xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 62f6eca5de103c6823f6ca2abbf2ee242e132207)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 #include <linux/filter.h>
70 #include <linux/bpf.h>
71 
72 #include <asm/cacheflush.h>
73 
74 #include "fec.h"
75 
76 static void set_multicast_list(struct net_device *ndev);
77 static void fec_enet_itr_coal_set(struct net_device *ndev);
78 
79 #define DRIVER_NAME	"fec"
80 
81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
82 
83 /* Pause frame feild and FIFO threshold */
84 #define FEC_ENET_FCE	(1 << 5)
85 #define FEC_ENET_RSEM_V	0x84
86 #define FEC_ENET_RSFL_V	16
87 #define FEC_ENET_RAEM_V	0x8
88 #define FEC_ENET_RAFL_V	0x8
89 #define FEC_ENET_OPD_V	0xFFF0
90 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
91 
92 #define FEC_ENET_XDP_PASS          0
93 #define FEC_ENET_XDP_CONSUMED      BIT(0)
94 #define FEC_ENET_XDP_TX            BIT(1)
95 #define FEC_ENET_XDP_REDIR         BIT(2)
96 
97 struct fec_devinfo {
98 	u32 quirks;
99 };
100 
101 static const struct fec_devinfo fec_imx25_info = {
102 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx27_info = {
107 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
108 };
109 
110 static const struct fec_devinfo fec_imx28_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
112 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
113 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
114 		  FEC_QUIRK_NO_HARD_RESET,
115 };
116 
117 static const struct fec_devinfo fec_imx6q_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
121 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
122 		  FEC_QUIRK_HAS_PMQOS,
123 };
124 
125 static const struct fec_devinfo fec_mvf600_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
127 };
128 
129 static const struct fec_devinfo fec_imx6x_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
131 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
132 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
133 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
134 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
135 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
136 };
137 
138 static const struct fec_devinfo fec_imx6ul_info = {
139 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
140 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
141 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
142 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
143 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
144 };
145 
146 static const struct fec_devinfo fec_imx8mq_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
150 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
151 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
152 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
153 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
154 };
155 
156 static const struct fec_devinfo fec_imx8qm_info = {
157 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
158 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
159 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
160 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
161 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
162 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
163 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
164 };
165 
166 static const struct fec_devinfo fec_s32v234_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
171 };
172 
173 static struct platform_device_id fec_devtype[] = {
174 	{
175 		/* keep it for coldfire */
176 		.name = DRIVER_NAME,
177 		.driver_data = 0,
178 	}, {
179 		.name = "imx25-fec",
180 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
181 	}, {
182 		.name = "imx27-fec",
183 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
184 	}, {
185 		.name = "imx28-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
187 	}, {
188 		.name = "imx6q-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
190 	}, {
191 		.name = "mvf600-fec",
192 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
193 	}, {
194 		.name = "imx6sx-fec",
195 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
196 	}, {
197 		.name = "imx6ul-fec",
198 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
199 	}, {
200 		.name = "imx8mq-fec",
201 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
202 	}, {
203 		.name = "imx8qm-fec",
204 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
205 	}, {
206 		.name = "s32v234-fec",
207 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
208 	}, {
209 		/* sentinel */
210 	}
211 };
212 MODULE_DEVICE_TABLE(platform, fec_devtype);
213 
214 enum imx_fec_type {
215 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
216 	IMX27_FEC,	/* runs on i.mx27/35/51 */
217 	IMX28_FEC,
218 	IMX6Q_FEC,
219 	MVF600_FEC,
220 	IMX6SX_FEC,
221 	IMX6UL_FEC,
222 	IMX8MQ_FEC,
223 	IMX8QM_FEC,
224 	S32V234_FEC,
225 };
226 
227 static const struct of_device_id fec_dt_ids[] = {
228 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
229 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
230 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
231 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
232 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
233 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
234 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
235 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
236 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
237 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
238 	{ /* sentinel */ }
239 };
240 MODULE_DEVICE_TABLE(of, fec_dt_ids);
241 
242 static unsigned char macaddr[ETH_ALEN];
243 module_param_array(macaddr, byte, NULL, 0);
244 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
245 
246 #if defined(CONFIG_M5272)
247 /*
248  * Some hardware gets it MAC address out of local flash memory.
249  * if this is non-zero then assume it is the address to get MAC from.
250  */
251 #if defined(CONFIG_NETtel)
252 #define	FEC_FLASHMAC	0xf0006006
253 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
254 #define	FEC_FLASHMAC	0xf0006000
255 #elif defined(CONFIG_CANCam)
256 #define	FEC_FLASHMAC	0xf0020000
257 #elif defined (CONFIG_M5272C3)
258 #define	FEC_FLASHMAC	(0xffe04000 + 4)
259 #elif defined(CONFIG_MOD5272)
260 #define FEC_FLASHMAC	0xffc0406b
261 #else
262 #define	FEC_FLASHMAC	0
263 #endif
264 #endif /* CONFIG_M5272 */
265 
266 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
267  *
268  * 2048 byte skbufs are allocated. However, alignment requirements
269  * varies between FEC variants. Worst case is 64, so round down by 64.
270  */
271 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
272 #define PKT_MINBUF_SIZE		64
273 
274 /* FEC receive acceleration */
275 #define FEC_RACC_IPDIS		(1 << 1)
276 #define FEC_RACC_PRODIS		(1 << 2)
277 #define FEC_RACC_SHIFT16	BIT(7)
278 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
279 
280 /* MIB Control Register */
281 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
282 
283 /*
284  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
285  * size bits. Other FEC hardware does not, so we need to take that into
286  * account when setting it.
287  */
288 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
289     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
290     defined(CONFIG_ARM64)
291 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
292 #else
293 #define	OPT_FRAME_SIZE	0
294 #endif
295 
296 /* FEC MII MMFR bits definition */
297 #define FEC_MMFR_ST		(1 << 30)
298 #define FEC_MMFR_ST_C45		(0)
299 #define FEC_MMFR_OP_READ	(2 << 28)
300 #define FEC_MMFR_OP_READ_C45	(3 << 28)
301 #define FEC_MMFR_OP_WRITE	(1 << 28)
302 #define FEC_MMFR_OP_ADDR_WRITE	(0)
303 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
304 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
305 #define FEC_MMFR_TA		(2 << 16)
306 #define FEC_MMFR_DATA(v)	(v & 0xffff)
307 /* FEC ECR bits definition */
308 #define FEC_ECR_MAGICEN		(1 << 2)
309 #define FEC_ECR_SLEEP		(1 << 3)
310 
311 #define FEC_MII_TIMEOUT		30000 /* us */
312 
313 /* Transmitter timeout */
314 #define TX_TIMEOUT (2 * HZ)
315 
316 #define FEC_PAUSE_FLAG_AUTONEG	0x1
317 #define FEC_PAUSE_FLAG_ENABLE	0x2
318 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
319 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
320 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
321 
322 #define COPYBREAK_DEFAULT	256
323 
324 /* Max number of allowed TCP segments for software TSO */
325 #define FEC_MAX_TSO_SEGS	100
326 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
327 
328 #define IS_TSO_HEADER(txq, addr) \
329 	((addr >= txq->tso_hdrs_dma) && \
330 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
331 
332 static int mii_cnt;
333 
334 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
335 					     struct bufdesc_prop *bd)
336 {
337 	return (bdp >= bd->last) ? bd->base
338 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
339 }
340 
341 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
342 					     struct bufdesc_prop *bd)
343 {
344 	return (bdp <= bd->base) ? bd->last
345 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
346 }
347 
348 static int fec_enet_get_bd_index(struct bufdesc *bdp,
349 				 struct bufdesc_prop *bd)
350 {
351 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
352 }
353 
354 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
355 {
356 	int entries;
357 
358 	entries = (((const char *)txq->dirty_tx -
359 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
360 
361 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
362 }
363 
364 static void swap_buffer(void *bufaddr, int len)
365 {
366 	int i;
367 	unsigned int *buf = bufaddr;
368 
369 	for (i = 0; i < len; i += 4, buf++)
370 		swab32s(buf);
371 }
372 
373 static void fec_dump(struct net_device *ndev)
374 {
375 	struct fec_enet_private *fep = netdev_priv(ndev);
376 	struct bufdesc *bdp;
377 	struct fec_enet_priv_tx_q *txq;
378 	int index = 0;
379 
380 	netdev_info(ndev, "TX ring dump\n");
381 	pr_info("Nr     SC     addr       len  SKB\n");
382 
383 	txq = fep->tx_queue[0];
384 	bdp = txq->bd.base;
385 
386 	do {
387 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
388 			index,
389 			bdp == txq->bd.cur ? 'S' : ' ',
390 			bdp == txq->dirty_tx ? 'H' : ' ',
391 			fec16_to_cpu(bdp->cbd_sc),
392 			fec32_to_cpu(bdp->cbd_bufaddr),
393 			fec16_to_cpu(bdp->cbd_datlen),
394 			txq->tx_skbuff[index]);
395 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
396 		index++;
397 	} while (bdp != txq->bd.base);
398 }
399 
400 static inline bool is_ipv4_pkt(struct sk_buff *skb)
401 {
402 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
403 }
404 
405 static int
406 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
407 {
408 	/* Only run for packets requiring a checksum. */
409 	if (skb->ip_summed != CHECKSUM_PARTIAL)
410 		return 0;
411 
412 	if (unlikely(skb_cow_head(skb, 0)))
413 		return -1;
414 
415 	if (is_ipv4_pkt(skb))
416 		ip_hdr(skb)->check = 0;
417 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
418 
419 	return 0;
420 }
421 
422 static int
423 fec_enet_create_page_pool(struct fec_enet_private *fep,
424 			  struct fec_enet_priv_rx_q *rxq, int size)
425 {
426 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
427 	struct page_pool_params pp_params = {
428 		.order = 0,
429 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
430 		.pool_size = size,
431 		.nid = dev_to_node(&fep->pdev->dev),
432 		.dev = &fep->pdev->dev,
433 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
434 		.offset = FEC_ENET_XDP_HEADROOM,
435 		.max_len = FEC_ENET_RX_FRSIZE,
436 	};
437 	int err;
438 
439 	rxq->page_pool = page_pool_create(&pp_params);
440 	if (IS_ERR(rxq->page_pool)) {
441 		err = PTR_ERR(rxq->page_pool);
442 		rxq->page_pool = NULL;
443 		return err;
444 	}
445 
446 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
447 	if (err < 0)
448 		goto err_free_pp;
449 
450 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
451 					 rxq->page_pool);
452 	if (err)
453 		goto err_unregister_rxq;
454 
455 	return 0;
456 
457 err_unregister_rxq:
458 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
459 err_free_pp:
460 	page_pool_destroy(rxq->page_pool);
461 	rxq->page_pool = NULL;
462 	return err;
463 }
464 
465 static struct bufdesc *
466 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
467 			     struct sk_buff *skb,
468 			     struct net_device *ndev)
469 {
470 	struct fec_enet_private *fep = netdev_priv(ndev);
471 	struct bufdesc *bdp = txq->bd.cur;
472 	struct bufdesc_ex *ebdp;
473 	int nr_frags = skb_shinfo(skb)->nr_frags;
474 	int frag, frag_len;
475 	unsigned short status;
476 	unsigned int estatus = 0;
477 	skb_frag_t *this_frag;
478 	unsigned int index;
479 	void *bufaddr;
480 	dma_addr_t addr;
481 	int i;
482 
483 	for (frag = 0; frag < nr_frags; frag++) {
484 		this_frag = &skb_shinfo(skb)->frags[frag];
485 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
486 		ebdp = (struct bufdesc_ex *)bdp;
487 
488 		status = fec16_to_cpu(bdp->cbd_sc);
489 		status &= ~BD_ENET_TX_STATS;
490 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
491 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
492 
493 		/* Handle the last BD specially */
494 		if (frag == nr_frags - 1) {
495 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
496 			if (fep->bufdesc_ex) {
497 				estatus |= BD_ENET_TX_INT;
498 				if (unlikely(skb_shinfo(skb)->tx_flags &
499 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
500 					estatus |= BD_ENET_TX_TS;
501 			}
502 		}
503 
504 		if (fep->bufdesc_ex) {
505 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
506 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
507 			if (skb->ip_summed == CHECKSUM_PARTIAL)
508 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
509 
510 			ebdp->cbd_bdu = 0;
511 			ebdp->cbd_esc = cpu_to_fec32(estatus);
512 		}
513 
514 		bufaddr = skb_frag_address(this_frag);
515 
516 		index = fec_enet_get_bd_index(bdp, &txq->bd);
517 		if (((unsigned long) bufaddr) & fep->tx_align ||
518 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
519 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
520 			bufaddr = txq->tx_bounce[index];
521 
522 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
523 				swap_buffer(bufaddr, frag_len);
524 		}
525 
526 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
527 				      DMA_TO_DEVICE);
528 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
529 			if (net_ratelimit())
530 				netdev_err(ndev, "Tx DMA memory map failed\n");
531 			goto dma_mapping_error;
532 		}
533 
534 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
535 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
536 		/* Make sure the updates to rest of the descriptor are
537 		 * performed before transferring ownership.
538 		 */
539 		wmb();
540 		bdp->cbd_sc = cpu_to_fec16(status);
541 	}
542 
543 	return bdp;
544 dma_mapping_error:
545 	bdp = txq->bd.cur;
546 	for (i = 0; i < frag; i++) {
547 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
548 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
549 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
550 	}
551 	return ERR_PTR(-ENOMEM);
552 }
553 
554 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
555 				   struct sk_buff *skb, struct net_device *ndev)
556 {
557 	struct fec_enet_private *fep = netdev_priv(ndev);
558 	int nr_frags = skb_shinfo(skb)->nr_frags;
559 	struct bufdesc *bdp, *last_bdp;
560 	void *bufaddr;
561 	dma_addr_t addr;
562 	unsigned short status;
563 	unsigned short buflen;
564 	unsigned int estatus = 0;
565 	unsigned int index;
566 	int entries_free;
567 
568 	entries_free = fec_enet_get_free_txdesc_num(txq);
569 	if (entries_free < MAX_SKB_FRAGS + 1) {
570 		dev_kfree_skb_any(skb);
571 		if (net_ratelimit())
572 			netdev_err(ndev, "NOT enough BD for SG!\n");
573 		return NETDEV_TX_OK;
574 	}
575 
576 	/* Protocol checksum off-load for TCP and UDP. */
577 	if (fec_enet_clear_csum(skb, ndev)) {
578 		dev_kfree_skb_any(skb);
579 		return NETDEV_TX_OK;
580 	}
581 
582 	/* Fill in a Tx ring entry */
583 	bdp = txq->bd.cur;
584 	last_bdp = bdp;
585 	status = fec16_to_cpu(bdp->cbd_sc);
586 	status &= ~BD_ENET_TX_STATS;
587 
588 	/* Set buffer length and buffer pointer */
589 	bufaddr = skb->data;
590 	buflen = skb_headlen(skb);
591 
592 	index = fec_enet_get_bd_index(bdp, &txq->bd);
593 	if (((unsigned long) bufaddr) & fep->tx_align ||
594 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
595 		memcpy(txq->tx_bounce[index], skb->data, buflen);
596 		bufaddr = txq->tx_bounce[index];
597 
598 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
599 			swap_buffer(bufaddr, buflen);
600 	}
601 
602 	/* Push the data cache so the CPM does not get stale memory data. */
603 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
604 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
605 		dev_kfree_skb_any(skb);
606 		if (net_ratelimit())
607 			netdev_err(ndev, "Tx DMA memory map failed\n");
608 		return NETDEV_TX_OK;
609 	}
610 
611 	if (nr_frags) {
612 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
613 		if (IS_ERR(last_bdp)) {
614 			dma_unmap_single(&fep->pdev->dev, addr,
615 					 buflen, DMA_TO_DEVICE);
616 			dev_kfree_skb_any(skb);
617 			return NETDEV_TX_OK;
618 		}
619 	} else {
620 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
621 		if (fep->bufdesc_ex) {
622 			estatus = BD_ENET_TX_INT;
623 			if (unlikely(skb_shinfo(skb)->tx_flags &
624 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
625 				estatus |= BD_ENET_TX_TS;
626 		}
627 	}
628 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
629 	bdp->cbd_datlen = cpu_to_fec16(buflen);
630 
631 	if (fep->bufdesc_ex) {
632 
633 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
634 
635 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
636 			fep->hwts_tx_en))
637 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
638 
639 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
640 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
641 
642 		if (skb->ip_summed == CHECKSUM_PARTIAL)
643 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
644 
645 		ebdp->cbd_bdu = 0;
646 		ebdp->cbd_esc = cpu_to_fec32(estatus);
647 	}
648 
649 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
650 	/* Save skb pointer */
651 	txq->tx_skbuff[index] = skb;
652 
653 	/* Make sure the updates to rest of the descriptor are performed before
654 	 * transferring ownership.
655 	 */
656 	wmb();
657 
658 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
659 	 * it's the last BD of the frame, and to put the CRC on the end.
