1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 108 }; 109 110 static const struct fec_devinfo fec_imx28_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 112 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 113 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 114 FEC_QUIRK_NO_HARD_RESET, 115 }; 116 117 static const struct fec_devinfo fec_imx6q_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 121 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 122 FEC_QUIRK_HAS_PMQOS, 123 }; 124 125 static const struct fec_devinfo fec_mvf600_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 127 }; 128 129 static const struct fec_devinfo fec_imx6x_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 131 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 132 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 133 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 134 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 135 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 136 }; 137 138 static const struct fec_devinfo fec_imx6ul_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 142 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 143 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 144 }; 145 146 static const struct fec_devinfo fec_imx8mq_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 150 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 151 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 152 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 153 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 154 }; 155 156 static const struct fec_devinfo fec_imx8qm_info = { 157 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 158 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 159 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 160 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 161 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 162 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 163 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 164 }; 165 166 static const struct fec_devinfo fec_s32v234_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 171 }; 172 173 static struct platform_device_id fec_devtype[] = { 174 { 175 /* keep it for coldfire */ 176 .name = DRIVER_NAME, 177 .driver_data = 0, 178 }, { 179 .name = "imx25-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx25_info, 181 }, { 182 .name = "imx27-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx27_info, 184 }, { 185 .name = "imx28-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx28_info, 187 }, { 188 .name = "imx6q-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 190 }, { 191 .name = "mvf600-fec", 192 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 193 }, { 194 .name = "imx6sx-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 196 }, { 197 .name = "imx6ul-fec", 198 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 199 }, { 200 .name = "imx8mq-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 202 }, { 203 .name = "imx8qm-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 205 }, { 206 .name = "s32v234-fec", 207 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 208 }, { 209 /* sentinel */ 210 } 211 }; 212 MODULE_DEVICE_TABLE(platform, fec_devtype); 213 214 enum imx_fec_type { 215 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 216 IMX27_FEC, /* runs on i.mx27/35/51 */ 217 IMX28_FEC, 218 IMX6Q_FEC, 219 MVF600_FEC, 220 IMX6SX_FEC, 221 IMX6UL_FEC, 222 IMX8MQ_FEC, 223 IMX8QM_FEC, 224 S32V234_FEC, 225 }; 226 227 static const struct of_device_id fec_dt_ids[] = { 228 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 229 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 230 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 231 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 232 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 233 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 234 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 235 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 236 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 237 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 238 { /* sentinel */ } 239 }; 240 MODULE_DEVICE_TABLE(of, fec_dt_ids); 241 242 static unsigned char macaddr[ETH_ALEN]; 243 module_param_array(macaddr, byte, NULL, 0); 244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 245 246 #if defined(CONFIG_M5272) 247 /* 248 * Some hardware gets it MAC address out of local flash memory. 249 * if this is non-zero then assume it is the address to get MAC from. 250 */ 251 #if defined(CONFIG_NETtel) 252 #define FEC_FLASHMAC 0xf0006006 253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 254 #define FEC_FLASHMAC 0xf0006000 255 #elif defined(CONFIG_CANCam) 256 #define FEC_FLASHMAC 0xf0020000 257 #elif defined (CONFIG_M5272C3) 258 #define FEC_FLASHMAC (0xffe04000 + 4) 259 #elif defined(CONFIG_MOD5272) 260 #define FEC_FLASHMAC 0xffc0406b 261 #else 262 #define FEC_FLASHMAC 0 263 #endif 264 #endif /* CONFIG_M5272 */ 265 266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 267 * 268 * 2048 byte skbufs are allocated. However, alignment requirements 269 * varies between FEC variants. Worst case is 64, so round down by 64. 270 */ 271 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 272 #define PKT_MINBUF_SIZE 64 273 274 /* FEC receive acceleration */ 275 #define FEC_RACC_IPDIS (1 << 1) 276 #define FEC_RACC_PRODIS (1 << 2) 277 #define FEC_RACC_SHIFT16 BIT(7) 278 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 279 280 /* MIB Control Register */ 281 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 282 283 /* 284 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 285 * size bits. Other FEC hardware does not, so we need to take that into 286 * account when setting it. 287 */ 288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 289 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 290 defined(CONFIG_ARM64) 291 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 292 #else 293 #define OPT_FRAME_SIZE 0 294 #endif 295 296 /* FEC MII MMFR bits definition */ 297 #define FEC_MMFR_ST (1 << 30) 298 #define FEC_MMFR_ST_C45 (0) 299 #define FEC_MMFR_OP_READ (2 << 28) 300 #define FEC_MMFR_OP_READ_C45 (3 << 28) 301 #define FEC_MMFR_OP_WRITE (1 << 28) 302 #define FEC_MMFR_OP_ADDR_WRITE (0) 303 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 304 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 305 #define FEC_MMFR_TA (2 << 16) 306 #define FEC_MMFR_DATA(v) (v & 0xffff) 307 /* FEC ECR bits definition */ 308 #define FEC_ECR_MAGICEN (1 << 2) 309 #define FEC_ECR_SLEEP (1 << 3) 310 311 #define FEC_MII_TIMEOUT 30000 /* us */ 312 313 /* Transmitter timeout */ 314 #define TX_TIMEOUT (2 * HZ) 315 316 #define FEC_PAUSE_FLAG_AUTONEG 0x1 317 #define FEC_PAUSE_FLAG_ENABLE 0x2 318 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 319 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 320 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 321 322 #define COPYBREAK_DEFAULT 256 323 324 /* Max number of allowed TCP segments for software TSO */ 325 #define FEC_MAX_TSO_SEGS 100 326 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 327 328 #define IS_TSO_HEADER(txq, addr) \ 329 ((addr >= txq->tso_hdrs_dma) && \ 330 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 331 332 static int mii_cnt; 333 334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 335 struct bufdesc_prop *bd) 336 { 337 return (bdp >= bd->last) ? bd->base 338 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 339 } 340 341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 342 struct bufdesc_prop *bd) 343 { 344 return (bdp <= bd->base) ? bd->last 345 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 346 } 347 348 static int fec_enet_get_bd_index(struct bufdesc *bdp, 349 struct bufdesc_prop *bd) 350 { 351 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 352 } 353 354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 355 { 356 int entries; 357 358 entries = (((const char *)txq->dirty_tx - 359 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 360 361 return entries >= 0 ? entries : entries + txq->bd.ring_size; 362 } 363 364 static void swap_buffer(void *bufaddr, int len) 365 { 366 int i; 367 unsigned int *buf = bufaddr; 368 369 for (i = 0; i < len; i += 4, buf++) 370 swab32s(buf); 371 } 372 373 static void fec_dump(struct net_device *ndev) 374 { 375 struct fec_enet_private *fep = netdev_priv(ndev); 376 struct bufdesc *bdp; 377 struct fec_enet_priv_tx_q *txq; 378 int index = 0; 379 380 netdev_info(ndev, "TX ring dump\n"); 381 pr_info("Nr SC addr len SKB\n"); 382 383 txq = fep->tx_queue[0]; 384 bdp = txq->bd.base; 385 386 do { 387 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 388 index, 389 bdp == txq->bd.cur ? 'S' : ' ', 390 bdp == txq->dirty_tx ? 'H' : ' ', 391 fec16_to_cpu(bdp->cbd_sc), 392 fec32_to_cpu(bdp->cbd_bufaddr), 393 fec16_to_cpu(bdp->cbd_datlen), 394 txq->tx_skbuff[index]); 395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 396 index++; 397 } while (bdp != txq->bd.base); 398 } 399 400 static inline bool is_ipv4_pkt(struct sk_buff *skb) 401 { 402 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 403 } 404 405 static int 406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 407 { 408 /* Only run for packets requiring a checksum. */ 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return 0; 411 412 if (unlikely(skb_cow_head(skb, 0))) 413 return -1; 414 415 if (is_ipv4_pkt(skb)) 416 ip_hdr(skb)->check = 0; 417 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 418 419 return 0; 420 } 421 422 static int 423 fec_enet_create_page_pool(struct fec_enet_private *fep, 424 struct fec_enet_priv_rx_q *rxq, int size) 425 { 426 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 427 struct page_pool_params pp_params = { 428 .order = 0, 429 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 430 .pool_size = size, 431 .nid = dev_to_node(&fep->pdev->dev), 432 .dev = &fep->pdev->dev, 433 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 434 .offset = FEC_ENET_XDP_HEADROOM, 435 .max_len = FEC_ENET_RX_FRSIZE, 436 }; 437 int err; 438 439 rxq->page_pool = page_pool_create(&pp_params); 440 if (IS_ERR(rxq->page_pool)) { 441 err = PTR_ERR(rxq->page_pool); 442 rxq->page_pool = NULL; 443 return err; 444 } 445 446 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 447 if (err < 0) 448 goto err_free_pp; 449 450 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 451 rxq->page_pool); 452 if (err) 453 goto err_unregister_rxq; 454 455 return 0; 456 457 err_unregister_rxq: 458 xdp_rxq_info_unreg(&rxq->xdp_rxq); 459 err_free_pp: 460 page_pool_destroy(rxq->page_pool); 461 rxq->page_pool = NULL; 462 return err; 463 } 464 465 static struct bufdesc * 466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, 468 struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 struct bufdesc *bdp = txq->bd.cur; 472 struct bufdesc_ex *ebdp; 473 int nr_frags = skb_shinfo(skb)->nr_frags; 474 int frag, frag_len; 475 unsigned short status; 476 unsigned int estatus = 0; 477 skb_frag_t *this_frag; 478 unsigned int index; 479 void *bufaddr; 480 dma_addr_t addr; 481 int i; 482 483 for (frag = 0; frag < nr_frags; frag++) { 484 this_frag = &skb_shinfo(skb)->frags[frag]; 485 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 486 ebdp = (struct bufdesc_ex *)bdp; 487 488 status = fec16_to_cpu(bdp->cbd_sc); 489 status &= ~BD_ENET_TX_STATS; 490 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 491 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 492 493 /* Handle the last BD specially */ 494 if (frag == nr_frags - 1) { 495 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 496 if (fep->bufdesc_ex) { 497 estatus |= BD_ENET_TX_INT; 498 if (unlikely(skb_shinfo(skb)->tx_flags & 499 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 500 estatus |= BD_ENET_TX_TS; 501 } 502 } 503 504 if (fep->bufdesc_ex) { 505 if (fep->quirks & FEC_QUIRK_HAS_AVB) 506 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 507 if (skb->ip_summed == CHECKSUM_PARTIAL) 508 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 509 510 ebdp->cbd_bdu = 0; 511 ebdp->cbd_esc = cpu_to_fec32(estatus); 512 } 513 514 bufaddr = skb_frag_address(this_frag); 515 516 index = fec_enet_get_bd_index(bdp, &txq->bd); 517 if (((unsigned long) bufaddr) & fep->tx_align || 518 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 519 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 520 bufaddr = txq->tx_bounce[index]; 521 522 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 523 swap_buffer(bufaddr, frag_len); 524 } 525 526 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 527 DMA_TO_DEVICE); 528 if (dma_mapping_error(&fep->pdev->dev, addr)) { 529 if (net_ratelimit()) 530 netdev_err(ndev, "Tx DMA memory map failed\n"); 531 goto dma_mapping_error; 532 } 533 534 bdp->cbd_bufaddr = cpu_to_fec32(addr); 535 bdp->cbd_datlen = cpu_to_fec16(frag_len); 536 /* Make sure the updates to rest of the descriptor are 537 * performed before transferring ownership. 538 */ 539 wmb(); 540 bdp->cbd_sc = cpu_to_fec16(status); 541 } 542 543 return bdp; 544 dma_mapping_error: 545 bdp = txq->bd.cur; 546 for (i = 0; i < frag; i++) { 547 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 548 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 549 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 550 } 551 return ERR_PTR(-ENOMEM); 552 } 553 554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 555 struct sk_buff *skb, struct net_device *ndev) 556 { 557 struct fec_enet_private *fep = netdev_priv(ndev); 558 int nr_frags = skb_shinfo(skb)->nr_frags; 559 struct bufdesc *bdp, *last_bdp; 560 void *bufaddr; 561 dma_addr_t addr; 562 unsigned short status; 563 unsigned short buflen; 564 unsigned int estatus = 0; 565 unsigned int index; 566 int entries_free; 567 568 entries_free = fec_enet_get_free_txdesc_num(txq); 569 if (entries_free < MAX_SKB_FRAGS + 1) { 570 dev_kfree_skb_any(skb); 571 if (net_ratelimit()) 572 netdev_err(ndev, "NOT enough BD for SG!\n"); 573 return NETDEV_TX_OK; 574 } 575 576 /* Protocol checksum off-load for TCP and UDP. */ 577 if (fec_enet_clear_csum(skb, ndev)) { 578 dev_kfree_skb_any(skb); 579 return NETDEV_TX_OK; 580 } 581 582 /* Fill in a Tx ring entry */ 583 bdp = txq->bd.cur; 584 last_bdp = bdp; 585 status = fec16_to_cpu(bdp->cbd_sc); 586 status &= ~BD_ENET_TX_STATS; 587 588 /* Set buffer length and buffer pointer */ 589 bufaddr = skb->data; 590 buflen = skb_headlen(skb); 591 592 index = fec_enet_get_bd_index(bdp, &txq->bd); 593 if (((unsigned long) bufaddr) & fep->tx_align || 594 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 595 memcpy(txq->tx_bounce[index], skb->data, buflen); 596 bufaddr = txq->tx_bounce[index]; 597 598 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 599 swap_buffer(bufaddr, buflen); 600 } 601 602 /* Push the data cache so the CPM does not get stale memory data. */ 603 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 604 if (dma_mapping_error(&fep->pdev->dev, addr)) { 605 dev_kfree_skb_any(skb); 606 if (net_ratelimit()) 607 netdev_err(ndev, "Tx DMA memory map failed\n"); 608 return NETDEV_TX_OK; 609 } 610 611 if (nr_frags) { 612 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 613 if (IS_ERR(last_bdp)) { 614 dma_unmap_single(&fep->pdev->dev, addr, 615 buflen, DMA_TO_DEVICE); 616 dev_kfree_skb_any(skb); 617 return NETDEV_TX_OK; 618 } 619 } else { 620 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 621 if (fep->bufdesc_ex) { 622 estatus = BD_ENET_TX_INT; 623 if (unlikely(skb_shinfo(skb)->tx_flags & 624 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 625 estatus |= BD_ENET_TX_TS; 626 } 627 } 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 bdp->cbd_datlen = cpu_to_fec16(buflen); 630 631 if (fep->bufdesc_ex) { 632 633 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 634 635 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 636 fep->hwts_tx_en)) 637 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 638 639 if (fep->quirks & FEC_QUIRK_HAS_AVB) 640 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 641 642 if (skb->ip_summed == CHECKSUM_PARTIAL) 643 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 644 645 ebdp->cbd_bdu = 0; 646 ebdp->cbd_esc = cpu_to_fec32(estatus); 647 } 648 649 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 650 /* Save skb pointer */ 651 txq->tx_skbuff[index] = skb; 652 653 /* Make sure the updates to rest of the descriptor are performed before 654 * transferring ownership. 