xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 75da1469f923970627843d68482b6da6ed6f38f9)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95 	}, {
96 		.name = "imx6q-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100 	}, {
101 		.name = "mvf600-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC,
103 	}, {
104 		.name = "imx6sx-fec",
105 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109 	}, {
110 		/* sentinel */
111 	}
112 };
113 MODULE_DEVICE_TABLE(platform, fec_devtype);
114 
115 enum imx_fec_type {
116 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
117 	IMX27_FEC,	/* runs on i.mx27/35/51 */
118 	IMX28_FEC,
119 	IMX6Q_FEC,
120 	MVF600_FEC,
121 	IMX6SX_FEC,
122 };
123 
124 static const struct of_device_id fec_dt_ids[] = {
125 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131 	{ /* sentinel */ }
132 };
133 MODULE_DEVICE_TABLE(of, fec_dt_ids);
134 
135 static unsigned char macaddr[ETH_ALEN];
136 module_param_array(macaddr, byte, NULL, 0);
137 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138 
139 #if defined(CONFIG_M5272)
140 /*
141  * Some hardware gets it MAC address out of local flash memory.
142  * if this is non-zero then assume it is the address to get MAC from.
143  */
144 #if defined(CONFIG_NETtel)
145 #define	FEC_FLASHMAC	0xf0006006
146 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147 #define	FEC_FLASHMAC	0xf0006000
148 #elif defined(CONFIG_CANCam)
149 #define	FEC_FLASHMAC	0xf0020000
150 #elif defined (CONFIG_M5272C3)
151 #define	FEC_FLASHMAC	(0xffe04000 + 4)
152 #elif defined(CONFIG_MOD5272)
153 #define FEC_FLASHMAC	0xffc0406b
154 #else
155 #define	FEC_FLASHMAC	0
156 #endif
157 #endif /* CONFIG_M5272 */
158 
159 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160  */
161 #define PKT_MAXBUF_SIZE		1522
162 #define PKT_MINBUF_SIZE		64
163 #define PKT_MAXBLR_SIZE		1536
164 
165 /* FEC receive acceleration */
166 #define FEC_RACC_IPDIS		(1 << 1)
167 #define FEC_RACC_PRODIS		(1 << 2)
168 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169 
170 /*
171  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172  * size bits. Other FEC hardware does not, so we need to take that into
173  * account when setting it.
174  */
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
178 #else
179 #define	OPT_FRAME_SIZE	0
180 #endif
181 
182 /* FEC MII MMFR bits definition */
183 #define FEC_MMFR_ST		(1 << 30)
184 #define FEC_MMFR_OP_READ	(2 << 28)
185 #define FEC_MMFR_OP_WRITE	(1 << 28)
186 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
187 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
188 #define FEC_MMFR_TA		(2 << 16)
189 #define FEC_MMFR_DATA(v)	(v & 0xffff)
190 
191 #define FEC_MII_TIMEOUT		30000 /* us */
192 
193 /* Transmitter timeout */
194 #define TX_TIMEOUT (2 * HZ)
195 
196 #define FEC_PAUSE_FLAG_AUTONEG	0x1
197 #define FEC_PAUSE_FLAG_ENABLE	0x2
198 
199 #define COPYBREAK_DEFAULT	256
200 
201 #define TSO_HEADER_SIZE		128
202 /* Max number of allowed TCP segments for software TSO */
203 #define FEC_MAX_TSO_SEGS	100
204 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205 
206 #define IS_TSO_HEADER(txq, addr) \
207 	((addr >= txq->tso_hdrs_dma) && \
208 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209 
210 static int mii_cnt;
211 
212 static inline
213 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214 				      struct fec_enet_private *fep,
215 				      int queue_id)
216 {
217 	struct bufdesc *new_bd = bdp + 1;
218 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221 	struct bufdesc_ex *ex_base;
222 	struct bufdesc *base;
223 	int ring_size;
224 
225 	if (bdp >= txq->tx_bd_base) {
226 		base = txq->tx_bd_base;
227 		ring_size = txq->tx_ring_size;
228 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229 	} else {
230 		base = rxq->rx_bd_base;
231 		ring_size = rxq->rx_ring_size;
232 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233 	}
234 
235 	if (fep->bufdesc_ex)
236 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237 			ex_base : ex_new_bd);
238 	else
239 		return (new_bd >= (base + ring_size)) ?
240 			base : new_bd;
241 }
242 
243 static inline
244 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245 				      struct fec_enet_private *fep,
246 				      int queue_id)
247 {
248 	struct bufdesc *new_bd = bdp - 1;
249 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252 	struct bufdesc_ex *ex_base;
253 	struct bufdesc *base;
254 	int ring_size;
255 
256 	if (bdp >= txq->tx_bd_base) {
257 		base = txq->tx_bd_base;
258 		ring_size = txq->tx_ring_size;
259 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260 	} else {
261 		base = rxq->rx_bd_base;
262 		ring_size = rxq->rx_ring_size;
263 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264 	}
265 
266 	if (fep->bufdesc_ex)
267 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
268 			(ex_new_bd + ring_size) : ex_new_bd);
269 	else
270 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271 }
272 
273 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274 				struct fec_enet_private *fep)
275 {
276 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277 }
278 
279 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280 					struct fec_enet_priv_tx_q *txq)
281 {
282 	int entries;
283 
284 	entries = ((const char *)txq->dirty_tx -
285 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286 
287 	return entries > 0 ? entries : entries + txq->tx_ring_size;
288 }
289 
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292 	int i;
293 	unsigned int *buf = bufaddr;
294 
295 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296 		*buf = cpu_to_be32(*buf);
297 
298 	return bufaddr;
299 }
300 
301 static void fec_dump(struct net_device *ndev)
302 {
303 	struct fec_enet_private *fep = netdev_priv(ndev);
304 	struct bufdesc *bdp;
305 	struct fec_enet_priv_tx_q *txq;
306 	int index = 0;
307 
308 	netdev_info(ndev, "TX ring dump\n");
309 	pr_info("Nr     SC     addr       len  SKB\n");
310 
311 	txq = fep->tx_queue[0];
312 	bdp = txq->tx_bd_base;
313 
314 	do {
315 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
316 			index,
317 			bdp == txq->cur_tx ? 'S' : ' ',
318 			bdp == txq->dirty_tx ? 'H' : ' ',
319 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
320 			txq->tx_skbuff[index]);
321 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
322 		index++;
323 	} while (bdp != txq->tx_bd_base);
324 }
325 
326 static inline bool is_ipv4_pkt(struct sk_buff *skb)
327 {
328 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
329 }
330 
331 static int
332 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
333 {
334 	/* Only run for packets requiring a checksum. */
335 	if (skb->ip_summed != CHECKSUM_PARTIAL)
336 		return 0;
337 
338 	if (unlikely(skb_cow_head(skb, 0)))
339 		return -1;
340 
341 	if (is_ipv4_pkt(skb))
342 		ip_hdr(skb)->check = 0;
343 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
344 
345 	return 0;
346 }
347 
348 static int
349 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
350 			     struct sk_buff *skb,
351 			     struct net_device *ndev)
352 {
353 	struct fec_enet_private *fep = netdev_priv(ndev);
354 	const struct platform_device_id *id_entry =
355 				platform_get_device_id(fep->pdev);
356 	struct bufdesc *bdp = txq->cur_tx;
357 	struct bufdesc_ex *ebdp;
358 	int nr_frags = skb_shinfo(skb)->nr_frags;
359 	unsigned short queue = skb_get_queue_mapping(skb);
360 	int frag, frag_len;
361 	unsigned short status;
362 	unsigned int estatus = 0;
363 	skb_frag_t *this_frag;
364 	unsigned int index;
365 	void *bufaddr;
366 	dma_addr_t addr;
367 	int i;
368 
369 	for (frag = 0; frag < nr_frags; frag++) {
370 		this_frag = &skb_shinfo(skb)->frags[frag];
371 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
372 		ebdp = (struct bufdesc_ex *)bdp;
373 
374 		status = bdp->cbd_sc;
375 		status &= ~BD_ENET_TX_STATS;
376 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
377 		frag_len = skb_shinfo(skb)->frags[frag].size;
378 
379 		/* Handle the last BD specially */
380 		if (frag == nr_frags - 1) {
381 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
382 			if (fep->bufdesc_ex) {
383 				estatus |= BD_ENET_TX_INT;
384 				if (unlikely(skb_shinfo(skb)->tx_flags &
385 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
386 					estatus |= BD_ENET_TX_TS;
387 			}
388 		}
389 
390 		if (fep->bufdesc_ex) {
391 			if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
392 				estatus |= FEC_TX_BD_FTYPE(queue);
393 			if (skb->ip_summed == CHECKSUM_PARTIAL)
394 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
395 			ebdp->cbd_bdu = 0;
396 			ebdp->cbd_esc = estatus;
397 		}
398 
399 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
400 
401 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
402 		if (((unsigned long) bufaddr) & fep->tx_align ||
403 			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
404 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
405 			bufaddr = txq->tx_bounce[index];
406 
407 			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
408 				swap_buffer(bufaddr, frag_len);
409 		}
410 
411 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
412 				      DMA_TO_DEVICE);
413 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
414 			dev_kfree_skb_any(skb);
415 			if (net_ratelimit())
416 				netdev_err(ndev, "Tx DMA memory map failed\n");
417 			goto dma_mapping_error;
418 		}
419 
420 		bdp->cbd_bufaddr = addr;
421 		bdp->cbd_datlen = frag_len;
422 		bdp->cbd_sc = status;
423 	}
424 
425 	txq->cur_tx = bdp;
426 
427 	return 0;
428 
429 dma_mapping_error:
430 	bdp = txq->cur_tx;
431 	for (i = 0; i < frag; i++) {
432 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
433 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
434 				bdp->cbd_datlen, DMA_TO_DEVICE);
435 	}
436 	return NETDEV_TX_OK;
437 }
438 
439 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
440 				   struct sk_buff *skb, struct net_device *ndev)
441 {
442 	struct fec_enet_private *fep = netdev_priv(ndev);
443 	const struct platform_device_id *id_entry =
444 				platform_get_device_id(fep->pdev);
445 	int nr_frags = skb_shinfo(skb)->nr_frags;
446 	struct bufdesc *bdp, *last_bdp;
447 	void *bufaddr;
448 	dma_addr_t addr;
449 	unsigned short status;
450 	unsigned short buflen;
451 	unsigned short queue;
452 	unsigned int estatus = 0;
453 	unsigned int index;
454 	int entries_free;
455 	int ret;
456 
457 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
458 	if (entries_free < MAX_SKB_FRAGS + 1) {
459 		dev_kfree_skb_any(skb);
460 		if (net_ratelimit())
461 			netdev_err(ndev, "NOT enough BD for SG!\n");
462 		return NETDEV_TX_OK;
463 	}
464 
465 	/* Protocol checksum off-load for TCP and UDP. */
466 	if (fec_enet_clear_csum(skb, ndev)) {
467 		dev_kfree_skb_any(skb);
468 		return NETDEV_TX_OK;
469 	}
470 
471 	/* Fill in a Tx ring entry */
472 	bdp = txq->cur_tx;
473 	status = bdp->cbd_sc;
474 	status &= ~BD_ENET_TX_STATS;
475 
476 	/* Set buffer length and buffer pointer */
477 	bufaddr = skb->data;
478 	buflen = skb_headlen(skb);
479 
480 	queue = skb_get_queue_mapping(skb);
481 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
482 	if (((unsigned long) bufaddr) & fep->tx_align ||
483 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
484 		memcpy(txq->tx_bounce[index], skb->data, buflen);
485 		bufaddr = txq->tx_bounce[index];
486 
487 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
488 			swap_buffer(bufaddr, buflen);
489 	}
490 
491 	/* Push the data cache so the CPM does not get stale memory data. */
492 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
493 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
494 		dev_kfree_skb_any(skb);
495 		if (net_ratelimit())
496 			netdev_err(ndev, "Tx DMA memory map failed\n");
497 		return NETDEV_TX_OK;
498 	}
499 
500 	if (nr_frags) {
501 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
502 		if (ret)
503 			return ret;
504 	} else {
505 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
506 		if (fep->bufdesc_ex) {
507 			estatus = BD_ENET_TX_INT;
508 			if (unlikely(skb_shinfo(skb)->tx_flags &
509 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
510 				estatus |= BD_ENET_TX_TS;
511 		}
512 	}
513 
514 	if (fep->bufdesc_ex) {
515 
516 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
517 
518 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
519 			fep->hwts_tx_en))
520 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
521 
522 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
523 			estatus |= FEC_TX_BD_FTYPE(queue);
524 
525 		if (skb->ip_summed == CHECKSUM_PARTIAL)
526 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
527 
528 		ebdp->cbd_bdu = 0;
529 		ebdp->cbd_esc = estatus;
530 	}
531 
532 	last_bdp = txq->cur_tx;
533 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
534 	/* Save skb pointer */
535 	txq->tx_skbuff[index] = skb;
536 
537 	bdp->cbd_datlen = buflen;
538 	bdp->cbd_bufaddr = addr;
539 
540 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
541 	 * it's the last BD of the frame, and to put the CRC on the end.
