xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 	u8 stop_gpr_reg;
92 	u8 stop_gpr_bit;
93 };
94 
95 static const struct fec_devinfo fec_imx25_info = {
96 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
97 		  FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx27_info = {
101 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
102 };
103 
104 static const struct fec_devinfo fec_imx28_info = {
105 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
106 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
107 		  FEC_QUIRK_HAS_FRREG,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC,
115 	.stop_gpr_reg = 0x34,
116 	.stop_gpr_bit = 27,
117 };
118 
119 static const struct fec_devinfo fec_mvf600_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
121 };
122 
123 static const struct fec_devinfo fec_imx6x_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
127 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
128 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
129 };
130 
131 static const struct fec_devinfo fec_imx6ul_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 		  FEC_QUIRK_HAS_COALESCE,
137 };
138 
139 static struct platform_device_id fec_devtype[] = {
140 	{
141 		/* keep it for coldfire */
142 		.name = DRIVER_NAME,
143 		.driver_data = 0,
144 	}, {
145 		.name = "imx25-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
147 	}, {
148 		.name = "imx27-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
150 	}, {
151 		.name = "imx28-fec",
152 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
153 	}, {
154 		.name = "imx6q-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
156 	}, {
157 		.name = "mvf600-fec",
158 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
159 	}, {
160 		.name = "imx6sx-fec",
161 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
162 	}, {
163 		.name = "imx6ul-fec",
164 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
165 	}, {
166 		/* sentinel */
167 	}
168 };
169 MODULE_DEVICE_TABLE(platform, fec_devtype);
170 
171 enum imx_fec_type {
172 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
173 	IMX27_FEC,	/* runs on i.mx27/35/51 */
174 	IMX28_FEC,
175 	IMX6Q_FEC,
176 	MVF600_FEC,
177 	IMX6SX_FEC,
178 	IMX6UL_FEC,
179 };
180 
181 static const struct of_device_id fec_dt_ids[] = {
182 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
183 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
184 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
185 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
186 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
187 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
188 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
189 	{ /* sentinel */ }
190 };
191 MODULE_DEVICE_TABLE(of, fec_dt_ids);
192 
193 static unsigned char macaddr[ETH_ALEN];
194 module_param_array(macaddr, byte, NULL, 0);
195 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
196 
197 #if defined(CONFIG_M5272)
198 /*
199  * Some hardware gets it MAC address out of local flash memory.
200  * if this is non-zero then assume it is the address to get MAC from.
201  */
202 #if defined(CONFIG_NETtel)
203 #define	FEC_FLASHMAC	0xf0006006
204 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
205 #define	FEC_FLASHMAC	0xf0006000
206 #elif defined(CONFIG_CANCam)
207 #define	FEC_FLASHMAC	0xf0020000
208 #elif defined (CONFIG_M5272C3)
209 #define	FEC_FLASHMAC	(0xffe04000 + 4)
210 #elif defined(CONFIG_MOD5272)
211 #define FEC_FLASHMAC	0xffc0406b
212 #else
213 #define	FEC_FLASHMAC	0
214 #endif
215 #endif /* CONFIG_M5272 */
216 
217 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
218  *
219  * 2048 byte skbufs are allocated. However, alignment requirements
220  * varies between FEC variants. Worst case is 64, so round down by 64.
221  */
222 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
223 #define PKT_MINBUF_SIZE		64
224 
225 /* FEC receive acceleration */
226 #define FEC_RACC_IPDIS		(1 << 1)
227 #define FEC_RACC_PRODIS		(1 << 2)
228 #define FEC_RACC_SHIFT16	BIT(7)
229 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
230 
231 /* MIB Control Register */
232 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
233 
234 /*
235  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
236  * size bits. Other FEC hardware does not, so we need to take that into
237  * account when setting it.
238  */
239 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
240     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
241     defined(CONFIG_ARM64)
242 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
243 #else
244 #define	OPT_FRAME_SIZE	0
245 #endif
246 
247 /* FEC MII MMFR bits definition */
248 #define FEC_MMFR_ST		(1 << 30)
249 #define FEC_MMFR_ST_C45		(0)
250 #define FEC_MMFR_OP_READ	(2 << 28)
251 #define FEC_MMFR_OP_READ_C45	(3 << 28)
252 #define FEC_MMFR_OP_WRITE	(1 << 28)
253 #define FEC_MMFR_OP_ADDR_WRITE	(0)
254 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
255 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
256 #define FEC_MMFR_TA		(2 << 16)
257 #define FEC_MMFR_DATA(v)	(v & 0xffff)
258 /* FEC ECR bits definition */
259 #define FEC_ECR_MAGICEN		(1 << 2)
260 #define FEC_ECR_SLEEP		(1 << 3)
261 
262 #define FEC_MII_TIMEOUT		30000 /* us */
263 
264 /* Transmitter timeout */
265 #define TX_TIMEOUT (2 * HZ)
266 
267 #define FEC_PAUSE_FLAG_AUTONEG	0x1
268 #define FEC_PAUSE_FLAG_ENABLE	0x2
269 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
270 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
271 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
272 
273 #define COPYBREAK_DEFAULT	256
274 
275 /* Max number of allowed TCP segments for software TSO */
276 #define FEC_MAX_TSO_SEGS	100
277 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
278 
279 #define IS_TSO_HEADER(txq, addr) \
280 	((addr >= txq->tso_hdrs_dma) && \
281 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
282 
283 static int mii_cnt;
284 
285 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
286 					     struct bufdesc_prop *bd)
287 {
288 	return (bdp >= bd->last) ? bd->base
289 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
290 }
291 
292 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
293 					     struct bufdesc_prop *bd)
294 {
295 	return (bdp <= bd->base) ? bd->last
296 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
297 }
298 
299 static int fec_enet_get_bd_index(struct bufdesc *bdp,
300 				 struct bufdesc_prop *bd)
301 {
302 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
303 }
304 
305 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
306 {
307 	int entries;
308 
309 	entries = (((const char *)txq->dirty_tx -
310 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
311 
312 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
313 }
314 
315 static void swap_buffer(void *bufaddr, int len)
316 {
317 	int i;
318 	unsigned int *buf = bufaddr;
319 
320 	for (i = 0; i < len; i += 4, buf++)
321 		swab32s(buf);
322 }
323 
324 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
325 {
326 	int i;
327 	unsigned int *src = src_buf;
328 	unsigned int *dst = dst_buf;
329 
330 	for (i = 0; i < len; i += 4, src++, dst++)
331 		*dst = swab32p(src);
332 }
333 
334 static void fec_dump(struct net_device *ndev)
335 {
336 	struct fec_enet_private *fep = netdev_priv(ndev);
337 	struct bufdesc *bdp;
338 	struct fec_enet_priv_tx_q *txq;
339 	int index = 0;
340 
341 	netdev_info(ndev, "TX ring dump\n");
342 	pr_info("Nr     SC     addr       len  SKB\n");
343 
344 	txq = fep->tx_queue[0];
345 	bdp = txq->bd.base;
346 
347 	do {
348 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
349 			index,
350 			bdp == txq->bd.cur ? 'S' : ' ',
351 			bdp == txq->dirty_tx ? 'H' : ' ',
352 			fec16_to_cpu(bdp->cbd_sc),
353 			fec32_to_cpu(bdp->cbd_bufaddr),
354 			fec16_to_cpu(bdp->cbd_datlen),
355 			txq->tx_skbuff[index]);
356 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
357 		index++;
358 	} while (bdp != txq->bd.base);
359 }
360 
361 static inline bool is_ipv4_pkt(struct sk_buff *skb)
362 {
363 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
364 }
365 
366 static int
367 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
368 {
369 	/* Only run for packets requiring a checksum. */
370 	if (skb->ip_summed != CHECKSUM_PARTIAL)
371 		return 0;
372 
373 	if (unlikely(skb_cow_head(skb, 0)))
374 		return -1;
375 
376 	if (is_ipv4_pkt(skb))
377 		ip_hdr(skb)->check = 0;
378 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
379 
380 	return 0;
381 }
382 
383 static struct bufdesc *
384 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
385 			     struct sk_buff *skb,
386 			     struct net_device *ndev)
387 {
388 	struct fec_enet_private *fep = netdev_priv(ndev);
389 	struct bufdesc *bdp = txq->bd.cur;
390 	struct bufdesc_ex *ebdp;
391 	int nr_frags = skb_shinfo(skb)->nr_frags;
392 	int frag, frag_len;
393 	unsigned short status;
394 	unsigned int estatus = 0;
395 	skb_frag_t *this_frag;
396 	unsigned int index;
397 	void *bufaddr;
398 	dma_addr_t addr;
399 	int i;
400 
401 	for (frag = 0; frag < nr_frags; frag++) {
402 		this_frag = &skb_shinfo(skb)->frags[frag];
403 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 		ebdp = (struct bufdesc_ex *)bdp;
405 
406 		status = fec16_to_cpu(bdp->cbd_sc);
407 		status &= ~BD_ENET_TX_STATS;
408 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
409 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
410 
411 		/* Handle the last BD specially */
412 		if (frag == nr_frags - 1) {
413 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
414 			if (fep->bufdesc_ex) {
415 				estatus |= BD_ENET_TX_INT;
416 				if (unlikely(skb_shinfo(skb)->tx_flags &
417 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
418 					estatus |= BD_ENET_TX_TS;
419 			}
420 		}
421 
422 		if (fep->bufdesc_ex) {
423 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
424 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
425 			if (skb->ip_summed == CHECKSUM_PARTIAL)
426 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
427 			ebdp->cbd_bdu = 0;
428 			ebdp->cbd_esc = cpu_to_fec32(estatus);
429 		}
430 
431 		bufaddr = skb_frag_address(this_frag);
432 
433 		index = fec_enet_get_bd_index(bdp, &txq->bd);
434 		if (((unsigned long) bufaddr) & fep->tx_align ||
435 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
436 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
437 			bufaddr = txq->tx_bounce[index];
438 
439 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
440 				swap_buffer(bufaddr, frag_len);
441 		}
442 
443 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
444 				      DMA_TO_DEVICE);
445 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
446 			if (net_ratelimit())
447 				netdev_err(ndev, "Tx DMA memory map failed\n");
448 			goto dma_mapping_error;
449 		}
450 
451 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
452 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
453 		/* Make sure the updates to rest of the descriptor are
454 		 * performed before transferring ownership.
455 		 */
456 		wmb();
457 		bdp->cbd_sc = cpu_to_fec16(status);
458 	}
459 
460 	return bdp;
461 dma_mapping_error:
462 	bdp = txq->bd.cur;
463 	for (i = 0; i < frag; i++) {
464 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
465 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
466 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
467 	}
468 	return ERR_PTR(-ENOMEM);
469 }
470 
471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
472 				   struct sk_buff *skb, struct net_device *ndev)
473 {
474 	struct fec_enet_private *fep = netdev_priv(ndev);
475 	int nr_frags = skb_shinfo(skb)->nr_frags;
476 	struct bufdesc *bdp, *last_bdp;
477 	void *bufaddr;
478 	dma_addr_t addr;
479 	unsigned short status;
480 	unsigned short buflen;
481 	unsigned int estatus = 0;
482 	unsigned int index;
483 	int entries_free;
484 
485 	entries_free = fec_enet_get_free_txdesc_num(txq);
486 	if (entries_free < MAX_SKB_FRAGS + 1) {
487 		dev_kfree_skb_any(skb);
488 		if (net_ratelimit())
489 			netdev_err(ndev, "NOT enough BD for SG!\n");
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Protocol checksum off-load for TCP and UDP. */
494 	if (fec_enet_clear_csum(skb, ndev)) {
495 		dev_kfree_skb_any(skb);
496 		return NETDEV_TX_OK;
497 	}
498 
499 	/* Fill in a Tx ring entry */
500 	bdp = txq->bd.cur;
501 	last_bdp = bdp;
502 	status = fec16_to_cpu(bdp->cbd_sc);
503 	status &= ~BD_ENET_TX_STATS;
504 
505 	/* Set buffer length and buffer pointer */
506 	bufaddr = skb->data;
507 	buflen = skb_headlen(skb);
508 
509 	index = fec_enet_get_bd_index(bdp, &txq->bd);
510 	if (((unsigned long) bufaddr) & fep->tx_align ||
511 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
512 		memcpy(txq->tx_bounce[index], skb->data, buflen);
513 		bufaddr = txq->tx_bounce[index];
514 
515 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
516 			swap_buffer(bufaddr, buflen);
517 	}
518 
519 	/* Push the data cache so the CPM does not get stale memory data. */
520 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
521 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
522 		dev_kfree_skb_any(skb);
523 		if (net_ratelimit())
524 			netdev_err(ndev, "Tx DMA memory map failed\n");
525 		return NETDEV_TX_OK;
526 	}
527 
528 	if (nr_frags) {
529 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
530 		if (IS_ERR(last_bdp)) {
531 			dma_unmap_single(&fep->pdev->dev, addr,
532 					 buflen, DMA_TO_DEVICE);
533 			dev_kfree_skb_any(skb);
534 			return NETDEV_TX_OK;
535 		}
536 	} else {
537 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
538 		if (fep->bufdesc_ex) {
539 			estatus = BD_ENET_TX_INT;
540 			if (unlikely(skb_shinfo(skb)->tx_flags &
541 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
542 				estatus |= BD_ENET_TX_TS;
543 		}
544 	}
545 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
546 	bdp->cbd_datlen = cpu_to_fec16(buflen);
547 
548 	if (fep->bufdesc_ex) {
549 
550 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
551 
552 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
553 			fep->hwts_tx_en))
554 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
555 
556 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
557 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
558 
559 		if (skb->ip_summed == CHECKSUM_PARTIAL)
560 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
561 
562 		ebdp->cbd_bdu = 0;
563 		ebdp->cbd_esc = cpu_to_fec32(estatus);
564 	}
565 
566 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
567 	/* Save skb pointer */
568 	txq->tx_skbuff[index] = skb;
569 
570 	/* Make sure the updates to rest of the descriptor are performed before
571 	 * transferring ownership.
572 	 */
573 	wmb();
574 
575 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
576 	 * it's the last BD of the frame, and to put the CRC on the end.
577 	 */
578 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
579 	bdp->cbd_sc = cpu_to_fec16(status);
580 
581 	/* If this was the last BD in the ring, start at the beginning again. */
582 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
583 
584 	skb_tx_timestamp(skb);
585 
586 	/* Make sure the update to bdp and tx_skbuff are performed before
587 	 * txq->bd.cur.
