp->cbd_sc = cpu_to_fec16(0);
2903 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2904 
2905 		if (fep->bufdesc_ex) {
2906 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2907 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2908 		}
2909 
2910 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2911 	}
2912 
2913 	/* Set the last buffer to wrap. */
2914 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2915 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2916 
2917 	return 0;
2918 
2919  err_alloc:
2920 	fec_enet_free_buffers(ndev);
2921 	return -ENOMEM;
2922 }
2923 
2924 static int fec_enet_alloc_buffers(struct net_device *ndev)
2925 {
2926 	struct fec_enet_private *fep = netdev_priv(ndev);
2927 	unsigned int i;
2928 
2929 	for (i = 0; i < fep->num_rx_queues; i++)
2930 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2931 			return -ENOMEM;
2932 
2933 	for (i = 0; i < fep->num_tx_queues; i++)
2934 		if (fec_enet_alloc_txq_buffers(ndev, i))
2935 			return -ENOMEM;
2936 	return 0;
2937 }
2938 
2939 static int
2940 fec_enet_open(struct net_device *ndev)
2941 {
2942 	struct fec_enet_private *fep = netdev_priv(ndev);
2943 	int ret;
2944 	bool reset_again;
2945 
2946 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2947 	if (ret < 0)
2948 		return ret;
2949 
2950 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2951 	ret = fec_enet_clk_enable(ndev, true);
2952 	if (ret)
2953 		goto clk_enable;
2954 
2955 	/* During the first fec_enet_open call the PHY isn't probed at this
2956 	 * point. Therefore the phy_reset_after_clk_enable() call within
2957 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2958 	 * sure the PHY is working correctly we check if we need to reset again
2959 	 * later when the PHY is probed
2960 	 */
2961 	if (ndev->phydev && ndev->phydev->drv)
2962 		reset_again = false;
2963 	else
2964 		reset_again = true;
2965 
2966 	/* I should reset the ring buffers here, but I don't yet know
2967 	 * a simple way to do that.
2968 	 */
2969 
2970 	ret = fec_enet_alloc_buffers(ndev);
2971 	if (ret)
2972 		goto err_enet_alloc;
2973 
2974 	/* Init MAC prior to mii bus probe */
2975 	fec_restart(ndev);
2976 
2977 	/* Probe and connect to PHY when open the interface */
2978 	ret = fec_enet_mii_probe(ndev);
2979 	if (ret)
2980 		goto err_enet_mii_probe;
2981 
2982 	/* Call phy_reset_after_clk_enable() again if it failed during
2983 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2984 	 */
2985 	if (reset_again)
2986 		phy_reset_after_clk_enable(ndev->phydev);
2987 
2988 	if (fep->quirks & FEC_QUIRK_ERR006687)
2989 		imx6q_cpuidle_fec_irqs_used();
2990 
2991 	napi_enable(&fep->napi);
2992 	phy_start(ndev->phydev);
2993 	netif_tx_start_all_queues(ndev);
2994 
2995 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2996 				 FEC_WOL_FLAG_ENABLE);
2997 
2998 	return 0;
2999 
3000 err_enet_mii_probe:
3001 	fec_enet_free_buffers(ndev);
3002 err_enet_alloc:
3003 	fec_enet_clk_enable(ndev, false);
3004 clk_enable:
3005 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3006 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3007 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3008 	return ret;
3009 }
3010 
3011 static int
3012 fec_enet_close(struct net_device *ndev)
3013 {
3014 	struct fec_enet_private *fep = netdev_priv(ndev);
3015 
3016 	phy_stop(ndev->phydev);
3017 
3018 	if (netif_device_present(ndev)) {
3019 		napi_disable(&fep->napi);
3020 		netif_tx_disable(ndev);
3021 		fec_stop(ndev);
3022 	}
3023 
3024 	phy_disconnect(ndev->phydev);
3025 
3026 	if (fep->quirks & FEC_QUIRK_ERR006687)
3027 		imx6q_cpuidle_fec_irqs_unused();
3028 
3029 	fec_enet_update_ethtool_stats(ndev);
3030 
3031 	fec_enet_clk_enable(ndev, false);
3032 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3033 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3034 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3035 
3036 	fec_enet_free_buffers(ndev);
3037 
3038 	return 0;
3039 }
3040 
3041 /* Set or clear the multicast filter for this adaptor.