542 	 */
543 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
544 	bdp->cbd_sc = status;
545 
546 	/* If this was the last BD in the ring, start at the beginning again. */
547 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
548 
549 	skb_tx_timestamp(skb);
550 
551 	txq->cur_tx = bdp;
552 
553 	/* Trigger transmission start */
554 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
555 
556 	return 0;
557 }
558 
559 static int
560 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
561 			  struct net_device *ndev,
562 			  struct bufdesc *bdp, int index, char *data,
563 			  int size, bool last_tcp, bool is_last)
564 {
565 	struct fec_enet_private *fep = netdev_priv(ndev);
566 	const struct platform_device_id *id_entry =
567 				platform_get_device_id(fep->pdev);
568 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
569 	unsigned short queue = skb_get_queue_mapping(skb);
570 	unsigned short status;
571 	unsigned int estatus = 0;
572 	dma_addr_t addr;
573 
574 	status = bdp->cbd_sc;
575 	status &= ~BD_ENET_TX_STATS;
576 
577 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
578 
579 	if (((unsigned long) data) & fep->tx_align ||
580 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
581 		memcpy(txq->tx_bounce[index], data, size);
582 		data = txq->tx_bounce[index];
583 
584 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
585 			swap_buffer(data, size);
586 	}
587 
588 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
589 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
590 		dev_kfree_skb_any(skb);
591 		if (net_ratelimit())
592 			netdev_err(ndev, "Tx DMA memory map failed\n");
593 		return NETDEV_TX_BUSY;
594 	}
595 
596 	bdp->cbd_datlen = size;
597 	bdp->cbd_bufaddr = addr;
598 
599 	if (fep->bufdesc_ex) {
600 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
601 			estatus |= FEC_TX_BD_FTYPE(queue);
602 		if (skb->ip_summed == CHECKSUM_PARTIAL)
603 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
604 		ebdp->cbd_bdu = 0;
605 		ebdp->cbd_esc = estatus;
606 	}
607 
608 	/* Handle the last BD specially */
609 	if (last_tcp)
610 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
611 	if (is_last) {
612 		status |= BD_ENET_TX_INTR;
613 		if (fep->bufdesc_ex)
614 			ebdp->cbd_esc |= BD_ENET_TX_INT;
615 	}
616 
617 	bdp->cbd_sc = status;
618 
619 	return 0;
620 }
621 
622 static int
623 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
624 			 struct sk_buff *skb, struct net_device *ndev,
625 			 struct bufdesc *bdp, int index)
626 {
627 	struct fec_enet_private *fep = netdev_priv(ndev);
628 	const struct platform_device_id *id_entry =
629 				platform_get_device_id(fep->pdev);
630 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
631 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
632 	unsigned short queue = skb_get_queue_mapping(skb);
633 	void *bufaddr;
634 	unsigned long dmabuf;
635 	unsigned short status;
636 	unsigned int estatus = 0;
637 
638 	status = bdp->cbd_sc;
639 	status &= ~BD_ENET_TX_STATS;
640 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
641 
642 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
643 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
644 	if (((unsigned long)bufaddr) & fep->tx_align ||
645 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
646 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
647 		bufaddr = txq->tx_bounce[index];
648 
649 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
650 			swap_buffer(bufaddr, hdr_len);
651 
652 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
653 					hdr_len, DMA_TO_DEVICE);
654 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
655 			dev_kfree_skb_any(skb);
656 			if (net_ratelimit())
657 				netdev_err(ndev, "Tx DMA memory map failed\n");
658 			return NETDEV_TX_BUSY;
659 		}
660 	}
661 
662 	bdp->cbd_bufaddr = dmabuf;
663 	bdp->cbd_datlen = hdr_len;
664 
665 	if (fep->bufdesc_ex) {
666 		if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
667 			estatus |= FEC_TX_BD_FTYPE(queue);
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = estatus;
672 	}
673 
674 	bdp->cbd_sc = status;
675 
676 	return 0;
677 }
678 
679 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
680 				   struct sk_buff *skb,
681 				   struct net_device *ndev)
682 {
683 	struct fec_enet_private *fep = netdev_priv(ndev);
684 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
685 	int total_len, data_left;
686 	struct bufdesc *bdp = txq->cur_tx;
687 	unsigned short queue = skb_get_queue_mapping(skb);
688 	struct tso_t tso;
689 	unsigned int index = 0;
690 	int ret;
691 	const struct platform_device_id *id_entry =
692 				platform_get_device_id(fep->pdev);
693 
694 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
695 		dev_kfree_skb_any(skb);
696 		if (net_ratelimit())
697 			netdev_err(ndev, "NOT enough BD for TSO!\n");
698 		return NETDEV_TX_OK;
699 	}
700 
701 	/* Protocol checksum off-load for TCP and UDP. */
702 	if (fec_enet_clear_csum(skb, ndev)) {
703 		dev_kfree_skb_any(skb);
704 		return NETDEV_TX_OK;
705 	}
706 
707 	/* Initialize the TSO handler, and prepare the first payload */
708 	tso_start(skb, &tso);
709 
710 	total_len = skb->len - hdr_len;
711 	while (total_len > 0) {
712 		char *hdr;
713 
714 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
715 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
716 		total_len -= data_left;
717 
718 		/* prepare packet headers: MAC + IP + TCP */
719 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
720 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
721 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
722 		if (ret)
723 			goto err_release;
724 
725 		while (data_left > 0) {
726 			int size;
727 
728 			size = min_t(int, tso.size, data_left);
729 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
730 			index = fec_enet_get_bd_index(txq->tx_bd_base,
731 						      bdp, fep);
732 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
733 							bdp, index,
734 							tso.data, size,
735 							size == data_left,
736 							total_len == 0);
737 			if (ret)
738 				goto err_release;
739 
740 			data_left -= size;
741 			tso_build_data(skb, &tso, size);
742 		}
743 
744 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
745 	}
746 
747 	/* Save skb pointer */
748 	txq->tx_skbuff[index] = skb;
749 
750 	skb_tx_timestamp(skb);
751 	txq->cur_tx = bdp;
752 
753 	/* Trigger transmission start */
754 	if (!(id_entry->driver_data & FEC_QUIRK_ERR007885) ||
755 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
757 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
758 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
759 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
760 
761 	return 0;
762 
763 err_release:
764 	/* TODO: Release all used data descriptors for TSO */
765 	return ret;
766 }
767 
768 static netdev_tx_t
769 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
770 {
771 	struct fec_enet_private *fep = netdev_priv(ndev);
772 	int entries_free;
773 	unsigned short queue;
774 	struct fec_enet_priv_tx_q *txq;
775 	struct netdev_queue *nq;
776 	int ret;
777 
778 	queue = skb_get_queue_mapping(skb);
779 	txq = fep->tx_queue[queue];
780 	nq = netdev_get_tx_queue(ndev, queue);
781 
782 	if (skb_is_gso(skb))
783 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
784 	else
785 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
786 	if (ret)
787 		return ret;
788 
789 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
790 	if (entries_free <= txq->tx_stop_threshold)
791 		netif_tx_stop_queue(nq);
792 
793 	return NETDEV_TX_OK;
794 }
795 
796 /* Init RX & TX buffer descriptors
797  */
798 static void fec_enet_bd_init(struct net_device *dev)
799 {
800 	struct fec_enet_private *fep = netdev_priv(dev);
801 	struct fec_enet_priv_tx_q *txq;
802 	struct fec_enet_priv_rx_q *rxq;
803 	struct bufdesc *bdp;
804 	unsigned int i;
805 	unsigned int q;
806 
807 	for (q = 0; q < fep->num_rx_queues; q++) {
808 		/* Initialize the receive buffer descriptors. */
809 		rxq = fep->rx_queue[q];
810 		bdp = rxq->rx_bd_base;
811 
812 		for (i = 0; i < rxq->rx_ring_size; i++) {
813 
814 			/* Initialize the BD for every fragment in the page. */
815 			if (bdp->cbd_bufaddr)
816 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
817 			else
818 				bdp->cbd_sc = 0;
819 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
820 		}
821 
822 		/* Set the last buffer to wrap */
823 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
824 		bdp->cbd_sc |= BD_SC_WRAP;
825 
826 		rxq->cur_rx = rxq->rx_bd_base;
827 	}
828 
829 	for (q = 0; q < fep->num_tx_queues; q++) {
830 		/* ...and the same for transmit */
831 		txq = fep->tx_queue[q];
832 		bdp = txq->tx_bd_base;
833 		txq->cur_tx = bdp;
834 
835 		for (i = 0; i < txq->tx_ring_size; i++) {
836 			/* Initialize the BD for every fragment in the page. */
837 			bdp->cbd_sc = 0;
838 			if (txq->tx_skbuff[i]) {
839 				dev_kfree_skb_any(txq->tx_skbuff[i]);
840 				txq->tx_skbuff[i] = NULL;
841 			}
842 			bdp->cbd_bufaddr = 0;
843 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
844 		}
845 
846 		/* Set the last buffer to wrap */
847 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
848 		bdp->cbd_sc |= BD_SC_WRAP;
849 		txq->dirty_tx = bdp;
850 	}
851 }
852 
853 static void fec_enet_active_rxring(struct net_device *ndev)
854 {
855 	struct fec_enet_private *fep = netdev_priv(ndev);
856 	int i;
857 
858 	for (i = 0; i < fep->num_rx_queues; i++)
859 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
860 }
861 
862 static void fec_enet_enable_ring(struct net_device *ndev)
863 {
864 	struct fec_enet_private *fep = netdev_priv(ndev);
865 	struct fec_enet_priv_tx_q *txq;
866 	struct fec_enet_priv_rx_q *rxq;
867 	int i;
868 
869 	for (i = 0; i < fep->num_rx_queues; i++) {
870 		rxq = fep->rx_queue[i];
871 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
872 
873 		/* enable DMA1/2 */
874 		if (i)
875 			writel(RCMR_MATCHEN | RCMR_CMP(i),
876 			       fep->hwp + FEC_RCMR(i));
877 	}
878 
879 	for (i = 0; i < fep->num_tx_queues; i++) {
880 		txq = fep->tx_queue[i];
881 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
882 
883 		/* enable DMA1/2 */
884 		if (i)
885 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
886 			       fep->hwp + FEC_DMA_CFG(i));
887 	}
888 }
889 
890 static void fec_enet_reset_skb(struct net_device *ndev)
891 {
892 	struct fec_enet_private *fep = netdev_priv(ndev);
893 	struct fec_enet_priv_tx_q *txq;
894 	int i, j;
895 
896 	for (i = 0; i < fep->num_tx_queues; i++) {
897 		txq = fep->tx_queue[i];
898 
899 		for (j = 0; j < txq->tx_ring_size; j++) {
900 			if (txq->tx_skbuff[j]) {
901 				dev_kfree_skb_any(txq->tx_skbuff[j]);
902 				txq->tx_skbuff[j] = NULL;
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * This function is called to start or restart the FEC during a link
910  * change, transmit timeout, or to reconfigure the FEC.  The network
911  * packet processing for this device must be stopped before this call.
912  */
913 static void
914 fec_restart(struct net_device *ndev)
915 {
916 	struct fec_enet_private *fep = netdev_priv(ndev);
917 	const struct platform_device_id *id_entry =
918 				platform_get_device_id(fep->pdev);
919 	u32 val;
920 	u32 temp_mac[2];
921 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
922 	u32 ecntl = 0x2; /* ETHEREN */
923 
924 	/* Whack a reset.  We should wait for this.
925 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
926 	 * instead of reset MAC itself.
927 	 */
928 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
929 		writel(0, fep->hwp + FEC_ECNTRL);
930 	} else {
931 		writel(1, fep->hwp + FEC_ECNTRL);
932 		udelay(10);
933 	}
934 
935 	/*
936 	 * enet-mac reset will reset mac address registers too,
937 	 * so need to reconfigure it.
938 	 */
939 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
940 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
941 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
942 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
943 	}
944 
945 	/* Clear any outstanding interrupt. */
946 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
947 
948 	/* Set maximum receive buffer size. */
949 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
950 
951 	fec_enet_bd_init(ndev);
952 
953 	fec_enet_enable_ring(ndev);
954 
955 	/* Reset tx SKB buffers. */
956 	fec_enet_reset_skb(ndev);
957 
958 	/* Enable MII mode */
959 	if (fep->full_duplex == DUPLEX_FULL) {
960 		/* FD enable */
961 		writel(0x04, fep->hwp + FEC_X_CNTRL);
962 	} else {
963 		/* No Rcv on Xmit */
964 		rcntl |= 0x02;
965 		writel(0x0, fep->hwp + FEC_X_CNTRL);
966 	}
967 
968 	/* Set MII speed */
969 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
970 
971 #if !defined(CONFIG_M5272)
972 	/* set RX checksum */
973 	val = readl(fep->hwp + FEC_RACC);
974 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
975 		val |= FEC_RACC_OPTIONS;
976 	else
977 		val &= ~FEC_RACC_OPTIONS;
978 	writel(val, fep->hwp + FEC_RACC);
979 #endif
980 
981 	/*
982 	 * The phy interface and speed need to get configured
983 	 * differently on enet-mac.