588 	 */
589 	wmb();
590 	txq->bd.cur = bdp;
591 
592 	/* Trigger transmission start */
593 	writel(0, txq->bd.reg_desc_active);
594 
595 	return 0;
596 }
597 
598 static int
599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
600 			  struct net_device *ndev,
601 			  struct bufdesc *bdp, int index, char *data,
602 			  int size, bool last_tcp, bool is_last)
603 {
604 	struct fec_enet_private *fep = netdev_priv(ndev);
605 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
606 	unsigned short status;
607 	unsigned int estatus = 0;
608 	dma_addr_t addr;
609 
610 	status = fec16_to_cpu(bdp->cbd_sc);
611 	status &= ~BD_ENET_TX_STATS;
612 
613 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
614 
615 	if (((unsigned long) data) & fep->tx_align ||
616 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
617 		memcpy(txq->tx_bounce[index], data, size);
618 		data = txq->tx_bounce[index];
619 
620 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
621 			swap_buffer(data, size);
622 	}
623 
624 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
625 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
626 		dev_kfree_skb_any(skb);
627 		if (net_ratelimit())
628 			netdev_err(ndev, "Tx DMA memory map failed\n");
629 		return NETDEV_TX_BUSY;
630 	}
631 
632 	bdp->cbd_datlen = cpu_to_fec16(size);
633 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
634 
635 	if (fep->bufdesc_ex) {
636 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
637 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
638 		if (skb->ip_summed == CHECKSUM_PARTIAL)
639 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
640 		ebdp->cbd_bdu = 0;
641 		ebdp->cbd_esc = cpu_to_fec32(estatus);
642 	}
643 
644 	/* Handle the last BD specially */
645 	if (last_tcp)
646 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
647 	if (is_last) {
648 		status |= BD_ENET_TX_INTR;
649 		if (fep->bufdesc_ex)
650 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
651 	}
652 
653 	bdp->cbd_sc = cpu_to_fec16(status);
654 
655 	return 0;
656 }
657 
658 static int
659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
660 			 struct sk_buff *skb, struct net_device *ndev,
661 			 struct bufdesc *bdp, int index)
662 {
663 	struct fec_enet_private *fep = netdev_priv(ndev);
664 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
665 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
666 	void *bufaddr;
667 	unsigned long dmabuf;
668 	unsigned short status;
669 	unsigned int estatus = 0;
670 
671 	status = fec16_to_cpu(bdp->cbd_sc);
672 	status &= ~BD_ENET_TX_STATS;
673 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
674 
675 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
676 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
677 	if (((unsigned long)bufaddr) & fep->tx_align ||
678 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
679 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
680 		bufaddr = txq->tx_bounce[index];
681 
682 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
683 			swap_buffer(bufaddr, hdr_len);
684 
685 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
686 					hdr_len, DMA_TO_DEVICE);
687 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
688 			dev_kfree_skb_any(skb);
689 			if (net_ratelimit())
690 				netdev_err(ndev, "Tx DMA memory map failed\n");
691 			return NETDEV_TX_BUSY;
692 		}
693 	}
694 
695 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
696 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
697 
698 	if (fep->bufdesc_ex) {
699 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
700 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
701 		if (skb->ip_summed == CHECKSUM_PARTIAL)
702 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
703 		ebdp->cbd_bdu = 0;
704 		ebdp->cbd_esc = cpu_to_fec32(estatus);
705 	}
706 
707 	bdp->cbd_sc = cpu_to_fec16(status);
708 
709 	return 0;
710 }
711 
712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
713 				   struct sk_buff *skb,
714 				   struct net_device *ndev)
715 {
716 	struct fec_enet_private *fep = netdev_priv(ndev);
717 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
718 	int total_len, data_left;
719 	struct bufdesc *bdp = txq->bd.cur;
720 	struct tso_t tso;
721 	unsigned int index = 0;
722 	int ret;
723 
724 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
725 		dev_kfree_skb_any(skb);
726 		if (net_ratelimit())
727 			netdev_err(ndev, "NOT enough BD for TSO!\n");
728 		return NETDEV_TX_OK;
729 	}
730 
731 	/* Protocol checksum off-load for TCP and UDP. */
732 	if (fec_enet_clear_csum(skb, ndev)) {
733 		dev_kfree_skb_any(skb);
734 		return NETDEV_TX_OK;
735 	}
736 
737 	/* Initialize the TSO handler, and prepare the first payload */
738 	tso_start(skb, &tso);
739 
740 	total_len = skb->len - hdr_len;
741 	while (total_len > 0) {
742 		char *hdr;
743 
744 		index = fec_enet_get_bd_index(bdp, &txq->bd);
745 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
746 		total_len -= data_left;
747 
748 		/* prepare packet headers: MAC + IP + TCP */
749 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
750 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
751 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
752 		if (ret)
753 			goto err_release;
754 
755 		while (data_left > 0) {
756 			int size;
757 
758 			size = min_t(int, tso.size, data_left);
759 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
760 			index = fec_enet_get_bd_index(bdp, &txq->bd);
761 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
762 							bdp, index,
763 							tso.data, size,
764 							size == data_left,
765 							total_len == 0);
766 			if (ret)
767 				goto err_release;
768 
769 			data_left -= size;
770 			tso_build_data(skb, &tso, size);
771 		}
772 
773 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
774 	}
775 
776 	/* Save skb pointer */
777 	txq->tx_skbuff[index] = skb;
778 
779 	skb_tx_timestamp(skb);
780 	txq->bd.cur = bdp;
781 
782 	/* Trigger transmission start */
783 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
784 	    !readl(txq->bd.reg_desc_active) ||
785 	    !readl(txq->bd.reg_desc_active) ||
786 	    !readl(txq->bd.reg_desc_active) ||
787 	    !readl(txq->bd.reg_desc_active))
788 		writel(0, txq->bd.reg_desc_active);
789 
790 	return 0;
791 
792 err_release:
793 	/* TODO: Release all used data descriptors for TSO */
794 	return ret;
795 }
796 
797 static netdev_tx_t
798 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
799 {
800 	struct fec_enet_private *fep = netdev_priv(ndev);
801 	int entries_free;
802 	unsigned short queue;
803 	struct fec_enet_priv_tx_q *txq;
804 	struct netdev_queue *nq;
805 	int ret;
806 
807 	queue = skb_get_queue_mapping(skb);
808 	txq = fep->tx_queue[queue];
809 	nq = netdev_get_tx_queue(ndev, queue);
810 
811 	if (skb_is_gso(skb))
812 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
813 	else
814 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
815 	if (ret)
816 		return ret;
817 
818 	entries_free = fec_enet_get_free_txdesc_num(txq);
819 	if (entries_free <= txq->tx_stop_threshold)
820 		netif_tx_stop_queue(nq);
821 
822 	return NETDEV_TX_OK;
823 }
824 
825 /* Init RX & TX buffer descriptors
826  */
827 static void fec_enet_bd_init(struct net_device *dev)
828 {
829 	struct fec_enet_private *fep = netdev_priv(dev);
830 	struct fec_enet_priv_tx_q *txq;
831 	struct fec_enet_priv_rx_q *rxq;
832 	struct bufdesc *bdp;
833 	unsigned int i;
834 	unsigned int q;
835 
836 	for (q = 0; q < fep->num_rx_queues; q++) {
837 		/* Initialize the receive buffer descriptors. */
838 		rxq = fep->rx_queue[q];
839 		bdp = rxq->bd.base;
840 
841 		for (i = 0; i < rxq->bd.ring_size; i++) {
842 
843 			/* Initialize the BD for every fragment in the page. */
844 			if (bdp->cbd_bufaddr)
845 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
846 			else
847 				bdp->cbd_sc = cpu_to_fec16(0);
848 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
849 		}
850 
851 		/* Set the last buffer to wrap */
852 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
853 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
854 
855 		rxq->bd.cur = rxq->bd.base;
856 	}
857 
858 	for (q = 0; q < fep->num_tx_queues; q++) {
859 		/* ...and the same for transmit */
860 		txq = fep->tx_queue[q];
861 		bdp = txq->bd.base;
862 		txq->bd.cur = bdp;
863 
864 		for (i = 0; i < txq->bd.ring_size; i++) {
865 			/* Initialize the BD for every fragment in the page. */
866 			bdp->cbd_sc = cpu_to_fec16(0);
867 			if (bdp->cbd_bufaddr &&
868 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
869 				dma_unmap_single(&fep->pdev->dev,
870 						 fec32_to_cpu(bdp->cbd_bufaddr),
871 						 fec16_to_cpu(bdp->cbd_datlen),
872 						 DMA_TO_DEVICE);
873 			if (txq->tx_skbuff[i]) {
874 				dev_kfree_skb_any(txq->tx_skbuff[i]);
875 				txq->tx_skbuff[i] = NULL;
876 			}
877 			bdp->cbd_bufaddr = cpu_to_fec32(0);
878 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
879 		}
880 
881 		/* Set the last buffer to wrap */
882 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
883 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
884 		txq->dirty_tx = bdp;
885 	}
886 }
887 
888 static void fec_enet_active_rxring(struct net_device *ndev)
889 {
890 	struct fec_enet_private *fep = netdev_priv(ndev);
891 	int i;
892 
893 	for (i = 0; i < fep->num_rx_queues; i++)
894 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
895 }
896 
897 static void fec_enet_enable_ring(struct net_device *ndev)
898 {
899 	struct fec_enet_private *fep = netdev_priv(ndev);
900 	struct fec_enet_priv_tx_q *txq;
901 	struct fec_enet_priv_rx_q *rxq;
902 	int i;
903 
904 	for (i = 0; i < fep->num_rx_queues; i++) {
905 		rxq = fep->rx_queue[i];
906 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
907 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
908 
909 		/* enable DMA1/2 */
910 		if (i)
911 			writel(RCMR_MATCHEN | RCMR_CMP(i),
912 			       fep->hwp + FEC_RCMR(i));
913 	}
914 
915 	for (i = 0; i < fep->num_tx_queues; i++) {
916 		txq = fep->tx_queue[i];
917 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
918 
919 		/* enable DMA1/2 */
920 		if (i)
921 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
922 			       fep->hwp + FEC_DMA_CFG(i));
923 	}
924 }
925 
926 static void fec_enet_reset_skb(struct net_device *ndev)
927 {
928 	struct fec_enet_private *fep = netdev_priv(ndev);
929 	struct fec_enet_priv_tx_q *txq;
930 	int i, j;
931 
932 	for (i = 0; i < fep->num_tx_queues; i++) {
933 		txq = fep->tx_queue[i];
934 
935 		for (j = 0; j < txq->bd.ring_size; j++) {
936 			if (txq->tx_skbuff[j]) {
937 				dev_kfree_skb_any(txq->tx_skbuff[j]);
938 				txq->tx_skbuff[j] = NULL;
939 			}
940 		}
941 	}
942 }
943 
944 /*
945  * This function is called to start or restart the FEC during a link
946  * change, transmit timeout, or to reconfigure the FEC.  The network
947  * packet processing for this device must be stopped before this call.
948  */
949 static void
950 fec_restart(struct net_device *ndev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(ndev);
953 	u32 val;
954 	u32 temp_mac[2];
955 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
956 	u32 ecntl = 0x2; /* ETHEREN */
957 
958 	/* Whack a reset.  We should wait for this.
959 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
960 	 * instead of reset MAC itself.
961 	 */
962 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
963 		writel(0, fep->hwp + FEC_ECNTRL);
964 	} else {
965 		writel(1, fep->hwp + FEC_ECNTRL);
966 		udelay(10);
967 	}
968 
969 	/*
970 	 * enet-mac reset will reset mac address registers too,
971 	 * so need to reconfigure it.
972 	 */
973 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
974 	writel((__force u32)cpu_to_be32(temp_mac[0]),
975 	       fep->hwp + FEC_ADDR_LOW);
976 	writel((__force u32)cpu_to_be32(temp_mac[1]),
977 	       fep->hwp + FEC_ADDR_HIGH);
978 
979 	/* Clear any outstanding interrupt, except MDIO. */
980 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
981 
982 	fec_enet_bd_init(ndev);
983 
984 	fec_enet_enable_ring(ndev);
985 
986 	/* Reset tx SKB buffers. */
987 	fec_enet_reset_skb(ndev);
988 
989 	/* Enable MII mode */
990 	if (fep->full_duplex == DUPLEX_FULL) {
991 		/* FD enable */
992 		writel(0x04, fep->hwp + FEC_X_CNTRL);
993 	} else {
994 		/* No Rcv on Xmit */
995 		rcntl |= 0x02;
996 		writel(0x0, fep->hwp + FEC_X_CNTRL);
997 	}
998 
999 	/* Set MII speed */
1000 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1001 
1002 #if !defined(CONFIG_M5272)
1003 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1004 		val = readl(fep->hwp + FEC_RACC);
1005 		/* align IP header */
1006 		val |= FEC_RACC_SHIFT16;
1007 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008 			/* set RX checksum */
1009 			val |= FEC_RACC_OPTIONS;
1010 		else
1011 			val &= ~FEC_RACC_OPTIONS;
1012 		writel(val, fep->hwp + FEC_RACC);
1013 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014 	}
1015 #endif
1016 
1017 	/*
1018 	 * The phy interface and speed need to get configured
1019 	 * differently on enet-mac.
