1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/property.h> 56 #include <linux/mdio.h> 57 #include <linux/phy.h> 58 #include <linux/fec.h> 59 #include <linux/of.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 #define FEC_ENET_RSEM_V 0x84 89 #define FEC_ENET_RSFL_V 16 90 #define FEC_ENET_RAEM_V 0x8 91 #define FEC_ENET_RAFL_V 0x8 92 #define FEC_ENET_OPD_V 0xFFF0 93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 94 95 #define FEC_ENET_XDP_PASS 0 96 #define FEC_ENET_XDP_CONSUMED BIT(0) 97 #define FEC_ENET_XDP_TX BIT(1) 98 #define FEC_ENET_XDP_REDIR BIT(2) 99 100 struct fec_devinfo { 101 u32 quirks; 102 }; 103 104 static const struct fec_devinfo fec_imx25_info = { 105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 107 }; 108 109 static const struct fec_devinfo fec_imx27_info = { 110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 111 FEC_QUIRK_HAS_MDIO_C45, 112 }; 113 114 static const struct fec_devinfo fec_imx28_info = { 115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 119 }; 120 121 static const struct fec_devinfo fec_imx6q_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 127 }; 128 129 static const struct fec_devinfo fec_mvf600_info = { 130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 131 FEC_QUIRK_HAS_MDIO_C45, 132 }; 133 134 static const struct fec_devinfo fec_imx6x_info = { 135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 141 FEC_QUIRK_HAS_MDIO_C45, 142 }; 143 144 static const struct fec_devinfo fec_imx6ul_info = { 145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 150 FEC_QUIRK_HAS_MDIO_C45, 151 }; 152 153 static const struct fec_devinfo fec_imx8mq_info = { 154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 161 FEC_QUIRK_HAS_MDIO_C45, 162 }; 163 164 static const struct fec_devinfo fec_imx8qm_info = { 165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 172 }; 173 174 static const struct fec_devinfo fec_s32v234_info = { 175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 179 FEC_QUIRK_HAS_MDIO_C45, 180 }; 181 182 static struct platform_device_id fec_devtype[] = { 183 { 184 /* keep it for coldfire */ 185 .name = DRIVER_NAME, 186 .driver_data = 0, 187 }, { 188 /* sentinel */ 189 } 190 }; 191 MODULE_DEVICE_TABLE(platform, fec_devtype); 192 193 static const struct of_device_id fec_dt_ids[] = { 194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, }, 200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 204 { /* sentinel */ } 205 }; 206 MODULE_DEVICE_TABLE(of, fec_dt_ids); 207 208 static unsigned char macaddr[ETH_ALEN]; 209 module_param_array(macaddr, byte, NULL, 0); 210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 211 212 #if defined(CONFIG_M5272) 213 /* 214 * Some hardware gets it MAC address out of local flash memory. 215 * if this is non-zero then assume it is the address to get MAC from. 216 */ 217 #if defined(CONFIG_NETtel) 218 #define FEC_FLASHMAC 0xf0006006 219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 220 #define FEC_FLASHMAC 0xf0006000 221 #elif defined(CONFIG_CANCam) 222 #define FEC_FLASHMAC 0xf0020000 223 #elif defined (CONFIG_M5272C3) 224 #define FEC_FLASHMAC (0xffe04000 + 4) 225 #elif defined(CONFIG_MOD5272) 226 #define FEC_FLASHMAC 0xffc0406b 227 #else 228 #define FEC_FLASHMAC 0 229 #endif 230 #endif /* CONFIG_M5272 */ 231 232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 233 * 234 * 2048 byte skbufs are allocated. However, alignment requirements 235 * varies between FEC variants. Worst case is 64, so round down by 64. 236 */ 237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 238 #define PKT_MINBUF_SIZE 64 239 240 /* FEC receive acceleration */ 241 #define FEC_RACC_IPDIS BIT(1) 242 #define FEC_RACC_PRODIS BIT(2) 243 #define FEC_RACC_SHIFT16 BIT(7) 244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 245 246 /* MIB Control Register */ 247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 248 249 /* 250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 251 * size bits. Other FEC hardware does not, so we need to take that into 252 * account when setting it. 253 */ 254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 256 defined(CONFIG_ARM64) 257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 258 #else 259 #define OPT_FRAME_SIZE 0 260 #endif 261 262 /* FEC MII MMFR bits definition */ 263 #define FEC_MMFR_ST (1 << 30) 264 #define FEC_MMFR_ST_C45 (0) 265 #define FEC_MMFR_OP_READ (2 << 28) 266 #define FEC_MMFR_OP_READ_C45 (3 << 28) 267 #define FEC_MMFR_OP_WRITE (1 << 28) 268 #define FEC_MMFR_OP_ADDR_WRITE (0) 269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 271 #define FEC_MMFR_TA (2 << 16) 272 #define FEC_MMFR_DATA(v) (v & 0xffff) 273 /* FEC ECR bits definition */ 274 #define FEC_ECR_RESET BIT(0) 275 #define FEC_ECR_ETHEREN BIT(1) 276 #define FEC_ECR_MAGICEN BIT(2) 277 #define FEC_ECR_SLEEP BIT(3) 278 #define FEC_ECR_EN1588 BIT(4) 279 #define FEC_ECR_BYTESWP BIT(8) 280 /* FEC RCR bits definition */ 281 #define FEC_RCR_LOOP BIT(0) 282 #define FEC_RCR_HALFDPX BIT(1) 283 #define FEC_RCR_MII BIT(2) 284 #define FEC_RCR_PROMISC BIT(3) 285 #define FEC_RCR_BC_REJ BIT(4) 286 #define FEC_RCR_FLOWCTL BIT(5) 287 #define FEC_RCR_RMII BIT(8) 288 #define FEC_RCR_10BASET BIT(9) 289 /* TX WMARK bits */ 290 #define FEC_TXWMRK_STRFWD BIT(8) 291 292 #define FEC_MII_TIMEOUT 30000 /* us */ 293 294 /* Transmitter timeout */ 295 #define TX_TIMEOUT (2 * HZ) 296 297 #define FEC_PAUSE_FLAG_AUTONEG 0x1 298 #define FEC_PAUSE_FLAG_ENABLE 0x2 299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define FEC_MAX_TSO_SEGS 100 305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 306 307 #define IS_TSO_HEADER(txq, addr) \ 308 ((addr >= txq->tso_hdrs_dma) && \ 309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 310 311 static int mii_cnt; 312 313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 314 struct bufdesc_prop *bd) 315 { 316 return (bdp >= bd->last) ? bd->base 317 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 318 } 319 320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 321 struct bufdesc_prop *bd) 322 { 323 return (bdp <= bd->base) ? bd->last 324 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 325 } 326 327 static int fec_enet_get_bd_index(struct bufdesc *bdp, 328 struct bufdesc_prop *bd) 329 { 330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 331 } 332 333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 334 { 335 int entries; 336 337 entries = (((const char *)txq->dirty_tx - 338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 339 340 return entries >= 0 ? entries : entries + txq->bd.ring_size; 341 } 342 343 static void swap_buffer(void *bufaddr, int len) 344 { 345 int i; 346 unsigned int *buf = bufaddr; 347 348 for (i = 0; i < len; i += 4, buf++) 349 swab32s(buf); 350 } 351 352 static void fec_dump(struct net_device *ndev) 353 { 354 struct fec_enet_private *fep = netdev_priv(ndev); 355 struct bufdesc *bdp; 356 struct fec_enet_priv_tx_q *txq; 357 int index = 0; 358 359 netdev_info(ndev, "TX ring dump\n"); 360 pr_info("Nr SC addr len SKB\n"); 361 362 txq = fep->tx_queue[0]; 363 bdp = txq->bd.base; 364 365 do { 366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 367 index, 368 bdp == txq->bd.cur ? 'S' : ' ', 369 bdp == txq->dirty_tx ? 'H' : ' ', 370 fec16_to_cpu(bdp->cbd_sc), 371 fec32_to_cpu(bdp->cbd_bufaddr), 372 fec16_to_cpu(bdp->cbd_datlen), 373 txq->tx_buf[index].buf_p); 374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 375 index++; 376 } while (bdp != txq->bd.base); 377 } 378 379 /* 380 * Coldfire does not support DMA coherent allocations, and has historically used 381 * a band-aid with a manual flush in fec_enet_rx_queue. 382 */ 383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 385 gfp_t gfp) 386 { 387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 388 } 389 390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 391 dma_addr_t handle) 392 { 393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 394 } 395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 397 gfp_t gfp) 398 { 399 return dma_alloc_coherent(dev, size, handle, gfp); 400 } 401 402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 403 dma_addr_t handle) 404 { 405 dma_free_coherent(dev, size, cpu_addr, handle); 406 } 407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 408 409 struct fec_dma_devres { 410 size_t size; 411 void *vaddr; 412 dma_addr_t dma_handle; 413 }; 414 415 static void fec_dmam_release(struct device *dev, void *res) 416 { 417 struct fec_dma_devres *this = res; 418 419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 420 } 421 422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 423 gfp_t gfp) 424 { 425 struct fec_dma_devres *dr; 426 void *vaddr; 427 428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 429 if (!dr) 430 return NULL; 431 vaddr = fec_dma_alloc(dev, size, handle, gfp); 432 if (!vaddr) { 433 devres_free(dr); 434 return NULL; 435 } 436 dr->vaddr = vaddr; 437 dr->dma_handle = *handle; 438 dr->size = size; 439 devres_add(dev, dr); 440 return vaddr; 441 } 442 443 static inline bool is_ipv4_pkt(struct sk_buff *skb) 444 { 445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 446 } 447 448 static int 449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 450 { 451 /* Only run for packets requiring a checksum. */ 452 if (skb->ip_summed != CHECKSUM_PARTIAL) 453 return 0; 454 455 if (unlikely(skb_cow_head(skb, 0))) 456 return -1; 457 458 if (is_ipv4_pkt(skb)) 459 ip_hdr(skb)->check = 0; 460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 461 462 return 0; 463 } 464 465 static int 466 fec_enet_create_page_pool(struct fec_enet_private *fep, 467 struct fec_enet_priv_rx_q *rxq, int size) 468 { 469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 470 struct page_pool_params pp_params = { 471 .order = 0, 472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 473 .pool_size = size, 474 .nid = dev_to_node(&fep->pdev->dev), 475 .dev = &fep->pdev->dev, 476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 477 .offset = FEC_ENET_XDP_HEADROOM, 478 .max_len = FEC_ENET_RX_FRSIZE, 479 }; 480 int err; 481 482 rxq->page_pool = page_pool_create(&pp_params); 483 if (IS_ERR(rxq->page_pool)) { 484 err = PTR_ERR(rxq->page_pool); 485 rxq->page_pool = NULL; 486 return err; 487 } 488 489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 490 if (err < 0) 491 goto err_free_pp; 492 493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 494 rxq->page_pool); 495 if (err) 496 goto err_unregister_rxq; 497 498 return 0; 499 500 err_unregister_rxq: 501 xdp_rxq_info_unreg(&rxq->xdp_rxq); 502 err_free_pp: 503 page_pool_destroy(rxq->page_pool); 504 rxq->page_pool = NULL; 505 return err; 506 } 507 508 static struct bufdesc * 509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 510 struct sk_buff *skb, 511 struct net_device *ndev) 512 { 513 struct fec_enet_private *fep = netdev_priv(ndev); 514 struct bufdesc *bdp = txq->bd.cur; 515 struct bufdesc_ex *ebdp; 516 int nr_frags = skb_shinfo(skb)->nr_frags; 517 int frag, frag_len; 518 unsigned short status; 519 unsigned int estatus = 0; 520 skb_frag_t *this_frag; 521 unsigned int index; 522 void *bufaddr; 523 dma_addr_t addr; 524 int i; 525 526 for (frag = 0; frag < nr_frags; frag++) { 527 this_frag = &skb_shinfo(skb)->frags[frag]; 528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 529 ebdp = (struct bufdesc_ex *)bdp; 530 531 status = fec16_to_cpu(bdp->cbd_sc); 532 status &= ~BD_ENET_TX_STATS; 533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 535 536 /* Handle the last BD specially */ 537 if (frag == nr_frags - 1) { 538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 539 if (fep->bufdesc_ex) { 540 estatus |= BD_ENET_TX_INT; 541 if (unlikely(skb_shinfo(skb)->tx_flags & 542 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 543 estatus |= BD_ENET_TX_TS; 544 } 545 } 546 547 if (fep->bufdesc_ex) { 548 if (fep->quirks & FEC_QUIRK_HAS_AVB) 549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 550 if (skb->ip_summed == CHECKSUM_PARTIAL) 551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 552 553 ebdp->cbd_bdu = 0; 554 ebdp->cbd_esc = cpu_to_fec32(estatus); 555 } 556 557 bufaddr = skb_frag_address(this_frag); 558 559 index = fec_enet_get_bd_index(bdp, &txq->bd); 560 if (((unsigned long) bufaddr) & fep->tx_align || 561 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 562 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 563 bufaddr = txq->tx_bounce[index]; 564 565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 566 swap_buffer(bufaddr, frag_len); 567 } 568 569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 570 DMA_TO_DEVICE); 571 if (dma_mapping_error(&fep->pdev->dev, addr)) { 572 if (net_ratelimit()) 573 netdev_err(ndev, "Tx DMA memory map failed\n"); 574 goto dma_mapping_error; 575 } 576 577 bdp->cbd_bufaddr = cpu_to_fec32(addr); 578 bdp->cbd_datlen = cpu_to_fec16(frag_len); 579 /* Make sure the updates to rest of the descriptor are 580 * performed before transferring ownership. 581 */ 582 wmb(); 583 bdp->cbd_sc = cpu_to_fec16(status); 584 } 585 586 return bdp; 587 dma_mapping_error: 588 bdp = txq->bd.cur; 589 for (i = 0; i < frag; i++) { 590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 593 } 594 return ERR_PTR(-ENOMEM); 595 } 596 597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 598 struct sk_buff *skb, struct net_device *ndev) 599 { 600 struct fec_enet_private *fep = netdev_priv(ndev); 601 int nr_frags = skb_shinfo(skb)->nr_frags; 602 struct bufdesc *bdp, *last_bdp; 603 void *bufaddr; 604 dma_addr_t addr; 605 unsigned short status; 606 unsigned short buflen; 607 unsigned int estatus = 0; 608 unsigned int index; 609 int entries_free; 610 611 entries_free = fec_enet_get_free_txdesc_num(txq); 612 if (entries_free < MAX_SKB_FRAGS + 1) { 613 dev_kfree_skb_any(skb); 614 if (net_ratelimit()) 615 netdev_err(ndev, "NOT enough BD for SG!\n"); 616 return NETDEV_TX_OK; 617 } 618 619 /* Protocol checksum off-load for TCP and UDP. */ 620 if (fec_enet_clear_csum(skb, ndev)) { 621 dev_kfree_skb_any(skb); 622 return NETDEV_TX_OK; 623 } 624 625 /* Fill in a Tx ring entry */ 626 bdp = txq->bd.cur; 627 last_bdp = bdp; 628 status = fec16_to_cpu(bdp->cbd_sc); 629 status &= ~BD_ENET_TX_STATS; 630 631 /* Set buffer length and buffer pointer */ 632 bufaddr = skb->data; 633 buflen = skb_headlen(skb); 634 635 index = fec_enet_get_bd_index(bdp, &txq->bd); 636 if (((unsigned long) bufaddr) & fep->tx_align || 637 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 638 memcpy(txq->tx_bounce[index], skb->data, buflen); 639 bufaddr = txq->tx_bounce[index]; 640 641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 642 swap_buffer(bufaddr, buflen); 643 } 644 645 /* Push the data cache so the CPM does not get stale memory data. */ 646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 647 if (dma_mapping_error(&fep->pdev->dev, addr)) { 648 dev_kfree_skb_any(skb); 649 if (net_ratelimit()) 650 netdev_err(ndev, "Tx DMA memory map failed\n"); 651 return NETDEV_TX_OK; 652 } 653 654 if (nr_frags) { 655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 656 if (IS_ERR(last_bdp)) { 657 dma_unmap_single(&fep->pdev->dev, addr, 658 buflen, DMA_TO_DEVICE); 659 dev_kfree_skb_any(skb); 660 return NETDEV_TX_OK; 661 } 662 } else { 663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 664 if (fep->bufdesc_ex) { 665 estatus = BD_ENET_TX_INT; 666 if (unlikely(skb_shinfo(skb)->tx_flags & 667 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 668 estatus |= BD_ENET_TX_TS; 669 } 670 } 671 bdp->cbd_bufaddr = cpu_to_fec32(addr); 672 bdp->cbd_datlen = cpu_to_fec16(buflen); 673 674 if (fep->bufdesc_ex) { 675 676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 677 678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 679 fep->hwts_tx_en)) 680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 681 682 if (fep->quirks & FEC_QUIRK_HAS_AVB) 683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 684 685 if (skb->ip_summed == CHECKSUM_PARTIAL) 686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 687 688 ebdp->cbd_bdu = 0; 689 ebdp->cbd_esc = cpu_to_fec32(estatus); 690 } 691 692 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 693 /* Save skb pointer */ 694 txq->tx_buf[index].buf_p = skb; 695 696 /* Make sure the updates to rest of the descriptor are performed before 697 * transferring ownership. 