660 	 */
661 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
662 	bdp->cbd_sc = cpu_to_fec16(status);
663 
664 	/* If this was the last BD in the ring, start at the beginning again. */
665 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
666 
667 	skb_tx_timestamp(skb);
668 
669 	/* Make sure the update to bdp and tx_skbuff are performed before
670 	 * txq->bd.cur.
671 	 */
672 	wmb();
673 	txq->bd.cur = bdp;
674 
675 	/* Trigger transmission start */
676 	writel(0, txq->bd.reg_desc_active);
677 
678 	return 0;
679 }
680 
681 static int
682 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
683 			  struct net_device *ndev,
684 			  struct bufdesc *bdp, int index, char *data,
685 			  int size, bool last_tcp, bool is_last)
686 {
687 	struct fec_enet_private *fep = netdev_priv(ndev);
688 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
689 	unsigned short status;
690 	unsigned int estatus = 0;
691 	dma_addr_t addr;
692 
693 	status = fec16_to_cpu(bdp->cbd_sc);
694 	status &= ~BD_ENET_TX_STATS;
695 
696 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
697 
698 	if (((unsigned long) data) & fep->tx_align ||
699 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
700 		memcpy(txq->tx_bounce[index], data, size);
701 		data = txq->tx_bounce[index];
702 
703 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
704 			swap_buffer(data, size);
705 	}
706 
707 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
708 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
709 		dev_kfree_skb_any(skb);
710 		if (net_ratelimit())
711 			netdev_err(ndev, "Tx DMA memory map failed\n");
712 		return NETDEV_TX_OK;
713 	}
714 
715 	bdp->cbd_datlen = cpu_to_fec16(size);
716 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
717 
718 	if (fep->bufdesc_ex) {
719 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
720 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
721 		if (skb->ip_summed == CHECKSUM_PARTIAL)
722 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
723 		ebdp->cbd_bdu = 0;
724 		ebdp->cbd_esc = cpu_to_fec32(estatus);
725 	}
726 
727 	/* Handle the last BD specially */
728 	if (last_tcp)
729 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
730 	if (is_last) {
731 		status |= BD_ENET_TX_INTR;
732 		if (fep->bufdesc_ex)
733 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
734 	}
735 
736 	bdp->cbd_sc = cpu_to_fec16(status);
737 
738 	return 0;
739 }
740 
741 static int
742 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
743 			 struct sk_buff *skb, struct net_device *ndev,
744 			 struct bufdesc *bdp, int index)
745 {
746 	struct fec_enet_private *fep = netdev_priv(ndev);
747 	int hdr_len = skb_tcp_all_headers(skb);
748 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
749 	void *bufaddr;
750 	unsigned long dmabuf;
751 	unsigned short status;
752 	unsigned int estatus = 0;
753 
754 	status = fec16_to_cpu(bdp->cbd_sc);
755 	status &= ~BD_ENET_TX_STATS;
756 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
757 
758 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
759 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
760 	if (((unsigned long)bufaddr) & fep->tx_align ||
761 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
762 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
763 		bufaddr = txq->tx_bounce[index];
764 
765 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
766 			swap_buffer(bufaddr, hdr_len);
767 
768 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
769 					hdr_len, DMA_TO_DEVICE);
770 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
771 			dev_kfree_skb_any(skb);
772 			if (net_ratelimit())
773 				netdev_err(ndev, "Tx DMA memory map failed\n");
774 			return NETDEV_TX_OK;
775 		}
776 	}
777 
778 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
779 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
780 
781 	if (fep->bufdesc_ex) {
782 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
783 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
784 		if (skb->ip_summed == CHECKSUM_PARTIAL)
785 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
786 		ebdp->cbd_bdu = 0;
787 		ebdp->cbd_esc = cpu_to_fec32(estatus);
788 	}
789 
790 	bdp->cbd_sc = cpu_to_fec16(status);
791 
792 	return 0;
793 }
794 
795 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
796 				   struct sk_buff *skb,
797 				   struct net_device *ndev)
798 {
799 	struct fec_enet_private *fep = netdev_priv(ndev);
800 	int hdr_len, total_len, data_left;
801 	struct bufdesc *bdp = txq->bd.cur;
802 	struct tso_t tso;
803 	unsigned int index = 0;
804 	int ret;
805 
806 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
807 		dev_kfree_skb_any(skb);
808 		if (net_ratelimit())
809 			netdev_err(ndev, "NOT enough BD for TSO!\n");
810 		return NETDEV_TX_OK;
811 	}
812 
813 	/* Protocol checksum off-load for TCP and UDP. */
814 	if (fec_enet_clear_csum(skb, ndev)) {
815 		dev_kfree_skb_any(skb);
816 		return NETDEV_TX_OK;
817 	}
818 
819 	/* Initialize the TSO handler, and prepare the first payload */
820 	hdr_len = tso_start(skb, &tso);
821 
822 	total_len = skb->len - hdr_len;
823 	while (total_len > 0) {
824 		char *hdr;
825 
826 		index = fec_enet_get_bd_index(bdp, &txq->bd);
827 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
828 		total_len -= data_left;
829 
830 		/* prepare packet headers: MAC + IP + TCP */
831 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
832 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
833 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
834 		if (ret)
835 			goto err_release;
836 
837 		while (data_left > 0) {
838 			int size;
839 
840 			size = min_t(int, tso.size, data_left);
841 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
842 			index = fec_enet_get_bd_index(bdp, &txq->bd);
843 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
844 							bdp, index,
845 							tso.data, size,
846 							size == data_left,
847 							total_len == 0);
848 			if (ret)
849 				goto err_release;
850 
851 			data_left -= size;
852 			tso_build_data(skb, &tso, size);
853 		}
854 
855 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
856 	}
857 
858 	/* Save skb pointer */
859 	txq->tx_skbuff[index] = skb;
860 
861 	skb_tx_timestamp(skb);
862 	txq->bd.cur = bdp;
863 
864 	/* Trigger transmission start */
865 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
866 	    !readl(txq->bd.reg_desc_active) ||
867 	    !readl(txq->bd.reg_desc_active) ||
868 	    !readl(txq->bd.reg_desc_active) ||
869 	    !readl(txq->bd.reg_desc_active))
870 		writel(0, txq->bd.reg_desc_active);
871 
872 	return 0;
873 
874 err_release:
875 	/* TODO: Release all used data descriptors for TSO */
876 	return ret;
877 }
878 
879 static netdev_tx_t
880 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
881 {
882 	struct fec_enet_private *fep = netdev_priv(ndev);
883 	int entries_free;
884 	unsigned short queue;
885 	struct fec_enet_priv_tx_q *txq;
886 	struct netdev_queue *nq;
887 	int ret;
888 
889 	queue = skb_get_queue_mapping(skb);
890 	txq = fep->tx_queue[queue];
891 	nq = netdev_get_tx_queue(ndev, queue);
892 
893 	if (skb_is_gso(skb))
894 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
895 	else
896 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
897 	if (ret)
898 		return ret;
899 
900 	entries_free = fec_enet_get_free_txdesc_num(txq);
901 	if (entries_free <= txq->tx_stop_threshold)
902 		netif_tx_stop_queue(nq);
903 
904 	return NETDEV_TX_OK;
905 }
906 
907 /* Init RX & TX buffer descriptors
908  */
909 static void fec_enet_bd_init(struct net_device *dev)
910 {
911 	struct fec_enet_private *fep = netdev_priv(dev);
912 	struct fec_enet_priv_tx_q *txq;
913 	struct fec_enet_priv_rx_q *rxq;
914 	struct bufdesc *bdp;
915 	unsigned int i;
916 	unsigned int q;
917 
918 	for (q = 0; q < fep->num_rx_queues; q++) {
919 		/* Initialize the receive buffer descriptors. */
920 		rxq = fep->rx_queue[q];
921 		bdp = rxq->bd.base;
922 
923 		for (i = 0; i < rxq->bd.ring_size; i++) {
924 
925 			/* Initialize the BD for every fragment in the page. */
926 			if (bdp->cbd_bufaddr)
927 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
928 			else
929 				bdp->cbd_sc = cpu_to_fec16(0);
930 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
931 		}
932 
933 		/* Set the last buffer to wrap */
934 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
935 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
936 
937 		rxq->bd.cur = rxq->bd.base;
938 	}
939 
940 	for (q = 0; q < fep->num_tx_queues; q++) {
941 		/* ...and the same for transmit */
942 		txq = fep->tx_queue[q];
943 		bdp = txq->bd.base;
944 		txq->bd.cur = bdp;
945 
946 		for (i = 0; i < txq->bd.ring_size; i++) {
947 			/* Initialize the BD for every fragment in the page. */
948 			bdp->cbd_sc = cpu_to_fec16(0);
949 			if (bdp->cbd_bufaddr &&
950 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
951 				dma_unmap_single(&fep->pdev->dev,
952 						 fec32_to_cpu(bdp->cbd_bufaddr),
953 						 fec16_to_cpu(bdp->cbd_datlen),
954 						 DMA_TO_DEVICE);
955 			if (txq->tx_skbuff[i]) {
956 				dev_kfree_skb_any(txq->tx_skbuff[i]);
957 				txq->tx_skbuff[i] = NULL;
958 			}
959 			bdp->cbd_bufaddr = cpu_to_fec32(0);
960 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
961 		}
962 
963 		/* Set the last buffer to wrap */
964 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
965 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
966 		txq->dirty_tx = bdp;
967 	}
968 }
969 
970 static void fec_enet_active_rxring(struct net_device *ndev)
971 {
972 	struct fec_enet_private *fep = netdev_priv(ndev);
973 	int i;
974 
975 	for (i = 0; i < fep->num_rx_queues; i++)
976 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
977 }
978 
979 static void fec_enet_enable_ring(struct net_device *ndev)
980 {
981 	struct fec_enet_private *fep = netdev_priv(ndev);
982 	struct fec_enet_priv_tx_q *txq;
983 	struct fec_enet_priv_rx_q *rxq;
984 	int i;
985 
986 	for (i = 0; i < fep->num_rx_queues; i++) {
987 		rxq = fep->rx_queue[i];
988 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
989 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
990 
991 		/* enable DMA1/2 */
992 		if (i)
993 			writel(RCMR_MATCHEN | RCMR_CMP(i),
994 			       fep->hwp + FEC_RCMR(i));
995 	}
996 
997 	for (i = 0; i < fep->num_tx_queues; i++) {
998 		txq = fep->tx_queue[i];
999 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1000 
1001 		/* enable DMA1/2 */
1002 		if (i)
1003 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1004 			       fep->hwp + FEC_DMA_CFG(i));
1005 	}
1006 }
1007 
1008 static void fec_enet_reset_skb(struct net_device *ndev)
1009 {
1010 	struct fec_enet_private *fep = netdev_priv(ndev);
1011 	struct fec_enet_priv_tx_q *txq;
1012 	int i, j;
1013 
1014 	for (i = 0; i < fep->num_tx_queues; i++) {
1015 		txq = fep->tx_queue[i];
1016 
1017 		for (j = 0; j < txq->bd.ring_size; j++) {
1018 			if (txq->tx_skbuff[j]) {
1019 				dev_kfree_skb_any(txq->tx_skbuff[j]);
1020 				txq->tx_skbuff[j] = NULL;
1021 			}
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  * This function is called to start or restart the FEC during a link
1028  * change, transmit timeout, or to reconfigure the FEC.  The network
1029  * packet processing for this device must be stopped before this call.
1030  */
1031 static void
1032 fec_restart(struct net_device *ndev)
1033 {
1034 	struct fec_enet_private *fep = netdev_priv(ndev);
1035 	u32 temp_mac[2];
1036 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1037 	u32 ecntl = 0x2; /* ETHEREN */
1038 
1039 	/* Whack a reset.  We should wait for this.
1040 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1041 	 * instead of reset MAC itself.
1042 	 */
1043 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1044 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1045 		writel(0, fep->hwp + FEC_ECNTRL);
1046 	} else {
1047 		writel(1, fep->hwp + FEC_ECNTRL);
1048 		udelay(10);
1049 	}
1050 
1051 	/*
1052 	 * enet-mac reset will reset mac address registers too,
1053 	 * so need to reconfigure it.
1054 	 */
1055 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1056 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1057 	       fep->hwp + FEC_ADDR_LOW);
1058 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1059 	       fep->hwp + FEC_ADDR_HIGH);
1060 
1061 	/* Clear any outstanding interrupt, except MDIO. */
1062 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1063 
1064 	fec_enet_bd_init(ndev);
1065 
1066 	fec_enet_enable_ring(ndev);
1067 
1068 	/* Reset tx SKB buffers. */
1069 	fec_enet_reset_skb(ndev);
1070 
1071 	/* Enable MII mode */
1072 	if (fep->full_duplex == DUPLEX_FULL) {
1073 		/* FD enable */
1074 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1075 	} else {
1076 		/* No Rcv on Xmit */
1077 		rcntl |= 0x02;
1078 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1079 	}
1080 
1081 	/* Set MII speed */
1082 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1083 
1084 #if !defined(CONFIG_M5272)
1085 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1086 		u32 val = readl(fep->hwp + FEC_RACC);
1087 
1088 		/* align IP header */
1089 		val |= FEC_RACC_SHIFT16;
1090 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1091 			/* set RX checksum */
1092 			val |= FEC_RACC_OPTIONS;
1093 		else
1094 			val &= ~FEC_RACC_OPTIONS;
1095 		writel(val, fep->hwp + FEC_RACC);
1096 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1097 	}
1098 #endif
1099 
1100 	/*
1101 	 * The phy interface and speed need to get configured
1102 	 * differently on enet-mac.
1103 	 */
1104 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1105 		/* Enable flow control and length check */
1106 		rcntl |= 0x40000000 | 0x00000020;
1107 
1108 		/* RGMII, RMII or MII */
1109 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1110 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1111 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1112 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1113 			rcntl |= (1 << 6);
1114 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1115 			rcntl |= (1 << 8);
1116 		else
1117 			rcntl &= ~(1 << 8);
1118 
1119 		/* 1G, 100M or 10M */
1120 		if (ndev->phydev) {
1121 			if (ndev->phydev->speed == SPEED_1000)
1122 				ecntl |= (1 << 5);
1123 			else if (ndev->phydev->speed == SPEED_100)
1124 				rcntl &= ~(1 << 9);
1125 			else
1126 				rcntl |= (1 << 9);
1127 		}
1128 	} else {
1129 #ifdef FEC_MIIGSK_ENR
1130 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1131 			u32 cfgr;
1132 			/* disable the gasket and wait */
1133 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1134 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1135 				udelay(1);
1136 
1137 			/*
1138 			 * configure the gasket:
1139 			 *   RMII, 50 MHz, no loopback, no echo
1140 			 *   MII, 25 MHz, no loopback, no echo
1141 			 */
1142 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1143 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1144 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1145 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1146 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1147 
1148 			/* re-enable the gasket */
1149 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1150 		}
1151 #endif
1152 	}
1153 
1154 #if !defined(CONFIG_M5272)
1155 	/* enable pause frame*/
1156 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1157 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1158 	     ndev->phydev && ndev->phydev->pause)) {
1159 		rcntl |= FEC_ENET_FCE;
1160 
1161 		/* set FIFO threshold parameter to reduce overrun */
1162 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1163 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1164 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1165 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1166 
1167 		/* OPD */
1168 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1169 	} else {
1170 		rcntl &= ~FEC_ENET_FCE;
1171 	}
1172 #endif /* !defined(CONFIG_M5272) */
1173 
1174 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1175 
1176 	/* Setup multicast filter. */
1177 	set_multicast_list(ndev);
1178 #ifndef CONFIG_M5272
1179 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1180 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1181 #endif
1182 
1183 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1184 		/* enable ENET endian swap */
1185 		ecntl |= (1 << 8);
1186 		/* enable ENET store and forward mode */
1187 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1188 	}
1189 
1190 	if (fep->bufdesc_ex)
1191 		ecntl |= (1 << 4);
1192 
1193 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1194 	    fep->rgmii_txc_dly)
1195 		ecntl |= FEC_ENET_TXC_DLY;
1196 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1197 	    fep->rgmii_rxc_dly)
1198 		ecntl |= FEC_ENET_RXC_DLY;
1199 
1200 #ifndef CONFIG_M5272
1201 	/* Enable the MIB statistic event counters */
1202 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1203 #endif
1204 
1205 	/* And last, enable the transmit and receive processing */
1206 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1207 	fec_enet_active_rxring(ndev);
1208 
1209 	if (fep->bufdesc_ex)
1210 		fec_ptp_start_cyclecounter(ndev);
1211 
1212 	/* Enable interrupts we wish to service */
1213 	if (fep->link)
1214 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 	else
1216 		writel(0, fep->hwp + FEC_IMASK);
1217 
1218 	/* Init the interrupt coalescing */
1219 	fec_enet_itr_coal_set(ndev);
1220 }
1221 
1222 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1223 {
1224 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1225 	      of_machine_is_compatible("fsl,imx8qxp") ||
1226 	      of_machine_is_compatible("fsl,imx8dxl")))
1227 		return 0;
1228 
1229 	return imx_scu_get_handle(&fep->ipc_handle);
1230 }
1231 
1232 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1233 {
1234 	struct device_node *np = fep->pdev->dev.of_node;
1235 	u32 rsrc_id, val;
1236 	int idx;
1237 
1238 	if (!np || !fep->ipc_handle)
1239 		return;
1240 
1241 	idx = of_alias_get_id(np, "ethernet");
1242 	if (idx < 0)
1243 		idx = 0;
1244 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1245 
1246 	val = enabled ? 1 : 0;
1247 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1248 }
1249 
1250 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1251 {
1252 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1253 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1254 
1255 	if (stop_gpr->gpr) {
1256 		if (enabled)
1257 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1258 					   BIT(stop_gpr->bit),
1259 					   BIT(stop_gpr->bit));
1260 		else
1261 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1262 					   BIT(stop_gpr->bit), 0);
1263 	} else if (pdata && pdata->sleep_mode_enable) {
1264 		pdata->sleep_mode_enable(enabled);
1265 	} else {
1266 		fec_enet_ipg_stop_set(fep, enabled);
1267 	}
1268 }
1269 
1270 static void fec_irqs_disable(struct net_device *ndev)
1271 {
1272 	struct fec_enet_private *fep = netdev_priv(ndev);
1273 
1274 	writel(0, fep->hwp + FEC_IMASK);
1275 }
1276 
1277 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1278 {
1279 	struct fec_enet_private *fep = netdev_priv(ndev);
1280 
1281 	writel(0, fep->hwp + FEC_IMASK);
1282 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1283 }
1284 
1285 static void
1286 fec_stop(struct net_device *ndev)
1287 {
1288 	struct fec_enet_private *fep = netdev_priv(ndev);
1289 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1290 	u32 val;
1291 
1292 	/* We cannot expect a graceful transmit stop without link !!! */
1293 	if (fep->link) {
1294 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1295 		udelay(10);
1296 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1297 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1298 	}
1299 
1300 	/* Whack a reset.  We should wait for this.