984 	 */
985 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
986 		/* Enable flow control and length check */
987 		rcntl |= 0x40000000 | 0x00000020;
988 
989 		/* RGMII, RMII or MII */
990 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
991 			rcntl |= (1 << 6);
992 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993 			rcntl |= (1 << 8);
994 		else
995 			rcntl &= ~(1 << 8);
996 
997 		/* 1G, 100M or 10M */
998 		if (fep->phy_dev) {
999 			if (fep->phy_dev->speed == SPEED_1000)
1000 				ecntl |= (1 << 5);
1001 			else if (fep->phy_dev->speed == SPEED_100)
1002 				rcntl &= ~(1 << 9);
1003 			else
1004 				rcntl |= (1 << 9);
1005 		}
1006 	} else {
1007 #ifdef FEC_MIIGSK_ENR
1008 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
1009 			u32 cfgr;
1010 			/* disable the gasket and wait */
1011 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1012 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1013 				udelay(1);
1014 
1015 			/*
1016 			 * configure the gasket:
1017 			 *   RMII, 50 MHz, no loopback, no echo
1018 			 *   MII, 25 MHz, no loopback, no echo
1019 			 */
1020 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1021 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1022 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1023 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1024 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1025 
1026 			/* re-enable the gasket */
1027 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1028 		}
1029 #endif
1030 	}
1031 
1032 #if !defined(CONFIG_M5272)
1033 	/* enable pause frame*/
1034 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1035 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1036 	     fep->phy_dev && fep->phy_dev->pause)) {
1037 		rcntl |= FEC_ENET_FCE;
1038 
1039 		/* set FIFO threshold parameter to reduce overrun */
1040 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1041 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1042 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1043 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1044 
1045 		/* OPD */
1046 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1047 	} else {
1048 		rcntl &= ~FEC_ENET_FCE;
1049 	}
1050 #endif /* !defined(CONFIG_M5272) */
1051 
1052 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1053 
1054 	/* Setup multicast filter. */
1055 	set_multicast_list(ndev);
1056 #ifndef CONFIG_M5272
1057 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1058 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1059 #endif
1060 
1061 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1062 		/* enable ENET endian swap */
1063 		ecntl |= (1 << 8);
1064 		/* enable ENET store and forward mode */
1065 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1066 	}
1067 
1068 	if (fep->bufdesc_ex)
1069 		ecntl |= (1 << 4);
1070 
1071 #ifndef CONFIG_M5272
1072 	/* Enable the MIB statistic event counters */
1073 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1074 #endif
1075 
1076 	/* And last, enable the transmit and receive processing */
1077 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1078 	fec_enet_active_rxring(ndev);
1079 
1080 	if (fep->bufdesc_ex)
1081 		fec_ptp_start_cyclecounter(ndev);
1082 
1083 	/* Enable interrupts we wish to service */
1084 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 
1086 	/* Init the interrupt coalescing */
1087 	fec_enet_itr_coal_init(ndev);
1088 
1089 }
1090 
1091 static void
1092 fec_stop(struct net_device *ndev)
1093 {
1094 	struct fec_enet_private *fep = netdev_priv(ndev);
1095 	const struct platform_device_id *id_entry =
1096 				platform_get_device_id(fep->pdev);
1097 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1098 
1099 	/* We cannot expect a graceful transmit stop without link !!! */
1100 	if (fep->link) {
1101 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1102 		udelay(10);
1103 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1104 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1105 	}
1106 
1107 	/* Whack a reset.  We should wait for this.
1108 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1109 	 * instead of reset MAC itself.
1110 	 */
1111 	if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
1112 		writel(0, fep->hwp + FEC_ECNTRL);
1113 	} else {
1114 		writel(1, fep->hwp + FEC_ECNTRL);
1115 		udelay(10);
1116 	}
1117 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1118 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119 
1120 	/* We have to keep ENET enabled to have MII interrupt stay working */
1121 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1122 		writel(2, fep->hwp + FEC_ECNTRL);
1123 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1124 	}
1125 }
1126 
1127 
1128 static void
1129 fec_timeout(struct net_device *ndev)
1130 {
1131 	struct fec_enet_private *fep = netdev_priv(ndev);
1132 
1133 	fec_dump(ndev);
1134 
1135 	ndev->stats.tx_errors++;
1136 
1137 	schedule_work(&fep->tx_timeout_work);
1138 }
1139 
1140 static void fec_enet_timeout_work(struct work_struct *work)
1141 {
1142 	struct fec_enet_private *fep =
1143 		container_of(work, struct fec_enet_private, tx_timeout_work);
1144 	struct net_device *ndev = fep->netdev;
1145 
1146 	rtnl_lock();
1147 	if (netif_device_present(ndev) || netif_running(ndev)) {
1148 		napi_disable(&fep->napi);
1149 		netif_tx_lock_bh(ndev);
1150 		fec_restart(ndev);
1151 		netif_wake_queue(ndev);
1152 		netif_tx_unlock_bh(ndev);
1153 		napi_enable(&fep->napi);
1154 	}
1155 	rtnl_unlock();
1156 }
1157 
1158 static void
1159 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1160 	struct skb_shared_hwtstamps *hwtstamps)
1161 {
1162 	unsigned long flags;
1163 	u64 ns;
1164 
1165 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1166 	ns = timecounter_cyc2time(&fep->tc, ts);
1167 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1168 
1169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1170 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1171 }
1172 
1173 static void
1174 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1175 {
1176 	struct	fec_enet_private *fep;
1177 	struct bufdesc *bdp;
1178 	unsigned short status;
1179 	struct	sk_buff	*skb;
1180 	struct fec_enet_priv_tx_q *txq;
1181 	struct netdev_queue *nq;
1182 	int	index = 0;
1183 	int	entries_free;
1184 
1185 	fep = netdev_priv(ndev);
1186 
1187 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1188 
1189 	txq = fep->tx_queue[queue_id];
1190 	/* get next bdp of dirty_tx */
1191 	nq = netdev_get_tx_queue(ndev, queue_id);
1192 	bdp = txq->dirty_tx;
1193 
1194 	/* get next bdp of dirty_tx */
1195 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1196 
1197 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1198 
1199 		/* current queue is empty */
1200 		if (bdp == txq->cur_tx)
1201 			break;
1202 
1203 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1204 
1205 		skb = txq->tx_skbuff[index];
1206 		txq->tx_skbuff[index] = NULL;
1207 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1208 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1209 					bdp->cbd_datlen, DMA_TO_DEVICE);
1210 		bdp->cbd_bufaddr = 0;
1211 		if (!skb) {
1212 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1213 			continue;
1214 		}
1215 
1216 		/* Check for errors. */
1217 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1218 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1219 				   BD_ENET_TX_CSL)) {
1220 			ndev->stats.tx_errors++;
1221 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1222 				ndev->stats.tx_heartbeat_errors++;
1223 			if (status & BD_ENET_TX_LC)  /* Late collision */
1224 				ndev->stats.tx_window_errors++;
1225 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1226 				ndev->stats.tx_aborted_errors++;
1227 			if (status & BD_ENET_TX_UN)  /* Underrun */
1228 				ndev->stats.tx_fifo_errors++;
1229 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1230 				ndev->stats.tx_carrier_errors++;
1231 		} else {
1232 			ndev->stats.tx_packets++;
1233 			ndev->stats.tx_bytes += skb->len;
1234 		}
1235 
1236 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1237 			fep->bufdesc_ex) {
1238 			struct skb_shared_hwtstamps shhwtstamps;
1239 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1240 
1241 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1242 			skb_tstamp_tx(skb, &shhwtstamps);
1243 		}
1244 
1245 		/* Deferred means some collisions occurred during transmit,
1246 		 * but we eventually sent the packet OK.
1247 		 */
1248 		if (status & BD_ENET_TX_DEF)
1249 			ndev->stats.collisions++;
1250 
1251 		/* Free the sk buffer associated with this last transmit */
1252 		dev_kfree_skb_any(skb);
1253 
1254 		txq->dirty_tx = bdp;
1255 
1256 		/* Update pointer to next buffer descriptor to be transmitted */
1257 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1258 
1259 		/* Since we have freed up a buffer, the ring is no longer full
1260 		 */
1261 		if (netif_queue_stopped(ndev)) {
1262 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1263 			if (entries_free >= txq->tx_wake_threshold)
1264 				netif_tx_wake_queue(nq);
1265 		}
1266 	}
1267 
1268 	/* ERR006538: Keep the transmitter going */
1269 	if (bdp != txq->cur_tx &&
1270 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1271 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1272 }
1273 
1274 static void
1275 fec_enet_tx(struct net_device *ndev)
1276 {
1277 	struct fec_enet_private *fep = netdev_priv(ndev);
1278 	u16 queue_id;
1279 	/* First process class A queue, then Class B and Best Effort queue */
1280 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1281 		clear_bit(queue_id, &fep->work_tx);
1282 		fec_enet_tx_queue(ndev, queue_id);
1283 	}
1284 	return;
1285 }
1286 
1287 static int
1288 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1289 {
1290 	struct  fec_enet_private *fep = netdev_priv(ndev);
1291 	int off;
1292 
1293 	off = ((unsigned long)skb->data) & fep->rx_align;
1294 	if (off)
1295 		skb_reserve(skb, fep->rx_align + 1 - off);
1296 
1297 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1298 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1299 					  DMA_FROM_DEVICE);
1300 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1301 		if (net_ratelimit())
1302 			netdev_err(ndev, "Rx DMA memory map failed\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1310 			       struct bufdesc *bdp, u32 length)
1311 {
1312 	struct  fec_enet_private *fep = netdev_priv(ndev);
1313 	struct sk_buff *new_skb;
1314 
1315 	if (length > fep->rx_copybreak)
1316 		return false;
1317 
1318 	new_skb = netdev_alloc_skb(ndev, length);
1319 	if (!new_skb)
1320 		return false;
1321 
1322 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1323 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1324 				DMA_FROM_DEVICE);
1325 	memcpy(new_skb->data, (*skb)->data, length);
1326 	*skb = new_skb;
1327 
1328 	return true;
1329 }
1330 
1331 /* During a receive, the cur_rx points to the current incoming buffer.
1332  * When we update through the ring, if the next incoming buffer has
1333  * not been given to the system, we just set the empty indicator,
1334  * effectively tossing the packet.
1335  */
1336 static int
1337 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1338 {
1339 	struct fec_enet_private *fep = netdev_priv(ndev);
1340 	const struct platform_device_id *id_entry =
1341 				platform_get_device_id(fep->pdev);
1342 	struct fec_enet_priv_rx_q *rxq;
1343 	struct bufdesc *bdp;
1344 	unsigned short status;
1345 	struct  sk_buff *skb_new = NULL;
1346 	struct  sk_buff *skb;
1347 	ushort	pkt_len;
1348 	__u8 *data;
1349 	int	pkt_received = 0;
1350 	struct	bufdesc_ex *ebdp = NULL;
1351 	bool	vlan_packet_rcvd = false;
1352 	u16	vlan_tag;
1353 	int	index = 0;
1354 	bool	is_copybreak;
1355 
1356 #ifdef CONFIG_M532x
1357 	flush_cache_all();
1358 #endif
1359 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1360 	rxq = fep->rx_queue[queue_id];
1361 
1362 	/* First, grab all of the stats for the incoming packet.
1363 	 * These get messed up if we get called due to a busy condition.
1364 	 */
1365 	bdp = rxq->cur_rx;
1366 
1367 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1368 
1369 		if (pkt_received >= budget)
1370 			break;
1371 		pkt_received++;
1372 
1373 		/* Since we have allocated space to hold a complete frame,
1374 		 * the last indicator should be set.
1375 		 */
1376 		if ((status & BD_ENET_RX_LAST) == 0)
1377 			netdev_err(ndev, "rcv is not +last\n");
1378 
1379 
1380 		/* Check for errors. */
1381 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1382 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1383 			ndev->stats.rx_errors++;
1384 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1385 				/* Frame too long or too short. */
1386 				ndev->stats.rx_length_errors++;
1387 			}
1388 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1389 				ndev->stats.rx_frame_errors++;
1390 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1391 				ndev->stats.rx_crc_errors++;
1392 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1393 				ndev->stats.rx_fifo_errors++;
1394 		}
1395 
1396 		/* Report late collisions as a frame error.