698 */ 699 wmb(); 700 701 /* Send it on its way. Tell FEC it's ready, interrupt when done, 702 * it's the last BD of the frame, and to put the CRC on the end. 703 */ 704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 705 bdp->cbd_sc = cpu_to_fec16(status); 706 707 /* If this was the last BD in the ring, start at the beginning again. */ 708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 709 710 skb_tx_timestamp(skb); 711 712 /* Make sure the update to bdp is performed before txq->bd.cur. */ 713 wmb(); 714 txq->bd.cur = bdp; 715 716 /* Trigger transmission start */ 717 writel(0, txq->bd.reg_desc_active); 718 719 return 0; 720 } 721 722 static int 723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 724 struct net_device *ndev, 725 struct bufdesc *bdp, int index, char *data, 726 int size, bool last_tcp, bool is_last) 727 { 728 struct fec_enet_private *fep = netdev_priv(ndev); 729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 730 unsigned short status; 731 unsigned int estatus = 0; 732 dma_addr_t addr; 733 734 status = fec16_to_cpu(bdp->cbd_sc); 735 status &= ~BD_ENET_TX_STATS; 736 737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 738 739 if (((unsigned long) data) & fep->tx_align || 740 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 741 memcpy(txq->tx_bounce[index], data, size); 742 data = txq->tx_bounce[index]; 743 744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 745 swap_buffer(data, size); 746 } 747 748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 749 if (dma_mapping_error(&fep->pdev->dev, addr)) { 750 dev_kfree_skb_any(skb); 751 if (net_ratelimit()) 752 netdev_err(ndev, "Tx DMA memory map failed\n"); 753 return NETDEV_TX_OK; 754 } 755 756 bdp->cbd_datlen = cpu_to_fec16(size); 757 bdp->cbd_bufaddr = cpu_to_fec32(addr); 758 759 if (fep->bufdesc_ex) { 760 if (fep->quirks & FEC_QUIRK_HAS_AVB) 761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 762 if (skb->ip_summed == CHECKSUM_PARTIAL) 763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 764 ebdp->cbd_bdu = 0; 765 ebdp->cbd_esc = cpu_to_fec32(estatus); 766 } 767 768 /* Handle the last BD specially */ 769 if (last_tcp) 770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 771 if (is_last) { 772 status |= BD_ENET_TX_INTR; 773 if (fep->bufdesc_ex) 774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 775 } 776 777 bdp->cbd_sc = cpu_to_fec16(status); 778 779 return 0; 780 } 781 782 static int 783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 784 struct sk_buff *skb, struct net_device *ndev, 785 struct bufdesc *bdp, int index) 786 { 787 struct fec_enet_private *fep = netdev_priv(ndev); 788 int hdr_len = skb_tcp_all_headers(skb); 789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 790 void *bufaddr; 791 unsigned long dmabuf; 792 unsigned short status; 793 unsigned int estatus = 0; 794 795 status = fec16_to_cpu(bdp->cbd_sc); 796 status &= ~BD_ENET_TX_STATS; 797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 798 799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 801 if (((unsigned long)bufaddr) & fep->tx_align || 802 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 803 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 804 bufaddr = txq->tx_bounce[index]; 805 806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 807 swap_buffer(bufaddr, hdr_len); 808 809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 810 hdr_len, DMA_TO_DEVICE); 811 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 812 dev_kfree_skb_any(skb); 813 if (net_ratelimit()) 814 netdev_err(ndev, "Tx DMA memory map failed\n"); 815 return NETDEV_TX_OK; 816 } 817 } 818 819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 820 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 821 822 if (fep->bufdesc_ex) { 823 if (fep->quirks & FEC_QUIRK_HAS_AVB) 824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 825 if (skb->ip_summed == CHECKSUM_PARTIAL) 826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 827 ebdp->cbd_bdu = 0; 828 ebdp->cbd_esc = cpu_to_fec32(estatus); 829 } 830 831 bdp->cbd_sc = cpu_to_fec16(status); 832 833 return 0; 834 } 835 836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 837 struct sk_buff *skb, 838 struct net_device *ndev) 839 { 840 struct fec_enet_private *fep = netdev_priv(ndev); 841 int hdr_len, total_len, data_left; 842 struct bufdesc *bdp = txq->bd.cur; 843 struct tso_t tso; 844 unsigned int index = 0; 845 int ret; 846 847 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 848 dev_kfree_skb_any(skb); 849 if (net_ratelimit()) 850 netdev_err(ndev, "NOT enough BD for TSO!\n"); 851 return NETDEV_TX_OK; 852 } 853 854 /* Protocol checksum off-load for TCP and UDP. */ 855 if (fec_enet_clear_csum(skb, ndev)) { 856 dev_kfree_skb_any(skb); 857 return NETDEV_TX_OK; 858 } 859 860 /* Initialize the TSO handler, and prepare the first payload */ 861 hdr_len = tso_start(skb, &tso); 862 863 total_len = skb->len - hdr_len; 864 while (total_len > 0) { 865 char *hdr; 866 867 index = fec_enet_get_bd_index(bdp, &txq->bd); 868 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 869 total_len -= data_left; 870 871 /* prepare packet headers: MAC + IP + TCP */ 872 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 873 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 874 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 875 if (ret) 876 goto err_release; 877 878 while (data_left > 0) { 879 int size; 880 881 size = min_t(int, tso.size, data_left); 882 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 883 index = fec_enet_get_bd_index(bdp, &txq->bd); 884 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 885 bdp, index, 886 tso.data, size, 887 size == data_left, 888 total_len == 0); 889 if (ret) 890 goto err_release; 891 892 data_left -= size; 893 tso_build_data(skb, &tso, size); 894 } 895 896 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 897 } 898 899 /* Save skb pointer */ 900 txq->tx_buf[index].buf_p = skb; 901 902 skb_tx_timestamp(skb); 903 txq->bd.cur = bdp; 904 905 /* Trigger transmission start */ 906 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 907 !readl(txq->bd.reg_desc_active) || 908 !readl(txq->bd.reg_desc_active) || 909 !readl(txq->bd.reg_desc_active) || 910 !readl(txq->bd.reg_desc_active)) 911 writel(0, txq->bd.reg_desc_active); 912 913 return 0; 914 915 err_release: 916 /* TODO: Release all used data descriptors for TSO */ 917 return ret; 918 } 919 920 static netdev_tx_t 921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 922 { 923 struct fec_enet_private *fep = netdev_priv(ndev); 924 int entries_free; 925 unsigned short queue; 926 struct fec_enet_priv_tx_q *txq; 927 struct netdev_queue *nq; 928 int ret; 929 930 queue = skb_get_queue_mapping(skb); 931 txq = fep->tx_queue[queue]; 932 nq = netdev_get_tx_queue(ndev, queue); 933 934 if (skb_is_gso(skb)) 935 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 936 else 937 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 938 if (ret) 939 return ret; 940 941 entries_free = fec_enet_get_free_txdesc_num(txq); 942 if (entries_free <= txq->tx_stop_threshold) 943 netif_tx_stop_queue(nq); 944 945 return NETDEV_TX_OK; 946 } 947 948 /* Init RX & TX buffer descriptors 949 */ 950 static void fec_enet_bd_init(struct net_device *dev) 951 { 952 struct fec_enet_private *fep = netdev_priv(dev); 953 struct fec_enet_priv_tx_q *txq; 954 struct fec_enet_priv_rx_q *rxq; 955 struct bufdesc *bdp; 956 unsigned int i; 957 unsigned int q; 958 959 for (q = 0; q < fep->num_rx_queues; q++) { 960 /* Initialize the receive buffer descriptors. */ 961 rxq = fep->rx_queue[q]; 962 bdp = rxq->bd.base; 963 964 for (i = 0; i < rxq->bd.ring_size; i++) { 965 966 /* Initialize the BD for every fragment in the page. */ 967 if (bdp->cbd_bufaddr) 968 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 969 else 970 bdp->cbd_sc = cpu_to_fec16(0); 971 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 972 } 973 974 /* Set the last buffer to wrap */ 975 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 976 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 977 978 rxq->bd.cur = rxq->bd.base; 979 } 980 981 for (q = 0; q < fep->num_tx_queues; q++) { 982 /* ...and the same for transmit */ 983 txq = fep->tx_queue[q]; 984 bdp = txq->bd.base; 985 txq->bd.cur = bdp; 986 987 for (i = 0; i < txq->bd.ring_size; i++) { 988 /* Initialize the BD for every fragment in the page. */ 989 bdp->cbd_sc = cpu_to_fec16(0); 990 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 991 if (bdp->cbd_bufaddr && 992 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 993 dma_unmap_single(&fep->pdev->dev, 994 fec32_to_cpu(bdp->cbd_bufaddr), 995 fec16_to_cpu(bdp->cbd_datlen), 996 DMA_TO_DEVICE); 997 if (txq->tx_buf[i].buf_p) 998 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 999 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 1000 if (bdp->cbd_bufaddr) 1001 dma_unmap_single(&fep->pdev->dev, 1002 fec32_to_cpu(bdp->cbd_bufaddr), 1003 fec16_to_cpu(bdp->cbd_datlen), 1004 DMA_TO_DEVICE); 1005 1006 if (txq->tx_buf[i].buf_p) 1007 xdp_return_frame(txq->tx_buf[i].buf_p); 1008 } else { 1009 struct page *page = txq->tx_buf[i].buf_p; 1010 1011 if (page) 1012 page_pool_put_page(page->pp, page, 0, false); 1013 } 1014 1015 txq->tx_buf[i].buf_p = NULL; 1016 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1017 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1018 bdp->cbd_bufaddr = cpu_to_fec32(0); 1019 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1020 } 1021 1022 /* Set the last buffer to wrap */ 1023 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1024 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1025 txq->dirty_tx = bdp; 1026 } 1027 } 1028 1029 static void fec_enet_active_rxring(struct net_device *ndev) 1030 { 1031 struct fec_enet_private *fep = netdev_priv(ndev); 1032 int i; 1033 1034 for (i = 0; i < fep->num_rx_queues; i++) 1035 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1036 } 1037 1038 static void fec_enet_enable_ring(struct net_device *ndev) 1039 { 1040 struct fec_enet_private *fep = netdev_priv(ndev); 1041 struct fec_enet_priv_tx_q *txq; 1042 struct fec_enet_priv_rx_q *rxq; 1043 int i; 1044 1045 for (i = 0; i < fep->num_rx_queues; i++) { 1046 rxq = fep->rx_queue[i]; 1047 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1048 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1049 1050 /* enable DMA1/2 */ 1051 if (i) 1052 writel(RCMR_MATCHEN | RCMR_CMP(i), 1053 fep->hwp + FEC_RCMR(i)); 1054 } 1055 1056 for (i = 0; i < fep->num_tx_queues; i++) { 1057 txq = fep->tx_queue[i]; 1058 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1059 1060 /* enable DMA1/2 */ 1061 if (i) 1062 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1063 fep->hwp + FEC_DMA_CFG(i)); 1064 } 1065 } 1066 1067 /* 1068 * This function is called to start or restart the FEC during a link 1069 * change, transmit timeout, or to reconfigure the FEC. The network 1070 * packet processing for this device must be stopped before this call. 1071 */ 1072 static void 1073 fec_restart(struct net_device *ndev) 1074 { 1075 struct fec_enet_private *fep = netdev_priv(ndev); 1076 u32 temp_mac[2]; 1077 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1078 u32 ecntl = FEC_ECR_ETHEREN; 1079 1080 fec_ptp_save_state(fep); 1081 1082 /* Whack a reset. We should wait for this. 1083 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1084 * instead of reset MAC itself. 1085 */ 1086 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1087 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1088 writel(0, fep->hwp + FEC_ECNTRL); 1089 } else { 1090 writel(1, fep->hwp + FEC_ECNTRL); 1091 udelay(10); 1092 } 1093 1094 /* 1095 * enet-mac reset will reset mac address registers too, 1096 * so need to reconfigure it. 1097 */ 1098 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1099 writel((__force u32)cpu_to_be32(temp_mac[0]), 1100 fep->hwp + FEC_ADDR_LOW); 1101 writel((__force u32)cpu_to_be32(temp_mac[1]), 1102 fep->hwp + FEC_ADDR_HIGH); 1103 1104 /* Clear any outstanding interrupt, except MDIO. */ 1105 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1106 1107 fec_enet_bd_init(ndev); 1108 1109 fec_enet_enable_ring(ndev); 1110 1111 /* Enable MII mode */ 1112 if (fep->full_duplex == DUPLEX_FULL) { 1113 /* FD enable */ 1114 writel(0x04, fep->hwp + FEC_X_CNTRL); 1115 } else { 1116 /* No Rcv on Xmit */ 1117 rcntl |= 0x02; 1118 writel(0x0, fep->hwp + FEC_X_CNTRL); 1119 } 1120 1121 /* Set MII speed */ 1122 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1123 1124 #if !defined(CONFIG_M5272) 1125 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1126 u32 val = readl(fep->hwp + FEC_RACC); 1127 1128 /* align IP header */ 1129 val |= FEC_RACC_SHIFT16; 1130 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1131 /* set RX checksum */ 1132 val |= FEC_RACC_OPTIONS; 1133 else 1134 val &= ~FEC_RACC_OPTIONS; 1135 writel(val, fep->hwp + FEC_RACC); 1136 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1137 } 1138 #endif 1139 1140 /* 1141 * The phy interface and speed need to get configured 1142 * differently on enet-mac. 1143 */ 1144 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1145 /* Enable flow control and length check */ 1146 rcntl |= 0x40000000 | 0x00000020; 1147 1148 /* RGMII, RMII or MII */ 1149 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1150 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1151 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1152 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1153 rcntl |= (1 << 6); 1154 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1155 rcntl |= FEC_RCR_RMII; 1156 else 1157 rcntl &= ~FEC_RCR_RMII; 1158 1159 /* 1G, 100M or 10M */ 1160 if (ndev->phydev) { 1161 if (ndev->phydev->speed == SPEED_1000) 1162 ecntl |= (1 << 5); 1163 else if (ndev->phydev->speed == SPEED_100) 1164 rcntl &= ~FEC_RCR_10BASET; 1165 else 1166 rcntl |= FEC_RCR_10BASET; 1167 } 1168 } else { 1169 #ifdef FEC_MIIGSK_ENR 1170 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1171 u32 cfgr; 1172 /* disable the gasket and wait */ 1173 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1174 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1175 udelay(1); 1176 1177 /* 1178 * configure the gasket: 1179 * RMII, 50 MHz, no loopback, no echo 1180 * MII, 25 MHz, no loopback, no echo 1181 */ 1182 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1183 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1184 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1185 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1186 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1187 1188 /* re-enable the gasket */ 1189 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1190 } 1191 #endif 1192 } 1193 1194 #if !defined(CONFIG_M5272) 1195 /* enable pause frame*/ 1196 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1197 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1198 ndev->phydev && ndev->phydev->pause)) { 1199 rcntl |= FEC_RCR_FLOWCTL; 1200 1201 /* set FIFO threshold parameter to reduce overrun */ 1202 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1203 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1204 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1205 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1206 1207 /* OPD */ 1208 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1209 } else { 1210 rcntl &= ~FEC_RCR_FLOWCTL; 1211 } 1212 #endif /* !defined(CONFIG_M5272) */ 1213 1214 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1215 1216 /* Setup multicast filter. */ 1217 set_multicast_list(ndev); 1218 #ifndef CONFIG_M5272 1219 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1220 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1221 #endif 1222 1223 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1224 /* enable ENET endian swap */ 1225 ecntl |= FEC_ECR_BYTESWP; 1226 /* enable ENET store and forward mode */ 1227 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); 1228 } 1229 1230 if (fep->bufdesc_ex) 1231 ecntl |= FEC_ECR_EN1588; 1232 1233 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1234 fep->rgmii_txc_dly) 1235 ecntl |= FEC_ENET_TXC_DLY; 1236 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1237 fep->rgmii_rxc_dly) 1238 ecntl |= FEC_ENET_RXC_DLY; 1239 1240 #ifndef CONFIG_M5272 1241 /* Enable the MIB statistic event counters */ 1242 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1243 #endif 1244 1245 /* And last, enable the transmit and receive processing */ 1246 writel(ecntl, fep->hwp + FEC_ECNTRL); 1247 fec_enet_active_rxring(ndev); 1248 1249 if (fep->bufdesc_ex) { 1250 fec_ptp_start_cyclecounter(ndev); 1251 fec_ptp_restore_state(fep); 1252 } 1253 1254 /* Enable interrupts we wish to service */ 1255 if (fep->link) 1256 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1257 else 1258 writel(0, fep->hwp + FEC_IMASK); 1259 1260 /* Init the interrupt coalescing */ 1261 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1262 fec_enet_itr_coal_set(ndev); 1263 } 1264 1265 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1266 { 1267 if (!(of_machine_is_compatible("fsl,imx8qm") || 1268 of_machine_is_compatible("fsl,imx8qxp") || 1269 of_machine_is_compatible("fsl,imx8dxl"))) 1270 return 0; 1271 1272 return imx_scu_get_handle(&fep->ipc_handle); 1273 } 1274 1275 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1276 { 1277 struct device_node *np = fep->pdev->dev.of_node; 1278 u32 rsrc_id, val; 1279 int idx; 1280 1281 if (!np || !fep->ipc_handle) 1282 return; 1283 1284 idx = of_alias_get_id(np, "ethernet"); 1285 if (idx < 0) 1286 idx = 0; 1287 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1288 1289 val = enabled ? 