xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 
64 #include <asm/cacheflush.h>
65 
66 #include "fec.h"
67 
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70 
71 #define DRIVER_NAME	"fec"
72 
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74 
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE	(1 << 5)
77 #define FEC_ENET_RSEM_V	0x84
78 #define FEC_ENET_RSFL_V	16
79 #define FEC_ENET_RAEM_V	0x8
80 #define FEC_ENET_RAFL_V	0x8
81 #define FEC_ENET_OPD_V	0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
83 
84 static struct platform_device_id fec_devtype[] = {
85 	{
86 		/* keep it for coldfire */
87 		.name = DRIVER_NAME,
88 		.driver_data = 0,
89 	}, {
90 		.name = "imx25-fec",
91 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92 	}, {
93 		.name = "imx27-fec",
94 		.driver_data = FEC_QUIRK_HAS_RACC,
95 	}, {
96 		.name = "imx28-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99 	}, {
100 		.name = "imx6q-fec",
101 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104 				FEC_QUIRK_HAS_RACC,
105 	}, {
106 		.name = "mvf600-fec",
107 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108 	}, {
109 		.name = "imx6sx-fec",
110 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114 				FEC_QUIRK_HAS_RACC,
115 	}, {
116 		/* sentinel */
117 	}
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120 
121 enum imx_fec_type {
122 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
123 	IMX27_FEC,	/* runs on i.mx27/35/51 */
124 	IMX28_FEC,
125 	IMX6Q_FEC,
126 	MVF600_FEC,
127 	IMX6SX_FEC,
128 };
129 
130 static const struct of_device_id fec_dt_ids[] = {
131 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137 	{ /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140 
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144 
145 #if defined(CONFIG_M5272)
146 /*
147  * Some hardware gets it MAC address out of local flash memory.
148  * if this is non-zero then assume it is the address to get MAC from.
149  */
150 #if defined(CONFIG_NETtel)
151 #define	FEC_FLASHMAC	0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define	FEC_FLASHMAC	0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define	FEC_FLASHMAC	0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define	FEC_FLASHMAC	(0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC	0xffc0406b
160 #else
161 #define	FEC_FLASHMAC	0
162 #endif
163 #endif /* CONFIG_M5272 */
164 
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166  */
167 #define PKT_MAXBUF_SIZE		1522
168 #define PKT_MINBUF_SIZE		64
169 #define PKT_MAXBLR_SIZE		1536
170 
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS		(1 << 1)
173 #define FEC_RACC_PRODIS		(1 << 2)
174 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175 
176 /*
177  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178  * size bits. Other FEC hardware does not, so we need to take that into
179  * account when setting it.
180  */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
184 #else
185 #define	OPT_FRAME_SIZE	0
186 #endif
187 
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST		(1 << 30)
190 #define FEC_MMFR_OP_READ	(2 << 28)
191 #define FEC_MMFR_OP_WRITE	(1 << 28)
192 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
194 #define FEC_MMFR_TA		(2 << 16)
195 #define FEC_MMFR_DATA(v)	(v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN		(1 << 2)
198 #define FEC_ECR_SLEEP		(1 << 3)
199 
200 #define FEC_MII_TIMEOUT		30000 /* us */
201 
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204 
205 #define FEC_PAUSE_FLAG_AUTONEG	0x1
206 #define FEC_PAUSE_FLAG_ENABLE	0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
210 
211 #define COPYBREAK_DEFAULT	256
212 
213 #define TSO_HEADER_SIZE		128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS	100
216 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217 
218 #define IS_TSO_HEADER(txq, addr) \
219 	((addr >= txq->tso_hdrs_dma) && \
220 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
221 
222 static int mii_cnt;
223 
224 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 					     struct bufdesc_prop *bd)
226 {
227 	return (bdp >= bd->last) ? bd->base
228 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
229 }
230 
231 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
232 					     struct bufdesc_prop *bd)
233 {
234 	return (bdp <= bd->base) ? bd->last
235 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
236 }
237 
238 static int fec_enet_get_bd_index(struct bufdesc *bdp,
239 				 struct bufdesc_prop *bd)
240 {
241 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
242 }
243 
244 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
245 {
246 	int entries;
247 
248 	entries = (((const char *)txq->dirty_tx -
249 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
250 
251 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
252 }
253 
254 static void swap_buffer(void *bufaddr, int len)
255 {
256 	int i;
257 	unsigned int *buf = bufaddr;
258 
259 	for (i = 0; i < len; i += 4, buf++)
260 		swab32s(buf);
261 }
262 
263 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
264 {
265 	int i;
266 	unsigned int *src = src_buf;
267 	unsigned int *dst = dst_buf;
268 
269 	for (i = 0; i < len; i += 4, src++, dst++)
270 		*dst = swab32p(src);
271 }
272 
273 static void fec_dump(struct net_device *ndev)
274 {
275 	struct fec_enet_private *fep = netdev_priv(ndev);
276 	struct bufdesc *bdp;
277 	struct fec_enet_priv_tx_q *txq;
278 	int index = 0;
279 
280 	netdev_info(ndev, "TX ring dump\n");
281 	pr_info("Nr     SC     addr       len  SKB\n");
282 
283 	txq = fep->tx_queue[0];
284 	bdp = txq->bd.base;
285 
286 	do {
287 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
288 			index,
289 			bdp == txq->bd.cur ? 'S' : ' ',
290 			bdp == txq->dirty_tx ? 'H' : ' ',
291 			fec16_to_cpu(bdp->cbd_sc),
292 			fec32_to_cpu(bdp->cbd_bufaddr),
293 			fec16_to_cpu(bdp->cbd_datlen),
294 			txq->tx_skbuff[index]);
295 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
296 		index++;
297 	} while (bdp != txq->bd.base);
298 }
299 
300 static inline bool is_ipv4_pkt(struct sk_buff *skb)
301 {
302 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
303 }
304 
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308 	/* Only run for packets requiring a checksum. */
309 	if (skb->ip_summed != CHECKSUM_PARTIAL)
310 		return 0;
311 
312 	if (unlikely(skb_cow_head(skb, 0)))
313 		return -1;
314 
315 	if (is_ipv4_pkt(skb))
316 		ip_hdr(skb)->check = 0;
317 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
318 
319 	return 0;
320 }
321 
322 static struct bufdesc *
323 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
324 			     struct sk_buff *skb,
325 			     struct net_device *ndev)
326 {
327 	struct fec_enet_private *fep = netdev_priv(ndev);
328 	struct bufdesc *bdp = txq->bd.cur;
329 	struct bufdesc_ex *ebdp;
330 	int nr_frags = skb_shinfo(skb)->nr_frags;
331 	int frag, frag_len;
332 	unsigned short status;
333 	unsigned int estatus = 0;
334 	skb_frag_t *this_frag;
335 	unsigned int index;
336 	void *bufaddr;
337 	dma_addr_t addr;
338 	int i;
339 
340 	for (frag = 0; frag < nr_frags; frag++) {
341 		this_frag = &skb_shinfo(skb)->frags[frag];
342 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
343 		ebdp = (struct bufdesc_ex *)bdp;
344 
345 		status = fec16_to_cpu(bdp->cbd_sc);
346 		status &= ~BD_ENET_TX_STATS;
347 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
348 		frag_len = skb_shinfo(skb)->frags[frag].size;
349 
350 		/* Handle the last BD specially */
351 		if (frag == nr_frags - 1) {
352 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
353 			if (fep->bufdesc_ex) {
354 				estatus |= BD_ENET_TX_INT;
355 				if (unlikely(skb_shinfo(skb)->tx_flags &
356 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
357 					estatus |= BD_ENET_TX_TS;
358 			}
359 		}
360 
361 		if (fep->bufdesc_ex) {
362 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
363 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
364 			if (skb->ip_summed == CHECKSUM_PARTIAL)
365 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
366 			ebdp->cbd_bdu = 0;
367 			ebdp->cbd_esc = cpu_to_fec32(estatus);
368 		}
369 
370 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
371 
372 		index = fec_enet_get_bd_index(bdp, &txq->bd);
373 		if (((unsigned long) bufaddr) & fep->tx_align ||
374 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
375 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
376 			bufaddr = txq->tx_bounce[index];
377 
378 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
379 				swap_buffer(bufaddr, frag_len);
380 		}
381 
382 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
383 				      DMA_TO_DEVICE);
384 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
385 			if (net_ratelimit())
386 				netdev_err(ndev, "Tx DMA memory map failed\n");
387 			goto dma_mapping_error;
388 		}
389 
390 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
391 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
392 		/* Make sure the updates to rest of the descriptor are
393 		 * performed before transferring ownership.
394 		 */
395 		wmb();
396 		bdp->cbd_sc = cpu_to_fec16(status);
397 	}
398 
399 	return bdp;
400 dma_mapping_error:
401 	bdp = txq->bd.cur;
402 	for (i = 0; i < frag; i++) {
403 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
405 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
406 	}
407 	return ERR_PTR(-ENOMEM);
408 }
409 
410 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
411 				   struct sk_buff *skb, struct net_device *ndev)
412 {
413 	struct fec_enet_private *fep = netdev_priv(ndev);
414 	int nr_frags = skb_shinfo(skb)->nr_frags;
415 	struct bufdesc *bdp, *last_bdp;
416 	void *bufaddr;
417 	dma_addr_t addr;
418 	unsigned short status;
419 	unsigned short buflen;
420 	unsigned int estatus = 0;
421 	unsigned int index;
422 	int entries_free;
423 
424 	entries_free = fec_enet_get_free_txdesc_num(txq);
425 	if (entries_free < MAX_SKB_FRAGS + 1) {
426 		dev_kfree_skb_any(skb);
427 		if (net_ratelimit())
428 			netdev_err(ndev, "NOT enough BD for SG!\n");
429 		return NETDEV_TX_OK;
430 	}
431 
432 	/* Protocol checksum off-load for TCP and UDP. */
433 	if (fec_enet_clear_csum(skb, ndev)) {
434 		dev_kfree_skb_any(skb);
435 		return NETDEV_TX_OK;
436 	}
437 
438 	/* Fill in a Tx ring entry */
439 	bdp = txq->bd.cur;
440 	last_bdp = bdp;
441 	status = fec16_to_cpu(bdp->cbd_sc);
442 	status &= ~BD_ENET_TX_STATS;
443 
444 	/* Set buffer length and buffer pointer */
445 	bufaddr = skb->data;
446 	buflen = skb_headlen(skb);
447 
448 	index = fec_enet_get_bd_index(bdp, &txq->bd);
449 	if (((unsigned long) bufaddr) & fep->tx_align ||
450 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
451 		memcpy(txq->tx_bounce[index], skb->data, buflen);
452 		bufaddr = txq->tx_bounce[index];
453 
454 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
455 			swap_buffer(bufaddr, buflen);
456 	}
457 
458 	/* Push the data cache so the CPM does not get stale memory data. */
459 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
460 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
461 		dev_kfree_skb_any(skb);
462 		if (net_ratelimit())
463 			netdev_err(ndev, "Tx DMA memory map failed\n");
464 		return NETDEV_TX_OK;
465 	}
466 
467 	if (nr_frags) {
468 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
469 		if (IS_ERR(last_bdp)) {
470 			dma_unmap_single(&fep->pdev->dev, addr,
471 					 buflen, DMA_TO_DEVICE);
472 			dev_kfree_skb_any(skb);
473 			return NETDEV_TX_OK;
474 		}
475 	} else {
476 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
477 		if (fep->bufdesc_ex) {
478 			estatus = BD_ENET_TX_INT;
479 			if (unlikely(skb_shinfo(skb)->tx_flags &
480 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
481 				estatus |= BD_ENET_TX_TS;
482 		}
483 	}
484 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
485 	bdp->cbd_datlen = cpu_to_fec16(buflen);
486 
487 	if (fep->bufdesc_ex) {
488 
489 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
490 
491 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
492 			fep->hwts_tx_en))
493 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
494 
495 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
496 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
497 
498 		if (skb->ip_summed == CHECKSUM_PARTIAL)
499 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
500 
501 		ebdp->cbd_bdu = 0;
502 		ebdp->cbd_esc = cpu_to_fec32(estatus);
503 	}
504 
505 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
506 	/* Save skb pointer */
507 	txq->tx_skbuff[index] = skb;
508 
509 	/* Make sure the updates to rest of the descriptor are performed before
510 	 * transferring ownership.