1301 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1302 	 * instead of reset MAC itself.
1303 	 */
1304 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1305 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1306 			writel(0, fep->hwp + FEC_ECNTRL);
1307 		} else {
1308 			writel(1, fep->hwp + FEC_ECNTRL);
1309 			udelay(10);
1310 		}
1311 	} else {
1312 		val = readl(fep->hwp + FEC_ECNTRL);
1313 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1314 		writel(val, fep->hwp + FEC_ECNTRL);
1315 	}
1316 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1317 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1318 
1319 	/* We have to keep ENET enabled to have MII interrupt stay working */
1320 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1321 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1322 		writel(2, fep->hwp + FEC_ECNTRL);
1323 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1324 	}
1325 }
1326 
1327 
1328 static void
1329 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1330 {
1331 	struct fec_enet_private *fep = netdev_priv(ndev);
1332 
1333 	fec_dump(ndev);
1334 
1335 	ndev->stats.tx_errors++;
1336 
1337 	schedule_work(&fep->tx_timeout_work);
1338 }
1339 
1340 static void fec_enet_timeout_work(struct work_struct *work)
1341 {
1342 	struct fec_enet_private *fep =
1343 		container_of(work, struct fec_enet_private, tx_timeout_work);
1344 	struct net_device *ndev = fep->netdev;
1345 
1346 	rtnl_lock();
1347 	if (netif_device_present(ndev) || netif_running(ndev)) {
1348 		napi_disable(&fep->napi);
1349 		netif_tx_lock_bh(ndev);
1350 		fec_restart(ndev);
1351 		netif_tx_wake_all_queues(ndev);
1352 		netif_tx_unlock_bh(ndev);
1353 		napi_enable(&fep->napi);
1354 	}
1355 	rtnl_unlock();
1356 }
1357 
1358 static void
1359 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1360 	struct skb_shared_hwtstamps *hwtstamps)
1361 {
1362 	unsigned long flags;
1363 	u64 ns;
1364 
1365 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1366 	ns = timecounter_cyc2time(&fep->tc, ts);
1367 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1368 
1369 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1370 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1371 }
1372 
1373 static void
1374 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1375 {
1376 	struct	fec_enet_private *fep;
1377 	struct bufdesc *bdp;
1378 	unsigned short status;
1379 	struct	sk_buff	*skb;
1380 	struct fec_enet_priv_tx_q *txq;
1381 	struct netdev_queue *nq;
1382 	int	index = 0;
1383 	int	entries_free;
1384 
1385 	fep = netdev_priv(ndev);
1386 
1387 	txq = fep->tx_queue[queue_id];
1388 	/* get next bdp of dirty_tx */
1389 	nq = netdev_get_tx_queue(ndev, queue_id);
1390 	bdp = txq->dirty_tx;
1391 
1392 	/* get next bdp of dirty_tx */
1393 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1394 
1395 	while (bdp != READ_ONCE(txq->bd.cur)) {
1396 		/* Order the load of bd.cur and cbd_sc */
1397 		rmb();
1398 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1399 		if (status & BD_ENET_TX_READY)
1400 			break;
1401 
1402 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1403 
1404 		skb = txq->tx_skbuff[index];
1405 		txq->tx_skbuff[index] = NULL;
1406 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1407 			dma_unmap_single(&fep->pdev->dev,
1408 					 fec32_to_cpu(bdp->cbd_bufaddr),
1409 					 fec16_to_cpu(bdp->cbd_datlen),
1410 					 DMA_TO_DEVICE);
1411 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1412 		if (!skb)
1413 			goto skb_done;
1414 
1415 		/* Check for errors. */
1416 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1417 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1418 				   BD_ENET_TX_CSL)) {
1419 			ndev->stats.tx_errors++;
1420 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1421 				ndev->stats.tx_heartbeat_errors++;
1422 			if (status & BD_ENET_TX_LC)  /* Late collision */
1423 				ndev->stats.tx_window_errors++;
1424 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1425 				ndev->stats.tx_aborted_errors++;
1426 			if (status & BD_ENET_TX_UN)  /* Underrun */
1427 				ndev->stats.tx_fifo_errors++;
1428 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1429 				ndev->stats.tx_carrier_errors++;
1430 		} else {
1431 			ndev->stats.tx_packets++;
1432 			ndev->stats.tx_bytes += skb->len;
1433 		}
1434 
1435 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1436 		 * are to time stamp the packet, so we still need to check time
1437 		 * stamping enabled flag.
1438 		 */
1439 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1440 			     fep->hwts_tx_en) &&
1441 		    fep->bufdesc_ex) {
1442 			struct skb_shared_hwtstamps shhwtstamps;
1443 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1444 
1445 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1446 			skb_tstamp_tx(skb, &shhwtstamps);
1447 		}
1448 
1449 		/* Deferred means some collisions occurred during transmit,
1450 		 * but we eventually sent the packet OK.
1451 		 */
1452 		if (status & BD_ENET_TX_DEF)
1453 			ndev->stats.collisions++;
1454 
1455 		/* Free the sk buffer associated with this last transmit */
1456 		dev_kfree_skb_any(skb);
1457 skb_done:
1458 		/* Make sure the update to bdp and tx_skbuff are performed
1459 		 * before dirty_tx
1460 		 */
1461 		wmb();
1462 		txq->dirty_tx = bdp;
1463 
1464 		/* Update pointer to next buffer descriptor to be transmitted */
1465 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1466 
1467 		/* Since we have freed up a buffer, the ring is no longer full
1468 		 */
1469 		if (netif_tx_queue_stopped(nq)) {
1470 			entries_free = fec_enet_get_free_txdesc_num(txq);
1471 			if (entries_free >= txq->tx_wake_threshold)
1472 				netif_tx_wake_queue(nq);
1473 		}
1474 	}
1475 
1476 	/* ERR006358: Keep the transmitter going */
1477 	if (bdp != txq->bd.cur &&
1478 	    readl(txq->bd.reg_desc_active) == 0)
1479 		writel(0, txq->bd.reg_desc_active);
1480 }
1481 
1482 static void fec_enet_tx(struct net_device *ndev)
1483 {
1484 	struct fec_enet_private *fep = netdev_priv(ndev);
1485 	int i;
1486 
1487 	/* Make sure that AVB queues are processed first. */
1488 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1489 		fec_enet_tx_queue(ndev, i);
1490 }
1491 
1492 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1493 				struct bufdesc *bdp, int index)
1494 {
1495 	struct page *new_page;
1496 	dma_addr_t phys_addr;
1497 
1498 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1499 	WARN_ON(!new_page);
1500 	rxq->rx_skb_info[index].page = new_page;
1501 
1502 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1503 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1504 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1505 }
1506 
1507 static u32
1508 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1509 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index)
1510 {
1511 	unsigned int sync, len = xdp->data_end - xdp->data;
1512 	u32 ret = FEC_ENET_XDP_PASS;
1513 	struct page *page;
1514 	int err;
1515 	u32 act;
1516 
1517 	act = bpf_prog_run_xdp(prog, xdp);
1518 
1519 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
1520 	sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM;
1521 	sync = max(sync, len);
1522 
1523 	switch (act) {
1524 	case XDP_PASS:
1525 		rxq->stats[RX_XDP_PASS]++;
1526 		ret = FEC_ENET_XDP_PASS;
1527 		break;
1528 
1529 	case XDP_REDIRECT:
1530 		rxq->stats[RX_XDP_REDIRECT]++;
1531 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1532 		if (!err) {
1533 			ret = FEC_ENET_XDP_REDIR;
1534 		} else {
1535 			ret = FEC_ENET_XDP_CONSUMED;
1536 			page = virt_to_head_page(xdp->data);
1537 			page_pool_put_page(rxq->page_pool, page, sync, true);
1538 		}
1539 		break;
1540 
1541 	default:
1542 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1543 		fallthrough;
1544 
1545 	case XDP_TX:
1546 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1547 		fallthrough;
1548 
1549 	case XDP_ABORTED:
1550 		fallthrough;    /* handle aborts by dropping packet */
1551 
1552 	case XDP_DROP:
1553 		rxq->stats[RX_XDP_DROP]++;
1554 		ret = FEC_ENET_XDP_CONSUMED;
1555 		page = virt_to_head_page(xdp->data);
1556 		page_pool_put_page(rxq->page_pool, page, sync, true);
1557 		break;
1558 	}
1559 
1560 	return ret;
1561 }
1562 
1563 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1564  * When we update through the ring, if the next incoming buffer has
1565  * not been given to the system, we just set the empty indicator,
1566  * effectively tossing the packet.
1567  */
1568 static int
1569 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1570 {
1571 	struct fec_enet_private *fep = netdev_priv(ndev);
1572 	struct fec_enet_priv_rx_q *rxq;
1573 	struct bufdesc *bdp;
1574 	unsigned short status;
1575 	struct  sk_buff *skb;
1576 	ushort	pkt_len;
1577 	__u8 *data;
1578 	int	pkt_received = 0;
1579 	struct	bufdesc_ex *ebdp = NULL;
1580 	bool	vlan_packet_rcvd = false;
1581 	u16	vlan_tag;
1582 	int	index = 0;
1583 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1584 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1585 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1586 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1587 	struct xdp_buff xdp;
1588 	struct page *page;
1589 	u32 sub_len = 4;
1590 
1591 #if !defined(CONFIG_M5272)
1592 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1593 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1594 	 */
1595 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1596 		data_start += 2;
1597 		sub_len += 2;
1598 	}
1599 #endif
1600 
1601 #ifdef CONFIG_M532x
1602 	flush_cache_all();
1603 #endif
1604 	rxq = fep->rx_queue[queue_id];
1605 
1606 	/* First, grab all of the stats for the incoming packet.
1607 	 * These get messed up if we get called due to a busy condition.
1608 	 */
1609 	bdp = rxq->bd.cur;
1610 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1611 
1612 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1613 
1614 		if (pkt_received >= budget)
1615 			break;
1616 		pkt_received++;
1617 
1618 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1619 
1620 		/* Check for errors. */
1621 		status ^= BD_ENET_RX_LAST;
1622 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1623 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1624 			   BD_ENET_RX_CL)) {
1625 			ndev->stats.rx_errors++;
1626 			if (status & BD_ENET_RX_OV) {
1627 				/* FIFO overrun */
1628 				ndev->stats.rx_fifo_errors++;
1629 				goto rx_processing_done;
1630 			}
1631 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1632 						| BD_ENET_RX_LAST)) {
1633 				/* Frame too long or too short. */
1634 				ndev->stats.rx_length_errors++;
1635 				if (status & BD_ENET_RX_LAST)
1636 					netdev_err(ndev, "rcv is not +last\n");
1637 			}
1638 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1639 				ndev->stats.rx_crc_errors++;
1640 			/* Report late collisions as a frame error. */
1641 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1642 				ndev->stats.rx_frame_errors++;
1643 			goto rx_processing_done;
1644 		}
1645 
1646 		/* Process the incoming frame. */
1647 		ndev->stats.rx_packets++;
1648 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1649 		ndev->stats.rx_bytes += pkt_len;
1650 
1651 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1652 		page = rxq->rx_skb_info[index].page;
1653 		dma_sync_single_for_cpu(&fep->pdev->dev,
1654 					fec32_to_cpu(bdp->cbd_bufaddr),
1655 					pkt_len,
1656 					DMA_FROM_DEVICE);
1657 		prefetch(page_address(page));
1658 		fec_enet_update_cbd(rxq, bdp, index);
1659 
1660 		if (xdp_prog) {
1661 			xdp_buff_clear_frags_flag(&xdp);
1662 			/* subtract 16bit shift and FCS */
1663 			xdp_prepare_buff(&xdp, page_address(page),
1664 					 data_start, pkt_len - sub_len, false);
1665 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index);
1666 			xdp_result |= ret;
1667 			if (ret != FEC_ENET_XDP_PASS)
1668 				goto rx_processing_done;
1669 		}
1670 
1671 		/* The packet length includes FCS, but we don't want to
1672 		 * include that when passing upstream as it messes up
1673 		 * bridging applications.
1674 		 */
1675 		skb = build_skb(page_address(page), PAGE_SIZE);
1676 		skb_reserve(skb, data_start);
1677 		skb_put(skb, pkt_len - sub_len);
1678 		skb_mark_for_recycle(skb);
1679 
1680 		if (unlikely(need_swap)) {
1681 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1682 			swap_buffer(data, pkt_len);
1683 		}
1684 		data = skb->data;
1685 
1686 		/* Extract the enhanced buffer descriptor */
1687 		ebdp = NULL;
1688 		if (fep->bufdesc_ex)
1689 			ebdp = (struct bufdesc_ex *)bdp;
1690 
1691 		/* If this is a VLAN packet remove the VLAN Tag */
1692 		vlan_packet_rcvd = false;
1693 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1694 		    fep->bufdesc_ex &&
1695 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1696 			/* Push and remove the vlan tag */
1697 			struct vlan_hdr *vlan_header =
1698 					(struct vlan_hdr *) (data + ETH_HLEN);
1699 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1700 
1701 			vlan_packet_rcvd = true;
1702 
1703 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1704 			skb_pull(skb, VLAN_HLEN);
1705 		}
1706 
1707 		skb->protocol = eth_type_trans(skb, ndev);
1708 
1709 		/* Get receive timestamp from the skb */
1710 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1711 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1712 					  skb_hwtstamps(skb));
1713 
1714 		if (fep->bufdesc_ex &&
1715 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1716 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1717 				/* don't check it */
1718 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1719 			} else {
1720 				skb_checksum_none_assert(skb);
1721 			}
1722 		}
1723 
1724 		/* Handle received VLAN packets */
1725 		if (vlan_packet_rcvd)
1726 			__vlan_hwaccel_put_tag(skb,
1727 					       htons(ETH_P_8021Q),
1728 					       vlan_tag);
1729 
1730 		skb_record_rx_queue(skb, queue_id);
1731 		napi_gro_receive(&fep->napi, skb);
1732 
1733 rx_processing_done:
1734 		/* Clear the status flags for this buffer */
1735 		status &= ~BD_ENET_RX_STATS;
1736 
1737 		/* Mark the buffer empty */
1738 		status |= BD_ENET_RX_EMPTY;
1739 
1740 		if (fep->bufdesc_ex) {
1741 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1742 
1743 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1744 			ebdp->cbd_prot = 0;
1745 			ebdp->cbd_bdu = 0;
1746 		}
1747 		/* Make sure the updates to rest of the descriptor are
1748 		 * performed before transferring ownership.
1749 		 */
1750 		wmb();
1751 		bdp->cbd_sc = cpu_to_fec16(status);
1752 
1753 		/* Update BD pointer to next entry */
1754 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1755 
1756 		/* Doing this here will keep the FEC running while we process
1757 		 * incoming frames.  On a heavily loaded network, we should be
1758 		 * able to keep up at the expense of system resources.