1 : 0; 1290 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1291 } 1292 1293 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1294 { 1295 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1296 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1297 1298 if (stop_gpr->gpr) { 1299 if (enabled) 1300 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1301 BIT(stop_gpr->bit), 1302 BIT(stop_gpr->bit)); 1303 else 1304 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1305 BIT(stop_gpr->bit), 0); 1306 } else if (pdata && pdata->sleep_mode_enable) { 1307 pdata->sleep_mode_enable(enabled); 1308 } else { 1309 fec_enet_ipg_stop_set(fep, enabled); 1310 } 1311 } 1312 1313 static void fec_irqs_disable(struct net_device *ndev) 1314 { 1315 struct fec_enet_private *fep = netdev_priv(ndev); 1316 1317 writel(0, fep->hwp + FEC_IMASK); 1318 } 1319 1320 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1321 { 1322 struct fec_enet_private *fep = netdev_priv(ndev); 1323 1324 writel(0, fep->hwp + FEC_IMASK); 1325 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1326 } 1327 1328 static void 1329 fec_stop(struct net_device *ndev) 1330 { 1331 struct fec_enet_private *fep = netdev_priv(ndev); 1332 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; 1333 u32 val; 1334 1335 /* We cannot expect a graceful transmit stop without link !!! */ 1336 if (fep->link) { 1337 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1338 udelay(10); 1339 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1340 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1341 } 1342 1343 fec_ptp_save_state(fep); 1344 1345 /* Whack a reset. We should wait for this. 1346 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1347 * instead of reset MAC itself. 1348 */ 1349 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1350 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1351 writel(0, fep->hwp + FEC_ECNTRL); 1352 } else { 1353 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); 1354 udelay(10); 1355 } 1356 } else { 1357 val = readl(fep->hwp + FEC_ECNTRL); 1358 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1359 writel(val, fep->hwp + FEC_ECNTRL); 1360 } 1361 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1362 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1363 1364 /* We have to keep ENET enabled to have MII interrupt stay working */ 1365 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1366 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1367 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); 1368 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1369 } 1370 1371 if (fep->bufdesc_ex) { 1372 val = readl(fep->hwp + FEC_ECNTRL); 1373 val |= FEC_ECR_EN1588; 1374 writel(val, fep->hwp + FEC_ECNTRL); 1375 1376 fec_ptp_start_cyclecounter(ndev); 1377 fec_ptp_restore_state(fep); 1378 } 1379 } 1380 1381 static void 1382 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1383 { 1384 struct fec_enet_private *fep = netdev_priv(ndev); 1385 1386 fec_dump(ndev); 1387 1388 ndev->stats.tx_errors++; 1389 1390 schedule_work(&fep->tx_timeout_work); 1391 } 1392 1393 static void fec_enet_timeout_work(struct work_struct *work) 1394 { 1395 struct fec_enet_private *fep = 1396 container_of(work, struct fec_enet_private, tx_timeout_work); 1397 struct net_device *ndev = fep->netdev; 1398 1399 rtnl_lock(); 1400 if (netif_device_present(ndev) || netif_running(ndev)) { 1401 napi_disable(&fep->napi); 1402 netif_tx_lock_bh(ndev); 1403 fec_restart(ndev); 1404 netif_tx_wake_all_queues(ndev); 1405 netif_tx_unlock_bh(ndev); 1406 napi_enable(&fep->napi); 1407 } 1408 rtnl_unlock(); 1409 } 1410 1411 static void 1412 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1413 struct skb_shared_hwtstamps *hwtstamps) 1414 { 1415 unsigned long flags; 1416 u64 ns; 1417 1418 spin_lock_irqsave(&fep->tmreg_lock, flags); 1419 ns = timecounter_cyc2time(&fep->tc, ts); 1420 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1421 1422 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1423 hwtstamps->hwtstamp = ns_to_ktime(ns); 1424 } 1425 1426 static void 1427 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1428 { 1429 struct fec_enet_private *fep; 1430 struct xdp_frame *xdpf; 1431 struct bufdesc *bdp; 1432 unsigned short status; 1433 struct sk_buff *skb; 1434 struct fec_enet_priv_tx_q *txq; 1435 struct netdev_queue *nq; 1436 int index = 0; 1437 int entries_free; 1438 struct page *page; 1439 int frame_len; 1440 1441 fep = netdev_priv(ndev); 1442 1443 txq = fep->tx_queue[queue_id]; 1444 /* get next bdp of dirty_tx */ 1445 nq = netdev_get_tx_queue(ndev, queue_id); 1446 bdp = txq->dirty_tx; 1447 1448 /* get next bdp of dirty_tx */ 1449 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1450 1451 while (bdp != READ_ONCE(txq->bd.cur)) { 1452 /* Order the load of bd.cur and cbd_sc */ 1453 rmb(); 1454 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1455 if (status & BD_ENET_TX_READY) 1456 break; 1457 1458 index = fec_enet_get_bd_index(bdp, &txq->bd); 1459 1460 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1461 skb = txq->tx_buf[index].buf_p; 1462 if (bdp->cbd_bufaddr && 1463 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1464 dma_unmap_single(&fep->pdev->dev, 1465 fec32_to_cpu(bdp->cbd_bufaddr), 1466 fec16_to_cpu(bdp->cbd_datlen), 1467 DMA_TO_DEVICE); 1468 bdp->cbd_bufaddr = cpu_to_fec32(0); 1469 if (!skb) 1470 goto tx_buf_done; 1471 } else { 1472 /* Tx processing cannot call any XDP (or page pool) APIs if 1473 * the "budget" is 0. Because NAPI is called with budget of 1474 * 0 (such as netpoll) indicates we may be in an IRQ context, 1475 * however, we can't use the page pool from IRQ context. 1476 */ 1477 if (unlikely(!budget)) 1478 break; 1479 1480 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1481 xdpf = txq->tx_buf[index].buf_p; 1482 if (bdp->cbd_bufaddr) 1483 dma_unmap_single(&fep->pdev->dev, 1484 fec32_to_cpu(bdp->cbd_bufaddr), 1485 fec16_to_cpu(bdp->cbd_datlen), 1486 DMA_TO_DEVICE); 1487 } else { 1488 page = txq->tx_buf[index].buf_p; 1489 } 1490 1491 bdp->cbd_bufaddr = cpu_to_fec32(0); 1492 if (unlikely(!txq->tx_buf[index].buf_p)) { 1493 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1494 goto tx_buf_done; 1495 } 1496 1497 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1498 } 1499 1500 /* Check for errors. */ 1501 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1502 BD_ENET_TX_RL | BD_ENET_TX_UN | 1503 BD_ENET_TX_CSL)) { 1504 ndev->stats.tx_errors++; 1505 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1506 ndev->stats.tx_heartbeat_errors++; 1507 if (status & BD_ENET_TX_LC) /* Late collision */ 1508 ndev->stats.tx_window_errors++; 1509 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1510 ndev->stats.tx_aborted_errors++; 1511 if (status & BD_ENET_TX_UN) /* Underrun */ 1512 ndev->stats.tx_fifo_errors++; 1513 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1514 ndev->stats.tx_carrier_errors++; 1515 } else { 1516 ndev->stats.tx_packets++; 1517 1518 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1519 ndev->stats.tx_bytes += skb->len; 1520 else 1521 ndev->stats.tx_bytes += frame_len; 1522 } 1523 1524 /* Deferred means some collisions occurred during transmit, 1525 * but we eventually sent the packet OK. 1526 */ 1527 if (status & BD_ENET_TX_DEF) 1528 ndev->stats.collisions++; 1529 1530 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1531 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1532 * are to time stamp the packet, so we still need to check time 1533 * stamping enabled flag. 1534 */ 1535 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1536 fep->hwts_tx_en) && fep->bufdesc_ex) { 1537 struct skb_shared_hwtstamps shhwtstamps; 1538 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1539 1540 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1541 skb_tstamp_tx(skb, &shhwtstamps); 1542 } 1543 1544 /* Free the sk buffer associated with this last transmit */ 1545 napi_consume_skb(skb, budget); 1546 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1547 xdp_return_frame_rx_napi(xdpf); 1548 } else { /* recycle pages of XDP_TX frames */ 1549 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1550 page_pool_put_page(page->pp, page, 0, true); 1551 } 1552 1553 txq->tx_buf[index].buf_p = NULL; 1554 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1555 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1556 1557 tx_buf_done: 1558 /* Make sure the update to bdp and tx_buf are performed 1559 * before dirty_tx 1560 */ 1561 wmb(); 1562 txq->dirty_tx = bdp; 1563 1564 /* Update pointer to next buffer descriptor to be transmitted */ 1565 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1566 1567 /* Since we have freed up a buffer, the ring is no longer full 1568 */ 1569 if (netif_tx_queue_stopped(nq)) { 1570 entries_free = fec_enet_get_free_txdesc_num(txq); 1571 if (entries_free >= txq->tx_wake_threshold) 1572 netif_tx_wake_queue(nq); 1573 } 1574 } 1575 1576 /* ERR006358: Keep the transmitter going */ 1577 if (bdp != txq->bd.cur && 1578 readl(txq->bd.reg_desc_active) == 0) 1579 writel(0, txq->bd.reg_desc_active); 1580 } 1581 1582 static void fec_enet_tx(struct net_device *ndev, int budget) 1583 { 1584 struct fec_enet_private *fep = netdev_priv(ndev); 1585 int i; 1586 1587 /* Make sure that AVB queues are processed first. */ 1588 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1589 fec_enet_tx_queue(ndev, i, budget); 1590 } 1591 1592 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1593 struct bufdesc *bdp, int index) 1594 { 1595 struct page *new_page; 1596 dma_addr_t phys_addr; 1597 1598 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1599 WARN_ON(!new_page); 1600 rxq->rx_skb_info[index].page = new_page; 1601 1602 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1603 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1604 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1605 } 1606 1607 static u32 1608 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1609 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1610 { 1611 unsigned int sync, len = xdp->data_end - xdp->data; 1612 u32 ret = FEC_ENET_XDP_PASS; 1613 struct page *page; 1614 int err; 1615 u32 act; 1616 1617 act = bpf_prog_run_xdp(prog, xdp); 1618 1619 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1620 * max len CPU touch 1621 */ 1622 sync = xdp->data_end - xdp->data; 1623 sync = max(sync, len); 1624 1625 switch (act) { 1626 case XDP_PASS: 1627 rxq->stats[RX_XDP_PASS]++; 1628 ret = FEC_ENET_XDP_PASS; 1629 break; 1630 1631 case XDP_REDIRECT: 1632 rxq->stats[RX_XDP_REDIRECT]++; 1633 err = xdp_do_redirect(fep->netdev, xdp, prog); 1634 if (unlikely(err)) 1635 goto xdp_err; 1636 1637 ret = FEC_ENET_XDP_REDIR; 1638 break; 1639 1640 case XDP_TX: 1641 rxq->stats[RX_XDP_TX]++; 1642 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1643 if (unlikely(err)) { 1644 rxq->stats[RX_XDP_TX_ERRORS]++; 1645 goto xdp_err; 1646 } 1647 1648 ret = FEC_ENET_XDP_TX; 1649 break; 1650 1651 default: 1652 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1653 fallthrough; 1654 1655 case XDP_ABORTED: 1656 fallthrough; /* handle aborts by dropping packet */ 1657 1658 case XDP_DROP: 1659 rxq->stats[RX_XDP_DROP]++; 1660 xdp_err: 1661 ret = FEC_ENET_XDP_CONSUMED; 1662 page = virt_to_head_page(xdp->data); 1663 page_pool_put_page(rxq->page_pool, page, sync, true); 1664 if (act != XDP_DROP) 1665 trace_xdp_exception(fep->netdev, prog, act); 1666 break; 1667 } 1668 1669 return ret; 1670 } 1671 1672 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1673 * When we update through the ring, if the next incoming buffer has 1674 * not been given to the system, we just set the empty indicator, 1675 * effectively tossing the packet. 1676 */ 1677 static int 1678 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1679 { 1680 struct fec_enet_private *fep = netdev_priv(ndev); 1681 struct fec_enet_priv_rx_q *rxq; 1682 struct bufdesc *bdp; 1683 unsigned short status; 1684 struct sk_buff *skb; 1685 ushort pkt_len; 1686 __u8 *data; 1687 int pkt_received = 0; 1688 struct bufdesc_ex *ebdp = NULL; 1689 bool vlan_packet_rcvd = false; 1690 u16 vlan_tag; 1691 int index = 0; 1692 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1693 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1694 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1695 u32 data_start = FEC_ENET_XDP_HEADROOM; 1696 int cpu = smp_processor_id(); 1697 struct xdp_buff xdp; 1698 struct page *page; 1699 u32 sub_len = 4; 1700 1701 #if !defined(CONFIG_M5272) 1702 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1703 * FEC_RACC_SHIFT16 is set by default in the probe function. 1704 */ 1705 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1706 data_start += 2; 1707 sub_len += 2; 1708 } 1709 #endif 1710 1711 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1712 /* 1713 * Hacky flush of all caches instead of using the DMA API for the TSO 1714 * headers. 1715 */ 1716 flush_cache_all(); 1717 #endif 1718 rxq = fep->rx_queue[queue_id]; 1719 1720 /* First, grab all of the stats for the incoming packet. 1721 * These get messed up if we get called due to a busy condition. 1722 */ 1723 bdp = rxq->bd.cur; 1724 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1725 1726 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1727 1728 if (pkt_received >= budget) 1729 break; 1730 pkt_received++; 1731 1732 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1733 1734 /* Check for errors. */ 1735 status ^= BD_ENET_RX_LAST; 1736 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1737 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1738 BD_ENET_RX_CL)) { 1739 ndev->stats.rx_errors++; 1740 if (status & BD_ENET_RX_OV) { 1741 /* FIFO overrun */ 1742 ndev->stats.rx_fifo_errors++; 1743 goto rx_processing_done; 1744 } 1745 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1746 | BD_ENET_RX_LAST)) { 1747 /* Frame too long or too short. */ 1748 ndev->stats.rx_length_errors++; 1749 if (status & BD_ENET_RX_LAST) 1750 netdev_err(ndev, "rcv is not +last\n"); 1751 } 1752 if (status & BD_ENET_RX_CR) /* CRC Error */ 1753 ndev->stats.rx_crc_errors++; 1754 /* Report late collisions as a frame error. */ 1755 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1756 ndev->stats.rx_frame_errors++; 1757 goto rx_processing_done; 1758 } 1759 1760 /* Process the incoming frame. */ 1761 ndev->stats.rx_packets++; 1762 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1763 ndev->stats.rx_bytes += pkt_len; 1764 1765 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1766 page = rxq->rx_skb_info[index].page; 1767 dma_sync_single_for_cpu(&fep->pdev->dev, 1768 fec32_to_cpu(bdp->cbd_bufaddr), 1769 pkt_len, 1770 DMA_FROM_DEVICE); 1771 prefetch(page_address(page)); 1772 fec_enet_update_cbd(rxq, bdp, index); 1773 1774 if (xdp_prog) { 1775 xdp_buff_clear_frags_flag(&xdp); 1776 /* subtract 16bit shift and FCS */ 1777 xdp_prepare_buff(&xdp, page_address(page), 1778 data_start, pkt_len - sub_len, false); 1779 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1780 xdp_result |= ret; 1781 if (ret != FEC_ENET_XDP_PASS) 1782 goto rx_processing_done; 1783 } 1784 1785 /* The packet length includes FCS, but we don't want to 1786 * include that when passing upstream as it messes up 1787 * bridging applications. 1788 */ 1789 skb = build_skb(page_address(page), PAGE_SIZE); 1790 if (unlikely(!skb)) { 1791 page_pool_recycle_direct(rxq->page_pool, page); 1792 ndev->stats.rx_dropped++; 1793 1794 netdev_err_once(ndev, "build_skb failed!\n"); 1795 goto rx_processing_done; 1796 } 1797 1798 skb_reserve(skb, data_start); 1799 skb_put(skb, pkt_len - sub_len); 1800 skb_mark_for_recycle(skb); 1801 1802 if (unlikely(need_swap)) { 1803 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1804 swap_buffer(data, pkt_len); 1805 } 1806 data = skb->data; 1807 1808 /* Extract the enhanced buffer descriptor */ 1809 ebdp = NULL; 1810 if (fep->bufdesc_ex) 1811 ebdp = (struct bufdesc_ex *)bdp; 1812 1813 /* If this is a VLAN packet remove the VLAN Tag */ 1814 vlan_packet_rcvd = false; 1815 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1816 fep->bufdesc_ex && 1817 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1818 /* Push and remove the vlan tag */ 1819 struct vlan_hdr *vlan_header = 1820 (struct vlan_hdr *) (data + ETH_HLEN); 1821 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1822 1823 vlan_packet_rcvd = true; 1824 1825 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1826 skb_pull(skb, VLAN_HLEN); 1827 } 1828 1829 skb->protocol = eth_type_trans(skb, ndev); 1830 1831 /* Get receive timestamp from the skb */ 1832 if (fep->hwts_rx_en && fep->bufdesc_ex) 1833 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1834 skb_hwtstamps(skb)); 1835 1836 if (fep->bufdesc_ex && 1837 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1838 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1839 /* don't check it */ 1840 skb->ip_summed = CHECKSUM_UNNECESSARY; 1841 } else { 1842 skb_checksum_none_assert(skb); 1843 } 1844 } 1845 1846 /* Handle received VLAN packets */ 1847 if (vlan_packet_rcvd) 1848 __vlan_hwaccel_put_tag(skb, 1849 htons(ETH_P_8021Q), 1850 vlan_tag); 1851 1852 skb_record_rx_queue(skb, queue_id); 1853 napi_gro_receive(&fep->napi, skb); 1854 1855 rx_processing_done: 1856 /* Clear the status flags for this buffer */ 1857 status &= ~BD_ENET_RX_STATS; 1858 1859 /* Mark the buffer empty */ 1860 status |= BD_ENET_RX_EMPTY; 1861 1862 if (fep->bufdesc_ex) { 1863 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1864 1865 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1866 ebdp->cbd_prot = 0; 1867 ebdp->cbd_bdu = 0; 1868 } 1869 /* Make sure the updates to rest of the descriptor are 1870 * performed before transferring ownership. 