1020 	 */
1021 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022 		/* Enable flow control and length check */
1023 		rcntl |= 0x40000000 | 0x00000020;
1024 
1025 		/* RGMII, RMII or MII */
1026 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030 			rcntl |= (1 << 6);
1031 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032 			rcntl |= (1 << 8);
1033 		else
1034 			rcntl &= ~(1 << 8);
1035 
1036 		/* 1G, 100M or 10M */
1037 		if (ndev->phydev) {
1038 			if (ndev->phydev->speed == SPEED_1000)
1039 				ecntl |= (1 << 5);
1040 			else if (ndev->phydev->speed == SPEED_100)
1041 				rcntl &= ~(1 << 9);
1042 			else
1043 				rcntl |= (1 << 9);
1044 		}
1045 	} else {
1046 #ifdef FEC_MIIGSK_ENR
1047 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048 			u32 cfgr;
1049 			/* disable the gasket and wait */
1050 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052 				udelay(1);
1053 
1054 			/*
1055 			 * configure the gasket:
1056 			 *   RMII, 50 MHz, no loopback, no echo
1057 			 *   MII, 25 MHz, no loopback, no echo
1058 			 */
1059 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064 
1065 			/* re-enable the gasket */
1066 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067 		}
1068 #endif
1069 	}
1070 
1071 #if !defined(CONFIG_M5272)
1072 	/* enable pause frame*/
1073 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075 	     ndev->phydev && ndev->phydev->pause)) {
1076 		rcntl |= FEC_ENET_FCE;
1077 
1078 		/* set FIFO threshold parameter to reduce overrun */
1079 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083 
1084 		/* OPD */
1085 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086 	} else {
1087 		rcntl &= ~FEC_ENET_FCE;
1088 	}
1089 #endif /* !defined(CONFIG_M5272) */
1090 
1091 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092 
1093 	/* Setup multicast filter. */
1094 	set_multicast_list(ndev);
1095 #ifndef CONFIG_M5272
1096 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098 #endif
1099 
1100 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101 		/* enable ENET endian swap */
1102 		ecntl |= (1 << 8);
1103 		/* enable ENET store and forward mode */
1104 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105 	}
1106 
1107 	if (fep->bufdesc_ex)
1108 		ecntl |= (1 << 4);
1109 
1110 #ifndef CONFIG_M5272
1111 	/* Enable the MIB statistic event counters */
1112 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113 #endif
1114 
1115 	/* And last, enable the transmit and receive processing */
1116 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1117 	fec_enet_active_rxring(ndev);
1118 
1119 	if (fep->bufdesc_ex)
1120 		fec_ptp_start_cyclecounter(ndev);
1121 
1122 	/* Enable interrupts we wish to service */
1123 	if (fep->link)
1124 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125 	else
1126 		writel(0, fep->hwp + FEC_IMASK);
1127 
1128 	/* Init the interrupt coalescing */
1129 	fec_enet_itr_coal_init(ndev);
1130 
1131 }
1132 
1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134 {
1135 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137 
1138 	if (stop_gpr->gpr) {
1139 		if (enabled)
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit),
1142 					   BIT(stop_gpr->bit));
1143 		else
1144 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145 					   BIT(stop_gpr->bit), 0);
1146 	} else if (pdata && pdata->sleep_mode_enable) {
1147 		pdata->sleep_mode_enable(enabled);
1148 	}
1149 }
1150 
1151 static void
1152 fec_stop(struct net_device *ndev)
1153 {
1154 	struct fec_enet_private *fep = netdev_priv(ndev);
1155 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156 	u32 val;
1157 
1158 	/* We cannot expect a graceful transmit stop without link !!! */
1159 	if (fep->link) {
1160 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161 		udelay(10);
1162 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164 	}
1165 
1166 	/* Whack a reset.  We should wait for this.
1167 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168 	 * instead of reset MAC itself.
1169 	 */
1170 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1172 			writel(0, fep->hwp + FEC_ECNTRL);
1173 		} else {
1174 			writel(1, fep->hwp + FEC_ECNTRL);
1175 			udelay(10);
1176 		}
1177 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178 	} else {
1179 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180 		val = readl(fep->hwp + FEC_ECNTRL);
1181 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182 		writel(val, fep->hwp + FEC_ECNTRL);
1183 		fec_enet_stop_mode(fep, true);
1184 	}
1185 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186 
1187 	/* We have to keep ENET enabled to have MII interrupt stay working */
1188 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190 		writel(2, fep->hwp + FEC_ECNTRL);
1191 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192 	}
1193 }
1194 
1195 
1196 static void
1197 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1198 {
1199 	struct fec_enet_private *fep = netdev_priv(ndev);
1200 
1201 	fec_dump(ndev);
1202 
1203 	ndev->stats.tx_errors++;
1204 
1205 	schedule_work(&fep->tx_timeout_work);
1206 }
1207 
1208 static void fec_enet_timeout_work(struct work_struct *work)
1209 {
1210 	struct fec_enet_private *fep =
1211 		container_of(work, struct fec_enet_private, tx_timeout_work);
1212 	struct net_device *ndev = fep->netdev;
1213 
1214 	rtnl_lock();
1215 	if (netif_device_present(ndev) || netif_running(ndev)) {
1216 		napi_disable(&fep->napi);
1217 		netif_tx_lock_bh(ndev);
1218 		fec_restart(ndev);
1219 		netif_tx_wake_all_queues(ndev);
1220 		netif_tx_unlock_bh(ndev);
1221 		napi_enable(&fep->napi);
1222 	}
1223 	rtnl_unlock();
1224 }
1225 
1226 static void
1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228 	struct skb_shared_hwtstamps *hwtstamps)
1229 {
1230 	unsigned long flags;
1231 	u64 ns;
1232 
1233 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1234 	ns = timecounter_cyc2time(&fep->tc, ts);
1235 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236 
1237 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1238 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1239 }
1240 
1241 static void
1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243 {
1244 	struct	fec_enet_private *fep;
1245 	struct bufdesc *bdp;
1246 	unsigned short status;
1247 	struct	sk_buff	*skb;
1248 	struct fec_enet_priv_tx_q *txq;
1249 	struct netdev_queue *nq;
1250 	int	index = 0;
1251 	int	entries_free;
1252 
1253 	fep = netdev_priv(ndev);
1254 
1255 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1256 
1257 	txq = fep->tx_queue[queue_id];
1258 	/* get next bdp of dirty_tx */
1259 	nq = netdev_get_tx_queue(ndev, queue_id);
1260 	bdp = txq->dirty_tx;
1261 
1262 	/* get next bdp of dirty_tx */
1263 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 
1265 	while (bdp != READ_ONCE(txq->bd.cur)) {
1266 		/* Order the load of bd.cur and cbd_sc */
1267 		rmb();
1268 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1269 		if (status & BD_ENET_TX_READY)
1270 			break;
1271 
1272 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1273 
1274 		skb = txq->tx_skbuff[index];
1275 		txq->tx_skbuff[index] = NULL;
1276 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1277 			dma_unmap_single(&fep->pdev->dev,
1278 					 fec32_to_cpu(bdp->cbd_bufaddr),
1279 					 fec16_to_cpu(bdp->cbd_datlen),
1280 					 DMA_TO_DEVICE);
1281 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1282 		if (!skb)
1283 			goto skb_done;
1284 
1285 		/* Check for errors. */
1286 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1287 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1288 				   BD_ENET_TX_CSL)) {
1289 			ndev->stats.tx_errors++;
1290 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1291 				ndev->stats.tx_heartbeat_errors++;
1292 			if (status & BD_ENET_TX_LC)  /* Late collision */
1293 				ndev->stats.tx_window_errors++;
1294 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1295 				ndev->stats.tx_aborted_errors++;
1296 			if (status & BD_ENET_TX_UN)  /* Underrun */
1297 				ndev->stats.tx_fifo_errors++;
1298 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1299 				ndev->stats.tx_carrier_errors++;
1300 		} else {
1301 			ndev->stats.tx_packets++;
1302 			ndev->stats.tx_bytes += skb->len;
1303 		}
1304 
1305 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1306 			fep->bufdesc_ex) {
1307 			struct skb_shared_hwtstamps shhwtstamps;
1308 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1309 
1310 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1311 			skb_tstamp_tx(skb, &shhwtstamps);
1312 		}
1313 
1314 		/* Deferred means some collisions occurred during transmit,
1315 		 * but we eventually sent the packet OK.
1316 		 */
1317 		if (status & BD_ENET_TX_DEF)
1318 			ndev->stats.collisions++;
1319 
1320 		/* Free the sk buffer associated with this last transmit */
1321 		dev_kfree_skb_any(skb);
1322 skb_done:
1323 		/* Make sure the update to bdp and tx_skbuff are performed
1324 		 * before dirty_tx
1325 		 */
1326 		wmb();
1327 		txq->dirty_tx = bdp;
1328 
1329 		/* Update pointer to next buffer descriptor to be transmitted */
1330 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1331 
1332 		/* Since we have freed up a buffer, the ring is no longer full
1333 		 */
1334 		if (netif_tx_queue_stopped(nq)) {
1335 			entries_free = fec_enet_get_free_txdesc_num(txq);
1336 			if (entries_free >= txq->tx_wake_threshold)
1337 				netif_tx_wake_queue(nq);
1338 		}
1339 	}
1340 
1341 	/* ERR006358: Keep the transmitter going */
1342 	if (bdp != txq->bd.cur &&
1343 	    readl(txq->bd.reg_desc_active) == 0)
1344 		writel(0, txq->bd.reg_desc_active);
1345 }
1346 
1347 static void
1348 fec_enet_tx(struct net_device *ndev)
1349 {
1350 	struct fec_enet_private *fep = netdev_priv(ndev);
1351 	u16 queue_id;
1352 	/* First process class A queue, then Class B and Best Effort queue */
1353 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1354 		clear_bit(queue_id, &fep->work_tx);
1355 		fec_enet_tx_queue(ndev, queue_id);
1356 	}
1357 	return;
1358 }
1359 
1360 static int
1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362 {
1363 	struct  fec_enet_private *fep = netdev_priv(ndev);
1364 	int off;
1365 
1366 	off = ((unsigned long)skb->data) & fep->rx_align;
1367 	if (off)
1368 		skb_reserve(skb, fep->rx_align + 1 - off);
1369 
1370 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372 		if (net_ratelimit())
1373 			netdev_err(ndev, "Rx DMA memory map failed\n");
1374 		return -ENOMEM;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381 			       struct bufdesc *bdp, u32 length, bool swap)
1382 {
1383 	struct  fec_enet_private *fep = netdev_priv(ndev);
1384 	struct sk_buff *new_skb;
1385 
1386 	if (length > fep->rx_copybreak)
1387 		return false;
1388 
1389 	new_skb = netdev_alloc_skb(ndev, length);
1390 	if (!new_skb)
1391 		return false;
1392 
1393 	dma_sync_single_for_cpu(&fep->pdev->dev,
1394 				fec32_to_cpu(bdp->cbd_bufaddr),
1395 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1396 				DMA_FROM_DEVICE);
1397 	if (!swap)
1398 		memcpy(new_skb->data, (*skb)->data, length);
1399 	else
1400 		swap_buffer2(new_skb->data, (*skb)->data, length);
1401 	*skb = new_skb;
1402 
1403 	return true;
1404 }
1405 
1406 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1407  * When we update through the ring, if the next incoming buffer has
1408  * not been given to the system, we just set the empty indicator,
1409  * effectively tossing the packet.
1410  */
1411 static int
1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413 {
1414 	struct fec_enet_private *fep = netdev_priv(ndev);
1415 	struct fec_enet_priv_rx_q *rxq;
1416 	struct bufdesc *bdp;
1417 	unsigned short status;
1418 	struct  sk_buff *skb_new = NULL;
1419 	struct  sk_buff *skb;
1420 	ushort	pkt_len;
1421 	__u8 *data;
1422 	int	pkt_received = 0;
1423 	struct	bufdesc_ex *ebdp = NULL;
1424 	bool	vlan_packet_rcvd = false;
1425 	u16	vlan_tag;
1426 	int	index = 0;
1427 	bool	is_copybreak;
1428 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429 
1430 #ifdef CONFIG_M532x
1431 	flush_cache_all();
1432 #endif
1433 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1434 	rxq = fep->rx_queue[queue_id];
1435 
1436 	/* First, grab all of the stats for the incoming packet.
1437 	 * These get messed up if we get called due to a busy condition.
1438 	 */
1439 	bdp = rxq->bd.cur;
1440 
1441 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1442 
1443 		if (pkt_received >= budget)
1444 			break;
1445 		pkt_received++;
1446 
1447 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1448 
1449 		/* Check for errors. */
1450 		status ^= BD_ENET_RX_LAST;
1451 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1452 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1453 			   BD_ENET_RX_CL)) {
1454 			ndev->stats.rx_errors++;
1455 			if (status & BD_ENET_RX_OV) {
1456 				/* FIFO overrun */
1457 				ndev->stats.rx_fifo_errors++;
1458 				goto rx_processing_done;
1459 			}
1460 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1461 						| BD_ENET_RX_LAST)) {
1462 				/* Frame too long or too short. */
1463 				ndev->stats.rx_length_errors++;
1464 				if (status & BD_ENET_RX_LAST)
1465 					netdev_err(ndev, "rcv is not +last\n");
1466 			}
1467 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1468 				ndev->stats.rx_crc_errors++;
1469 			/* Report late collisions as a frame error. */
1470 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1471 				ndev->stats.rx_frame_errors++;
1472 			goto rx_processing_done;
1473 		}
1474 
1475 		/* Process the incoming frame. */
1476 		ndev->stats.rx_packets++;
1477 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1478 		ndev->stats.rx_bytes += pkt_len;
1479 
1480 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1481 		skb = rxq->rx_skbuff[index];
1482 
1483 		/* The packet length includes FCS, but we don't want to
1484 		 * include that when passing upstream as it messes up
1485 		 * bridging applications.
1486 		 */
1487 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1488 						  need_swap);
1489 		if (!is_copybreak) {
1490 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1491 			if (unlikely(!skb_new)) {
1492 				ndev->stats.rx_dropped++;
1493 				goto rx_processing_done;
1494 			}
1495 			dma_unmap_single(&fep->pdev->dev,
1496 					 fec32_to_cpu(bdp->cbd_bufaddr),
1497 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1498 					 DMA_FROM_DEVICE);
1499 		}
1500 
1501 		prefetch(skb->data - NET_IP_ALIGN);
1502 		skb_put(skb, pkt_len - 4);
1503 		data = skb->data;
1504 
1505 		if (!is_copybreak && need_swap)
1506 			swap_buffer(data, pkt_len);
1507 
1508 #if !defined(CONFIG_M5272)
1509 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1510 			data = skb_pull_inline(skb, 2);
1511 #endif
1512 
1513 		/* Extract the enhanced buffer descriptor */
1514 		ebdp = NULL;
1515 		if (fep->bufdesc_ex)
1516 			ebdp = (struct bufdesc_ex *)bdp;
1517 
1518 		/* If this is a VLAN packet remove the VLAN Tag */
1519 		vlan_packet_rcvd = false;
1520 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1521 		    fep->bufdesc_ex &&
1522 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1523 			/* Push and remove the vlan tag */
1524 			struct vlan_hdr *vlan_header =
1525 					(struct vlan_hdr *) (data + ETH_HLEN);
1526 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1527 
1528 			vlan_packet_rcvd = true;
1529 
1530 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1531 			skb_pull(skb, VLAN_HLEN);
1532 		}
1533 
1534 		skb->protocol = eth_type_trans(skb, ndev);
1535 
1536 		/* Get receive timestamp from the skb */
1537 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1538 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1539 					  skb_hwtstamps(skb));
1540 
1541 		if (fep->bufdesc_ex &&
1542 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1543 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1544 				/* don't check it */
1545 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 			} else {
1547 				skb_checksum_none_assert(skb);
1548 			}
1549 		}
1550 
1551 		/* Handle received VLAN packets */
1552 		if (vlan_packet_rcvd)
1553 			__vlan_hwaccel_put_tag(skb,
1554 					       htons(ETH_P_8021Q),
1555 					       vlan_tag);
1556 
1557 		napi_gro_receive(&fep->napi, skb);
1558 
1559 		if (is_copybreak) {
1560 			dma_sync_single_for_device(&fep->pdev->dev,
1561 						   fec32_to_cpu(bdp->cbd_bufaddr),
1562 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1563 						   DMA_FROM_DEVICE);
1564 		} else {
1565 			rxq->rx_skbuff[index] = skb_new;
1566 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567 		}
1568 
1569 rx_processing_done:
1570 		/* Clear the status flags for this buffer */
1571 		status &= ~BD_ENET_RX_STATS;
1572 
1573 		/* Mark the buffer empty */
1574 		status |= BD_ENET_RX_EMPTY;
1575 
1576 		if (fep->bufdesc_ex) {
1577 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578 
1579 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580 			ebdp->cbd_prot = 0;
1581 			ebdp->cbd_bdu = 0;
1582 		}
1583 		/* Make sure the updates to rest of the descriptor are
1584 		 * performed before transferring ownership.