655 */ 656 wmb(); 657 658 /* Send it on its way. Tell FEC it's ready, interrupt when done, 659 * it's the last BD of the frame, and to put the CRC on the end. 660 */ 661 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 662 bdp->cbd_sc = cpu_to_fec16(status); 663 664 /* If this was the last BD in the ring, start at the beginning again. */ 665 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 666 667 skb_tx_timestamp(skb); 668 669 /* Make sure the update to bdp and tx_skbuff are performed before 670 * txq->bd.cur. 671 */ 672 wmb(); 673 txq->bd.cur = bdp; 674 675 /* Trigger transmission start */ 676 writel(0, txq->bd.reg_desc_active); 677 678 return 0; 679 } 680 681 static int 682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 683 struct net_device *ndev, 684 struct bufdesc *bdp, int index, char *data, 685 int size, bool last_tcp, bool is_last) 686 { 687 struct fec_enet_private *fep = netdev_priv(ndev); 688 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 689 unsigned short status; 690 unsigned int estatus = 0; 691 dma_addr_t addr; 692 693 status = fec16_to_cpu(bdp->cbd_sc); 694 status &= ~BD_ENET_TX_STATS; 695 696 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 697 698 if (((unsigned long) data) & fep->tx_align || 699 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 700 memcpy(txq->tx_bounce[index], data, size); 701 data = txq->tx_bounce[index]; 702 703 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 704 swap_buffer(data, size); 705 } 706 707 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 708 if (dma_mapping_error(&fep->pdev->dev, addr)) { 709 dev_kfree_skb_any(skb); 710 if (net_ratelimit()) 711 netdev_err(ndev, "Tx DMA memory map failed\n"); 712 return NETDEV_TX_OK; 713 } 714 715 bdp->cbd_datlen = cpu_to_fec16(size); 716 bdp->cbd_bufaddr = cpu_to_fec32(addr); 717 718 if (fep->bufdesc_ex) { 719 if (fep->quirks & FEC_QUIRK_HAS_AVB) 720 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 721 if (skb->ip_summed == CHECKSUM_PARTIAL) 722 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 723 ebdp->cbd_bdu = 0; 724 ebdp->cbd_esc = cpu_to_fec32(estatus); 725 } 726 727 /* Handle the last BD specially */ 728 if (last_tcp) 729 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 730 if (is_last) { 731 status |= BD_ENET_TX_INTR; 732 if (fep->bufdesc_ex) 733 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 734 } 735 736 bdp->cbd_sc = cpu_to_fec16(status); 737 738 return 0; 739 } 740 741 static int 742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, struct net_device *ndev, 744 struct bufdesc *bdp, int index) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len = skb_tcp_all_headers(skb); 748 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 749 void *bufaddr; 750 unsigned long dmabuf; 751 unsigned short status; 752 unsigned int estatus = 0; 753 754 status = fec16_to_cpu(bdp->cbd_sc); 755 status &= ~BD_ENET_TX_STATS; 756 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 757 758 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 759 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 760 if (((unsigned long)bufaddr) & fep->tx_align || 761 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 762 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 763 bufaddr = txq->tx_bounce[index]; 764 765 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 766 swap_buffer(bufaddr, hdr_len); 767 768 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 769 hdr_len, DMA_TO_DEVICE); 770 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 771 dev_kfree_skb_any(skb); 772 if (net_ratelimit()) 773 netdev_err(ndev, "Tx DMA memory map failed\n"); 774 return NETDEV_TX_OK; 775 } 776 } 777 778 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 779 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 780 781 if (fep->bufdesc_ex) { 782 if (fep->quirks & FEC_QUIRK_HAS_AVB) 783 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 784 if (skb->ip_summed == CHECKSUM_PARTIAL) 785 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 786 ebdp->cbd_bdu = 0; 787 ebdp->cbd_esc = cpu_to_fec32(estatus); 788 } 789 790 bdp->cbd_sc = cpu_to_fec16(status); 791 792 return 0; 793 } 794 795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 796 struct sk_buff *skb, 797 struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int hdr_len, total_len, data_left; 801 struct bufdesc *bdp = txq->bd.cur; 802 struct tso_t tso; 803 unsigned int index = 0; 804 int ret; 805 806 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 807 dev_kfree_skb_any(skb); 808 if (net_ratelimit()) 809 netdev_err(ndev, "NOT enough BD for TSO!\n"); 810 return NETDEV_TX_OK; 811 } 812 813 /* Protocol checksum off-load for TCP and UDP. */ 814 if (fec_enet_clear_csum(skb, ndev)) { 815 dev_kfree_skb_any(skb); 816 return NETDEV_TX_OK; 817 } 818 819 /* Initialize the TSO handler, and prepare the first payload */ 820 hdr_len = tso_start(skb, &tso); 821 822 total_len = skb->len - hdr_len; 823 while (total_len > 0) { 824 char *hdr; 825 826 index = fec_enet_get_bd_index(bdp, &txq->bd); 827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 828 total_len -= data_left; 829 830 /* prepare packet headers: MAC + IP + TCP */ 831 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 832 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 833 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 834 if (ret) 835 goto err_release; 836 837 while (data_left > 0) { 838 int size; 839 840 size = min_t(int, tso.size, data_left); 841 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 842 index = fec_enet_get_bd_index(bdp, &txq->bd); 843 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 844 bdp, index, 845 tso.data, size, 846 size == data_left, 847 total_len == 0); 848 if (ret) 849 goto err_release; 850 851 data_left -= size; 852 tso_build_data(skb, &tso, size); 853 } 854 855 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 856 } 857 858 /* Save skb pointer */ 859 txq->tx_skbuff[index] = skb; 860 861 skb_tx_timestamp(skb); 862 txq->bd.cur = bdp; 863 864 /* Trigger transmission start */ 865 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 866 !readl(txq->bd.reg_desc_active) || 867 !readl(txq->bd.reg_desc_active) || 868 !readl(txq->bd.reg_desc_active) || 869 !readl(txq->bd.reg_desc_active)) 870 writel(0, txq->bd.reg_desc_active); 871 872 return 0; 873 874 err_release: 875 /* TODO: Release all used data descriptors for TSO */ 876 return ret; 877 } 878 879 static netdev_tx_t 880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 881 { 882 struct fec_enet_private *fep = netdev_priv(ndev); 883 int entries_free; 884 unsigned short queue; 885 struct fec_enet_priv_tx_q *txq; 886 struct netdev_queue *nq; 887 int ret; 888 889 queue = skb_get_queue_mapping(skb); 890 txq = fep->tx_queue[queue]; 891 nq = netdev_get_tx_queue(ndev, queue); 892 893 if (skb_is_gso(skb)) 894 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 895 else 896 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 897 if (ret) 898 return ret; 899 900 entries_free = fec_enet_get_free_txdesc_num(txq); 901 if (entries_free <= txq->tx_stop_threshold) 902 netif_tx_stop_queue(nq); 903 904 return NETDEV_TX_OK; 905 } 906 907 /* Init RX & TX buffer descriptors 908 */ 909 static void fec_enet_bd_init(struct net_device *dev) 910 { 911 struct fec_enet_private *fep = netdev_priv(dev); 912 struct fec_enet_priv_tx_q *txq; 913 struct fec_enet_priv_rx_q *rxq; 914 struct bufdesc *bdp; 915 unsigned int i; 916 unsigned int q; 917 918 for (q = 0; q < fep->num_rx_queues; q++) { 919 /* Initialize the receive buffer descriptors. */ 920 rxq = fep->rx_queue[q]; 921 bdp = rxq->bd.base; 922 923 for (i = 0; i < rxq->bd.ring_size; i++) { 924 925 /* Initialize the BD for every fragment in the page. */ 926 if (bdp->cbd_bufaddr) 927 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 928 else 929 bdp->cbd_sc = cpu_to_fec16(0); 930 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 931 } 932 933 /* Set the last buffer to wrap */ 934 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 935 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 936 937 rxq->bd.cur = rxq->bd.base; 938 } 939 940 for (q = 0; q < fep->num_tx_queues; q++) { 941 /* ...and the same for transmit */ 942 txq = fep->tx_queue[q]; 943 bdp = txq->bd.base; 944 txq->bd.cur = bdp; 945 946 for (i = 0; i < txq->bd.ring_size; i++) { 947 /* Initialize the BD for every fragment in the page. */ 948 bdp->cbd_sc = cpu_to_fec16(0); 949 if (bdp->cbd_bufaddr && 950 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 951 dma_unmap_single(&fep->pdev->dev, 952 fec32_to_cpu(bdp->cbd_bufaddr), 953 fec16_to_cpu(bdp->cbd_datlen), 954 DMA_TO_DEVICE); 955 if (txq->tx_skbuff[i]) { 956 dev_kfree_skb_any(txq->tx_skbuff[i]); 957 txq->tx_skbuff[i] = NULL; 958 } 959 bdp->cbd_bufaddr = cpu_to_fec32(0); 960 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 961 } 962 963 /* Set the last buffer to wrap */ 964 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 965 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 966 txq->dirty_tx = bdp; 967 } 968 } 969 970 static void fec_enet_active_rxring(struct net_device *ndev) 971 { 972 struct fec_enet_private *fep = netdev_priv(ndev); 973 int i; 974 975 for (i = 0; i < fep->num_rx_queues; i++) 976 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 977 } 978 979 static void fec_enet_enable_ring(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 struct fec_enet_priv_tx_q *txq; 983 struct fec_enet_priv_rx_q *rxq; 984 int i; 985 986 for (i = 0; i < fep->num_rx_queues; i++) { 987 rxq = fep->rx_queue[i]; 988 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 989 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 990 991 /* enable DMA1/2 */ 992 if (i) 993 writel(RCMR_MATCHEN | RCMR_CMP(i), 994 fep->hwp + FEC_RCMR(i)); 995 } 996 997 for (i = 0; i < fep->num_tx_queues; i++) { 998 txq = fep->tx_queue[i]; 999 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1000 1001 /* enable DMA1/2 */ 1002 if (i) 1003 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1004 fep->hwp + FEC_DMA_CFG(i)); 1005 } 1006 } 1007 1008 static void fec_enet_reset_skb(struct net_device *ndev) 1009 { 1010 struct fec_enet_private *fep = netdev_priv(ndev); 1011 struct fec_enet_priv_tx_q *txq; 1012 int i, j; 1013 1014 for (i = 0; i < fep->num_tx_queues; i++) { 1015 txq = fep->tx_queue[i]; 1016 1017 for (j = 0; j < txq->bd.ring_size; j++) { 1018 if (txq->tx_skbuff[j]) { 1019 dev_kfree_skb_any(txq->tx_skbuff[j]); 1020 txq->tx_skbuff[j] = NULL; 1021 } 1022 } 1023 } 1024 } 1025 1026 /* 1027 * This function is called to start or restart the FEC during a link 1028 * change, transmit timeout, or to reconfigure the FEC. The network 1029 * packet processing for this device must be stopped before this call. 1030 */ 1031 static void 1032 fec_restart(struct net_device *ndev) 1033 { 1034 struct fec_enet_private *fep = netdev_priv(ndev); 1035 u32 temp_mac[2]; 1036 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1037 u32 ecntl = 0x2; /* ETHEREN */ 1038 1039 /* Whack a reset. We should wait for this. 1040 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1041 * instead of reset MAC itself. 1042 */ 1043 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1044 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1045 writel(0, fep->hwp + FEC_ECNTRL); 1046 } else { 1047 writel(1, fep->hwp + FEC_ECNTRL); 1048 udelay(10); 1049 } 1050 1051 /* 1052 * enet-mac reset will reset mac address registers too, 1053 * so need to reconfigure it. 1054 */ 1055 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1056 writel((__force u32)cpu_to_be32(temp_mac[0]), 1057 fep->hwp + FEC_ADDR_LOW); 1058 writel((__force u32)cpu_to_be32(temp_mac[1]), 1059 fep->hwp + FEC_ADDR_HIGH); 1060 1061 /* Clear any outstanding interrupt, except MDIO. */ 1062 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1063 1064 fec_enet_bd_init(ndev); 1065 1066 fec_enet_enable_ring(ndev); 1067 1068 /* Reset tx SKB buffers. */ 1069 fec_enet_reset_skb(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 fec_enet_itr_coal_set(ndev); 1220 } 1221 1222 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1223 { 1224 if (!(of_machine_is_compatible("fsl,imx8qm") || 1225 of_machine_is_compatible("fsl,imx8qxp") || 1226 of_machine_is_compatible("fsl,imx8dxl"))) 1227 return 0; 1228 1229 return imx_scu_get_handle(&fep->ipc_handle); 1230 } 1231 1232 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1233 { 1234 struct device_node *np = fep->pdev->dev.of_node; 1235 u32 rsrc_id, val; 1236 int idx; 1237 1238 if (!np || !fep->ipc_handle) 1239 return; 1240 1241 idx = of_alias_get_id(np, "ethernet"); 1242 if (idx < 0) 1243 idx = 0; 1244 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1245 1246 val = enabled ? 1 : 0; 1247 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1248 } 1249 1250 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1251 { 1252 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1253 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1254 1255 if (stop_gpr->gpr) { 1256 if (enabled) 1257 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1258 BIT(stop_gpr->bit), 1259 BIT(stop_gpr->bit)); 1260 else 1261 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1262 BIT(stop_gpr->bit), 0); 1263 } else if (pdata && pdata->sleep_mode_enable) { 1264 pdata->sleep_mode_enable(enabled); 1265 } else { 1266 fec_enet_ipg_stop_set(fep, enabled); 1267 } 1268 } 1269 1270 static void fec_irqs_disable(struct net_device *ndev) 1271 { 1272 struct fec_enet_private *fep = netdev_priv(ndev); 1273 1274 writel(0, fep->hwp + FEC_IMASK); 1275 } 1276 1277 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1278 { 1279 struct fec_enet_private *fep = netdev_priv(ndev); 1280 1281 writel(0, fep->hwp + FEC_IMASK); 1282 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1283 } 1284 1285 static void 1286 fec_stop(struct net_device *ndev) 1287 { 1288 struct fec_enet_private *fep = netdev_priv(ndev); 1289 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1290 u32 val; 1291 1292 /* We cannot expect a graceful transmit stop without link !!! */ 1293 if (fep->link) { 1294 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1295 udelay(10); 1296 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1297 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1298 } 1299 1300 /* Whack a reset. We should wait for this. 1301 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1302 * instead of reset MAC itself. 