1871 */ 1872 wmb(); 1873 bdp->cbd_sc = cpu_to_fec16(status); 1874 1875 /* Update BD pointer to next entry */ 1876 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1877 1878 /* Doing this here will keep the FEC running while we process 1879 * incoming frames. On a heavily loaded network, we should be 1880 * able to keep up at the expense of system resources. 1881 */ 1882 writel(0, rxq->bd.reg_desc_active); 1883 } 1884 rxq->bd.cur = bdp; 1885 1886 if (xdp_result & FEC_ENET_XDP_REDIR) 1887 xdp_do_flush(); 1888 1889 return pkt_received; 1890 } 1891 1892 static int fec_enet_rx(struct net_device *ndev, int budget) 1893 { 1894 struct fec_enet_private *fep = netdev_priv(ndev); 1895 int i, done = 0; 1896 1897 /* Make sure that AVB queues are processed first. */ 1898 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1899 done += fec_enet_rx_queue(ndev, budget - done, i); 1900 1901 return done; 1902 } 1903 1904 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1905 { 1906 uint int_events; 1907 1908 int_events = readl(fep->hwp + FEC_IEVENT); 1909 1910 /* Don't clear MDIO events, we poll for those */ 1911 int_events &= ~FEC_ENET_MII; 1912 1913 writel(int_events, fep->hwp + FEC_IEVENT); 1914 1915 return int_events != 0; 1916 } 1917 1918 static irqreturn_t 1919 fec_enet_interrupt(int irq, void *dev_id) 1920 { 1921 struct net_device *ndev = dev_id; 1922 struct fec_enet_private *fep = netdev_priv(ndev); 1923 irqreturn_t ret = IRQ_NONE; 1924 1925 if (fec_enet_collect_events(fep) && fep->link) { 1926 ret = IRQ_HANDLED; 1927 1928 if (napi_schedule_prep(&fep->napi)) { 1929 /* Disable interrupts */ 1930 writel(0, fep->hwp + FEC_IMASK); 1931 __napi_schedule(&fep->napi); 1932 } 1933 } 1934 1935 return ret; 1936 } 1937 1938 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1939 { 1940 struct net_device *ndev = napi->dev; 1941 struct fec_enet_private *fep = netdev_priv(ndev); 1942 int done = 0; 1943 1944 do { 1945 done += fec_enet_rx(ndev, budget - done); 1946 fec_enet_tx(ndev, budget); 1947 } while ((done < budget) && fec_enet_collect_events(fep)); 1948 1949 if (done < budget) { 1950 napi_complete_done(napi, done); 1951 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1952 } 1953 1954 return done; 1955 } 1956 1957 /* ------------------------------------------------------------------------- */ 1958 static int fec_get_mac(struct net_device *ndev) 1959 { 1960 struct fec_enet_private *fep = netdev_priv(ndev); 1961 unsigned char *iap, tmpaddr[ETH_ALEN]; 1962 int ret; 1963 1964 /* 1965 * try to get mac address in following order: 1966 * 1967 * 1) module parameter via kernel command line in form 1968 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1969 */ 1970 iap = macaddr; 1971 1972 /* 1973 * 2) from device tree data 1974 */ 1975 if (!is_valid_ether_addr(iap)) { 1976 struct device_node *np = fep->pdev->dev.of_node; 1977 if (np) { 1978 ret = of_get_mac_address(np, tmpaddr); 1979 if (!ret) 1980 iap = tmpaddr; 1981 else if (ret == -EPROBE_DEFER) 1982 return ret; 1983 } 1984 } 1985 1986 /* 1987 * 3) from flash or fuse (via platform data) 1988 */ 1989 if (!is_valid_ether_addr(iap)) { 1990 #ifdef CONFIG_M5272 1991 if (FEC_FLASHMAC) 1992 iap = (unsigned char *)FEC_FLASHMAC; 1993 #else 1994 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1995 1996 if (pdata) 1997 iap = (unsigned char *)&pdata->mac; 1998 #endif 1999 } 2000 2001 /* 2002 * 4) FEC mac registers set by bootloader 2003 */ 2004 if (!is_valid_ether_addr(iap)) { 2005 *((__be32 *) &tmpaddr[0]) = 2006 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 2007 *((__be16 *) &tmpaddr[4]) = 2008 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 2009 iap = &tmpaddr[0]; 2010 } 2011 2012 /* 2013 * 5) random mac address 2014 */ 2015 if (!is_valid_ether_addr(iap)) { 2016 /* Report it and use a random ethernet address instead */ 2017 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 2018 eth_hw_addr_random(ndev); 2019 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 2020 ndev->dev_addr); 2021 return 0; 2022 } 2023 2024 /* Adjust MAC if using macaddr */ 2025 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 2026 2027 return 0; 2028 } 2029 2030 /* ------------------------------------------------------------------------- */ 2031 2032 /* 2033 * Phy section 2034 */ 2035 2036 /* LPI Sleep Ts count base on tx clk (clk_ref). 2037 * The lpi sleep cnt value = X us / (cycle_ns). 2038 */ 2039 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2040 { 2041 struct fec_enet_private *fep = netdev_priv(ndev); 2042 2043 return us * (fep->clk_ref_rate / 1000) / 1000; 2044 } 2045 2046 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2047 { 2048 struct fec_enet_private *fep = netdev_priv(ndev); 2049 struct ethtool_keee *p = &fep->eee; 2050 unsigned int sleep_cycle, wake_cycle; 2051 2052 if (enable) { 2053 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2054 wake_cycle = sleep_cycle; 2055 } else { 2056 sleep_cycle = 0; 2057 wake_cycle = 0; 2058 } 2059 2060 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2061 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2062 2063 return 0; 2064 } 2065 2066 static void fec_enet_adjust_link(struct net_device *ndev) 2067 { 2068 struct fec_enet_private *fep = netdev_priv(ndev); 2069 struct phy_device *phy_dev = ndev->phydev; 2070 int status_change = 0; 2071 2072 /* 2073 * If the netdev is down, or is going down, we're not interested 2074 * in link state events, so just mark our idea of the link as down 2075 * and ignore the event. 2076 */ 2077 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2078 fep->link = 0; 2079 } else if (phy_dev->link) { 2080 if (!fep->link) { 2081 fep->link = phy_dev->link; 2082 status_change = 1; 2083 } 2084 2085 if (fep->full_duplex != phy_dev->duplex) { 2086 fep->full_duplex = phy_dev->duplex; 2087 status_change = 1; 2088 } 2089 2090 if (phy_dev->speed != fep->speed) { 2091 fep->speed = phy_dev->speed; 2092 status_change = 1; 2093 } 2094 2095 /* if any of the above changed restart the FEC */ 2096 if (status_change) { 2097 netif_stop_queue(ndev); 2098 napi_disable(&fep->napi); 2099 netif_tx_lock_bh(ndev); 2100 fec_restart(ndev); 2101 netif_tx_wake_all_queues(ndev); 2102 netif_tx_unlock_bh(ndev); 2103 napi_enable(&fep->napi); 2104 } 2105 if (fep->quirks & FEC_QUIRK_HAS_EEE) 2106 fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi); 2107 } else { 2108 if (fep->link) { 2109 netif_stop_queue(ndev); 2110 napi_disable(&fep->napi); 2111 netif_tx_lock_bh(ndev); 2112 fec_stop(ndev); 2113 netif_tx_unlock_bh(ndev); 2114 napi_enable(&fep->napi); 2115 fep->link = phy_dev->link; 2116 status_change = 1; 2117 } 2118 } 2119 2120 if (status_change) 2121 phy_print_status(phy_dev); 2122 } 2123 2124 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2125 { 2126 uint ievent; 2127 int ret; 2128 2129 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2130 ievent & FEC_ENET_MII, 2, 30000); 2131 2132 if (!ret) 2133 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2134 2135 return ret; 2136 } 2137 2138 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2139 { 2140 struct fec_enet_private *fep = bus->priv; 2141 struct device *dev = &fep->pdev->dev; 2142 int ret = 0, frame_start, frame_addr, frame_op; 2143 2144 ret = pm_runtime_resume_and_get(dev); 2145 if (ret < 0) 2146 return ret; 2147 2148 /* C22 read */ 2149 frame_op = FEC_MMFR_OP_READ; 2150 frame_start = FEC_MMFR_ST; 2151 frame_addr = regnum; 2152 2153 /* start a read op */ 2154 writel(frame_start | frame_op | 2155 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2156 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2157 2158 /* wait for end of transfer */ 2159 ret = fec_enet_mdio_wait(fep); 2160 if (ret) { 2161 netdev_err(fep->netdev, "MDIO read timeout\n"); 2162 goto out; 2163 } 2164 2165 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2166 2167 out: 2168 pm_runtime_mark_last_busy(dev); 2169 pm_runtime_put_autosuspend(dev); 2170 2171 return ret; 2172 } 2173 2174 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2175 int devad, int regnum) 2176 { 2177 struct fec_enet_private *fep = bus->priv; 2178 struct device *dev = &fep->pdev->dev; 2179 int ret = 0, frame_start, frame_op; 2180 2181 ret = pm_runtime_resume_and_get(dev); 2182 if (ret < 0) 2183 return ret; 2184 2185 frame_start = FEC_MMFR_ST_C45; 2186 2187 /* write address */ 2188 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2189 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2190 FEC_MMFR_TA | (regnum & 0xFFFF), 2191 fep->hwp + FEC_MII_DATA); 2192 2193 /* wait for end of transfer */ 2194 ret = fec_enet_mdio_wait(fep); 2195 if (ret) { 2196 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2197 goto out; 2198 } 2199 2200 frame_op = FEC_MMFR_OP_READ_C45; 2201 2202 /* start a read op */ 2203 writel(frame_start | frame_op | 2204 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2205 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2206 2207 /* wait for end of transfer */ 2208 ret = fec_enet_mdio_wait(fep); 2209 if (ret) { 2210 netdev_err(fep->netdev, "MDIO read timeout\n"); 2211 goto out; 2212 } 2213 2214 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2215 2216 out: 2217 pm_runtime_mark_last_busy(dev); 2218 pm_runtime_put_autosuspend(dev); 2219 2220 return ret; 2221 } 2222 2223 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2224 u16 value) 2225 { 2226 struct fec_enet_private *fep = bus->priv; 2227 struct device *dev = &fep->pdev->dev; 2228 int ret, frame_start, frame_addr; 2229 2230 ret = pm_runtime_resume_and_get(dev); 2231 if (ret < 0) 2232 return ret; 2233 2234 /* C22 write */ 2235 frame_start = FEC_MMFR_ST; 2236 frame_addr = regnum; 2237 2238 /* start a write op */ 2239 writel(frame_start | FEC_MMFR_OP_WRITE | 2240 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2241 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2242 fep->hwp + FEC_MII_DATA); 2243 2244 /* wait for end of transfer */ 2245 ret = fec_enet_mdio_wait(fep); 2246 if (ret) 2247 netdev_err(fep->netdev, "MDIO write timeout\n"); 2248 2249 pm_runtime_mark_last_busy(dev); 2250 pm_runtime_put_autosuspend(dev); 2251 2252 return ret; 2253 } 2254 2255 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2256 int devad, int regnum, u16 value) 2257 { 2258 struct fec_enet_private *fep = bus->priv; 2259 struct device *dev = &fep->pdev->dev; 2260 int ret, frame_start; 2261 2262 ret = pm_runtime_resume_and_get(dev); 2263 if (ret < 0) 2264 return ret; 2265 2266 frame_start = FEC_MMFR_ST_C45; 2267 2268 /* write address */ 2269 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2270 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2271 FEC_MMFR_TA | (regnum & 0xFFFF), 2272 fep->hwp + FEC_MII_DATA); 2273 2274 /* wait for end of transfer */ 2275 ret = fec_enet_mdio_wait(fep); 2276 if (ret) { 2277 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2278 goto out; 2279 } 2280 2281 /* start a write op */ 2282 writel(frame_start | FEC_MMFR_OP_WRITE | 2283 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2284 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2285 fep->hwp + FEC_MII_DATA); 2286 2287 /* wait for end of transfer */ 2288 ret = fec_enet_mdio_wait(fep); 2289 if (ret) 2290 netdev_err(fep->netdev, "MDIO write timeout\n"); 2291 2292 out: 2293 pm_runtime_mark_last_busy(dev); 2294 pm_runtime_put_autosuspend(dev); 2295 2296 return ret; 2297 } 2298 2299 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2300 { 2301 struct fec_enet_private *fep = netdev_priv(ndev); 2302 struct phy_device *phy_dev = ndev->phydev; 2303 2304 if (phy_dev) { 2305 phy_reset_after_clk_enable(phy_dev); 2306 } else if (fep->phy_node) { 2307 /* 2308 * If the PHY still is not bound to the MAC, but there is 2309 * OF PHY node and a matching PHY device instance already, 2310 * use the OF PHY node to obtain the PHY device instance, 2311 * and then use that PHY device instance when triggering 2312 * the PHY reset. 2313 */ 2314 phy_dev = of_phy_find_device(fep->phy_node); 2315 phy_reset_after_clk_enable(phy_dev); 2316 put_device(&phy_dev->mdio.dev); 2317 } 2318 } 2319 2320 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2321 { 2322 struct fec_enet_private *fep = netdev_priv(ndev); 2323 int ret; 2324 2325 if (enable) { 2326 ret = clk_prepare_enable(fep->clk_enet_out); 2327 if (ret) 2328 return ret; 2329 2330 if (fep->clk_ptp) { 2331 mutex_lock(&fep->ptp_clk_mutex); 2332 ret = clk_prepare_enable(fep->clk_ptp); 2333 if (ret) { 2334 mutex_unlock(&fep->ptp_clk_mutex); 2335 goto failed_clk_ptp; 2336 } else { 2337 fep->ptp_clk_on = true; 2338 } 2339 mutex_unlock(&fep->ptp_clk_mutex); 2340 } 2341 2342 ret = clk_prepare_enable(fep->clk_ref); 2343 if (ret) 2344 goto failed_clk_ref; 2345 2346 ret = clk_prepare_enable(fep->clk_2x_txclk); 2347 if (ret) 2348 goto failed_clk_2x_txclk; 2349 2350 fec_enet_phy_reset_after_clk_enable(ndev); 2351 } else { 2352 clk_disable_unprepare(fep->clk_enet_out); 2353 if (fep->clk_ptp) { 2354 mutex_lock(&fep->ptp_clk_mutex); 2355 clk_disable_unprepare(fep->clk_ptp); 2356 fep->ptp_clk_on = false; 2357 mutex_unlock(&fep->ptp_clk_mutex); 2358 } 2359 clk_disable_unprepare(fep->clk_ref); 2360 clk_disable_unprepare(fep->clk_2x_txclk); 2361 } 2362 2363 return 0; 2364 2365 failed_clk_2x_txclk: 2366 if (fep->clk_ref) 2367 clk_disable_unprepare(fep->clk_ref); 2368 failed_clk_ref: 2369 if (fep->clk_ptp) { 2370 mutex_lock(&fep->ptp_clk_mutex); 2371 clk_disable_unprepare(fep->clk_ptp); 2372 fep->ptp_clk_on = false; 2373 mutex_unlock(&fep->ptp_clk_mutex); 2374 } 2375 failed_clk_ptp: 2376 clk_disable_unprepare(fep->clk_enet_out); 2377 2378 return ret; 2379 } 2380 2381 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2382 struct device_node *np) 2383 { 2384 u32 rgmii_tx_delay, rgmii_rx_delay; 2385 2386 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2387 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2388 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2389 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2390 return -EINVAL; 2391 } else if (rgmii_tx_delay == 2000) { 2392 fep->rgmii_txc_dly = true; 2393 } 2394 } 2395 2396 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2397 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2398 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2399 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2400 return -EINVAL; 2401 } else if (rgmii_rx_delay == 2000) { 2402 fep->rgmii_rxc_dly = true; 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static int fec_enet_mii_probe(struct net_device *ndev) 2410 { 2411 struct fec_enet_private *fep = netdev_priv(ndev); 2412 struct phy_device *phy_dev = NULL; 2413 char mdio_bus_id[MII_BUS_ID_SIZE]; 2414 char phy_name[MII_BUS_ID_SIZE + 3]; 2415 int phy_id; 2416 int dev_id = fep->dev_id; 2417 2418 if (fep->phy_node) { 2419 phy_dev = of_phy_connect(ndev, fep->phy_node, 2420 &fec_enet_adjust_link, 0, 2421 fep->phy_interface); 2422 if (!phy_dev) { 2423 netdev_err(ndev, "Unable to connect to phy\n"); 2424 return -ENODEV; 2425 } 2426 } else { 2427 /* check for attached phy */ 2428 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2429 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2430 continue; 2431 if (dev_id--) 2432 continue; 2433 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2434 break; 2435 } 2436 2437 if (phy_id >= PHY_MAX_ADDR) { 2438 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2439 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2440 phy_id = 0; 2441 } 2442 2443 snprintf(phy_name, sizeof(phy_name), 2444 PHY_ID_FMT, mdio_bus_id, phy_id); 2445 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2446 fep->phy_interface); 2447 } 2448 2449 if (IS_ERR(phy_dev)) { 2450 netdev_err(ndev, "could not attach to PHY\n"); 2451 return PTR_ERR(phy_dev); 2452 } 2453 2454 /* mask with MAC supported features */ 2455 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2456 phy_set_max_speed(phy_dev, 1000); 2457 phy_remove_link_mode(phy_dev, 2458 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2459 #if !defined(CONFIG_M5272) 2460 phy_support_sym_pause(phy_dev); 2461 #endif 2462 } 2463 else 2464 phy_set_max_speed(phy_dev, 100); 2465 2466 if (fep->quirks & FEC_QUIRK_HAS_EEE) 2467 phy_support_eee(phy_dev); 2468 2469 fep->link = 0; 2470 fep->full_duplex = 0; 2471 2472 phy_attached_info(phy_dev); 2473 2474 return 0; 2475 } 2476 2477 static int fec_enet_mii_init(struct platform_device *pdev) 2478 { 2479 static struct mii_bus *fec0_mii_bus; 2480 struct net_device *ndev = platform_get_drvdata(pdev); 2481 struct fec_enet_private *fep = netdev_priv(ndev); 2482 bool suppress_preamble = false; 2483 struct phy_device *phydev; 2484 struct device_node *node; 2485 int err = -ENXIO; 2486 u32 mii_speed, holdtime; 2487 u32 bus_freq; 2488 int addr; 2489 2490 /* 2491 * The i.MX28 dual fec interfaces are not equal. 