511 	 */
512 	wmb();
513 
514 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
515 	 * it's the last BD of the frame, and to put the CRC on the end.
516 	 */
517 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
518 	bdp->cbd_sc = cpu_to_fec16(status);
519 
520 	/* If this was the last BD in the ring, start at the beginning again. */
521 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
522 
523 	skb_tx_timestamp(skb);
524 
525 	/* Make sure the update to bdp and tx_skbuff are performed before
526 	 * txq->bd.cur.
527 	 */
528 	wmb();
529 	txq->bd.cur = bdp;
530 
531 	/* Trigger transmission start */
532 	writel(0, txq->bd.reg_desc_active);
533 
534 	return 0;
535 }
536 
537 static int
538 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
539 			  struct net_device *ndev,
540 			  struct bufdesc *bdp, int index, char *data,
541 			  int size, bool last_tcp, bool is_last)
542 {
543 	struct fec_enet_private *fep = netdev_priv(ndev);
544 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
545 	unsigned short status;
546 	unsigned int estatus = 0;
547 	dma_addr_t addr;
548 
549 	status = fec16_to_cpu(bdp->cbd_sc);
550 	status &= ~BD_ENET_TX_STATS;
551 
552 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
553 
554 	if (((unsigned long) data) & fep->tx_align ||
555 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
556 		memcpy(txq->tx_bounce[index], data, size);
557 		data = txq->tx_bounce[index];
558 
559 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
560 			swap_buffer(data, size);
561 	}
562 
563 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
564 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
565 		dev_kfree_skb_any(skb);
566 		if (net_ratelimit())
567 			netdev_err(ndev, "Tx DMA memory map failed\n");
568 		return NETDEV_TX_BUSY;
569 	}
570 
571 	bdp->cbd_datlen = cpu_to_fec16(size);
572 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
573 
574 	if (fep->bufdesc_ex) {
575 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
576 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
577 		if (skb->ip_summed == CHECKSUM_PARTIAL)
578 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
579 		ebdp->cbd_bdu = 0;
580 		ebdp->cbd_esc = cpu_to_fec32(estatus);
581 	}
582 
583 	/* Handle the last BD specially */
584 	if (last_tcp)
585 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
586 	if (is_last) {
587 		status |= BD_ENET_TX_INTR;
588 		if (fep->bufdesc_ex)
589 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
590 	}
591 
592 	bdp->cbd_sc = cpu_to_fec16(status);
593 
594 	return 0;
595 }
596 
597 static int
598 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
599 			 struct sk_buff *skb, struct net_device *ndev,
600 			 struct bufdesc *bdp, int index)
601 {
602 	struct fec_enet_private *fep = netdev_priv(ndev);
603 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
604 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
605 	void *bufaddr;
606 	unsigned long dmabuf;
607 	unsigned short status;
608 	unsigned int estatus = 0;
609 
610 	status = fec16_to_cpu(bdp->cbd_sc);
611 	status &= ~BD_ENET_TX_STATS;
612 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
613 
614 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
615 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
616 	if (((unsigned long)bufaddr) & fep->tx_align ||
617 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
618 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
619 		bufaddr = txq->tx_bounce[index];
620 
621 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
622 			swap_buffer(bufaddr, hdr_len);
623 
624 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
625 					hdr_len, DMA_TO_DEVICE);
626 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
627 			dev_kfree_skb_any(skb);
628 			if (net_ratelimit())
629 				netdev_err(ndev, "Tx DMA memory map failed\n");
630 			return NETDEV_TX_BUSY;
631 		}
632 	}
633 
634 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
635 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
636 
637 	if (fep->bufdesc_ex) {
638 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
639 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
640 		if (skb->ip_summed == CHECKSUM_PARTIAL)
641 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
642 		ebdp->cbd_bdu = 0;
643 		ebdp->cbd_esc = cpu_to_fec32(estatus);
644 	}
645 
646 	bdp->cbd_sc = cpu_to_fec16(status);
647 
648 	return 0;
649 }
650 
651 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
652 				   struct sk_buff *skb,
653 				   struct net_device *ndev)
654 {
655 	struct fec_enet_private *fep = netdev_priv(ndev);
656 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
657 	int total_len, data_left;
658 	struct bufdesc *bdp = txq->bd.cur;
659 	struct tso_t tso;
660 	unsigned int index = 0;
661 	int ret;
662 
663 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
664 		dev_kfree_skb_any(skb);
665 		if (net_ratelimit())
666 			netdev_err(ndev, "NOT enough BD for TSO!\n");
667 		return NETDEV_TX_OK;
668 	}
669 
670 	/* Protocol checksum off-load for TCP and UDP. */
671 	if (fec_enet_clear_csum(skb, ndev)) {
672 		dev_kfree_skb_any(skb);
673 		return NETDEV_TX_OK;
674 	}
675 
676 	/* Initialize the TSO handler, and prepare the first payload */
677 	tso_start(skb, &tso);
678 
679 	total_len = skb->len - hdr_len;
680 	while (total_len > 0) {
681 		char *hdr;
682 
683 		index = fec_enet_get_bd_index(bdp, &txq->bd);
684 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
685 		total_len -= data_left;
686 
687 		/* prepare packet headers: MAC + IP + TCP */
688 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
689 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
690 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
691 		if (ret)
692 			goto err_release;
693 
694 		while (data_left > 0) {
695 			int size;
696 
697 			size = min_t(int, tso.size, data_left);
698 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
699 			index = fec_enet_get_bd_index(bdp, &txq->bd);
700 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
701 							bdp, index,
702 							tso.data, size,
703 							size == data_left,
704 							total_len == 0);
705 			if (ret)
706 				goto err_release;
707 
708 			data_left -= size;
709 			tso_build_data(skb, &tso, size);
710 		}
711 
712 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713 	}
714 
715 	/* Save skb pointer */
716 	txq->tx_skbuff[index] = skb;
717 
718 	skb_tx_timestamp(skb);
719 	txq->bd.cur = bdp;
720 
721 	/* Trigger transmission start */
722 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
723 	    !readl(txq->bd.reg_desc_active) ||
724 	    !readl(txq->bd.reg_desc_active) ||
725 	    !readl(txq->bd.reg_desc_active) ||
726 	    !readl(txq->bd.reg_desc_active))
727 		writel(0, txq->bd.reg_desc_active);
728 
729 	return 0;
730 
731 err_release:
732 	/* TODO: Release all used data descriptors for TSO */
733 	return ret;
734 }
735 
736 static netdev_tx_t
737 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
738 {
739 	struct fec_enet_private *fep = netdev_priv(ndev);
740 	int entries_free;
741 	unsigned short queue;
742 	struct fec_enet_priv_tx_q *txq;
743 	struct netdev_queue *nq;
744 	int ret;
745 
746 	queue = skb_get_queue_mapping(skb);
747 	txq = fep->tx_queue[queue];
748 	nq = netdev_get_tx_queue(ndev, queue);
749 
750 	if (skb_is_gso(skb))
751 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
752 	else
753 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
754 	if (ret)
755 		return ret;
756 
757 	entries_free = fec_enet_get_free_txdesc_num(txq);
758 	if (entries_free <= txq->tx_stop_threshold)
759 		netif_tx_stop_queue(nq);
760 
761 	return NETDEV_TX_OK;
762 }
763 
764 /* Init RX & TX buffer descriptors
765  */
766 static void fec_enet_bd_init(struct net_device *dev)
767 {
768 	struct fec_enet_private *fep = netdev_priv(dev);
769 	struct fec_enet_priv_tx_q *txq;
770 	struct fec_enet_priv_rx_q *rxq;
771 	struct bufdesc *bdp;
772 	unsigned int i;
773 	unsigned int q;
774 
775 	for (q = 0; q < fep->num_rx_queues; q++) {
776 		/* Initialize the receive buffer descriptors. */
777 		rxq = fep->rx_queue[q];
778 		bdp = rxq->bd.base;
779 
780 		for (i = 0; i < rxq->bd.ring_size; i++) {
781 
782 			/* Initialize the BD for every fragment in the page. */
783 			if (bdp->cbd_bufaddr)
784 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
785 			else
786 				bdp->cbd_sc = cpu_to_fec16(0);
787 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
788 		}
789 
790 		/* Set the last buffer to wrap */
791 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
792 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
793 
794 		rxq->bd.cur = rxq->bd.base;
795 	}
796 
797 	for (q = 0; q < fep->num_tx_queues; q++) {
798 		/* ...and the same for transmit */
799 		txq = fep->tx_queue[q];
800 		bdp = txq->bd.base;
801 		txq->bd.cur = bdp;
802 
803 		for (i = 0; i < txq->bd.ring_size; i++) {
804 			/* Initialize the BD for every fragment in the page. */
805 			bdp->cbd_sc = cpu_to_fec16(0);
806 			if (txq->tx_skbuff[i]) {
807 				dev_kfree_skb_any(txq->tx_skbuff[i]);
808 				txq->tx_skbuff[i] = NULL;
809 			}
810 			bdp->cbd_bufaddr = cpu_to_fec32(0);
811 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
812 		}
813 
814 		/* Set the last buffer to wrap */
815 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
816 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
817 		txq->dirty_tx = bdp;
818 	}
819 }
820 
821 static void fec_enet_active_rxring(struct net_device *ndev)
822 {
823 	struct fec_enet_private *fep = netdev_priv(ndev);
824 	int i;
825 
826 	for (i = 0; i < fep->num_rx_queues; i++)
827 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
828 }
829 
830 static void fec_enet_enable_ring(struct net_device *ndev)
831 {
832 	struct fec_enet_private *fep = netdev_priv(ndev);
833 	struct fec_enet_priv_tx_q *txq;
834 	struct fec_enet_priv_rx_q *rxq;
835 	int i;
836 
837 	for (i = 0; i < fep->num_rx_queues; i++) {
838 		rxq = fep->rx_queue[i];
839 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
840 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
841 
842 		/* enable DMA1/2 */
843 		if (i)
844 			writel(RCMR_MATCHEN | RCMR_CMP(i),
845 			       fep->hwp + FEC_RCMR(i));
846 	}
847 
848 	for (i = 0; i < fep->num_tx_queues; i++) {
849 		txq = fep->tx_queue[i];
850 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
851 
852 		/* enable DMA1/2 */
853 		if (i)
854 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
855 			       fep->hwp + FEC_DMA_CFG(i));
856 	}
857 }
858 
859 static void fec_enet_reset_skb(struct net_device *ndev)
860 {
861 	struct fec_enet_private *fep = netdev_priv(ndev);
862 	struct fec_enet_priv_tx_q *txq;
863 	int i, j;
864 
865 	for (i = 0; i < fep->num_tx_queues; i++) {
866 		txq = fep->tx_queue[i];
867 
868 		for (j = 0; j < txq->bd.ring_size; j++) {
869 			if (txq->tx_skbuff[j]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[j]);
871 				txq->tx_skbuff[j] = NULL;
872 			}
873 		}
874 	}
875 }
876 
877 /*
878  * This function is called to start or restart the FEC during a link
879  * change, transmit timeout, or to reconfigure the FEC.  The network
880  * packet processing for this device must be stopped before this call.