1585 		 */
1586 		wmb();
1587 		bdp->cbd_sc = cpu_to_fec16(status);
1588 
1589 		/* Update BD pointer to next entry */
1590 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591 
1592 		/* Doing this here will keep the FEC running while we process
1593 		 * incoming frames.  On a heavily loaded network, we should be
1594 		 * able to keep up at the expense of system resources.
1595 		 */
1596 		writel(0, rxq->bd.reg_desc_active);
1597 	}
1598 	rxq->bd.cur = bdp;
1599 	return pkt_received;
1600 }
1601 
1602 static int
1603 fec_enet_rx(struct net_device *ndev, int budget)
1604 {
1605 	int     pkt_received = 0;
1606 	u16	queue_id;
1607 	struct fec_enet_private *fep = netdev_priv(ndev);
1608 
1609 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1610 		int ret;
1611 
1612 		ret = fec_enet_rx_queue(ndev,
1613 					budget - pkt_received, queue_id);
1614 
1615 		if (ret < budget - pkt_received)
1616 			clear_bit(queue_id, &fep->work_rx);
1617 
1618 		pkt_received += ret;
1619 	}
1620 	return pkt_received;
1621 }
1622 
1623 static bool
1624 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1625 {
1626 	if (int_events == 0)
1627 		return false;
1628 
1629 	if (int_events & FEC_ENET_RXF_0)
1630 		fep->work_rx |= (1 << 2);
1631 	if (int_events & FEC_ENET_RXF_1)
1632 		fep->work_rx |= (1 << 0);
1633 	if (int_events & FEC_ENET_RXF_2)
1634 		fep->work_rx |= (1 << 1);
1635 
1636 	if (int_events & FEC_ENET_TXF_0)
1637 		fep->work_tx |= (1 << 2);
1638 	if (int_events & FEC_ENET_TXF_1)
1639 		fep->work_tx |= (1 << 0);
1640 	if (int_events & FEC_ENET_TXF_2)
1641 		fep->work_tx |= (1 << 1);
1642 
1643 	return true;
1644 }
1645 
1646 static irqreturn_t
1647 fec_enet_interrupt(int irq, void *dev_id)
1648 {
1649 	struct net_device *ndev = dev_id;
1650 	struct fec_enet_private *fep = netdev_priv(ndev);
1651 	uint int_events;
1652 	irqreturn_t ret = IRQ_NONE;
1653 
1654 	int_events = readl(fep->hwp + FEC_IEVENT);
1655 
1656 	/* Don't clear MDIO events, we poll for those */
1657 	int_events &= ~FEC_ENET_MII;
1658 
1659 	writel(int_events, fep->hwp + FEC_IEVENT);
1660 	fec_enet_collect_events(fep, int_events);
1661 
1662 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1663 		ret = IRQ_HANDLED;
1664 
1665 		if (napi_schedule_prep(&fep->napi)) {
1666 			/* Disable interrupts */
1667 			writel(0, fep->hwp + FEC_IMASK);
1668 			__napi_schedule(&fep->napi);
1669 		}
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1676 {
1677 	struct net_device *ndev = napi->dev;
1678 	struct fec_enet_private *fep = netdev_priv(ndev);
1679 	int pkts;
1680 
1681 	pkts = fec_enet_rx(ndev, budget);
1682 
1683 	fec_enet_tx(ndev);
1684 
1685 	if (pkts < budget) {
1686 		napi_complete_done(napi, pkts);
1687 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1688 	}
1689 	return pkts;
1690 }
1691 
1692 /* ------------------------------------------------------------------------- */
1693 static void fec_get_mac(struct net_device *ndev)
1694 {
1695 	struct fec_enet_private *fep = netdev_priv(ndev);
1696 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1697 	unsigned char *iap, tmpaddr[ETH_ALEN];
1698 
1699 	/*
1700 	 * try to get mac address in following order:
1701 	 *
1702 	 * 1) module parameter via kernel command line in form
1703 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1704 	 */
1705 	iap = macaddr;
1706 
1707 	/*
1708 	 * 2) from device tree data
1709 	 */
1710 	if (!is_valid_ether_addr(iap)) {
1711 		struct device_node *np = fep->pdev->dev.of_node;
1712 		if (np) {
1713 			const char *mac = of_get_mac_address(np);
1714 			if (!IS_ERR(mac))
1715 				iap = (unsigned char *) mac;
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * 3) from flash or fuse (via platform data)
1721 	 */
1722 	if (!is_valid_ether_addr(iap)) {
1723 #ifdef CONFIG_M5272
1724 		if (FEC_FLASHMAC)
1725 			iap = (unsigned char *)FEC_FLASHMAC;
1726 #else
1727 		if (pdata)
1728 			iap = (unsigned char *)&pdata->mac;
1729 #endif
1730 	}
1731 
1732 	/*
1733 	 * 4) FEC mac registers set by bootloader
1734 	 */
1735 	if (!is_valid_ether_addr(iap)) {
1736 		*((__be32 *) &tmpaddr[0]) =
1737 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1738 		*((__be16 *) &tmpaddr[4]) =
1739 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1740 		iap = &tmpaddr[0];
1741 	}
1742 
1743 	/*
1744 	 * 5) random mac address
1745 	 */
1746 	if (!is_valid_ether_addr(iap)) {
1747 		/* Report it and use a random ethernet address instead */
1748 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1749 		eth_hw_addr_random(ndev);
1750 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1751 			 ndev->dev_addr);
1752 		return;
1753 	}
1754 
1755 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1756 
1757 	/* Adjust MAC if using macaddr */
1758 	if (iap == macaddr)
1759 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1760 }
1761 
1762 /* ------------------------------------------------------------------------- */
1763 
1764 /*
1765  * Phy section
1766  */
1767 static void fec_enet_adjust_link(struct net_device *ndev)
1768 {
1769 	struct fec_enet_private *fep = netdev_priv(ndev);
1770 	struct phy_device *phy_dev = ndev->phydev;
1771 	int status_change = 0;
1772 
1773 	/*
1774 	 * If the netdev is down, or is going down, we're not interested
1775 	 * in link state events, so just mark our idea of the link as down
1776 	 * and ignore the event.
1777 	 */
1778 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1779 		fep->link = 0;
1780 	} else if (phy_dev->link) {
1781 		if (!fep->link) {
1782 			fep->link = phy_dev->link;
1783 			status_change = 1;
1784 		}
1785 
1786 		if (fep->full_duplex != phy_dev->duplex) {
1787 			fep->full_duplex = phy_dev->duplex;
1788 			status_change = 1;
1789 		}
1790 
1791 		if (phy_dev->speed != fep->speed) {
1792 			fep->speed = phy_dev->speed;
1793 			status_change = 1;
1794 		}
1795 
1796 		/* if any of the above changed restart the FEC */
1797 		if (status_change) {
1798 			napi_disable(&fep->napi);
1799 			netif_tx_lock_bh(ndev);
1800 			fec_restart(ndev);
1801 			netif_tx_wake_all_queues(ndev);
1802 			netif_tx_unlock_bh(ndev);
1803 			napi_enable(&fep->napi);
1804 		}
1805 	} else {
1806 		if (fep->link) {
1807 			napi_disable(&fep->napi);
1808 			netif_tx_lock_bh(ndev);
1809 			fec_stop(ndev);
1810 			netif_tx_unlock_bh(ndev);
1811 			napi_enable(&fep->napi);
1812 			fep->link = phy_dev->link;
1813 			status_change = 1;
1814 		}
1815 	}
1816 
1817 	if (status_change)
1818 		phy_print_status(phy_dev);
1819 }
1820 
1821 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1822 {
1823 	uint ievent;
1824 	int ret;
1825 
1826 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1827 					ievent & FEC_ENET_MII, 2, 30000);
1828 
1829 	if (!ret)
1830 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1831 
1832 	return ret;
1833 }
1834 
1835 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1836 {
1837 	struct fec_enet_private *fep = bus->priv;
1838 	struct device *dev = &fep->pdev->dev;
1839 	int ret = 0, frame_start, frame_addr, frame_op;
1840 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1841 
1842 	ret = pm_runtime_get_sync(dev);
1843 	if (ret < 0)
1844 		return ret;
1845 
1846 	if (is_c45) {
1847 		frame_start = FEC_MMFR_ST_C45;
1848 
1849 		/* write address */
1850 		frame_addr = (regnum >> 16);
1851 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1852 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1853 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1854 		       fep->hwp + FEC_MII_DATA);
1855 
1856 		/* wait for end of transfer */
1857 		ret = fec_enet_mdio_wait(fep);
1858 		if (ret) {
1859 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1860 			goto out;
1861 		}
1862 
1863 		frame_op = FEC_MMFR_OP_READ_C45;
1864 
1865 	} else {
1866 		/* C22 read */
1867 		frame_op = FEC_MMFR_OP_READ;
1868 		frame_start = FEC_MMFR_ST;
1869 		frame_addr = regnum;
1870 	}
1871 
1872 	/* start a read op */
1873 	writel(frame_start | frame_op |
1874 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1875 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1876 
1877 	/* wait for end of transfer */
1878 	ret = fec_enet_mdio_wait(fep);
1879 	if (ret) {
1880 		netdev_err(fep->netdev, "MDIO read timeout\n");
1881 		goto out;
1882 	}
1883 
1884 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1885 
1886 out:
1887 	pm_runtime_mark_last_busy(dev);
1888 	pm_runtime_put_autosuspend(dev);
1889 
1890 	return ret;
1891 }
1892 
1893 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1894 			   u16 value)
1895 {
1896 	struct fec_enet_private *fep = bus->priv;
1897 	struct device *dev = &fep->pdev->dev;
1898 	int ret, frame_start, frame_addr;
1899 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1900 
1901 	ret = pm_runtime_get_sync(dev);
1902 	if (ret < 0)
1903 		return ret;
1904 	else
1905 		ret = 0;
1906 
1907 	if (is_c45) {
1908 		frame_start = FEC_MMFR_ST_C45;
1909 
1910 		/* write address */
1911 		frame_addr = (regnum >> 16);
1912 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1913 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1914 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1915 		       fep->hwp + FEC_MII_DATA);
1916 
1917 		/* wait for end of transfer */
1918 		ret = fec_enet_mdio_wait(fep);
1919 		if (ret) {
1920 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1921 			goto out;
1922 		}
1923 	} else {
1924 		/* C22 write */
1925 		frame_start = FEC_MMFR_ST;
1926 		frame_addr = regnum;
1927 	}
1928 
1929 	/* start a write op */
1930 	writel(frame_start | FEC_MMFR_OP_WRITE |
1931 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1932 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1933 		fep->hwp + FEC_MII_DATA);
1934 
1935 	/* wait for end of transfer */
1936 	ret = fec_enet_mdio_wait(fep);
1937 	if (ret)
1938 		netdev_err(fep->netdev, "MDIO write timeout\n");
1939 
1940 out:
1941 	pm_runtime_mark_last_busy(dev);
1942 	pm_runtime_put_autosuspend(dev);
1943 
1944 	return ret;
1945 }
1946 
1947 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1948 {
1949 	struct fec_enet_private *fep = netdev_priv(ndev);
1950 	int ret;
1951 
1952 	if (enable) {
1953 		ret = clk_prepare_enable(fep->clk_enet_out);
1954 		if (ret)
1955 			return ret;
1956 
1957 		if (fep->clk_ptp) {
1958 			mutex_lock(&fep->ptp_clk_mutex);
1959 			ret = clk_prepare_enable(fep->clk_ptp);
1960 			if (ret) {
1961 				mutex_unlock(&fep->ptp_clk_mutex);
1962 				goto failed_clk_ptp;
1963 			} else {
1964 				fep->ptp_clk_on = true;
1965 			}
1966 			mutex_unlock(&fep->ptp_clk_mutex);
1967 		}
1968 
1969 		ret = clk_prepare_enable(fep->clk_ref);
1970 		if (ret)
1971 			goto failed_clk_ref;
1972 
1973 		phy_reset_after_clk_enable(ndev->phydev);
1974 	} else {
1975 		clk_disable_unprepare(fep->clk_enet_out);
1976 		if (fep->clk_ptp) {
1977 			mutex_lock(&fep->ptp_clk_mutex);
1978 			clk_disable_unprepare(fep->clk_ptp);
1979 			fep->ptp_clk_on = false;
1980 			mutex_unlock(&fep->ptp_clk_mutex);
1981 		}
1982 		clk_disable_unprepare(fep->clk_ref);
1983 	}
1984 
1985 	return 0;
1986 
1987 failed_clk_ref:
1988 	if (fep->clk_ref)
1989 		clk_disable_unprepare(fep->clk_ref);
1990 failed_clk_ptp:
1991 	if (fep->clk_enet_out)
1992 		clk_disable_unprepare(fep->clk_enet_out);
1993 
1994 	return ret;
1995 }
1996 
1997 static int fec_enet_mii_probe(struct net_device *ndev)
1998 {
1999 	struct fec_enet_private *fep = netdev_priv(ndev);
2000 	struct phy_device *phy_dev = NULL;
2001 	char mdio_bus_id[MII_BUS_ID_SIZE];
2002 	char phy_name[MII_BUS_ID_SIZE + 3];
2003 	int phy_id;
2004 	int dev_id = fep->dev_id;
2005 
2006 	if (fep->phy_node) {
2007 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2008 					 &fec_enet_adjust_link, 0,
2009 					 fep->phy_interface);
2010 		if (!phy_dev) {
2011 			netdev_err(ndev, "Unable to connect to phy\n");
2012 			return -ENODEV;
2013 		}
2014 	} else {
2015 		/* check for attached phy */
2016 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2017 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2018 				continue;
2019 			if (dev_id--)
2020 				continue;
2021 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2022 			break;
2023 		}
2024 
2025 		if (phy_id >= PHY_MAX_ADDR) {
2026 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2027 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2028 			phy_id = 0;
2029 		}
2030 
2031 		snprintf(phy_name, sizeof(phy_name),
2032 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2033 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2034 				      fep->phy_interface);
2035 	}
2036 
2037 	if (IS_ERR(phy_dev)) {
2038 		netdev_err(ndev, "could not attach to PHY\n");
2039 		return PTR_ERR(phy_dev);
2040 	}
2041 
2042 	/* mask with MAC supported features */
2043 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2044 		phy_set_max_speed(phy_dev, 1000);
2045 		phy_remove_link_mode(phy_dev,
2046 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2047 #if !defined(CONFIG_M5272)
2048 		phy_support_sym_pause(phy_dev);
2049 #endif
2050 	}
2051 	else
2052 		phy_set_max_speed(phy_dev, 100);
2053 
2054 	fep->link = 0;
2055 	fep->full_duplex = 0;
2056 
2057 	phy_attached_info(phy_dev);
2058 
2059 	return 0;
2060 }
2061 
2062 static int fec_enet_mii_init(struct platform_device *pdev)
2063 {
2064 	static struct mii_bus *fec0_mii_bus;
2065 	struct net_device *ndev = platform_get_drvdata(pdev);
2066 	struct fec_enet_private *fep = netdev_priv(ndev);
2067 	bool suppress_preamble = false;
2068 	struct device_node *node;
2069 	int err = -ENXIO;
2070 	u32 mii_speed, holdtime;
2071 	u32 bus_freq;
2072 
2073 	/*
2074 	 * The i.MX28 dual fec interfaces are not equal.