2492 * Here are the differences: 2493 * 2494 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2495 * - fec0 acts as the 1588 time master while fec1 is slave 2496 * - external phys can only be configured by fec0 2497 * 2498 * That is to say fec1 can not work independently. It only works 2499 * when fec0 is working. The reason behind this design is that the 2500 * second interface is added primarily for Switch mode. 2501 * 2502 * Because of the last point above, both phys are attached on fec0 2503 * mdio interface in board design, and need to be configured by 2504 * fec0 mii_bus. 2505 */ 2506 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2507 /* fec1 uses fec0 mii_bus */ 2508 if (mii_cnt && fec0_mii_bus) { 2509 fep->mii_bus = fec0_mii_bus; 2510 mii_cnt++; 2511 return 0; 2512 } 2513 return -ENOENT; 2514 } 2515 2516 bus_freq = 2500000; /* 2.5MHz by default */ 2517 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2518 if (node) { 2519 of_property_read_u32(node, "clock-frequency", &bus_freq); 2520 suppress_preamble = of_property_read_bool(node, 2521 "suppress-preamble"); 2522 } 2523 2524 /* 2525 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2526 * 2527 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2528 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2529 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2530 * document. 2531 */ 2532 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2533 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2534 mii_speed--; 2535 if (mii_speed > 63) { 2536 dev_err(&pdev->dev, 2537 "fec clock (%lu) too fast to get right mii speed\n", 2538 clk_get_rate(fep->clk_ipg)); 2539 err = -EINVAL; 2540 goto err_out; 2541 } 2542 2543 /* 2544 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2545 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2546 * versions are RAZ there, so just ignore the difference and write the 2547 * register always. 2548 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2549 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2550 * output. 2551 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2552 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2553 * holdtime cannot result in a value greater than 3. 2554 */ 2555 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2556 2557 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2558 2559 if (suppress_preamble) 2560 fep->phy_speed |= BIT(7); 2561 2562 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2563 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2564 * MII event generation condition: 2565 * - writing MSCR: 2566 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2567 * mscr_reg_data_in[7:0] != 0 2568 * - writing MMFR: 2569 * - mscr[7:0]_not_zero 2570 */ 2571 writel(0, fep->hwp + FEC_MII_DATA); 2572 } 2573 2574 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2575 2576 /* Clear any pending transaction complete indication */ 2577 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2578 2579 fep->mii_bus = mdiobus_alloc(); 2580 if (fep->mii_bus == NULL) { 2581 err = -ENOMEM; 2582 goto err_out; 2583 } 2584 2585 fep->mii_bus->name = "fec_enet_mii_bus"; 2586 fep->mii_bus->read = fec_enet_mdio_read_c22; 2587 fep->mii_bus->write = fec_enet_mdio_write_c22; 2588 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2589 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2590 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2591 } 2592 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2593 pdev->name, fep->dev_id + 1); 2594 fep->mii_bus->priv = fep; 2595 fep->mii_bus->parent = &pdev->dev; 2596 2597 err = of_mdiobus_register(fep->mii_bus, node); 2598 if (err) 2599 goto err_out_free_mdiobus; 2600 of_node_put(node); 2601 2602 /* find all the PHY devices on the bus and set mac_managed_pm to true */ 2603 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 2604 phydev = mdiobus_get_phy(fep->mii_bus, addr); 2605 if (phydev) 2606 phydev->mac_managed_pm = true; 2607 } 2608 2609 mii_cnt++; 2610 2611 /* save fec0 mii_bus */ 2612 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2613 fec0_mii_bus = fep->mii_bus; 2614 2615 return 0; 2616 2617 err_out_free_mdiobus: 2618 mdiobus_free(fep->mii_bus); 2619 err_out: 2620 of_node_put(node); 2621 return err; 2622 } 2623 2624 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2625 { 2626 if (--mii_cnt == 0) { 2627 mdiobus_unregister(fep->mii_bus); 2628 mdiobus_free(fep->mii_bus); 2629 } 2630 } 2631 2632 static void fec_enet_get_drvinfo(struct net_device *ndev, 2633 struct ethtool_drvinfo *info) 2634 { 2635 struct fec_enet_private *fep = netdev_priv(ndev); 2636 2637 strscpy(info->driver, fep->pdev->dev.driver->name, 2638 sizeof(info->driver)); 2639 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2640 } 2641 2642 static int fec_enet_get_regs_len(struct net_device *ndev) 2643 { 2644 struct fec_enet_private *fep = netdev_priv(ndev); 2645 struct resource *r; 2646 int s = 0; 2647 2648 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2649 if (r) 2650 s = resource_size(r); 2651 2652 return s; 2653 } 2654 2655 /* List of registers that can be safety be read to dump them with ethtool */ 2656 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2657 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2658 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2659 static __u32 fec_enet_register_version = 2; 2660 static u32 fec_enet_register_offset[] = { 2661 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2662 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2663 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2664 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2665 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2666 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2667 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2668 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2669 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2670 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2671 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2672 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2673 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2674 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2675 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2676 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2677 RMON_T_P_GTE2048, RMON_T_OCTETS, 2678 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2679 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2680 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2681 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2682 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2683 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2684 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2685 RMON_R_P_GTE2048, RMON_R_OCTETS, 2686 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2687 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2688 }; 2689 /* for i.MX6ul */ 2690 static u32 fec_enet_register_offset_6ul[] = { 2691 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2692 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2693 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2694 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2695 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2696 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2697 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2698 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2699 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2700 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2701 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2702 RMON_T_P_GTE2048, RMON_T_OCTETS, 2703 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2704 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2705 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2706 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2707 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2708 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2709 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2710 RMON_R_P_GTE2048, RMON_R_OCTETS, 2711 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2712 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2713 }; 2714 #else 2715 static __u32 fec_enet_register_version = 1; 2716 static u32 fec_enet_register_offset[] = { 2717 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2718 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2719 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2720 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2721 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2722 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2723 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2724 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2725 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2726 }; 2727 #endif 2728 2729 static void fec_enet_get_regs(struct net_device *ndev, 2730 struct ethtool_regs *regs, void *regbuf) 2731 { 2732 struct fec_enet_private *fep = netdev_priv(ndev); 2733 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2734 struct device *dev = &fep->pdev->dev; 2735 u32 *buf = (u32 *)regbuf; 2736 u32 i, off; 2737 int ret; 2738 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2739 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2740 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2741 u32 *reg_list; 2742 u32 reg_cnt; 2743 2744 if (!of_machine_is_compatible("fsl,imx6ul")) { 2745 reg_list = fec_enet_register_offset; 2746 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2747 } else { 2748 reg_list = fec_enet_register_offset_6ul; 2749 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2750 } 2751 #else 2752 /* coldfire */ 2753 static u32 *reg_list = fec_enet_register_offset; 2754 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2755 #endif 2756 ret = pm_runtime_resume_and_get(dev); 2757 if (ret < 0) 2758 return; 2759 2760 regs->version = fec_enet_register_version; 2761 2762 memset(buf, 0, regs->len); 2763 2764 for (i = 0; i < reg_cnt; i++) { 2765 off = reg_list[i]; 2766 2767 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2768 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2769 continue; 2770 2771 off >>= 2; 2772 buf[off] = readl(&theregs[off]); 2773 } 2774 2775 pm_runtime_mark_last_busy(dev); 2776 pm_runtime_put_autosuspend(dev); 2777 } 2778 2779 static int fec_enet_get_ts_info(struct net_device *ndev, 2780 struct kernel_ethtool_ts_info *info) 2781 { 2782 struct fec_enet_private *fep = netdev_priv(ndev); 2783 2784 if (fep->bufdesc_ex) { 2785 2786 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2787 SOF_TIMESTAMPING_TX_HARDWARE | 2788 SOF_TIMESTAMPING_RX_HARDWARE | 2789 SOF_TIMESTAMPING_RAW_HARDWARE; 2790 if (fep->ptp_clock) 2791 info->phc_index = ptp_clock_index(fep->ptp_clock); 2792 2793 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2794 (1 << HWTSTAMP_TX_ON); 2795 2796 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2797 (1 << HWTSTAMP_FILTER_ALL); 2798 return 0; 2799 } else { 2800 return ethtool_op_get_ts_info(ndev, info); 2801 } 2802 } 2803 2804 #if !defined(CONFIG_M5272) 2805 2806 static void fec_enet_get_pauseparam(struct net_device *ndev, 2807 struct ethtool_pauseparam *pause) 2808 { 2809 struct fec_enet_private *fep = netdev_priv(ndev); 2810 2811 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2812 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2813 pause->rx_pause = pause->tx_pause; 2814 } 2815 2816 static int fec_enet_set_pauseparam(struct net_device *ndev, 2817 struct ethtool_pauseparam *pause) 2818 { 2819 struct fec_enet_private *fep = netdev_priv(ndev); 2820 2821 if (!ndev->phydev) 2822 return -ENODEV; 2823 2824 if (pause->tx_pause != pause->rx_pause) { 2825 netdev_info(ndev, 2826 "hardware only support enable/disable both tx and rx"); 2827 return -EINVAL; 2828 } 2829 2830 fep->pause_flag = 0; 2831 2832 /* tx pause must be same as rx pause */ 2833 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2834 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2835 2836 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2837 pause->autoneg); 2838 2839 if (pause->autoneg) { 2840 if (netif_running(ndev)) 2841 fec_stop(ndev); 2842 phy_start_aneg(ndev->phydev); 2843 } 2844 if (netif_running(ndev)) { 2845 napi_disable(&fep->napi); 2846 netif_tx_lock_bh(ndev); 2847 fec_restart(ndev); 2848 netif_tx_wake_all_queues(ndev); 2849 netif_tx_unlock_bh(ndev); 2850 napi_enable(&fep->napi); 2851 } 2852 2853 return 0; 2854 } 2855 2856 static const struct fec_stat { 2857 char name[ETH_GSTRING_LEN]; 2858 u16 offset; 2859 } fec_stats[] = { 2860 /* RMON TX */ 2861 { "tx_dropped", RMON_T_DROP }, 2862 { "tx_packets", RMON_T_PACKETS }, 2863 { "tx_broadcast", RMON_T_BC_PKT }, 2864 { "tx_multicast", RMON_T_MC_PKT }, 2865 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2866 { "tx_undersize", RMON_T_UNDERSIZE }, 2867 { "tx_oversize", RMON_T_OVERSIZE }, 2868 { "tx_fragment", RMON_T_FRAG }, 2869 { "tx_jabber", RMON_T_JAB }, 2870 { "tx_collision", RMON_T_COL }, 2871 { "tx_64byte", RMON_T_P64 }, 2872 { "tx_65to127byte", RMON_T_P65TO127 }, 2873 { "tx_128to255byte", RMON_T_P128TO255 }, 2874 { "tx_256to511byte", RMON_T_P256TO511 }, 2875 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2876 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2877 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2878 { "tx_octets", RMON_T_OCTETS }, 2879 2880 /* IEEE TX */ 2881 { "IEEE_tx_drop", IEEE_T_DROP }, 2882 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2883 { "IEEE_tx_1col", IEEE_T_1COL }, 2884 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2885 { "IEEE_tx_def", IEEE_T_DEF }, 2886 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2887 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2888 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2889 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2890 { "IEEE_tx_sqe", IEEE_T_SQE }, 2891 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2892 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2893 2894 /* RMON RX */ 2895 { "rx_packets", RMON_R_PACKETS }, 2896 { "rx_broadcast", RMON_R_BC_PKT }, 2897 { "rx_multicast", RMON_R_MC_PKT }, 2898 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2899 { "rx_undersize", RMON_R_UNDERSIZE }, 2900 { "rx_oversize", RMON_R_OVERSIZE }, 2901 { "rx_fragment", RMON_R_FRAG }, 2902 { "rx_jabber", RMON_R_JAB }, 2903 { "rx_64byte", RMON_R_P64 }, 2904 { "rx_65to127byte", RMON_R_P65TO127 }, 2905 { "rx_128to255byte", RMON_R_P128TO255 }, 2906 { "rx_256to511byte", RMON_R_P256TO511 }, 2907 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2908 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2909 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2910 { "rx_octets", RMON_R_OCTETS }, 2911 2912 /* IEEE RX */ 2913 { "IEEE_rx_drop", IEEE_R_DROP }, 2914 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2915 { "IEEE_rx_crc", IEEE_R_CRC }, 2916 { "IEEE_rx_align", IEEE_R_ALIGN }, 2917 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2918 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2919 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2920 }; 2921 2922 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2923 2924 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2925 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2926 "rx_xdp_pass", /* RX_XDP_PASS, */ 2927 "rx_xdp_drop", /* RX_XDP_DROP, */ 2928 "rx_xdp_tx", /* RX_XDP_TX, */ 2929 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2930 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2931 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2932 }; 2933 2934 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2935 { 2936 struct fec_enet_private *fep = netdev_priv(dev); 2937 int i; 2938 2939 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2940 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2941 } 2942 2943 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2944 { 2945 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2946 struct fec_enet_priv_rx_q *rxq; 2947 int i, j; 2948 2949 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2950 rxq = fep->rx_queue[i]; 2951 2952 for (j = 0; j < XDP_STATS_TOTAL; j++) 2953 xdp_stats[j] += rxq->stats[j]; 2954 } 2955 2956 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2957 } 2958 2959 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2960 { 2961 #ifdef CONFIG_PAGE_POOL_STATS 2962 struct page_pool_stats stats = {}; 2963 struct fec_enet_priv_rx_q *rxq; 2964 int i; 2965 2966 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2967 rxq = fep->rx_queue[i]; 2968 2969 if (!rxq->page_pool) 2970 continue; 2971 2972 page_pool_get_stats(rxq->page_pool, &stats); 2973 } 2974 2975 page_pool_ethtool_stats_get(data, &stats); 2976 #endif 2977 } 2978 2979 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2980 struct ethtool_stats *stats, u64 *data) 2981 { 2982 struct fec_enet_private *fep = netdev_priv(dev); 2983 2984 if (netif_running(dev)) 2985 fec_enet_update_ethtool_stats(dev); 2986 2987 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2988 data += FEC_STATS_SIZE / sizeof(u64); 2989 2990 fec_enet_get_xdp_stats(fep, data); 2991 data += XDP_STATS_TOTAL; 2992 2993 fec_enet_page_pool_stats(fep, data); 2994 } 2995 2996 static void fec_enet_get_strings(struct net_device *netdev, 2997 u32 stringset, u8 *data) 2998 { 2999 int i; 3000 switch (stringset) { 3001 case ETH_SS_STATS: 3002 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 3003 ethtool_puts(&data, fec_stats[i].name); 3004 } 3005 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 3006 ethtool_puts(&data, fec_xdp_stat_strs[i]); 3007 } 3008 page_pool_ethtool_stats_get_strings(data); 3009 3010 break; 3011 case ETH_SS_TEST: 3012 net_selftest_get_strings(data); 3013 break; 3014 } 3015 } 3016 3017 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 3018 { 3019 int count; 3020 3021 switch (sset) { 3022 case ETH_SS_STATS: 3023 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 3024 count += page_pool_ethtool_stats_get_count(); 3025 return count; 3026 3027 case ETH_SS_TEST: 3028 return net_selftest_get_count(); 3029 default: 3030 return -EOPNOTSUPP; 3031 } 3032 } 3033 3034 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 3035 { 3036 struct fec_enet_private *fep = netdev_priv(dev); 3037 struct fec_enet_priv_rx_q *rxq; 3038 int i, j; 3039 3040 /* Disable MIB statistics counters */ 3041 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 3042 3043 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 3044 writel(0, fep->hwp + fec_stats[i].offset); 3045 3046 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 3047 rxq = fep->rx_queue[i]; 3048 for (j = 0; j < XDP_STATS_TOTAL; j++) 3049 rxq->stats[j] = 0; 3050 } 3051 3052 /* Don't disable MIB statistics counters */ 3053 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 3054 } 3055 3056 #else /* !defined(CONFIG_M5272) */ 3057 #define FEC_STATS_SIZE 0 3058 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 3059 { 3060 } 3061 3062 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 3063 { 3064 } 3065 #endif /* !defined(CONFIG_M5272) */ 3066 3067 /* ITR clock source is enet system clock (clk_ahb). 