1759 		 */
1760 		writel(0, rxq->bd.reg_desc_active);
1761 	}
1762 	rxq->bd.cur = bdp;
1763 
1764 	if (xdp_result & FEC_ENET_XDP_REDIR)
1765 		xdp_do_flush_map();
1766 
1767 	return pkt_received;
1768 }
1769 
1770 static int fec_enet_rx(struct net_device *ndev, int budget)
1771 {
1772 	struct fec_enet_private *fep = netdev_priv(ndev);
1773 	int i, done = 0;
1774 
1775 	/* Make sure that AVB queues are processed first. */
1776 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1777 		done += fec_enet_rx_queue(ndev, budget - done, i);
1778 
1779 	return done;
1780 }
1781 
1782 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1783 {
1784 	uint int_events;
1785 
1786 	int_events = readl(fep->hwp + FEC_IEVENT);
1787 
1788 	/* Don't clear MDIO events, we poll for those */
1789 	int_events &= ~FEC_ENET_MII;
1790 
1791 	writel(int_events, fep->hwp + FEC_IEVENT);
1792 
1793 	return int_events != 0;
1794 }
1795 
1796 static irqreturn_t
1797 fec_enet_interrupt(int irq, void *dev_id)
1798 {
1799 	struct net_device *ndev = dev_id;
1800 	struct fec_enet_private *fep = netdev_priv(ndev);
1801 	irqreturn_t ret = IRQ_NONE;
1802 
1803 	if (fec_enet_collect_events(fep) && fep->link) {
1804 		ret = IRQ_HANDLED;
1805 
1806 		if (napi_schedule_prep(&fep->napi)) {
1807 			/* Disable interrupts */
1808 			writel(0, fep->hwp + FEC_IMASK);
1809 			__napi_schedule(&fep->napi);
1810 		}
1811 	}
1812 
1813 	return ret;
1814 }
1815 
1816 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1817 {
1818 	struct net_device *ndev = napi->dev;
1819 	struct fec_enet_private *fep = netdev_priv(ndev);
1820 	int done = 0;
1821 
1822 	do {
1823 		done += fec_enet_rx(ndev, budget - done);
1824 		fec_enet_tx(ndev);
1825 	} while ((done < budget) && fec_enet_collect_events(fep));
1826 
1827 	if (done < budget) {
1828 		napi_complete_done(napi, done);
1829 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1830 	}
1831 
1832 	return done;
1833 }
1834 
1835 /* ------------------------------------------------------------------------- */
1836 static int fec_get_mac(struct net_device *ndev)
1837 {
1838 	struct fec_enet_private *fep = netdev_priv(ndev);
1839 	unsigned char *iap, tmpaddr[ETH_ALEN];
1840 	int ret;
1841 
1842 	/*
1843 	 * try to get mac address in following order:
1844 	 *
1845 	 * 1) module parameter via kernel command line in form
1846 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1847 	 */
1848 	iap = macaddr;
1849 
1850 	/*
1851 	 * 2) from device tree data
1852 	 */
1853 	if (!is_valid_ether_addr(iap)) {
1854 		struct device_node *np = fep->pdev->dev.of_node;
1855 		if (np) {
1856 			ret = of_get_mac_address(np, tmpaddr);
1857 			if (!ret)
1858 				iap = tmpaddr;
1859 			else if (ret == -EPROBE_DEFER)
1860 				return ret;
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * 3) from flash or fuse (via platform data)
1866 	 */
1867 	if (!is_valid_ether_addr(iap)) {
1868 #ifdef CONFIG_M5272
1869 		if (FEC_FLASHMAC)
1870 			iap = (unsigned char *)FEC_FLASHMAC;
1871 #else
1872 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1873 
1874 		if (pdata)
1875 			iap = (unsigned char *)&pdata->mac;
1876 #endif
1877 	}
1878 
1879 	/*
1880 	 * 4) FEC mac registers set by bootloader
1881 	 */
1882 	if (!is_valid_ether_addr(iap)) {
1883 		*((__be32 *) &tmpaddr[0]) =
1884 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1885 		*((__be16 *) &tmpaddr[4]) =
1886 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1887 		iap = &tmpaddr[0];
1888 	}
1889 
1890 	/*
1891 	 * 5) random mac address
1892 	 */
1893 	if (!is_valid_ether_addr(iap)) {
1894 		/* Report it and use a random ethernet address instead */
1895 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1896 		eth_hw_addr_random(ndev);
1897 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1898 			 ndev->dev_addr);
1899 		return 0;
1900 	}
1901 
1902 	/* Adjust MAC if using macaddr */
1903 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1904 
1905 	return 0;
1906 }
1907 
1908 /* ------------------------------------------------------------------------- */
1909 
1910 /*
1911  * Phy section
1912  */
1913 static void fec_enet_adjust_link(struct net_device *ndev)
1914 {
1915 	struct fec_enet_private *fep = netdev_priv(ndev);
1916 	struct phy_device *phy_dev = ndev->phydev;
1917 	int status_change = 0;
1918 
1919 	/*
1920 	 * If the netdev is down, or is going down, we're not interested
1921 	 * in link state events, so just mark our idea of the link as down
1922 	 * and ignore the event.
1923 	 */
1924 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1925 		fep->link = 0;
1926 	} else if (phy_dev->link) {
1927 		if (!fep->link) {
1928 			fep->link = phy_dev->link;
1929 			status_change = 1;
1930 		}
1931 
1932 		if (fep->full_duplex != phy_dev->duplex) {
1933 			fep->full_duplex = phy_dev->duplex;
1934 			status_change = 1;
1935 		}
1936 
1937 		if (phy_dev->speed != fep->speed) {
1938 			fep->speed = phy_dev->speed;
1939 			status_change = 1;
1940 		}
1941 
1942 		/* if any of the above changed restart the FEC */
1943 		if (status_change) {
1944 			napi_disable(&fep->napi);
1945 			netif_tx_lock_bh(ndev);
1946 			fec_restart(ndev);
1947 			netif_tx_wake_all_queues(ndev);
1948 			netif_tx_unlock_bh(ndev);
1949 			napi_enable(&fep->napi);
1950 		}
1951 	} else {
1952 		if (fep->link) {
1953 			napi_disable(&fep->napi);
1954 			netif_tx_lock_bh(ndev);
1955 			fec_stop(ndev);
1956 			netif_tx_unlock_bh(ndev);
1957 			napi_enable(&fep->napi);
1958 			fep->link = phy_dev->link;
1959 			status_change = 1;
1960 		}
1961 	}
1962 
1963 	if (status_change)
1964 		phy_print_status(phy_dev);
1965 }
1966 
1967 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1968 {
1969 	uint ievent;
1970 	int ret;
1971 
1972 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1973 					ievent & FEC_ENET_MII, 2, 30000);
1974 
1975 	if (!ret)
1976 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1977 
1978 	return ret;
1979 }
1980 
1981 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1982 {
1983 	struct fec_enet_private *fep = bus->priv;
1984 	struct device *dev = &fep->pdev->dev;
1985 	int ret = 0, frame_start, frame_addr, frame_op;
1986 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1987 
1988 	ret = pm_runtime_resume_and_get(dev);
1989 	if (ret < 0)
1990 		return ret;
1991 
1992 	if (is_c45) {
1993 		frame_start = FEC_MMFR_ST_C45;
1994 
1995 		/* write address */
1996 		frame_addr = (regnum >> 16);
1997 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1998 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1999 		       FEC_MMFR_TA | (regnum & 0xFFFF),
2000 		       fep->hwp + FEC_MII_DATA);
2001 
2002 		/* wait for end of transfer */
2003 		ret = fec_enet_mdio_wait(fep);
2004 		if (ret) {
2005 			netdev_err(fep->netdev, "MDIO address write timeout\n");
2006 			goto out;
2007 		}
2008 
2009 		frame_op = FEC_MMFR_OP_READ_C45;
2010 
2011 	} else {
2012 		/* C22 read */
2013 		frame_op = FEC_MMFR_OP_READ;
2014 		frame_start = FEC_MMFR_ST;
2015 		frame_addr = regnum;
2016 	}
2017 
2018 	/* start a read op */
2019 	writel(frame_start | frame_op |
2020 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2021 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2022 
2023 	/* wait for end of transfer */
2024 	ret = fec_enet_mdio_wait(fep);
2025 	if (ret) {
2026 		netdev_err(fep->netdev, "MDIO read timeout\n");
2027 		goto out;
2028 	}
2029 
2030 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2031 
2032 out:
2033 	pm_runtime_mark_last_busy(dev);
2034 	pm_runtime_put_autosuspend(dev);
2035 
2036 	return ret;
2037 }
2038 
2039 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
2040 			   u16 value)
2041 {
2042 	struct fec_enet_private *fep = bus->priv;
2043 	struct device *dev = &fep->pdev->dev;
2044 	int ret, frame_start, frame_addr;
2045 	bool is_c45 = !!(regnum & MII_ADDR_C45);
2046 
2047 	ret = pm_runtime_resume_and_get(dev);
2048 	if (ret < 0)
2049 		return ret;
2050 
2051 	if (is_c45) {
2052 		frame_start = FEC_MMFR_ST_C45;
2053 
2054 		/* write address */
2055 		frame_addr = (regnum >> 16);
2056 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2057 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2058 		       FEC_MMFR_TA | (regnum & 0xFFFF),
2059 		       fep->hwp + FEC_MII_DATA);
2060 
2061 		/* wait for end of transfer */
2062 		ret = fec_enet_mdio_wait(fep);
2063 		if (ret) {
2064 			netdev_err(fep->netdev, "MDIO address write timeout\n");
2065 			goto out;
2066 		}
2067 	} else {
2068 		/* C22 write */
2069 		frame_start = FEC_MMFR_ST;
2070 		frame_addr = regnum;
2071 	}
2072 
2073 	/* start a write op */
2074 	writel(frame_start | FEC_MMFR_OP_WRITE |
2075 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2076 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
2077 		fep->hwp + FEC_MII_DATA);
2078 
2079 	/* wait for end of transfer */
2080 	ret = fec_enet_mdio_wait(fep);
2081 	if (ret)
2082 		netdev_err(fep->netdev, "MDIO write timeout\n");
2083 
2084 out:
2085 	pm_runtime_mark_last_busy(dev);
2086 	pm_runtime_put_autosuspend(dev);
2087 
2088 	return ret;
2089 }
2090 
2091 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2092 {
2093 	struct fec_enet_private *fep = netdev_priv(ndev);
2094 	struct phy_device *phy_dev = ndev->phydev;
2095 
2096 	if (phy_dev) {
2097 		phy_reset_after_clk_enable(phy_dev);
2098 	} else if (fep->phy_node) {
2099 		/*
2100 		 * If the PHY still is not bound to the MAC, but there is
2101 		 * OF PHY node and a matching PHY device instance already,
2102 		 * use the OF PHY node to obtain the PHY device instance,
2103 		 * and then use that PHY device instance when triggering
2104 		 * the PHY reset.
2105 		 */
2106 		phy_dev = of_phy_find_device(fep->phy_node);
2107 		phy_reset_after_clk_enable(phy_dev);
2108 		put_device(&phy_dev->mdio.dev);
2109 	}
2110 }
2111 
2112 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2113 {
2114 	struct fec_enet_private *fep = netdev_priv(ndev);
2115 	int ret;
2116 
2117 	if (enable) {
2118 		ret = clk_prepare_enable(fep->clk_enet_out);
2119 		if (ret)
2120 			return ret;
2121 
2122 		if (fep->clk_ptp) {
2123 			mutex_lock(&fep->ptp_clk_mutex);
2124 			ret = clk_prepare_enable(fep->clk_ptp);
2125 			if (ret) {
2126 				mutex_unlock(&fep->ptp_clk_mutex);
2127 				goto failed_clk_ptp;
2128 			} else {
2129 				fep->ptp_clk_on = true;
2130 			}
2131 			mutex_unlock(&fep->ptp_clk_mutex);
2132 		}
2133 
2134 		ret = clk_prepare_enable(fep->clk_ref);
2135 		if (ret)
2136 			goto failed_clk_ref;
2137 
2138 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2139 		if (ret)
2140 			goto failed_clk_2x_txclk;
2141 
2142 		fec_enet_phy_reset_after_clk_enable(ndev);
2143 	} else {
2144 		clk_disable_unprepare(fep->clk_enet_out);
2145 		if (fep->clk_ptp) {
2146 			mutex_lock(&fep->ptp_clk_mutex);
2147 			clk_disable_unprepare(fep->clk_ptp);
2148 			fep->ptp_clk_on = false;
2149 			mutex_unlock(&fep->ptp_clk_mutex);
2150 		}
2151 		clk_disable_unprepare(fep->clk_ref);
2152 		clk_disable_unprepare(fep->clk_2x_txclk);
2153 	}
2154 
2155 	return 0;
2156 
2157 failed_clk_2x_txclk:
2158 	if (fep->clk_ref)
2159 		clk_disable_unprepare(fep->clk_ref);
2160 failed_clk_ref:
2161 	if (fep->clk_ptp) {
2162 		mutex_lock(&fep->ptp_clk_mutex);
2163 		clk_disable_unprepare(fep->clk_ptp);
2164 		fep->ptp_clk_on = false;
2165 		mutex_unlock(&fep->ptp_clk_mutex);
2166 	}
2167 failed_clk_ptp:
2168 	clk_disable_unprepare(fep->clk_enet_out);
2169 
2170 	return ret;
2171 }
2172 
2173 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2174 				      struct device_node *np)
2175 {
2176 	u32 rgmii_tx_delay, rgmii_rx_delay;
2177 
2178 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2179 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2180 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2181 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2182 			return -EINVAL;
2183 		} else if (rgmii_tx_delay == 2000) {
2184 			fep->rgmii_txc_dly = true;
2185 		}
2186 	}
2187 
2188 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2189 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2190 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2191 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2192 			return -EINVAL;
2193 		} else if (rgmii_rx_delay == 2000) {
2194 			fep->rgmii_rxc_dly = true;
2195 		}
2196 	}
2197 
2198 	return 0;
2199 }
2200 
2201 static int fec_enet_mii_probe(struct net_device *ndev)
2202 {
2203 	struct fec_enet_private *fep = netdev_priv(ndev);
2204 	struct phy_device *phy_dev = NULL;
2205 	char mdio_bus_id[MII_BUS_ID_SIZE];
2206 	char phy_name[MII_BUS_ID_SIZE + 3];
2207 	int phy_id;
2208 	int dev_id = fep->dev_id;
2209 
2210 	if (fep->phy_node) {
2211 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2212 					 &fec_enet_adjust_link, 0,
2213 					 fep->phy_interface);
2214 		if (!phy_dev) {
2215 			netdev_err(ndev, "Unable to connect to phy\n");
2216 			return -ENODEV;
2217 		}
2218 	} else {
2219 		/* check for attached phy */
2220 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2221 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2222 				continue;
2223 			if (dev_id--)
2224 				continue;
2225 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2226 			break;
2227 		}
2228 
2229 		if (phy_id >= PHY_MAX_ADDR) {
2230 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2231 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2232 			phy_id = 0;
2233 		}
2234 
2235 		snprintf(phy_name, sizeof(phy_name),
2236 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2237 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2238 				      fep->phy_interface);
2239 	}
2240 
2241 	if (IS_ERR(phy_dev)) {
2242 		netdev_err(ndev, "could not attach to PHY\n");
2243 		return PTR_ERR(phy_dev);
2244 	}
2245 
2246 	/* mask with MAC supported features */
2247 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2248 		phy_set_max_speed(phy_dev, 1000);
2249 		phy_remove_link_mode(phy_dev,
2250 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2251 #if !defined(CONFIG_M5272)
2252 		phy_support_sym_pause(phy_dev);
2253 #endif
2254 	}
2255 	else
2256 		phy_set_max_speed(phy_dev, 100);
2257 
2258 	fep->link = 0;
2259 	fep->full_duplex = 0;
2260 
2261 	phy_dev->mac_managed_pm = true;
2262 
2263 	phy_attached_info(phy_dev);
2264 
2265 	return 0;
2266 }
2267 
2268 static int fec_enet_mii_init(struct platform_device *pdev)
2269 {
2270 	static struct mii_bus *fec0_mii_bus;
2271 	struct net_device *ndev = platform_get_drvdata(pdev);
2272 	struct fec_enet_private *fep = netdev_priv(ndev);
2273 	bool suppress_preamble = false;
2274 	struct device_node *node;
2275 	int err = -ENXIO;
2276 	u32 mii_speed, holdtime;
2277 	u32 bus_freq;
2278 
2279 	/*
2280 	 * The i.MX28 dual fec interfaces are not equal.
2281 	 * Here are the differences:
2282 	 *
2283 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2284 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2285 	 *  - external phys can only be configured by fec0
2286 	 *
2287 	 * That is to say fec1 can not work independently. It only works
2288 	 * when fec0 is working. The reason behind this design is that the
2289 	 * second interface is added primarily for Switch mode.
2290 	 *
2291 	 * Because of the last point above, both phys are attached on fec0
2292 	 * mdio interface in board design, and need to be configured by
2293 	 * fec0 mii_bus.
2294 	 */
2295 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2296 		/* fec1 uses fec0 mii_bus */
2297 		if (mii_cnt && fec0_mii_bus) {
2298 			fep->mii_bus = fec0_mii_bus;
2299 			mii_cnt++;
2300 			return 0;
2301 		}
2302 		return -ENOENT;
2303 	}
2304 
2305 	bus_freq = 2500000; /* 2.5MHz by default */
2306 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2307 	if (node) {
2308 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2309 		suppress_preamble = of_property_read_bool(node,
2310 							  "suppress-preamble");
2311 	}
2312 
2313 	/*
2314 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2315 	 *
2316 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2317 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2318 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2319 	 * document.