3042  * Skeleton taken from sunlance driver.
3043  * The CPM Ethernet implementation allows Multicast as well as individual
3044  * MAC address filtering.  Some of the drivers check to make sure it is
3045  * a group multicast address, and discard those that are not.  I guess I
3046  * will do the same for now, but just remove the test if you want
3047  * individual filtering as well (do the upper net layers want or support
3048  * this kind of feature?).
3049  */
3050 
3051 #define FEC_HASH_BITS	6		/* #bits in hash */
3052 
3053 static void set_multicast_list(struct net_device *ndev)
3054 {
3055 	struct fec_enet_private *fep = netdev_priv(ndev);
3056 	struct netdev_hw_addr *ha;
3057 	unsigned int crc, tmp;
3058 	unsigned char hash;
3059 	unsigned int hash_high = 0, hash_low = 0;
3060 
3061 	if (ndev->flags & IFF_PROMISC) {
3062 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3063 		tmp |= 0x8;
3064 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3065 		return;
3066 	}
3067 
3068 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3069 	tmp &= ~0x8;
3070 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3071 
3072 	if (ndev->flags & IFF_ALLMULTI) {
3073 		/* Catch all multicast addresses, so set the
3074 		 * filter to all 1's
3075 		 */
3076 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3077 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3078 
3079 		return;
3080 	}
3081 
3082 	/* Add the addresses in hash register */
3083 	netdev_for_each_mc_addr(ha, ndev) {
3084 		/* calculate crc32 value of mac address */
3085 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3086 
3087 		/* only upper 6 bits (FEC_HASH_BITS) are used
3088 		 * which point to specific bit in the hash registers
3089 		 */
3090 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3091 
3092 		if (hash > 31)
3093 			hash_high |= 1 << (hash - 32);
3094 		else
3095 			hash_low |= 1 << hash;
3096 	}
3097 
3098 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3099 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3100 }
3101 
3102 /* Set a MAC change in hardware. */
3103 static int
3104 fec_set_mac_address(struct net_device *ndev, void *p)
3105 {
3106 	struct fec_enet_private *fep = netdev_priv(ndev);
3107 	struct sockaddr *addr = p;
3108 
3109 	if (addr) {
3110 		if (!is_valid_ether_addr(addr->sa_data))
3111 			return -EADDRNOTAVAIL;
3112 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3113 	}
3114 
3115 	/* Add netif status check here to avoid system hang in below case:
3116 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3117 	 * After ethx down, fec all clocks are gated off and then register
3118 	 * access causes system hang.