3068 * TCTT unit is cycle_ns * 64 cycle 3069 * So, the ICTT value = X us / (cycle_ns * 64) 3070 */ 3071 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3072 { 3073 struct fec_enet_private *fep = netdev_priv(ndev); 3074 3075 return us * (fep->itr_clk_rate / 64000) / 1000; 3076 } 3077 3078 /* Set threshold for interrupt coalescing */ 3079 static void fec_enet_itr_coal_set(struct net_device *ndev) 3080 { 3081 struct fec_enet_private *fep = netdev_priv(ndev); 3082 int rx_itr, tx_itr; 3083 3084 /* Must be greater than zero to avoid unpredictable behavior */ 3085 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3086 !fep->tx_time_itr || !fep->tx_pkts_itr) 3087 return; 3088 3089 /* Select enet system clock as Interrupt Coalescing 3090 * timer Clock Source 3091 */ 3092 rx_itr = FEC_ITR_CLK_SEL; 3093 tx_itr = FEC_ITR_CLK_SEL; 3094 3095 /* set ICFT and ICTT */ 3096 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3097 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3098 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3099 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3100 3101 rx_itr |= FEC_ITR_EN; 3102 tx_itr |= FEC_ITR_EN; 3103 3104 writel(tx_itr, fep->hwp + FEC_TXIC0); 3105 writel(rx_itr, fep->hwp + FEC_RXIC0); 3106 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3107 writel(tx_itr, fep->hwp + FEC_TXIC1); 3108 writel(rx_itr, fep->hwp + FEC_RXIC1); 3109 writel(tx_itr, fep->hwp + FEC_TXIC2); 3110 writel(rx_itr, fep->hwp + FEC_RXIC2); 3111 } 3112 } 3113 3114 static int fec_enet_get_coalesce(struct net_device *ndev, 3115 struct ethtool_coalesce *ec, 3116 struct kernel_ethtool_coalesce *kernel_coal, 3117 struct netlink_ext_ack *extack) 3118 { 3119 struct fec_enet_private *fep = netdev_priv(ndev); 3120 3121 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3122 return -EOPNOTSUPP; 3123 3124 ec->rx_coalesce_usecs = fep->rx_time_itr; 3125 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3126 3127 ec->tx_coalesce_usecs = fep->tx_time_itr; 3128 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3129 3130 return 0; 3131 } 3132 3133 static int fec_enet_set_coalesce(struct net_device *ndev, 3134 struct ethtool_coalesce *ec, 3135 struct kernel_ethtool_coalesce *kernel_coal, 3136 struct netlink_ext_ack *extack) 3137 { 3138 struct fec_enet_private *fep = netdev_priv(ndev); 3139 struct device *dev = &fep->pdev->dev; 3140 unsigned int cycle; 3141 3142 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3143 return -EOPNOTSUPP; 3144 3145 if (ec->rx_max_coalesced_frames > 255) { 3146 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3147 return -EINVAL; 3148 } 3149 3150 if (ec->tx_max_coalesced_frames > 255) { 3151 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3152 return -EINVAL; 3153 } 3154 3155 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3156 if (cycle > 0xFFFF) { 3157 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3158 return -EINVAL; 3159 } 3160 3161 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3162 if (cycle > 0xFFFF) { 3163 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3164 return -EINVAL; 3165 } 3166 3167 fep->rx_time_itr = ec->rx_coalesce_usecs; 3168 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3169 3170 fep->tx_time_itr = ec->tx_coalesce_usecs; 3171 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3172 3173 fec_enet_itr_coal_set(ndev); 3174 3175 return 0; 3176 } 3177 3178 static int 3179 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata) 3180 { 3181 struct fec_enet_private *fep = netdev_priv(ndev); 3182 struct ethtool_keee *p = &fep->eee; 3183 3184 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3185 return -EOPNOTSUPP; 3186 3187 if (!netif_running(ndev)) 3188 return -ENETDOWN; 3189 3190 edata->tx_lpi_timer = p->tx_lpi_timer; 3191 3192 return phy_ethtool_get_eee(ndev->phydev, edata); 3193 } 3194 3195 static int 3196 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata) 3197 { 3198 struct fec_enet_private *fep = netdev_priv(ndev); 3199 struct ethtool_keee *p = &fep->eee; 3200 3201 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3202 return -EOPNOTSUPP; 3203 3204 if (!netif_running(ndev)) 3205 return -ENETDOWN; 3206 3207 p->tx_lpi_timer = edata->tx_lpi_timer; 3208 3209 return phy_ethtool_set_eee(ndev->phydev, edata); 3210 } 3211 3212 static void 3213 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3214 { 3215 struct fec_enet_private *fep = netdev_priv(ndev); 3216 3217 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3218 wol->supported = WAKE_MAGIC; 3219 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3220 } else { 3221 wol->supported = wol->wolopts = 0; 3222 } 3223 } 3224 3225 static int 3226 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3227 { 3228 struct fec_enet_private *fep = netdev_priv(ndev); 3229 3230 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3231 return -EINVAL; 3232 3233 if (wol->wolopts & ~WAKE_MAGIC) 3234 return -EINVAL; 3235 3236 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3237 if (device_may_wakeup(&ndev->dev)) 3238 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3239 else 3240 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3241 3242 return 0; 3243 } 3244 3245 static const struct ethtool_ops fec_enet_ethtool_ops = { 3246 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3247 ETHTOOL_COALESCE_MAX_FRAMES, 3248 .get_drvinfo = fec_enet_get_drvinfo, 3249 .get_regs_len = fec_enet_get_regs_len, 3250 .get_regs = fec_enet_get_regs, 3251 .nway_reset = phy_ethtool_nway_reset, 3252 .get_link = ethtool_op_get_link, 3253 .get_coalesce = fec_enet_get_coalesce, 3254 .set_coalesce = fec_enet_set_coalesce, 3255 #ifndef CONFIG_M5272 3256 .get_pauseparam = fec_enet_get_pauseparam, 3257 .set_pauseparam = fec_enet_set_pauseparam, 3258 .get_strings = fec_enet_get_strings, 3259 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3260 .get_sset_count = fec_enet_get_sset_count, 3261 #endif 3262 .get_ts_info = fec_enet_get_ts_info, 3263 .get_wol = fec_enet_get_wol, 3264 .set_wol = fec_enet_set_wol, 3265 .get_eee = fec_enet_get_eee, 3266 .set_eee = fec_enet_set_eee, 3267 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3268 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3269 .self_test = net_selftest, 3270 }; 3271 3272 static void fec_enet_free_buffers(struct net_device *ndev) 3273 { 3274 struct fec_enet_private *fep = netdev_priv(ndev); 3275 unsigned int i; 3276 struct fec_enet_priv_tx_q *txq; 3277 struct fec_enet_priv_rx_q *rxq; 3278 unsigned int q; 3279 3280 for (q = 0; q < fep->num_rx_queues; q++) { 3281 rxq = fep->rx_queue[q]; 3282 for (i = 0; i < rxq->bd.ring_size; i++) 3283 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3284 3285 for (i = 0; i < XDP_STATS_TOTAL; i++) 3286 rxq->stats[i] = 0; 3287 3288 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3289 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3290 page_pool_destroy(rxq->page_pool); 3291 rxq->page_pool = NULL; 3292 } 3293 3294 for (q = 0; q < fep->num_tx_queues; q++) { 3295 txq = fep->tx_queue[q]; 3296 for (i = 0; i < txq->bd.ring_size; i++) { 3297 kfree(txq->tx_bounce[i]); 3298 txq->tx_bounce[i] = NULL; 3299 3300 if (!txq->tx_buf[i].buf_p) { 3301 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3302 continue; 3303 } 3304 3305 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3306 dev_kfree_skb(txq->tx_buf[i].buf_p); 3307 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3308 xdp_return_frame(txq->tx_buf[i].buf_p); 3309 } else { 3310 struct page *page = txq->tx_buf[i].buf_p; 3311 3312 page_pool_put_page(page->pp, page, 0, false); 3313 } 3314 3315 txq->tx_buf[i].buf_p = NULL; 3316 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3317 } 3318 } 3319 } 3320 3321 static void fec_enet_free_queue(struct net_device *ndev) 3322 { 3323 struct fec_enet_private *fep = netdev_priv(ndev); 3324 int i; 3325 struct fec_enet_priv_tx_q *txq; 3326 3327 for (i = 0; i < fep->num_tx_queues; i++) 3328 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3329 txq = fep->tx_queue[i]; 3330 fec_dma_free(&fep->pdev->dev, 3331 txq->bd.ring_size * TSO_HEADER_SIZE, 3332 txq->tso_hdrs, txq->tso_hdrs_dma); 3333 } 3334 3335 for (i = 0; i < fep->num_rx_queues; i++) 3336 kfree(fep->rx_queue[i]); 3337 for (i = 0; i < fep->num_tx_queues; i++) 3338 kfree(fep->tx_queue[i]); 3339 } 3340 3341 static int fec_enet_alloc_queue(struct net_device *ndev) 3342 { 3343 struct fec_enet_private *fep = netdev_priv(ndev); 3344 int i; 3345 int ret = 0; 3346 struct fec_enet_priv_tx_q *txq; 3347 3348 for (i = 0; i < fep->num_tx_queues; i++) { 3349 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3350 if (!txq) { 3351 ret = -ENOMEM; 3352 goto alloc_failed; 3353 } 3354 3355 fep->tx_queue[i] = txq; 3356 txq->bd.ring_size = TX_RING_SIZE; 3357 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3358 3359 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3360 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3361 3362 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3363 txq->bd.ring_size * TSO_HEADER_SIZE, 3364 &txq->tso_hdrs_dma, GFP_KERNEL); 3365 if (!txq->tso_hdrs) { 3366 ret = -ENOMEM; 3367 goto alloc_failed; 3368 } 3369 } 3370 3371 for (i = 0; i < fep->num_rx_queues; i++) { 3372 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3373 GFP_KERNEL); 3374 if (!fep->rx_queue[i]) { 3375 ret = -ENOMEM; 3376 goto alloc_failed; 3377 } 3378 3379 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3380 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3381 } 3382 return ret; 3383 3384 alloc_failed: 3385 fec_enet_free_queue(ndev); 3386 return ret; 3387 } 3388 3389 static int 3390 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3391 { 3392 struct fec_enet_private *fep = netdev_priv(ndev); 3393 struct fec_enet_priv_rx_q *rxq; 3394 dma_addr_t phys_addr; 3395 struct bufdesc *bdp; 3396 struct page *page; 3397 int i, err; 3398 3399 rxq = fep->rx_queue[queue]; 3400 bdp = rxq->bd.base; 3401 3402 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3403 if (err < 0) { 3404 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3405 return err; 3406 } 3407 3408 for (i = 0; i < rxq->bd.ring_size; i++) { 3409 page = page_pool_dev_alloc_pages(rxq->page_pool); 3410 if (!page) 3411 goto err_alloc; 3412 3413 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3414 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3415 3416 rxq->rx_skb_info[i].page = page; 3417 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3418 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3419 3420 if (fep->bufdesc_ex) { 3421 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3422 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3423 } 3424 3425 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3426 } 3427 3428 /* Set the last buffer to wrap. */ 3429 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3430 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3431 return 0; 3432 3433 err_alloc: 3434 fec_enet_free_buffers(ndev); 3435 return -ENOMEM; 3436 } 3437 3438 static int 3439 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3440 { 3441 struct fec_enet_private *fep = netdev_priv(ndev); 3442 unsigned int i; 3443 struct bufdesc *bdp; 3444 struct fec_enet_priv_tx_q *txq; 3445 3446 txq = fep->tx_queue[queue]; 3447 bdp = txq->bd.base; 3448 for (i = 0; i < txq->bd.ring_size; i++) { 3449 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3450 if (!txq->tx_bounce[i]) 3451 goto err_alloc; 3452 3453 bdp->cbd_sc = cpu_to_fec16(0); 3454 bdp->cbd_bufaddr = cpu_to_fec32(0); 3455 3456 if (fep->bufdesc_ex) { 3457 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3458 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3459 } 3460 3461 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3462 } 3463 3464 /* Set the last buffer to wrap. */ 3465 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3466 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3467 3468 return 0; 3469 3470 err_alloc: 3471 fec_enet_free_buffers(ndev); 3472 return -ENOMEM; 3473 } 3474 3475 static int fec_enet_alloc_buffers(struct net_device *ndev) 3476 { 3477 struct fec_enet_private *fep = netdev_priv(ndev); 3478 unsigned int i; 3479 3480 for (i = 0; i < fep->num_rx_queues; i++) 3481 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3482 return -ENOMEM; 3483 3484 for (i = 0; i < fep->num_tx_queues; i++) 3485 if (fec_enet_alloc_txq_buffers(ndev, i)) 3486 return -ENOMEM; 3487 return 0; 3488 } 3489 3490 static int 3491 fec_enet_open(struct net_device *ndev) 3492 { 3493 struct fec_enet_private *fep = netdev_priv(ndev); 3494 int ret; 3495 bool reset_again; 3496 3497 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3498 if (ret < 0) 3499 return ret; 3500 3501 pinctrl_pm_select_default_state(&fep->pdev->dev); 3502 ret = fec_enet_clk_enable(ndev, true); 3503 if (ret) 3504 goto clk_enable; 3505 3506 /* During the first fec_enet_open call the PHY isn't probed at this 3507 * point. Therefore the phy_reset_after_clk_enable() call within 3508 * fec_enet_clk_enable() fails. As we need this reset in order to be 3509 * sure the PHY is working correctly we check if we need to reset again 3510 * later when the PHY is probed 3511 */ 3512 if (ndev->phydev && ndev->phydev->drv) 3513 reset_again = false; 3514 else 3515 reset_again = true; 3516 3517 /* I should reset the ring buffers here, but I don't yet know 3518 * a simple way to do that. 3519 */ 3520 3521 ret = fec_enet_alloc_buffers(ndev); 3522 if (ret) 3523 goto err_enet_alloc; 3524 3525 /* Init MAC prior to mii bus probe */ 3526 fec_restart(ndev); 3527 3528 /* Call phy_reset_after_clk_enable() again if it failed during 3529 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3530 */ 3531 if (reset_again) 3532 fec_enet_phy_reset_after_clk_enable(ndev); 3533 3534 /* Probe and connect to PHY when open the interface */ 3535 ret = fec_enet_mii_probe(ndev); 3536 if (ret) 3537 goto err_enet_mii_probe; 3538 3539 if (fep->quirks & FEC_QUIRK_ERR006687) 3540 imx6q_cpuidle_fec_irqs_used(); 3541 3542 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3543 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3544 3545 napi_enable(&fep->napi); 3546 phy_start(ndev->phydev); 3547 netif_tx_start_all_queues(ndev); 3548 3549 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3550 FEC_WOL_FLAG_ENABLE); 3551 3552 return 0; 3553 3554 err_enet_mii_probe: 3555 fec_enet_free_buffers(ndev); 3556 err_enet_alloc: 3557 fec_enet_clk_enable(ndev, false); 3558 clk_enable: 3559 pm_runtime_mark_last_busy(&fep->pdev->dev); 3560 pm_runtime_put_autosuspend(&fep->pdev->dev); 3561 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3562 return ret; 3563 } 3564 3565 static int 3566 fec_enet_close(struct net_device *ndev) 3567 { 3568 struct fec_enet_private *fep = netdev_priv(ndev); 3569 3570 phy_stop(ndev->phydev); 3571 3572 if (netif_device_present(ndev)) { 3573 napi_disable(&fep->napi); 3574 netif_tx_disable(ndev); 3575 fec_stop(ndev); 3576 } 3577 3578 phy_disconnect(ndev->phydev); 3579 3580 if (fep->quirks & FEC_QUIRK_ERR006687) 3581 imx6q_cpuidle_fec_irqs_unused(); 3582 3583 fec_enet_update_ethtool_stats(ndev); 3584 3585 fec_enet_clk_enable(ndev, false); 3586 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3587 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3588 3589 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3590 pm_runtime_mark_last_busy(&fep->pdev->dev); 3591 pm_runtime_put_autosuspend(&fep->pdev->dev); 3592 3593 fec_enet_free_buffers(ndev); 3594 3595 return 0; 3596 } 3597 3598 /* Set or clear the multicast filter for this adaptor. 