2075 	 * Here are the differences:
2076 	 *
2077 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2078 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2079 	 *  - external phys can only be configured by fec0
2080 	 *
2081 	 * That is to say fec1 can not work independently. It only works
2082 	 * when fec0 is working. The reason behind this design is that the
2083 	 * second interface is added primarily for Switch mode.
2084 	 *
2085 	 * Because of the last point above, both phys are attached on fec0
2086 	 * mdio interface in board design, and need to be configured by
2087 	 * fec0 mii_bus.
2088 	 */
2089 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2090 		/* fec1 uses fec0 mii_bus */
2091 		if (mii_cnt && fec0_mii_bus) {
2092 			fep->mii_bus = fec0_mii_bus;
2093 			mii_cnt++;
2094 			return 0;
2095 		}
2096 		return -ENOENT;
2097 	}
2098 
2099 	bus_freq = 2500000; /* 2.5MHz by default */
2100 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2101 	if (node) {
2102 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2103 		suppress_preamble = of_property_read_bool(node,
2104 							  "suppress-preamble");
2105 	}
2106 
2107 	/*
2108 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2109 	 *
2110 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2111 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2112 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2113 	 * document.
2114 	 */
2115 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2116 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2117 		mii_speed--;
2118 	if (mii_speed > 63) {
2119 		dev_err(&pdev->dev,
2120 			"fec clock (%lu) too fast to get right mii speed\n",
2121 			clk_get_rate(fep->clk_ipg));
2122 		err = -EINVAL;
2123 		goto err_out;
2124 	}
2125 
2126 	/*
2127 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2128 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2129 	 * versions are RAZ there, so just ignore the difference and write the
2130 	 * register always.
2131 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2132 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2133 	 * output.
2134 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2135 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2136 	 * holdtime cannot result in a value greater than 3.
2137 	 */
2138 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2139 
2140 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2141 
2142 	if (suppress_preamble)
2143 		fep->phy_speed |= BIT(7);
2144 
2145 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2146 	 * MII event generation condition:
2147 	 * - writing MSCR:
2148 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2149 	 *	  mscr_reg_data_in[7:0] != 0
2150 	 * - writing MMFR:
2151 	 *	- mscr[7:0]_not_zero
2152 	 */
2153 	writel(0, fep->hwp + FEC_MII_DATA);
2154 
2155 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2156 
2157 	/* Clear any pending transaction complete indication */
2158 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2159 
2160 	fep->mii_bus = mdiobus_alloc();
2161 	if (fep->mii_bus == NULL) {
2162 		err = -ENOMEM;
2163 		goto err_out;
2164 	}
2165 
2166 	fep->mii_bus->name = "fec_enet_mii_bus";
2167 	fep->mii_bus->read = fec_enet_mdio_read;
2168 	fep->mii_bus->write = fec_enet_mdio_write;
2169 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2170 		pdev->name, fep->dev_id + 1);
2171 	fep->mii_bus->priv = fep;
2172 	fep->mii_bus->parent = &pdev->dev;
2173 
2174 	err = of_mdiobus_register(fep->mii_bus, node);
2175 	of_node_put(node);
2176 	if (err)
2177 		goto err_out_free_mdiobus;
2178 
2179 	mii_cnt++;
2180 
2181 	/* save fec0 mii_bus */
2182 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2183 		fec0_mii_bus = fep->mii_bus;
2184 
2185 	return 0;
2186 
2187 err_out_free_mdiobus:
2188 	mdiobus_free(fep->mii_bus);
2189 err_out:
2190 	return err;
2191 }
2192 
2193 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2194 {
2195 	if (--mii_cnt == 0) {
2196 		mdiobus_unregister(fep->mii_bus);
2197 		mdiobus_free(fep->mii_bus);
2198 	}
2199 }
2200 
2201 static void fec_enet_get_drvinfo(struct net_device *ndev,
2202 				 struct ethtool_drvinfo *info)
2203 {
2204 	struct fec_enet_private *fep = netdev_priv(ndev);
2205 
2206 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2207 		sizeof(info->driver));
2208 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2209 }
2210 
2211 static int fec_enet_get_regs_len(struct net_device *ndev)
2212 {
2213 	struct fec_enet_private *fep = netdev_priv(ndev);
2214 	struct resource *r;
2215 	int s = 0;
2216 
2217 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2218 	if (r)
2219 		s = resource_size(r);
2220 
2221 	return s;
2222 }
2223 
2224 /* List of registers that can be safety be read to dump them with ethtool */
2225 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2226 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2227 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2228 static __u32 fec_enet_register_version = 2;
2229 static u32 fec_enet_register_offset[] = {
2230 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2231 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2232 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2233 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2234 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2235 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2236 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2237 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2238 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2239 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2240 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2241 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2242 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2243 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2244 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2245 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2246 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2247 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2248 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2249 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2250 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2251 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2252 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2253 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2254 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2255 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2256 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2257 };
2258 #else
2259 static __u32 fec_enet_register_version = 1;
2260 static u32 fec_enet_register_offset[] = {
2261 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2262 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2263 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2264 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2265 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2266 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2267 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2268 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2269 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2270 };
2271 #endif
2272 
2273 static void fec_enet_get_regs(struct net_device *ndev,
2274 			      struct ethtool_regs *regs, void *regbuf)
2275 {
2276 	struct fec_enet_private *fep = netdev_priv(ndev);
2277 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2278 	struct device *dev = &fep->pdev->dev;
2279 	u32 *buf = (u32 *)regbuf;
2280 	u32 i, off;
2281 	int ret;
2282 
2283 	ret = pm_runtime_get_sync(dev);
2284 	if (ret < 0)
2285 		return;
2286 
2287 	regs->version = fec_enet_register_version;
2288 
2289 	memset(buf, 0, regs->len);
2290 
2291 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2292 		off = fec_enet_register_offset[i];
2293 
2294 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2295 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2296 			continue;
2297 
2298 		off >>= 2;
2299 		buf[off] = readl(&theregs[off]);
2300 	}
2301 
2302 	pm_runtime_mark_last_busy(dev);
2303 	pm_runtime_put_autosuspend(dev);
2304 }
2305 
2306 static int fec_enet_get_ts_info(struct net_device *ndev,
2307 				struct ethtool_ts_info *info)
2308 {
2309 	struct fec_enet_private *fep = netdev_priv(ndev);
2310 
2311 	if (fep->bufdesc_ex) {
2312 
2313 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2314 					SOF_TIMESTAMPING_RX_SOFTWARE |
2315 					SOF_TIMESTAMPING_SOFTWARE |
2316 					SOF_TIMESTAMPING_TX_HARDWARE |
2317 					SOF_TIMESTAMPING_RX_HARDWARE |
2318 					SOF_TIMESTAMPING_RAW_HARDWARE;
2319 		if (fep->ptp_clock)
2320 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2321 		else
2322 			info->phc_index = -1;
2323 
2324 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2325 				 (1 << HWTSTAMP_TX_ON);
2326 
2327 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2328 				   (1 << HWTSTAMP_FILTER_ALL);
2329 		return 0;
2330 	} else {
2331 		return ethtool_op_get_ts_info(ndev, info);
2332 	}
2333 }
2334 
2335 #if !defined(CONFIG_M5272)
2336 
2337 static void fec_enet_get_pauseparam(struct net_device *ndev,
2338 				    struct ethtool_pauseparam *pause)
2339 {
2340 	struct fec_enet_private *fep = netdev_priv(ndev);
2341 
2342 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2343 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2344 	pause->rx_pause = pause->tx_pause;
2345 }
2346 
2347 static int fec_enet_set_pauseparam(struct net_device *ndev,
2348 				   struct ethtool_pauseparam *pause)
2349 {
2350 	struct fec_enet_private *fep = netdev_priv(ndev);
2351 
2352 	if (!ndev->phydev)
2353 		return -ENODEV;
2354 
2355 	if (pause->tx_pause != pause->rx_pause) {
2356 		netdev_info(ndev,
2357 			"hardware only support enable/disable both tx and rx");
2358 		return -EINVAL;
2359 	}
2360 
2361 	fep->pause_flag = 0;
2362 
2363 	/* tx pause must be same as rx pause */
2364 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2365 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2366 
2367 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2368 			  pause->autoneg);
2369 
2370 	if (pause->autoneg) {
2371 		if (netif_running(ndev))
2372 			fec_stop(ndev);
2373 		phy_start_aneg(ndev->phydev);
2374 	}
2375 	if (netif_running(ndev)) {
2376 		napi_disable(&fep->napi);
2377 		netif_tx_lock_bh(ndev);
2378 		fec_restart(ndev);
2379 		netif_tx_wake_all_queues(ndev);
2380 		netif_tx_unlock_bh(ndev);
2381 		napi_enable(&fep->napi);
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 static const struct fec_stat {
2388 	char name[ETH_GSTRING_LEN];
2389 	u16 offset;
2390 } fec_stats[] = {
2391 	/* RMON TX */
2392 	{ "tx_dropped", RMON_T_DROP },
2393 	{ "tx_packets", RMON_T_PACKETS },
2394 	{ "tx_broadcast", RMON_T_BC_PKT },
2395 	{ "tx_multicast", RMON_T_MC_PKT },
2396 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2397 	{ "tx_undersize", RMON_T_UNDERSIZE },
2398 	{ "tx_oversize", RMON_T_OVERSIZE },
2399 	{ "tx_fragment", RMON_T_FRAG },
2400 	{ "tx_jabber", RMON_T_JAB },
2401 	{ "tx_collision", RMON_T_COL },
2402 	{ "tx_64byte", RMON_T_P64 },
2403 	{ "tx_65to127byte", RMON_T_P65TO127 },
2404 	{ "tx_128to255byte", RMON_T_P128TO255 },
2405 	{ "tx_256to511byte", RMON_T_P256TO511 },
2406 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2407 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2408 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2409 	{ "tx_octets", RMON_T_OCTETS },
2410 
2411 	/* IEEE TX */
2412 	{ "IEEE_tx_drop", IEEE_T_DROP },
2413 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2414 	{ "IEEE_tx_1col", IEEE_T_1COL },
2415 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2416 	{ "IEEE_tx_def", IEEE_T_DEF },
2417 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2418 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2419 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2420 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2421 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2422 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2423 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2424 
2425 	/* RMON RX */
2426 	{ "rx_packets", RMON_R_PACKETS },
2427 	{ "rx_broadcast", RMON_R_BC_PKT },
2428 	{ "rx_multicast", RMON_R_MC_PKT },
2429 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2430 	{ "rx_undersize", RMON_R_UNDERSIZE },
2431 	{ "rx_oversize", RMON_R_OVERSIZE },
2432 	{ "rx_fragment", RMON_R_FRAG },
2433 	{ "rx_jabber", RMON_R_JAB },
2434 	{ "rx_64byte", RMON_R_P64 },
2435 	{ "rx_65to127byte", RMON_R_P65TO127 },
2436 	{ "rx_128to255byte", RMON_R_P128TO255 },
2437 	{ "rx_256to511byte", RMON_R_P256TO511 },
2438 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2439 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2440 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2441 	{ "rx_octets", RMON_R_OCTETS },
2442 
2443 	/* IEEE RX */
2444 	{ "IEEE_rx_drop", IEEE_R_DROP },
2445 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2446 	{ "IEEE_rx_crc", IEEE_R_CRC },
2447 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2448 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2449 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2450 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2451 };
2452 
2453 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2454 
2455 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2456 {
2457 	struct fec_enet_private *fep = netdev_priv(dev);
2458 	int i;
2459 
2460 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2461 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2462 }
2463 
2464 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2465 				       struct ethtool_stats *stats, u64 *data)
2466 {
2467 	struct fec_enet_private *fep = netdev_priv(dev);
2468 
2469 	if (netif_running(dev))
2470 		fec_enet_update_ethtool_stats(dev);
2471 
2472 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2473 }
2474 
2475 static void fec_enet_get_strings(struct net_device *netdev,
2476 	u32 stringset, u8 *data)
2477 {
2478 	int i;
2479 	switch (stringset) {
2480 	case ETH_SS_STATS:
2481 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2482 			memcpy(data + i * ETH_GSTRING_LEN,
2483 				fec_stats[i].name, ETH_GSTRING_LEN);
2484 		break;
2485 	}
2486 }
2487 
2488 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2489 {
2490 	switch (sset) {
2491 	case ETH_SS_STATS:
2492 		return ARRAY_SIZE(fec_stats);
2493 	default:
2494 		return -EOPNOTSUPP;
2495 	}
2496 }
2497 
2498 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2499 {
2500 	struct fec_enet_private *fep = netdev_priv(dev);
2501 	int i;
2502 
2503 	/* Disable MIB statistics counters */
2504 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2505 
2506 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2507 		writel(0, fep->hwp + fec_stats[i].offset);
2508 
2509 	/* Don't disable MIB statistics counters */
2510 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2511 }
2512 
2513 #else	/* !defined(CONFIG_M5272) */
2514 #define FEC_STATS_SIZE	0
2515 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2516 {
2517 }
2518 
2519 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2520 {
2521 }
2522 #endif /* !defined(CONFIG_M5272) */
2523 
2524 /* ITR clock source is enet system clock (clk_ahb).