2320 	 */
2321 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2322 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2323 		mii_speed--;
2324 	if (mii_speed > 63) {
2325 		dev_err(&pdev->dev,
2326 			"fec clock (%lu) too fast to get right mii speed\n",
2327 			clk_get_rate(fep->clk_ipg));
2328 		err = -EINVAL;
2329 		goto err_out;
2330 	}
2331 
2332 	/*
2333 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2334 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2335 	 * versions are RAZ there, so just ignore the difference and write the
2336 	 * register always.
2337 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2338 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2339 	 * output.
2340 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2341 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2342 	 * holdtime cannot result in a value greater than 3.
2343 	 */
2344 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2345 
2346 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2347 
2348 	if (suppress_preamble)
2349 		fep->phy_speed |= BIT(7);
2350 
2351 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2352 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2353 		 * MII event generation condition:
2354 		 * - writing MSCR:
2355 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2356 		 *	  mscr_reg_data_in[7:0] != 0
2357 		 * - writing MMFR:
2358 		 *	- mscr[7:0]_not_zero
2359 		 */
2360 		writel(0, fep->hwp + FEC_MII_DATA);
2361 	}
2362 
2363 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2364 
2365 	/* Clear any pending transaction complete indication */
2366 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2367 
2368 	fep->mii_bus = mdiobus_alloc();
2369 	if (fep->mii_bus == NULL) {
2370 		err = -ENOMEM;
2371 		goto err_out;
2372 	}
2373 
2374 	fep->mii_bus->name = "fec_enet_mii_bus";
2375 	fep->mii_bus->read = fec_enet_mdio_read;
2376 	fep->mii_bus->write = fec_enet_mdio_write;
2377 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2378 		pdev->name, fep->dev_id + 1);
2379 	fep->mii_bus->priv = fep;
2380 	fep->mii_bus->parent = &pdev->dev;
2381 
2382 	err = of_mdiobus_register(fep->mii_bus, node);
2383 	if (err)
2384 		goto err_out_free_mdiobus;
2385 	of_node_put(node);
2386 
2387 	mii_cnt++;
2388 
2389 	/* save fec0 mii_bus */
2390 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2391 		fec0_mii_bus = fep->mii_bus;
2392 
2393 	return 0;
2394 
2395 err_out_free_mdiobus:
2396 	mdiobus_free(fep->mii_bus);
2397 err_out:
2398 	of_node_put(node);
2399 	return err;
2400 }
2401 
2402 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2403 {
2404 	if (--mii_cnt == 0) {
2405 		mdiobus_unregister(fep->mii_bus);
2406 		mdiobus_free(fep->mii_bus);
2407 	}
2408 }
2409 
2410 static void fec_enet_get_drvinfo(struct net_device *ndev,
2411 				 struct ethtool_drvinfo *info)
2412 {
2413 	struct fec_enet_private *fep = netdev_priv(ndev);
2414 
2415 	strscpy(info->driver, fep->pdev->dev.driver->name,
2416 		sizeof(info->driver));
2417 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2418 }
2419 
2420 static int fec_enet_get_regs_len(struct net_device *ndev)
2421 {
2422 	struct fec_enet_private *fep = netdev_priv(ndev);
2423 	struct resource *r;
2424 	int s = 0;
2425 
2426 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2427 	if (r)
2428 		s = resource_size(r);
2429 
2430 	return s;
2431 }
2432 
2433 /* List of registers that can be safety be read to dump them with ethtool */
2434 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2435 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2436 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2437 static __u32 fec_enet_register_version = 2;
2438 static u32 fec_enet_register_offset[] = {
2439 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2440 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2441 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2442 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2443 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2444 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2445 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2446 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2447 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2448 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2449 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2450 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2451 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2452 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2453 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2454 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2455 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2456 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2457 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2458 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2459 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2460 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2461 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2462 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2463 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2464 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2465 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2466 };
2467 /* for i.MX6ul */
2468 static u32 fec_enet_register_offset_6ul[] = {
2469 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2470 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2471 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2472 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2473 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2474 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2475 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2476 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2477 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2478 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2479 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2480 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2481 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2482 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2483 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2484 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2485 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2486 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2487 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2488 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2489 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2490 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2491 };
2492 #else
2493 static __u32 fec_enet_register_version = 1;
2494 static u32 fec_enet_register_offset[] = {
2495 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2496 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2497 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2498 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2499 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2500 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2501 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2502 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2503 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2504 };
2505 #endif
2506 
2507 static void fec_enet_get_regs(struct net_device *ndev,
2508 			      struct ethtool_regs *regs, void *regbuf)
2509 {
2510 	struct fec_enet_private *fep = netdev_priv(ndev);
2511 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2512 	struct device *dev = &fep->pdev->dev;
2513 	u32 *buf = (u32 *)regbuf;
2514 	u32 i, off;
2515 	int ret;
2516 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2517 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2518 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2519 	u32 *reg_list;
2520 	u32 reg_cnt;
2521 
2522 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2523 		reg_list = fec_enet_register_offset;
2524 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2525 	} else {
2526 		reg_list = fec_enet_register_offset_6ul;
2527 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2528 	}
2529 #else
2530 	/* coldfire */
2531 	static u32 *reg_list = fec_enet_register_offset;
2532 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2533 #endif
2534 	ret = pm_runtime_resume_and_get(dev);
2535 	if (ret < 0)
2536 		return;
2537 
2538 	regs->version = fec_enet_register_version;
2539 
2540 	memset(buf, 0, regs->len);
2541 
2542 	for (i = 0; i < reg_cnt; i++) {
2543 		off = reg_list[i];
2544 
2545 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2546 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2547 			continue;
2548 
2549 		off >>= 2;
2550 		buf[off] = readl(&theregs[off]);
2551 	}
2552 
2553 	pm_runtime_mark_last_busy(dev);
2554 	pm_runtime_put_autosuspend(dev);
2555 }
2556 
2557 static int fec_enet_get_ts_info(struct net_device *ndev,
2558 				struct ethtool_ts_info *info)
2559 {
2560 	struct fec_enet_private *fep = netdev_priv(ndev);
2561 
2562 	if (fep->bufdesc_ex) {
2563 
2564 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2565 					SOF_TIMESTAMPING_RX_SOFTWARE |
2566 					SOF_TIMESTAMPING_SOFTWARE |
2567 					SOF_TIMESTAMPING_TX_HARDWARE |
2568 					SOF_TIMESTAMPING_RX_HARDWARE |
2569 					SOF_TIMESTAMPING_RAW_HARDWARE;
2570 		if (fep->ptp_clock)
2571 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2572 		else
2573 			info->phc_index = -1;
2574 
2575 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2576 				 (1 << HWTSTAMP_TX_ON);
2577 
2578 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2579 				   (1 << HWTSTAMP_FILTER_ALL);
2580 		return 0;
2581 	} else {
2582 		return ethtool_op_get_ts_info(ndev, info);
2583 	}
2584 }
2585 
2586 #if !defined(CONFIG_M5272)
2587 
2588 static void fec_enet_get_pauseparam(struct net_device *ndev,
2589 				    struct ethtool_pauseparam *pause)
2590 {
2591 	struct fec_enet_private *fep = netdev_priv(ndev);
2592 
2593 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2594 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2595 	pause->rx_pause = pause->tx_pause;
2596 }
2597 
2598 static int fec_enet_set_pauseparam(struct net_device *ndev,
2599 				   struct ethtool_pauseparam *pause)
2600 {
2601 	struct fec_enet_private *fep = netdev_priv(ndev);
2602 
2603 	if (!ndev->phydev)
2604 		return -ENODEV;
2605 
2606 	if (pause->tx_pause != pause->rx_pause) {
2607 		netdev_info(ndev,
2608 			"hardware only support enable/disable both tx and rx");
2609 		return -EINVAL;
2610 	}
2611 
2612 	fep->pause_flag = 0;
2613 
2614 	/* tx pause must be same as rx pause */
2615 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2616 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2617 
2618 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2619 			  pause->autoneg);
2620 
2621 	if (pause->autoneg) {
2622 		if (netif_running(ndev))
2623 			fec_stop(ndev);
2624 		phy_start_aneg(ndev->phydev);
2625 	}
2626 	if (netif_running(ndev)) {
2627 		napi_disable(&fep->napi);
2628 		netif_tx_lock_bh(ndev);
2629 		fec_restart(ndev);
2630 		netif_tx_wake_all_queues(ndev);
2631 		netif_tx_unlock_bh(ndev);
2632 		napi_enable(&fep->napi);
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 static const struct fec_stat {
2639 	char name[ETH_GSTRING_LEN];
2640 	u16 offset;
2641 } fec_stats[] = {
2642 	/* RMON TX */
2643 	{ "tx_dropped", RMON_T_DROP },
2644 	{ "tx_packets", RMON_T_PACKETS },
2645 	{ "tx_broadcast", RMON_T_BC_PKT },
2646 	{ "tx_multicast", RMON_T_MC_PKT },
2647 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2648 	{ "tx_undersize", RMON_T_UNDERSIZE },
2649 	{ "tx_oversize", RMON_T_OVERSIZE },
2650 	{ "tx_fragment", RMON_T_FRAG },
2651 	{ "tx_jabber", RMON_T_JAB },
2652 	{ "tx_collision", RMON_T_COL },
2653 	{ "tx_64byte", RMON_T_P64 },
2654 	{ "tx_65to127byte", RMON_T_P65TO127 },
2655 	{ "tx_128to255byte", RMON_T_P128TO255 },
2656 	{ "tx_256to511byte", RMON_T_P256TO511 },
2657 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2658 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2659 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2660 	{ "tx_octets", RMON_T_OCTETS },
2661 
2662 	/* IEEE TX */
2663 	{ "IEEE_tx_drop", IEEE_T_DROP },
2664 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2665 	{ "IEEE_tx_1col", IEEE_T_1COL },
2666 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2667 	{ "IEEE_tx_def", IEEE_T_DEF },
2668 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2669 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2670 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2671 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2672 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2673 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2674 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2675 
2676 	/* RMON RX */
2677 	{ "rx_packets", RMON_R_PACKETS },
2678 	{ "rx_broadcast", RMON_R_BC_PKT },
2679 	{ "rx_multicast", RMON_R_MC_PKT },
2680 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2681 	{ "rx_undersize", RMON_R_UNDERSIZE },
2682 	{ "rx_oversize", RMON_R_OVERSIZE },
2683 	{ "rx_fragment", RMON_R_FRAG },
2684 	{ "rx_jabber", RMON_R_JAB },
2685 	{ "rx_64byte", RMON_R_P64 },
2686 	{ "rx_65to127byte", RMON_R_P65TO127 },
2687 	{ "rx_128to255byte", RMON_R_P128TO255 },
2688 	{ "rx_256to511byte", RMON_R_P256TO511 },
2689 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2690 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2691 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2692 	{ "rx_octets", RMON_R_OCTETS },
2693 
2694 	/* IEEE RX */
2695 	{ "IEEE_rx_drop", IEEE_R_DROP },
2696 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2697 	{ "IEEE_rx_crc", IEEE_R_CRC },
2698 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2699 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2700 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2701 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2702 };
2703 
2704 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2705 
2706 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2707 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2708 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2709 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2710 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2711 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2712 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2713 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2714 };
2715 
2716 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2717 {
2718 	struct fec_enet_private *fep = netdev_priv(dev);
2719 	int i;
2720 
2721 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2722 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2723 }
2724 
2725 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2726 {
2727 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2728 	struct fec_enet_priv_rx_q *rxq;
2729 	int i, j;
2730 
2731 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2732 		rxq = fep->rx_queue[i];
2733 
2734 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2735 			xdp_stats[j] += rxq->stats[j];
2736 	}
2737 
2738 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2739 }
2740 
2741 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2742 {
2743 	struct page_pool_stats stats = {};
2744 	struct fec_enet_priv_rx_q *rxq;
2745 	int i;
2746 
2747 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2748 		rxq = fep->rx_queue[i];
2749 
2750 		if (!rxq->page_pool)
2751 			continue;
2752 
2753 		page_pool_get_stats(rxq->page_pool, &stats);
2754 	}
2755 
2756 	page_pool_ethtool_stats_get(data, &stats);
2757 }
2758 
2759 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2760 				       struct ethtool_stats *stats, u64 *data)
2761 {
2762 	struct fec_enet_private *fep = netdev_priv(dev);
2763 
2764 	if (netif_running(dev))
2765 		fec_enet_update_ethtool_stats(dev);
2766 
2767 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2768 	data += FEC_STATS_SIZE / sizeof(u64);
2769 
2770 	fec_enet_get_xdp_stats(fep, data);
2771 	data += XDP_STATS_TOTAL;
2772 
2773 	fec_enet_page_pool_stats(fep, data);
2774 }
2775 
2776 static void fec_enet_get_strings(struct net_device *netdev,
2777 	u32 stringset, u8 *data)
2778 {
2779 	int i;
2780 	switch (stringset) {
2781 	case ETH_SS_STATS:
2782 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2783 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2784 			data += ETH_GSTRING_LEN;
2785 		}
2786 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2787 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2788 			data += ETH_GSTRING_LEN;
2789 		}
2790 		page_pool_ethtool_stats_get_strings(data);
2791 
2792 		break;
2793 	case ETH_SS_TEST:
2794 		net_selftest_get_strings(data);
2795 		break;
2796 	}
2797 }
2798 
2799 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2800 {
2801 	int count;
2802 
2803 	switch (sset) {
2804 	case ETH_SS_STATS:
2805 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2806 		count += page_pool_ethtool_stats_get_count();
2807 		return count;
2808 
2809 	case ETH_SS_TEST:
2810 		return net_selftest_get_count();
2811 	default:
2812 		return -EOPNOTSUPP;
2813 	}
2814 }
2815 
2816 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2817 {
2818 	struct fec_enet_private *fep = netdev_priv(dev);
2819 	struct fec_enet_priv_rx_q *rxq;
2820 	int i, j;
2821 
2822 	/* Disable MIB statistics counters */
2823 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2824 
2825 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2826 		writel(0, fep->hwp + fec_stats[i].offset);
2827 
2828 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2829 		rxq = fep->rx_queue[i];
2830 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2831 			rxq->stats[j] = 0;
2832 	}
2833 
2834 	/* Don't disable MIB statistics counters */
2835 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2836 }
2837 
2838 #else	/* !defined(CONFIG_M5272) */
2839 #define FEC_STATS_SIZE	0
2840 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2841 {
2842 }
2843 
2844 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2845 {
2846 }
2847 #endif /* !defined(CONFIG_M5272) */
2848 
2849 /* ITR clock source is enet system clock (clk_ahb).
2850  * TCTT unit is cycle_ns * 64 cycle
2851  * So, the ICTT value = X us / (cycle_ns * 64)
2852  */
2853 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2854 {
2855 	struct fec_enet_private *fep = netdev_priv(ndev);
2856 
2857 	return us * (fep->itr_clk_rate / 64000) / 1000;
2858 }
2859 
2860 /* Set threshold for interrupt coalescing */
2861 static void fec_enet_itr_coal_set(struct net_device *ndev)
2862 {
2863 	struct fec_enet_private *fep = netdev_priv(ndev);
2864 	int rx_itr, tx_itr;
2865 
2866 	/* Must be greater than zero to avoid unpredictable behavior */
2867 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2868 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2869 		return;
2870 
2871 	/* Select enet system clock as Interrupt Coalescing
2872 	 * timer Clock Source
2873 	 */
2874 	rx_itr = FEC_ITR_CLK_SEL;
2875 	tx_itr = FEC_ITR_CLK_SEL;
2876 
2877 	/* set ICFT and ICTT */
2878 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2879 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2880 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2881 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2882 
2883 	rx_itr |= FEC_ITR_EN;
2884 	tx_itr |= FEC_ITR_EN;
2885 
2886 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2887 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2888 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2889 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2890 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2891 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2892 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2893 	}
2894 }
2895 
2896 static int fec_enet_get_coalesce(struct net_device *ndev,
2897 				 struct ethtool_coalesce *ec,
2898 				 struct kernel_ethtool_coalesce *kernel_coal,
2899 				 struct netlink_ext_ack *extack)
2900 {
2901 	struct fec_enet_private *fep = netdev_priv(ndev);
2902 
2903 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2904 		return -EOPNOTSUPP;
2905 
2906 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2907 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2908 
2909 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2910 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2911 
2912 	return 0;
2913 }
2914 
2915 static int fec_enet_set_coalesce(struct net_device *ndev,
2916 				 struct ethtool_coalesce *ec,
2917 				 struct kernel_ethtool_coalesce *kernel_coal,
2918 				 struct netlink_ext_ack *extack)
2919 {
2920 	struct fec_enet_private *fep = netdev_priv(ndev);
2921 	struct device *dev = &fep->pdev->dev;
2922 	unsigned int cycle;
2923 
2924 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2925 		return -EOPNOTSUPP;
2926 
2927 	if (ec->rx_max_coalesced_frames > 255) {
2928 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2929 		return -EINVAL;
2930 	}
2931 
2932 	if (ec->tx_max_coalesced_frames > 255) {
2933 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2938 	if (cycle > 0xFFFF) {
2939 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2940 		return -EINVAL;
2941 	}
2942 
2943 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2944 	if (cycle > 0xFFFF) {
2945 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2946 		return -EINVAL;
2947 	}
2948 
2949 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2950 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2951 
2952 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2953 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2954 
2955 	fec_enet_itr_coal_set(ndev);
2956 
2957 	return 0;
2958 }
2959 
2960 static int fec_enet_get_tunable(struct net_device *netdev,
2961 				const struct ethtool_tunable *tuna,
2962 				void *data)
2963 {
2964 	struct fec_enet_private *fep = netdev_priv(netdev);
2965 	int ret = 0;
2966 
2967 	switch (tuna->id) {
2968 	case ETHTOOL_RX_COPYBREAK:
2969 		*(u32 *)data = fep->rx_copybreak;
2970 		break;
2971 	default:
2972 		ret = -EINVAL;
2973 		break;
2974 	}
2975 
2976 	return ret;
2977 }
2978 
2979 static int fec_enet_set_tunable(struct net_device *netdev,
2980 				const struct ethtool_tunable *tuna,
2981 				const void *data)
2982 {
2983 	struct fec_enet_private *fep = netdev_priv(netdev);
2984 	int ret = 0;
2985 
2986 	switch (tuna->id) {
2987 	case ETHTOOL_RX_COPYBREAK:
2988 		fep->rx_copybreak = *(u32 *)data;
2989 		break;
2990 	default:
2991 		ret = -EINVAL;
2992 		break;
2993 	}
2994 
2995 	return ret;
2996 }
2997 
2998 /* LPI Sleep Ts count base on tx clk (clk_ref).