881  */
882 static void
883 fec_restart(struct net_device *ndev)
884 {
885 	struct fec_enet_private *fep = netdev_priv(ndev);
886 	u32 val;
887 	u32 temp_mac[2];
888 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
889 	u32 ecntl = 0x2; /* ETHEREN */
890 
891 	/* Whack a reset.  We should wait for this.
892 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
893 	 * instead of reset MAC itself.
894 	 */
895 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
896 		writel(0, fep->hwp + FEC_ECNTRL);
897 	} else {
898 		writel(1, fep->hwp + FEC_ECNTRL);
899 		udelay(10);
900 	}
901 
902 	/*
903 	 * enet-mac reset will reset mac address registers too,
904 	 * so need to reconfigure it.
905 	 */
906 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
907 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
908 		writel((__force u32)cpu_to_be32(temp_mac[0]),
909 		       fep->hwp + FEC_ADDR_LOW);
910 		writel((__force u32)cpu_to_be32(temp_mac[1]),
911 		       fep->hwp + FEC_ADDR_HIGH);
912 	}
913 
914 	/* Clear any outstanding interrupt. */
915 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
916 
917 	fec_enet_bd_init(ndev);
918 
919 	fec_enet_enable_ring(ndev);
920 
921 	/* Reset tx SKB buffers. */
922 	fec_enet_reset_skb(ndev);
923 
924 	/* Enable MII mode */
925 	if (fep->full_duplex == DUPLEX_FULL) {
926 		/* FD enable */
927 		writel(0x04, fep->hwp + FEC_X_CNTRL);
928 	} else {
929 		/* No Rcv on Xmit */
930 		rcntl |= 0x02;
931 		writel(0x0, fep->hwp + FEC_X_CNTRL);
932 	}
933 
934 	/* Set MII speed */
935 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
936 
937 #if !defined(CONFIG_M5272)
938 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
939 		/* set RX checksum */
940 		val = readl(fep->hwp + FEC_RACC);
941 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
942 			val |= FEC_RACC_OPTIONS;
943 		else
944 			val &= ~FEC_RACC_OPTIONS;
945 		writel(val, fep->hwp + FEC_RACC);
946 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
947 	}
948 #endif
949 
950 	/*
951 	 * The phy interface and speed need to get configured
952 	 * differently on enet-mac.
953 	 */
954 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
955 		/* Enable flow control and length check */
956 		rcntl |= 0x40000000 | 0x00000020;
957 
958 		/* RGMII, RMII or MII */
959 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
960 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
961 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
962 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
963 			rcntl |= (1 << 6);
964 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
965 			rcntl |= (1 << 8);
966 		else
967 			rcntl &= ~(1 << 8);
968 
969 		/* 1G, 100M or 10M */
970 		if (fep->phy_dev) {
971 			if (fep->phy_dev->speed == SPEED_1000)
972 				ecntl |= (1 << 5);
973 			else if (fep->phy_dev->speed == SPEED_100)
974 				rcntl &= ~(1 << 9);
975 			else
976 				rcntl |= (1 << 9);
977 		}
978 	} else {
979 #ifdef FEC_MIIGSK_ENR
980 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
981 			u32 cfgr;
982 			/* disable the gasket and wait */
983 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
984 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
985 				udelay(1);
986 
987 			/*
988 			 * configure the gasket:
989 			 *   RMII, 50 MHz, no loopback, no echo
990 			 *   MII, 25 MHz, no loopback, no echo
991 			 */
992 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
994 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
995 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
996 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
997 
998 			/* re-enable the gasket */
999 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000 		}
1001 #endif
1002 	}
1003 
1004 #if !defined(CONFIG_M5272)
1005 	/* enable pause frame*/
1006 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008 	     fep->phy_dev && fep->phy_dev->pause)) {
1009 		rcntl |= FEC_ENET_FCE;
1010 
1011 		/* set FIFO threshold parameter to reduce overrun */
1012 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016 
1017 		/* OPD */
1018 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019 	} else {
1020 		rcntl &= ~FEC_ENET_FCE;
1021 	}
1022 #endif /* !defined(CONFIG_M5272) */
1023 
1024 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025 
1026 	/* Setup multicast filter. */
1027 	set_multicast_list(ndev);
1028 #ifndef CONFIG_M5272
1029 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031 #endif
1032 
1033 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034 		/* enable ENET endian swap */
1035 		ecntl |= (1 << 8);
1036 		/* enable ENET store and forward mode */
1037 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038 	}
1039 
1040 	if (fep->bufdesc_ex)
1041 		ecntl |= (1 << 4);
1042 
1043 #ifndef CONFIG_M5272
1044 	/* Enable the MIB statistic event counters */
1045 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046 #endif
1047 
1048 	/* And last, enable the transmit and receive processing */
1049 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1050 	fec_enet_active_rxring(ndev);
1051 
1052 	if (fep->bufdesc_ex)
1053 		fec_ptp_start_cyclecounter(ndev);
1054 
1055 	/* Enable interrupts we wish to service */
1056 	if (fep->link)
1057 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058 	else
1059 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060 
1061 	/* Init the interrupt coalescing */
1062 	fec_enet_itr_coal_init(ndev);
1063 
1064 }
1065 
1066 static void
1067 fec_stop(struct net_device *ndev)
1068 {
1069 	struct fec_enet_private *fep = netdev_priv(ndev);
1070 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072 	u32 val;
1073 
1074 	/* We cannot expect a graceful transmit stop without link !!! */
1075 	if (fep->link) {
1076 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077 		udelay(10);
1078 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080 	}
1081 
1082 	/* Whack a reset.  We should wait for this.
1083 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084 	 * instead of reset MAC itself.
1085 	 */
1086 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088 			writel(0, fep->hwp + FEC_ECNTRL);
1089 		} else {
1090 			writel(1, fep->hwp + FEC_ECNTRL);
1091 			udelay(10);
1092 		}
1093 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094 	} else {
1095 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096 		val = readl(fep->hwp + FEC_ECNTRL);
1097 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098 		writel(val, fep->hwp + FEC_ECNTRL);
1099 
1100 		if (pdata && pdata->sleep_mode_enable)
1101 			pdata->sleep_mode_enable(true);
1102 	}
1103 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104 
1105 	/* We have to keep ENET enabled to have MII interrupt stay working */
1106 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108 		writel(2, fep->hwp + FEC_ECNTRL);
1109 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110 	}
1111 }
1112 
1113 
1114 static void
1115 fec_timeout(struct net_device *ndev)
1116 {
1117 	struct fec_enet_private *fep = netdev_priv(ndev);
1118 
1119 	fec_dump(ndev);
1120 
1121 	ndev->stats.tx_errors++;
1122 
1123 	schedule_work(&fep->tx_timeout_work);
1124 }
1125 
1126 static void fec_enet_timeout_work(struct work_struct *work)
1127 {
1128 	struct fec_enet_private *fep =
1129 		container_of(work, struct fec_enet_private, tx_timeout_work);
1130 	struct net_device *ndev = fep->netdev;
1131 
1132 	rtnl_lock();
1133 	if (netif_device_present(ndev) || netif_running(ndev)) {
1134 		napi_disable(&fep->napi);
1135 		netif_tx_lock_bh(ndev);
1136 		fec_restart(ndev);
1137 		netif_wake_queue(ndev);
1138 		netif_tx_unlock_bh(ndev);
1139 		napi_enable(&fep->napi);
1140 	}
1141 	rtnl_unlock();
1142 }
1143 
1144 static void
1145 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146 	struct skb_shared_hwtstamps *hwtstamps)
1147 {
1148 	unsigned long flags;
1149 	u64 ns;
1150 
1151 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1152 	ns = timecounter_cyc2time(&fep->tc, ts);
1153 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154 
1155 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1156 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1157 }
1158 
1159 static void
1160 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161 {
1162 	struct	fec_enet_private *fep;
1163 	struct bufdesc *bdp;
1164 	unsigned short status;
1165 	struct	sk_buff	*skb;
1166 	struct fec_enet_priv_tx_q *txq;
1167 	struct netdev_queue *nq;
1168 	int	index = 0;
1169 	int	entries_free;
1170 
1171 	fep = netdev_priv(ndev);
1172 
1173 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174 
1175 	txq = fep->tx_queue[queue_id];
1176 	/* get next bdp of dirty_tx */
1177 	nq = netdev_get_tx_queue(ndev, queue_id);
1178 	bdp = txq->dirty_tx;
1179 
1180 	/* get next bdp of dirty_tx */
1181 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182 
1183 	while (bdp != READ_ONCE(txq->bd.cur)) {
1184 		/* Order the load of bd.cur and cbd_sc */
1185 		rmb();
1186 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187 		if (status & BD_ENET_TX_READY)
1188 			break;
1189 
1190 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1191 
1192 		skb = txq->tx_skbuff[index];
1193 		txq->tx_skbuff[index] = NULL;
1194 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195 			dma_unmap_single(&fep->pdev->dev,
1196 					 fec32_to_cpu(bdp->cbd_bufaddr),
1197 					 fec16_to_cpu(bdp->cbd_datlen),
1198 					 DMA_TO_DEVICE);
1199 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1200 		if (!skb) {
1201 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1202 			continue;
1203 		}
1204 
1205 		/* Check for errors. */
1206 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1207 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1208 				   BD_ENET_TX_CSL)) {
1209 			ndev->stats.tx_errors++;
1210 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1211 				ndev->stats.tx_heartbeat_errors++;
1212 			if (status & BD_ENET_TX_LC)  /* Late collision */
1213 				ndev->stats.tx_window_errors++;
1214 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1215 				ndev->stats.tx_aborted_errors++;
1216 			if (status & BD_ENET_TX_UN)  /* Underrun */
1217 				ndev->stats.tx_fifo_errors++;
1218 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1219 				ndev->stats.tx_carrier_errors++;
1220 		} else {
1221 			ndev->stats.tx_packets++;
1222 			ndev->stats.tx_bytes += skb->len;
1223 		}
1224 
1225 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1226 			fep->bufdesc_ex) {
1227 			struct skb_shared_hwtstamps shhwtstamps;
1228 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1229 
1230 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1231 			skb_tstamp_tx(skb, &shhwtstamps);
1232 		}
1233 
1234 		/* Deferred means some collisions occurred during transmit,
1235 		 * but we eventually sent the packet OK.