1397 		 * On this error, the BD is closed, but we don't know what we
1398 		 * have in the buffer.  So, just drop this frame on the floor.
1399 		 */
1400 		if (status & BD_ENET_RX_CL) {
1401 			ndev->stats.rx_errors++;
1402 			ndev->stats.rx_frame_errors++;
1403 			goto rx_processing_done;
1404 		}
1405 
1406 		/* Process the incoming frame. */
1407 		ndev->stats.rx_packets++;
1408 		pkt_len = bdp->cbd_datlen;
1409 		ndev->stats.rx_bytes += pkt_len;
1410 
1411 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1412 		skb = rxq->rx_skbuff[index];
1413 
1414 		/* The packet length includes FCS, but we don't want to
1415 		 * include that when passing upstream as it messes up
1416 		 * bridging applications.
1417 		 */
1418 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4);
1419 		if (!is_copybreak) {
1420 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1421 			if (unlikely(!skb_new)) {
1422 				ndev->stats.rx_dropped++;
1423 				goto rx_processing_done;
1424 			}
1425 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1426 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1427 					 DMA_FROM_DEVICE);
1428 		}
1429 
1430 		prefetch(skb->data - NET_IP_ALIGN);
1431 		skb_put(skb, pkt_len - 4);
1432 		data = skb->data;
1433 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1434 			swap_buffer(data, pkt_len);
1435 
1436 		/* Extract the enhanced buffer descriptor */
1437 		ebdp = NULL;
1438 		if (fep->bufdesc_ex)
1439 			ebdp = (struct bufdesc_ex *)bdp;
1440 
1441 		/* If this is a VLAN packet remove the VLAN Tag */
1442 		vlan_packet_rcvd = false;
1443 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1444 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1445 			/* Push and remove the vlan tag */
1446 			struct vlan_hdr *vlan_header =
1447 					(struct vlan_hdr *) (data + ETH_HLEN);
1448 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1449 
1450 			vlan_packet_rcvd = true;
1451 
1452 			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1453 						       data, (2 * ETH_ALEN));
1454 			skb_pull(skb, VLAN_HLEN);
1455 		}
1456 
1457 		skb->protocol = eth_type_trans(skb, ndev);
1458 
1459 		/* Get receive timestamp from the skb */
1460 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1461 			fec_enet_hwtstamp(fep, ebdp->ts,
1462 					  skb_hwtstamps(skb));
1463 
1464 		if (fep->bufdesc_ex &&
1465 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1466 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1467 				/* don't check it */
1468 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1469 			} else {
1470 				skb_checksum_none_assert(skb);
1471 			}
1472 		}
1473 
1474 		/* Handle received VLAN packets */
1475 		if (vlan_packet_rcvd)
1476 			__vlan_hwaccel_put_tag(skb,
1477 					       htons(ETH_P_8021Q),
1478 					       vlan_tag);
1479 
1480 		napi_gro_receive(&fep->napi, skb);
1481 
1482 		if (is_copybreak) {
1483 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1484 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1485 						   DMA_FROM_DEVICE);
1486 		} else {
1487 			rxq->rx_skbuff[index] = skb_new;
1488 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1489 		}
1490 
1491 rx_processing_done:
1492 		/* Clear the status flags for this buffer */
1493 		status &= ~BD_ENET_RX_STATS;
1494 
1495 		/* Mark the buffer empty */
1496 		status |= BD_ENET_RX_EMPTY;
1497 		bdp->cbd_sc = status;
1498 
1499 		if (fep->bufdesc_ex) {
1500 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1501 
1502 			ebdp->cbd_esc = BD_ENET_RX_INT;
1503 			ebdp->cbd_prot = 0;
1504 			ebdp->cbd_bdu = 0;
1505 		}
1506 
1507 		/* Update BD pointer to next entry */
1508 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1509 
1510 		/* Doing this here will keep the FEC running while we process
1511 		 * incoming frames.  On a heavily loaded network, we should be
1512 		 * able to keep up at the expense of system resources.
1513 		 */
1514 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1515 	}
1516 	rxq->cur_rx = bdp;
1517 	return pkt_received;
1518 }
1519 
1520 static int
1521 fec_enet_rx(struct net_device *ndev, int budget)
1522 {
1523 	int     pkt_received = 0;
1524 	u16	queue_id;
1525 	struct fec_enet_private *fep = netdev_priv(ndev);
1526 
1527 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1528 		clear_bit(queue_id, &fep->work_rx);
1529 		pkt_received += fec_enet_rx_queue(ndev,
1530 					budget - pkt_received, queue_id);
1531 	}
1532 	return pkt_received;
1533 }
1534 
1535 static bool
1536 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1537 {
1538 	if (int_events == 0)
1539 		return false;
1540 
1541 	if (int_events & FEC_ENET_RXF)
1542 		fep->work_rx |= (1 << 2);
1543 	if (int_events & FEC_ENET_RXF_1)
1544 		fep->work_rx |= (1 << 0);
1545 	if (int_events & FEC_ENET_RXF_2)
1546 		fep->work_rx |= (1 << 1);
1547 
1548 	if (int_events & FEC_ENET_TXF)
1549 		fep->work_tx |= (1 << 2);
1550 	if (int_events & FEC_ENET_TXF_1)
1551 		fep->work_tx |= (1 << 0);
1552 	if (int_events & FEC_ENET_TXF_2)
1553 		fep->work_tx |= (1 << 1);
1554 
1555 	return true;
1556 }
1557 
1558 static irqreturn_t
1559 fec_enet_interrupt(int irq, void *dev_id)
1560 {
1561 	struct net_device *ndev = dev_id;
1562 	struct fec_enet_private *fep = netdev_priv(ndev);
1563 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1564 	uint int_events;
1565 	irqreturn_t ret = IRQ_NONE;
1566 
1567 	int_events = readl(fep->hwp + FEC_IEVENT);
1568 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1569 	fec_enet_collect_events(fep, int_events);
1570 
1571 	if (int_events & napi_mask) {
1572 		ret = IRQ_HANDLED;
1573 
1574 		/* Disable the NAPI interrupts */
1575 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1576 		napi_schedule(&fep->napi);
1577 	}
1578 
1579 	if (int_events & FEC_ENET_MII) {
1580 		ret = IRQ_HANDLED;
1581 		complete(&fep->mdio_done);
1582 	}
1583 
1584 	if (fep->ptp_clock)
1585 		fec_ptp_check_pps_event(fep);
1586 
1587 	return ret;
1588 }
1589 
1590 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1591 {
1592 	struct net_device *ndev = napi->dev;
1593 	struct fec_enet_private *fep = netdev_priv(ndev);
1594 	int pkts;
1595 
1596 	/*
1597 	 * Clear any pending transmit or receive interrupts before
1598 	 * processing the rings to avoid racing with the hardware.
1599 	 */
1600 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1601 
1602 	pkts = fec_enet_rx(ndev, budget);
1603 
1604 	fec_enet_tx(ndev);
1605 
1606 	if (pkts < budget) {
1607 		napi_complete(napi);
1608 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1609 	}
1610 	return pkts;
1611 }
1612 
1613 /* ------------------------------------------------------------------------- */
1614 static void fec_get_mac(struct net_device *ndev)
1615 {
1616 	struct fec_enet_private *fep = netdev_priv(ndev);
1617 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1618 	unsigned char *iap, tmpaddr[ETH_ALEN];
1619 
1620 	/*
1621 	 * try to get mac address in following order:
1622 	 *
1623 	 * 1) module parameter via kernel command line in form
1624 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1625 	 */
1626 	iap = macaddr;
1627 
1628 	/*
1629 	 * 2) from device tree data
1630 	 */
1631 	if (!is_valid_ether_addr(iap)) {
1632 		struct device_node *np = fep->pdev->dev.of_node;
1633 		if (np) {
1634 			const char *mac = of_get_mac_address(np);
1635 			if (mac)
1636 				iap = (unsigned char *) mac;
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * 3) from flash or fuse (via platform data)
1642 	 */
1643 	if (!is_valid_ether_addr(iap)) {
1644 #ifdef CONFIG_M5272
1645 		if (FEC_FLASHMAC)
1646 			iap = (unsigned char *)FEC_FLASHMAC;
1647 #else
1648 		if (pdata)
1649 			iap = (unsigned char *)&pdata->mac;
1650 #endif
1651 	}
1652 
1653 	/*
1654 	 * 4) FEC mac registers set by bootloader
1655 	 */
1656 	if (!is_valid_ether_addr(iap)) {
1657 		*((__be32 *) &tmpaddr[0]) =
1658 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1659 		*((__be16 *) &tmpaddr[4]) =
1660 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1661 		iap = &tmpaddr[0];
1662 	}
1663 
1664 	/*
1665 	 * 5) random mac address
1666 	 */
1667 	if (!is_valid_ether_addr(iap)) {
1668 		/* Report it and use a random ethernet address instead */
1669 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1670 		eth_hw_addr_random(ndev);
1671 		netdev_info(ndev, "Using random MAC address: %pM\n",
1672 			    ndev->dev_addr);
1673 		return;
1674 	}
1675 
1676 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1677 
1678 	/* Adjust MAC if using macaddr */
1679 	if (iap == macaddr)
1680 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1681 }
1682 
1683 /* ------------------------------------------------------------------------- */
1684 
1685 /*
1686  * Phy section
1687  */
1688 static void fec_enet_adjust_link(struct net_device *ndev)
1689 {
1690 	struct fec_enet_private *fep = netdev_priv(ndev);
1691 	struct phy_device *phy_dev = fep->phy_dev;
1692 	int status_change = 0;
1693 
1694 	/* Prevent a state halted on mii error */
1695 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1696 		phy_dev->state = PHY_RESUMING;
1697 		return;
1698 	}
1699 
1700 	/*
1701 	 * If the netdev is down, or is going down, we're not interested
1702 	 * in link state events, so just mark our idea of the link as down
1703 	 * and ignore the event.