2999  * The lpi sleep cnt value = X us / (cycle_ns).
3000  */
3001 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3002 {
3003 	struct fec_enet_private *fep = netdev_priv(ndev);
3004 
3005 	return us * (fep->clk_ref_rate / 1000) / 1000;
3006 }
3007 
3008 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3009 {
3010 	struct fec_enet_private *fep = netdev_priv(ndev);
3011 	struct ethtool_eee *p = &fep->eee;
3012 	unsigned int sleep_cycle, wake_cycle;
3013 	int ret = 0;
3014 
3015 	if (enable) {
3016 		ret = phy_init_eee(ndev->phydev, false);
3017 		if (ret)
3018 			return ret;
3019 
3020 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3021 		wake_cycle = sleep_cycle;
3022 	} else {
3023 		sleep_cycle = 0;
3024 		wake_cycle = 0;
3025 	}
3026 
3027 	p->tx_lpi_enabled = enable;
3028 	p->eee_enabled = enable;
3029 	p->eee_active = enable;
3030 
3031 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3032 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3033 
3034 	return 0;
3035 }
3036 
3037 static int
3038 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3039 {
3040 	struct fec_enet_private *fep = netdev_priv(ndev);
3041 	struct ethtool_eee *p = &fep->eee;
3042 
3043 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3044 		return -EOPNOTSUPP;
3045 
3046 	if (!netif_running(ndev))
3047 		return -ENETDOWN;
3048 
3049 	edata->eee_enabled = p->eee_enabled;
3050 	edata->eee_active = p->eee_active;
3051 	edata->tx_lpi_timer = p->tx_lpi_timer;
3052 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3053 
3054 	return phy_ethtool_get_eee(ndev->phydev, edata);
3055 }
3056 
3057 static int
3058 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3059 {
3060 	struct fec_enet_private *fep = netdev_priv(ndev);
3061 	struct ethtool_eee *p = &fep->eee;
3062 	int ret = 0;
3063 
3064 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3065 		return -EOPNOTSUPP;
3066 
3067 	if (!netif_running(ndev))
3068 		return -ENETDOWN;
3069 
3070 	p->tx_lpi_timer = edata->tx_lpi_timer;
3071 
3072 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3073 	    !edata->tx_lpi_timer)
3074 		ret = fec_enet_eee_mode_set(ndev, false);
3075 	else
3076 		ret = fec_enet_eee_mode_set(ndev, true);
3077 
3078 	if (ret)
3079 		return ret;
3080 
3081 	return phy_ethtool_set_eee(ndev->phydev, edata);
3082 }
3083 
3084 static void
3085 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(ndev);
3088 
3089 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3090 		wol->supported = WAKE_MAGIC;
3091 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3092 	} else {
3093 		wol->supported = wol->wolopts = 0;
3094 	}
3095 }
3096 
3097 static int
3098 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3099 {
3100 	struct fec_enet_private *fep = netdev_priv(ndev);
3101 
3102 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3103 		return -EINVAL;
3104 
3105 	if (wol->wolopts & ~WAKE_MAGIC)
3106 		return -EINVAL;
3107 
3108 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3109 	if (device_may_wakeup(&ndev->dev))
3110 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3111 	else
3112 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3113 
3114 	return 0;
3115 }
3116 
3117 static const struct ethtool_ops fec_enet_ethtool_ops = {
3118 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3119 				     ETHTOOL_COALESCE_MAX_FRAMES,
3120 	.get_drvinfo		= fec_enet_get_drvinfo,
3121 	.get_regs_len		= fec_enet_get_regs_len,
3122 	.get_regs		= fec_enet_get_regs,
3123 	.nway_reset		= phy_ethtool_nway_reset,
3124 	.get_link		= ethtool_op_get_link,
3125 	.get_coalesce		= fec_enet_get_coalesce,
3126 	.set_coalesce		= fec_enet_set_coalesce,
3127 #ifndef CONFIG_M5272
3128 	.get_pauseparam		= fec_enet_get_pauseparam,
3129 	.set_pauseparam		= fec_enet_set_pauseparam,
3130 	.get_strings		= fec_enet_get_strings,
3131 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3132 	.get_sset_count		= fec_enet_get_sset_count,
3133 #endif
3134 	.get_ts_info		= fec_enet_get_ts_info,
3135 	.get_tunable		= fec_enet_get_tunable,
3136 	.set_tunable		= fec_enet_set_tunable,
3137 	.get_wol		= fec_enet_get_wol,
3138 	.set_wol		= fec_enet_set_wol,
3139 	.get_eee		= fec_enet_get_eee,
3140 	.set_eee		= fec_enet_set_eee,
3141 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3142 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3143 	.self_test		= net_selftest,
3144 };
3145 
3146 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3147 {
3148 	struct fec_enet_private *fep = netdev_priv(ndev);
3149 	struct phy_device *phydev = ndev->phydev;
3150 
3151 	if (!netif_running(ndev))
3152 		return -EINVAL;
3153 
3154 	if (!phydev)
3155 		return -ENODEV;
3156 
3157 	if (fep->bufdesc_ex) {
3158 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3159 
3160 		if (cmd == SIOCSHWTSTAMP) {
3161 			if (use_fec_hwts)
3162 				return fec_ptp_set(ndev, rq);
3163 			fec_ptp_disable_hwts(ndev);
3164 		} else if (cmd == SIOCGHWTSTAMP) {
3165 			if (use_fec_hwts)
3166 				return fec_ptp_get(ndev, rq);
3167 		}
3168 	}
3169 
3170 	return phy_mii_ioctl(phydev, rq, cmd);
3171 }
3172 
3173 static void fec_enet_free_buffers(struct net_device *ndev)
3174 {
3175 	struct fec_enet_private *fep = netdev_priv(ndev);
3176 	unsigned int i;
3177 	struct sk_buff *skb;
3178 	struct fec_enet_priv_tx_q *txq;
3179 	struct fec_enet_priv_rx_q *rxq;
3180 	unsigned int q;
3181 
3182 	for (q = 0; q < fep->num_rx_queues; q++) {
3183 		rxq = fep->rx_queue[q];
3184 		for (i = 0; i < rxq->bd.ring_size; i++)
3185 			page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page);
3186 
3187 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3188 			rxq->stats[i] = 0;
3189 
3190 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3191 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3192 		page_pool_destroy(rxq->page_pool);
3193 		rxq->page_pool = NULL;
3194 	}
3195 
3196 	for (q = 0; q < fep->num_tx_queues; q++) {
3197 		txq = fep->tx_queue[q];
3198 		for (i = 0; i < txq->bd.ring_size; i++) {
3199 			kfree(txq->tx_bounce[i]);
3200 			txq->tx_bounce[i] = NULL;
3201 			skb = txq->tx_skbuff[i];
3202 			txq->tx_skbuff[i] = NULL;
3203 			dev_kfree_skb(skb);
3204 		}
3205 	}
3206 }
3207 
3208 static void fec_enet_free_queue(struct net_device *ndev)
3209 {
3210 	struct fec_enet_private *fep = netdev_priv(ndev);
3211 	int i;
3212 	struct fec_enet_priv_tx_q *txq;
3213 
3214 	for (i = 0; i < fep->num_tx_queues; i++)
3215 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3216 			txq = fep->tx_queue[i];
3217 			dma_free_coherent(&fep->pdev->dev,
3218 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3219 					  txq->tso_hdrs,
3220 					  txq->tso_hdrs_dma);
3221 		}
3222 
3223 	for (i = 0; i < fep->num_rx_queues; i++)
3224 		kfree(fep->rx_queue[i]);
3225 	for (i = 0; i < fep->num_tx_queues; i++)
3226 		kfree(fep->tx_queue[i]);
3227 }
3228 
3229 static int fec_enet_alloc_queue(struct net_device *ndev)
3230 {
3231 	struct fec_enet_private *fep = netdev_priv(ndev);
3232 	int i;
3233 	int ret = 0;
3234 	struct fec_enet_priv_tx_q *txq;
3235 
3236 	for (i = 0; i < fep->num_tx_queues; i++) {
3237 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3238 		if (!txq) {
3239 			ret = -ENOMEM;
3240 			goto alloc_failed;
3241 		}
3242 
3243 		fep->tx_queue[i] = txq;
3244 		txq->bd.ring_size = TX_RING_SIZE;
3245 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3246 
3247 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3248 		txq->tx_wake_threshold =
3249 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3250 
3251 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3252 					txq->bd.ring_size * TSO_HEADER_SIZE,
3253 					&txq->tso_hdrs_dma,
3254 					GFP_KERNEL);
3255 		if (!txq->tso_hdrs) {
3256 			ret = -ENOMEM;
3257 			goto alloc_failed;
3258 		}
3259 	}
3260 
3261 	for (i = 0; i < fep->num_rx_queues; i++) {
3262 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3263 					   GFP_KERNEL);
3264 		if (!fep->rx_queue[i]) {
3265 			ret = -ENOMEM;
3266 			goto alloc_failed;
3267 		}
3268 
3269 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3270 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3271 	}
3272 	return ret;
3273 
3274 alloc_failed:
3275 	fec_enet_free_queue(ndev);
3276 	return ret;
3277 }
3278 
3279 static int
3280 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3281 {
3282 	struct fec_enet_private *fep = netdev_priv(ndev);
3283 	struct fec_enet_priv_rx_q *rxq;
3284 	dma_addr_t phys_addr;
3285 	struct bufdesc	*bdp;
3286 	struct page *page;
3287 	int i, err;
3288 
3289 	rxq = fep->rx_queue[queue];
3290 	bdp = rxq->bd.base;
3291 
3292 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3293 	if (err < 0) {
3294 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3295 		return err;
3296 	}
3297 
3298 	for (i = 0; i < rxq->bd.ring_size; i++) {
3299 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3300 		if (!page)
3301 			goto err_alloc;
3302 
3303 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3304 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3305 
3306 		rxq->rx_skb_info[i].page = page;
3307 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3308 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3309 
3310 		if (fep->bufdesc_ex) {
3311 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3312 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3313 		}
3314 
3315 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3316 	}
3317 
3318 	/* Set the last buffer to wrap. */
3319 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3320 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3321 	return 0;
3322 
3323  err_alloc:
3324 	fec_enet_free_buffers(ndev);
3325 	return -ENOMEM;
3326 }
3327 
3328 static int
3329 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3330 {
3331 	struct fec_enet_private *fep = netdev_priv(ndev);
3332 	unsigned int i;
3333 	struct bufdesc  *bdp;
3334 	struct fec_enet_priv_tx_q *txq;
3335 
3336 	txq = fep->tx_queue[queue];
3337 	bdp = txq->bd.base;
3338 	for (i = 0; i < txq->bd.ring_size; i++) {
3339 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3340 		if (!txq->tx_bounce[i])
3341 			goto err_alloc;
3342 
3343 		bdp->cbd_sc = cpu_to_fec16(0);
3344 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3345 
3346 		if (fep->bufdesc_ex) {
3347 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3348 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3349 		}
3350 
3351 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3352 	}
3353 
3354 	/* Set the last buffer to wrap. */
3355 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3356 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3357 
3358 	return 0;
3359 
3360  err_alloc:
3361 	fec_enet_free_buffers(ndev);
3362 	return -ENOMEM;
3363 }
3364 
3365 static int fec_enet_alloc_buffers(struct net_device *ndev)
3366 {
3367 	struct fec_enet_private *fep = netdev_priv(ndev);
3368 	unsigned int i;
3369 
3370 	for (i = 0; i < fep->num_rx_queues; i++)
3371 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3372 			return -ENOMEM;
3373 
3374 	for (i = 0; i < fep->num_tx_queues; i++)
3375 		if (fec_enet_alloc_txq_buffers(ndev, i))
3376 			return -ENOMEM;
3377 	return 0;
3378 }
3379 
3380 static int
3381 fec_enet_open(struct net_device *ndev)
3382 {
3383 	struct fec_enet_private *fep = netdev_priv(ndev);
3384 	int ret;
3385 	bool reset_again;
3386 
3387 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3388 	if (ret < 0)
3389 		return ret;
3390 
3391 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3392 	ret = fec_enet_clk_enable(ndev, true);
3393 	if (ret)
3394 		goto clk_enable;
3395 
3396 	/* During the first fec_enet_open call the PHY isn't probed at this
3397 	 * point. Therefore the phy_reset_after_clk_enable() call within
3398 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3399 	 * sure the PHY is working correctly we check if we need to reset again
3400 	 * later when the PHY is probed
3401 	 */
3402 	if (ndev->phydev && ndev->phydev->drv)
3403 		reset_again = false;
3404 	else
3405 		reset_again = true;
3406 
3407 	/* I should reset the ring buffers here, but I don't yet know
3408 	 * a simple way to do that.
3409 	 */
3410 
3411 	ret = fec_enet_alloc_buffers(ndev);
3412 	if (ret)
3413 		goto err_enet_alloc;
3414 
3415 	/* Init MAC prior to mii bus probe */
3416 	fec_restart(ndev);
3417 
3418 	/* Call phy_reset_after_clk_enable() again if it failed during
3419 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3420 	 */
3421 	if (reset_again)
3422 		fec_enet_phy_reset_after_clk_enable(ndev);
3423 
3424 	/* Probe and connect to PHY when open the interface */
3425 	ret = fec_enet_mii_probe(ndev);
3426 	if (ret)
3427 		goto err_enet_mii_probe;
3428 
3429 	if (fep->quirks & FEC_QUIRK_ERR006687)
3430 		imx6q_cpuidle_fec_irqs_used();
3431 
3432 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3433 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3434 
3435 	napi_enable(&fep->napi);
3436 	phy_start(ndev->phydev);
3437 	netif_tx_start_all_queues(ndev);
3438 
3439 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3440 				 FEC_WOL_FLAG_ENABLE);
3441 
3442 	return 0;
3443 
3444 err_enet_mii_probe:
3445 	fec_enet_free_buffers(ndev);
3446 err_enet_alloc:
3447 	fec_enet_clk_enable(ndev, false);
3448 clk_enable:
3449 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3450 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3451 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3452 	return ret;
3453 }
3454 
3455 static int
3456 fec_enet_close(struct net_device *ndev)
3457 {
3458 	struct fec_enet_private *fep = netdev_priv(ndev);
3459 
3460 	phy_stop(ndev->phydev);
3461 
3462 	if (netif_device_present(ndev)) {
3463 		napi_disable(&fep->napi);
3464 		netif_tx_disable(ndev);
3465 		fec_stop(ndev);
3466 	}
3467 
3468 	phy_disconnect(ndev->phydev);
3469 
3470 	if (fep->quirks & FEC_QUIRK_ERR006687)
3471 		imx6q_cpuidle_fec_irqs_unused();
3472 
3473 	fec_enet_update_ethtool_stats(ndev);
3474 
3475 	fec_enet_clk_enable(ndev, false);
3476 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3477 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3478 
3479 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3480 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3481 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3482 
3483 	fec_enet_free_buffers(ndev);
3484 
3485 	return 0;
3486 }
3487 
3488 /* Set or clear the multicast filter for this adaptor.
3489  * Skeleton taken from sunlance driver.
3490  * The CPM Ethernet implementation allows Multicast as well as individual
3491  * MAC address filtering.  Some of the drivers check to make sure it is
3492  * a group multicast address, and discard those that are not.  I guess I
3493  * will do the same for now, but just remove the test if you want
3494  * individual filtering as well (do the upper net layers want or support
3495  * this kind of feature?).