3119 	 */
3120 	if (!netif_running(ndev))
3121 		return 0;
3122 
3123 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3124 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3125 		fep->hwp + FEC_ADDR_LOW);
3126 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3127 		fep->hwp + FEC_ADDR_HIGH);
3128 	return 0;
3129 }
3130 
3131 #ifdef CONFIG_NET_POLL_CONTROLLER
3132 /**
3133  * fec_poll_controller - FEC Poll controller function
3134  * @dev: The FEC network adapter
3135  *
3136  * Polled functionality used by netconsole and others in non interrupt mode
3137  *
3138  */
3139 static void fec_poll_controller(struct net_device *dev)
3140 {
3141 	int i;
3142 	struct fec_enet_private *fep = netdev_priv(dev);
3143 
3144 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3145 		if (fep->irq[i] > 0) {
3146 			disable_irq(fep->irq[i]);
3147 			fec_enet_interrupt(fep->irq[i], dev);
3148 			enable_irq(fep->irq[i]);
3149 		}
3150 	}
3151 }
3152 #endif
3153 
3154 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3155 	netdev_features_t features)
3156 {
3157 	struct fec_enet_private *fep = netdev_priv(netdev);
3158 	netdev_features_t changed = features ^ netdev->features;
3159 
3160 	netdev->features = features;
3161 
3162 	/* Receive checksum has been changed */
3163 	if (changed & NETIF_F_RXCSUM) {
3164 		if (features & NETIF_F_RXCSUM)
3165 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3166 		else
3167 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3168 	}
3169 }
3170 
3171 static int fec_set_features(struct net_device *netdev,
3172 	netdev_features_t features)
3173 {
3174 	struct fec_enet_private *fep = netdev_priv(netdev);
3175 	netdev_features_t changed = features ^ netdev->features;
3176 
3177 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3178 		napi_disable(&fep->napi);
3179 		netif_tx_lock_bh(netdev);
3180 		fec_stop(netdev);
3181 		fec_enet_set_netdev_features(netdev, features);
3182 		fec_restart(netdev);
3183 		netif_tx_wake_all_queues(netdev);
3184 		netif_tx_unlock_bh(netdev);
3185 		napi_enable(&fep->napi);
3186 	} else {
3187 		fec_enet_set_netdev_features(netdev, features);
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 static const struct net_device_ops fec_netdev_ops = {
3194 	.ndo_open		= fec_enet_open,
3195 	.ndo_stop		= fec_enet_close,
3196 	.ndo_start_xmit		= fec_enet_start_xmit,
3197 	.ndo_set_rx_mode	= set_multicast_list,
3198 	.ndo_validate_addr	= eth_validate_addr,
3199 	.ndo_tx_timeout		= fec_timeout,
3200 	.ndo_set_mac_address	= fec_set_mac_address,
3201 	.ndo_do_ioctl		= fec_enet_ioctl,
3202 #ifdef CONFIG_NET_POLL_CONTROLLER
3203 	.ndo_poll_controller	= fec_poll_controller,
3204 #endif
3205 	.ndo_set_features	= fec_set_features,
3206 };
3207 
3208 static const unsigned short offset_des_active_rxq[] = {
3209 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3210 };
3211 
3212 static const unsigned short offset_des_active_txq[] = {
3213 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3214 };
3215 
3216  /*
3217   * XXX:  We need to clean up on failure exits here.
3218   *
3219   */
3220 static int fec_enet_init(struct net_device *ndev)
3221 {
3222 	struct fec_enet_private *fep = netdev_priv(ndev);
3223 	struct bufdesc *cbd_base;
3224 	dma_addr_t bd_dma;
3225 	int bd_size;
3226 	unsigned int i;
3227 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3228 			sizeof(struct bufdesc);
3229 	unsigned dsize_log2 = __fls(dsize);
3230 	int ret;
3231 
3232 	WARN_ON(dsize != (1 << dsize_log2));
3233 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3234 	fep->rx_align = 0xf;
3235 	fep->tx_align = 0xf;
3236 #else
3237 	fep->rx_align = 0x3;
3238 	fep->tx_align = 0x3;
3239 #endif
3240 
3241 	/* Check mask of the streaming and coherent API */
3242 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3243 	if (ret < 0) {
3244 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3245 		return ret;
3246 	}
3247 
3248 	fec_enet_alloc_queue(ndev);
3249 
3250 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3251 
3252 	/* Allocate memory for buffer descriptors. */
3253 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3254 				       GFP_KERNEL);
3255 	if (!cbd_base) {
3256 		return -ENOMEM;
3257 	}
3258 
3259 	/* Get the Ethernet address */