1704 	 */
1705 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1706 		fep->link = 0;
1707 	} else if (phy_dev->link) {
1708 		if (!fep->link) {
1709 			fep->link = phy_dev->link;
1710 			status_change = 1;
1711 		}
1712 
1713 		if (fep->full_duplex != phy_dev->duplex) {
1714 			fep->full_duplex = phy_dev->duplex;
1715 			status_change = 1;
1716 		}
1717 
1718 		if (phy_dev->speed != fep->speed) {
1719 			fep->speed = phy_dev->speed;
1720 			status_change = 1;
1721 		}
1722 
1723 		/* if any of the above changed restart the FEC */
1724 		if (status_change) {
1725 			napi_disable(&fep->napi);
1726 			netif_tx_lock_bh(ndev);
1727 			fec_restart(ndev);
1728 			netif_wake_queue(ndev);
1729 			netif_tx_unlock_bh(ndev);
1730 			napi_enable(&fep->napi);
1731 		}
1732 	} else {
1733 		if (fep->link) {
1734 			napi_disable(&fep->napi);
1735 			netif_tx_lock_bh(ndev);
1736 			fec_stop(ndev);
1737 			netif_tx_unlock_bh(ndev);
1738 			napi_enable(&fep->napi);
1739 			fep->link = phy_dev->link;
1740 			status_change = 1;
1741 		}
1742 	}
1743 
1744 	if (status_change)
1745 		phy_print_status(phy_dev);
1746 }
1747 
1748 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1749 {
1750 	struct fec_enet_private *fep = bus->priv;
1751 	unsigned long time_left;
1752 
1753 	fep->mii_timeout = 0;
1754 	init_completion(&fep->mdio_done);
1755 
1756 	/* start a read op */
1757 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1758 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1759 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1760 
1761 	/* wait for end of transfer */
1762 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1763 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1764 	if (time_left == 0) {
1765 		fep->mii_timeout = 1;
1766 		netdev_err(fep->netdev, "MDIO read timeout\n");
1767 		return -ETIMEDOUT;
1768 	}
1769 
1770 	/* return value */
1771 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1772 }
1773 
1774 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1775 			   u16 value)
1776 {
1777 	struct fec_enet_private *fep = bus->priv;
1778 	unsigned long time_left;
1779 
1780 	fep->mii_timeout = 0;
1781 	init_completion(&fep->mdio_done);
1782 
1783 	/* start a write op */
1784 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1785 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1786 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1787 		fep->hwp + FEC_MII_DATA);
1788 
1789 	/* wait for end of transfer */
1790 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1791 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1792 	if (time_left == 0) {
1793 		fep->mii_timeout = 1;
1794 		netdev_err(fep->netdev, "MDIO write timeout\n");
1795 		return -ETIMEDOUT;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1802 {
1803 	struct fec_enet_private *fep = netdev_priv(ndev);
1804 	int ret;
1805 
1806 	if (enable) {
1807 		ret = clk_prepare_enable(fep->clk_ahb);
1808 		if (ret)
1809 			return ret;
1810 		ret = clk_prepare_enable(fep->clk_ipg);
1811 		if (ret)
1812 			goto failed_clk_ipg;
1813 		if (fep->clk_enet_out) {
1814 			ret = clk_prepare_enable(fep->clk_enet_out);
1815 			if (ret)
1816 				goto failed_clk_enet_out;
1817 		}
1818 		if (fep->clk_ptp) {
1819 			mutex_lock(&fep->ptp_clk_mutex);
1820 			ret = clk_prepare_enable(fep->clk_ptp);
1821 			if (ret) {
1822 				mutex_unlock(&fep->ptp_clk_mutex);
1823 				goto failed_clk_ptp;
1824 			} else {
1825 				fep->ptp_clk_on = true;
1826 			}
1827 			mutex_unlock(&fep->ptp_clk_mutex);
1828 		}
1829 		if (fep->clk_ref) {
1830 			ret = clk_prepare_enable(fep->clk_ref);
1831 			if (ret)
1832 				goto failed_clk_ref;
1833 		}
1834 	} else {
1835 		clk_disable_unprepare(fep->clk_ahb);
1836 		clk_disable_unprepare(fep->clk_ipg);
1837 		if (fep->clk_enet_out)
1838 			clk_disable_unprepare(fep->clk_enet_out);
1839 		if (fep->clk_ptp) {
1840 			mutex_lock(&fep->ptp_clk_mutex);
1841 			clk_disable_unprepare(fep->clk_ptp);
1842 			fep->ptp_clk_on = false;
1843 			mutex_unlock(&fep->ptp_clk_mutex);
1844 		}
1845 		if (fep->clk_ref)
1846 			clk_disable_unprepare(fep->clk_ref);
1847 	}
1848 
1849 	return 0;
1850 
1851 failed_clk_ref:
1852 	if (fep->clk_ref)
1853 		clk_disable_unprepare(fep->clk_ref);
1854 failed_clk_ptp:
1855 	if (fep->clk_enet_out)
1856 		clk_disable_unprepare(fep->clk_enet_out);
1857 failed_clk_enet_out:
1858 		clk_disable_unprepare(fep->clk_ipg);
1859 failed_clk_ipg:
1860 		clk_disable_unprepare(fep->clk_ahb);
1861 
1862 	return ret;
1863 }
1864 
1865 static int fec_enet_mii_probe(struct net_device *ndev)
1866 {
1867 	struct fec_enet_private *fep = netdev_priv(ndev);
1868 	const struct platform_device_id *id_entry =
1869 				platform_get_device_id(fep->pdev);
1870 	struct phy_device *phy_dev = NULL;
1871 	char mdio_bus_id[MII_BUS_ID_SIZE];
1872 	char phy_name[MII_BUS_ID_SIZE + 3];
1873 	int phy_id;
1874 	int dev_id = fep->dev_id;
1875 
1876 	fep->phy_dev = NULL;
1877 
1878 	if (fep->phy_node) {
1879 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1880 					 &fec_enet_adjust_link, 0,
1881 					 fep->phy_interface);
1882 	} else {
1883 		/* check for attached phy */
1884 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1885 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1886 				continue;
1887 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1888 				continue;
1889 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1890 				continue;
1891 			if (dev_id--)
1892 				continue;
1893 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1894 			break;
1895 		}
1896 
1897 		if (phy_id >= PHY_MAX_ADDR) {
1898 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1899 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1900 			phy_id = 0;
1901 		}
1902 
1903 		snprintf(phy_name, sizeof(phy_name),
1904 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1905 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1906 				      fep->phy_interface);
1907 	}
1908 
1909 	if (IS_ERR(phy_dev)) {
1910 		netdev_err(ndev, "could not attach to PHY\n");
1911 		return PTR_ERR(phy_dev);
1912 	}
1913 
1914 	/* mask with MAC supported features */
1915 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1916 		phy_dev->supported &= PHY_GBIT_FEATURES;
1917 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1918 #if !defined(CONFIG_M5272)
1919 		phy_dev->supported |= SUPPORTED_Pause;
1920 #endif
1921 	}
1922 	else
1923 		phy_dev->supported &= PHY_BASIC_FEATURES;
1924 
1925 	phy_dev->advertising = phy_dev->supported;
1926 
1927 	fep->phy_dev = phy_dev;
1928 	fep->link = 0;
1929 	fep->full_duplex = 0;
1930 
1931 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1932 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1933 		    fep->phy_dev->irq);
1934 
1935 	return 0;
1936 }
1937 
1938 static int fec_enet_mii_init(struct platform_device *pdev)
1939 {
1940 	static struct mii_bus *fec0_mii_bus;
1941 	struct net_device *ndev = platform_get_drvdata(pdev);
1942 	struct fec_enet_private *fep = netdev_priv(ndev);
1943 	const struct platform_device_id *id_entry =
1944 				platform_get_device_id(fep->pdev);
1945 	struct device_node *node;
1946 	int err = -ENXIO, i;
1947 
1948 	/*
1949 	 * The dual fec interfaces are not equivalent with enet-mac.
1950 	 * Here are the differences:
1951 	 *
1952 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1953 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1954 	 *  - external phys can only be configured by fec0
1955 	 *
1956 	 * That is to say fec1 can not work independently. It only works
1957 	 * when fec0 is working. The reason behind this design is that the
1958 	 * second interface is added primarily for Switch mode.
1959 	 *
1960 	 * Because of the last point above, both phys are attached on fec0
1961 	 * mdio interface in board design, and need to be configured by
1962 	 * fec0 mii_bus.
1963 	 */
1964 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1965 		/* fec1 uses fec0 mii_bus */
1966 		if (mii_cnt && fec0_mii_bus) {
1967 			fep->mii_bus = fec0_mii_bus;
1968 			mii_cnt++;
1969 			return 0;
1970 		}
1971 		return -ENOENT;
1972 	}
1973 
1974 	fep->mii_timeout = 0;
1975 
1976 	/*
1977 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1978 	 *
1979 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1980 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1981 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1982 	 * document.
1983 	 */
1984 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1985 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1986 		fep->phy_speed--;
1987 	fep->phy_speed <<= 1;
1988 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1989 
1990 	fep->mii_bus = mdiobus_alloc();
1991 	if (fep->mii_bus == NULL) {
1992 		err = -ENOMEM;
1993 		goto err_out;
1994 	}
1995 
1996 	fep->mii_bus->name = "fec_enet_mii_bus";
1997 	fep->mii_bus->read = fec_enet_mdio_read;
1998 	fep->mii_bus->write = fec_enet_mdio_write;
1999 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2000 		pdev->name, fep->dev_id + 1);
2001 	fep->mii_bus->priv = fep;
2002 	fep->mii_bus->parent = &pdev->dev;
2003 
2004 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2005 	if (!fep->mii_bus->irq) {
2006 		err = -ENOMEM;
2007 		goto err_out_free_mdiobus;
2008 	}
2009 
2010 	for (i = 0; i < PHY_MAX_ADDR; i++)
2011 		fep->mii_bus->irq[i] = PHY_POLL;
2012 
2013 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2014 	if (node) {
2015 		err = of_mdiobus_register(fep->mii_bus, node);
2016 		of_node_put(node);
2017 	} else {
2018 		err = mdiobus_register(fep->mii_bus);
2019 	}
2020 
2021 	if (err)
2022 		goto err_out_free_mdio_irq;
2023 
2024 	mii_cnt++;
2025 
2026 	/* save fec0 mii_bus */
2027 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2028 		fec0_mii_bus = fep->mii_bus;
2029 
2030 	return 0;
2031 
2032 err_out_free_mdio_irq:
2033 	kfree(fep->mii_bus->irq);
2034 err_out_free_mdiobus:
2035 	mdiobus_free(fep->mii_bus);
2036 err_out:
2037 	return err;
2038 }
2039 
2040 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2041 {
2042 	if (--mii_cnt == 0) {
2043 		mdiobus_unregister(fep->mii_bus);
2044 		kfree(fep->mii_bus->irq);
2045 		mdiobus_free(fep->mii_bus);
2046 	}
2047 }
2048 
2049 static int fec_enet_get_settings(struct net_device *ndev,
2050 				  struct ethtool_cmd *cmd)
2051 {
2052 	struct fec_enet_private *fep = netdev_priv(ndev);
2053 	struct phy_device *phydev = fep->phy_dev;
2054 
2055 	if (!phydev)
2056 		return -ENODEV;
2057 
2058 	return phy_ethtool_gset(phydev, cmd);
2059 }
2060 
2061 static int fec_enet_set_settings(struct net_device *ndev,
2062 				 struct ethtool_cmd *cmd)
2063 {
2064 	struct fec_enet_private *fep = netdev_priv(ndev);
2065 	struct phy_device *phydev = fep->phy_dev;
2066 
2067 	if (!phydev)
2068 		return -ENODEV;
2069 
2070 	return phy_ethtool_sset(phydev, cmd);
2071 }
2072 
2073 static void fec_enet_get_drvinfo(struct net_device *ndev,
2074 				 struct ethtool_drvinfo *info)
2075 {
2076 	struct fec_enet_private *fep = netdev_priv(ndev);
2077 
2078 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2079 		sizeof(info->driver));
2080 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2081 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2082 }
2083 
2084 static int fec_enet_get_ts_info(struct net_device *ndev,
2085 				struct ethtool_ts_info *info)
2086 {
2087 	struct fec_enet_private *fep = netdev_priv(ndev);
2088 
2089 	if (fep->bufdesc_ex) {
2090 
2091 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2092 					SOF_TIMESTAMPING_RX_SOFTWARE |
2093 					SOF_TIMESTAMPING_SOFTWARE |
2094 					SOF_TIMESTAMPING_TX_HARDWARE |
2095 					SOF_TIMESTAMPING_RX_HARDWARE |
2096 					SOF_TIMESTAMPING_RAW_HARDWARE;
2097 		if (fep->ptp_clock)
2098 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2099 		else
2100 			info->phc_index = -1;
2101 
2102 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2103 				 (1 << HWTSTAMP_TX_ON);
2104 
2105 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2106 				   (1 << HWTSTAMP_FILTER_ALL);
2107 		return 0;
2108 	} else {
2109 		return ethtool_op_get_ts_info(ndev, info);
2110 	}
2111 }
2112 
2113 #if !defined(CONFIG_M5272)
2114 
2115 static void fec_enet_get_pauseparam(struct net_device *ndev,
2116 				    struct ethtool_pauseparam *pause)
2117 {
2118 	struct fec_enet_private *fep = netdev_priv(ndev);
2119 
2120 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2121 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2122 	pause->rx_pause = pause->tx_pause;
2123 }
2124 
2125 static int fec_enet_set_pauseparam(struct net_device *ndev,
2126 				   struct ethtool_pauseparam *pause)
2127 {
2128 	struct fec_enet_private *fep = netdev_priv(ndev);
2129 
2130 	if (!fep->phy_dev)
2131 		return -ENODEV;
2132 
2133 	if (pause->tx_pause != pause->rx_pause) {
2134 		netdev_info(ndev,
2135 			"hardware only support enable/disable both tx and rx");
2136 		return -EINVAL;
2137 	}
2138 
2139 	fep->pause_flag = 0;
2140 
2141 	/* tx pause must be same as rx pause */
2142 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2143 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2144 
2145 	if (pause->rx_pause || pause->autoneg) {
2146 		fep->phy_dev->supported |= ADVERTISED_Pause;
2147 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2148 	} else {
2149 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2150 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2151 	}
2152 
2153 	if (pause->autoneg) {
2154 		if (netif_running(ndev))
2155 			fec_stop(ndev);
2156 		phy_start_aneg(fep->phy_dev);
2157 	}
2158 	if (netif_running(ndev)) {
2159 		napi_disable(&fep->napi);
2160 		netif_tx_lock_bh(ndev);
2161 		fec_restart(ndev);
2162 		netif_wake_queue(ndev);
2163 		netif_tx_unlock_bh(ndev);
2164 		napi_enable(&fep->napi);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static const struct fec_stat {
2171 	char name[ETH_GSTRING_LEN];
2172 	u16 offset;
2173 } fec_stats[] = {
2174 	/* RMON TX */
2175 	{ "tx_dropped", RMON_T_DROP },
2176 	{ "tx_packets", RMON_T_PACKETS },
2177 	{ "tx_broadcast", RMON_T_BC_PKT },
2178 	{ "tx_multicast", RMON_T_MC_PKT },
2179 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2180 	{ "tx_undersize", RMON_T_UNDERSIZE },
2181 	{ "tx_oversize", RMON_T_OVERSIZE },
2182 	{ "tx_fragment", RMON_T_FRAG },
2183 	{ "tx_jabber", RMON_T_JAB },
2184 	{ "tx_collision", RMON_T_COL },
2185 	{ "tx_64byte", RMON_T_P64 },
2186 	{ "tx_65to127byte", RMON_T_P65TO127 },
2187 	{ "tx_128to255byte", RMON_T_P128TO255 },
2188 	{ "tx_256to511byte", RMON_T_P256TO511 },
2189 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2190 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2191 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2192 	{ "tx_octets", RMON_T_OCTETS },
2193 
2194 	/* IEEE TX */
2195 	{ "IEEE_tx_drop", IEEE_T_DROP },
2196 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2197 	{ "IEEE_tx_1col", IEEE_T_1COL },
2198 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2199 	{ "IEEE_tx_def", IEEE_T_DEF },
2200 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2201 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2202 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2203 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2204 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2205 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2206 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2207 
2208 	/* RMON RX */
2209 	{ "rx_packets", RMON_R_PACKETS },
2210 	{ "rx_broadcast", RMON_R_BC_PKT },
2211 	{ "rx_multicast", RMON_R_MC_PKT },
2212 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2213 	{ "rx_undersize", RMON_R_UNDERSIZE },
2214 	{ "rx_oversize", RMON_R_OVERSIZE },
2215 	{ "rx_fragment", RMON_R_FRAG },
2216 	{ "rx_jabber", RMON_R_JAB },
2217 	{ "rx_64byte", RMON_R_P64 },
2218 	{ "rx_65to127byte", RMON_R_P65TO127 },
2219 	{ "rx_128to255byte", RMON_R_P128TO255 },
2220 	{ "rx_256to511byte", RMON_R_P256TO511 },
2221 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2222 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2223 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2224 	{ "rx_octets", RMON_R_OCTETS },
2225 
2226 	/* IEEE RX */
2227 	{ "IEEE_rx_drop", IEEE_R_DROP },
2228 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2229 	{ "IEEE_rx_crc", IEEE_R_CRC },
2230 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2231 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2232 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2233 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2234 };
2235 
2236 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2237 	struct ethtool_stats *stats, u64 *data)
2238 {
2239 	struct fec_enet_private *fep = netdev_priv(dev);
2240 	int i;
2241 
2242 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2243 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2244 }
2245 
2246 static void fec_enet_get_strings(struct net_device *netdev,
2247 	u32 stringset, u8 *data)
2248 {
2249 	int i;
2250 	switch (stringset) {
2251 	case ETH_SS_STATS:
2252 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2253 			memcpy(data + i * ETH_GSTRING_LEN,
2254 				fec_stats[i].name, ETH_GSTRING_LEN);
2255 		break;
2256 	}
2257 }
2258 
2259 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2260 {
2261 	switch (sset) {
2262 	case ETH_SS_STATS:
2263 		return ARRAY_SIZE(fec_stats);
2264 	default:
2265 		return -EOPNOTSUPP;
2266 	}
2267 }
2268 #endif /* !defined(CONFIG_M5272) */
2269 
2270 static int fec_enet_nway_reset(struct net_device *dev)
2271 {
2272 	struct fec_enet_private *fep = netdev_priv(dev);
2273 	struct phy_device *phydev = fep->phy_dev;
2274 
2275 	if (!phydev)
2276 		return -ENODEV;
2277 
2278 	return genphy_restart_aneg(phydev);
2279 }
2280 
2281 /* ITR clock source is enet system clock (clk_ahb).