3496  */
3497 
3498 #define FEC_HASH_BITS	6		/* #bits in hash */
3499 
3500 static void set_multicast_list(struct net_device *ndev)
3501 {
3502 	struct fec_enet_private *fep = netdev_priv(ndev);
3503 	struct netdev_hw_addr *ha;
3504 	unsigned int crc, tmp;
3505 	unsigned char hash;
3506 	unsigned int hash_high = 0, hash_low = 0;
3507 
3508 	if (ndev->flags & IFF_PROMISC) {
3509 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3510 		tmp |= 0x8;
3511 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3512 		return;
3513 	}
3514 
3515 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3516 	tmp &= ~0x8;
3517 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3518 
3519 	if (ndev->flags & IFF_ALLMULTI) {
3520 		/* Catch all multicast addresses, so set the
3521 		 * filter to all 1's
3522 		 */
3523 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3524 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3525 
3526 		return;
3527 	}
3528 
3529 	/* Add the addresses in hash register */
3530 	netdev_for_each_mc_addr(ha, ndev) {
3531 		/* calculate crc32 value of mac address */
3532 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3533 
3534 		/* only upper 6 bits (FEC_HASH_BITS) are used
3535 		 * which point to specific bit in the hash registers
3536 		 */
3537 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3538 
3539 		if (hash > 31)
3540 			hash_high |= 1 << (hash - 32);
3541 		else
3542 			hash_low |= 1 << hash;
3543 	}
3544 
3545 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3546 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3547 }
3548 
3549 /* Set a MAC change in hardware. */
3550 static int
3551 fec_set_mac_address(struct net_device *ndev, void *p)
3552 {
3553 	struct fec_enet_private *fep = netdev_priv(ndev);
3554 	struct sockaddr *addr = p;
3555 
3556 	if (addr) {
3557 		if (!is_valid_ether_addr(addr->sa_data))
3558 			return -EADDRNOTAVAIL;
3559 		eth_hw_addr_set(ndev, addr->sa_data);
3560 	}
3561 
3562 	/* Add netif status check here to avoid system hang in below case:
3563 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3564 	 * After ethx down, fec all clocks are gated off and then register
3565 	 * access causes system hang.
3566 	 */
3567 	if (!netif_running(ndev))
3568 		return 0;
3569 
3570 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3571 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3572 		fep->hwp + FEC_ADDR_LOW);
3573 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3574 		fep->hwp + FEC_ADDR_HIGH);
3575 	return 0;
3576 }
3577 
3578 #ifdef CONFIG_NET_POLL_CONTROLLER
3579 /**
3580  * fec_poll_controller - FEC Poll controller function
3581  * @dev: The FEC network adapter
3582  *
3583  * Polled functionality used by netconsole and others in non interrupt mode
3584  *
3585  */
3586 static void fec_poll_controller(struct net_device *dev)
3587 {
3588 	int i;
3589 	struct fec_enet_private *fep = netdev_priv(dev);
3590 
3591 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3592 		if (fep->irq[i] > 0) {
3593 			disable_irq(fep->irq[i]);
3594 			fec_enet_interrupt(fep->irq[i], dev);
3595 			enable_irq(fep->irq[i]);
3596 		}
3597 	}
3598 }
3599 #endif
3600 
3601 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3602 	netdev_features_t features)
3603 {
3604 	struct fec_enet_private *fep = netdev_priv(netdev);
3605 	netdev_features_t changed = features ^ netdev->features;
3606 
3607 	netdev->features = features;
3608 
3609 	/* Receive checksum has been changed */
3610 	if (changed & NETIF_F_RXCSUM) {
3611 		if (features & NETIF_F_RXCSUM)
3612 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3613 		else
3614 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3615 	}
3616 }
3617 
3618 static int fec_set_features(struct net_device *netdev,
3619 	netdev_features_t features)
3620 {
3621 	struct fec_enet_private *fep = netdev_priv(netdev);
3622 	netdev_features_t changed = features ^ netdev->features;
3623 
3624 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3625 		napi_disable(&fep->napi);
3626 		netif_tx_lock_bh(netdev);
3627 		fec_stop(netdev);
3628 		fec_enet_set_netdev_features(netdev, features);
3629 		fec_restart(netdev);
3630 		netif_tx_wake_all_queues(netdev);
3631 		netif_tx_unlock_bh(netdev);
3632 		napi_enable(&fep->napi);
3633 	} else {
3634 		fec_enet_set_netdev_features(netdev, features);
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3641 {
3642 	struct vlan_ethhdr *vhdr;
3643 	unsigned short vlan_TCI = 0;
3644 
3645 	if (skb->protocol == htons(ETH_P_ALL)) {
3646 		vhdr = (struct vlan_ethhdr *)(skb->data);
3647 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3648 	}
3649 
3650 	return vlan_TCI;
3651 }
3652 
3653 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3654 				 struct net_device *sb_dev)
3655 {
3656 	struct fec_enet_private *fep = netdev_priv(ndev);
3657 	u16 vlan_tag;
3658 
3659 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3660 		return netdev_pick_tx(ndev, skb, NULL);
3661 
3662 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3663 	if (!vlan_tag)
3664 		return vlan_tag;
3665 
3666 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3667 }
3668 
3669 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3670 {
3671 	struct fec_enet_private *fep = netdev_priv(dev);
3672 	bool is_run = netif_running(dev);
3673 	struct bpf_prog *old_prog;
3674 
3675 	switch (bpf->command) {
3676 	case XDP_SETUP_PROG:
3677 		/* No need to support the SoCs that require to
3678 		 * do the frame swap because the performance wouldn't be
3679 		 * better than the skb mode.
3680 		 */
3681 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3682 			return -EOPNOTSUPP;
3683 
3684 		if (is_run) {
3685 			napi_disable(&fep->napi);
3686 			netif_tx_disable(dev);
3687 		}
3688 
3689 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3690 		fec_restart(dev);
3691 
3692 		if (is_run) {
3693 			napi_enable(&fep->napi);
3694 			netif_tx_start_all_queues(dev);
3695 		}
3696 
3697 		if (old_prog)
3698 			bpf_prog_put(old_prog);
3699 
3700 		return 0;
3701 
3702 	case XDP_SETUP_XSK_POOL:
3703 		return -EOPNOTSUPP;
3704 
3705 	default:
3706 		return -EOPNOTSUPP;
3707 	}
3708 }
3709 
3710 static int
3711 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3712 {
3713 	if (unlikely(index < 0))
3714 		return 0;
3715 
3716 	return (index % fep->num_tx_queues);
3717 }
3718 
3719 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3720 				   struct fec_enet_priv_tx_q *txq,
3721 				   struct xdp_frame *frame)
3722 {
3723 	unsigned int index, status, estatus;
3724 	struct bufdesc *bdp, *last_bdp;
3725 	dma_addr_t dma_addr;
3726 	int entries_free;
3727 
3728 	entries_free = fec_enet_get_free_txdesc_num(txq);
3729 	if (entries_free < MAX_SKB_FRAGS + 1) {
3730 		netdev_err(fep->netdev, "NOT enough BD for SG!\n");
3731 		return NETDEV_TX_OK;
3732 	}
3733 
3734 	/* Fill in a Tx ring entry */
3735 	bdp = txq->bd.cur;
3736 	last_bdp = bdp;
3737 	status = fec16_to_cpu(bdp->cbd_sc);
3738 	status &= ~BD_ENET_TX_STATS;
3739 
3740 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3741 
3742 	dma_addr = dma_map_single(&fep->pdev->dev, frame->data,
3743 				  frame->len, DMA_TO_DEVICE);
3744 	if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3745 		return FEC_ENET_XDP_CONSUMED;
3746 
3747 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3748 	if (fep->bufdesc_ex)
3749 		estatus = BD_ENET_TX_INT;
3750 
3751 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3752 	bdp->cbd_datlen = cpu_to_fec16(frame->len);
3753 
3754 	if (fep->bufdesc_ex) {
3755 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3756 
3757 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3758 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3759 
3760 		ebdp->cbd_bdu = 0;
3761 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3762 	}
3763 
3764 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
3765 	txq->tx_skbuff[index] = NULL;
3766 
3767 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3768 	 * it's the last BD of the frame, and to put the CRC on the end.
3769 	 */
3770 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3771 	bdp->cbd_sc = cpu_to_fec16(status);
3772 
3773 	/* If this was the last BD in the ring, start at the beginning again. */
3774 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
3775 
3776 	txq->bd.cur = bdp;
3777 
3778 	return 0;
3779 }
3780 
3781 static int fec_enet_xdp_xmit(struct net_device *dev,
3782 			     int num_frames,
3783 			     struct xdp_frame **frames,
3784 			     u32 flags)
3785 {
3786 	struct fec_enet_private *fep = netdev_priv(dev);
3787 	struct fec_enet_priv_tx_q *txq;
3788 	int cpu = smp_processor_id();
3789 	struct netdev_queue *nq;
3790 	unsigned int queue;
3791 	int i;
3792 
3793 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3794 	txq = fep->tx_queue[queue];
3795 	nq = netdev_get_tx_queue(fep->netdev, queue);
3796 
3797 	__netif_tx_lock(nq, cpu);
3798 
3799 	for (i = 0; i < num_frames; i++)
3800 		fec_enet_txq_xmit_frame(fep, txq, frames[i]);
3801 
3802 	/* Make sure the update to bdp and tx_skbuff are performed. */
3803 	wmb();
3804 
3805 	/* Trigger transmission start */
3806 	writel(0, txq->bd.reg_desc_active);
3807 
3808 	__netif_tx_unlock(nq);
3809 
3810 	return num_frames;
3811 }
3812 
3813 static const struct net_device_ops fec_netdev_ops = {
3814 	.ndo_open		= fec_enet_open,
3815 	.ndo_stop		= fec_enet_close,
3816 	.ndo_start_xmit		= fec_enet_start_xmit,
3817 	.ndo_select_queue       = fec_enet_select_queue,
3818 	.ndo_set_rx_mode	= set_multicast_list,
3819 	.ndo_validate_addr	= eth_validate_addr,
3820 	.ndo_tx_timeout		= fec_timeout,
3821 	.ndo_set_mac_address	= fec_set_mac_address,
3822 	.ndo_eth_ioctl		= fec_enet_ioctl,
3823 #ifdef CONFIG_NET_POLL_CONTROLLER
3824 	.ndo_poll_controller	= fec_poll_controller,
3825 #endif
3826 	.ndo_set_features	= fec_set_features,
3827 	.ndo_bpf		= fec_enet_bpf,
3828 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3829 };
3830 
3831 static const unsigned short offset_des_active_rxq[] = {
3832 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3833 };
3834 
3835 static const unsigned short offset_des_active_txq[] = {
3836 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3837 };
3838 
3839  /*
3840   * XXX:  We need to clean up on failure exits here.
3841   *
3842   */
3843 static int fec_enet_init(struct net_device *ndev)
3844 {
3845 	struct fec_enet_private *fep = netdev_priv(ndev);
3846 	struct bufdesc *cbd_base;
3847 	dma_addr_t bd_dma;
3848 	int bd_size;
3849 	unsigned int i;
3850 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3851 			sizeof(struct bufdesc);
3852 	unsigned dsize_log2 = __fls(dsize);
3853 	int ret;
3854 
3855 	WARN_ON(dsize != (1 << dsize_log2));
3856 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3857 	fep->rx_align = 0xf;
3858 	fep->tx_align = 0xf;
3859 #else
3860 	fep->rx_align = 0x3;
3861 	fep->tx_align = 0x3;
3862 #endif
3863 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3864 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3865 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
3866 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
3867 
3868 	/* Check mask of the streaming and coherent API */
3869 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3870 	if (ret < 0) {
3871 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3872 		return ret;
3873 	}
3874 
3875 	ret = fec_enet_alloc_queue(ndev);
3876 	if (ret)
3877 		return ret;
3878 
3879 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3880 
3881 	/* Allocate memory for buffer descriptors. */
3882 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3883 				       GFP_KERNEL);
3884 	if (!cbd_base) {
3885 		ret = -ENOMEM;
3886 		goto free_queue_mem;
3887 	}
3888 
3889 	/* Get the Ethernet address */
3890 	ret = fec_get_mac(ndev);
3891 	if (ret)
3892 		goto free_queue_mem;
3893 
3894 	/* make sure MAC we just acquired is programmed into the hw */
3895 	fec_set_mac_address(ndev, NULL);
3896 
3897 	/* Set receive and transmit descriptor base. */
3898 	for (i = 0; i < fep->num_rx_queues; i++) {
3899 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3900 		unsigned size = dsize * rxq->bd.ring_size;
3901 
3902 		rxq->bd.qid = i;
3903 		rxq->bd.base = cbd_base;
3904 		rxq->bd.cur = cbd_base;
3905 		rxq->bd.dma = bd_dma;
3906 		rxq->bd.dsize = dsize;
3907 		rxq->bd.dsize_log2 = dsize_log2;
3908 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3909 		bd_dma += size;
3910 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3911 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3912 	}
3913 
3914 	for (i = 0; i < fep->num_tx_queues; i++) {
3915 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3916 		unsigned size = dsize * txq->bd.ring_size;
3917 
3918 		txq->bd.qid = i;
3919 		txq->bd.base = cbd_base;
3920 		txq->bd.cur = cbd_base;
3921 		txq->bd.dma = bd_dma;
3922 		txq->bd.dsize = dsize;
3923 		txq->bd.dsize_log2 = dsize_log2;
3924 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3925 		bd_dma += size;
3926 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3927 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3928 	}
3929 
3930 
3931 	/* The FEC Ethernet specific entries in the device structure */
3932 	ndev->watchdog_timeo = TX_TIMEOUT;
3933 	ndev->netdev_ops = &fec_netdev_ops;
3934 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3935 
3936 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3937 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
3938 
3939 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3940 		/* enable hw VLAN support */
3941 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3942 
3943 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3944 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3945 
3946 		/* enable hw accelerator */
3947 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3948 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3949 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3950 	}
3951 
3952 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3953 		fep->tx_align = 0;
3954 		fep->rx_align = 0x3f;
3955 	}
3956 
3957 	ndev->hw_features = ndev->features;
3958 
3959 	fec_restart(ndev);
3960 
3961 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3962 		fec_enet_clear_ethtool_stats(ndev);
3963 	else
3964 		fec_enet_update_ethtool_stats(ndev);
3965 
3966 	return 0;
3967 
3968 free_queue_mem:
3969 	fec_enet_free_queue(ndev);
3970 	return ret;
3971 }
3972 
3973 #ifdef CONFIG_OF
3974 static int fec_reset_phy(struct platform_device *pdev)
3975 {
3976 	int err, phy_reset;
3977 	bool active_high = false;
3978 	int msec = 1, phy_post_delay = 0;
3979 	struct device_node *np = pdev->dev.of_node;
3980 
3981 	if (!np)
3982 		return 0;
3983 
3984 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3985 	/* A sane reset duration should not be longer than 1s */
3986 	if (!err && msec > 1000)
3987 		msec = 1;
3988 
3989 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3990 	if (phy_reset == -EPROBE_DEFER)
3991 		return phy_reset;
3992 	else if (!gpio_is_valid(phy_reset))
3993 		return 0;
3994 
3995 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3996 	/* valid reset duration should be less than 1s */
3997 	if (!err && phy_post_delay > 1000)
3998 		return -EINVAL;
3999 
4000 	active_high = of_property_read_bool(np, "phy-reset-active-high");
4001 
4002 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
4003 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
4004 			"phy-reset");
4005 	if (err) {
4006 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
4007 		return err;
4008 	}
4009 
4010 	if (msec > 20)
4011 		msleep(msec);
4012 	else
4013 		usleep_range(msec * 1000, msec * 1000 + 1000);
4014 
4015 	gpio_set_value_cansleep(phy_reset, !active_high);
4016 
4017 	if (!phy_post_delay)
4018 		return 0;
4019 
4020 	if (phy_post_delay > 20)
4021 		msleep(phy_post_delay);
4022 	else
4023 		usleep_range(phy_post_delay * 1000,
4024 			     phy_post_delay * 1000 + 1000);
4025 
4026 	return 0;
4027 }
4028 #else /* CONFIG_OF */
4029 static int fec_reset_phy(struct platform_device *pdev)
4030 {
4031 	/*
4032 	 * In case of platform probe, the reset has been done
4033 	 * by machine code.