2525  * TCTT unit is cycle_ns * 64 cycle
2526  * So, the ICTT value = X us / (cycle_ns * 64)
2527  */
2528 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2529 {
2530 	struct fec_enet_private *fep = netdev_priv(ndev);
2531 
2532 	return us * (fep->itr_clk_rate / 64000) / 1000;
2533 }
2534 
2535 /* Set threshold for interrupt coalescing */
2536 static void fec_enet_itr_coal_set(struct net_device *ndev)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(ndev);
2539 	int rx_itr, tx_itr;
2540 
2541 	/* Must be greater than zero to avoid unpredictable behavior */
2542 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2543 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2544 		return;
2545 
2546 	/* Select enet system clock as Interrupt Coalescing
2547 	 * timer Clock Source
2548 	 */
2549 	rx_itr = FEC_ITR_CLK_SEL;
2550 	tx_itr = FEC_ITR_CLK_SEL;
2551 
2552 	/* set ICFT and ICTT */
2553 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2554 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2555 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2556 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2557 
2558 	rx_itr |= FEC_ITR_EN;
2559 	tx_itr |= FEC_ITR_EN;
2560 
2561 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2562 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2563 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2564 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2565 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2566 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2567 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2568 	}
2569 }
2570 
2571 static int
2572 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2573 {
2574 	struct fec_enet_private *fep = netdev_priv(ndev);
2575 
2576 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2577 		return -EOPNOTSUPP;
2578 
2579 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2580 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2581 
2582 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2583 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2584 
2585 	return 0;
2586 }
2587 
2588 static int
2589 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2590 {
2591 	struct fec_enet_private *fep = netdev_priv(ndev);
2592 	struct device *dev = &fep->pdev->dev;
2593 	unsigned int cycle;
2594 
2595 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2596 		return -EOPNOTSUPP;
2597 
2598 	if (ec->rx_max_coalesced_frames > 255) {
2599 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (ec->tx_max_coalesced_frames > 255) {
2604 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2605 		return -EINVAL;
2606 	}
2607 
2608 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2609 	if (cycle > 0xFFFF) {
2610 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2611 		return -EINVAL;
2612 	}
2613 
2614 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2615 	if (cycle > 0xFFFF) {
2616 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2617 		return -EINVAL;
2618 	}
2619 
2620 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2621 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2622 
2623 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2624 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2625 
2626 	fec_enet_itr_coal_set(ndev);
2627 
2628 	return 0;
2629 }
2630 
2631 static void fec_enet_itr_coal_init(struct net_device *ndev)
2632 {
2633 	struct ethtool_coalesce ec;
2634 
2635 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2636 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2637 
2638 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2639 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2640 
2641 	fec_enet_set_coalesce(ndev, &ec);
2642 }
2643 
2644 static int fec_enet_get_tunable(struct net_device *netdev,
2645 				const struct ethtool_tunable *tuna,
2646 				void *data)
2647 {
2648 	struct fec_enet_private *fep = netdev_priv(netdev);
2649 	int ret = 0;
2650 
2651 	switch (tuna->id) {
2652 	case ETHTOOL_RX_COPYBREAK:
2653 		*(u32 *)data = fep->rx_copybreak;
2654 		break;
2655 	default:
2656 		ret = -EINVAL;
2657 		break;
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 static int fec_enet_set_tunable(struct net_device *netdev,
2664 				const struct ethtool_tunable *tuna,
2665 				const void *data)
2666 {
2667 	struct fec_enet_private *fep = netdev_priv(netdev);
2668 	int ret = 0;
2669 
2670 	switch (tuna->id) {
2671 	case ETHTOOL_RX_COPYBREAK:
2672 		fep->rx_copybreak = *(u32 *)data;
2673 		break;
2674 	default:
2675 		ret = -EINVAL;
2676 		break;
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 static void
2683 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2684 {
2685 	struct fec_enet_private *fep = netdev_priv(ndev);
2686 
2687 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2688 		wol->supported = WAKE_MAGIC;
2689 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2690 	} else {
2691 		wol->supported = wol->wolopts = 0;
2692 	}
2693 }
2694 
2695 static int
2696 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 
2700 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2701 		return -EINVAL;
2702 
2703 	if (wol->wolopts & ~WAKE_MAGIC)
2704 		return -EINVAL;
2705 
2706 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2707 	if (device_may_wakeup(&ndev->dev)) {
2708 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2709 		if (fep->irq[0] > 0)
2710 			enable_irq_wake(fep->irq[0]);
2711 	} else {
2712 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2713 		if (fep->irq[0] > 0)
2714 			disable_irq_wake(fep->irq[0]);
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static const struct ethtool_ops fec_enet_ethtool_ops = {
2721 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2722 				     ETHTOOL_COALESCE_MAX_FRAMES,
2723 	.get_drvinfo		= fec_enet_get_drvinfo,
2724 	.get_regs_len		= fec_enet_get_regs_len,
2725 	.get_regs		= fec_enet_get_regs,
2726 	.nway_reset		= phy_ethtool_nway_reset,
2727 	.get_link		= ethtool_op_get_link,
2728 	.get_coalesce		= fec_enet_get_coalesce,
2729 	.set_coalesce		= fec_enet_set_coalesce,
2730 #ifndef CONFIG_M5272
2731 	.get_pauseparam		= fec_enet_get_pauseparam,
2732 	.set_pauseparam		= fec_enet_set_pauseparam,
2733 	.get_strings		= fec_enet_get_strings,
2734 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2735 	.get_sset_count		= fec_enet_get_sset_count,
2736 #endif
2737 	.get_ts_info		= fec_enet_get_ts_info,
2738 	.get_tunable		= fec_enet_get_tunable,
2739 	.set_tunable		= fec_enet_set_tunable,
2740 	.get_wol		= fec_enet_get_wol,
2741 	.set_wol		= fec_enet_set_wol,
2742 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2743 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2744 };
2745 
2746 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2747 {
2748 	struct fec_enet_private *fep = netdev_priv(ndev);
2749 	struct phy_device *phydev = ndev->phydev;
2750 
2751 	if (!netif_running(ndev))
2752 		return -EINVAL;
2753 
2754 	if (!phydev)
2755 		return -ENODEV;
2756 
2757 	if (fep->bufdesc_ex) {
2758 		if (cmd == SIOCSHWTSTAMP)
2759 			return fec_ptp_set(ndev, rq);
2760 		if (cmd == SIOCGHWTSTAMP)
2761 			return fec_ptp_get(ndev, rq);
2762 	}
2763 
2764 	return phy_mii_ioctl(phydev, rq, cmd);
2765 }
2766 
2767 static void fec_enet_free_buffers(struct net_device *ndev)
2768 {
2769 	struct fec_enet_private *fep = netdev_priv(ndev);
2770 	unsigned int i;
2771 	struct sk_buff *skb;
2772 	struct bufdesc	*bdp;
2773 	struct fec_enet_priv_tx_q *txq;
2774 	struct fec_enet_priv_rx_q *rxq;
2775 	unsigned int q;
2776 
2777 	for (q = 0; q < fep->num_rx_queues; q++) {
2778 		rxq = fep->rx_queue[q];
2779 		bdp = rxq->bd.base;
2780 		for (i = 0; i < rxq->bd.ring_size; i++) {
2781 			skb = rxq->rx_skbuff[i];
2782 			rxq->rx_skbuff[i] = NULL;
2783 			if (skb) {
2784 				dma_unmap_single(&fep->pdev->dev,
2785 						 fec32_to_cpu(bdp->cbd_bufaddr),
2786 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2787 						 DMA_FROM_DEVICE);
2788 				dev_kfree_skb(skb);
2789 			}
2790 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2791 		}
2792 	}
2793 
2794 	for (q = 0; q < fep->num_tx_queues; q++) {
2795 		txq = fep->tx_queue[q];
2796 		for (i = 0; i < txq->bd.ring_size; i++) {
2797 			kfree(txq->tx_bounce[i]);
2798 			txq->tx_bounce[i] = NULL;
2799 			skb = txq->tx_skbuff[i];
2800 			txq->tx_skbuff[i] = NULL;
2801 			dev_kfree_skb(skb);
2802 		}
2803 	}
2804 }
2805 
2806 static void fec_enet_free_queue(struct net_device *ndev)
2807 {
2808 	struct fec_enet_private *fep = netdev_priv(ndev);
2809 	int i;
2810 	struct fec_enet_priv_tx_q *txq;
2811 
2812 	for (i = 0; i < fep->num_tx_queues; i++)
2813 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2814 			txq = fep->tx_queue[i];
2815 			dma_free_coherent(&fep->pdev->dev,
2816 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2817 					  txq->tso_hdrs,
2818 					  txq->tso_hdrs_dma);
2819 		}
2820 
2821 	for (i = 0; i < fep->num_rx_queues; i++)
2822 		kfree(fep->rx_queue[i]);
2823 	for (i = 0; i < fep->num_tx_queues; i++)
2824 		kfree(fep->tx_queue[i]);
2825 }
2826 
2827 static int fec_enet_alloc_queue(struct net_device *ndev)
2828 {
2829 	struct fec_enet_private *fep = netdev_priv(ndev);
2830 	int i;
2831 	int ret = 0;
2832 	struct fec_enet_priv_tx_q *txq;
2833 
2834 	for (i = 0; i < fep->num_tx_queues; i++) {
2835 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2836 		if (!txq) {
2837 			ret = -ENOMEM;
2838 			goto alloc_failed;
2839 		}
2840 
2841 		fep->tx_queue[i] = txq;
2842 		txq->bd.ring_size = TX_RING_SIZE;
2843 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2844 
2845 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2846 		txq->tx_wake_threshold =
2847 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2848 
2849 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2850 					txq->bd.ring_size * TSO_HEADER_SIZE,
2851 					&txq->tso_hdrs_dma,
2852 					GFP_KERNEL);
2853 		if (!txq->tso_hdrs) {
2854 			ret = -ENOMEM;
2855 			goto alloc_failed;
2856 		}
2857 	}
2858 
2859 	for (i = 0; i < fep->num_rx_queues; i++) {
2860 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2861 					   GFP_KERNEL);
2862 		if (!fep->rx_queue[i]) {
2863 			ret = -ENOMEM;
2864 			goto alloc_failed;
2865 		}
2866 
2867 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2868 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2869 	}
2870 	return ret;
2871 
2872 alloc_failed:
2873 	fec_enet_free_queue(ndev);
2874 	return ret;
2875 }
2876 
2877 static int
2878 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2879 {
2880 	struct fec_enet_private *fep = netdev_priv(ndev);
2881 	unsigned int i;
2882 	struct sk_buff *skb;
2883 	struct bufdesc	*bdp;
2884 	struct fec_enet_priv_rx_q *rxq;
2885 
2886 	rxq = fep->rx_queue[queue];
2887 	bdp = rxq->bd.base;
2888 	for (i = 0; i < rxq->bd.ring_size; i++) {
2889 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2890 		if (!skb)
2891 			goto err_alloc;
2892 
2893 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2894 			dev_kfree_skb(skb);
2895 			goto err_alloc;
2896 		}
2897 
2898 		rxq->rx_skbuff[i] = skb;
2899 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2900 
2901 		if (fep->bufdesc_ex) {
2902 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2903 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2904 		}
2905 
2906 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2907 	}
2908 
2909 	/* Set the last buffer to wrap. */
2910 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2911 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2912 	return 0;
2913 
2914  err_alloc:
2915 	fec_enet_free_buffers(ndev);
2916 	return -ENOMEM;
2917 }
2918 
2919 static int
2920 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2921 {
2922 	struct fec_enet_private *fep = netdev_priv(ndev);
2923 	unsigned int i;
2924 	struct bufdesc  *bdp;
2925 	struct fec_enet_priv_tx_q *txq;
2926 
2927 	txq = fep->tx_queue[queue];
2928 	bdp = txq->bd.base;
2929 	for (i = 0; i < txq->bd.ring_size; i++) {
2930 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2931 		if (!txq->tx_bounce[i])
2932 			goto err_alloc;
2933 
2934 		bdp->cbd_sc = cpu_to_fec16(0);
2935 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2936 
2937 		if (fep->bufdesc_ex) {
2938 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2939 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2940 		}
2941 
2942 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2943 	}
2944 
2945 	/* Set the last buffer to wrap. */
2946 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2947 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2948 
2949 	return 0;
2950 
2951  err_alloc:
2952 	fec_enet_free_buffers(ndev);
2953 	return -ENOMEM;
2954 }
2955 
2956 static int fec_enet_alloc_buffers(struct net_device *ndev)
2957 {
2958 	struct fec_enet_private *fep = netdev_priv(ndev);
2959 	unsigned int i;
2960 
2961 	for (i = 0; i < fep->num_rx_queues; i++)
2962 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2963 			return -ENOMEM;
2964 
2965 	for (i = 0; i < fep->num_tx_queues; i++)
2966 		if (fec_enet_alloc_txq_buffers(ndev, i))
2967 			return -ENOMEM;
2968 	return 0;
2969 }
2970 
2971 static int
2972 fec_enet_open(struct net_device *ndev)
2973 {
2974 	struct fec_enet_private *fep = netdev_priv(ndev);
2975 	int ret;
2976 	bool reset_again;
2977 
2978 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2979 	if (ret < 0)
2980 		return ret;
2981 
2982 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2983 	ret = fec_enet_clk_enable(ndev, true);
2984 	if (ret)
2985 		goto clk_enable;
2986 
2987 	/* During the first fec_enet_open call the PHY isn't probed at this
2988 	 * point. Therefore the phy_reset_after_clk_enable() call within
2989 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2990 	 * sure the PHY is working correctly we check if we need to reset again
2991 	 * later when the PHY is probed
2992 	 */
2993 	if (ndev->phydev && ndev->phydev->drv)
2994 		reset_again = false;
2995 	else
2996 		reset_again = true;
2997 
2998 	/* I should reset the ring buffers here, but I don't yet know
2999 	 * a simple way to do that.