1236 		 */
1237 		if (status & BD_ENET_TX_DEF)
1238 			ndev->stats.collisions++;
1239 
1240 		/* Free the sk buffer associated with this last transmit */
1241 		dev_kfree_skb_any(skb);
1242 
1243 		/* Make sure the update to bdp and tx_skbuff are performed
1244 		 * before dirty_tx
1245 		 */
1246 		wmb();
1247 		txq->dirty_tx = bdp;
1248 
1249 		/* Update pointer to next buffer descriptor to be transmitted */
1250 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1251 
1252 		/* Since we have freed up a buffer, the ring is no longer full
1253 		 */
1254 		if (netif_queue_stopped(ndev)) {
1255 			entries_free = fec_enet_get_free_txdesc_num(txq);
1256 			if (entries_free >= txq->tx_wake_threshold)
1257 				netif_tx_wake_queue(nq);
1258 		}
1259 	}
1260 
1261 	/* ERR006538: Keep the transmitter going */
1262 	if (bdp != txq->bd.cur &&
1263 	    readl(txq->bd.reg_desc_active) == 0)
1264 		writel(0, txq->bd.reg_desc_active);
1265 }
1266 
1267 static void
1268 fec_enet_tx(struct net_device *ndev)
1269 {
1270 	struct fec_enet_private *fep = netdev_priv(ndev);
1271 	u16 queue_id;
1272 	/* First process class A queue, then Class B and Best Effort queue */
1273 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1274 		clear_bit(queue_id, &fep->work_tx);
1275 		fec_enet_tx_queue(ndev, queue_id);
1276 	}
1277 	return;
1278 }
1279 
1280 static int
1281 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1282 {
1283 	struct  fec_enet_private *fep = netdev_priv(ndev);
1284 	int off;
1285 
1286 	off = ((unsigned long)skb->data) & fep->rx_align;
1287 	if (off)
1288 		skb_reserve(skb, fep->rx_align + 1 - off);
1289 
1290 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1291 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1292 		if (net_ratelimit())
1293 			netdev_err(ndev, "Rx DMA memory map failed\n");
1294 		return -ENOMEM;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1301 			       struct bufdesc *bdp, u32 length, bool swap)
1302 {
1303 	struct  fec_enet_private *fep = netdev_priv(ndev);
1304 	struct sk_buff *new_skb;
1305 
1306 	if (length > fep->rx_copybreak)
1307 		return false;
1308 
1309 	new_skb = netdev_alloc_skb(ndev, length);
1310 	if (!new_skb)
1311 		return false;
1312 
1313 	dma_sync_single_for_cpu(&fep->pdev->dev,
1314 				fec32_to_cpu(bdp->cbd_bufaddr),
1315 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1316 				DMA_FROM_DEVICE);
1317 	if (!swap)
1318 		memcpy(new_skb->data, (*skb)->data, length);
1319 	else
1320 		swap_buffer2(new_skb->data, (*skb)->data, length);
1321 	*skb = new_skb;
1322 
1323 	return true;
1324 }
1325 
1326 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1327  * When we update through the ring, if the next incoming buffer has
1328  * not been given to the system, we just set the empty indicator,
1329  * effectively tossing the packet.
1330  */
1331 static int
1332 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1333 {
1334 	struct fec_enet_private *fep = netdev_priv(ndev);
1335 	struct fec_enet_priv_rx_q *rxq;
1336 	struct bufdesc *bdp;
1337 	unsigned short status;
1338 	struct  sk_buff *skb_new = NULL;
1339 	struct  sk_buff *skb;
1340 	ushort	pkt_len;
1341 	__u8 *data;
1342 	int	pkt_received = 0;
1343 	struct	bufdesc_ex *ebdp = NULL;
1344 	bool	vlan_packet_rcvd = false;
1345 	u16	vlan_tag;
1346 	int	index = 0;
1347 	bool	is_copybreak;
1348 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1349 
1350 #ifdef CONFIG_M532x
1351 	flush_cache_all();
1352 #endif
1353 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1354 	rxq = fep->rx_queue[queue_id];
1355 
1356 	/* First, grab all of the stats for the incoming packet.
1357 	 * These get messed up if we get called due to a busy condition.
1358 	 */
1359 	bdp = rxq->bd.cur;
1360 
1361 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1362 
1363 		if (pkt_received >= budget)
1364 			break;
1365 		pkt_received++;
1366 
1367 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1368 
1369 		/* Check for errors. */
1370 		status ^= BD_ENET_RX_LAST;
1371 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1372 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1373 			   BD_ENET_RX_CL)) {
1374 			ndev->stats.rx_errors++;
1375 			if (status & BD_ENET_RX_OV) {
1376 				/* FIFO overrun */
1377 				ndev->stats.rx_fifo_errors++;
1378 				goto rx_processing_done;
1379 			}
1380 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1381 						| BD_ENET_RX_LAST)) {
1382 				/* Frame too long or too short. */
1383 				ndev->stats.rx_length_errors++;
1384 				if (status & BD_ENET_RX_LAST)
1385 					netdev_err(ndev, "rcv is not +last\n");
1386 			}
1387 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1388 				ndev->stats.rx_crc_errors++;
1389 			/* Report late collisions as a frame error. */
1390 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1391 				ndev->stats.rx_frame_errors++;
1392 			goto rx_processing_done;
1393 		}
1394 
1395 		/* Process the incoming frame. */
1396 		ndev->stats.rx_packets++;
1397 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1398 		ndev->stats.rx_bytes += pkt_len;
1399 
1400 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1401 		skb = rxq->rx_skbuff[index];
1402 
1403 		/* The packet length includes FCS, but we don't want to
1404 		 * include that when passing upstream as it messes up
1405 		 * bridging applications.
1406 		 */
1407 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1408 						  need_swap);
1409 		if (!is_copybreak) {
1410 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1411 			if (unlikely(!skb_new)) {
1412 				ndev->stats.rx_dropped++;
1413 				goto rx_processing_done;
1414 			}
1415 			dma_unmap_single(&fep->pdev->dev,
1416 					 fec32_to_cpu(bdp->cbd_bufaddr),
1417 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1418 					 DMA_FROM_DEVICE);
1419 		}
1420 
1421 		prefetch(skb->data - NET_IP_ALIGN);
1422 		skb_put(skb, pkt_len - 4);
1423 		data = skb->data;
1424 		if (!is_copybreak && need_swap)
1425 			swap_buffer(data, pkt_len);
1426 
1427 		/* Extract the enhanced buffer descriptor */
1428 		ebdp = NULL;
1429 		if (fep->bufdesc_ex)
1430 			ebdp = (struct bufdesc_ex *)bdp;
1431 
1432 		/* If this is a VLAN packet remove the VLAN Tag */
1433 		vlan_packet_rcvd = false;
1434 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1435 		    fep->bufdesc_ex &&
1436 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1437 			/* Push and remove the vlan tag */
1438 			struct vlan_hdr *vlan_header =
1439 					(struct vlan_hdr *) (data + ETH_HLEN);
1440 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1441 
1442 			vlan_packet_rcvd = true;
1443 
1444 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1445 			skb_pull(skb, VLAN_HLEN);
1446 		}
1447 
1448 		skb->protocol = eth_type_trans(skb, ndev);
1449 
1450 		/* Get receive timestamp from the skb */
1451 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1452 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1453 					  skb_hwtstamps(skb));
1454 
1455 		if (fep->bufdesc_ex &&
1456 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1457 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1458 				/* don't check it */
1459 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1460 			} else {
1461 				skb_checksum_none_assert(skb);
1462 			}
1463 		}
1464 
1465 		/* Handle received VLAN packets */
1466 		if (vlan_packet_rcvd)
1467 			__vlan_hwaccel_put_tag(skb,
1468 					       htons(ETH_P_8021Q),
1469 					       vlan_tag);
1470 
1471 		napi_gro_receive(&fep->napi, skb);
1472 
1473 		if (is_copybreak) {
1474 			dma_sync_single_for_device(&fep->pdev->dev,
1475 						   fec32_to_cpu(bdp->cbd_bufaddr),
1476 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1477 						   DMA_FROM_DEVICE);
1478 		} else {
1479 			rxq->rx_skbuff[index] = skb_new;
1480 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1481 		}
1482 
1483 rx_processing_done:
1484 		/* Clear the status flags for this buffer */
1485 		status &= ~BD_ENET_RX_STATS;
1486 
1487 		/* Mark the buffer empty */
1488 		status |= BD_ENET_RX_EMPTY;
1489 
1490 		if (fep->bufdesc_ex) {
1491 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1492 
1493 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1494 			ebdp->cbd_prot = 0;
1495 			ebdp->cbd_bdu = 0;
1496 		}
1497 		/* Make sure the updates to rest of the descriptor are
1498 		 * performed before transferring ownership.
1499 		 */
1500 		wmb();
1501 		bdp->cbd_sc = cpu_to_fec16(status);
1502 
1503 		/* Update BD pointer to next entry */
1504 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1505 
1506 		/* Doing this here will keep the FEC running while we process
1507 		 * incoming frames.  On a heavily loaded network, we should be
1508 		 * able to keep up at the expense of system resources.
1509 		 */
1510 		writel(0, rxq->bd.reg_desc_active);
1511 	}
1512 	rxq->bd.cur = bdp;
1513 	return pkt_received;
1514 }
1515 
1516 static int
1517 fec_enet_rx(struct net_device *ndev, int budget)
1518 {
1519 	int     pkt_received = 0;
1520 	u16	queue_id;
1521 	struct fec_enet_private *fep = netdev_priv(ndev);
1522 
1523 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1524 		int ret;
1525 
1526 		ret = fec_enet_rx_queue(ndev,
1527 					budget - pkt_received, queue_id);
1528 
1529 		if (ret < budget - pkt_received)
1530 			clear_bit(queue_id, &fep->work_rx);
1531 
1532 		pkt_received += ret;
1533 	}
1534 	return pkt_received;
1535 }
1536 
1537 static bool
1538 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1539 {
1540 	if (int_events == 0)
1541 		return false;
1542 
1543 	if (int_events & FEC_ENET_RXF)
1544 		fep->work_rx |= (1 << 2);
1545 	if (int_events & FEC_ENET_RXF_1)
1546 		fep->work_rx |= (1 << 0);
1547 	if (int_events & FEC_ENET_RXF_2)
1548 		fep->work_rx |= (1 << 1);
1549 
1550 	if (int_events & FEC_ENET_TXF)
1551 		fep->work_tx |= (1 << 2);
1552 	if (int_events & FEC_ENET_TXF_1)
1553 		fep->work_tx |= (1 << 0);
1554 	if (int_events & FEC_ENET_TXF_2)
1555 		fep->work_tx |= (1 << 1);
1556 
1557 	return true;
1558 }
1559 
1560 static irqreturn_t
1561 fec_enet_interrupt(int irq, void *dev_id)
1562 {
1563 	struct net_device *ndev = dev_id;
1564 	struct fec_enet_private *fep = netdev_priv(ndev);
1565 	uint int_events;
1566 	irqreturn_t ret = IRQ_NONE;
1567 
1568 	int_events = readl(fep->hwp + FEC_IEVENT);
1569 	writel(int_events, fep->hwp + FEC_IEVENT);
1570 	fec_enet_collect_events(fep, int_events);
1571 
1572 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1573 		ret = IRQ_HANDLED;
1574 
1575 		if (napi_schedule_prep(&fep->napi)) {
1576 			/* Disable the NAPI interrupts */
1577 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1578 			__napi_schedule(&fep->napi);
1579 		}
1580 	}
1581 
1582 	if (int_events & FEC_ENET_MII) {
1583 		ret = IRQ_HANDLED;
1584 		complete(&fep->mdio_done);
1585 	}
1586 
1587 	if (fep->ptp_clock)
1588 		fec_ptp_check_pps_event(fep);
1589 
1590 	return ret;
1591 }
1592 
1593 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1594 {
1595 	struct net_device *ndev = napi->dev;
1596 	struct fec_enet_private *fep = netdev_priv(ndev);
1597 	int pkts;
1598 
1599 	pkts = fec_enet_rx(ndev, budget);
1600 
1601 	fec_enet_tx(ndev);
1602 
1603 	if (pkts < budget) {
1604 		napi_complete(napi);
1605 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1606 	}
1607 	return pkts;
1608 }
1609 
1610 /* ------------------------------------------------------------------------- */
1611 static void fec_get_mac(struct net_device *ndev)
1612 {
1613 	struct fec_enet_private *fep = netdev_priv(ndev);
1614 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1615 	unsigned char *iap, tmpaddr[ETH_ALEN];
1616 
1617 	/*
1618 	 * try to get mac address in following order:
1619 	 *
1620 	 * 1) module parameter via kernel command line in form
1621 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1622 	 */
1623 	iap = macaddr;
1624 
1625 	/*
1626 	 * 2) from device tree data
1627 	 */
1628 	if (!is_valid_ether_addr(iap)) {
1629 		struct device_node *np = fep->pdev->dev.of_node;
1630 		if (np) {
1631 			const char *mac = of_get_mac_address(np);
1632 			if (mac)
1633 				iap = (unsigned char *) mac;
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * 3) from flash or fuse (via platform data)
1639 	 */
1640 	if (!is_valid_ether_addr(iap)) {
1641 #ifdef CONFIG_M5272
1642 		if (FEC_FLASHMAC)
1643 			iap = (unsigned char *)FEC_FLASHMAC;
1644 #else
1645 		if (pdata)
1646 			iap = (unsigned char *)&pdata->mac;
1647 #endif
1648 	}
1649 
1650 	/*
1651 	 * 4) FEC mac registers set by bootloader
1652 	 */
1653 	if (!is_valid_ether_addr(iap)) {
1654 		*((__be32 *) &tmpaddr[0]) =
1655 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1656 		*((__be16 *) &tmpaddr[4]) =
1657 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1658 		iap = &tmpaddr[0];
1659 	}
1660 
1661 	/*
1662 	 * 5) random mac address
1663 	 */
1664 	if (!is_valid_ether_addr(iap)) {
1665 		/* Report it and use a random ethernet address instead */
1666 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1667 		eth_hw_addr_random(ndev);
1668 		netdev_info(ndev, "Using random MAC address: %pM\n",
1669 			    ndev->dev_addr);
1670 		return;
1671 	}
1672 
1673 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1674 
1675 	/* Adjust MAC if using macaddr */
1676 	if (iap == macaddr)
1677 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1678 }
1679 
1680 /* ------------------------------------------------------------------------- */
1681 
1682 /*
1683  * Phy section
1684  */
1685 static void fec_enet_adjust_link(struct net_device *ndev)
1686 {
1687 	struct fec_enet_private *fep = netdev_priv(ndev);
1688 	struct phy_device *phy_dev = fep->phy_dev;
1689 	int status_change = 0;
1690 
1691 	/* Prevent a state halted on mii error */
1692 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1693 		phy_dev->state = PHY_RESUMING;
1694 		return;
1695 	}
1696 
1697 	/*
1698 	 * If the netdev is down, or is going down, we're not interested
1699 	 * in link state events, so just mark our idea of the link as down
1700 	 * and ignore the event.