2282  * TCTT unit is cycle_ns * 64 cycle
2283  * So, the ICTT value = X us / (cycle_ns * 64)
2284  */
2285 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2286 {
2287 	struct fec_enet_private *fep = netdev_priv(ndev);
2288 
2289 	return us * (fep->itr_clk_rate / 64000) / 1000;
2290 }
2291 
2292 /* Set threshold for interrupt coalescing */
2293 static void fec_enet_itr_coal_set(struct net_device *ndev)
2294 {
2295 	struct fec_enet_private *fep = netdev_priv(ndev);
2296 	const struct platform_device_id *id_entry =
2297 				platform_get_device_id(fep->pdev);
2298 	int rx_itr, tx_itr;
2299 
2300 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2301 		return;
2302 
2303 	/* Must be greater than zero to avoid unpredictable behavior */
2304 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2305 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2306 		return;
2307 
2308 	/* Select enet system clock as Interrupt Coalescing
2309 	 * timer Clock Source
2310 	 */
2311 	rx_itr = FEC_ITR_CLK_SEL;
2312 	tx_itr = FEC_ITR_CLK_SEL;
2313 
2314 	/* set ICFT and ICTT */
2315 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2316 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2317 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2318 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2319 
2320 	rx_itr |= FEC_ITR_EN;
2321 	tx_itr |= FEC_ITR_EN;
2322 
2323 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2324 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2325 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2326 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2327 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2328 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2329 }
2330 
2331 static int
2332 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2333 {
2334 	struct fec_enet_private *fep = netdev_priv(ndev);
2335 	const struct platform_device_id *id_entry =
2336 				platform_get_device_id(fep->pdev);
2337 
2338 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2339 		return -EOPNOTSUPP;
2340 
2341 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2342 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2343 
2344 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2345 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2346 
2347 	return 0;
2348 }
2349 
2350 static int
2351 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2352 {
2353 	struct fec_enet_private *fep = netdev_priv(ndev);
2354 	const struct platform_device_id *id_entry =
2355 				platform_get_device_id(fep->pdev);
2356 
2357 	unsigned int cycle;
2358 
2359 	if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2360 		return -EOPNOTSUPP;
2361 
2362 	if (ec->rx_max_coalesced_frames > 255) {
2363 		pr_err("Rx coalesced frames exceed hardware limiation");
2364 		return -EINVAL;
2365 	}
2366 
2367 	if (ec->tx_max_coalesced_frames > 255) {
2368 		pr_err("Tx coalesced frame exceed hardware limiation");
2369 		return -EINVAL;
2370 	}
2371 
2372 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2373 	if (cycle > 0xFFFF) {
2374 		pr_err("Rx coalesed usec exceeed hardware limiation");
2375 		return -EINVAL;
2376 	}
2377 
2378 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2379 	if (cycle > 0xFFFF) {
2380 		pr_err("Rx coalesed usec exceeed hardware limiation");
2381 		return -EINVAL;
2382 	}
2383 
2384 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2385 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2386 
2387 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2388 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2389 
2390 	fec_enet_itr_coal_set(ndev);
2391 
2392 	return 0;
2393 }
2394 
2395 static void fec_enet_itr_coal_init(struct net_device *ndev)
2396 {
2397 	struct ethtool_coalesce ec;
2398 
2399 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2400 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2401 
2402 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2403 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2404 
2405 	fec_enet_set_coalesce(ndev, &ec);
2406 }
2407 
2408 static int fec_enet_get_tunable(struct net_device *netdev,
2409 				const struct ethtool_tunable *tuna,
2410 				void *data)
2411 {
2412 	struct fec_enet_private *fep = netdev_priv(netdev);
2413 	int ret = 0;
2414 
2415 	switch (tuna->id) {
2416 	case ETHTOOL_RX_COPYBREAK:
2417 		*(u32 *)data = fep->rx_copybreak;
2418 		break;
2419 	default:
2420 		ret = -EINVAL;
2421 		break;
2422 	}
2423 
2424 	return ret;
2425 }
2426 
2427 static int fec_enet_set_tunable(struct net_device *netdev,
2428 				const struct ethtool_tunable *tuna,
2429 				const void *data)
2430 {
2431 	struct fec_enet_private *fep = netdev_priv(netdev);
2432 	int ret = 0;
2433 
2434 	switch (tuna->id) {
2435 	case ETHTOOL_RX_COPYBREAK:
2436 		fep->rx_copybreak = *(u32 *)data;
2437 		break;
2438 	default:
2439 		ret = -EINVAL;
2440 		break;
2441 	}
2442 
2443 	return ret;
2444 }
2445 
2446 static const struct ethtool_ops fec_enet_ethtool_ops = {
2447 	.get_settings		= fec_enet_get_settings,
2448 	.set_settings		= fec_enet_set_settings,
2449 	.get_drvinfo		= fec_enet_get_drvinfo,
2450 	.nway_reset		= fec_enet_nway_reset,
2451 	.get_link		= ethtool_op_get_link,
2452 	.get_coalesce		= fec_enet_get_coalesce,
2453 	.set_coalesce		= fec_enet_set_coalesce,
2454 #ifndef CONFIG_M5272
2455 	.get_pauseparam		= fec_enet_get_pauseparam,
2456 	.set_pauseparam		= fec_enet_set_pauseparam,
2457 	.get_strings		= fec_enet_get_strings,
2458 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2459 	.get_sset_count		= fec_enet_get_sset_count,
2460 #endif
2461 	.get_ts_info		= fec_enet_get_ts_info,
2462 	.get_tunable		= fec_enet_get_tunable,
2463 	.set_tunable		= fec_enet_set_tunable,
2464 };
2465 
2466 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2467 {
2468 	struct fec_enet_private *fep = netdev_priv(ndev);
2469 	struct phy_device *phydev = fep->phy_dev;
2470 
2471 	if (!netif_running(ndev))
2472 		return -EINVAL;
2473 
2474 	if (!phydev)
2475 		return -ENODEV;
2476 
2477 	if (fep->bufdesc_ex) {
2478 		if (cmd == SIOCSHWTSTAMP)
2479 			return fec_ptp_set(ndev, rq);
2480 		if (cmd == SIOCGHWTSTAMP)
2481 			return fec_ptp_get(ndev, rq);
2482 	}
2483 
2484 	return phy_mii_ioctl(phydev, rq, cmd);
2485 }
2486 
2487 static void fec_enet_free_buffers(struct net_device *ndev)
2488 {
2489 	struct fec_enet_private *fep = netdev_priv(ndev);
2490 	unsigned int i;
2491 	struct sk_buff *skb;
2492 	struct bufdesc	*bdp;
2493 	struct fec_enet_priv_tx_q *txq;
2494 	struct fec_enet_priv_rx_q *rxq;
2495 	unsigned int q;
2496 
2497 	for (q = 0; q < fep->num_rx_queues; q++) {
2498 		rxq = fep->rx_queue[q];
2499 		bdp = rxq->rx_bd_base;
2500 		for (i = 0; i < rxq->rx_ring_size; i++) {
2501 			skb = rxq->rx_skbuff[i];
2502 			rxq->rx_skbuff[i] = NULL;
2503 			if (skb) {
2504 				dma_unmap_single(&fep->pdev->dev,
2505 						 bdp->cbd_bufaddr,
2506 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2507 						 DMA_FROM_DEVICE);
2508 				dev_kfree_skb(skb);
2509 			}
2510 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2511 		}
2512 	}
2513 
2514 	for (q = 0; q < fep->num_tx_queues; q++) {
2515 		txq = fep->tx_queue[q];
2516 		bdp = txq->tx_bd_base;
2517 		for (i = 0; i < txq->tx_ring_size; i++) {
2518 			kfree(txq->tx_bounce[i]);
2519 			txq->tx_bounce[i] = NULL;
2520 			skb = txq->tx_skbuff[i];
2521 			txq->tx_skbuff[i] = NULL;
2522 			dev_kfree_skb(skb);
2523 		}
2524 	}
2525 }
2526 
2527 static void fec_enet_free_queue(struct net_device *ndev)
2528 {
2529 	struct fec_enet_private *fep = netdev_priv(ndev);
2530 	int i;
2531 	struct fec_enet_priv_tx_q *txq;
2532 
2533 	for (i = 0; i < fep->num_tx_queues; i++)
2534 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2535 			txq = fep->tx_queue[i];
2536 			dma_free_coherent(NULL,
2537 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2538 					  txq->tso_hdrs,
2539 					  txq->tso_hdrs_dma);
2540 		}
2541 
2542 	for (i = 0; i < fep->num_rx_queues; i++)
2543 		if (fep->rx_queue[i])
2544 			kfree(fep->rx_queue[i]);
2545 
2546 	for (i = 0; i < fep->num_tx_queues; i++)
2547 		if (fep->tx_queue[i])
2548 			kfree(fep->tx_queue[i]);
2549 }
2550 
2551 static int fec_enet_alloc_queue(struct net_device *ndev)
2552 {
2553 	struct fec_enet_private *fep = netdev_priv(ndev);
2554 	int i;
2555 	int ret = 0;
2556 	struct fec_enet_priv_tx_q *txq;
2557 
2558 	for (i = 0; i < fep->num_tx_queues; i++) {
2559 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2560 		if (!txq) {
2561 			ret = -ENOMEM;
2562 			goto alloc_failed;
2563 		}
2564 
2565 		fep->tx_queue[i] = txq;
2566 		txq->tx_ring_size = TX_RING_SIZE;
2567 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2568 
2569 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2570 		txq->tx_wake_threshold =
2571 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2572 
2573 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2574 					txq->tx_ring_size * TSO_HEADER_SIZE,
2575 					&txq->tso_hdrs_dma,
2576 					GFP_KERNEL);
2577 		if (!txq->tso_hdrs) {
2578 			ret = -ENOMEM;
2579 			goto alloc_failed;
2580 		}
2581 	}
2582 
2583 	for (i = 0; i < fep->num_rx_queues; i++) {
2584 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2585 					   GFP_KERNEL);
2586 		if (!fep->rx_queue[i]) {
2587 			ret = -ENOMEM;
2588 			goto alloc_failed;
2589 		}
2590 
2591 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2592 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2593 	}
2594 	return ret;
2595 
2596 alloc_failed:
2597 	fec_enet_free_queue(ndev);
2598 	return ret;
2599 }
2600 
2601 static int
2602 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2603 {
2604 	struct fec_enet_private *fep = netdev_priv(ndev);
2605 	unsigned int i;
2606 	struct sk_buff *skb;
2607 	struct bufdesc	*bdp;
2608 	struct fec_enet_priv_rx_q *rxq;
2609 
2610 	rxq = fep->rx_queue[queue];
2611 	bdp = rxq->rx_bd_base;
2612 	for (i = 0; i < rxq->rx_ring_size; i++) {
2613 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2614 		if (!skb)
2615 			goto err_alloc;
2616 
2617 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2618 			dev_kfree_skb(skb);
2619 			goto err_alloc;
2620 		}
2621 
2622 		rxq->rx_skbuff[i] = skb;
2623 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2624 
2625 		if (fep->bufdesc_ex) {
2626 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2627 			ebdp->cbd_esc = BD_ENET_RX_INT;
2628 		}
2629 
2630 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2631 	}
2632 
2633 	/* Set the last buffer to wrap. */
2634 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2635 	bdp->cbd_sc |= BD_SC_WRAP;
2636 	return 0;
2637 
2638  err_alloc:
2639 	fec_enet_free_buffers(ndev);
2640 	return -ENOMEM;
2641 }
2642 
2643 static int
2644 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2645 {
2646 	struct fec_enet_private *fep = netdev_priv(ndev);
2647 	unsigned int i;
2648 	struct bufdesc  *bdp;
2649 	struct fec_enet_priv_tx_q *txq;
2650 
2651 	txq = fep->tx_queue[queue];
2652 	bdp = txq->tx_bd_base;
2653 	for (i = 0; i < txq->tx_ring_size; i++) {
2654 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2655 		if (!txq->tx_bounce[i])
2656 			goto err_alloc;
2657 
2658 		bdp->cbd_sc = 0;
2659 		bdp->cbd_bufaddr = 0;
2660 
2661 		if (fep->bufdesc_ex) {
2662 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2663 			ebdp->cbd_esc = BD_ENET_TX_INT;
2664 		}
2665 
2666 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2667 	}
2668 
2669 	/* Set the last buffer to wrap. */
2670 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2671 	bdp->cbd_sc |= BD_SC_WRAP;
2672 
2673 	return 0;
2674 
2675  err_alloc:
2676 	fec_enet_free_buffers(ndev);
2677 	return -ENOMEM;
2678 }
2679 
2680 static int fec_enet_alloc_buffers(struct net_device *ndev)
2681 {
2682 	struct fec_enet_private *fep = netdev_priv(ndev);
2683 	unsigned int i;
2684 
2685 	for (i = 0; i < fep->num_rx_queues; i++)
2686 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2687 			return -ENOMEM;
2688 
2689 	for (i = 0; i < fep->num_tx_queues; i++)
2690 		if (fec_enet_alloc_txq_buffers(ndev, i))
2691 			return -ENOMEM;
2692 	return 0;
2693 }
2694 
2695 static int
2696 fec_enet_open(struct net_device *ndev)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 	int ret;
2700 
2701 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2702 	ret = fec_enet_clk_enable(ndev, true);
2703 	if (ret)
2704 		return ret;
2705 
2706 	/* I should reset the ring buffers here, but I don't yet know
2707 	 * a simple way to do that.