3260 	fec_get_mac(ndev);
3261 	/* make sure MAC we just acquired is programmed into the hw */
3262 	fec_set_mac_address(ndev, NULL);
3263 
3264 	/* Set receive and transmit descriptor base. */
3265 	for (i = 0; i < fep->num_rx_queues; i++) {
3266 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3267 		unsigned size = dsize * rxq->bd.ring_size;
3268 
3269 		rxq->bd.qid = i;
3270 		rxq->bd.base = cbd_base;
3271 		rxq->bd.cur = cbd_base;
3272 		rxq->bd.dma = bd_dma;
3273 		rxq->bd.dsize = dsize;
3274 		rxq->bd.dsize_log2 = dsize_log2;
3275 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3276 		bd_dma += size;
3277 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3278 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3279 	}
3280 
3281 	for (i = 0; i < fep->num_tx_queues; i++) {
3282 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3283 		unsigned size = dsize * txq->bd.ring_size;
3284 
3285 		txq->bd.qid = i;
3286 		txq->bd.base = cbd_base;
3287 		txq->bd.cur = cbd_base;
3288 		txq->bd.dma = bd_dma;
3289 		txq->bd.dsize = dsize;
3290 		txq->bd.dsize_log2 = dsize_log2;
3291 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3292 		bd_dma += size;
3293 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3294 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3295 	}
3296 
3297 
3298 	/* The FEC Ethernet specific entries in the device structure */
3299 	ndev->watchdog_timeo = TX_TIMEOUT;
3300 	ndev->netdev_ops = &fec_netdev_ops;
3301 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3302 
3303 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3304 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3305 
3306 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3307 		/* enable hw VLAN support */
3308 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3309 
3310 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3311 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3312 
3313 		/* enable hw accelerator */
3314 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3315 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3316 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3317 	}
3318 
3319 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3320 		fep->tx_align = 0;
3321 		fep->rx_align = 0x3f;
3322 	}
3323 
3324 	ndev->hw_features = ndev->features;
3325 
3326 	fec_restart(ndev);
3327 
3328 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3329 		fec_enet_clear_ethtool_stats(ndev);
3330 	else
3331 		fec_enet_update_ethtool_stats(ndev);
3332 
3333 	return 0;
3334 }
3335 
3336 #ifdef CONFIG_OF
3337 static int fec_reset_phy(struct platform_device *pdev)
3338 {
3339 	int err, phy_reset;
3340 	bool active_high = false;
3341 	int msec = 1, phy_post_delay = 0;
3342 	struct device_node *np = pdev->dev.of_node;
3343 
3344 	if (!np)
3345 		return 0;
3346 
3347 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3348 	/* A sane reset duration should not be longer than 1s */
3349 	if (!err && msec > 1000)
3350 		msec = 1;
3351 
3352 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3353 	if (phy_reset == -EPROBE_DEFER)
3354 		return phy_reset;
3355 	else if (!gpio_is_valid(phy_reset))
3356 		return 0;
3357 
3358 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3359 	/* valid reset duration should be less than 1s */
3360 	if (!err && phy_post_delay > 1000)
3361 		return -EINVAL;
3362 
3363 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3364 
3365 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3366 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3367 			"phy-reset");
3368 	if (err) {
3369 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3370 		return err;
3371 	}
3372 
3373 	if (msec > 20)
3374 		msleep(msec);
3375 	else
3376 		usleep_range(msec * 1000, msec * 1000 + 1000);
3377 
3378 	gpio_set_value_cansleep(phy_reset, !active_high);
3379 
3380 	if (!phy_post_delay)
3381 		return 0;
3382 
3383 	if (phy_post_delay > 20)
3384 		msleep(phy_post_delay);
3385 	else
3386 		usleep_range(phy_post_delay * 1000,
3387 			     phy_post_delay * 1000 + 1000);
3388 
3389 	return 0;
3390 }
3391 #else /* CONFIG_OF */
3392 static int fec_reset_phy(struct platform_device *pdev)
3393 {
3394 	/*
3395 	 * In case of platform probe, the reset has been done
3396 	 * by machine code.