1701 	 */
1702 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1703 		fep->link = 0;
1704 	} else if (phy_dev->link) {
1705 		if (!fep->link) {
1706 			fep->link = phy_dev->link;
1707 			status_change = 1;
1708 		}
1709 
1710 		if (fep->full_duplex != phy_dev->duplex) {
1711 			fep->full_duplex = phy_dev->duplex;
1712 			status_change = 1;
1713 		}
1714 
1715 		if (phy_dev->speed != fep->speed) {
1716 			fep->speed = phy_dev->speed;
1717 			status_change = 1;
1718 		}
1719 
1720 		/* if any of the above changed restart the FEC */
1721 		if (status_change) {
1722 			napi_disable(&fep->napi);
1723 			netif_tx_lock_bh(ndev);
1724 			fec_restart(ndev);
1725 			netif_wake_queue(ndev);
1726 			netif_tx_unlock_bh(ndev);
1727 			napi_enable(&fep->napi);
1728 		}
1729 	} else {
1730 		if (fep->link) {
1731 			napi_disable(&fep->napi);
1732 			netif_tx_lock_bh(ndev);
1733 			fec_stop(ndev);
1734 			netif_tx_unlock_bh(ndev);
1735 			napi_enable(&fep->napi);
1736 			fep->link = phy_dev->link;
1737 			status_change = 1;
1738 		}
1739 	}
1740 
1741 	if (status_change)
1742 		phy_print_status(phy_dev);
1743 }
1744 
1745 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1746 {
1747 	struct fec_enet_private *fep = bus->priv;
1748 	struct device *dev = &fep->pdev->dev;
1749 	unsigned long time_left;
1750 	int ret = 0;
1751 
1752 	ret = pm_runtime_get_sync(dev);
1753 	if (ret < 0)
1754 		return ret;
1755 
1756 	fep->mii_timeout = 0;
1757 	reinit_completion(&fep->mdio_done);
1758 
1759 	/* start a read op */
1760 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1761 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1762 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1763 
1764 	/* wait for end of transfer */
1765 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1766 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1767 	if (time_left == 0) {
1768 		fep->mii_timeout = 1;
1769 		netdev_err(fep->netdev, "MDIO read timeout\n");
1770 		ret = -ETIMEDOUT;
1771 		goto out;
1772 	}
1773 
1774 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1775 
1776 out:
1777 	pm_runtime_mark_last_busy(dev);
1778 	pm_runtime_put_autosuspend(dev);
1779 
1780 	return ret;
1781 }
1782 
1783 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1784 			   u16 value)
1785 {
1786 	struct fec_enet_private *fep = bus->priv;
1787 	struct device *dev = &fep->pdev->dev;
1788 	unsigned long time_left;
1789 	int ret;
1790 
1791 	ret = pm_runtime_get_sync(dev);
1792 	if (ret < 0)
1793 		return ret;
1794 	else
1795 		ret = 0;
1796 
1797 	fep->mii_timeout = 0;
1798 	reinit_completion(&fep->mdio_done);
1799 
1800 	/* start a write op */
1801 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1802 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1803 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1804 		fep->hwp + FEC_MII_DATA);
1805 
1806 	/* wait for end of transfer */
1807 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1808 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1809 	if (time_left == 0) {
1810 		fep->mii_timeout = 1;
1811 		netdev_err(fep->netdev, "MDIO write timeout\n");
1812 		ret  = -ETIMEDOUT;
1813 	}
1814 
1815 	pm_runtime_mark_last_busy(dev);
1816 	pm_runtime_put_autosuspend(dev);
1817 
1818 	return ret;
1819 }
1820 
1821 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1822 {
1823 	struct fec_enet_private *fep = netdev_priv(ndev);
1824 	int ret;
1825 
1826 	if (enable) {
1827 		ret = clk_prepare_enable(fep->clk_ahb);
1828 		if (ret)
1829 			return ret;
1830 		if (fep->clk_enet_out) {
1831 			ret = clk_prepare_enable(fep->clk_enet_out);
1832 			if (ret)
1833 				goto failed_clk_enet_out;
1834 		}
1835 		if (fep->clk_ptp) {
1836 			mutex_lock(&fep->ptp_clk_mutex);
1837 			ret = clk_prepare_enable(fep->clk_ptp);
1838 			if (ret) {
1839 				mutex_unlock(&fep->ptp_clk_mutex);
1840 				goto failed_clk_ptp;
1841 			} else {
1842 				fep->ptp_clk_on = true;
1843 			}
1844 			mutex_unlock(&fep->ptp_clk_mutex);
1845 		}
1846 		if (fep->clk_ref) {
1847 			ret = clk_prepare_enable(fep->clk_ref);
1848 			if (ret)
1849 				goto failed_clk_ref;
1850 		}
1851 	} else {
1852 		clk_disable_unprepare(fep->clk_ahb);
1853 		if (fep->clk_enet_out)
1854 			clk_disable_unprepare(fep->clk_enet_out);
1855 		if (fep->clk_ptp) {
1856 			mutex_lock(&fep->ptp_clk_mutex);
1857 			clk_disable_unprepare(fep->clk_ptp);
1858 			fep->ptp_clk_on = false;
1859 			mutex_unlock(&fep->ptp_clk_mutex);
1860 		}
1861 		if (fep->clk_ref)
1862 			clk_disable_unprepare(fep->clk_ref);
1863 	}
1864 
1865 	return 0;
1866 
1867 failed_clk_ref:
1868 	if (fep->clk_ref)
1869 		clk_disable_unprepare(fep->clk_ref);
1870 failed_clk_ptp:
1871 	if (fep->clk_enet_out)
1872 		clk_disable_unprepare(fep->clk_enet_out);
1873 failed_clk_enet_out:
1874 		clk_disable_unprepare(fep->clk_ahb);
1875 
1876 	return ret;
1877 }
1878 
1879 static int fec_enet_mii_probe(struct net_device *ndev)
1880 {
1881 	struct fec_enet_private *fep = netdev_priv(ndev);
1882 	struct phy_device *phy_dev = NULL;
1883 	char mdio_bus_id[MII_BUS_ID_SIZE];
1884 	char phy_name[MII_BUS_ID_SIZE + 3];
1885 	int phy_id;
1886 	int dev_id = fep->dev_id;
1887 
1888 	fep->phy_dev = NULL;
1889 
1890 	if (fep->phy_node) {
1891 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1892 					 &fec_enet_adjust_link, 0,
1893 					 fep->phy_interface);
1894 		if (!phy_dev)
1895 			return -ENODEV;
1896 	} else {
1897 		/* check for attached phy */
1898 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1899 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1900 				continue;
1901 			if (dev_id--)
1902 				continue;
1903 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1904 			break;
1905 		}
1906 
1907 		if (phy_id >= PHY_MAX_ADDR) {
1908 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1909 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1910 			phy_id = 0;
1911 		}
1912 
1913 		snprintf(phy_name, sizeof(phy_name),
1914 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1915 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1916 				      fep->phy_interface);
1917 	}
1918 
1919 	if (IS_ERR(phy_dev)) {
1920 		netdev_err(ndev, "could not attach to PHY\n");
1921 		return PTR_ERR(phy_dev);
1922 	}
1923 
1924 	/* mask with MAC supported features */
1925 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1926 		phy_dev->supported &= PHY_GBIT_FEATURES;
1927 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1928 #if !defined(CONFIG_M5272)
1929 		phy_dev->supported |= SUPPORTED_Pause;
1930 #endif
1931 	}
1932 	else
1933 		phy_dev->supported &= PHY_BASIC_FEATURES;
1934 
1935 	phy_dev->advertising = phy_dev->supported;
1936 
1937 	fep->phy_dev = phy_dev;
1938 	fep->link = 0;
1939 	fep->full_duplex = 0;
1940 
1941 	phy_attached_info(phy_dev);
1942 
1943 	return 0;
1944 }
1945 
1946 static int fec_enet_mii_init(struct platform_device *pdev)
1947 {
1948 	static struct mii_bus *fec0_mii_bus;
1949 	struct net_device *ndev = platform_get_drvdata(pdev);
1950 	struct fec_enet_private *fep = netdev_priv(ndev);
1951 	struct device_node *node;
1952 	int err = -ENXIO;
1953 	u32 mii_speed, holdtime;
1954 
1955 	/*
1956 	 * The i.MX28 dual fec interfaces are not equal.
1957 	 * Here are the differences:
1958 	 *
1959 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1960 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1961 	 *  - external phys can only be configured by fec0
1962 	 *
1963 	 * That is to say fec1 can not work independently. It only works
1964 	 * when fec0 is working. The reason behind this design is that the
1965 	 * second interface is added primarily for Switch mode.
1966 	 *
1967 	 * Because of the last point above, both phys are attached on fec0
1968 	 * mdio interface in board design, and need to be configured by
1969 	 * fec0 mii_bus.
1970 	 */
1971 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1972 		/* fec1 uses fec0 mii_bus */
1973 		if (mii_cnt && fec0_mii_bus) {
1974 			fep->mii_bus = fec0_mii_bus;
1975 			mii_cnt++;
1976 			return 0;
1977 		}
1978 		return -ENOENT;
1979 	}
1980 
1981 	fep->mii_timeout = 0;
1982 
1983 	/*
1984 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1985 	 *
1986 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1987 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1988 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1989 	 * document.
1990 	 */
1991 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1992 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1993 		mii_speed--;
1994 	if (mii_speed > 63) {
1995 		dev_err(&pdev->dev,
1996 			"fec clock (%lu) to fast to get right mii speed\n",
1997 			clk_get_rate(fep->clk_ipg));
1998 		err = -EINVAL;
1999 		goto err_out;
2000 	}
2001 
2002 	/*
2003 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2004 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2005 	 * versions are RAZ there, so just ignore the difference and write the
2006 	 * register always.
2007 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2008 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2009 	 * output.
2010 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2011 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2012 	 * holdtime cannot result in a value greater than 3.