3000 	 */
3001 
3002 	ret = fec_enet_alloc_buffers(ndev);
3003 	if (ret)
3004 		goto err_enet_alloc;
3005 
3006 	/* Init MAC prior to mii bus probe */
3007 	fec_restart(ndev);
3008 
3009 	/* Probe and connect to PHY when open the interface */
3010 	ret = fec_enet_mii_probe(ndev);
3011 	if (ret)
3012 		goto err_enet_mii_probe;
3013 
3014 	/* Call phy_reset_after_clk_enable() again if it failed during
3015 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3016 	 */
3017 	if (reset_again)
3018 		phy_reset_after_clk_enable(ndev->phydev);
3019 
3020 	if (fep->quirks & FEC_QUIRK_ERR006687)
3021 		imx6q_cpuidle_fec_irqs_used();
3022 
3023 	napi_enable(&fep->napi);
3024 	phy_start(ndev->phydev);
3025 	netif_tx_start_all_queues(ndev);
3026 
3027 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3028 				 FEC_WOL_FLAG_ENABLE);
3029 
3030 	return 0;
3031 
3032 err_enet_mii_probe:
3033 	fec_enet_free_buffers(ndev);
3034 err_enet_alloc:
3035 	fec_enet_clk_enable(ndev, false);
3036 clk_enable:
3037 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3038 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3039 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3040 	return ret;
3041 }
3042 
3043 static int
3044 fec_enet_close(struct net_device *ndev)
3045 {
3046 	struct fec_enet_private *fep = netdev_priv(ndev);
3047 
3048 	phy_stop(ndev->phydev);
3049 
3050 	if (netif_device_present(ndev)) {
3051 		napi_disable(&fep->napi);
3052 		netif_tx_disable(ndev);
3053 		fec_stop(ndev);
3054 	}
3055 
3056 	phy_disconnect(ndev->phydev);
3057 
3058 	if (fep->quirks & FEC_QUIRK_ERR006687)
3059 		imx6q_cpuidle_fec_irqs_unused();
3060 
3061 	fec_enet_update_ethtool_stats(ndev);
3062 
3063 	fec_enet_clk_enable(ndev, false);
3064 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3065 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3066 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3067 
3068 	fec_enet_free_buffers(ndev);
3069 
3070 	return 0;
3071 }
3072 
3073 /* Set or clear the multicast filter for this adaptor.
3074  * Skeleton taken from sunlance driver.
3075  * The CPM Ethernet implementation allows Multicast as well as individual
3076  * MAC address filtering.  Some of the drivers check to make sure it is
3077  * a group multicast address, and discard those that are not.  I guess I
3078  * will do the same for now, but just remove the test if you want
3079  * individual filtering as well (do the upper net layers want or support
3080  * this kind of feature?).
3081  */
3082 
3083 #define FEC_HASH_BITS	6		/* #bits in hash */
3084 
3085 static void set_multicast_list(struct net_device *ndev)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(ndev);
3088 	struct netdev_hw_addr *ha;
3089 	unsigned int crc, tmp;
3090 	unsigned char hash;
3091 	unsigned int hash_high = 0, hash_low = 0;
3092 
3093 	if (ndev->flags & IFF_PROMISC) {
3094 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3095 		tmp |= 0x8;
3096 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3097 		return;
3098 	}
3099 
3100 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3101 	tmp &= ~0x8;
3102 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3103 
3104 	if (ndev->flags & IFF_ALLMULTI) {
3105 		/* Catch all multicast addresses, so set the
3106 		 * filter to all 1's
3107 		 */
3108 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3109 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3110 
3111 		return;
3112 	}
3113 
3114 	/* Add the addresses in hash register */
3115 	netdev_for_each_mc_addr(ha, ndev) {
3116 		/* calculate crc32 value of mac address */
3117 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3118 
3119 		/* only upper 6 bits (FEC_HASH_BITS) are used
3120 		 * which point to specific bit in the hash registers
3121 		 */
3122 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3123 
3124 		if (hash > 31)
3125 			hash_high |= 1 << (hash - 32);
3126 		else
3127 			hash_low |= 1 << hash;
3128 	}
3129 
3130 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3131 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3132 }
3133 
3134 /* Set a MAC change in hardware. */
3135 static int
3136 fec_set_mac_address(struct net_device *ndev, void *p)
3137 {
3138 	struct fec_enet_private *fep = netdev_priv(ndev);
3139 	struct sockaddr *addr = p;
3140 
3141 	if (addr) {
3142 		if (!is_valid_ether_addr(addr->sa_data))
3143 			return -EADDRNOTAVAIL;
3144 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3145 	}
3146 
3147 	/* Add netif status check here to avoid system hang in below case:
3148 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3149 	 * After ethx down, fec all clocks are gated off and then register
3150 	 * access causes system hang.
3151 	 */
3152 	if (!netif_running(ndev))
3153 		return 0;
3154 
3155 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3156 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3157 		fep->hwp + FEC_ADDR_LOW);
3158 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3159 		fep->hwp + FEC_ADDR_HIGH);
3160 	return 0;
3161 }
3162 
3163 #ifdef CONFIG_NET_POLL_CONTROLLER
3164 /**
3165  * fec_poll_controller - FEC Poll controller function
3166  * @dev: The FEC network adapter
3167  *
3168  * Polled functionality used by netconsole and others in non interrupt mode
3169  *
3170  */
3171 static void fec_poll_controller(struct net_device *dev)
3172 {
3173 	int i;
3174 	struct fec_enet_private *fep = netdev_priv(dev);
3175 
3176 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3177 		if (fep->irq[i] > 0) {
3178 			disable_irq(fep->irq[i]);
3179 			fec_enet_interrupt(fep->irq[i], dev);
3180 			enable_irq(fep->irq[i]);
3181 		}
3182 	}
3183 }
3184 #endif
3185 
3186 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3187 	netdev_features_t features)
3188 {
3189 	struct fec_enet_private *fep = netdev_priv(netdev);
3190 	netdev_features_t changed = features ^ netdev->features;
3191 
3192 	netdev->features = features;
3193 
3194 	/* Receive checksum has been changed */
3195 	if (changed & NETIF_F_RXCSUM) {
3196 		if (features & NETIF_F_RXCSUM)
3197 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3198 		else
3199 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3200 	}
3201 }
3202 
3203 static int fec_set_features(struct net_device *netdev,
3204 	netdev_features_t features)
3205 {
3206 	struct fec_enet_private *fep = netdev_priv(netdev);
3207 	netdev_features_t changed = features ^ netdev->features;
3208 
3209 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3210 		napi_disable(&fep->napi);
3211 		netif_tx_lock_bh(netdev);
3212 		fec_stop(netdev);
3213 		fec_enet_set_netdev_features(netdev, features);
3214 		fec_restart(netdev);
3215 		netif_tx_wake_all_queues(netdev);
3216 		netif_tx_unlock_bh(netdev);
3217 		napi_enable(&fep->napi);
3218 	} else {
3219 		fec_enet_set_netdev_features(netdev, features);
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 static const struct net_device_ops fec_netdev_ops = {
3226 	.ndo_open		= fec_enet_open,
3227 	.ndo_stop		= fec_enet_close,
3228 	.ndo_start_xmit		= fec_enet_start_xmit,
3229 	.ndo_set_rx_mode	= set_multicast_list,
3230 	.ndo_validate_addr	= eth_validate_addr,
3231 	.ndo_tx_timeout		= fec_timeout,
3232 	.ndo_set_mac_address	= fec_set_mac_address,
3233 	.ndo_do_ioctl		= fec_enet_ioctl,
3234 #ifdef CONFIG_NET_POLL_CONTROLLER
3235 	.ndo_poll_controller	= fec_poll_controller,
3236 #endif
3237 	.ndo_set_features	= fec_set_features,
3238 };
3239 
3240 static const unsigned short offset_des_active_rxq[] = {
3241 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3242 };
3243 
3244 static const unsigned short offset_des_active_txq[] = {
3245 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3246 };
3247 
3248  /*
3249   * XXX:  We need to clean up on failure exits here.
3250   *
3251   */
3252 static int fec_enet_init(struct net_device *ndev)
3253 {
3254 	struct fec_enet_private *fep = netdev_priv(ndev);
3255 	struct bufdesc *cbd_base;
3256 	dma_addr_t bd_dma;
3257 	int bd_size;
3258 	unsigned int i;
3259 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3260 			sizeof(struct bufdesc);
3261 	unsigned dsize_log2 = __fls(dsize);
3262 	int ret;
3263 
3264 	WARN_ON(dsize != (1 << dsize_log2));
3265 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3266 	fep->rx_align = 0xf;
3267 	fep->tx_align = 0xf;
3268 #else
3269 	fep->rx_align = 0x3;
3270 	fep->tx_align = 0x3;
3271 #endif
3272 
3273 	/* Check mask of the streaming and coherent API */
3274 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3275 	if (ret < 0) {
3276 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3277 		return ret;
3278 	}
3279 
3280 	fec_enet_alloc_queue(ndev);
3281 
3282 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3283 
3284 	/* Allocate memory for buffer descriptors. */
3285 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3286 				       GFP_KERNEL);
3287 	if (!cbd_base) {
3288 		return -ENOMEM;
3289 	}
3290 
3291 	/* Get the Ethernet address */
3292 	fec_get_mac(ndev);
3293 	/* make sure MAC we just acquired is programmed into the hw */
3294 	fec_set_mac_address(ndev, NULL);
3295 
3296 	/* Set receive and transmit descriptor base. */
3297 	for (i = 0; i < fep->num_rx_queues; i++) {
3298 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3299 		unsigned size = dsize * rxq->bd.ring_size;
3300 
3301 		rxq->bd.qid = i;
3302 		rxq->bd.base = cbd_base;
3303 		rxq->bd.cur = cbd_base;
3304 		rxq->bd.dma = bd_dma;
3305 		rxq->bd.dsize = dsize;
3306 		rxq->bd.dsize_log2 = dsize_log2;
3307 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3308 		bd_dma += size;
3309 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3310 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3311 	}
3312 
3313 	for (i = 0; i < fep->num_tx_queues; i++) {
3314 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3315 		unsigned size = dsize * txq->bd.ring_size;
3316 
3317 		txq->bd.qid = i;
3318 		txq->bd.base = cbd_base;
3319 		txq->bd.cur = cbd_base;
3320 		txq->bd.dma = bd_dma;
3321 		txq->bd.dsize = dsize;
3322 		txq->bd.dsize_log2 = dsize_log2;
3323 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3324 		bd_dma += size;
3325 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3326 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3327 	}
3328 
3329 
3330 	/* The FEC Ethernet specific entries in the device structure */
3331 	ndev->watchdog_timeo = TX_TIMEOUT;
3332 	ndev->netdev_ops = &fec_netdev_ops;
3333 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3334 
3335 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3336 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3337 
3338 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3339 		/* enable hw VLAN support */
3340 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3341 
3342 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3343 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3344 
3345 		/* enable hw accelerator */
3346 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3347 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3348 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3349 	}
3350 
3351 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3352 		fep->tx_align = 0;
3353 		fep->rx_align = 0x3f;
3354 	}
3355 
3356 	ndev->hw_features = ndev->features;
3357 
3358 	fec_restart(ndev);
3359 
3360 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3361 		fec_enet_clear_ethtool_stats(ndev);
3362 	else
3363 		fec_enet_update_ethtool_stats(ndev);
3364 
3365 	return 0;
3366 }
3367 
3368 #ifdef CONFIG_OF
3369 static int fec_reset_phy(struct platform_device *pdev)
3370 {
3371 	int err, phy_reset;
3372 	bool active_high = false;
3373 	int msec = 1, phy_post_delay = 0;
3374 	struct device_node *np = pdev->dev.of_node;
3375 
3376 	if (!np)
3377 		return 0;
3378 
3379 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3380 	/* A sane reset duration should not be longer than 1s */
3381 	if (!err && msec > 1000)
3382 		msec = 1;
3383 
3384 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3385 	if (phy_reset == -EPROBE_DEFER)
3386 		return phy_reset;
3387 	else if (!gpio_is_valid(phy_reset))
3388 		return 0;
3389 
3390 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3391 	/* valid reset duration should be less than 1s */
3392 	if (!err && phy_post_delay > 1000)
3393 		return -EINVAL;
3394 
3395 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3396 
3397 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3398 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3399 			"phy-reset");
3400 	if (err) {
3401 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3402 		return err;
3403 	}
3404 
3405 	if (msec > 20)
3406 		msleep(msec);
3407 	else
3408 		usleep_range(msec * 1000, msec * 1000 + 1000);
3409 
3410 	gpio_set_value_cansleep(phy_reset, !active_high);
3411 
3412 	if (!phy_post_delay)
3413 		return 0;
3414 
3415 	if (phy_post_delay > 20)
3416 		msleep(phy_post_delay);
3417 	else
3418 		usleep_range(phy_post_delay * 1000,
3419 			     phy_post_delay * 1000 + 1000);
3420 
3421 	return 0;
3422 }
3423 #else /* CONFIG_OF */
3424 static int fec_reset_phy(struct platform_device *pdev)
3425 {
3426 	/*
3427 	 * In case of platform probe, the reset has been done
3428 	 * by machine code.