3397 	 */
3398 	return 0;
3399 }
3400 #endif /* CONFIG_OF */
3401 
3402 static void
3403 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3404 {
3405 	struct device_node *np = pdev->dev.of_node;
3406 
3407 	*num_tx = *num_rx = 1;
3408 
3409 	if (!np || !of_device_is_available(np))
3410 		return;
3411 
3412 	/* parse the num of tx and rx queues */
3413 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3414 
3415 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3416 
3417 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3418 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3419 			 *num_tx);
3420 		*num_tx = 1;
3421 		return;
3422 	}
3423 
3424 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3425 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3426 			 *num_rx);
3427 		*num_rx = 1;
3428 		return;
3429 	}
3430 
3431 }
3432 
3433 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3434 {
3435 	int irq_cnt = platform_irq_count(pdev);
3436 
3437 	if (irq_cnt > FEC_IRQ_NUM)
3438 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3439 	else if (irq_cnt == 2)
3440 		irq_cnt = 1;	/* last for pps */
3441 	else if (irq_cnt <= 0)
3442 		irq_cnt = 1;	/* At least 1 irq is needed */
3443 	return irq_cnt;
3444 }
3445 
3446 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3447 				   struct device_node *np)
3448 {
3449 	struct device_node *gpr_np;
3450 	u32 out_val[3];
3451 	int ret = 0;
3452 
3453 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3454 	if (!gpr_np)
3455 		return 0;
3456 
3457 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3458 					 ARRAY_SIZE(out_val));
3459 	if (ret) {
3460 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3461 		return ret;
3462 	}
3463 
3464 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3465 	if (IS_ERR(fep->stop_gpr.gpr)) {
3466 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3467 		ret = PTR_ERR(fep->stop_gpr.gpr);
3468 		fep->stop_gpr.gpr = NULL;
3469 		goto out;
3470 	}
3471 
3472 	fep->stop_gpr.reg = out_val[1];
3473 	fep->stop_gpr.bit = out_val[2];
3474 
3475 out:
3476 	of_node_put(gpr_np);
3477 
3478 	return ret;
3479 }
3480 
3481 static int
3482 fec_probe(struct platform_device *pdev)
3483 {
3484 	struct fec_enet_private *fep;
3485 	struct fec_platform_data *pdata;
3486 	phy_interface_t interface;
3487 	struct net_device *ndev;
3488 	int i, irq, ret = 0;
3489 	const struct of_device_id *of_id;
3490 	static int dev_id;
3491 	struct device_node *np = pdev->dev.of_node, *phy_node;
3492 	int num_tx_qs;
3493 	int num_rx_qs;
3494 	char irq_name[8];
3495 	int irq_cnt;
3496 	struct fec_devinfo *dev_info;
3497 
3498 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3499 
3500 	/* Init network device */
3501 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3502 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3503 	if (!ndev)
3504 		return -ENOMEM;
3505 
3506 	SET_NETDEV_DEV(ndev, &pdev->dev);
3507 
3508 	/* setup board info structure */
3509 	fep = netdev_priv(ndev);
3510 
3511 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3512 	if (of_id)
3513 		pdev->id_entry = of_id->data;
3514 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3515 	if (dev_info)
3516 		fep->quirks = dev_info->quirks;
3517 
3518 	fep->netdev = ndev;
3519 	fep->num_rx_queues = num_rx_qs;
3520 	fep->num_tx_queues = num_tx_qs;
3521 
3522 #if !defined(CONFIG_M5272)
3523 	/* default enable pause frame auto negotiation */
3524 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3525 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3526 #endif