2013 	 */
2014 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2015 
2016 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2017 
2018 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2019 
2020 	fep->mii_bus = mdiobus_alloc();
2021 	if (fep->mii_bus == NULL) {
2022 		err = -ENOMEM;
2023 		goto err_out;
2024 	}
2025 
2026 	fep->mii_bus->name = "fec_enet_mii_bus";
2027 	fep->mii_bus->read = fec_enet_mdio_read;
2028 	fep->mii_bus->write = fec_enet_mdio_write;
2029 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2030 		pdev->name, fep->dev_id + 1);
2031 	fep->mii_bus->priv = fep;
2032 	fep->mii_bus->parent = &pdev->dev;
2033 
2034 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2035 	if (node) {
2036 		err = of_mdiobus_register(fep->mii_bus, node);
2037 		of_node_put(node);
2038 	} else {
2039 		err = mdiobus_register(fep->mii_bus);
2040 	}
2041 
2042 	if (err)
2043 		goto err_out_free_mdiobus;
2044 
2045 	mii_cnt++;
2046 
2047 	/* save fec0 mii_bus */
2048 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2049 		fec0_mii_bus = fep->mii_bus;
2050 
2051 	return 0;
2052 
2053 err_out_free_mdiobus:
2054 	mdiobus_free(fep->mii_bus);
2055 err_out:
2056 	return err;
2057 }
2058 
2059 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2060 {
2061 	if (--mii_cnt == 0) {
2062 		mdiobus_unregister(fep->mii_bus);
2063 		mdiobus_free(fep->mii_bus);
2064 	}
2065 }
2066 
2067 static int fec_enet_get_settings(struct net_device *ndev,
2068 				  struct ethtool_cmd *cmd)
2069 {
2070 	struct fec_enet_private *fep = netdev_priv(ndev);
2071 	struct phy_device *phydev = fep->phy_dev;
2072 
2073 	if (!phydev)
2074 		return -ENODEV;
2075 
2076 	return phy_ethtool_gset(phydev, cmd);
2077 }
2078 
2079 static int fec_enet_set_settings(struct net_device *ndev,
2080 				 struct ethtool_cmd *cmd)
2081 {
2082 	struct fec_enet_private *fep = netdev_priv(ndev);
2083 	struct phy_device *phydev = fep->phy_dev;
2084 
2085 	if (!phydev)
2086 		return -ENODEV;
2087 
2088 	return phy_ethtool_sset(phydev, cmd);
2089 }
2090 
2091 static void fec_enet_get_drvinfo(struct net_device *ndev,
2092 				 struct ethtool_drvinfo *info)
2093 {
2094 	struct fec_enet_private *fep = netdev_priv(ndev);
2095 
2096 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2097 		sizeof(info->driver));
2098 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2099 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2100 }
2101 
2102 static int fec_enet_get_regs_len(struct net_device *ndev)
2103 {
2104 	struct fec_enet_private *fep = netdev_priv(ndev);
2105 	struct resource *r;
2106 	int s = 0;
2107 
2108 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2109 	if (r)
2110 		s = resource_size(r);
2111 
2112 	return s;
2113 }
2114 
2115 /* List of registers that can be safety be read to dump them with ethtool */
2116 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2117 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2118 static u32 fec_enet_register_offset[] = {
2119 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2120 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2121 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2122 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2123 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2124 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2125 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2126 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2127 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2128 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2129 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2130 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2131 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2132 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2133 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2134 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2135 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2136 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2137 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2138 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2139 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2140 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2141 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2142 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2143 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2144 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2145 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2146 };
2147 #else
2148 static u32 fec_enet_register_offset[] = {
2149 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2150 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2151 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2152 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2153 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2154 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2155 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2156 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2157 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2158 };
2159 #endif
2160 
2161 static void fec_enet_get_regs(struct net_device *ndev,
2162 			      struct ethtool_regs *regs, void *regbuf)
2163 {
2164 	struct fec_enet_private *fep = netdev_priv(ndev);
2165 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2166 	u32 *buf = (u32 *)regbuf;
2167 	u32 i, off;
2168 
2169 	memset(buf, 0, regs->len);
2170 
2171 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2172 		off = fec_enet_register_offset[i] / 4;
2173 		buf[off] = readl(&theregs[off]);
2174 	}
2175 }
2176 
2177 static int fec_enet_get_ts_info(struct net_device *ndev,
2178 				struct ethtool_ts_info *info)
2179 {
2180 	struct fec_enet_private *fep = netdev_priv(ndev);
2181 
2182 	if (fep->bufdesc_ex) {
2183 
2184 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2185 					SOF_TIMESTAMPING_RX_SOFTWARE |
2186 					SOF_TIMESTAMPING_SOFTWARE |
2187 					SOF_TIMESTAMPING_TX_HARDWARE |
2188 					SOF_TIMESTAMPING_RX_HARDWARE |
2189 					SOF_TIMESTAMPING_RAW_HARDWARE;
2190 		if (fep->ptp_clock)
2191 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2192 		else
2193 			info->phc_index = -1;
2194 
2195 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2196 				 (1 << HWTSTAMP_TX_ON);
2197 
2198 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2199 				   (1 << HWTSTAMP_FILTER_ALL);
2200 		return 0;
2201 	} else {
2202 		return ethtool_op_get_ts_info(ndev, info);
2203 	}
2204 }
2205 
2206 #if !defined(CONFIG_M5272)
2207 
2208 static void fec_enet_get_pauseparam(struct net_device *ndev,
2209 				    struct ethtool_pauseparam *pause)
2210 {
2211 	struct fec_enet_private *fep = netdev_priv(ndev);
2212 
2213 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2214 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2215 	pause->rx_pause = pause->tx_pause;
2216 }
2217 
2218 static int fec_enet_set_pauseparam(struct net_device *ndev,
2219 				   struct ethtool_pauseparam *pause)
2220 {
2221 	struct fec_enet_private *fep = netdev_priv(ndev);
2222 
2223 	if (!fep->phy_dev)
2224 		return -ENODEV;
2225 
2226 	if (pause->tx_pause != pause->rx_pause) {
2227 		netdev_info(ndev,
2228 			"hardware only support enable/disable both tx and rx");
2229 		return -EINVAL;
2230 	}
2231 
2232 	fep->pause_flag = 0;
2233 
2234 	/* tx pause must be same as rx pause */
2235 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2236 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2237 
2238 	if (pause->rx_pause || pause->autoneg) {
2239 		fep->phy_dev->supported |= ADVERTISED_Pause;
2240 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2241 	} else {
2242 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2243 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2244 	}
2245 
2246 	if (pause->autoneg) {
2247 		if (netif_running(ndev))
2248 			fec_stop(ndev);
2249 		phy_start_aneg(fep->phy_dev);
2250 	}
2251 	if (netif_running(ndev)) {
2252 		napi_disable(&fep->napi);
2253 		netif_tx_lock_bh(ndev);
2254 		fec_restart(ndev);
2255 		netif_wake_queue(ndev);
2256 		netif_tx_unlock_bh(ndev);
2257 		napi_enable(&fep->napi);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static const struct fec_stat {
2264 	char name[ETH_GSTRING_LEN];
2265 	u16 offset;
2266 } fec_stats[] = {
2267 	/* RMON TX */
2268 	{ "tx_dropped", RMON_T_DROP },
2269 	{ "tx_packets", RMON_T_PACKETS },
2270 	{ "tx_broadcast", RMON_T_BC_PKT },
2271 	{ "tx_multicast", RMON_T_MC_PKT },
2272 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2273 	{ "tx_undersize", RMON_T_UNDERSIZE },
2274 	{ "tx_oversize", RMON_T_OVERSIZE },
2275 	{ "tx_fragment", RMON_T_FRAG },
2276 	{ "tx_jabber", RMON_T_JAB },
2277 	{ "tx_collision", RMON_T_COL },
2278 	{ "tx_64byte", RMON_T_P64 },
2279 	{ "tx_65to127byte", RMON_T_P65TO127 },
2280 	{ "tx_128to255byte", RMON_T_P128TO255 },
2281 	{ "tx_256to511byte", RMON_T_P256TO511 },
2282 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2283 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2284 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2285 	{ "tx_octets", RMON_T_OCTETS },
2286 
2287 	/* IEEE TX */
2288 	{ "IEEE_tx_drop", IEEE_T_DROP },
2289 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2290 	{ "IEEE_tx_1col", IEEE_T_1COL },
2291 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2292 	{ "IEEE_tx_def", IEEE_T_DEF },
2293 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2294 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2295 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2296 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2297 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2298 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2299 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2300 
2301 	/* RMON RX */
2302 	{ "rx_packets", RMON_R_PACKETS },
2303 	{ "rx_broadcast", RMON_R_BC_PKT },
2304 	{ "rx_multicast", RMON_R_MC_PKT },
2305 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2306 	{ "rx_undersize", RMON_R_UNDERSIZE },
2307 	{ "rx_oversize", RMON_R_OVERSIZE },
2308 	{ "rx_fragment", RMON_R_FRAG },
2309 	{ "rx_jabber", RMON_R_JAB },
2310 	{ "rx_64byte", RMON_R_P64 },
2311 	{ "rx_65to127byte", RMON_R_P65TO127 },
2312 	{ "rx_128to255byte", RMON_R_P128TO255 },
2313 	{ "rx_256to511byte", RMON_R_P256TO511 },
2314 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2315 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2316 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2317 	{ "rx_octets", RMON_R_OCTETS },
2318 
2319 	/* IEEE RX */
2320 	{ "IEEE_rx_drop", IEEE_R_DROP },
2321 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2322 	{ "IEEE_rx_crc", IEEE_R_CRC },
2323 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2324 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2325 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2326 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2327 };
2328 
2329 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2330 	struct ethtool_stats *stats, u64 *data)
2331 {
2332 	struct fec_enet_private *fep = netdev_priv(dev);
2333 	int i;
2334 
2335 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2336 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2337 }
2338 
2339 static void fec_enet_get_strings(struct net_device *netdev,
2340 	u32 stringset, u8 *data)
2341 {
2342 	int i;
2343 	switch (stringset) {
2344 	case ETH_SS_STATS:
2345 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346 			memcpy(data + i * ETH_GSTRING_LEN,
2347 				fec_stats[i].name, ETH_GSTRING_LEN);
2348 		break;
2349 	}
2350 }
2351 
2352 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2353 {
2354 	switch (sset) {
2355 	case ETH_SS_STATS:
2356 		return ARRAY_SIZE(fec_stats);
2357 	default:
2358 		return -EOPNOTSUPP;
2359 	}
2360 }
2361 #endif /* !defined(CONFIG_M5272) */
2362 
2363 static int fec_enet_nway_reset(struct net_device *dev)
2364 {
2365 	struct fec_enet_private *fep = netdev_priv(dev);
2366 	struct phy_device *phydev = fep->phy_dev;
2367 
2368 	if (!phydev)
2369 		return -ENODEV;
2370 
2371 	return genphy_restart_aneg(phydev);
2372 }
2373 
2374 /* ITR clock source is enet system clock (clk_ahb).