2708 	 */
2709 
2710 	ret = fec_enet_alloc_buffers(ndev);
2711 	if (ret)
2712 		goto err_enet_alloc;
2713 
2714 	/* Probe and connect to PHY when open the interface */
2715 	ret = fec_enet_mii_probe(ndev);
2716 	if (ret)
2717 		goto err_enet_mii_probe;
2718 
2719 	fec_restart(ndev);
2720 	napi_enable(&fep->napi);
2721 	phy_start(fep->phy_dev);
2722 	netif_tx_start_all_queues(ndev);
2723 
2724 	return 0;
2725 
2726 err_enet_mii_probe:
2727 	fec_enet_free_buffers(ndev);
2728 err_enet_alloc:
2729 	fec_enet_clk_enable(ndev, false);
2730 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2731 	return ret;
2732 }
2733 
2734 static int
2735 fec_enet_close(struct net_device *ndev)
2736 {
2737 	struct fec_enet_private *fep = netdev_priv(ndev);
2738 
2739 	phy_stop(fep->phy_dev);
2740 
2741 	if (netif_device_present(ndev)) {
2742 		napi_disable(&fep->napi);
2743 		netif_tx_disable(ndev);
2744 		fec_stop(ndev);
2745 	}
2746 
2747 	phy_disconnect(fep->phy_dev);
2748 	fep->phy_dev = NULL;
2749 
2750 	fec_enet_clk_enable(ndev, false);
2751 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2752 	fec_enet_free_buffers(ndev);
2753 
2754 	return 0;
2755 }
2756 
2757 /* Set or clear the multicast filter for this adaptor.
2758  * Skeleton taken from sunlance driver.
2759  * The CPM Ethernet implementation allows Multicast as well as individual
2760  * MAC address filtering.  Some of the drivers check to make sure it is
2761  * a group multicast address, and discard those that are not.  I guess I
2762  * will do the same for now, but just remove the test if you want
2763  * individual filtering as well (do the upper net layers want or support
2764  * this kind of feature?).
2765  */
2766 
2767 #define HASH_BITS	6		/* #bits in hash */
2768 #define CRC32_POLY	0xEDB88320
2769 
2770 static void set_multicast_list(struct net_device *ndev)
2771 {
2772 	struct fec_enet_private *fep = netdev_priv(ndev);
2773 	struct netdev_hw_addr *ha;
2774 	unsigned int i, bit, data, crc, tmp;
2775 	unsigned char hash;
2776 
2777 	if (ndev->flags & IFF_PROMISC) {
2778 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2779 		tmp |= 0x8;
2780 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2781 		return;
2782 	}
2783 
2784 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2785 	tmp &= ~0x8;
2786 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2787 
2788 	if (ndev->flags & IFF_ALLMULTI) {
2789 		/* Catch all multicast addresses, so set the
2790 		 * filter to all 1's
2791 		 */
2792 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2793 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2794 
2795 		return;
2796 	}
2797 
2798 	/* Clear filter and add the addresses in hash register
2799 	 */
2800 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2801 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2802 
2803 	netdev_for_each_mc_addr(ha, ndev) {
2804 		/* calculate crc32 value of mac address */
2805 		crc = 0xffffffff;
2806 
2807 		for (i = 0; i < ndev->addr_len; i++) {
2808 			data = ha->addr[i];
2809 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2810 				crc = (crc >> 1) ^
2811 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2812 			}
2813 		}
2814 
2815 		/* only upper 6 bits (HASH_BITS) are used
2816 		 * which point to specific bit in he hash registers
2817 		 */
2818 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2819 
2820 		if (hash > 31) {
2821 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2822 			tmp |= 1 << (hash - 32);
2823 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2824 		} else {
2825 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2826 			tmp |= 1 << hash;
2827 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2828 		}
2829 	}
2830 }
2831 
2832 /* Set a MAC change in hardware. */
2833 static int
2834 fec_set_mac_address(struct net_device *ndev, void *p)
2835 {
2836 	struct fec_enet_private *fep = netdev_priv(ndev);
2837 	struct sockaddr *addr = p;
2838 
2839 	if (addr) {
2840 		if (!is_valid_ether_addr(addr->sa_data))
2841 			return -EADDRNOTAVAIL;
2842 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2843 	}
2844 
2845 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2846 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2847 		fep->hwp + FEC_ADDR_LOW);
2848 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2849 		fep->hwp + FEC_ADDR_HIGH);
2850 	return 0;
2851 }
2852 
2853 #ifdef CONFIG_NET_POLL_CONTROLLER
2854 /**
2855  * fec_poll_controller - FEC Poll controller function
2856  * @dev: The FEC network adapter
2857  *
2858  * Polled functionality used by netconsole and others in non interrupt mode
2859  *
2860  */
2861 static void fec_poll_controller(struct net_device *dev)
2862 {
2863 	int i;
2864 	struct fec_enet_private *fep = netdev_priv(dev);
2865 
2866 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2867 		if (fep->irq[i] > 0) {
2868 			disable_irq(fep->irq[i]);
2869 			fec_enet_interrupt(fep->irq[i], dev);
2870 			enable_irq(fep->irq[i]);
2871 		}
2872 	}
2873 }
2874 #endif
2875 
2876 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2877 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2878 	netdev_features_t features)
2879 {
2880 	struct fec_enet_private *fep = netdev_priv(netdev);
2881 	netdev_features_t changed = features ^ netdev->features;
2882 
2883 	netdev->features = features;
2884 
2885 	/* Receive checksum has been changed */
2886 	if (changed & NETIF_F_RXCSUM) {
2887 		if (features & NETIF_F_RXCSUM)
2888 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2889 		else
2890 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2891 	}
2892 }
2893 
2894 static int fec_set_features(struct net_device *netdev,
2895 	netdev_features_t features)
2896 {
2897 	struct fec_enet_private *fep = netdev_priv(netdev);
2898 	netdev_features_t changed = features ^ netdev->features;
2899 
2900 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2901 		napi_disable(&fep->napi);
2902 		netif_tx_lock_bh(netdev);
2903 		fec_stop(netdev);
2904 		fec_enet_set_netdev_features(netdev, features);
2905 		fec_restart(netdev);
2906 		netif_tx_wake_all_queues(netdev);
2907 		netif_tx_unlock_bh(netdev);
2908 		napi_enable(&fep->napi);
2909 	} else {
2910 		fec_enet_set_netdev_features(netdev, features);
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static const struct net_device_ops fec_netdev_ops = {
2917 	.ndo_open		= fec_enet_open,
2918 	.ndo_stop		= fec_enet_close,
2919 	.ndo_start_xmit		= fec_enet_start_xmit,
2920 	.ndo_set_rx_mode	= set_multicast_list,
2921 	.ndo_change_mtu		= eth_change_mtu,
2922 	.ndo_validate_addr	= eth_validate_addr,
2923 	.ndo_tx_timeout		= fec_timeout,
2924 	.ndo_set_mac_address	= fec_set_mac_address,
2925 	.ndo_do_ioctl		= fec_enet_ioctl,
2926 #ifdef CONFIG_NET_POLL_CONTROLLER
2927 	.ndo_poll_controller	= fec_poll_controller,
2928 #endif
2929 	.ndo_set_features	= fec_set_features,
2930 };
2931 
2932  /*
2933   * XXX:  We need to clean up on failure exits here.