3527 
3528 	/* Select default pin state */
3529 	pinctrl_pm_select_default_state(&pdev->dev);
3530 
3531 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3532 	if (IS_ERR(fep->hwp)) {
3533 		ret = PTR_ERR(fep->hwp);
3534 		goto failed_ioremap;
3535 	}
3536 
3537 	fep->pdev = pdev;
3538 	fep->dev_id = dev_id++;
3539 
3540 	platform_set_drvdata(pdev, ndev);
3541 
3542 	if ((of_machine_is_compatible("fsl,imx6q") ||
3543 	     of_machine_is_compatible("fsl,imx6dl")) &&
3544 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3545 		fep->quirks |= FEC_QUIRK_ERR006687;
3546 
3547 	if (of_get_property(np, "fsl,magic-packet", NULL))
3548 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3549 
3550 	ret = fec_enet_init_stop_mode(fep, np);
3551 	if (ret)
3552 		goto failed_stop_mode;
3553 
3554 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3555 	if (!phy_node && of_phy_is_fixed_link(np)) {
3556 		ret = of_phy_register_fixed_link(np);
3557 		if (ret < 0) {
3558 			dev_err(&pdev->dev,
3559 				"broken fixed-link specification\n");
3560 			goto failed_phy;
3561 		}
3562 		phy_node = of_node_get(np);
3563 	}
3564 	fep->phy_node = phy_node;
3565 
3566 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3567 	if (ret) {
3568 		pdata = dev_get_platdata(&pdev->dev);
3569 		if (pdata)
3570 			fep->phy_interface = pdata->phy;
3571 		else
3572 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3573 	} else {
3574 		fep->phy_interface = interface;
3575 	}
3576 
3577 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3578 	if (IS_ERR(fep->clk_ipg)) {
3579 		ret = PTR_ERR(fep->clk_ipg);
3580 		goto failed_clk;
3581 	}
3582 
3583 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3584 	if (IS_ERR(fep->clk_ahb)) {
3585 		ret = PTR_ERR(fep->clk_ahb);
3586 		goto failed_clk;
3587 	}
3588 
3589 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3590 
3591 	/* enet_out is optional, depends on board */
3592 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3593 	if (IS_ERR(fep->clk_enet_out))
3594 		fep->clk_enet_out = NULL;
3595 
3596 	fep->ptp_clk_on = false;
3597 	mutex_init(&fep->ptp_clk_mutex);
3598 
3599 	/* clk_ref is optional, depends on board */
3600 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3601 	if (IS_ERR(fep->clk_ref))
3602 		fep->clk_ref = NULL;
3603 
3604 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3605 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3606 	if (IS_ERR(fep->clk_ptp)) {
3607 		fep->clk_ptp = NULL;
3608 		fep->bufdesc_ex = false;
3609 	}
3610 
3611 	ret = fec_enet_clk_enable(ndev, true);
3612 	if (ret)
3613 		goto failed_clk;
3614 
3615 	ret = clk_prepare_enable(fep->clk_ipg);
3616 	if (ret)
3617 		goto failed_clk_ipg;
3618 	ret = clk_prepare_enable(fep->clk_ahb);
3619 	if (ret)
3620 		goto failed_clk_ahb;
3621 
3622 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3623 	if (!IS_ERR(fep->reg_phy)) {
3624 		ret = regulator_enable(fep->reg_phy);
3625 		if (ret) {
3626 			dev_err(&pdev->dev,
3627 				"Failed to enable phy regulator: %d\n", ret);
3628 			goto failed_regulator;
3629 		}
3630 	} else {
3631 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3632 			ret = -EPROBE_DEFER;
3633 			goto failed_regulator;
3634 		}
3635 		fep->reg_phy = NULL;
3636 	}
3637 
3638 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3639 	pm_runtime_use_autosuspend(&pdev->dev);
3640 	pm_runtime_get_noresume(&pdev->dev);
3641 	pm_runtime_set_active(&pdev->dev);