3599 * Skeleton taken from sunlance driver. 3600 * The CPM Ethernet implementation allows Multicast as well as individual 3601 * MAC address filtering. Some of the drivers check to make sure it is 3602 * a group multicast address, and discard those that are not. I guess I 3603 * will do the same for now, but just remove the test if you want 3604 * individual filtering as well (do the upper net layers want or support 3605 * this kind of feature?). 3606 */ 3607 3608 #define FEC_HASH_BITS 6 /* #bits in hash */ 3609 3610 static void set_multicast_list(struct net_device *ndev) 3611 { 3612 struct fec_enet_private *fep = netdev_priv(ndev); 3613 struct netdev_hw_addr *ha; 3614 unsigned int crc, tmp; 3615 unsigned char hash; 3616 unsigned int hash_high = 0, hash_low = 0; 3617 3618 if (ndev->flags & IFF_PROMISC) { 3619 tmp = readl(fep->hwp + FEC_R_CNTRL); 3620 tmp |= 0x8; 3621 writel(tmp, fep->hwp + FEC_R_CNTRL); 3622 return; 3623 } 3624 3625 tmp = readl(fep->hwp + FEC_R_CNTRL); 3626 tmp &= ~0x8; 3627 writel(tmp, fep->hwp + FEC_R_CNTRL); 3628 3629 if (ndev->flags & IFF_ALLMULTI) { 3630 /* Catch all multicast addresses, so set the 3631 * filter to all 1's 3632 */ 3633 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3634 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3635 3636 return; 3637 } 3638 3639 /* Add the addresses in hash register */ 3640 netdev_for_each_mc_addr(ha, ndev) { 3641 /* calculate crc32 value of mac address */ 3642 crc = ether_crc_le(ndev->addr_len, ha->addr); 3643 3644 /* only upper 6 bits (FEC_HASH_BITS) are used 3645 * which point to specific bit in the hash registers 3646 */ 3647 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3648 3649 if (hash > 31) 3650 hash_high |= 1 << (hash - 32); 3651 else 3652 hash_low |= 1 << hash; 3653 } 3654 3655 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3656 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3657 } 3658 3659 /* Set a MAC change in hardware. */ 3660 static int 3661 fec_set_mac_address(struct net_device *ndev, void *p) 3662 { 3663 struct fec_enet_private *fep = netdev_priv(ndev); 3664 struct sockaddr *addr = p; 3665 3666 if (addr) { 3667 if (!is_valid_ether_addr(addr->sa_data)) 3668 return -EADDRNOTAVAIL; 3669 eth_hw_addr_set(ndev, addr->sa_data); 3670 } 3671 3672 /* Add netif status check here to avoid system hang in below case: 3673 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3674 * After ethx down, fec all clocks are gated off and then register 3675 * access causes system hang. 3676 */ 3677 if (!netif_running(ndev)) 3678 return 0; 3679 3680 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3681 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3682 fep->hwp + FEC_ADDR_LOW); 3683 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3684 fep->hwp + FEC_ADDR_HIGH); 3685 return 0; 3686 } 3687 3688 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3689 netdev_features_t features) 3690 { 3691 struct fec_enet_private *fep = netdev_priv(netdev); 3692 netdev_features_t changed = features ^ netdev->features; 3693 3694 netdev->features = features; 3695 3696 /* Receive checksum has been changed */ 3697 if (changed & NETIF_F_RXCSUM) { 3698 if (features & NETIF_F_RXCSUM) 3699 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3700 else 3701 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3702 } 3703 } 3704 3705 static int fec_set_features(struct net_device *netdev, 3706 netdev_features_t features) 3707 { 3708 struct fec_enet_private *fep = netdev_priv(netdev); 3709 netdev_features_t changed = features ^ netdev->features; 3710 3711 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3712 napi_disable(&fep->napi); 3713 netif_tx_lock_bh(netdev); 3714 fec_stop(netdev); 3715 fec_enet_set_netdev_features(netdev, features); 3716 fec_restart(netdev); 3717 netif_tx_wake_all_queues(netdev); 3718 netif_tx_unlock_bh(netdev); 3719 napi_enable(&fep->napi); 3720 } else { 3721 fec_enet_set_netdev_features(netdev, features); 3722 } 3723 3724 return 0; 3725 } 3726 3727 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3728 struct net_device *sb_dev) 3729 { 3730 struct fec_enet_private *fep = netdev_priv(ndev); 3731 u16 vlan_tag = 0; 3732 3733 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3734 return netdev_pick_tx(ndev, skb, NULL); 3735 3736 /* VLAN is present in the payload.*/ 3737 if (eth_type_vlan(skb->protocol)) { 3738 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3739 3740 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3741 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3742 } else if (skb_vlan_tag_present(skb)) { 3743 vlan_tag = skb->vlan_tci; 3744 } else { 3745 return vlan_tag; 3746 } 3747 3748 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3749 } 3750 3751 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3752 { 3753 struct fec_enet_private *fep = netdev_priv(dev); 3754 bool is_run = netif_running(dev); 3755 struct bpf_prog *old_prog; 3756 3757 switch (bpf->command) { 3758 case XDP_SETUP_PROG: 3759 /* No need to support the SoCs that require to 3760 * do the frame swap because the performance wouldn't be 3761 * better than the skb mode. 3762 */ 3763 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3764 return -EOPNOTSUPP; 3765 3766 if (!bpf->prog) 3767 xdp_features_clear_redirect_target(dev); 3768 3769 if (is_run) { 3770 napi_disable(&fep->napi); 3771 netif_tx_disable(dev); 3772 } 3773 3774 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3775 if (old_prog) 3776 bpf_prog_put(old_prog); 3777 3778 fec_restart(dev); 3779 3780 if (is_run) { 3781 napi_enable(&fep->napi); 3782 netif_tx_start_all_queues(dev); 3783 } 3784 3785 if (bpf->prog) 3786 xdp_features_set_redirect_target(dev, false); 3787 3788 return 0; 3789 3790 case XDP_SETUP_XSK_POOL: 3791 return -EOPNOTSUPP; 3792 3793 default: 3794 return -EOPNOTSUPP; 3795 } 3796 } 3797 3798 static int 3799 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3800 { 3801 if (unlikely(index < 0)) 3802 return 0; 3803 3804 return (index % fep->num_tx_queues); 3805 } 3806 3807 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3808 struct fec_enet_priv_tx_q *txq, 3809 void *frame, u32 dma_sync_len, 3810 bool ndo_xmit) 3811 { 3812 unsigned int index, status, estatus; 3813 struct bufdesc *bdp; 3814 dma_addr_t dma_addr; 3815 int entries_free; 3816 u16 frame_len; 3817 3818 entries_free = fec_enet_get_free_txdesc_num(txq); 3819 if (entries_free < MAX_SKB_FRAGS + 1) { 3820 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3821 return -EBUSY; 3822 } 3823 3824 /* Fill in a Tx ring entry */ 3825 bdp = txq->bd.cur; 3826 status = fec16_to_cpu(bdp->cbd_sc); 3827 status &= ~BD_ENET_TX_STATS; 3828 3829 index = fec_enet_get_bd_index(bdp, &txq->bd); 3830 3831 if (ndo_xmit) { 3832 struct xdp_frame *xdpf = frame; 3833 3834 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3835 xdpf->len, DMA_TO_DEVICE); 3836 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3837 return -ENOMEM; 3838 3839 frame_len = xdpf->len; 3840 txq->tx_buf[index].buf_p = xdpf; 3841 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3842 } else { 3843 struct xdp_buff *xdpb = frame; 3844 struct page *page; 3845 3846 page = virt_to_page(xdpb->data); 3847 dma_addr = page_pool_get_dma_addr(page) + 3848 (xdpb->data - xdpb->data_hard_start); 3849 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3850 dma_sync_len, DMA_BIDIRECTIONAL); 3851 frame_len = xdpb->data_end - xdpb->data; 3852 txq->tx_buf[index].buf_p = page; 3853 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3854 } 3855 3856 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3857 if (fep->bufdesc_ex) 3858 estatus = BD_ENET_TX_INT; 3859 3860 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3861 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3862 3863 if (fep->bufdesc_ex) { 3864 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3865 3866 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3867 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3868 3869 ebdp->cbd_bdu = 0; 3870 ebdp->cbd_esc = cpu_to_fec32(estatus); 3871 } 3872 3873 /* Make sure the updates to rest of the descriptor are performed before 3874 * transferring ownership. 3875 */ 3876 dma_wmb(); 3877 3878 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3879 * it's the last BD of the frame, and to put the CRC on the end. 3880 */ 3881 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3882 bdp->cbd_sc = cpu_to_fec16(status); 3883 3884 /* If this was the last BD in the ring, start at the beginning again. */ 3885 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3886 3887 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3888 dma_wmb(); 3889 3890 txq->bd.cur = bdp; 3891 3892 /* Trigger transmission start */ 3893 writel(0, txq->bd.reg_desc_active); 3894 3895 return 0; 3896 } 3897 3898 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3899 int cpu, struct xdp_buff *xdp, 3900 u32 dma_sync_len) 3901 { 3902 struct fec_enet_priv_tx_q *txq; 3903 struct netdev_queue *nq; 3904 int queue, ret; 3905 3906 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3907 txq = fep->tx_queue[queue]; 3908 nq = netdev_get_tx_queue(fep->netdev, queue); 3909 3910 __netif_tx_lock(nq, cpu); 3911 3912 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3913 txq_trans_cond_update(nq); 3914 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3915 3916 __netif_tx_unlock(nq); 3917 3918 return ret; 3919 } 3920 3921 static int fec_enet_xdp_xmit(struct net_device *dev, 3922 int num_frames, 3923 struct xdp_frame **frames, 3924 u32 flags) 3925 { 3926 struct fec_enet_private *fep = netdev_priv(dev); 3927 struct fec_enet_priv_tx_q *txq; 3928 int cpu = smp_processor_id(); 3929 unsigned int sent_frames = 0; 3930 struct netdev_queue *nq; 3931 unsigned int queue; 3932 int i; 3933 3934 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3935 txq = fep->tx_queue[queue]; 3936 nq = netdev_get_tx_queue(fep->netdev, queue); 3937 3938 __netif_tx_lock(nq, cpu); 3939 3940 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3941 txq_trans_cond_update(nq); 3942 for (i = 0; i < num_frames; i++) { 3943 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3944 break; 3945 sent_frames++; 3946 } 3947 3948 __netif_tx_unlock(nq); 3949 3950 return sent_frames; 3951 } 3952 3953 static int fec_hwtstamp_get(struct net_device *ndev, 3954 struct kernel_hwtstamp_config *config) 3955 { 3956 struct fec_enet_private *fep = netdev_priv(ndev); 3957 3958 if (!netif_running(ndev)) 3959 return -EINVAL; 3960 3961 if (!fep->bufdesc_ex) 3962 return -EOPNOTSUPP; 3963 3964 fec_ptp_get(ndev, config); 3965 3966 return 0; 3967 } 3968 3969 static int fec_hwtstamp_set(struct net_device *ndev, 3970 struct kernel_hwtstamp_config *config, 3971 struct netlink_ext_ack *extack) 3972 { 3973 struct fec_enet_private *fep = netdev_priv(ndev); 3974 3975 if (!netif_running(ndev)) 3976 return -EINVAL; 3977 3978 if (!fep->bufdesc_ex) 3979 return -EOPNOTSUPP; 3980 3981 return fec_ptp_set(ndev, config, extack); 3982 } 3983 3984 static const struct net_device_ops fec_netdev_ops = { 3985 .ndo_open = fec_enet_open, 3986 .ndo_stop = fec_enet_close, 3987 .ndo_start_xmit = fec_enet_start_xmit, 3988 .ndo_select_queue = fec_enet_select_queue, 3989 .ndo_set_rx_mode = set_multicast_list, 3990 .ndo_validate_addr = eth_validate_addr, 3991 .ndo_tx_timeout = fec_timeout, 3992 .ndo_set_mac_address = fec_set_mac_address, 3993 .ndo_eth_ioctl = phy_do_ioctl_running, 3994 .ndo_set_features = fec_set_features, 3995 .ndo_bpf = fec_enet_bpf, 3996 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3997 .ndo_hwtstamp_get = fec_hwtstamp_get, 3998 .ndo_hwtstamp_set = fec_hwtstamp_set, 3999 }; 4000 4001 static const unsigned short offset_des_active_rxq[] = { 4002 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4003 }; 4004 4005 static const unsigned short offset_des_active_txq[] = { 4006 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4007 }; 4008 4009 /* 4010 * XXX: We need to clean up on failure exits here. 4011 * 4012 */ 4013 static int fec_enet_init(struct net_device *ndev) 4014 { 4015 struct fec_enet_private *fep = netdev_priv(ndev); 4016 struct bufdesc *cbd_base; 4017 dma_addr_t bd_dma; 4018 int bd_size; 4019 unsigned int i; 4020 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4021 sizeof(struct bufdesc); 4022 unsigned dsize_log2 = __fls(dsize); 4023 int ret; 4024 4025 WARN_ON(dsize != (1 << dsize_log2)); 4026 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4027 fep->rx_align = 0xf; 4028 fep->tx_align = 0xf; 4029 #else 4030 fep->rx_align = 0x3; 4031 fep->tx_align = 0x3; 4032 #endif 4033 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4034 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4035 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4036 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4037 4038 /* Check mask of the streaming and coherent API */ 4039 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4040 if (ret < 0) { 4041 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4042 return ret; 4043 } 4044 4045 ret = fec_enet_alloc_queue(ndev); 4046 if (ret) 4047 return ret; 4048 4049 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4050 4051 /* Allocate memory for buffer descriptors. */ 4052 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4053 GFP_KERNEL); 4054 if (!cbd_base) { 4055 ret = -ENOMEM; 4056 goto free_queue_mem; 4057 } 4058 4059 /* Get the Ethernet address */ 4060 ret = fec_get_mac(ndev); 4061 if (ret) 4062 goto free_queue_mem; 4063 4064 /* Set receive and transmit descriptor base. */ 4065 for (i = 0; i < fep->num_rx_queues; i++) { 4066 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4067 unsigned size = dsize * rxq->bd.ring_size; 4068 4069 rxq->bd.qid = i; 4070 rxq->bd.base = cbd_base; 4071 rxq->bd.cur = cbd_base; 4072 rxq->bd.dma = bd_dma; 4073 rxq->bd.dsize = dsize; 4074 rxq->bd.dsize_log2 = dsize_log2; 4075 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4076 bd_dma += size; 4077 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4078 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4079 } 4080 4081 for (i = 0; i < fep->num_tx_queues; i++) { 4082 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4083 unsigned size = dsize * txq->bd.ring_size; 4084 4085 txq->bd.qid = i; 4086 txq->bd.base = cbd_base; 4087 txq->bd.cur = cbd_base; 4088 txq->bd.dma = bd_dma; 4089 txq->bd.dsize = dsize; 4090 txq->bd.dsize_log2 = dsize_log2; 4091 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4092 bd_dma += size; 4093 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4094 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4095 } 4096 4097 4098 /* The FEC Ethernet specific entries in the device structure */ 4099 ndev->watchdog_timeo = TX_TIMEOUT; 4100 ndev->netdev_ops = &fec_netdev_ops; 4101 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4102 4103 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4104 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4105 4106 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4107 /* enable hw VLAN support */ 4108 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4109 4110 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4111 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4112 4113 /* enable hw accelerator */ 4114 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4115 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4116 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4117 } 4118 4119 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4120 fep->tx_align = 0; 4121 fep->rx_align = 0x3f; 4122 } 4123 4124 ndev->hw_features = ndev->features; 4125 4126 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4127 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4128 NETDEV_XDP_ACT_REDIRECT; 4129 4130 fec_restart(ndev); 4131 4132 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4133 fec_enet_clear_ethtool_stats(ndev); 4134 else 4135 fec_enet_update_ethtool_stats(ndev); 4136 4137 return 0; 4138 4139 free_queue_mem: 4140 fec_enet_free_queue(ndev); 4141 