2375  * TCTT unit is cycle_ns * 64 cycle
2376  * So, the ICTT value = X us / (cycle_ns * 64)
2377  */
2378 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2379 {
2380 	struct fec_enet_private *fep = netdev_priv(ndev);
2381 
2382 	return us * (fep->itr_clk_rate / 64000) / 1000;
2383 }
2384 
2385 /* Set threshold for interrupt coalescing */
2386 static void fec_enet_itr_coal_set(struct net_device *ndev)
2387 {
2388 	struct fec_enet_private *fep = netdev_priv(ndev);
2389 	int rx_itr, tx_itr;
2390 
2391 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2392 		return;
2393 
2394 	/* Must be greater than zero to avoid unpredictable behavior */
2395 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2396 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2397 		return;
2398 
2399 	/* Select enet system clock as Interrupt Coalescing
2400 	 * timer Clock Source
2401 	 */
2402 	rx_itr = FEC_ITR_CLK_SEL;
2403 	tx_itr = FEC_ITR_CLK_SEL;
2404 
2405 	/* set ICFT and ICTT */
2406 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2407 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2408 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2409 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2410 
2411 	rx_itr |= FEC_ITR_EN;
2412 	tx_itr |= FEC_ITR_EN;
2413 
2414 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2415 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2416 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2417 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2418 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2419 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2420 }
2421 
2422 static int
2423 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2424 {
2425 	struct fec_enet_private *fep = netdev_priv(ndev);
2426 
2427 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2428 		return -EOPNOTSUPP;
2429 
2430 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2431 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2432 
2433 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2434 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2435 
2436 	return 0;
2437 }
2438 
2439 static int
2440 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2441 {
2442 	struct fec_enet_private *fep = netdev_priv(ndev);
2443 	unsigned int cycle;
2444 
2445 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2446 		return -EOPNOTSUPP;
2447 
2448 	if (ec->rx_max_coalesced_frames > 255) {
2449 		pr_err("Rx coalesced frames exceed hardware limiation");
2450 		return -EINVAL;
2451 	}
2452 
2453 	if (ec->tx_max_coalesced_frames > 255) {
2454 		pr_err("Tx coalesced frame exceed hardware limiation");
2455 		return -EINVAL;
2456 	}
2457 
2458 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2459 	if (cycle > 0xFFFF) {
2460 		pr_err("Rx coalesed usec exceeed hardware limiation");
2461 		return -EINVAL;
2462 	}
2463 
2464 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2465 	if (cycle > 0xFFFF) {
2466 		pr_err("Rx coalesed usec exceeed hardware limiation");
2467 		return -EINVAL;
2468 	}
2469 
2470 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2471 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2472 
2473 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2474 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2475 
2476 	fec_enet_itr_coal_set(ndev);
2477 
2478 	return 0;
2479 }
2480 
2481 static void fec_enet_itr_coal_init(struct net_device *ndev)
2482 {
2483 	struct ethtool_coalesce ec;
2484 
2485 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2486 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2487 
2488 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2489 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2490 
2491 	fec_enet_set_coalesce(ndev, &ec);
2492 }
2493 
2494 static int fec_enet_get_tunable(struct net_device *netdev,
2495 				const struct ethtool_tunable *tuna,
2496 				void *data)
2497 {
2498 	struct fec_enet_private *fep = netdev_priv(netdev);
2499 	int ret = 0;
2500 
2501 	switch (tuna->id) {
2502 	case ETHTOOL_RX_COPYBREAK:
2503 		*(u32 *)data = fep->rx_copybreak;
2504 		break;
2505 	default:
2506 		ret = -EINVAL;
2507 		break;
2508 	}
2509 
2510 	return ret;
2511 }
2512 
2513 static int fec_enet_set_tunable(struct net_device *netdev,
2514 				const struct ethtool_tunable *tuna,
2515 				const void *data)
2516 {
2517 	struct fec_enet_private *fep = netdev_priv(netdev);
2518 	int ret = 0;
2519 
2520 	switch (tuna->id) {
2521 	case ETHTOOL_RX_COPYBREAK:
2522 		fep->rx_copybreak = *(u32 *)data;
2523 		break;
2524 	default:
2525 		ret = -EINVAL;
2526 		break;
2527 	}
2528 
2529 	return ret;
2530 }
2531 
2532 static void
2533 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534 {
2535 	struct fec_enet_private *fep = netdev_priv(ndev);
2536 
2537 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2538 		wol->supported = WAKE_MAGIC;
2539 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2540 	} else {
2541 		wol->supported = wol->wolopts = 0;
2542 	}
2543 }
2544 
2545 static int
2546 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2547 {
2548 	struct fec_enet_private *fep = netdev_priv(ndev);
2549 
2550 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2551 		return -EINVAL;
2552 
2553 	if (wol->wolopts & ~WAKE_MAGIC)
2554 		return -EINVAL;
2555 
2556 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2557 	if (device_may_wakeup(&ndev->dev)) {
2558 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2559 		if (fep->irq[0] > 0)
2560 			enable_irq_wake(fep->irq[0]);
2561 	} else {
2562 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2563 		if (fep->irq[0] > 0)
2564 			disable_irq_wake(fep->irq[0]);
2565 	}
2566 
2567 	return 0;
2568 }
2569 
2570 static const struct ethtool_ops fec_enet_ethtool_ops = {
2571 	.get_settings		= fec_enet_get_settings,
2572 	.set_settings		= fec_enet_set_settings,
2573 	.get_drvinfo		= fec_enet_get_drvinfo,
2574 	.get_regs_len		= fec_enet_get_regs_len,
2575 	.get_regs		= fec_enet_get_regs,
2576 	.nway_reset		= fec_enet_nway_reset,
2577 	.get_link		= ethtool_op_get_link,
2578 	.get_coalesce		= fec_enet_get_coalesce,
2579 	.set_coalesce		= fec_enet_set_coalesce,
2580 #ifndef CONFIG_M5272
2581 	.get_pauseparam		= fec_enet_get_pauseparam,
2582 	.set_pauseparam		= fec_enet_set_pauseparam,
2583 	.get_strings		= fec_enet_get_strings,
2584 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2585 	.get_sset_count		= fec_enet_get_sset_count,
2586 #endif
2587 	.get_ts_info		= fec_enet_get_ts_info,
2588 	.get_tunable		= fec_enet_get_tunable,
2589 	.set_tunable		= fec_enet_set_tunable,
2590 	.get_wol		= fec_enet_get_wol,
2591 	.set_wol		= fec_enet_set_wol,
2592 };
2593 
2594 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2595 {
2596 	struct fec_enet_private *fep = netdev_priv(ndev);
2597 	struct phy_device *phydev = fep->phy_dev;
2598 
2599 	if (!netif_running(ndev))
2600 		return -EINVAL;
2601 
2602 	if (!phydev)
2603 		return -ENODEV;
2604 
2605 	if (fep->bufdesc_ex) {
2606 		if (cmd == SIOCSHWTSTAMP)
2607 			return fec_ptp_set(ndev, rq);
2608 		if (cmd == SIOCGHWTSTAMP)
2609 			return fec_ptp_get(ndev, rq);
2610 	}
2611 
2612 	return phy_mii_ioctl(phydev, rq, cmd);
2613 }
2614 
2615 static void fec_enet_free_buffers(struct net_device *ndev)
2616 {
2617 	struct fec_enet_private *fep = netdev_priv(ndev);
2618 	unsigned int i;
2619 	struct sk_buff *skb;
2620 	struct bufdesc	*bdp;
2621 	struct fec_enet_priv_tx_q *txq;
2622 	struct fec_enet_priv_rx_q *rxq;
2623 	unsigned int q;
2624 
2625 	for (q = 0; q < fep->num_rx_queues; q++) {
2626 		rxq = fep->rx_queue[q];
2627 		bdp = rxq->bd.base;
2628 		for (i = 0; i < rxq->bd.ring_size; i++) {
2629 			skb = rxq->rx_skbuff[i];
2630 			rxq->rx_skbuff[i] = NULL;
2631 			if (skb) {
2632 				dma_unmap_single(&fep->pdev->dev,
2633 						 fec32_to_cpu(bdp->cbd_bufaddr),
2634 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2635 						 DMA_FROM_DEVICE);
2636 				dev_kfree_skb(skb);
2637 			}
2638 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2639 		}
2640 	}
2641 
2642 	for (q = 0; q < fep->num_tx_queues; q++) {
2643 		txq = fep->tx_queue[q];
2644 		bdp = txq->bd.base;
2645 		for (i = 0; i < txq->bd.ring_size; i++) {
2646 			kfree(txq->tx_bounce[i]);
2647 			txq->tx_bounce[i] = NULL;
2648 			skb = txq->tx_skbuff[i];
2649 			txq->tx_skbuff[i] = NULL;
2650 			dev_kfree_skb(skb);
2651 		}
2652 	}
2653 }
2654 
2655 static void fec_enet_free_queue(struct net_device *ndev)
2656 {
2657 	struct fec_enet_private *fep = netdev_priv(ndev);
2658 	int i;
2659 	struct fec_enet_priv_tx_q *txq;
2660 
2661 	for (i = 0; i < fep->num_tx_queues; i++)
2662 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2663 			txq = fep->tx_queue[i];
2664 			dma_free_coherent(NULL,
2665 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2666 					  txq->tso_hdrs,
2667 					  txq->tso_hdrs_dma);
2668 		}
2669 
2670 	for (i = 0; i < fep->num_rx_queues; i++)
2671 		kfree(fep->rx_queue[i]);
2672 	for (i = 0; i < fep->num_tx_queues; i++)
2673 		kfree(fep->tx_queue[i]);
2674 }
2675 
2676 static int fec_enet_alloc_queue(struct net_device *ndev)
2677 {
2678 	struct fec_enet_private *fep = netdev_priv(ndev);
2679 	int i;
2680 	int ret = 0;
2681 	struct fec_enet_priv_tx_q *txq;
2682 
2683 	for (i = 0; i < fep->num_tx_queues; i++) {
2684 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2685 		if (!txq) {
2686 			ret = -ENOMEM;
2687 			goto alloc_failed;
2688 		}
2689 
2690 		fep->tx_queue[i] = txq;
2691 		txq->bd.ring_size = TX_RING_SIZE;
2692 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2693 
2694 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2695 		txq->tx_wake_threshold =
2696 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2697 
2698 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2699 					txq->bd.ring_size * TSO_HEADER_SIZE,
2700 					&txq->tso_hdrs_dma,
2701 					GFP_KERNEL);
2702 		if (!txq->tso_hdrs) {
2703 			ret = -ENOMEM;
2704 			goto alloc_failed;
2705 		}
2706 	}
2707 
2708 	for (i = 0; i < fep->num_rx_queues; i++) {
2709 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2710 					   GFP_KERNEL);
2711 		if (!fep->rx_queue[i]) {
2712 			ret = -ENOMEM;
2713 			goto alloc_failed;
2714 		}
2715 
2716 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2717 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2718 	}
2719 	return ret;
2720 
2721 alloc_failed:
2722 	fec_enet_free_queue(ndev);
2723 	return ret;
2724 }
2725 
2726 static int
2727 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2728 {
2729 	struct fec_enet_private *fep = netdev_priv(ndev);
2730 	unsigned int i;
2731 	struct sk_buff *skb;
2732 	struct bufdesc	*bdp;
2733 	struct fec_enet_priv_rx_q *rxq;
2734 
2735 	rxq = fep->rx_queue[queue];
2736 	bdp = rxq->bd.base;
2737 	for (i = 0; i < rxq->bd.ring_size; i++) {
2738 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2739 		if (!skb)
2740 			goto err_alloc;
2741 
2742 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2743 			dev_kfree_skb(skb);
2744 			goto err_alloc;
2745 		}
2746 
2747 		rxq->rx_skbuff[i] = skb;
2748 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2749 
2750 		if (fep->bufdesc_ex) {
2751 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2752 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2753 		}
2754 
2755 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2756 	}
2757 
2758 	/* Set the last buffer to wrap. */
2759 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2760 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2761 	return 0;
2762 
2763  err_alloc:
2764 	fec_enet_free_buffers(ndev);
2765 	return -ENOMEM;
2766 }
2767 
2768 static int
2769 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2770 {
2771 	struct fec_enet_private *fep = netdev_priv(ndev);
2772 	unsigned int i;
2773 	struct bufdesc  *bdp;
2774 	struct fec_enet_priv_tx_q *txq;
2775 
2776 	txq = fep->tx_queue[queue];
2777 	bdp = txq->bd.base;
2778 	for (i = 0; i < txq->bd.ring_size; i++) {
2779 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2780 		if (!txq->tx_bounce[i])
2781 			goto err_alloc;
2782 
2783 		bdp->cbd_sc = cpu_to_fec16(0);
2784 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2785 
2786 		if (fep->bufdesc_ex) {
2787 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2788 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2789 		}
2790 
2791 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2792 	}
2793 
2794 	/* Set the last buffer to wrap. */
2795 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2796 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2797 
2798 	return 0;
2799 
2800  err_alloc:
2801 	fec_enet_free_buffers(ndev);
2802 	return -ENOMEM;
2803 }
2804 
2805 static int fec_enet_alloc_buffers(struct net_device *ndev)
2806 {
2807 	struct fec_enet_private *fep = netdev_priv(ndev);
2808 	unsigned int i;
2809 
2810 	for (i = 0; i < fep->num_rx_queues; i++)
2811 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2812 			return -ENOMEM;
2813 
2814 	for (i = 0; i < fep->num_tx_queues; i++)
2815 		if (fec_enet_alloc_txq_buffers(ndev, i))
2816 			return -ENOMEM;
2817 	return 0;
2818 }
2819 
2820 static int
2821 fec_enet_open(struct net_device *ndev)
2822 {
2823 	struct fec_enet_private *fep = netdev_priv(ndev);
2824 	int ret;
2825 
2826 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2827 	if (ret < 0)
2828 		return ret;
2829 
2830 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2831 	ret = fec_enet_clk_enable(ndev, true);
2832 	if (ret)
2833 		goto clk_enable;
2834 
2835 	/* I should reset the ring buffers here, but I don't yet know
2836 	 * a simple way to do that.