3642 	pm_runtime_enable(&pdev->dev);
3643 
3644 	ret = fec_reset_phy(pdev);
3645 	if (ret)
3646 		goto failed_reset;
3647 
3648 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3649 	if (fep->bufdesc_ex)
3650 		fec_ptp_init(pdev, irq_cnt);
3651 
3652 	ret = fec_enet_init(ndev);
3653 	if (ret)
3654 		goto failed_init;
3655 
3656 	for (i = 0; i < irq_cnt; i++) {
3657 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3658 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3659 		if (irq < 0)
3660 			irq = platform_get_irq(pdev, i);
3661 		if (irq < 0) {
3662 			ret = irq;
3663 			goto failed_irq;
3664 		}
3665 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3666 				       0, pdev->name, ndev);
3667 		if (ret)
3668 			goto failed_irq;
3669 
3670 		fep->irq[i] = irq;
3671 	}
3672 
3673 	ret = fec_enet_mii_init(pdev);
3674 	if (ret)
3675 		goto failed_mii_init;
3676 
3677 	/* Carrier starts down, phylib will bring it up */
3678 	netif_carrier_off(ndev);
3679 	fec_enet_clk_enable(ndev, false);
3680 	pinctrl_pm_select_sleep_state(&pdev->dev);
3681 
3682 	ret = register_netdev(ndev);
3683 	if (ret)
3684 		goto failed_register;
3685 
3686 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3687 			   FEC_WOL_HAS_MAGIC_PACKET);
3688 
3689 	if (fep->bufdesc_ex && fep->ptp_clock)
3690 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3691 
3692 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3693 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3694 
3695 	pm_runtime_mark_last_busy(&pdev->dev);
3696 	pm_runtime_put_autosuspend(&pdev->dev);
3697 
3698 	return 0;
3699 
3700 failed_register:
3701 	fec_enet_mii_remove(fep);
3702 failed_mii_init:
3703 failed_irq:
3704 failed_init:
3705 	fec_ptp_stop(pdev);
3706 	if (fep->reg_phy)
3707 		regulator_disable(fep->reg_phy);
3708 failed_reset:
3709 	pm_runtime_put_noidle(&pdev->dev);
3710 	pm_runtime_disable(&pdev->dev);
3711 failed_regulator:
3712 	clk_disable_unprepare(fep->clk_ahb);
3713 failed_clk_ahb:
3714 	clk_disable_unprepare(fep->clk_ipg);
3715 failed_clk_ipg:
3716 	fec_enet_clk_enable(ndev, false);
3717 failed_clk:
3718 	if (of_phy_is_fixed_link(np))
3719 		of_phy_deregister_fixed_link(np);
3720 	of_node_put(phy_node);
3721 failed_stop_mode:
3722 failed_phy:
3723 	dev_id--;
3724 failed_ioremap:
3725 	free_netdev(ndev);
3726 
3727 	return ret;
3728 }
3729 
3730 static int
3731 fec_drv_remove(struct platform_device *pdev)
3732 {
3733 	struct net_device *ndev = platform_get_drvdata(pdev);
3734 	struct fec_enet_private *fep = netdev_priv(ndev);
3735 	struct device_node *np = pdev->dev.of_node;
3736 	int ret;
3737 
3738 	ret = pm_runtime_get_sync(&pdev->dev);
3739 	if (ret < 0)
3740 		return ret;
3741 
3742 	cancel_work_sync(&fep->tx_timeout_work);
3743 	fec_ptp_stop(pdev);
3744 	unregister_netdev(ndev);
3745 	fec_enet_mii_remove(fep);
3746 	if (fep->reg_phy)
3747 		regulator_disable(fep->reg_phy);
3748 
3749 	if (of_phy_is_fixed_link(np))
3750 		of_phy_deregister_fixed_link(np);
3751 	of_node_put(fep->phy_node);
3752 	free_netdev(ndev);
3753 
3754 	clk_disable_unprepare(fep->clk_ahb);
3755 	clk_disable_unprepare(fep->clk_ipg);
3756 	pm_runtime_put_noidle(&pdev->dev);
3757 	pm_runtime_disable(&pdev->dev);
3758 
3759 	return 0;
3760 }
3761 
3762 static int __maybe_unused fec_suspend(struct device *dev)
3763 {
3764 	struct net_device *ndev = dev_get_drvdata(dev);
3765 	struct fec_enet_private *fep = netdev_priv(ndev);
3766 
3767 	rtnl_lock();
3768 	if (netif_running(ndev)) {