4034 	 */
4035 	return 0;
4036 }
4037 #endif /* CONFIG_OF */
4038 
4039 static void
4040 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4041 {
4042 	struct device_node *np = pdev->dev.of_node;
4043 
4044 	*num_tx = *num_rx = 1;
4045 
4046 	if (!np || !of_device_is_available(np))
4047 		return;
4048 
4049 	/* parse the num of tx and rx queues */
4050 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4051 
4052 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4053 
4054 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4055 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4056 			 *num_tx);
4057 		*num_tx = 1;
4058 		return;
4059 	}
4060 
4061 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4062 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4063 			 *num_rx);
4064 		*num_rx = 1;
4065 		return;
4066 	}
4067 
4068 }
4069 
4070 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4071 {
4072 	int irq_cnt = platform_irq_count(pdev);
4073 
4074 	if (irq_cnt > FEC_IRQ_NUM)
4075 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4076 	else if (irq_cnt == 2)
4077 		irq_cnt = 1;	/* last for pps */
4078 	else if (irq_cnt <= 0)
4079 		irq_cnt = 1;	/* At least 1 irq is needed */
4080 	return irq_cnt;
4081 }
4082 
4083 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4084 {
4085 	struct net_device *ndev = platform_get_drvdata(pdev);
4086 	struct fec_enet_private *fep = netdev_priv(ndev);
4087 
4088 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4089 		fep->wake_irq = fep->irq[2];
4090 	else
4091 		fep->wake_irq = fep->irq[0];
4092 }
4093 
4094 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4095 				   struct device_node *np)
4096 {
4097 	struct device_node *gpr_np;
4098 	u32 out_val[3];
4099 	int ret = 0;
4100 
4101 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4102 	if (!gpr_np)
4103 		return 0;
4104 
4105 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4106 					 ARRAY_SIZE(out_val));
4107 	if (ret) {
4108 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4109 		goto out;
4110 	}
4111 
4112 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4113 	if (IS_ERR(fep->stop_gpr.gpr)) {
4114 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4115 		ret = PTR_ERR(fep->stop_gpr.gpr);
4116 		fep->stop_gpr.gpr = NULL;
4117 		goto out;
4118 	}
4119 
4120 	fep->stop_gpr.reg = out_val[1];
4121 	fep->stop_gpr.bit = out_val[2];
4122 
4123 out:
4124 	of_node_put(gpr_np);
4125 
4126 	return ret;
4127 }
4128 
4129 static int
4130 fec_probe(struct platform_device *pdev)
4131 {
4132 	struct fec_enet_private *fep;
4133 	struct fec_platform_data *pdata;
4134 	phy_interface_t interface;
4135 	struct net_device *ndev;
4136 	int i, irq, ret = 0;
4137 	const struct of_device_id *of_id;
4138 	static int dev_id;
4139 	struct device_node *np = pdev->dev.of_node, *phy_node;
4140 	int num_tx_qs;
4141 	int num_rx_qs;
4142 	char irq_name[8];
4143 	int irq_cnt;
4144 	struct fec_devinfo *dev_info;
4145 
4146 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4147 
4148 	/* Init network device */
4149 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4150 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4151 	if (!ndev)
4152 		return -ENOMEM;
4153 
4154 	SET_NETDEV_DEV(ndev, &pdev->dev);
4155 
4156 	/* setup board info structure */
4157 	fep = netdev_priv(ndev);
4158 
4159 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4160 	if (of_id)
4161 		pdev->id_entry = of_id->data;
4162 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4163 	if (dev_info)
4164 		fep->quirks = dev_info->quirks;
4165 
4166 	fep->netdev = ndev;
4167 	fep->num_rx_queues = num_rx_qs;
4168 	fep->num_tx_queues = num_tx_qs;
4169 
4170 #if !defined(CONFIG_M5272)
4171 	/* default enable pause frame auto negotiation */
4172 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4173 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4174 #endif
4175 
4176 	/* Select default pin state */
4177 	pinctrl_pm_select_default_state(&pdev->dev);
4178 
4179 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4180 	if (IS_ERR(fep->hwp)) {
4181 		ret = PTR_ERR(fep->hwp);
4182 		goto failed_ioremap;
4183 	}
4184 
4185 	fep->pdev = pdev;
4186 	fep->dev_id = dev_id++;
4187 
4188 	platform_set_drvdata(pdev, ndev);
4189 
4190 	if ((of_machine_is_compatible("fsl,imx6q") ||
4191 	     of_machine_is_compatible("fsl,imx6dl")) &&
4192 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4193 		fep->quirks |= FEC_QUIRK_ERR006687;
4194 
4195 	ret = fec_enet_ipc_handle_init(fep);
4196 	if (ret)
4197 		goto failed_ipc_init;
4198 
4199 	if (of_get_property(np, "fsl,magic-packet", NULL))
4200 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4201 
4202 	ret = fec_enet_init_stop_mode(fep, np);
4203 	if (ret)
4204 		goto failed_stop_mode;
4205 
4206 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4207 	if (!phy_node && of_phy_is_fixed_link(np)) {
4208 		ret = of_phy_register_fixed_link(np);
4209 		if (ret < 0) {
4210 			dev_err(&pdev->dev,
4211 				"broken fixed-link specification\n");
4212 			goto failed_phy;
4213 		}
4214 		phy_node = of_node_get(np);
4215 	}
4216 	fep->phy_node = phy_node;
4217 
4218 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4219 	if (ret) {
4220 		pdata = dev_get_platdata(&pdev->dev);
4221 		if (pdata)
4222 			fep->phy_interface = pdata->phy;
4223 		else
4224 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4225 	} else {
4226 		fep->phy_interface = interface;
4227 	}
4228 
4229 	ret = fec_enet_parse_rgmii_delay(fep, np);
4230 	if (ret)
4231 		goto failed_rgmii_delay;
4232 
4233 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4234 	if (IS_ERR(fep->clk_ipg)) {
4235 		ret = PTR_ERR(fep->clk_ipg);
4236 		goto failed_clk;
4237 	}
4238 
4239 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4240 	if (IS_ERR(fep->clk_ahb)) {
4241 		ret = PTR_ERR(fep->clk_ahb);
4242 		goto failed_clk;
4243 	}
4244 
4245 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4246 
4247 	/* enet_out is optional, depends on board */
4248 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4249 	if (IS_ERR(fep->clk_enet_out)) {
4250 		ret = PTR_ERR(fep->clk_enet_out);
4251 		goto failed_clk;
4252 	}
4253 
4254 	fep->ptp_clk_on = false;
4255 	mutex_init(&fep->ptp_clk_mutex);
4256 
4257 	/* clk_ref is optional, depends on board */
4258 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4259 	if (IS_ERR(fep->clk_ref)) {
4260 		ret = PTR_ERR(fep->clk_ref);
4261 		goto failed_clk;
4262 	}
4263 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4264 
4265 	/* clk_2x_txclk is optional, depends on board */
4266 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4267 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4268 		if (IS_ERR(fep->clk_2x_txclk))
4269 			fep->clk_2x_txclk = NULL;
4270 	}
4271 
4272 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4273 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4274 	if (IS_ERR(fep->clk_ptp)) {
4275 		fep->clk_ptp = NULL;
4276 		fep->bufdesc_ex = false;
4277 	}
4278 
4279 	ret = fec_enet_clk_enable(ndev, true);
4280 	if (ret)
4281 		goto failed_clk;
4282 
4283 	ret = clk_prepare_enable(fep->clk_ipg);
4284 	if (ret)
4285 		goto failed_clk_ipg;
4286 	ret = clk_prepare_enable(fep->clk_ahb);
4287 	if (ret)
4288 		goto failed_clk_ahb;
4289 
4290 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4291 	if (!IS_ERR(fep->reg_phy)) {
4292 		ret = regulator_enable(fep->reg_phy);
4293 		if (ret) {
4294 			dev_err(&pdev->dev,
4295 				"Failed to enable phy regulator: %d\n", ret);
4296 			goto failed_regulator;
4297 		}
4298 	} else {
4299 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4300 			ret = -EPROBE_DEFER;
4301 			goto failed_regulator;
4302 		}
4303 		fep->reg_phy = NULL;
4304 	}
4305 
4306 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4307 	pm_runtime_use_autosuspend(&pdev->dev);
4308 	pm_runtime_get_noresume(&pdev->dev);
4309 	pm_runtime_set_active(&pdev->dev);
4310 	pm_runtime_enable(&pdev->dev);
4311 
4312 	ret = fec_reset_phy(pdev);
4313 	if (ret)
4314 		goto failed_reset;
4315 
4316 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4317 	if (fep->bufdesc_ex)
4318 		fec_ptp_init(pdev, irq_cnt);
4319 
4320 	ret = fec_enet_init(ndev);
4321 	if (ret)
4322 		goto failed_init;
4323 
4324 	for (i = 0; i < irq_cnt; i++) {
4325 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4326 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4327 		if (irq < 0)
4328 			irq = platform_get_irq(pdev, i);
4329 		if (irq < 0) {
4330 			ret = irq;
4331 			goto failed_irq;
4332 		}
4333 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4334 				       0, pdev->name, ndev);
4335 		if (ret)
4336 			goto failed_irq;
4337 
4338 		fep->irq[i] = irq;
4339 	}
4340 
4341 	/* Decide which interrupt line is wakeup capable */
4342 	fec_enet_get_wakeup_irq(pdev);
4343 
4344 	ret = fec_enet_mii_init(pdev);
4345 	if (ret)
4346 		goto failed_mii_init;
4347 
4348 	/* Carrier starts down, phylib will bring it up */
4349 	netif_carrier_off(ndev);
4350 	fec_enet_clk_enable(ndev, false);
4351 	pinctrl_pm_select_sleep_state(&pdev->dev);
4352 
4353 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4354 
4355 	ret = register_netdev(ndev);
4356 	if (ret)
4357 		goto failed_register;
4358 
4359 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4360 			   FEC_WOL_HAS_MAGIC_PACKET);
4361 
4362 	if (fep->bufdesc_ex && fep->ptp_clock)
4363 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4364 
4365 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4366 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4367 
4368 	pm_runtime_mark_last_busy(&pdev->dev);
4369 	pm_runtime_put_autosuspend(&pdev->dev);
4370 
4371 	return 0;
4372 
4373 failed_register:
4374 	fec_enet_mii_remove(fep);
4375 failed_mii_init:
4376 failed_irq:
4377 failed_init:
4378 	fec_ptp_stop(pdev);
4379 failed_reset:
4380 	pm_runtime_put_noidle(&pdev->dev);
4381 	pm_runtime_disable(&pdev->dev);
4382 	if (fep->reg_phy)
4383 		regulator_disable(fep->reg_phy);
4384 failed_regulator:
4385 	clk_disable_unprepare(fep->clk_ahb);
4386 failed_clk_ahb:
4387 	clk_disable_unprepare(fep->clk_ipg);
4388 failed_clk_ipg:
4389 	fec_enet_clk_enable(ndev, false);
4390 failed_clk:
4391 failed_rgmii_delay:
4392 	if (of_phy_is_fixed_link(np))
4393 		of_phy_deregister_fixed_link(np);
4394 	of_node_put(phy_node);
4395 failed_stop_mode:
4396 failed_ipc_init:
4397 failed_phy:
4398 	dev_id--;
4399 failed_ioremap:
4400 	free_netdev(ndev);
4401 
4402 	return ret;
4403 }
4404 
4405 static int
4406 fec_drv_remove(struct platform_device *pdev)
4407 {
4408 	struct net_device *ndev = platform_get_drvdata(pdev);
4409 	struct fec_enet_private *fep = netdev_priv(ndev);
4410 	struct device_node *np = pdev->dev.of_node;
4411 	int ret;
4412 
4413 	ret = pm_runtime_resume_and_get(&pdev->dev);
4414 	if (ret < 0)
4415 		return ret;
4416 
4417 	cancel_work_sync(&fep->tx_timeout_work);
4418 	fec_ptp_stop(pdev);
4419 	unregister_netdev(ndev);
4420 	fec_enet_mii_remove(fep);
4421 	if (fep->reg_phy)
4422 		regulator_disable(fep->reg_phy);
4423 
4424 	if (of_phy_is_fixed_link(np))
4425 		of_phy_deregister_fixed_link(np);
4426 	of_node_put(fep->phy_node);
4427 
4428 	clk_disable_unprepare(fep->clk_ahb);
4429 	clk_disable_unprepare(fep->clk_ipg);
4430 	pm_runtime_put_noidle(&pdev->dev);
4431 	pm_runtime_disable(&pdev->dev);
4432 
4433 	free_netdev(ndev);
4434 	return 0;
4435 }
4436 
4437 static int __maybe_unused fec_suspend(struct device *dev)
4438 {
4439 	struct net_device *ndev = dev_get_drvdata(dev);
4440 	struct fec_enet_private *fep = netdev_priv(ndev);
4441 	int ret;
4442 
4443 	rtnl_lock();
4444 	if (netif_running(ndev)) {
4445 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4446 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4447 		phy_stop(ndev->phydev);
4448 		napi_disable(&fep->napi);
4449 		netif_tx_lock_bh(ndev);
4450 		netif_device_detach(ndev);
4451 		netif_tx_unlock_bh(ndev);
4452 		fec_stop(ndev);
4453 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4454 			fec_irqs_disable(ndev);
4455 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4456 		} else {
4457 			fec_irqs_disable_except_wakeup(ndev);
4458 			if (fep->wake_irq > 0) {
4459 				disable_irq(fep->wake_irq);
4460 				enable_irq_wake(fep->wake_irq);
4461 			}
4462 			fec_enet_stop_mode(fep, true);
4463 		}
4464 		/* It's safe to disable clocks since interrupts are masked */
4465 		fec_enet_clk_enable(ndev, false);
4466 
4467 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4468 		if (fep->rpm_active) {
4469 			ret = pm_runtime_force_suspend(dev);
4470 			if (ret < 0) {
4471 				rtnl_unlock();
4472 				return ret;
4473 			}
4474 		}
4475 	}
4476 	rtnl_unlock();
4477 
4478 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4479 		regulator_disable(fep->reg_phy);
4480 
4481 	/* SOC supply clock to phy, when clock is disabled, phy link down
4482 	 * SOC control phy regulator, when regulator is disabled, phy link down
4483 	 */
4484 	if (fep->clk_enet_out || fep->reg_phy)
4485 		fep->link = 0;
4486 
4487 	return 0;
4488 }
4489 
4490 static int __maybe_unused fec_resume(struct device *dev)
4491 {
4492 	struct net_device *ndev = dev_get_drvdata(dev);
4493 	struct fec_enet_private *fep = netdev_priv(ndev);
4494 	int ret;
4495 	int val;
4496 
4497 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4498 		ret = regulator_enable(fep->reg_phy);
4499 		if (ret)
4500 			return ret;
4501 	}
4502 
4503 	rtnl_lock();
4504 	if (netif_running(ndev)) {
4505 		if (fep->rpm_active)
4506 			pm_runtime_force_resume(dev);
4507 
4508 		ret = fec_enet_clk_enable(ndev, true);
4509 		if (ret) {
4510 			rtnl_unlock();
4511 			goto failed_clk;
4512 		}
4513 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4514 			fec_enet_stop_mode(fep, false);
4515 			if (fep->wake_irq) {
4516 				disable_irq_wake(fep->wake_irq);
4517 				enable_irq(fep->wake_irq);
4518 			}
4519 
4520 			val = readl(fep->hwp + FEC_ECNTRL);
4521 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4522 			writel(val, fep->hwp + FEC_ECNTRL);
4523 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4524 		} else {
4525 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4526 		}
4527 		fec_restart(ndev);
4528 		netif_tx_lock_bh(ndev);
4529 		netif_device_attach(ndev);
4530 		netif_tx_unlock_bh(ndev);
4531 		napi_enable(&fep->napi);
4532 		phy_init_hw(ndev->phydev);
4533 		phy_start(ndev->phydev);
4534 	}
4535 	rtnl_unlock();
4536 
4537 	return 0;
4538 
4539 failed_clk:
4540 	if (fep->reg_phy)
4541 		regulator_disable(fep->reg_phy);
4542 	return ret;
4543 }
4544 
4545 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4546 {
4547 	struct net_device *ndev = dev_get_drvdata(dev);
4548 	struct fec_enet_private *fep = netdev_priv(ndev);
4549 
4550 	clk_disable_unprepare(fep->clk_ahb);
4551 	clk_disable_unprepare(fep->clk_ipg);
4552 
4553 	return 0;
4554 }
4555 
4556 static int __maybe_unused fec_runtime_resume(struct device *dev)
4557 {
4558 	struct net_device *ndev = dev_get_drvdata(dev);
4559 	struct fec_enet_private *fep = netdev_priv(ndev);
4560 	int ret;
4561 
4562 	ret = clk_prepare_enable(fep->clk_ahb);
4563 	if (ret)
4564 		return ret;
4565 	ret = clk_prepare_enable(fep->clk_ipg);
4566 	if (ret)
4567 		goto failed_clk_ipg;
4568 
4569 	return 0;
4570 
4571 failed_clk_ipg:
4572 	clk_disable_unprepare(fep->clk_ahb);
4573 	return ret;
4574 }
4575 
4576 static const struct dev_pm_ops fec_pm_ops = {
4577 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4578 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4579 };
4580 
4581 static struct platform_driver fec_driver = {
4582 	.driver	= {
4583 		.name	= DRIVER_NAME,
4584 		.pm	= &fec_pm_ops,
4585 		.of_match_table = fec_dt_ids,
4586 		.suppress_bind_attrs = true,
4587 	},
4588 	.id_table = fec_devtype,
4589 	.probe	= fec_probe,
4590 	.remove	= fec_drv_remove,
4591 };
4592 
4593 module_platform_driver(fec_driver);
4594 
4595 MODULE_LICENSE("GPL");
4596