1303 */ 1304 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1305 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1306 writel(0, fep->hwp + FEC_ECNTRL); 1307 } else { 1308 writel(1, fep->hwp + FEC_ECNTRL); 1309 udelay(10); 1310 } 1311 } else { 1312 val = readl(fep->hwp + FEC_ECNTRL); 1313 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1314 writel(val, fep->hwp + FEC_ECNTRL); 1315 } 1316 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1317 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1318 1319 /* We have to keep ENET enabled to have MII interrupt stay working */ 1320 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1321 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1322 writel(2, fep->hwp + FEC_ECNTRL); 1323 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1324 } 1325 } 1326 1327 1328 static void 1329 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1330 { 1331 struct fec_enet_private *fep = netdev_priv(ndev); 1332 1333 fec_dump(ndev); 1334 1335 ndev->stats.tx_errors++; 1336 1337 schedule_work(&fep->tx_timeout_work); 1338 } 1339 1340 static void fec_enet_timeout_work(struct work_struct *work) 1341 { 1342 struct fec_enet_private *fep = 1343 container_of(work, struct fec_enet_private, tx_timeout_work); 1344 struct net_device *ndev = fep->netdev; 1345 1346 rtnl_lock(); 1347 if (netif_device_present(ndev) || netif_running(ndev)) { 1348 napi_disable(&fep->napi); 1349 netif_tx_lock_bh(ndev); 1350 fec_restart(ndev); 1351 netif_tx_wake_all_queues(ndev); 1352 netif_tx_unlock_bh(ndev); 1353 napi_enable(&fep->napi); 1354 } 1355 rtnl_unlock(); 1356 } 1357 1358 static void 1359 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1360 struct skb_shared_hwtstamps *hwtstamps) 1361 { 1362 unsigned long flags; 1363 u64 ns; 1364 1365 spin_lock_irqsave(&fep->tmreg_lock, flags); 1366 ns = timecounter_cyc2time(&fep->tc, ts); 1367 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1368 1369 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1370 hwtstamps->hwtstamp = ns_to_ktime(ns); 1371 } 1372 1373 static void 1374 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1375 { 1376 struct fec_enet_private *fep; 1377 struct bufdesc *bdp; 1378 unsigned short status; 1379 struct sk_buff *skb; 1380 struct fec_enet_priv_tx_q *txq; 1381 struct netdev_queue *nq; 1382 int index = 0; 1383 int entries_free; 1384 1385 fep = netdev_priv(ndev); 1386 1387 txq = fep->tx_queue[queue_id]; 1388 /* get next bdp of dirty_tx */ 1389 nq = netdev_get_tx_queue(ndev, queue_id); 1390 bdp = txq->dirty_tx; 1391 1392 /* get next bdp of dirty_tx */ 1393 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1394 1395 while (bdp != READ_ONCE(txq->bd.cur)) { 1396 /* Order the load of bd.cur and cbd_sc */ 1397 rmb(); 1398 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1399 if (status & BD_ENET_TX_READY) 1400 break; 1401 1402 index = fec_enet_get_bd_index(bdp, &txq->bd); 1403 1404 skb = txq->tx_skbuff[index]; 1405 txq->tx_skbuff[index] = NULL; 1406 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1407 dma_unmap_single(&fep->pdev->dev, 1408 fec32_to_cpu(bdp->cbd_bufaddr), 1409 fec16_to_cpu(bdp->cbd_datlen), 1410 DMA_TO_DEVICE); 1411 bdp->cbd_bufaddr = cpu_to_fec32(0); 1412 if (!skb) 1413 goto skb_done; 1414 1415 /* Check for errors. */ 1416 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1417 BD_ENET_TX_RL | BD_ENET_TX_UN | 1418 BD_ENET_TX_CSL)) { 1419 ndev->stats.tx_errors++; 1420 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1421 ndev->stats.tx_heartbeat_errors++; 1422 if (status & BD_ENET_TX_LC) /* Late collision */ 1423 ndev->stats.tx_window_errors++; 1424 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1425 ndev->stats.tx_aborted_errors++; 1426 if (status & BD_ENET_TX_UN) /* Underrun */ 1427 ndev->stats.tx_fifo_errors++; 1428 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1429 ndev->stats.tx_carrier_errors++; 1430 } else { 1431 ndev->stats.tx_packets++; 1432 ndev->stats.tx_bytes += skb->len; 1433 } 1434 1435 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1436 * are to time stamp the packet, so we still need to check time 1437 * stamping enabled flag. 1438 */ 1439 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1440 fep->hwts_tx_en) && 1441 fep->bufdesc_ex) { 1442 struct skb_shared_hwtstamps shhwtstamps; 1443 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1444 1445 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1446 skb_tstamp_tx(skb, &shhwtstamps); 1447 } 1448 1449 /* Deferred means some collisions occurred during transmit, 1450 * but we eventually sent the packet OK. 1451 */ 1452 if (status & BD_ENET_TX_DEF) 1453 ndev->stats.collisions++; 1454 1455 /* Free the sk buffer associated with this last transmit */ 1456 dev_kfree_skb_any(skb); 1457 skb_done: 1458 /* Make sure the update to bdp and tx_skbuff are performed 1459 * before dirty_tx 1460 */ 1461 wmb(); 1462 txq->dirty_tx = bdp; 1463 1464 /* Update pointer to next buffer descriptor to be transmitted */ 1465 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1466 1467 /* Since we have freed up a buffer, the ring is no longer full 1468 */ 1469 if (netif_tx_queue_stopped(nq)) { 1470 entries_free = fec_enet_get_free_txdesc_num(txq); 1471 if (entries_free >= txq->tx_wake_threshold) 1472 netif_tx_wake_queue(nq); 1473 } 1474 } 1475 1476 /* ERR006358: Keep the transmitter going */ 1477 if (bdp != txq->bd.cur && 1478 readl(txq->bd.reg_desc_active) == 0) 1479 writel(0, txq->bd.reg_desc_active); 1480 } 1481 1482 static void fec_enet_tx(struct net_device *ndev) 1483 { 1484 struct fec_enet_private *fep = netdev_priv(ndev); 1485 int i; 1486 1487 /* Make sure that AVB queues are processed first. */ 1488 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1489 fec_enet_tx_queue(ndev, i); 1490 } 1491 1492 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1493 struct bufdesc *bdp, int index) 1494 { 1495 struct page *new_page; 1496 dma_addr_t phys_addr; 1497 1498 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1499 WARN_ON(!new_page); 1500 rxq->rx_skb_info[index].page = new_page; 1501 1502 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1503 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1504 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1505 } 1506 1507 static u32 1508 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1509 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1510 { 1511 unsigned int sync, len = xdp->data_end - xdp->data; 1512 u32 ret = FEC_ENET_XDP_PASS; 1513 struct page *page; 1514 int err; 1515 u32 act; 1516 1517 act = bpf_prog_run_xdp(prog, xdp); 1518 1519 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1520 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1521 sync = max(sync, len); 1522 1523 switch (act) { 1524 case XDP_PASS: 1525 rxq->stats[RX_XDP_PASS]++; 1526 ret = FEC_ENET_XDP_PASS; 1527 break; 1528 1529 case XDP_REDIRECT: 1530 rxq->stats[RX_XDP_REDIRECT]++; 1531 err = xdp_do_redirect(fep->netdev, xdp, prog); 1532 if (!err) { 1533 ret = FEC_ENET_XDP_REDIR; 1534 } else { 1535 ret = FEC_ENET_XDP_CONSUMED; 1536 page = virt_to_head_page(xdp->data); 1537 page_pool_put_page(rxq->page_pool, page, sync, true); 1538 } 1539 break; 1540 1541 default: 1542 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1543 fallthrough; 1544 1545 case XDP_TX: 1546 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1547 fallthrough; 1548 1549 case XDP_ABORTED: 1550 fallthrough; /* handle aborts by dropping packet */ 1551 1552 case XDP_DROP: 1553 rxq->stats[RX_XDP_DROP]++; 1554 ret = FEC_ENET_XDP_CONSUMED; 1555 page = virt_to_head_page(xdp->data); 1556 page_pool_put_page(rxq->page_pool, page, sync, true); 1557 break; 1558 } 1559 1560 return ret; 1561 } 1562 1563 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1564 * When we update through the ring, if the next incoming buffer has 1565 * not been given to the system, we just set the empty indicator, 1566 * effectively tossing the packet. 1567 */ 1568 static int 1569 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1570 { 1571 struct fec_enet_private *fep = netdev_priv(ndev); 1572 struct fec_enet_priv_rx_q *rxq; 1573 struct bufdesc *bdp; 1574 unsigned short status; 1575 struct sk_buff *skb; 1576 ushort pkt_len; 1577 __u8 *data; 1578 int pkt_received = 0; 1579 struct bufdesc_ex *ebdp = NULL; 1580 bool vlan_packet_rcvd = false; 1581 u16 vlan_tag; 1582 int index = 0; 1583 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1584 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1585 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1586 u32 data_start = FEC_ENET_XDP_HEADROOM; 1587 struct xdp_buff xdp; 1588 struct page *page; 1589 u32 sub_len = 4; 1590 1591 #if !defined(CONFIG_M5272) 1592 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1593 * FEC_RACC_SHIFT16 is set by default in the probe function. 1594 */ 1595 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1596 data_start += 2; 1597 sub_len += 2; 1598 } 1599 #endif 1600 1601 #ifdef CONFIG_M532x 1602 flush_cache_all(); 1603 #endif 1604 rxq = fep->rx_queue[queue_id]; 1605 1606 /* First, grab all of the stats for the incoming packet. 1607 * These get messed up if we get called due to a busy condition. 1608 */ 1609 bdp = rxq->bd.cur; 1610 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1611 1612 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1613 1614 if (pkt_received >= budget) 1615 break; 1616 pkt_received++; 1617 1618 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1619 1620 /* Check for errors. */ 1621 status ^= BD_ENET_RX_LAST; 1622 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1623 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1624 BD_ENET_RX_CL)) { 1625 ndev->stats.rx_errors++; 1626 if (status & BD_ENET_RX_OV) { 1627 /* FIFO overrun */ 1628 ndev->stats.rx_fifo_errors++; 1629 goto rx_processing_done; 1630 } 1631 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1632 | BD_ENET_RX_LAST)) { 1633 /* Frame too long or too short. */ 1634 ndev->stats.rx_length_errors++; 1635 if (status & BD_ENET_RX_LAST) 1636 netdev_err(ndev, "rcv is not +last\n"); 1637 } 1638 if (status & BD_ENET_RX_CR) /* CRC Error */ 1639 ndev->stats.rx_crc_errors++; 1640 /* Report late collisions as a frame error. */ 1641 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1642 ndev->stats.rx_frame_errors++; 1643 goto rx_processing_done; 1644 } 1645 1646 /* Process the incoming frame. */ 1647 ndev->stats.rx_packets++; 1648 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1649 ndev->stats.rx_bytes += pkt_len; 1650 1651 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1652 page = rxq->rx_skb_info[index].page; 1653 dma_sync_single_for_cpu(&fep->pdev->dev, 1654 fec32_to_cpu(bdp->cbd_bufaddr), 1655 pkt_len, 1656 DMA_FROM_DEVICE); 1657 prefetch(page_address(page)); 1658 fec_enet_update_cbd(rxq, bdp, index); 1659 1660 if (xdp_prog) { 1661 xdp_buff_clear_frags_flag(&xdp); 1662 /* subtract 16bit shift and FCS */ 1663 xdp_prepare_buff(&xdp, page_address(page), 1664 data_start, pkt_len - sub_len, false); 1665 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1666 xdp_result |= ret; 1667 if (ret != FEC_ENET_XDP_PASS) 1668 goto rx_processing_done; 1669 } 1670 1671 /* The packet length includes FCS, but we don't want to 1672 * include that when passing upstream as it messes up 1673 * bridging applications. 1674 */ 1675 skb = build_skb(page_address(page), PAGE_SIZE); 1676 skb_reserve(skb, data_start); 1677 skb_put(skb, pkt_len - sub_len); 1678 skb_mark_for_recycle(skb); 1679 1680 if (unlikely(need_swap)) { 1681 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1682 swap_buffer(data, pkt_len); 1683 } 1684 data = skb->data; 1685 1686 /* Extract the enhanced buffer descriptor */ 1687 ebdp = NULL; 1688 if (fep->bufdesc_ex) 1689 ebdp = (struct bufdesc_ex *)bdp; 1690 1691 /* If this is a VLAN packet remove the VLAN Tag */ 1692 vlan_packet_rcvd = false; 1693 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1694 fep->bufdesc_ex && 1695 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1696 /* Push and remove the vlan tag */ 1697 struct vlan_hdr *vlan_header = 1698 (struct vlan_hdr *) (data + ETH_HLEN); 1699 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1700 1701 vlan_packet_rcvd = true; 1702 1703 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1704 skb_pull(skb, VLAN_HLEN); 1705 } 1706 1707 skb->protocol = eth_type_trans(skb, ndev); 1708 1709 /* Get receive timestamp from the skb */ 1710 if (fep->hwts_rx_en && fep->bufdesc_ex) 1711 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1712 skb_hwtstamps(skb)); 1713 1714 if (fep->bufdesc_ex && 1715 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1716 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1717 /* don't check it */ 1718 skb->ip_summed = CHECKSUM_UNNECESSARY; 1719 } else { 1720 skb_checksum_none_assert(skb); 1721 } 1722 } 1723 1724 /* Handle received VLAN packets */ 1725 if (vlan_packet_rcvd) 1726 __vlan_hwaccel_put_tag(skb, 1727 htons(ETH_P_8021Q), 1728 vlan_tag); 1729 1730 skb_record_rx_queue(skb, queue_id); 1731 napi_gro_receive(&fep->napi, skb); 1732 1733 rx_processing_done: 1734 /* Clear the status flags for this buffer */ 1735 status &= ~BD_ENET_RX_STATS; 1736 1737 /* Mark the buffer empty */ 1738 status |= BD_ENET_RX_EMPTY; 1739 1740 if (fep->bufdesc_ex) { 1741 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1742 1743 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1744 ebdp->cbd_prot = 0; 1745 ebdp->cbd_bdu = 0; 1746 } 1747 /* Make sure the updates to rest of the descriptor are 1748 * performed before transferring ownership. 1749 */ 1750 wmb(); 1751 bdp->cbd_sc = cpu_to_fec16(status); 1752 1753 /* Update BD pointer to next entry */ 1754 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1755 1756 /* Doing this here will keep the FEC running while we process 1757 * incoming frames. On a heavily loaded network, we should be 1758 * able to keep up at the expense of system resources. 1759 */ 1760 writel(0, rxq->bd.reg_desc_active); 1761 } 1762 rxq->bd.cur = bdp; 1763 1764 if (xdp_result & FEC_ENET_XDP_REDIR) 1765 xdp_do_flush_map(); 1766 1767 return pkt_received; 1768 } 1769 1770 static int fec_enet_rx(struct net_device *ndev, int budget) 1771 { 1772 struct fec_enet_private *fep = netdev_priv(ndev); 1773 int i, done = 0; 1774 1775 /* Make sure that AVB queues are processed first. */ 1776 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1777 done += fec_enet_rx_queue(ndev, budget - done, i); 1778 1779 return done; 1780 } 1781 1782 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1783 { 1784 uint int_events; 1785 1786 int_events = readl(fep->hwp + FEC_IEVENT); 1787 1788 /* Don't clear MDIO events, we poll for those */ 1789 int_events &= ~FEC_ENET_MII; 1790 1791 writel(int_events, fep->hwp + FEC_IEVENT); 1792 1793 return int_events != 0; 1794 } 1795 1796 static irqreturn_t 1797 fec_enet_interrupt(int irq, void *dev_id) 1798 { 1799 struct net_device *ndev = dev_id; 1800 struct fec_enet_private *fep = netdev_priv(ndev); 1801 irqreturn_t ret = IRQ_NONE; 1802 1803 if (fec_enet_collect_events(fep) && fep->link) { 1804 ret = IRQ_HANDLED; 1805 1806 if (napi_schedule_prep(&fep->napi)) { 1807 /* Disable interrupts */ 1808 writel(0, fep->hwp + FEC_IMASK); 1809 __napi_schedule(&fep->napi); 1810 } 1811 } 1812 1813 return ret; 1814 } 1815 1816 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1817 { 1818 struct net_device *ndev = napi->dev; 1819 struct fec_enet_private *fep = netdev_priv(ndev); 1820 int done = 0; 1821 1822 do { 1823 done += fec_enet_rx(ndev, budget - done); 1824 fec_enet_tx(ndev); 1825 } while ((done < budget) && fec_enet_collect_events(fep)); 1826 1827 if (done < budget) { 1828 napi_complete_done(napi, done); 1829 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1830 } 1831 1832 return done; 1833 } 1834 1835 /* ------------------------------------------------------------------------- */ 1836 static int fec_get_mac(struct net_device *ndev) 1837 { 1838 struct fec_enet_private *fep = netdev_priv(ndev); 1839 unsigned char *iap, tmpaddr[ETH_ALEN]; 1840 int ret; 1841 1842 /* 1843 * try to get mac address in following order: 1844 * 1845 * 1) module parameter via kernel command line in form 1846 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1847 */ 1848 iap = macaddr; 1849 1850 /* 1851 * 2) from device tree data 1852 */ 1853 if (!is_valid_ether_addr(iap)) { 1854 struct device_node *np = fep->pdev->dev.of_node; 1855 if (np) { 1856 ret = of_get_mac_address(np, tmpaddr); 1857 if (!ret) 1858 iap = tmpaddr; 1859 else if (ret == -EPROBE_DEFER) 1860 return ret; 1861 } 1862 } 1863 1864 /* 1865 * 3) from flash or fuse (via platform data) 1866 */ 1867 if (!is_valid_ether_addr(iap)) { 1868 #ifdef CONFIG_M5272 1869 if (FEC_FLASHMAC) 1870 iap = (unsigned char *)FEC_FLASHMAC; 1871 #else 1872 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1873 1874 if (pdata) 1875 iap = (unsigned char *)&pdata->mac; 1876 #endif 1877 } 1878 1879 /* 1880 * 4) FEC mac registers set by bootloader 1881 */ 1882 if (!is_valid_ether_addr(iap)) { 1883 *((__be32 *) &tmpaddr[0]) = 1884 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1885 *((__be16 *) &tmpaddr[4]) = 1886 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1887 iap = &tmpaddr[0]; 1888 } 1889 1890 /* 1891 * 5) random mac address 1892 */ 1893 if (!is_valid_ether_addr(iap)) { 1894 /* Report it and use a random ethernet address instead */ 1895 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1896 eth_hw_addr_random(ndev); 1897 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1898 ndev->dev_addr); 1899 return 0; 1900 } 1901 1902 /* Adjust MAC if using macaddr */ 1903 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1904 1905 return 0; 1906 } 1907 1908 /* ------------------------------------------------------------------------- */ 1909 1910 /* 1911 * Phy section 1912 */ 1913 static void fec_enet_adjust_link(struct net_device *ndev) 1914 { 1915 struct fec_enet_private *fep = netdev_priv(ndev); 1916 struct phy_device *phy_dev = ndev->phydev; 1917 int status_change = 0; 1918 1919 /* 1920 * If the netdev is down, or is going down, we're not interested 1921 * in link state events, so just mark our idea of the link as down 1922 * and ignore the event. 