3769 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3770 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3771 		phy_stop(ndev->phydev);
3772 		napi_disable(&fep->napi);
3773 		netif_tx_lock_bh(ndev);
3774 		netif_device_detach(ndev);
3775 		netif_tx_unlock_bh(ndev);
3776 		fec_stop(ndev);
3777 		fec_enet_clk_enable(ndev, false);
3778 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3779 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3780 	}
3781 	rtnl_unlock();
3782 
3783 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3784 		regulator_disable(fep->reg_phy);
3785 
3786 	/* SOC supply clock to phy, when clock is disabled, phy link down
3787 	 * SOC control phy regulator, when regulator is disabled, phy link down
3788 	 */
3789 	if (fep->clk_enet_out || fep->reg_phy)
3790 		fep->link = 0;
3791 
3792 	return 0;
3793 }
3794 
3795 static int __maybe_unused fec_resume(struct device *dev)
3796 {
3797 	struct net_device *ndev = dev_get_drvdata(dev);
3798 	struct fec_enet_private *fep = netdev_priv(ndev);
3799 	int ret;
3800 	int val;
3801 
3802 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3803 		ret = regulator_enable(fep->reg_phy);
3804 		if (ret)
3805 			return ret;
3806 	}
3807 
3808 	rtnl_lock();
3809 	if (netif_running(ndev)) {
3810 		ret = fec_enet_clk_enable(ndev, true);
3811 		if (ret) {
3812 			rtnl_unlock();
3813 			goto failed_clk;
3814 		}
3815 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3816 			fec_enet_stop_mode(fep, false);
3817 
3818 			val = readl(fep->hwp + FEC_ECNTRL);
3819 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3820 			writel(val, fep->hwp + FEC_ECNTRL);
3821 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3822 		} else {
3823 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3824 		}
3825 		fec_restart(ndev);
3826 		netif_tx_lock_bh(ndev);
3827 		netif_device_attach(ndev);
3828 		netif_tx_unlock_bh(ndev);
3829 		napi_enable(&fep->napi);
3830 		phy_start(ndev->phydev);
3831 	}
3832 	rtnl_unlock();
3833 
3834 	return 0;
3835 
3836 failed_clk:
3837 	if (fep->reg_phy)
3838 		regulator_disable(fep->reg_phy);
3839 	return ret;
3840 }
3841 
3842 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3843 {
3844 	struct net_device *ndev = dev_get_drvdata(dev);
3845 	struct fec_enet_private *fep = netdev_priv(ndev);
3846 
3847 	clk_disable_unprepare(fep->clk_ahb);
3848 	clk_disable_unprepare(fep->clk_ipg);
3849 
3850 	return 0;
3851 }
3852 
3853 static int __maybe_unused fec_runtime_resume(struct device *dev)
3854 {
3855 	struct net_device *ndev = dev_get_drvdata(dev);
3856 	struct fec_enet_private *fep = netdev_priv(ndev);
3857 	int ret;
3858 
3859 	ret = clk_prepare_enable(fep->clk_ahb);
3860 	if (ret)
3861 		return ret;
3862 	ret = clk_prepare_enable(fep->clk_ipg);
3863 	if (ret)
3864 		goto failed_clk_ipg;
3865 
3866 	return 0;
3867 
3868 failed_clk_ipg:
3869 	clk_disable_unprepare(fep->clk_ahb);
3870 	return ret;
3871 }
3872 
3873 static const struct dev_pm_ops fec_pm_ops = {
3874 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3875 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3876 };
3877 
3878 static struct platform_driver fec_driver = {
3879 	.driver	= {
3880 		.name	= DRIVER_NAME,
3881 		.pm	= &fec_pm_ops,
3882 		.of_match_table = fec_dt_ids,
3883 		.suppress_bind_attrs = true,
3884 	},
3885 	.id_table = fec_devtype,
3886 	.probe	= fec_probe,
3887 	.remove	= fec_drv_remove,
3888 };
3889 
3890 module_platform_driver(fec_driver);
3891 
3892 MODULE_ALIAS("platform:"DRIVER_NAME);
3893 MODULE_LICENSE("GPL");
3894