2934   *
2935   */
2936 static int fec_enet_init(struct net_device *ndev)
2937 {
2938 	struct fec_enet_private *fep = netdev_priv(ndev);
2939 	const struct platform_device_id *id_entry =
2940 				platform_get_device_id(fep->pdev);
2941 	struct fec_enet_priv_tx_q *txq;
2942 	struct fec_enet_priv_rx_q *rxq;
2943 	struct bufdesc *cbd_base;
2944 	dma_addr_t bd_dma;
2945 	int bd_size;
2946 	unsigned int i;
2947 
2948 #if defined(CONFIG_ARM)
2949 	fep->rx_align = 0xf;
2950 	fep->tx_align = 0xf;
2951 #else
2952 	fep->rx_align = 0x3;
2953 	fep->tx_align = 0x3;
2954 #endif
2955 
2956 	fec_enet_alloc_queue(ndev);
2957 
2958 	if (fep->bufdesc_ex)
2959 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2960 	else
2961 		fep->bufdesc_size = sizeof(struct bufdesc);
2962 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2963 			fep->bufdesc_size;
2964 
2965 	/* Allocate memory for buffer descriptors. */
2966 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2967 				      GFP_KERNEL);
2968 	if (!cbd_base) {
2969 		return -ENOMEM;
2970 	}
2971 
2972 	memset(cbd_base, 0, bd_size);
2973 
2974 	/* Get the Ethernet address */
2975 	fec_get_mac(ndev);
2976 	/* make sure MAC we just acquired is programmed into the hw */
2977 	fec_set_mac_address(ndev, NULL);
2978 
2979 	/* Set receive and transmit descriptor base. */
2980 	for (i = 0; i < fep->num_rx_queues; i++) {
2981 		rxq = fep->rx_queue[i];
2982 		rxq->index = i;
2983 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2984 		rxq->bd_dma = bd_dma;
2985 		if (fep->bufdesc_ex) {
2986 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2987 			cbd_base = (struct bufdesc *)
2988 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2989 		} else {
2990 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2991 			cbd_base += rxq->rx_ring_size;
2992 		}
2993 	}
2994 
2995 	for (i = 0; i < fep->num_tx_queues; i++) {
2996 		txq = fep->tx_queue[i];
2997 		txq->index = i;
2998 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
2999 		txq->bd_dma = bd_dma;
3000 		if (fep->bufdesc_ex) {
3001 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3002 			cbd_base = (struct bufdesc *)
3003 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3004 		} else {
3005 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3006 			cbd_base += txq->tx_ring_size;
3007 		}
3008 	}
3009 
3010 
3011 	/* The FEC Ethernet specific entries in the device structure */
3012 	ndev->watchdog_timeo = TX_TIMEOUT;
3013 	ndev->netdev_ops = &fec_netdev_ops;
3014 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3015 
3016 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3017 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3018 
3019 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
3020 		/* enable hw VLAN support */
3021 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3022 
3023 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
3024 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3025 
3026 		/* enable hw accelerator */
3027 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3028 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3029 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3030 	}
3031 
3032 	if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
3033 		fep->tx_align = 0;
3034 		fep->rx_align = 0x3f;
3035 	}
3036 
3037 	ndev->hw_features = ndev->features;
3038 
3039 	fec_restart(ndev);
3040 
3041 	return 0;
3042 }
3043 
3044 #ifdef CONFIG_OF
3045 static void fec_reset_phy(struct platform_device *pdev)
3046 {
3047 	int err, phy_reset;
3048 	int msec = 1;
3049 	struct device_node *np = pdev->dev.of_node;
3050 
3051 	if (!np)
3052 		return;
3053 
3054 	of_property_read_u32(np, "phy-reset-duration", &msec);
3055 	/* A sane reset duration should not be longer than 1s */
3056 	if (msec > 1000)
3057 		msec = 1;
3058 
3059 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3060 	if (!gpio_is_valid(phy_reset))
3061 		return;
3062 
3063 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3064 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3065 	if (err) {
3066 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3067 		return;
3068 	}
3069 	msleep(msec);
3070 	gpio_set_value(phy_reset, 1);
3071 }
3072 #else /* CONFIG_OF */
3073 static void fec_reset_phy(struct platform_device *pdev)
3074 {
3075 	/*
3076 	 * In case of platform probe, the reset has been done
3077 	 * by machine code.
3078 	 */
3079 }
3080 #endif /* CONFIG_OF */
3081 
3082 static void
3083 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3084 {
3085 	struct device_node *np = pdev->dev.of_node;
3086 	int err;
3087 
3088 	*num_tx = *num_rx = 1;
3089 
3090 	if (!np || !of_device_is_available(np))
3091 		return;
3092 
3093 	/* parse the num of tx and rx queues */
3094 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3095 	if (err)
3096 		*num_tx = 1;
3097 
3098 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3099 	if (err)
3100 		*num_rx = 1;
3101 
3102 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3103 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3104 			 *num_tx);
3105 		*num_tx = 1;
3106 		return;
3107 	}
3108 
3109 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3110 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3111 			 *num_rx);
3112 		*num_rx = 1;
3113 		return;
3114 	}
3115 
3116 }
3117 
3118 static int
3119 fec_probe(struct platform_device *pdev)
3120 {
3121 	struct fec_enet_private *fep;
3122 	struct fec_platform_data *pdata;
3123 	struct net_device *ndev;
3124 	int i, irq, ret = 0;
3125 	struct resource *r;
3126 	const struct of_device_id *of_id;
3127 	static int dev_id;
3128 	struct device_node *np = pdev->dev.of_node, *phy_node;
3129 	int num_tx_qs;
3130 	int num_rx_qs;
3131 
3132 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3133 	if (of_id)
3134 		pdev->id_entry = of_id->data;
3135 
3136 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3137 
3138 	/* Init network device */
3139 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3140 				  num_tx_qs, num_rx_qs);
3141 	if (!ndev)
3142 		return -ENOMEM;
3143 
3144 	SET_NETDEV_DEV(ndev, &pdev->dev);
3145 
3146 	/* setup board info structure */
3147 	fep = netdev_priv(ndev);
3148 
3149 	fep->num_rx_queues = num_rx_qs;
3150 	fep->num_tx_queues = num_tx_qs;
3151 
3152 #if !defined(CONFIG_M5272)
3153 	/* default enable pause frame auto negotiation */
3154 	if (pdev->id_entry &&
3155 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
3156 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3157 #endif
3158 
3159 	/* Select default pin state */
3160 	pinctrl_pm_select_default_state(&pdev->dev);
3161 
3162 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3163 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3164 	if (IS_ERR(fep->hwp)) {
3165 		ret = PTR_ERR(fep->hwp);
3166 		goto failed_ioremap;
3167 	}
3168 
3169 	fep->pdev = pdev;
3170 	fep->dev_id = dev_id++;
3171 
3172 	fep->bufdesc_ex = 0;
3173 
3174 	platform_set_drvdata(pdev, ndev);
3175 
3176 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3177 	if (!phy_node && of_phy_is_fixed_link(np)) {
3178 		ret = of_phy_register_fixed_link(np);
3179 		if (ret < 0) {
3180 			dev_err(&pdev->dev,
3181 				"broken fixed-link specification\n");
3182 			goto failed_phy;
3183 		}
3184 		phy_node = of_node_get(np);
3185 	}
3186 	fep->phy_node = phy_node;
3187 
3188 	ret = of_get_phy_mode(pdev->dev.of_node);
3189 	if (ret < 0) {
3190 		pdata = dev_get_platdata(&pdev->dev);
3191 		if (pdata)
3192 			fep->phy_interface = pdata->phy;
3193 		else
3194 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3195 	} else {
3196 		fep->phy_interface = ret;
3197 	}
3198 
3199 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3200 	if (IS_ERR(fep->clk_ipg)) {
3201 		ret = PTR_ERR(fep->clk_ipg);
3202 		goto failed_clk;
3203 	}
3204 
3205 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3206 	if (IS_ERR(fep->clk_ahb)) {
3207 		ret = PTR_ERR(fep->clk_ahb);
3208 		goto failed_clk;
3209 	}
3210 
3211 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3212 
3213 	/* enet_out is optional, depends on board */
3214 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3215 	if (IS_ERR(fep->clk_enet_out))
3216 		fep->clk_enet_out = NULL;
3217 
3218 	fep->ptp_clk_on = false;
3219 	mutex_init(&fep->ptp_clk_mutex);
3220 
3221 	/* clk_ref is optional, depends on board */
3222 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3223 	if (IS_ERR(fep->clk_ref))
3224 		fep->clk_ref = NULL;
3225 
3226 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3227 	fep->bufdesc_ex =
3228 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
3229 	if (IS_ERR(fep->clk_ptp)) {
3230 		fep->clk_ptp = NULL;
3231 		fep->bufdesc_ex = 0;
3232 	}
3233 
3234 	ret = fec_enet_clk_enable(ndev, true);
3235 	if (ret)
3236 		goto failed_clk;
3237 
3238 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3239 	if (!IS_ERR(fep->reg_phy)) {
3240 		ret = regulator_enable(fep->reg_phy);
3241 		if (ret) {
3242 			dev_err(&pdev->dev,
3243 				"Failed to enable phy regulator: %d\n", ret);
3244 			goto failed_regulator;
3245 		}
3246 	} else {
3247 		fep->reg_phy = NULL;
3248 	}
3249 
3250 	fec_reset_phy(pdev);
3251 
3252 	if (fep->bufdesc_ex)
3253 		fec_ptp_init(pdev);
3254 
3255 	ret = fec_enet_init(ndev);
3256 	if (ret)
3257 		goto failed_init;
3258 
3259 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3260 		irq = platform_get_irq(pdev, i);
3261 		if (irq < 0) {
3262 			if (i)
3263 				break;
3264 			ret = irq;
3265 			goto failed_irq;
3266 		}
3267 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3268 				       0, pdev->name, ndev);
3269 		if (ret)
3270 			goto failed_irq;
3271 	}
3272 
3273 	init_completion(&fep->mdio_done);
3274 	ret = fec_enet_mii_init(pdev);
3275 	if (ret)
3276 		goto failed_mii_init;
3277 
3278 	/* Carrier starts down, phylib will bring it up */
3279 	netif_carrier_off(ndev);
3280 	fec_enet_clk_enable(ndev, false);
3281 	pinctrl_pm_select_sleep_state(&pdev->dev);
3282 
3283 	ret = register_netdev(ndev);
3284 	if (ret)
3285 		goto failed_register;
3286 
3287 	if (fep->bufdesc_ex && fep->ptp_clock)
3288 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3289 
3290 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3291 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3292 	return 0;
3293 
3294 failed_register:
3295 	fec_enet_mii_remove(fep);
3296 failed_mii_init:
3297 failed_irq:
3298 failed_init:
3299 	if (fep->reg_phy)
3300 		regulator_disable(fep->reg_phy);
3301 failed_regulator:
3302 	fec_enet_clk_enable(ndev, false);
3303 failed_clk:
3304 failed_phy:
3305 	of_node_put(phy_node);
3306 failed_ioremap:
3307 	free_netdev(ndev);
3308 
3309 	return ret;
3310 }
3311 
3312 static int
3313 fec_drv_remove(struct platform_device *pdev)
3314 {
3315 	struct net_device *ndev = platform_get_drvdata(pdev);
3316 	struct fec_enet_private *fep = netdev_priv(ndev);
3317 
3318 	cancel_delayed_work_sync(&fep->time_keep);
3319 	cancel_work_sync(&fep->tx_timeout_work);
3320 	unregister_netdev(ndev);
3321 	fec_enet_mii_remove(fep);
3322 	if (fep->reg_phy)
3323 		regulator_disable(fep->reg_phy);
3324 	if (fep->ptp_clock)
3325 		ptp_clock_unregister(fep->ptp_clock);
3326 	fec_enet_clk_enable(ndev, false);
3327 	of_node_put(fep->phy_node);
3328 	free_netdev(ndev);
3329 
3330 	return 0;
3331 }
3332 
3333 static int __maybe_unused fec_suspend(struct device *dev)
3334 {
3335 	struct net_device *ndev = dev_get_drvdata(dev);
3336 	struct fec_enet_private *fep = netdev_priv(ndev);
3337 
3338 	rtnl_lock();
3339 	if (netif_running(ndev)) {
3340 		phy_stop(fep->phy_dev);
3341 		napi_disable(&fep->napi);
3342 		netif_tx_lock_bh(ndev);
3343 		netif_device_detach(ndev);
3344 		netif_tx_unlock_bh(ndev);
3345 		fec_stop(ndev);
3346 	}
3347 	rtnl_unlock();
3348 
3349 	fec_enet_clk_enable(ndev, false);
3350 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3351 
3352 	if (fep->reg_phy)
3353 		regulator_disable(fep->reg_phy);
3354 
3355 	return 0;
3356 }
3357 
3358 static int __maybe_unused fec_resume(struct device *dev)
3359 {
3360 	struct net_device *ndev = dev_get_drvdata(dev);
3361 	struct fec_enet_private *fep = netdev_priv(ndev);
3362 	int ret;
3363 
3364 	if (fep->reg_phy) {
3365 		ret = regulator_enable(fep->reg_phy);
3366 		if (ret)
3367 			return ret;
3368 	}
3369 
3370 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3371 	ret = fec_enet_clk_enable(ndev, true);
3372 	if (ret)
3373 		goto failed_clk;
3374 
3375 	rtnl_lock();
3376 	if (netif_running(ndev)) {
3377 		fec_restart(ndev);
3378 		netif_tx_lock_bh(ndev);
3379 		netif_device_attach(ndev);
3380 		netif_tx_unlock_bh(ndev);
3381 		napi_enable(&fep->napi);
3382 		phy_start(fep->phy_dev);
3383 	}
3384 	rtnl_unlock();
3385 
3386 	return 0;
3387 
3388 failed_clk:
3389 	if (fep->reg_phy)
3390 		regulator_disable(fep->reg_phy);
3391 	return ret;
3392 }
3393 
3394 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3395 
3396 static struct platform_driver fec_driver = {
3397 	.driver	= {
3398 		.name	= DRIVER_NAME,
3399 		.owner	= THIS_MODULE,
3400 		.pm	= &fec_pm_ops,
3401 		.of_match_table = fec_dt_ids,
3402 	},
3403 	.id_table = fec_devtype,
3404 	.probe	= fec_probe,
3405 	.remove	= fec_drv_remove,
3406 };
3407 
3408 module_platform_driver(fec_driver);
3409 
3410 MODULE_ALIAS("platform:"DRIVER_NAME);
3411 MODULE_LICENSE("GPL");
3412