1923 */ 1924 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1925 fep->link = 0; 1926 } else if (phy_dev->link) { 1927 if (!fep->link) { 1928 fep->link = phy_dev->link; 1929 status_change = 1; 1930 } 1931 1932 if (fep->full_duplex != phy_dev->duplex) { 1933 fep->full_duplex = phy_dev->duplex; 1934 status_change = 1; 1935 } 1936 1937 if (phy_dev->speed != fep->speed) { 1938 fep->speed = phy_dev->speed; 1939 status_change = 1; 1940 } 1941 1942 /* if any of the above changed restart the FEC */ 1943 if (status_change) { 1944 napi_disable(&fep->napi); 1945 netif_tx_lock_bh(ndev); 1946 fec_restart(ndev); 1947 netif_tx_wake_all_queues(ndev); 1948 netif_tx_unlock_bh(ndev); 1949 napi_enable(&fep->napi); 1950 } 1951 } else { 1952 if (fep->link) { 1953 napi_disable(&fep->napi); 1954 netif_tx_lock_bh(ndev); 1955 fec_stop(ndev); 1956 netif_tx_unlock_bh(ndev); 1957 napi_enable(&fep->napi); 1958 fep->link = phy_dev->link; 1959 status_change = 1; 1960 } 1961 } 1962 1963 if (status_change) 1964 phy_print_status(phy_dev); 1965 } 1966 1967 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1968 { 1969 uint ievent; 1970 int ret; 1971 1972 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1973 ievent & FEC_ENET_MII, 2, 30000); 1974 1975 if (!ret) 1976 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1977 1978 return ret; 1979 } 1980 1981 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1982 { 1983 struct fec_enet_private *fep = bus->priv; 1984 struct device *dev = &fep->pdev->dev; 1985 int ret = 0, frame_start, frame_addr, frame_op; 1986 bool is_c45 = !!(regnum & MII_ADDR_C45); 1987 1988 ret = pm_runtime_resume_and_get(dev); 1989 if (ret < 0) 1990 return ret; 1991 1992 if (is_c45) { 1993 frame_start = FEC_MMFR_ST_C45; 1994 1995 /* write address */ 1996 frame_addr = (regnum >> 16); 1997 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1998 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1999 FEC_MMFR_TA | (regnum & 0xFFFF), 2000 fep->hwp + FEC_MII_DATA); 2001 2002 /* wait for end of transfer */ 2003 ret = fec_enet_mdio_wait(fep); 2004 if (ret) { 2005 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2006 goto out; 2007 } 2008 2009 frame_op = FEC_MMFR_OP_READ_C45; 2010 2011 } else { 2012 /* C22 read */ 2013 frame_op = FEC_MMFR_OP_READ; 2014 frame_start = FEC_MMFR_ST; 2015 frame_addr = regnum; 2016 } 2017 2018 /* start a read op */ 2019 writel(frame_start | frame_op | 2020 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2021 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2022 2023 /* wait for end of transfer */ 2024 ret = fec_enet_mdio_wait(fep); 2025 if (ret) { 2026 netdev_err(fep->netdev, "MDIO read timeout\n"); 2027 goto out; 2028 } 2029 2030 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2031 2032 out: 2033 pm_runtime_mark_last_busy(dev); 2034 pm_runtime_put_autosuspend(dev); 2035 2036 return ret; 2037 } 2038 2039 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 2040 u16 value) 2041 { 2042 struct fec_enet_private *fep = bus->priv; 2043 struct device *dev = &fep->pdev->dev; 2044 int ret, frame_start, frame_addr; 2045 bool is_c45 = !!(regnum & MII_ADDR_C45); 2046 2047 ret = pm_runtime_resume_and_get(dev); 2048 if (ret < 0) 2049 return ret; 2050 2051 if (is_c45) { 2052 frame_start = FEC_MMFR_ST_C45; 2053 2054 /* write address */ 2055 frame_addr = (regnum >> 16); 2056 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2057 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2058 FEC_MMFR_TA | (regnum & 0xFFFF), 2059 fep->hwp + FEC_MII_DATA); 2060 2061 /* wait for end of transfer */ 2062 ret = fec_enet_mdio_wait(fep); 2063 if (ret) { 2064 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2065 goto out; 2066 } 2067 } else { 2068 /* C22 write */ 2069 frame_start = FEC_MMFR_ST; 2070 frame_addr = regnum; 2071 } 2072 2073 /* start a write op */ 2074 writel(frame_start | FEC_MMFR_OP_WRITE | 2075 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2076 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2077 fep->hwp + FEC_MII_DATA); 2078 2079 /* wait for end of transfer */ 2080 ret = fec_enet_mdio_wait(fep); 2081 if (ret) 2082 netdev_err(fep->netdev, "MDIO write timeout\n"); 2083 2084 out: 2085 pm_runtime_mark_last_busy(dev); 2086 pm_runtime_put_autosuspend(dev); 2087 2088 return ret; 2089 } 2090 2091 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2092 { 2093 struct fec_enet_private *fep = netdev_priv(ndev); 2094 struct phy_device *phy_dev = ndev->phydev; 2095 2096 if (phy_dev) { 2097 phy_reset_after_clk_enable(phy_dev); 2098 } else if (fep->phy_node) { 2099 /* 2100 * If the PHY still is not bound to the MAC, but there is 2101 * OF PHY node and a matching PHY device instance already, 2102 * use the OF PHY node to obtain the PHY device instance, 2103 * and then use that PHY device instance when triggering 2104 * the PHY reset. 2105 */ 2106 phy_dev = of_phy_find_device(fep->phy_node); 2107 phy_reset_after_clk_enable(phy_dev); 2108 put_device(&phy_dev->mdio.dev); 2109 } 2110 } 2111 2112 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2113 { 2114 struct fec_enet_private *fep = netdev_priv(ndev); 2115 int ret; 2116 2117 if (enable) { 2118 ret = clk_prepare_enable(fep->clk_enet_out); 2119 if (ret) 2120 return ret; 2121 2122 if (fep->clk_ptp) { 2123 mutex_lock(&fep->ptp_clk_mutex); 2124 ret = clk_prepare_enable(fep->clk_ptp); 2125 if (ret) { 2126 mutex_unlock(&fep->ptp_clk_mutex); 2127 goto failed_clk_ptp; 2128 } else { 2129 fep->ptp_clk_on = true; 2130 } 2131 mutex_unlock(&fep->ptp_clk_mutex); 2132 } 2133 2134 ret = clk_prepare_enable(fep->clk_ref); 2135 if (ret) 2136 goto failed_clk_ref; 2137 2138 ret = clk_prepare_enable(fep->clk_2x_txclk); 2139 if (ret) 2140 goto failed_clk_2x_txclk; 2141 2142 fec_enet_phy_reset_after_clk_enable(ndev); 2143 } else { 2144 clk_disable_unprepare(fep->clk_enet_out); 2145 if (fep->clk_ptp) { 2146 mutex_lock(&fep->ptp_clk_mutex); 2147 clk_disable_unprepare(fep->clk_ptp); 2148 fep->ptp_clk_on = false; 2149 mutex_unlock(&fep->ptp_clk_mutex); 2150 } 2151 clk_disable_unprepare(fep->clk_ref); 2152 clk_disable_unprepare(fep->clk_2x_txclk); 2153 } 2154 2155 return 0; 2156 2157 failed_clk_2x_txclk: 2158 if (fep->clk_ref) 2159 clk_disable_unprepare(fep->clk_ref); 2160 failed_clk_ref: 2161 if (fep->clk_ptp) { 2162 mutex_lock(&fep->ptp_clk_mutex); 2163 clk_disable_unprepare(fep->clk_ptp); 2164 fep->ptp_clk_on = false; 2165 mutex_unlock(&fep->ptp_clk_mutex); 2166 } 2167 failed_clk_ptp: 2168 clk_disable_unprepare(fep->clk_enet_out); 2169 2170 return ret; 2171 } 2172 2173 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2174 struct device_node *np) 2175 { 2176 u32 rgmii_tx_delay, rgmii_rx_delay; 2177 2178 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2179 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2180 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2181 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2182 return -EINVAL; 2183 } else if (rgmii_tx_delay == 2000) { 2184 fep->rgmii_txc_dly = true; 2185 } 2186 } 2187 2188 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2189 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2190 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2191 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2192 return -EINVAL; 2193 } else if (rgmii_rx_delay == 2000) { 2194 fep->rgmii_rxc_dly = true; 2195 } 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int fec_enet_mii_probe(struct net_device *ndev) 2202 { 2203 struct fec_enet_private *fep = netdev_priv(ndev); 2204 struct phy_device *phy_dev = NULL; 2205 char mdio_bus_id[MII_BUS_ID_SIZE]; 2206 char phy_name[MII_BUS_ID_SIZE + 3]; 2207 int phy_id; 2208 int dev_id = fep->dev_id; 2209 2210 if (fep->phy_node) { 2211 phy_dev = of_phy_connect(ndev, fep->phy_node, 2212 &fec_enet_adjust_link, 0, 2213 fep->phy_interface); 2214 if (!phy_dev) { 2215 netdev_err(ndev, "Unable to connect to phy\n"); 2216 return -ENODEV; 2217 } 2218 } else { 2219 /* check for attached phy */ 2220 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2221 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2222 continue; 2223 if (dev_id--) 2224 continue; 2225 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2226 break; 2227 } 2228 2229 if (phy_id >= PHY_MAX_ADDR) { 2230 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2231 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2232 phy_id = 0; 2233 } 2234 2235 snprintf(phy_name, sizeof(phy_name), 2236 PHY_ID_FMT, mdio_bus_id, phy_id); 2237 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2238 fep->phy_interface); 2239 } 2240 2241 if (IS_ERR(phy_dev)) { 2242 netdev_err(ndev, "could not attach to PHY\n"); 2243 return PTR_ERR(phy_dev); 2244 } 2245 2246 /* mask with MAC supported features */ 2247 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2248 phy_set_max_speed(phy_dev, 1000); 2249 phy_remove_link_mode(phy_dev, 2250 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2251 #if !defined(CONFIG_M5272) 2252 phy_support_sym_pause(phy_dev); 2253 #endif 2254 } 2255 else 2256 phy_set_max_speed(phy_dev, 100); 2257 2258 fep->link = 0; 2259 fep->full_duplex = 0; 2260 2261 phy_dev->mac_managed_pm = true; 2262 2263 phy_attached_info(phy_dev); 2264 2265 return 0; 2266 } 2267 2268 static int fec_enet_mii_init(struct platform_device *pdev) 2269 { 2270 static struct mii_bus *fec0_mii_bus; 2271 struct net_device *ndev = platform_get_drvdata(pdev); 2272 struct fec_enet_private *fep = netdev_priv(ndev); 2273 bool suppress_preamble = false; 2274 struct device_node *node; 2275 int err = -ENXIO; 2276 u32 mii_speed, holdtime; 2277 u32 bus_freq; 2278 2279 /* 2280 * The i.MX28 dual fec interfaces are not equal. 2281 * Here are the differences: 2282 * 2283 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2284 * - fec0 acts as the 1588 time master while fec1 is slave 2285 * - external phys can only be configured by fec0 2286 * 2287 * That is to say fec1 can not work independently. It only works 2288 * when fec0 is working. The reason behind this design is that the 2289 * second interface is added primarily for Switch mode. 2290 * 2291 * Because of the last point above, both phys are attached on fec0 2292 * mdio interface in board design, and need to be configured by 2293 * fec0 mii_bus. 2294 */ 2295 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2296 /* fec1 uses fec0 mii_bus */ 2297 if (mii_cnt && fec0_mii_bus) { 2298 fep->mii_bus = fec0_mii_bus; 2299 mii_cnt++; 2300 return 0; 2301 } 2302 return -ENOENT; 2303 } 2304 2305 bus_freq = 2500000; /* 2.5MHz by default */ 2306 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2307 if (node) { 2308 of_property_read_u32(node, "clock-frequency", &bus_freq); 2309 suppress_preamble = of_property_read_bool(node, 2310 "suppress-preamble"); 2311 } 2312 2313 /* 2314 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2315 * 2316 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2317 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2318 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2319 * document. 2320 */ 2321 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2322 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2323 mii_speed--; 2324 if (mii_speed > 63) { 2325 dev_err(&pdev->dev, 2326 "fec clock (%lu) too fast to get right mii speed\n", 2327 clk_get_rate(fep->clk_ipg)); 2328 err = -EINVAL; 2329 goto err_out; 2330 } 2331 2332 /* 2333 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2334 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2335 * versions are RAZ there, so just ignore the difference and write the 2336 * register always. 2337 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2338 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2339 * output. 2340 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2341 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2342 * holdtime cannot result in a value greater than 3. 2343 */ 2344 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2345 2346 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2347 2348 if (suppress_preamble) 2349 fep->phy_speed |= BIT(7); 2350 2351 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2352 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2353 * MII event generation condition: 2354 * - writing MSCR: 2355 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2356 * mscr_reg_data_in[7:0] != 0 2357 * - writing MMFR: 2358 * - mscr[7:0]_not_zero 2359 */ 2360 writel(0, fep->hwp + FEC_MII_DATA); 2361 } 2362 2363 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2364 2365 /* Clear any pending transaction complete indication */ 2366 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2367 2368 fep->mii_bus = mdiobus_alloc(); 2369 if (fep->mii_bus == NULL) { 2370 err = -ENOMEM; 2371 goto err_out; 2372 } 2373 2374 fep->mii_bus->name = "fec_enet_mii_bus"; 2375 fep->mii_bus->read = fec_enet_mdio_read; 2376 fep->mii_bus->write = fec_enet_mdio_write; 2377 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2378 pdev->name, fep->dev_id + 1); 2379 fep->mii_bus->priv = fep; 2380 fep->mii_bus->parent = &pdev->dev; 2381 2382 err = of_mdiobus_register(fep->mii_bus, node); 2383 if (err) 2384 goto err_out_free_mdiobus; 2385 of_node_put(node); 2386 2387 mii_cnt++; 2388 2389 /* save fec0 mii_bus */ 2390 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2391 fec0_mii_bus = fep->mii_bus; 2392 2393 return 0; 2394 2395 err_out_free_mdiobus: 2396 mdiobus_free(fep->mii_bus); 2397 err_out: 2398 of_node_put(node); 2399 return err; 2400 } 2401 2402 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2403 { 2404 if (--mii_cnt == 0) { 2405 mdiobus_unregister(fep->mii_bus); 2406 mdiobus_free(fep->mii_bus); 2407 } 2408 } 2409 2410 static void fec_enet_get_drvinfo(struct net_device *ndev, 2411 struct ethtool_drvinfo *info) 2412 { 2413 struct fec_enet_private *fep = netdev_priv(ndev); 2414 2415 strscpy(info->driver, fep->pdev->dev.driver->name, 2416 sizeof(info->driver)); 2417 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2418 } 2419 2420 static int fec_enet_get_regs_len(struct net_device *ndev) 2421 { 2422 struct fec_enet_private *fep = netdev_priv(ndev); 2423 struct resource *r; 2424 int s = 0; 2425 2426 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2427 if (r) 2428 s = resource_size(r); 2429 2430 return s; 2431 } 2432 2433 /* List of registers that can be safety be read to dump them with ethtool */ 