return ret; 4142 } 4143 4144 static void fec_enet_deinit(struct net_device *ndev) 4145 { 4146 struct fec_enet_private *fep = netdev_priv(ndev); 4147 4148 netif_napi_del(&fep->napi); 4149 fec_enet_free_queue(ndev); 4150 } 4151 4152 #ifdef CONFIG_OF 4153 static int fec_reset_phy(struct platform_device *pdev) 4154 { 4155 struct gpio_desc *phy_reset; 4156 int msec = 1, phy_post_delay = 0; 4157 struct device_node *np = pdev->dev.of_node; 4158 int err; 4159 4160 if (!np) 4161 return 0; 4162 4163 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4164 /* A sane reset duration should not be longer than 1s */ 4165 if (!err && msec > 1000) 4166 msec = 1; 4167 4168 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4169 /* valid reset duration should be less than 1s */ 4170 if (!err && phy_post_delay > 1000) 4171 return -EINVAL; 4172 4173 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4174 GPIOD_OUT_HIGH); 4175 if (IS_ERR(phy_reset)) 4176 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4177 "failed to get phy-reset-gpios\n"); 4178 4179 if (!phy_reset) 4180 return 0; 4181 4182 if (msec > 20) 4183 msleep(msec); 4184 else 4185 usleep_range(msec * 1000, msec * 1000 + 1000); 4186 4187 gpiod_set_value_cansleep(phy_reset, 0); 4188 4189 if (!phy_post_delay) 4190 return 0; 4191 4192 if (phy_post_delay > 20) 4193 msleep(phy_post_delay); 4194 else 4195 usleep_range(phy_post_delay * 1000, 4196 phy_post_delay * 1000 + 1000); 4197 4198 return 0; 4199 } 4200 #else /* CONFIG_OF */ 4201 static int fec_reset_phy(struct platform_device *pdev) 4202 { 4203 /* 4204 * In case of platform probe, the reset has been done 4205 * by machine code. 4206 */ 4207 return 0; 4208 } 4209 #endif /* CONFIG_OF */ 4210 4211 static void 4212 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4213 { 4214 struct device_node *np = pdev->dev.of_node; 4215 4216 *num_tx = *num_rx = 1; 4217 4218 if (!np || !of_device_is_available(np)) 4219 return; 4220 4221 /* parse the num of tx and rx queues */ 4222 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4223 4224 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4225 4226 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4227 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4228 *num_tx); 4229 *num_tx = 1; 4230 return; 4231 } 4232 4233 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4234 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4235 *num_rx); 4236 *num_rx = 1; 4237 return; 4238 } 4239 4240 } 4241 4242 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4243 { 4244 int irq_cnt = platform_irq_count(pdev); 4245 4246 if (irq_cnt > FEC_IRQ_NUM) 4247 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4248 else if (irq_cnt == 2) 4249 irq_cnt = 1; /* last for pps */ 4250 else if (irq_cnt <= 0) 4251 irq_cnt = 1; /* At least 1 irq is needed */ 4252 return irq_cnt; 4253 } 4254 4255 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4256 { 4257 struct net_device *ndev = platform_get_drvdata(pdev); 4258 struct fec_enet_private *fep = netdev_priv(ndev); 4259 4260 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4261 fep->wake_irq = fep->irq[2]; 4262 else 4263 fep->wake_irq = fep->irq[0]; 4264 } 4265 4266 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4267 struct device_node *np) 4268 { 4269 struct device_node *gpr_np; 4270 u32 out_val[3]; 4271 int ret = 0; 4272 4273 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4274 if (!gpr_np) 4275 return 0; 4276 4277 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4278 ARRAY_SIZE(out_val)); 4279 if (ret) { 4280 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4281 goto out; 4282 } 4283 4284 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4285 if (IS_ERR(fep->stop_gpr.gpr)) { 4286 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4287 ret = PTR_ERR(fep->stop_gpr.gpr); 4288 fep->stop_gpr.gpr = NULL; 4289 goto out; 4290 } 4291 4292 fep->stop_gpr.reg = out_val[1]; 4293 fep->stop_gpr.bit = out_val[2]; 4294 4295 out: 4296 of_node_put(gpr_np); 4297 4298 return ret; 4299 } 4300 4301 static int 4302 fec_probe(struct platform_device *pdev) 4303 { 4304 struct fec_enet_private *fep; 4305 struct fec_platform_data *pdata; 4306 phy_interface_t interface; 4307 struct net_device *ndev; 4308 int i, irq, ret = 0; 4309 static int dev_id; 4310 struct device_node *np = pdev->dev.of_node, *phy_node; 4311 int num_tx_qs; 4312 int num_rx_qs; 4313 char irq_name[8]; 4314 int irq_cnt; 4315 const struct fec_devinfo *dev_info; 4316 4317 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4318 4319 /* Init network device */ 4320 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4321 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4322 if (!ndev) 4323 return -ENOMEM; 4324 4325 SET_NETDEV_DEV(ndev, &pdev->dev); 4326 4327 /* setup board info structure */ 4328 fep = netdev_priv(ndev); 4329 4330 dev_info = device_get_match_data(&pdev->dev); 4331 if (!dev_info) 4332 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 4333 if (dev_info) 4334 fep->quirks = dev_info->quirks; 4335 4336 fep->netdev = ndev; 4337 fep->num_rx_queues = num_rx_qs; 4338 fep->num_tx_queues = num_tx_qs; 4339 4340 #if !defined(CONFIG_M5272) 4341 /* default enable pause frame auto negotiation */ 4342 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4343 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4344 #endif 4345 4346 /* Select default pin state */ 4347 pinctrl_pm_select_default_state(&pdev->dev); 4348 4349 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4350 if (IS_ERR(fep->hwp)) { 4351 ret = PTR_ERR(fep->hwp); 4352 goto failed_ioremap; 4353 } 4354 4355 fep->pdev = pdev; 4356 fep->dev_id = dev_id++; 4357 4358 platform_set_drvdata(pdev, ndev); 4359 4360 if ((of_machine_is_compatible("fsl,imx6q") || 4361 of_machine_is_compatible("fsl,imx6dl")) && 4362 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4363 fep->quirks |= FEC_QUIRK_ERR006687; 4364 4365 ret = fec_enet_ipc_handle_init(fep); 4366 if (ret) 4367 goto failed_ipc_init; 4368 4369 if (of_property_read_bool(np, "fsl,magic-packet")) 4370 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4371 4372 ret = fec_enet_init_stop_mode(fep, np); 4373 if (ret) 4374 goto failed_stop_mode; 4375 4376 phy_node = of_parse_phandle(np, "phy-handle", 0); 4377 if (!phy_node && of_phy_is_fixed_link(np)) { 4378 ret = of_phy_register_fixed_link(np); 4379 if (ret < 0) { 4380 dev_err(&pdev->dev, 4381 "broken fixed-link specification\n"); 4382 goto failed_phy; 4383 } 4384 phy_node = of_node_get(np); 4385 } 4386 fep->phy_node = phy_node; 4387 4388 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4389 if (ret) { 4390 pdata = dev_get_platdata(&pdev->dev); 4391 if (pdata) 4392 fep->phy_interface = pdata->phy; 4393 else 4394 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4395 } else { 4396 fep->phy_interface = interface; 4397 } 4398 4399 ret = fec_enet_parse_rgmii_delay(fep, np); 4400 if (ret) 4401 goto failed_rgmii_delay; 4402 4403 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4404 if (IS_ERR(fep->clk_ipg)) { 4405 ret = PTR_ERR(fep->clk_ipg); 4406 goto failed_clk; 4407 } 4408 4409 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4410 if (IS_ERR(fep->clk_ahb)) { 4411 ret = PTR_ERR(fep->clk_ahb); 4412 goto failed_clk; 4413 } 4414 4415 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4416 4417 /* enet_out is optional, depends on board */ 4418 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4419 if (IS_ERR(fep->clk_enet_out)) { 4420 ret = PTR_ERR(fep->clk_enet_out); 4421 goto failed_clk; 4422 } 4423 4424 fep->ptp_clk_on = false; 4425 mutex_init(&fep->ptp_clk_mutex); 4426 4427 /* clk_ref is optional, depends on board */ 4428 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4429 if (IS_ERR(fep->clk_ref)) { 4430 ret = PTR_ERR(fep->clk_ref); 4431 goto failed_clk; 4432 } 4433 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4434 4435 /* clk_2x_txclk is optional, depends on board */ 4436 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4437 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4438 if (IS_ERR(fep->clk_2x_txclk)) 4439 fep->clk_2x_txclk = NULL; 4440 } 4441 4442 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4443 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4444 if (IS_ERR(fep->clk_ptp)) { 4445 fep->clk_ptp = NULL; 4446 fep->bufdesc_ex = false; 4447 } 4448 4449 ret = fec_enet_clk_enable(ndev, true); 4450 if (ret) 4451 goto failed_clk; 4452 4453 ret = clk_prepare_enable(fep->clk_ipg); 4454 if (ret) 4455 goto failed_clk_ipg; 4456 ret = clk_prepare_enable(fep->clk_ahb); 4457 if (ret) 4458 goto failed_clk_ahb; 4459 4460 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4461 if (!IS_ERR(fep->reg_phy)) { 4462 ret = regulator_enable(fep->reg_phy); 4463 if (ret) { 4464 dev_err(&pdev->dev, 4465 "Failed to enable phy regulator: %d\n", ret); 4466 goto failed_regulator; 4467 } 4468 } else { 4469 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4470 ret = -EPROBE_DEFER; 4471 goto failed_regulator; 4472 } 4473 fep->reg_phy = NULL; 4474 } 4475 4476 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4477 pm_runtime_use_autosuspend(&pdev->dev); 4478 pm_runtime_get_noresume(&pdev->dev); 4479 pm_runtime_set_active(&pdev->dev); 4480 pm_runtime_enable(&pdev->dev); 4481 4482 ret = fec_reset_phy(pdev); 4483 if (ret) 4484 goto failed_reset; 4485 4486 irq_cnt = fec_enet_get_irq_cnt(pdev); 4487 if (fep->bufdesc_ex) 4488 fec_ptp_init(pdev, irq_cnt); 4489 4490 ret = fec_enet_init(ndev); 4491 if (ret) 4492 goto failed_init; 4493 4494 for (i = 0; i < irq_cnt; i++) { 4495 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4496 irq = platform_get_irq_byname_optional(pdev, irq_name); 4497 if (irq < 0) 4498 irq = platform_get_irq(pdev, i); 4499 if (irq < 0) { 4500 ret = irq; 4501 goto failed_irq; 4502 } 4503 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4504 0, pdev->name, ndev); 4505 if (ret) 4506 goto failed_irq; 4507 4508 fep->irq[i] = irq; 4509 } 4510 4511 /* Decide which interrupt line is wakeup capable */ 4512 fec_enet_get_wakeup_irq(pdev); 4513 4514 ret = fec_enet_mii_init(pdev); 4515 if (ret) 4516 goto failed_mii_init; 4517 4518 /* Carrier starts down, phylib will bring it up */ 4519 netif_carrier_off(ndev); 4520 fec_enet_clk_enable(ndev, false); 4521 pinctrl_pm_select_sleep_state(&pdev->dev); 4522 4523 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4524 4525 ret = register_netdev(ndev); 4526 if (ret) 4527 goto failed_register; 4528 4529 device_init_wakeup(&ndev->dev, fep->wol_flag & 4530 FEC_WOL_HAS_MAGIC_PACKET); 4531 4532 if (fep->bufdesc_ex && fep->ptp_clock) 4533 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4534 4535 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4536 4537 pm_runtime_mark_last_busy(&pdev->dev); 4538 pm_runtime_put_autosuspend(&pdev->dev); 4539 4540 return 0; 4541 4542 failed_register: 4543 fec_enet_mii_remove(fep); 4544 failed_mii_init: 4545 failed_irq: 4546 fec_enet_deinit(ndev); 4547 failed_init: 4548 fec_ptp_stop(pdev); 4549 failed_reset: 4550 pm_runtime_put_noidle(&pdev->dev); 4551 pm_runtime_disable(&pdev->dev); 4552 if (fep->reg_phy) 4553 regulator_disable(fep->reg_phy); 4554 failed_regulator: 4555 clk_disable_unprepare(fep->clk_ahb); 4556 failed_clk_ahb: 4557 clk_disable_unprepare(fep->clk_ipg); 4558 failed_clk_ipg: 4559 fec_enet_clk_enable(ndev, false); 4560 failed_clk: 4561 failed_rgmii_delay: 4562 if (of_phy_is_fixed_link(np)) 4563 of_phy_deregister_fixed_link(np); 4564 of_node_put(phy_node); 4565 failed_stop_mode: 4566 failed_ipc_init: 4567 failed_phy: 4568 dev_id--; 4569 failed_ioremap: 4570 free_netdev(ndev); 4571 4572 return ret; 4573 } 4574 4575 static void 4576 fec_drv_remove(struct platform_device *pdev) 4577 { 4578 struct net_device *ndev = platform_get_drvdata(pdev); 4579 struct fec_enet_private *fep = netdev_priv(ndev); 4580 struct device_node *np = pdev->dev.of_node; 4581 int ret; 4582 4583 ret = pm_runtime_get_sync(&pdev->dev); 4584 if (ret < 0) 4585 dev_err(&pdev->dev, 4586 "Failed to resume device in remove callback (%pe)\n", 4587 ERR_PTR(ret)); 4588 4589 cancel_work_sync(&fep->tx_timeout_work); 4590 fec_ptp_stop(pdev); 4591 unregister_netdev(ndev); 4592 fec_enet_mii_remove(fep); 4593 if (fep->reg_phy) 4594 regulator_disable(fep->reg_phy); 4595 4596 if (of_phy_is_fixed_link(np)) 4597 of_phy_deregister_fixed_link(np); 4598 of_node_put(fep->phy_node); 4599 4600 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4601 * disabling them again. 4602 */ 4603 if (ret >= 0) { 4604 clk_disable_unprepare(fep->clk_ahb); 4605 clk_disable_unprepare(fep->clk_ipg); 4606 } 4607 pm_runtime_put_noidle(&pdev->dev); 4608 pm_runtime_disable(&pdev->dev); 4609 4610 fec_enet_deinit(ndev); 4611 free_netdev(ndev); 4612 } 4613 4614 static int fec_suspend(struct device *dev) 4615 { 4616 struct net_device *ndev = dev_get_drvdata(dev); 4617 struct fec_enet_private *fep = netdev_priv(ndev); 4618 int ret; 4619 4620 rtnl_lock(); 4621 if (netif_running(ndev)) { 4622 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4623 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4624 phy_stop(ndev->phydev); 4625 napi_disable(&fep->napi); 4626 netif_tx_lock_bh(ndev); 4627 netif_device_detach(ndev); 4628 netif_tx_unlock_bh(ndev); 4629 fec_stop(ndev); 4630 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4631 fec_irqs_disable(ndev); 4632 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4633 } else { 4634 fec_irqs_disable_except_wakeup(ndev); 4635 if (fep->wake_irq > 0) { 4636 disable_irq(fep->wake_irq); 4637 enable_irq_wake(fep->wake_irq); 4638 } 4639 fec_enet_stop_mode(fep, true); 4640 } 4641 /* It's safe to disable clocks since interrupts are masked */ 4642 fec_enet_clk_enable(ndev, false); 4643 4644 fep->rpm_active = !pm_runtime_status_suspended(dev); 4645 if (fep->rpm_active) { 4646 ret = pm_runtime_force_suspend(dev); 4647 if (ret < 0) { 4648 rtnl_unlock(); 4649 return ret; 4650 } 4651 } 4652 } 4653 rtnl_unlock(); 4654 4655 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4656 regulator_disable(fep->reg_phy); 4657 4658 /* SOC supply clock to phy, when clock is disabled, phy link down 4659 * SOC control phy regulator, when regulator is disabled, phy link down 4660 */ 4661 if (fep->clk_enet_out || fep->reg_phy) 4662 fep->link = 0; 4663 4664 return 0; 4665 } 4666 4667 static int fec_resume(struct device *dev) 4668 { 4669 struct net_device *ndev = dev_get_drvdata(dev); 4670 struct fec_enet_private *fep = netdev_priv(ndev); 4671 int ret; 4672 int val; 4673 4674 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4675 ret = regulator_enable(fep->reg_phy); 4676 if (ret) 4677 return ret; 4678 } 4679 4680 rtnl_lock(); 4681 if (netif_running(ndev)) { 4682 if (fep->rpm_active) 4683 pm_runtime_force_resume(dev); 4684 4685 ret = fec_enet_clk_enable(ndev, true); 4686 if (ret) { 4687 rtnl_unlock(); 4688 goto failed_clk; 4689 } 4690 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4691 fec_enet_stop_mode(fep, false); 4692 if (fep->wake_irq) { 4693 disable_irq_wake(fep->wake_irq); 4694 enable_irq(fep->wake_irq); 4695 } 4696 4697 val = readl(fep->hwp + FEC_ECNTRL); 4698 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4699 writel(val, fep->hwp + FEC_ECNTRL); 4700 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4701 } else { 4702 pinctrl_pm_select_default_state(&fep->pdev->dev); 4703 } 4704 fec_restart(ndev); 4705 netif_tx_lock_bh(ndev); 4706 netif_device_attach(ndev); 4707 netif_tx_unlock_bh(ndev); 4708 napi_enable(&fep->napi); 4709 phy_init_hw(ndev->phydev); 4710 phy_start(ndev->phydev); 4711 } 4712 rtnl_unlock(); 4713 4714 return 0; 4715 4716 failed_clk: 4717 if (fep->reg_phy) 4718 regulator_disable(fep->reg_phy); 4719 return ret; 4720 } 4721 4722 static int fec_runtime_suspend(struct device *dev) 4723 { 4724 struct net_device *ndev = dev_get_drvdata(dev); 4725 struct fec_enet_private *fep = netdev_priv(ndev); 4726 4727 clk_disable_unprepare(fep->clk_ahb); 4728 clk_disable_unprepare(fep->clk_ipg); 4729 4730 return 0; 4731 } 4732 4733 static int fec_runtime_resume(struct device *dev) 4734 { 4735 struct net_device *ndev = dev_get_drvdata(dev); 4736 struct fec_enet_private *fep = netdev_priv(ndev); 4737 int ret; 4738 4739 ret = clk_prepare_enable(fep->clk_ahb); 4740 if (ret) 4741 return ret; 4742 ret = clk_prepare_enable(fep->clk_ipg); 4743 if (ret) 4744 goto failed_clk_ipg; 4745 4746 return 0; 4747 4748 failed_clk_ipg: 4749 clk_disable_unprepare(fep->clk_ahb); 4750 return ret; 4751 } 4752 4753 static const struct dev_pm_ops fec_pm_ops = { 4754 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4755 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4756 }; 4757 4758 static struct platform_driver fec_driver = { 4759 .driver = { 4760 .name = DRIVER_NAME, 4761 .pm = pm_ptr(&fec_pm_ops), 4762 .of_match_table = fec_dt_ids, 4763 .suppress_bind_attrs = true, 4764 }, 4765 .id_table = fec_devtype, 4766 .probe = fec_probe, 4767 .remove_new = fec_drv_remove, 4768 }; 4769 4770 module_platform_driver(fec_driver); 4771 4772 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver"); 4773 MODULE_LICENSE("GPL"); 4774