3429 	 */
3430 	return 0;
3431 }
3432 #endif /* CONFIG_OF */
3433 
3434 static void
3435 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3436 {
3437 	struct device_node *np = pdev->dev.of_node;
3438 
3439 	*num_tx = *num_rx = 1;
3440 
3441 	if (!np || !of_device_is_available(np))
3442 		return;
3443 
3444 	/* parse the num of tx and rx queues */
3445 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3446 
3447 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3448 
3449 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3450 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3451 			 *num_tx);
3452 		*num_tx = 1;
3453 		return;
3454 	}
3455 
3456 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3457 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3458 			 *num_rx);
3459 		*num_rx = 1;
3460 		return;
3461 	}
3462 
3463 }
3464 
3465 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3466 {
3467 	int irq_cnt = platform_irq_count(pdev);
3468 
3469 	if (irq_cnt > FEC_IRQ_NUM)
3470 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3471 	else if (irq_cnt == 2)
3472 		irq_cnt = 1;	/* last for pps */
3473 	else if (irq_cnt <= 0)
3474 		irq_cnt = 1;	/* At least 1 irq is needed */
3475 	return irq_cnt;
3476 }
3477 
3478 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3479 				   struct fec_devinfo *dev_info,
3480 				   struct device_node *np)
3481 {
3482 	struct device_node *gpr_np;
3483 	int ret = 0;
3484 
3485 	if (!dev_info)
3486 		return 0;
3487 
3488 	gpr_np = of_parse_phandle(np, "gpr", 0);
3489 	if (!gpr_np)
3490 		return 0;
3491 
3492 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3493 	if (IS_ERR(fep->stop_gpr.gpr)) {
3494 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3495 		ret = PTR_ERR(fep->stop_gpr.gpr);
3496 		fep->stop_gpr.gpr = NULL;
3497 		goto out;
3498 	}
3499 
3500 	fep->stop_gpr.reg = dev_info->stop_gpr_reg;
3501 	fep->stop_gpr.bit = dev_info->stop_gpr_bit;
3502 
3503 out:
3504 	of_node_put(gpr_np);
3505 
3506 	return ret;
3507 }
3508 
3509 static int
3510 fec_probe(struct platform_device *pdev)
3511 {
3512 	struct fec_enet_private *fep;
3513 	struct fec_platform_data *pdata;
3514 	phy_interface_t interface;
3515 	struct net_device *ndev;
3516 	int i, irq, ret = 0;
3517 	const struct of_device_id *of_id;
3518 	static int dev_id;
3519 	struct device_node *np = pdev->dev.of_node, *phy_node;
3520 	int num_tx_qs;
3521 	int num_rx_qs;
3522 	char irq_name[8];
3523 	int irq_cnt;
3524 	struct fec_devinfo *dev_info;
3525 
3526 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3527 
3528 	/* Init network device */
3529 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3530 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3531 	if (!ndev)
3532 		return -ENOMEM;
3533 
3534 	SET_NETDEV_DEV(ndev, &pdev->dev);
3535 
3536 	/* setup board info structure */
3537 	fep = netdev_priv(ndev);
3538 
3539 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3540 	if (of_id)
3541 		pdev->id_entry = of_id->data;
3542 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3543 	if (dev_info)
3544 		fep->quirks = dev_info->quirks;
3545 
3546 	fep->netdev = ndev;
3547 	fep->num_rx_queues = num_rx_qs;
3548 	fep->num_tx_queues = num_tx_qs;
3549 
3550 #if !defined(CONFIG_M5272)
3551 	/* default enable pause frame auto negotiation */
3552 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3553 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3554 #endif
3555 
3556 	/* Select default pin state */
3557 	pinctrl_pm_select_default_state(&pdev->dev);
3558 
3559 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3560 	if (IS_ERR(fep->hwp)) {
3561 		ret = PTR_ERR(fep->hwp);
3562 		goto failed_ioremap;
3563 	}
3564 
3565 	fep->pdev = pdev;
3566 	fep->dev_id = dev_id++;
3567 
3568 	platform_set_drvdata(pdev, ndev);
3569 
3570 	if ((of_machine_is_compatible("fsl,imx6q") ||
3571 	     of_machine_is_compatible("fsl,imx6dl")) &&
3572 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3573 		fep->quirks |= FEC_QUIRK_ERR006687;
3574 
3575 	if (of_get_property(np, "fsl,magic-packet", NULL))
3576 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3577 
3578 	ret = fec_enet_init_stop_mode(fep, dev_info, np);
3579 	if (ret)
3580 		goto failed_stop_mode;
3581 
3582 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3583 	if (!phy_node && of_phy_is_fixed_link(np)) {
3584 		ret = of_phy_register_fixed_link(np);
3585 		if (ret < 0) {
3586 			dev_err(&pdev->dev,
3587 				"broken fixed-link specification\n");
3588 			goto failed_phy;
3589 		}
3590 		phy_node = of_node_get(np);
3591 	}
3592 	fep->phy_node = phy_node;
3593 
3594 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3595 	if (ret) {
3596 		pdata = dev_get_platdata(&pdev->dev);
3597 		if (pdata)
3598 			fep->phy_interface = pdata->phy;
3599 		else
3600 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3601 	} else {
3602 		fep->phy_interface = interface;
3603 	}
3604 
3605 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3606 	if (IS_ERR(fep->clk_ipg)) {
3607 		ret = PTR_ERR(fep->clk_ipg);
3608 		goto failed_clk;
3609 	}
3610 
3611 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3612 	if (IS_ERR(fep->clk_ahb)) {
3613 		ret = PTR_ERR(fep->clk_ahb);
3614 		goto failed_clk;
3615 	}
3616 
3617 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3618 
3619 	/* enet_out is optional, depends on board */
3620 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3621 	if (IS_ERR(fep->clk_enet_out))
3622 		fep->clk_enet_out = NULL;
3623 
3624 	fep->ptp_clk_on = false;
3625 	mutex_init(&fep->ptp_clk_mutex);
3626 
3627 	/* clk_ref is optional, depends on board */
3628 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3629 	if (IS_ERR(fep->clk_ref))
3630 		fep->clk_ref = NULL;
3631 
3632 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3633 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3634 	if (IS_ERR(fep->clk_ptp)) {
3635 		fep->clk_ptp = NULL;
3636 		fep->bufdesc_ex = false;
3637 	}
3638 
3639 	ret = fec_enet_clk_enable(ndev, true);
3640 	if (ret)
3641 		goto failed_clk;
3642 
3643 	ret = clk_prepare_enable(fep->clk_ipg);
3644 	if (ret)
3645 		goto failed_clk_ipg;
3646 	ret = clk_prepare_enable(fep->clk_ahb);
3647 	if (ret)
3648 		goto failed_clk_ahb;
3649 
3650 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3651 	if (!IS_ERR(fep->reg_phy)) {
3652 		ret = regulator_enable(fep->reg_phy);
3653 		if (ret) {
3654 			dev_err(&pdev->dev,
3655 				"Failed to enable phy regulator: %d\n", ret);
3656 			goto failed_regulator;
3657 		}
3658 	} else {
3659 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3660 			ret = -EPROBE_DEFER;
3661 			goto failed_regulator;
3662 		}
3663 		fep->reg_phy = NULL;
3664 	}
3665 
3666 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3667 	pm_runtime_use_autosuspend(&pdev->dev);
3668 	pm_runtime_get_noresume(&pdev->dev);
3669 	pm_runtime_set_active(&pdev->dev);
3670 	pm_runtime_enable(&pdev->dev);
3671 
3672 	ret = fec_reset_phy(pdev);
3673 	if (ret)
3674 		goto failed_reset;
3675 
3676 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3677 	if (fep->bufdesc_ex)
3678 		fec_ptp_init(pdev, irq_cnt);
3679 
3680 	ret = fec_enet_init(ndev);
3681 	if (ret)
3682 		goto failed_init;
3683 
3684 	for (i = 0; i < irq_cnt; i++) {
3685 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3686 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3687 		if (irq < 0)
3688 			irq = platform_get_irq(pdev, i);
3689 		if (irq < 0) {
3690 			ret = irq;
3691 			goto failed_irq;
3692 		}
3693 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3694 				       0, pdev->name, ndev);
3695 		if (ret)
3696 			goto failed_irq;
3697 
3698 		fep->irq[i] = irq;
3699 	}
3700 
3701 	ret = fec_enet_mii_init(pdev);
3702 	if (ret)
3703 		goto failed_mii_init;
3704 
3705 	/* Carrier starts down, phylib will bring it up */
3706 	netif_carrier_off(ndev);
3707 	fec_enet_clk_enable(ndev, false);
3708 	pinctrl_pm_select_sleep_state(&pdev->dev);
3709 
3710 	ret = register_netdev(ndev);
3711 	if (ret)
3712 		goto failed_register;
3713 
3714 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3715 			   FEC_WOL_HAS_MAGIC_PACKET);
3716 
3717 	if (fep->bufdesc_ex && fep->ptp_clock)
3718 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3719 
3720 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3721 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3722 
3723 	pm_runtime_mark_last_busy(&pdev->dev);
3724 	pm_runtime_put_autosuspend(&pdev->dev);
3725 
3726 	return 0;
3727 
3728 failed_register:
3729 	fec_enet_mii_remove(fep);
3730 failed_mii_init:
3731 failed_irq:
3732 failed_init:
3733 	fec_ptp_stop(pdev);
3734 	if (fep->reg_phy)
3735 		regulator_disable(fep->reg_phy);
3736 failed_reset:
3737 	pm_runtime_put_noidle(&pdev->dev);
3738 	pm_runtime_disable(&pdev->dev);
3739 failed_regulator:
3740 	clk_disable_unprepare(fep->clk_ahb);
3741 failed_clk_ahb:
3742 	clk_disable_unprepare(fep->clk_ipg);
3743 failed_clk_ipg:
3744 	fec_enet_clk_enable(ndev, false);
3745 failed_clk:
3746 	if (of_phy_is_fixed_link(np))
3747 		of_phy_deregister_fixed_link(np);
3748 	of_node_put(phy_node);
3749 failed_stop_mode:
3750 failed_phy:
3751 	dev_id--;
3752 failed_ioremap:
3753 	free_netdev(ndev);
3754 
3755 	return ret;
3756 }
3757 
3758 static int
3759 fec_drv_remove(struct platform_device *pdev)
3760 {
3761 	struct net_device *ndev = platform_get_drvdata(pdev);
3762 	struct fec_enet_private *fep = netdev_priv(ndev);
3763 	struct device_node *np = pdev->dev.of_node;
3764 	int ret;
3765 
3766 	ret = pm_runtime_get_sync(&pdev->dev);
3767 	if (ret < 0)
3768 		return ret;
3769 
3770 	cancel_work_sync(&fep->tx_timeout_work);
3771 	fec_ptp_stop(pdev);
3772 	unregister_netdev(ndev);
3773 	fec_enet_mii_remove(fep);
3774 	if (fep->reg_phy)
3775 		regulator_disable(fep->reg_phy);
3776 
3777 	if (of_phy_is_fixed_link(np))
3778 		of_phy_deregister_fixed_link(np);
3779 	of_node_put(fep->phy_node);
3780 	free_netdev(ndev);
3781 
3782 	clk_disable_unprepare(fep->clk_ahb);
3783 	clk_disable_unprepare(fep->clk_ipg);
3784 	pm_runtime_put_noidle(&pdev->dev);
3785 	pm_runtime_disable(&pdev->dev);
3786 
3787 	return 0;
3788 }
3789 
3790 static int __maybe_unused fec_suspend(struct device *dev)
3791 {
3792 	struct net_device *ndev = dev_get_drvdata(dev);
3793 	struct fec_enet_private *fep = netdev_priv(ndev);
3794 
3795 	rtnl_lock();
3796 	if (netif_running(ndev)) {
3797 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3798 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3799 		phy_stop(ndev->phydev);
3800 		napi_disable(&fep->napi);
3801 		netif_tx_lock_bh(ndev);
3802 		netif_device_detach(ndev);
3803 		netif_tx_unlock_bh(ndev);
3804 		fec_stop(ndev);
3805 		fec_enet_clk_enable(ndev, false);
3806 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3807 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3808 	}
3809 	rtnl_unlock();
3810 
3811 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3812 		regulator_disable(fep->reg_phy);
3813 
3814 	/* SOC supply clock to phy, when clock is disabled, phy link down
3815 	 * SOC control phy regulator, when regulator is disabled, phy link down
3816 	 */
3817 	if (fep->clk_enet_out || fep->reg_phy)
3818 		fep->link = 0;
3819 
3820 	return 0;
3821 }
3822 
3823 static int __maybe_unused fec_resume(struct device *dev)
3824 {
3825 	struct net_device *ndev = dev_get_drvdata(dev);
3826 	struct fec_enet_private *fep = netdev_priv(ndev);
3827 	int ret;
3828 	int val;
3829 
3830 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3831 		ret = regulator_enable(fep->reg_phy);
3832 		if (ret)
3833 			return ret;
3834 	}
3835 
3836 	rtnl_lock();
3837 	if (netif_running(ndev)) {
3838 		ret = fec_enet_clk_enable(ndev, true);
3839 		if (ret) {
3840 			rtnl_unlock();
3841 			goto failed_clk;
3842 		}
3843 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3844 			fec_enet_stop_mode(fep, false);
3845 
3846 			val = readl(fep->hwp + FEC_ECNTRL);
3847 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3848 			writel(val, fep->hwp + FEC_ECNTRL);
3849 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3850 		} else {
3851 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3852 		}
3853 		fec_restart(ndev);
3854 		netif_tx_lock_bh(ndev);
3855 		netif_device_attach(ndev);
3856 		netif_tx_unlock_bh(ndev);
3857 		napi_enable(&fep->napi);
3858 		phy_start(ndev->phydev);
3859 	}
3860 	rtnl_unlock();
3861 
3862 	return 0;
3863 
3864 failed_clk:
3865 	if (fep->reg_phy)
3866 		regulator_disable(fep->reg_phy);
3867 	return ret;
3868 }
3869 
3870 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3871 {
3872 	struct net_device *ndev = dev_get_drvdata(dev);
3873 	struct fec_enet_private *fep = netdev_priv(ndev);
3874 
3875 	clk_disable_unprepare(fep->clk_ahb);
3876 	clk_disable_unprepare(fep->clk_ipg);
3877 
3878 	return 0;
3879 }
3880 
3881 static int __maybe_unused fec_runtime_resume(struct device *dev)
3882 {
3883 	struct net_device *ndev = dev_get_drvdata(dev);
3884 	struct fec_enet_private *fep = netdev_priv(ndev);
3885 	int ret;
3886 
3887 	ret = clk_prepare_enable(fep->clk_ahb);
3888 	if (ret)
3889 		return ret;
3890 	ret = clk_prepare_enable(fep->clk_ipg);
3891 	if (ret)
3892 		goto failed_clk_ipg;
3893 
3894 	return 0;
3895 
3896 failed_clk_ipg:
3897 	clk_disable_unprepare(fep->clk_ahb);
3898 	return ret;
3899 }
3900 
3901 static const struct dev_pm_ops fec_pm_ops = {
3902 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3903 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3904 };
3905 
3906 static struct platform_driver fec_driver = {
3907 	.driver	= {
3908 		.name	= DRIVER_NAME,
3909 		.pm	= &fec_pm_ops,
3910 		.of_match_table = fec_dt_ids,
3911 		.suppress_bind_attrs = true,
3912 	},
3913 	.id_table = fec_devtype,
3914 	.probe	= fec_probe,
3915 	.remove	= fec_drv_remove,
3916 };
3917 
3918 module_platform_driver(fec_driver);
3919 
3920 MODULE_ALIAS("platform:"DRIVER_NAME);
3921 MODULE_LICENSE("GPL");
3922