2434 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2435 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2436 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2437 static __u32 fec_enet_register_version = 2; 2438 static u32 fec_enet_register_offset[] = { 2439 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2440 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2441 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2442 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2443 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2444 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2445 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2446 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2447 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2448 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2449 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2450 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2451 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2452 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2453 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2454 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2455 RMON_T_P_GTE2048, RMON_T_OCTETS, 2456 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2457 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2458 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2459 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2460 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2461 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2462 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2463 RMON_R_P_GTE2048, RMON_R_OCTETS, 2464 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2465 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2466 }; 2467 /* for i.MX6ul */ 2468 static u32 fec_enet_register_offset_6ul[] = { 2469 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2470 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2471 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2472 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2473 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2474 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2475 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2476 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2477 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2478 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2479 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2480 RMON_T_P_GTE2048, RMON_T_OCTETS, 2481 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2482 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2483 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2484 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2485 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2486 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2487 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2488 RMON_R_P_GTE2048, RMON_R_OCTETS, 2489 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2490 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2491 }; 2492 #else 2493 static __u32 fec_enet_register_version = 1; 2494 static u32 fec_enet_register_offset[] = { 2495 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2496 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2497 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2498 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2499 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2500 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2501 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2502 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2503 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2504 }; 2505 #endif 2506 2507 static void fec_enet_get_regs(struct net_device *ndev, 2508 struct ethtool_regs *regs, void *regbuf) 2509 { 2510 struct fec_enet_private *fep = netdev_priv(ndev); 2511 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2512 struct device *dev = &fep->pdev->dev; 2513 u32 *buf = (u32 *)regbuf; 2514 u32 i, off; 2515 int ret; 2516 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2517 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2518 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2519 u32 *reg_list; 2520 u32 reg_cnt; 2521 2522 if (!of_machine_is_compatible("fsl,imx6ul")) { 2523 reg_list = fec_enet_register_offset; 2524 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2525 } else { 2526 reg_list = fec_enet_register_offset_6ul; 2527 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2528 } 2529 #else 2530 /* coldfire */ 2531 static u32 *reg_list = fec_enet_register_offset; 2532 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2533 #endif 2534 ret = pm_runtime_resume_and_get(dev); 2535 if (ret < 0) 2536 return; 2537 2538 regs->version = fec_enet_register_version; 2539 2540 memset(buf, 0, regs->len); 2541 2542 for (i = 0; i < reg_cnt; i++) { 2543 off = reg_list[i]; 2544 2545 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2546 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2547 continue; 2548 2549 off >>= 2; 2550 buf[off] = readl(&theregs[off]); 2551 } 2552 2553 pm_runtime_mark_last_busy(dev); 2554 pm_runtime_put_autosuspend(dev); 2555 } 2556 2557 static int fec_enet_get_ts_info(struct net_device *ndev, 2558 struct ethtool_ts_info *info) 2559 { 2560 struct fec_enet_private *fep = netdev_priv(ndev); 2561 2562 if (fep->bufdesc_ex) { 2563 2564 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2565 SOF_TIMESTAMPING_RX_SOFTWARE | 2566 SOF_TIMESTAMPING_SOFTWARE | 2567 SOF_TIMESTAMPING_TX_HARDWARE | 2568 SOF_TIMESTAMPING_RX_HARDWARE | 2569 SOF_TIMESTAMPING_RAW_HARDWARE; 2570 if (fep->ptp_clock) 2571 info->phc_index = ptp_clock_index(fep->ptp_clock); 2572 else 2573 info->phc_index = -1; 2574 2575 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2576 (1 << HWTSTAMP_TX_ON); 2577 2578 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2579 (1 << HWTSTAMP_FILTER_ALL); 2580 return 0; 2581 } else { 2582 return ethtool_op_get_ts_info(ndev, info); 2583 } 2584 } 2585 2586 #if !defined(CONFIG_M5272) 2587 2588 static void fec_enet_get_pauseparam(struct net_device *ndev, 2589 struct ethtool_pauseparam *pause) 2590 { 2591 struct fec_enet_private *fep = netdev_priv(ndev); 2592 2593 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2594 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2595 pause->rx_pause = pause->tx_pause; 2596 } 2597 2598 static int fec_enet_set_pauseparam(struct net_device *ndev, 2599 struct ethtool_pauseparam *pause) 2600 { 2601 struct fec_enet_private *fep = netdev_priv(ndev); 2602 2603 if (!ndev->phydev) 2604 return -ENODEV; 2605 2606 if (pause->tx_pause != pause->rx_pause) { 2607 netdev_info(ndev, 2608 "hardware only support enable/disable both tx and rx"); 2609 return -EINVAL; 2610 } 2611 2612 fep->pause_flag = 0; 2613 2614 /* tx pause must be same as rx pause */ 2615 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2616 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2617 2618 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2619 pause->autoneg); 2620 2621 if (pause->autoneg) { 2622 if (netif_running(ndev)) 2623 fec_stop(ndev); 2624 phy_start_aneg(ndev->phydev); 2625 } 2626 if (netif_running(ndev)) { 2627 napi_disable(&fep->napi); 2628 netif_tx_lock_bh(ndev); 2629 fec_restart(ndev); 2630 netif_tx_wake_all_queues(ndev); 2631 netif_tx_unlock_bh(ndev); 2632 napi_enable(&fep->napi); 2633 } 2634 2635 return 0; 2636 } 2637 2638 static const struct fec_stat { 2639 char name[ETH_GSTRING_LEN]; 2640 u16 offset; 2641 } fec_stats[] = { 2642 /* RMON TX */ 2643 { "tx_dropped", RMON_T_DROP }, 2644 { "tx_packets", RMON_T_PACKETS }, 2645 { "tx_broadcast", RMON_T_BC_PKT }, 2646 { "tx_multicast", RMON_T_MC_PKT }, 2647 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2648 { "tx_undersize", RMON_T_UNDERSIZE }, 2649 { "tx_oversize", RMON_T_OVERSIZE }, 2650 { "tx_fragment", RMON_T_FRAG }, 2651 { "tx_jabber", RMON_T_JAB }, 2652 { "tx_collision", RMON_T_COL }, 2653 { "tx_64byte", RMON_T_P64 }, 2654 { "tx_65to127byte", RMON_T_P65TO127 }, 2655 { "tx_128to255byte", RMON_T_P128TO255 }, 2656 { "tx_256to511byte", RMON_T_P256TO511 }, 2657 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2658 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2659 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2660 { "tx_octets", RMON_T_OCTETS }, 2661 2662 /* IEEE TX */ 2663 { "IEEE_tx_drop", IEEE_T_DROP }, 2664 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2665 { "IEEE_tx_1col", IEEE_T_1COL }, 2666 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2667 { "IEEE_tx_def", IEEE_T_DEF }, 2668 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2669 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2670 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2671 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2672 { "IEEE_tx_sqe", IEEE_T_SQE }, 2673 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2674 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2675 2676 /* RMON RX */ 2677 { "rx_packets", RMON_R_PACKETS }, 2678 { "rx_broadcast", RMON_R_BC_PKT }, 2679 { "rx_multicast", RMON_R_MC_PKT }, 2680 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2681 { "rx_undersize", RMON_R_UNDERSIZE }, 2682 { "rx_oversize", RMON_R_OVERSIZE }, 2683 { "rx_fragment", RMON_R_FRAG }, 2684 { "rx_jabber", RMON_R_JAB }, 2685 { "rx_64byte", RMON_R_P64 }, 2686 { "rx_65to127byte", RMON_R_P65TO127 }, 2687 { "rx_128to255byte", RMON_R_P128TO255 }, 2688 { "rx_256to511byte", RMON_R_P256TO511 }, 2689 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2690 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2691 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2692 { "rx_octets", RMON_R_OCTETS }, 2693 2694 /* IEEE RX */ 2695 { "IEEE_rx_drop", IEEE_R_DROP }, 2696 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2697 { "IEEE_rx_crc", IEEE_R_CRC }, 2698 { "IEEE_rx_align", IEEE_R_ALIGN }, 2699 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2700 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2701 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2702 }; 2703 2704 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2705 2706 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2707 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2708 "rx_xdp_pass", /* RX_XDP_PASS, */ 2709 "rx_xdp_drop", /* RX_XDP_DROP, */ 2710 "rx_xdp_tx", /* RX_XDP_TX, */ 2711 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2712 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2713 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2714 }; 2715 2716 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2717 { 2718 struct fec_enet_private *fep = netdev_priv(dev); 2719 int i; 2720 2721 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2722 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2723 } 2724 2725 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2726 { 2727 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2728 struct fec_enet_priv_rx_q *rxq; 2729 int i, j; 2730 2731 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2732 rxq = fep->rx_queue[i]; 2733 2734 for (j = 0; j < XDP_STATS_TOTAL; j++) 2735 xdp_stats[j] += rxq->stats[j]; 2736 } 2737 2738 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2739 } 2740 2741 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2742 { 2743 struct page_pool_stats stats = {}; 2744 struct fec_enet_priv_rx_q *rxq; 2745 int i; 2746 2747 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2748 rxq = fep->rx_queue[i]; 2749 2750 if (!rxq->page_pool) 2751 continue; 2752 2753 page_pool_get_stats(rxq->page_pool, &stats); 2754 } 2755 2756 page_pool_ethtool_stats_get(data, &stats); 2757 } 2758 2759 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2760 struct ethtool_stats *stats, u64 *data) 2761 { 2762 struct fec_enet_private *fep = netdev_priv(dev); 2763 2764 if (netif_running(dev)) 2765 fec_enet_update_ethtool_stats(dev); 2766 2767 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2768 data += FEC_STATS_SIZE / sizeof(u64); 2769 2770 fec_enet_get_xdp_stats(fep, data); 2771 data += XDP_STATS_TOTAL; 2772 2773 fec_enet_page_pool_stats(fep, data); 2774 } 2775 2776 static void fec_enet_get_strings(struct net_device *netdev, 2777 u32 stringset, u8 *data) 2778 { 2779 int i; 2780 switch (stringset) { 2781 case ETH_SS_STATS: 2782 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2783 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2784 data += ETH_GSTRING_LEN; 2785 } 2786 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2787 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2788 data += ETH_GSTRING_LEN; 2789 } 2790 page_pool_ethtool_stats_get_strings(data); 2791 2792 break; 2793 case ETH_SS_TEST: 2794 net_selftest_get_strings(data); 2795 break; 2796 } 2797 } 2798 2799 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2800 { 2801 int count; 2802 2803 switch (sset) { 2804 case ETH_SS_STATS: 2805 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2806 count += page_pool_ethtool_stats_get_count(); 2807 return count; 2808 2809 case ETH_SS_TEST: 2810 return net_selftest_get_count(); 2811 default: 2812 return -EOPNOTSUPP; 2813 } 2814 } 2815 2816 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2817 { 2818 struct fec_enet_private *fep = netdev_priv(dev); 2819 struct fec_enet_priv_rx_q *rxq; 2820 int i, j; 2821 2822 /* Disable MIB statistics counters */ 2823 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2824 2825 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2826 writel(0, fep->hwp + fec_stats[i].offset); 2827 2828 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2829 rxq = fep->rx_queue[i]; 2830 for (j = 0; j < XDP_STATS_TOTAL; j++) 2831 rxq->stats[j] = 0; 2832 } 2833 2834 /* Don't disable MIB statistics counters */ 2835 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2836 } 2837 2838 #else /* !defined(CONFIG_M5272) */ 2839 #define FEC_STATS_SIZE 0 2840 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2841 { 2842 } 2843 2844 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2845 { 2846 } 2847 #endif /* !defined(CONFIG_M5272) */ 2848 2849 /* ITR clock source is enet system clock (clk_ahb). 2850 * TCTT unit is cycle_ns * 64 cycle 2851 * So, the ICTT value = X us / (cycle_ns * 64) 2852 */ 2853 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2854 { 2855 struct fec_enet_private *fep = netdev_priv(ndev); 2856 2857 return us * (fep->itr_clk_rate / 64000) / 1000; 2858 } 2859 2860 /* Set threshold for interrupt coalescing */ 2861 static void fec_enet_itr_coal_set(struct net_device *ndev) 2862 { 2863 struct fec_enet_private *fep = netdev_priv(ndev); 2864 int rx_itr, tx_itr; 2865 2866 /* Must be greater than zero to avoid unpredictable behavior */ 2867 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2868 !fep->tx_time_itr || !fep->tx_pkts_itr) 2869 return; 2870 2871 /* Select enet system clock as Interrupt Coalescing 2872 * timer Clock Source 2873 */ 2874 rx_itr = FEC_ITR_CLK_SEL; 2875 tx_itr = FEC_ITR_CLK_SEL; 2876 2877 /* set ICFT and ICTT */ 2878 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2879 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2880 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2881 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2882 2883 rx_itr |= FEC_ITR_EN; 2884 tx_itr |= FEC_ITR_EN; 2885 2886 writel(tx_itr, fep->hwp + FEC_TXIC0); 2887 writel(rx_itr, fep->hwp + FEC_RXIC0); 2888 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2889 writel(tx_itr, fep->hwp + FEC_TXIC1); 2890 writel(rx_itr, fep->hwp + FEC_RXIC1); 2891 writel(tx_itr, fep->hwp + FEC_TXIC2); 2892 writel(rx_itr, fep->hwp + FEC_RXIC2); 2893 } 2894 } 2895 2896 static int fec_enet_get_coalesce(struct net_device *ndev, 2897 struct ethtool_coalesce *ec, 2898 struct kernel_ethtool_coalesce *kernel_coal, 2899 struct netlink_ext_ack *extack) 2900 { 2901 struct fec_enet_private *fep = netdev_priv(ndev); 2902 2903 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2904 return -EOPNOTSUPP; 2905 2906 ec->rx_coalesce_usecs = fep->rx_time_itr; 2907 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2908 2909 ec->tx_coalesce_usecs = fep->tx_time_itr; 2910 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2911 2912 return 0; 2913 } 2914 2915 static int fec_enet_set_coalesce(struct net_device *ndev, 2916 struct ethtool_coalesce *ec, 2917 struct kernel_ethtool_coalesce *kernel_coal, 2918 struct netlink_ext_ack *extack) 2919 { 2920 struct fec_enet_private *fep = netdev_priv(ndev); 2921 struct device *dev = &fep->pdev->dev; 2922 unsigned int cycle; 2923 2924 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2925 return -EOPNOTSUPP; 2926 2927 if (ec->rx_max_coalesced_frames > 255) { 2928 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2929 return -EINVAL; 2930 } 2931 2932 if (ec->tx_max_coalesced_frames > 255) { 2933 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2934 return -EINVAL; 2935 } 2936 2937 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2938 if (cycle > 0xFFFF) { 2939 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2940 return -EINVAL; 2941 } 2942 2943 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2944 if (cycle > 0xFFFF) { 2945 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2946 return -EINVAL; 2947 } 2948 2949 fep->rx_time_itr = ec->rx_coalesce_usecs; 2950 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2951 2952 fep->tx_time_itr = ec->tx_coalesce_usecs; 2953 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2954 2955 fec_enet_itr_coal_set(ndev); 2956 2957 return 0; 2958 } 2959 2960 static int fec_enet_get_tunable(struct net_device *netdev, 2961 const struct ethtool_tunable *tuna, 2962 void *data) 2963 { 2964 struct fec_enet_private *fep = netdev_priv(netdev); 2965 int ret = 0; 2966 2967 switch (tuna->id) { 2968 case ETHTOOL_RX_COPYBREAK: 2969 *(u32 *)data = fep->rx_copybreak; 2970 break; 2971 default: 2972 ret = -EINVAL; 2973 break; 2974 } 2975 2976 return ret; 2977 } 2978 2979 static int fec_enet_set_tunable(struct net_device *netdev, 2980 const struct ethtool_tunable *tuna, 2981 const void *data) 2982 { 2983 struct fec_enet_private *fep = netdev_priv(netdev); 2984 int ret = 0; 2985 2986 switch (tuna->id) { 2987 case ETHTOOL_RX_COPYBREAK: 2988 fep->rx_copybreak = *(u32 *)data; 2989 break; 2990 default: 2991 ret = -EINVAL; 2992 break; 2993 } 2994 2995 return ret; 2996 } 2997 2998 /* LPI Sleep Ts count base on tx clk (clk_ref). 2999 * The lpi sleep cnt value = X us / (cycle_ns). 3000 */ 3001 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3002 { 3003 struct fec_enet_private *fep = netdev_priv(ndev); 3004 3005 return us * (fep->clk_ref_rate / 1000) / 1000; 3006 } 3007 3008 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3009 { 3010 struct fec_enet_private *fep = netdev_priv(ndev); 3011 struct ethtool_eee *p = &fep->eee; 3012 unsigned int sleep_cycle, wake_cycle; 3013 int ret = 0; 3014 3015 if (enable) { 3016 ret = phy_init_eee(ndev->phydev, false); 3017 if (ret) 3018 return ret; 3019 3020 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3021 wake_cycle = sleep_cycle; 3022 } else { 3023 sleep_cycle = 0; 3024 wake_cycle = 0; 3025 } 3026 3027 p->tx_lpi_enabled = enable; 3028 p->eee_enabled = enable; 3029 p->eee_active = enable; 3030 3031 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3032 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3033 3034 return 0; 3035 } 3036 3037 static int 3038 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3039 { 3040 struct fec_enet_private *fep = netdev_priv(ndev); 3041 struct ethtool_eee *p = &fep->eee; 3042 3043 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3044 return -EOPNOTSUPP; 3045 3046 if (!netif_running(ndev)) 3047 return -ENETDOWN; 3048 3049 edata->eee_enabled = p->eee_enabled; 3050 edata->eee_active = p->eee_active; 3051 edata->tx_lpi_timer = p->tx_lpi_timer; 3052 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3053 3054 return phy_ethtool_get_eee(ndev->phydev, edata); 3055 } 3056 3057 static int 3058 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3059 { 3060 struct fec_enet_private *fep = netdev_priv(ndev); 3061 struct ethtool_eee *p = &fep->eee; 3062 int ret = 0; 3063 3064 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3065 return -EOPNOTSUPP; 3066 3067 if (!netif_running(ndev)) 3068 return -ENETDOWN; 3069 3070 p->tx_lpi_timer = edata->tx_lpi_timer; 3071 3072 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3073 !edata->tx_lpi_timer) 3074 ret = fec_enet_eee_mode_set(ndev, false); 3075 else 3076 ret = fec_enet_eee_mode_set(ndev, true); 3077 3078 if (ret) 3079 return ret; 3080 3081 return phy_ethtool_set_eee(ndev->phydev, edata); 3082 } 3083 3084 static void 3085 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3086 { 3087 struct fec_enet_private *fep = netdev_priv(ndev); 3088 3089 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3090 wol->supported = WAKE_MAGIC; 3091 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3092 } else { 3093 wol->supported = wol->wolopts = 0; 3094 } 3095 } 3096 3097 static int 3098 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3099 { 3100 struct fec_enet_private *fep = netdev_priv(ndev); 3101 3102 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3103 return -EINVAL; 3104 3105 if (wol->wolopts & ~WAKE_MAGIC) 3106 return -EINVAL; 3107 3108 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3109 if (device_may_wakeup(&ndev->dev)) 3110 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3111 else 3112 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3113 3114 return 0; 3115 } 3116 3117 static const struct ethtool_ops fec_enet_ethtool_ops = { 3118 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3119 ETHTOOL_COALESCE_MAX_FRAMES, 3120 .get_drvinfo = fec_enet_get_drvinfo, 3121 .get_regs_len = fec_enet_get_regs_len, 3122 .get_regs = fec_enet_get_regs, 3123 .nway_reset = phy_ethtool_nway_reset, 3124 .get_link = ethtool_op_get_link, 3125 .get_coalesce = fec_enet_get_coalesce, 3126 .set_coalesce = fec_enet_set_coalesce, 3127 #ifndef CONFIG_M5272 3128 .get_pauseparam = fec_enet_get_pauseparam, 3129 .set_pauseparam = fec_enet_set_pauseparam, 3130 .get_strings = fec_enet_get_strings, 3131 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3132 .get_sset_count = fec_enet_get_sset_count, 3133 #endif 3134 .get_ts_info = fec_enet_get_ts_info, 3135 .get_tunable = fec_enet_get_tunable, 3136 .set_tunable = fec_enet_set_tunable, 3137 .get_wol = fec_enet_get_wol, 3138 .set_wol = fec_enet_set_wol, 3139 .get_eee = fec_enet_get_eee, 3140 .set_eee = fec_enet_set_eee, 3141 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3142 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3143 .self_test = net_selftest, 3144 }; 3145 3146 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3147 { 3148 struct fec_enet_private *fep = netdev_priv(ndev); 3149 struct phy_device *phydev = ndev->phydev; 3150 3151 if (!netif_running(ndev)) 3152 return -EINVAL; 3153 3154 if (!phydev) 3155 return -ENODEV; 3156 3157 if (fep->bufdesc_ex) { 3158 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3159 3160 if (cmd == SIOCSHWTSTAMP) { 3161 if (use_fec_hwts) 3162 return fec_ptp_set(ndev, rq); 3163 fec_ptp_disable_hwts(ndev); 3164 } else if (cmd == SIOCGHWTSTAMP) { 3165 if (use_fec_hwts) 3166 return fec_ptp_get(ndev, rq); 3167 } 3168 } 3169 3170 return phy_mii_ioctl(phydev, rq, cmd); 3171 } 3172 3173 static void fec_enet_free_buffers(struct net_device *ndev) 3174 { 3175 struct fec_enet_private *fep = netdev_priv(ndev); 3176 unsigned int i; 3177 struct sk_buff *skb; 3178 struct fec_enet_priv_tx_q *txq; 3179 struct fec_enet_priv_rx_q *rxq; 3180 unsigned int q; 3181 3182 for (q = 0; q < fep->num_rx_queues; q++) { 3183 rxq = fep->rx_queue[q]; 3184 for (i = 0; i < rxq->bd.ring_size; i++) 3185 page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page); 3186 3187 for (i = 0; i < XDP_STATS_TOTAL; i++) 3188 rxq->stats[i] = 0; 3189 3190 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3191 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3192 page_pool_destroy(rxq->page_pool); 3193 rxq->page_pool = NULL; 3194 } 3195 3196 for (q = 0; q < fep->num_tx_queues; q++) { 3197 txq = fep->tx_queue[q]; 3198 for (i = 0; i < txq->bd.ring_size; i++) { 3199 kfree(txq->tx_bounce[i]); 3200 txq->tx_bounce[i] = NULL; 3201 skb = txq->tx_skbuff[i]; 3202 txq->tx_skbuff[i] = NULL; 3203 dev_kfree_skb(skb); 3204 } 3205 } 3206 } 3207 3208 static void fec_enet_free_queue(struct net_device *ndev) 3209 { 3210 struct fec_enet_private *fep = netdev_priv(ndev); 3211 int i; 3212 struct fec_enet_priv_tx_q *txq; 3213 3214 for (i = 0; i < fep->num_tx_queues; i++) 3215 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3216 txq = fep->tx_queue[i]; 3217 dma_free_coherent(&fep->pdev->dev, 3218 txq->bd.ring_size * TSO_HEADER_SIZE, 3219 txq->tso_hdrs, 3220 txq->tso_hdrs_dma); 3221 } 3222 3223 for (i = 0; i < fep->num_rx_queues; i++) 3224 kfree(fep->rx_queue[i]); 3225 for (i = 0; i < fep->num_tx_queues; i++) 3226 kfree(fep->tx_queue[i]); 3227 } 3228 3229 static int fec_enet_alloc_queue(struct net_device *ndev) 3230 { 3231 struct fec_enet_private *fep = netdev_priv(ndev); 3232 int i; 3233 int ret = 0; 3234 struct fec_enet_priv_tx_q *txq; 3235 3236 for (i = 0; i < fep->num_tx_queues; i++) { 3237 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3238 if (!txq) { 3239 ret = -ENOMEM; 3240 goto alloc_failed; 3241 } 3242 3243 fep->tx_queue[i] = txq; 3244 txq->bd.ring_size = TX_RING_SIZE; 3245 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3246 3247 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3248 txq->tx_wake_threshold = 3249 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3250 3251 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3252 txq->bd.ring_size * TSO_HEADER_SIZE, 3253 &txq->tso_hdrs_dma, 3254 GFP_KERNEL); 3255 if (!txq->tso_hdrs) { 3256 ret = -ENOMEM; 3257 goto alloc_failed; 3258 } 3259 } 3260 3261 for (i = 0; i < fep->num_rx_queues; i++) { 3262 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3263 GFP_KERNEL); 3264 if (!fep->rx_queue[i]) { 3265 ret = -ENOMEM; 3266 goto alloc_failed; 3267 } 3268 3269 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3270 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3271 } 3272 return ret; 3273 3274 alloc_failed: 3275 fec_enet_free_queue(ndev); 3276 return ret; 3277 } 3278 3279 static int 3280 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3281 { 3282 struct fec_enet_private *fep = netdev_priv(ndev); 3283 struct fec_enet_priv_rx_q *rxq; 3284 dma_addr_t phys_addr; 3285 struct bufdesc *bdp; 3286 struct page *page; 3287 int i, err; 3288 3289 rxq = fep->rx_queue[queue]; 3290 bdp = rxq->bd.base; 3291 3292 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3293 if (err < 0) { 3294 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3295 return err; 3296 } 3297 3298 for (i = 0; i < rxq->bd.ring_size; i++) { 3299 page = page_pool_dev_alloc_pages(rxq->page_pool); 3300 if (!page) 3301 goto err_alloc; 3302 3303 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3304 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3305 3306 rxq->rx_skb_info[i].page = page; 3307 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3308 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3309 3310 if (fep->bufdesc_ex) { 3311 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3312 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3313 } 3314 3315 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3316 } 3317 3318 /* Set the last buffer to wrap. */ 3319 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3320 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3321 return 0; 3322 3323 err_alloc: 3324 fec_enet_free_buffers(ndev); 3325 return -ENOMEM; 3326 } 3327 3328 static int 3329 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3330 { 3331 struct fec_enet_private *fep = netdev_priv(ndev); 3332 unsigned int i; 3333 struct bufdesc *bdp; 3334 struct fec_enet_priv_tx_q *txq; 3335 3336 txq = fep->tx_queue[queue]; 3337 bdp = txq->bd.base; 3338 for (i = 0; i < txq->bd.ring_size; i++) { 3339 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3340 if (!txq->tx_bounce[i]) 3341 goto err_alloc; 3342 3343 bdp->cbd_sc = cpu_to_fec16(0); 3344 bdp->cbd_bufaddr = cpu_to_fec32(0); 3345 3346 if (fep->bufdesc_ex) { 3347 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3348 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3349 } 3350 3351 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3352 } 3353 3354 /* Set the last buffer to wrap. */ 3355 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3356 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3357 3358 return 0; 3359 3360 err_alloc: 3361 fec_enet_free_buffers(ndev); 3362 return -ENOMEM; 3363 } 3364 3365 static int fec_enet_alloc_buffers(struct net_device *ndev) 3366 { 3367 struct fec_enet_private *fep = netdev_priv(ndev); 3368 unsigned int i; 3369 3370 for (i = 0; i < fep->num_rx_queues; i++) 3371 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3372 return -ENOMEM; 3373 3374 for (i = 0; i < fep->num_tx_queues; i++) 3375 if (fec_enet_alloc_txq_buffers(ndev, i)) 3376 return -ENOMEM; 3377 return 0; 3378 } 3379 3380 static int 3381 fec_enet_open(struct net_device *ndev) 3382 { 3383 struct fec_enet_private *fep = netdev_priv(ndev); 3384 int ret; 3385 bool reset_again; 3386 3387 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3388 if (ret < 0) 3389 return ret; 3390 3391 pinctrl_pm_select_default_state(&fep->pdev->dev); 3392 ret = fec_enet_clk_enable(ndev, true); 3393 if (ret) 3394 goto clk_enable; 3395 3396 /* During the first fec_enet_open call the PHY isn't probed at this 3397 * point. Therefore the phy_reset_after_clk_enable() call within 3398 * fec_enet_clk_enable() fails. As we need this reset in order to be 3399 * sure the PHY is working correctly we check if we need to reset again 3400 * later when the PHY is probed 3401 */ 3402 if (ndev->phydev && ndev->phydev->drv) 3403 reset_again = false; 3404 else 3405 reset_again = true; 3406 3407 /* I should reset the ring buffers here, but I don't yet know 3408 * a simple way to do that. 3409 */ 3410 3411 ret = fec_enet_alloc_buffers(ndev); 3412 if (ret) 3413 goto err_enet_alloc; 3414 3415 /* Init MAC prior to mii bus probe */ 3416 fec_restart(ndev); 3417 3418 /* Call phy_reset_after_clk_enable() again if it failed during 3419 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3420 */ 3421 if (reset_again) 3422 fec_enet_phy_reset_after_clk_enable(ndev); 3423 3424 /* Probe and connect to PHY when open the interface */ 3425 ret = fec_enet_mii_probe(ndev); 3426 if (ret) 3427 goto err_enet_mii_probe; 3428 3429 if (fep->quirks & FEC_QUIRK_ERR006687) 3430 imx6q_cpuidle_fec_irqs_used(); 3431 3432 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3433 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3434 3435 napi_enable(&fep->napi); 3436 phy_start(ndev->phydev); 3437 netif_tx_start_all_queues(ndev); 3438 3439 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3440 FEC_WOL_FLAG_ENABLE); 3441 3442 return 0; 3443 3444 err_enet_mii_probe: 3445 fec_enet_free_buffers(ndev); 3446 err_enet_alloc: 3447 fec_enet_clk_enable(ndev, false); 3448 clk_enable: 3449 pm_runtime_mark_last_busy(&fep->pdev->dev); 3450 pm_runtime_put_autosuspend(&fep->pdev->dev); 3451 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3452 return ret; 3453 } 3454 3455 static int 3456 fec_enet_close(struct net_device *ndev) 3457 { 3458 struct fec_enet_private *fep = netdev_priv(ndev); 3459 3460 phy_stop(ndev->phydev); 3461 3462 if (netif_device_present(ndev)) { 3463 napi_disable(&fep->napi); 3464 netif_tx_disable(ndev); 3465 fec_stop(ndev); 3466 } 3467 3468 phy_disconnect(ndev->phydev); 3469 3470 if (fep->quirks & FEC_QUIRK_ERR006687) 3471 imx6q_cpuidle_fec_irqs_unused(); 3472 3473 fec_enet_update_ethtool_stats(ndev); 3474 3475 fec_enet_clk_enable(ndev, false); 3476 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3477 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3478 3479 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3480 pm_runtime_mark_last_busy(&fep->pdev->dev); 3481 pm_runtime_put_autosuspend(&fep->pdev->dev); 3482 3483 fec_enet_free_buffers(ndev); 3484 3485 return 0; 3486 } 3487 3488 /* Set or clear the multicast filter for this adaptor. 3489 * Skeleton taken from sunlance driver. 3490 * The CPM Ethernet implementation allows Multicast as well as individual 3491 * MAC address filtering. Some of the drivers check to make sure it is 3492 * a group multicast address, and discard those that are not. I guess I 3493 * will do the same for now, but just remove the test if you want 3494 * individual filtering as well (do the upper net layers want or support 3495 * this kind of feature?). 3496 */ 3497 3498 #define FEC_HASH_BITS 6 /* #bits in hash */ 3499 3500 static void set_multicast_list(struct net_device *ndev) 3501 { 3502 struct fec_enet_private *fep = netdev_priv(ndev); 3503 struct netdev_hw_addr *ha; 3504 unsigned int crc, tmp; 3505 unsigned char hash; 3506 unsigned int hash_high = 0, hash_low = 0; 3507 3508 if (ndev->flags & IFF_PROMISC) { 3509 tmp = readl(fep->hwp + FEC_R_CNTRL); 3510 tmp |= 0x8; 3511 writel(tmp, fep->hwp + FEC_R_CNTRL); 3512 return; 3513 } 3514 3515 tmp = readl(fep->hwp + FEC_R_CNTRL); 3516 tmp &= ~0x8; 3517 writel(tmp, fep->hwp + FEC_R_CNTRL); 3518 3519 if (ndev->flags & IFF_ALLMULTI) { 3520 /* Catch all multicast addresses, so set the 3521 * filter to all 1's 3522 */ 3523 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3524 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3525 3526 return; 3527 } 3528 3529 /* Add the addresses in hash register */ 3530 netdev_for_each_mc_addr(ha, ndev) { 3531 /* calculate crc32 value of mac address */ 3532 crc = ether_crc_le(ndev->addr_len, ha->addr); 3533 3534 /* only upper 6 bits (FEC_HASH_BITS) are used 3535 * which point to specific bit in the hash registers 3536 */ 3537 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3538 3539 if (hash > 31) 3540 hash_high |= 1 << (hash - 32); 3541 else 3542 hash_low |= 1 << hash; 3543 } 3544 3545 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3546 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3547 } 3548 3549 /* Set a MAC change in hardware. */ 3550 static int 3551 fec_set_mac_address(struct net_device *ndev, void *p) 3552 { 3553 struct fec_enet_private *fep = netdev_priv(ndev); 3554 struct sockaddr *addr = p; 3555 3556 if (addr) { 3557 if (!is_valid_ether_addr(addr->sa_data)) 3558 return -EADDRNOTAVAIL; 3559 eth_hw_addr_set(ndev, addr->sa_data); 3560 } 3561 3562 /* Add netif status check here to avoid system hang in below case: 3563 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3564 * After ethx down, fec all clocks are gated off and then register 3565 * access causes system hang. 3566 */ 3567 if (!netif_running(ndev)) 3568 return 0; 3569 3570 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3571 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3572 fep->hwp + FEC_ADDR_LOW); 3573 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3574 fep->hwp + FEC_ADDR_HIGH); 3575 return 0; 3576 } 3577 3578 #ifdef CONFIG_NET_POLL_CONTROLLER 3579 /** 3580 * fec_poll_controller - FEC Poll controller function 3581 * @dev: The FEC network adapter 3582 * 3583 * Polled functionality used by netconsole and others in non interrupt mode 3584 * 3585 */ 3586 static void fec_poll_controller(struct net_device *dev) 3587 { 3588 int i; 3589 struct fec_enet_private *fep = netdev_priv(dev); 3590 3591 for (i = 0; i < FEC_IRQ_NUM; i++) { 3592 if (fep->irq[i] > 0) { 3593 disable_irq(fep->irq[i]); 3594 fec_enet_interrupt(fep->irq[i], dev); 3595 enable_irq(fep->irq[i]); 3596 } 3597 } 3598 } 3599 #endif 3600 3601 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3602 netdev_features_t features) 3603 { 3604 struct fec_enet_private *fep = netdev_priv(netdev); 3605 netdev_features_t changed = features ^ netdev->features; 3606 3607 netdev->features = features; 3608 3609 /* Receive checksum has been changed */ 3610 if (changed & NETIF_F_RXCSUM) { 3611 if (features & NETIF_F_RXCSUM) 3612 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3613 else 3614 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3615 } 3616 } 3617 3618 static int fec_set_features(struct net_device *netdev, 3619 netdev_features_t features) 3620 { 3621 struct fec_enet_private *fep = netdev_priv(netdev); 3622 netdev_features_t changed = features ^ netdev->features; 3623 3624 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3625 napi_disable(&fep->napi); 3626 netif_tx_lock_bh(netdev); 3627 fec_stop(netdev); 3628 fec_enet_set_netdev_features(netdev, features); 3629 fec_restart(netdev); 3630 netif_tx_wake_all_queues(netdev); 3631 netif_tx_unlock_bh(netdev); 3632 napi_enable(&fep->napi); 3633 } else { 3634 fec_enet_set_netdev_features(netdev, features); 3635 } 3636 3637 return 0; 3638 } 3639 3640 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3641 { 3642 struct vlan_ethhdr *vhdr; 3643 unsigned short vlan_TCI = 0; 3644 3645 if (skb->protocol == htons(ETH_P_ALL)) { 3646 vhdr = (struct vlan_ethhdr *)(skb->data); 3647 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3648 } 3649 3650 return vlan_TCI; 3651 } 3652 3653 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3654 struct net_device *sb_dev) 3655 { 3656 struct fec_enet_private *fep = netdev_priv(ndev); 3657 u16 vlan_tag; 3658 3659 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3660 return netdev_pick_tx(ndev, skb, NULL); 3661 3662 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3663 if (!vlan_tag) 3664 return vlan_tag; 3665 3666 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3667 } 3668 3669 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3670 { 3671 struct fec_enet_private *fep = netdev_priv(dev); 3672 bool is_run = netif_running(dev); 3673 struct bpf_prog *old_prog; 3674 3675 switch (bpf->command) { 3676 case XDP_SETUP_PROG: 3677 /* No need to support the SoCs that require to 3678 * do the frame swap because the performance wouldn't be 3679 * better than the skb mode. 3680 */ 3681 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3682 return -EOPNOTSUPP; 3683 3684 if (is_run) { 3685 napi_disable(&fep->napi); 3686 netif_tx_disable(dev); 3687 } 3688 3689 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3690 fec_restart(dev); 3691 3692 if (is_run) { 3693 napi_enable(&fep->napi); 3694 netif_tx_start_all_queues(dev); 3695 } 3696 3697 if (old_prog) 3698 bpf_prog_put(old_prog); 3699 3700 return 0; 3701 3702 case XDP_SETUP_XSK_POOL: 3703 return -EOPNOTSUPP; 3704 3705 default: 3706 return -EOPNOTSUPP; 3707 } 3708 } 3709 3710 static int 3711 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3712 { 3713 if (unlikely(index < 0)) 3714 return 0; 3715 3716 return (index % fep->num_tx_queues); 3717 } 3718 3719 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3720 struct fec_enet_priv_tx_q *txq, 3721 struct xdp_frame *frame) 3722 { 3723 unsigned int index, status, estatus; 3724 struct bufdesc *bdp, *last_bdp; 3725 dma_addr_t dma_addr; 3726 int entries_free; 3727 3728 entries_free = fec_enet_get_free_txdesc_num(txq); 3729 if (entries_free < MAX_SKB_FRAGS + 1) { 3730 netdev_err(fep->netdev, "NOT enough BD for SG!\n"); 3731 return NETDEV_TX_OK; 3732 } 3733 3734 /* Fill in a Tx ring entry */ 3735 bdp = txq->bd.cur; 3736 last_bdp = bdp; 3737 status = fec16_to_cpu(bdp->cbd_sc); 3738 status &= ~BD_ENET_TX_STATS; 3739 3740 index = fec_enet_get_bd_index(bdp, &txq->bd); 3741 3742 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3743 frame->len, DMA_TO_DEVICE); 3744 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3745 return FEC_ENET_XDP_CONSUMED; 3746 3747 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3748 if (fep->bufdesc_ex) 3749 estatus = BD_ENET_TX_INT; 3750 3751 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3752 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3753 3754 if (fep->bufdesc_ex) { 3755 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3756 3757 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3758 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3759 3760 ebdp->cbd_bdu = 0; 3761 ebdp->cbd_esc = cpu_to_fec32(estatus); 3762 } 3763 3764 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 3765 txq->tx_skbuff[index] = NULL; 3766 3767 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3768 * it's the last BD of the frame, and to put the CRC on the end. 3769 */ 3770 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3771 bdp->cbd_sc = cpu_to_fec16(status); 3772 3773 /* If this was the last BD in the ring, start at the beginning again. */ 3774 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 3775 3776 txq->bd.cur = bdp; 3777 3778 return 0; 3779 } 3780 3781 static int fec_enet_xdp_xmit(struct net_device *dev, 3782 int num_frames, 3783 struct xdp_frame **frames, 3784 u32 flags) 3785 { 3786 struct fec_enet_private *fep = netdev_priv(dev); 3787 struct fec_enet_priv_tx_q *txq; 3788 int cpu = smp_processor_id(); 3789 struct netdev_queue *nq; 3790 unsigned int queue; 3791 int i; 3792 3793 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3794 txq = fep->tx_queue[queue]; 3795 nq = netdev_get_tx_queue(fep->netdev, queue); 3796 3797 __netif_tx_lock(nq, cpu); 3798 3799 for (i = 0; i < num_frames; i++) 3800 fec_enet_txq_xmit_frame(fep, txq, frames[i]); 3801 3802 /* Make sure the update to bdp and tx_skbuff are performed. */ 3803 wmb(); 3804 3805 /* Trigger transmission start */ 3806 writel(0, txq->bd.reg_desc_active); 3807 3808 __netif_tx_unlock(nq); 3809 3810 return num_frames; 3811 } 3812 3813 static const struct net_device_ops fec_netdev_ops = { 3814 .ndo_open = fec_enet_open, 3815 .ndo_stop = fec_enet_close, 3816 .ndo_start_xmit = fec_enet_start_xmit, 3817 .ndo_select_queue = fec_enet_select_queue, 3818 .ndo_set_rx_mode = set_multicast_list, 3819 .ndo_validate_addr = eth_validate_addr, 3820 .ndo_tx_timeout = fec_timeout, 3821 .ndo_set_mac_address = fec_set_mac_address, 3822 .ndo_eth_ioctl = fec_enet_ioctl, 3823 #ifdef CONFIG_NET_POLL_CONTROLLER 3824 .ndo_poll_controller = fec_poll_controller, 3825 #endif 3826 .ndo_set_features = fec_set_features, 3827 .ndo_bpf = fec_enet_bpf, 3828 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3829 }; 3830 3831 static const unsigned short offset_des_active_rxq[] = { 3832 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3833 }; 3834 3835 static const unsigned short offset_des_active_txq[] = { 3836 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3837 }; 3838 3839 /* 3840 * XXX: We need to clean up on failure exits here. 3841 * 3842 */ 3843 static int fec_enet_init(struct net_device *ndev) 3844 { 3845 struct fec_enet_private *fep = netdev_priv(ndev); 3846 struct bufdesc *cbd_base; 3847 dma_addr_t bd_dma; 3848 int bd_size; 3849 unsigned int i; 3850 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3851 sizeof(struct bufdesc); 3852 unsigned dsize_log2 = __fls(dsize); 3853 int ret; 3854 3855 WARN_ON(dsize != (1 << dsize_log2)); 3856 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3857 fep->rx_align = 0xf; 3858 fep->tx_align = 0xf; 3859 #else 3860 fep->rx_align = 0x3; 3861 fep->tx_align = 0x3; 3862 #endif 3863 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3864 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3865 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3866 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3867 3868 /* Check mask of the streaming and coherent API */ 3869 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3870 if (ret < 0) { 3871 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3872 return ret; 3873 } 3874 3875 ret = fec_enet_alloc_queue(ndev); 3876 if (ret) 3877 return ret; 3878 3879 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3880 3881 /* Allocate memory for buffer descriptors. */ 3882 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3883 GFP_KERNEL); 3884 if (!cbd_base) { 3885 ret = -ENOMEM; 3886 goto free_queue_mem; 3887 } 3888 3889 /* Get the Ethernet address */ 3890 ret = fec_get_mac(ndev); 3891 if (ret) 3892 goto free_queue_mem; 3893 3894 /* make sure MAC we just acquired is programmed into the hw */ 3895 fec_set_mac_address(ndev, NULL); 3896 3897 /* Set receive and transmit descriptor base. */ 3898 for (i = 0; i < fep->num_rx_queues; i++) { 3899 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3900 unsigned size = dsize * rxq->bd.ring_size; 3901 3902 rxq->bd.qid = i; 3903 rxq->bd.base = cbd_base; 3904 rxq->bd.cur = cbd_base; 3905 rxq->bd.dma = bd_dma; 3906 rxq->bd.dsize = dsize; 3907 rxq->bd.dsize_log2 = dsize_log2; 3908 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3909 bd_dma += size; 3910 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3911 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3912 } 3913 3914 for (i = 0; i < fep->num_tx_queues; i++) { 3915 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3916 unsigned size = dsize * txq->bd.ring_size; 3917 3918 txq->bd.qid = i; 3919 txq->bd.base = cbd_base; 3920 txq->bd.cur = cbd_base; 3921 txq->bd.dma = bd_dma; 3922 txq->bd.dsize = dsize; 3923 txq->bd.dsize_log2 = dsize_log2; 3924 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3925 bd_dma += size; 3926 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3927 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3928 } 3929 3930 3931 /* The FEC Ethernet specific entries in the device structure */ 3932 ndev->watchdog_timeo = TX_TIMEOUT; 3933 ndev->netdev_ops = &fec_netdev_ops; 3934 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3935 3936 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3937 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3938 3939 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3940 /* enable hw VLAN support */ 3941 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3942 3943 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3944 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3945 3946 /* enable hw accelerator */ 3947 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3948 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3949 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3950 } 3951 3952 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3953 fep->tx_align = 0; 3954 fep->rx_align = 0x3f; 3955 } 3956 3957 ndev->hw_features = ndev->features; 3958 3959 fec_restart(ndev); 3960 3961 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3962 fec_enet_clear_ethtool_stats(ndev); 3963 else 3964 fec_enet_update_ethtool_stats(ndev); 3965 3966 return 0; 3967 3968 free_queue_mem: 3969 fec_enet_free_queue(ndev); 3970 return ret; 3971 } 3972 3973 #ifdef CONFIG_OF 3974 static int fec_reset_phy(struct platform_device *pdev) 3975 { 3976 int err, phy_reset; 3977 bool active_high = false; 3978 int msec = 1, phy_post_delay = 0; 3979 struct device_node *np = pdev->dev.of_node; 3980 3981 if (!np) 3982 return 0; 3983 3984 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3985 /* A sane reset duration should not be longer than 1s */ 3986 if (!err && msec > 1000) 3987 msec = 1; 3988 3989 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3990 if (phy_reset == -EPROBE_DEFER) 3991 return phy_reset; 3992 else if (!gpio_is_valid(phy_reset)) 3993 return 0; 3994 3995 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3996 /* valid reset duration should be less than 1s */ 3997 if (!err && phy_post_delay > 1000) 3998 return -EINVAL; 3999 4000 active_high = of_property_read_bool(np, "phy-reset-active-high"); 4001 4002 err = devm_gpio_request_one(&pdev->dev, phy_reset, 4003 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 4004 "phy-reset"); 4005 if (err) { 4006 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 4007 return err; 4008 } 4009 4010 if (msec > 20) 4011 msleep(msec); 4012 else 4013 usleep_range(msec * 1000, msec * 1000 + 1000); 4014 4015 gpio_set_value_cansleep(phy_reset, !active_high); 4016 4017 if (!phy_post_delay) 4018 return 0; 4019 4020 if (phy_post_delay > 20) 4021 msleep(phy_post_delay); 4022 else 4023 usleep_range(phy_post_delay * 1000, 4024 phy_post_delay * 1000 + 1000); 4025 4026 return 0; 4027 } 4028 #else /* CONFIG_OF */ 4029 static int fec_reset_phy(struct platform_device *pdev) 4030 { 4031 /* 4032 * In case of platform probe, the reset has been done 4033 * by machine code. 4034 */ 4035 return 0; 4036 } 4037 #endif /* CONFIG_OF */ 4038 4039 static void 4040 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4041 { 4042 struct device_node *np = pdev->dev.of_node; 4043 4044 *num_tx = *num_rx = 1; 4045 4046 if (!np || !of_device_is_available(np)) 4047 return; 4048 4049 /* parse the num of tx and rx queues */ 4050 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4051 4052 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4053 4054 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4055 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4056 *num_tx); 4057 *num_tx = 1; 4058 return; 4059 } 4060 4061 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4062 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4063 *num_rx); 4064 *num_rx = 1; 4065 return; 4066 } 4067 4068 } 4069 4070 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4071 { 4072 int irq_cnt = platform_irq_count(pdev); 4073 4074 if (irq_cnt > FEC_IRQ_NUM) 4075 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4076 else if (irq_cnt == 2) 4077 irq_cnt = 1; /* last for pps */ 4078 else if (irq_cnt <= 0) 4079 irq_cnt = 1; /* At least 1 irq is needed */ 4080 return irq_cnt; 4081 } 4082 4083 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4084 { 4085 struct net_device *ndev = platform_get_drvdata(pdev); 4086 struct fec_enet_private *fep = netdev_priv(ndev); 4087 4088 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4089 fep->wake_irq = fep->irq[2]; 4090 else 4091 fep->wake_irq = fep->irq[0]; 4092 } 4093 4094 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4095 struct device_node *np) 4096 { 4097 struct device_node *gpr_np; 4098 u32 out_val[3]; 4099 int ret = 0; 4100 4101 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4102 if (!gpr_np) 4103 return 0; 4104 4105 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4106 ARRAY_SIZE(out_val)); 4107 if (ret) { 4108 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4109 goto out; 4110 } 4111 4112 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4113 if (IS_ERR(fep->stop_gpr.gpr)) { 4114 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4115 ret = PTR_ERR(fep->stop_gpr.gpr); 4116 fep->stop_gpr.gpr = NULL; 4117 goto out; 4118 } 4119 4120 fep->stop_gpr.reg = out_val[1]; 4121 fep->stop_gpr.bit = out_val[2]; 4122 4123 out: 4124 of_node_put(gpr_np); 4125 4126 return ret; 4127 } 4128 4129 static int 4130 fec_probe(struct platform_device *pdev) 4131 { 4132 struct fec_enet_private *fep; 4133 struct fec_platform_data *pdata; 4134 phy_interface_t interface; 4135 struct net_device *ndev; 4136 int i, irq, ret = 0; 4137 const struct of_device_id *of_id; 4138 static int dev_id; 4139 struct device_node *np = pdev->dev.of_node, *phy_node; 4140 int num_tx_qs; 4141 int num_rx_qs; 4142 char irq_name[8]; 4143 int irq_cnt; 4144 struct fec_devinfo *dev_info; 4145 4146 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4147 4148 /* Init network device */ 4149 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4150 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4151 if (!ndev) 4152 return -ENOMEM; 4153 4154 SET_NETDEV_DEV(ndev, &pdev->dev); 4155 4156 /* setup board info structure */ 4157 fep = netdev_priv(ndev); 4158 4159 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4160 if (of_id) 4161 pdev->id_entry = of_id->data; 4162 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4163 if (dev_info) 4164 fep->quirks = dev_info->quirks; 4165 4166 fep->netdev = ndev; 4167 fep->num_rx_queues = num_rx_qs; 4168 fep->num_tx_queues = num_tx_qs; 4169 4170 #if !defined(CONFIG_M5272) 4171 /* default enable pause frame auto negotiation */ 4172 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4173 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4174 #endif 4175 4176 /* Select default pin state */ 4177 pinctrl_pm_select_default_state(&pdev->dev); 4178 4179 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4180 if (IS_ERR(fep->hwp)) { 4181 ret = PTR_ERR(fep->hwp); 4182 goto failed_ioremap; 4183 } 4184 4185 fep->pdev = pdev; 4186 fep->dev_id = dev_id++; 4187 4188 platform_set_drvdata(pdev, ndev); 4189 4190 if ((of_machine_is_compatible("fsl,imx6q") || 4191 of_machine_is_compatible("fsl,imx6dl")) && 4192 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4193 fep->quirks |= FEC_QUIRK_ERR006687; 4194 4195 ret = fec_enet_ipc_handle_init(fep); 4196 if (ret) 4197 goto failed_ipc_init; 4198 4199 if (of_get_property(np, "fsl,magic-packet", NULL)) 4200 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4201 4202 ret = fec_enet_init_stop_mode(fep, np); 4203 if (ret) 4204 goto failed_stop_mode; 4205 4206 phy_node = of_parse_phandle(np, "phy-handle", 0); 4207 if (!phy_node && of_phy_is_fixed_link(np)) { 4208 ret = of_phy_register_fixed_link(np); 4209 if (ret < 0) { 4210 dev_err(&pdev->dev, 4211 "broken fixed-link specification\n"); 4212 goto failed_phy; 4213 } 4214 phy_node = of_node_get(np); 4215 } 4216 fep->phy_node = phy_node; 4217 4218 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4219 if (ret) { 4220 pdata = dev_get_platdata(&pdev->dev); 4221 if (pdata) 4222 fep->phy_interface = pdata->phy; 4223 else 4224 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4225 } else { 4226 fep->phy_interface = interface; 4227 } 4228 4229 ret = fec_enet_parse_rgmii_delay(fep, np); 4230 if (ret) 4231 goto failed_rgmii_delay; 4232 4233 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4234 if (IS_ERR(fep->clk_ipg)) { 4235 ret = PTR_ERR(fep->clk_ipg); 4236 goto failed_clk; 4237 } 4238 4239 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4240 if (IS_ERR(fep->clk_ahb)) { 4241 ret = PTR_ERR(fep->clk_ahb); 4242 goto failed_clk; 4243 } 4244 4245 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4246 4247 /* enet_out is optional, depends on board */ 4248 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4249 if (IS_ERR(fep->clk_enet_out)) { 4250 ret = PTR_ERR(fep->clk_enet_out); 4251 goto failed_clk; 4252 } 4253 4254 fep->ptp_clk_on = false; 4255 mutex_init(&fep->ptp_clk_mutex); 4256 4257 /* clk_ref is optional, depends on board */ 4258 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4259 if (IS_ERR(fep->clk_ref)) { 4260 ret = PTR_ERR(fep->clk_ref); 4261 goto failed_clk; 4262 } 4263 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4264 4265 /* clk_2x_txclk is optional, depends on board */ 4266 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4267 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4268 if (IS_ERR(fep->clk_2x_txclk)) 4269 fep->clk_2x_txclk = NULL; 4270 } 4271 4272 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4273 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4274 if (IS_ERR(fep->clk_ptp)) { 4275 fep->clk_ptp = NULL; 4276 fep->bufdesc_ex = false; 4277 } 4278 4279 ret = fec_enet_clk_enable(ndev, true); 4280 if (ret) 4281 goto failed_clk; 4282 4283 ret = clk_prepare_enable(fep->clk_ipg); 4284 if (ret) 4285 goto failed_clk_ipg; 4286 ret = clk_prepare_enable(fep->clk_ahb); 4287 if (ret) 4288 goto failed_clk_ahb; 4289 4290 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4291 if (!IS_ERR(fep->reg_phy)) { 4292 ret = regulator_enable(fep->reg_phy); 4293 if (ret) { 4294 dev_err(&pdev->dev, 4295 "Failed to enable phy regulator: %d\n", ret); 4296 goto failed_regulator; 4297 } 4298 } else { 4299 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4300 ret = -EPROBE_DEFER; 4301 goto failed_regulator; 4302 } 4303 fep->reg_phy = NULL; 4304 } 4305 4306 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4307 pm_runtime_use_autosuspend(&pdev->dev); 4308 pm_runtime_get_noresume(&pdev->dev); 4309 pm_runtime_set_active(&pdev->dev); 4310 pm_runtime_enable(&pdev->dev); 4311 4312 ret = fec_reset_phy(pdev); 4313 if (ret) 4314 goto failed_reset; 4315 4316 irq_cnt = fec_enet_get_irq_cnt(pdev); 4317 if (fep->bufdesc_ex) 4318 fec_ptp_init(pdev, irq_cnt); 4319 4320 ret = fec_enet_init(ndev); 4321 if (ret) 4322 goto failed_init; 4323 4324 for (i = 0; i < irq_cnt; i++) { 4325 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4326 irq = platform_get_irq_byname_optional(pdev, irq_name); 4327 if (irq < 0) 4328 irq = platform_get_irq(pdev, i); 4329 if (irq < 0) { 4330 ret = irq; 4331 goto failed_irq; 4332 } 4333 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4334 0, pdev->name, ndev); 4335 if (ret) 4336 goto failed_irq; 4337 4338 fep->irq[i] = irq; 4339 } 4340 4341 /* Decide which interrupt line is wakeup capable */ 4342 fec_enet_get_wakeup_irq(pdev); 4343 4344 ret = fec_enet_mii_init(pdev); 4345 if (ret) 4346 goto failed_mii_init; 4347 4348 /* Carrier starts down, phylib will bring it up */ 4349 netif_carrier_off(ndev); 4350 fec_enet_clk_enable(ndev, false); 4351 pinctrl_pm_select_sleep_state(&pdev->dev); 4352 4353 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4354 4355 ret = register_netdev(ndev); 4356 if (ret) 4357 goto failed_register; 4358 4359 device_init_wakeup(&ndev->dev, fep->wol_flag & 4360 FEC_WOL_HAS_MAGIC_PACKET); 4361 4362 if (fep->bufdesc_ex && fep->ptp_clock) 4363 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4364 4365 fep->rx_copybreak = COPYBREAK_DEFAULT; 4366 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4367 4368 pm_runtime_mark_last_busy(&pdev->dev); 4369 pm_runtime_put_autosuspend(&pdev->dev); 4370 4371 return 0; 4372 4373 failed_register: 4374 fec_enet_mii_remove(fep); 4375 failed_mii_init: 4376 failed_irq: 4377 failed_init: 4378 fec_ptp_stop(pdev); 4379 failed_reset: 4380 pm_runtime_put_noidle(&pdev->dev); 4381 pm_runtime_disable(&pdev->dev); 4382 if (fep->reg_phy) 4383 regulator_disable(fep->reg_phy); 4384 failed_regulator: 4385 clk_disable_unprepare(fep->clk_ahb); 4386 failed_clk_ahb: 4387 clk_disable_unprepare(fep->clk_ipg); 4388 failed_clk_ipg: 4389 fec_enet_clk_enable(ndev, false); 4390 failed_clk: 4391 failed_rgmii_delay: 4392 if (of_phy_is_fixed_link(np)) 4393 of_phy_deregister_fixed_link(np); 4394 of_node_put(phy_node); 4395 failed_stop_mode: 4396 failed_ipc_init: 4397 failed_phy: 4398 dev_id--; 4399 failed_ioremap: 4400 free_netdev(ndev); 4401 4402 return ret; 4403 } 4404 4405 static int 4406 fec_drv_remove(struct platform_device *pdev) 4407 { 4408 struct net_device *ndev = platform_get_drvdata(pdev); 4409 struct fec_enet_private *fep = netdev_priv(ndev); 4410 struct device_node *np = pdev->dev.of_node; 4411 int ret; 4412 4413 ret = pm_runtime_resume_and_get(&pdev->dev); 4414 if (ret < 0) 4415 return ret; 4416 4417 cancel_work_sync(&fep->tx_timeout_work); 4418 fec_ptp_stop(pdev); 4419 unregister_netdev(ndev); 4420 fec_enet_mii_remove(fep); 4421 if (fep->reg_phy) 4422 regulator_disable(fep->reg_phy); 4423 4424 if (of_phy_is_fixed_link(np)) 4425 of_phy_deregister_fixed_link(np); 4426 of_node_put(fep->phy_node); 4427 4428 clk_disable_unprepare(fep->clk_ahb); 4429 clk_disable_unprepare(fep->clk_ipg); 4430 pm_runtime_put_noidle(&pdev->dev); 4431 pm_runtime_disable(&pdev->dev); 4432 4433 free_netdev(ndev); 4434 return 0; 4435 } 4436 4437 static int __maybe_unused fec_suspend(struct device *dev) 4438 { 4439 struct net_device *ndev = dev_get_drvdata(dev); 4440 struct fec_enet_private *fep = netdev_priv(ndev); 4441 int ret; 4442 4443 rtnl_lock(); 4444 if (netif_running(ndev)) { 4445 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4446 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4447 phy_stop(ndev->phydev); 4448 napi_disable(&fep->napi); 4449 netif_tx_lock_bh(ndev); 4450 netif_device_detach(ndev); 4451 netif_tx_unlock_bh(ndev); 4452 fec_stop(ndev); 4453 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4454 fec_irqs_disable(ndev); 4455 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4456 } else { 4457 fec_irqs_disable_except_wakeup(ndev); 4458 if (fep->wake_irq > 0) { 4459 disable_irq(fep->wake_irq); 4460 enable_irq_wake(fep->wake_irq); 4461 } 4462 fec_enet_stop_mode(fep, true); 4463 } 4464 /* It's safe to disable clocks since interrupts are masked */ 4465 fec_enet_clk_enable(ndev, false); 4466 4467 fep->rpm_active = !pm_runtime_status_suspended(dev); 4468 if (fep->rpm_active) { 4469 ret = pm_runtime_force_suspend(dev); 4470 if (ret < 0) { 4471 rtnl_unlock(); 4472 return ret; 4473 } 4474 } 4475 } 4476 rtnl_unlock(); 4477 4478 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4479 regulator_disable(fep->reg_phy); 4480 4481 /* SOC supply clock to phy, when clock is disabled, phy link down 4482 * SOC control phy regulator, when regulator is disabled, phy link down 4483 */ 4484 if (fep->clk_enet_out || fep->reg_phy) 4485 fep->link = 0; 4486 4487 return 0; 4488 } 4489 4490 static int __maybe_unused fec_resume(struct device *dev) 4491 { 4492 struct net_device *ndev = dev_get_drvdata(dev); 4493 struct fec_enet_private *fep = netdev_priv(ndev); 4494 int ret; 4495 int val; 4496 4497 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4498 ret = regulator_enable(fep->reg_phy); 4499 if (ret) 4500 return ret; 4501 } 4502 4503 rtnl_lock(); 4504 if (netif_running(ndev)) { 4505 if (fep->rpm_active) 4506 pm_runtime_force_resume(dev); 4507 4508 ret = fec_enet_clk_enable(ndev, true); 4509 if (ret) { 4510 rtnl_unlock(); 4511 goto failed_clk; 4512 } 4513 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4514 fec_enet_stop_mode(fep, false); 4515 if (fep->wake_irq) { 4516 disable_irq_wake(fep->wake_irq); 4517 enable_irq(fep->wake_irq); 4518 } 4519 4520 val = readl(fep->hwp + FEC_ECNTRL); 4521 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4522 writel(val, fep->hwp + FEC_ECNTRL); 4523 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4524 } else { 4525 pinctrl_pm_select_default_state(&fep->pdev->dev); 4526 } 4527 fec_restart(ndev); 4528 netif_tx_lock_bh(ndev); 4529 netif_device_attach(ndev); 4530 netif_tx_unlock_bh(ndev); 4531 napi_enable(&fep->napi); 4532 phy_init_hw(ndev->phydev); 4533 phy_start(ndev->phydev); 4534 } 4535 rtnl_unlock(); 4536 4537 return 0; 4538 4539 failed_clk: 4540 if (fep->reg_phy) 4541 regulator_disable(fep->reg_phy); 4542 return ret; 4543 } 4544 4545 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4546 { 4547 struct net_device *ndev = dev_get_drvdata(dev); 4548 struct fec_enet_private *fep = netdev_priv(ndev); 4549 4550 clk_disable_unprepare(fep->clk_ahb); 4551 clk_disable_unprepare(fep->clk_ipg); 4552 4553 return 0; 4554 } 4555 4556 static int __maybe_unused fec_runtime_resume(struct device *dev) 4557 { 4558 struct net_device *ndev = dev_get_drvdata(dev); 4559 struct fec_enet_private *fep = netdev_priv(ndev); 4560 int ret; 4561 4562 ret = clk_prepare_enable(fep->clk_ahb); 4563 if (ret) 4564 return ret; 4565 ret = clk_prepare_enable(fep->clk_ipg); 4566 if (ret) 4567 goto failed_clk_ipg; 4568 4569 return 0; 4570 4571 failed_clk_ipg: 4572 clk_disable_unprepare(fep->clk_ahb); 4573 return ret; 4574 } 4575 4576 static const struct dev_pm_ops fec_pm_ops = { 4577 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4578 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4579 }; 4580 4581 static struct platform_driver fec_driver = { 4582 .driver = { 4583 .name = DRIVER_NAME, 4584 .pm = &fec_pm_ops, 4585 .of_match_table = fec_dt_ids, 4586 .suppress_bind_attrs = true, 4587 }, 4588 .id_table = fec_devtype, 4589 .probe = fec_probe, 4590 .remove = fec_drv_remove, 4591 }; 4592 4593 module_platform_driver(fec_driver); 4594 4595 MODULE_LICENSE("GPL"); 4596