2837 	 */
2838 
2839 	ret = fec_enet_alloc_buffers(ndev);
2840 	if (ret)
2841 		goto err_enet_alloc;
2842 
2843 	/* Init MAC prior to mii bus probe */
2844 	fec_restart(ndev);
2845 
2846 	/* Probe and connect to PHY when open the interface */
2847 	ret = fec_enet_mii_probe(ndev);
2848 	if (ret)
2849 		goto err_enet_mii_probe;
2850 
2851 	napi_enable(&fep->napi);
2852 	phy_start(fep->phy_dev);
2853 	netif_tx_start_all_queues(ndev);
2854 
2855 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2856 				 FEC_WOL_FLAG_ENABLE);
2857 
2858 	return 0;
2859 
2860 err_enet_mii_probe:
2861 	fec_enet_free_buffers(ndev);
2862 err_enet_alloc:
2863 	fec_enet_clk_enable(ndev, false);
2864 clk_enable:
2865 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2866 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2867 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2868 	return ret;
2869 }
2870 
2871 static int
2872 fec_enet_close(struct net_device *ndev)
2873 {
2874 	struct fec_enet_private *fep = netdev_priv(ndev);
2875 
2876 	phy_stop(fep->phy_dev);
2877 
2878 	if (netif_device_present(ndev)) {
2879 		napi_disable(&fep->napi);
2880 		netif_tx_disable(ndev);
2881 		fec_stop(ndev);
2882 	}
2883 
2884 	phy_disconnect(fep->phy_dev);
2885 	fep->phy_dev = NULL;
2886 
2887 	fec_enet_clk_enable(ndev, false);
2888 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2889 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2890 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2891 
2892 	fec_enet_free_buffers(ndev);
2893 
2894 	return 0;
2895 }
2896 
2897 /* Set or clear the multicast filter for this adaptor.
2898  * Skeleton taken from sunlance driver.
2899  * The CPM Ethernet implementation allows Multicast as well as individual
2900  * MAC address filtering.  Some of the drivers check to make sure it is
2901  * a group multicast address, and discard those that are not.  I guess I
2902  * will do the same for now, but just remove the test if you want
2903  * individual filtering as well (do the upper net layers want or support
2904  * this kind of feature?).
2905  */
2906 
2907 #define HASH_BITS	6		/* #bits in hash */
2908 #define CRC32_POLY	0xEDB88320
2909 
2910 static void set_multicast_list(struct net_device *ndev)
2911 {
2912 	struct fec_enet_private *fep = netdev_priv(ndev);
2913 	struct netdev_hw_addr *ha;
2914 	unsigned int i, bit, data, crc, tmp;
2915 	unsigned char hash;
2916 
2917 	if (ndev->flags & IFF_PROMISC) {
2918 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2919 		tmp |= 0x8;
2920 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2921 		return;
2922 	}
2923 
2924 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2925 	tmp &= ~0x8;
2926 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2927 
2928 	if (ndev->flags & IFF_ALLMULTI) {
2929 		/* Catch all multicast addresses, so set the
2930 		 * filter to all 1's
2931 		 */
2932 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934 
2935 		return;
2936 	}
2937 
2938 	/* Clear filter and add the addresses in hash register
2939 	 */
2940 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2941 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942 
2943 	netdev_for_each_mc_addr(ha, ndev) {
2944 		/* calculate crc32 value of mac address */
2945 		crc = 0xffffffff;
2946 
2947 		for (i = 0; i < ndev->addr_len; i++) {
2948 			data = ha->addr[i];
2949 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2950 				crc = (crc >> 1) ^
2951 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2952 			}
2953 		}
2954 
2955 		/* only upper 6 bits (HASH_BITS) are used
2956 		 * which point to specific bit in he hash registers
2957 		 */
2958 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2959 
2960 		if (hash > 31) {
2961 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2962 			tmp |= 1 << (hash - 32);
2963 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2964 		} else {
2965 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966 			tmp |= 1 << hash;
2967 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2968 		}
2969 	}
2970 }
2971 
2972 /* Set a MAC change in hardware. */
2973 static int
2974 fec_set_mac_address(struct net_device *ndev, void *p)
2975 {
2976 	struct fec_enet_private *fep = netdev_priv(ndev);
2977 	struct sockaddr *addr = p;
2978 
2979 	if (addr) {
2980 		if (!is_valid_ether_addr(addr->sa_data))
2981 			return -EADDRNOTAVAIL;
2982 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2983 	}
2984 
2985 	/* Add netif status check here to avoid system hang in below case:
2986 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2987 	 * After ethx down, fec all clocks are gated off and then register
2988 	 * access causes system hang.
2989 	 */
2990 	if (!netif_running(ndev))
2991 		return 0;
2992 
2993 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2994 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2995 		fep->hwp + FEC_ADDR_LOW);
2996 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2997 		fep->hwp + FEC_ADDR_HIGH);
2998 	return 0;
2999 }
3000 
3001 #ifdef CONFIG_NET_POLL_CONTROLLER
3002 /**
3003  * fec_poll_controller - FEC Poll controller function
3004  * @dev: The FEC network adapter
3005  *
3006  * Polled functionality used by netconsole and others in non interrupt mode
3007  *
3008  */
3009 static void fec_poll_controller(struct net_device *dev)
3010 {
3011 	int i;
3012 	struct fec_enet_private *fep = netdev_priv(dev);
3013 
3014 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3015 		if (fep->irq[i] > 0) {
3016 			disable_irq(fep->irq[i]);
3017 			fec_enet_interrupt(fep->irq[i], dev);
3018 			enable_irq(fep->irq[i]);
3019 		}
3020 	}
3021 }
3022 #endif
3023 
3024 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3025 	netdev_features_t features)
3026 {
3027 	struct fec_enet_private *fep = netdev_priv(netdev);
3028 	netdev_features_t changed = features ^ netdev->features;
3029 
3030 	netdev->features = features;
3031 
3032 	/* Receive checksum has been changed */
3033 	if (changed & NETIF_F_RXCSUM) {
3034 		if (features & NETIF_F_RXCSUM)
3035 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3036 		else
3037 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3038 	}
3039 }
3040 
3041 static int fec_set_features(struct net_device *netdev,
3042 	netdev_features_t features)
3043 {
3044 	struct fec_enet_private *fep = netdev_priv(netdev);
3045 	netdev_features_t changed = features ^ netdev->features;
3046 
3047 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3048 		napi_disable(&fep->napi);
3049 		netif_tx_lock_bh(netdev);
3050 		fec_stop(netdev);
3051 		fec_enet_set_netdev_features(netdev, features);
3052 		fec_restart(netdev);
3053 		netif_tx_wake_all_queues(netdev);
3054 		netif_tx_unlock_bh(netdev);
3055 		napi_enable(&fep->napi);
3056 	} else {
3057 		fec_enet_set_netdev_features(netdev, features);
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 static const struct net_device_ops fec_netdev_ops = {
3064 	.ndo_open		= fec_enet_open,
3065 	.ndo_stop		= fec_enet_close,
3066 	.ndo_start_xmit		= fec_enet_start_xmit,
3067 	.ndo_set_rx_mode	= set_multicast_list,
3068 	.ndo_change_mtu		= eth_change_mtu,
3069 	.ndo_validate_addr	= eth_validate_addr,
3070 	.ndo_tx_timeout		= fec_timeout,
3071 	.ndo_set_mac_address	= fec_set_mac_address,
3072 	.ndo_do_ioctl		= fec_enet_ioctl,
3073 #ifdef CONFIG_NET_POLL_CONTROLLER
3074 	.ndo_poll_controller	= fec_poll_controller,
3075 #endif
3076 	.ndo_set_features	= fec_set_features,
3077 };
3078 
3079 static const unsigned short offset_des_active_rxq[] = {
3080 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3081 };
3082 
3083 static const unsigned short offset_des_active_txq[] = {
3084 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3085 };
3086 
3087  /*
3088   * XXX:  We need to clean up on failure exits here.
3089   *
3090   */
3091 static int fec_enet_init(struct net_device *ndev)
3092 {
3093 	struct fec_enet_private *fep = netdev_priv(ndev);
3094 	struct bufdesc *cbd_base;
3095 	dma_addr_t bd_dma;
3096 	int bd_size;
3097 	unsigned int i;
3098 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3099 			sizeof(struct bufdesc);
3100 	unsigned dsize_log2 = __fls(dsize);
3101 
3102 	WARN_ON(dsize != (1 << dsize_log2));
3103 #if defined(CONFIG_ARM)
3104 	fep->rx_align = 0xf;
3105 	fep->tx_align = 0xf;
3106 #else
3107 	fep->rx_align = 0x3;
3108 	fep->tx_align = 0x3;
3109 #endif
3110 
3111 	fec_enet_alloc_queue(ndev);
3112 
3113 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3114 
3115 	/* Allocate memory for buffer descriptors. */
3116 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3117 				       GFP_KERNEL);
3118 	if (!cbd_base) {
3119 		return -ENOMEM;
3120 	}
3121 
3122 	memset(cbd_base, 0, bd_size);
3123 
3124 	/* Get the Ethernet address */
3125 	fec_get_mac(ndev);
3126 	/* make sure MAC we just acquired is programmed into the hw */
3127 	fec_set_mac_address(ndev, NULL);
3128 
3129 	/* Set receive and transmit descriptor base. */
3130 	for (i = 0; i < fep->num_rx_queues; i++) {
3131 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3132 		unsigned size = dsize * rxq->bd.ring_size;
3133 
3134 		rxq->bd.qid = i;
3135 		rxq->bd.base = cbd_base;
3136 		rxq->bd.cur = cbd_base;
3137 		rxq->bd.dma = bd_dma;
3138 		rxq->bd.dsize = dsize;
3139 		rxq->bd.dsize_log2 = dsize_log2;
3140 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3141 		bd_dma += size;
3142 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3143 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3144 	}
3145 
3146 	for (i = 0; i < fep->num_tx_queues; i++) {
3147 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3148 		unsigned size = dsize * txq->bd.ring_size;
3149 
3150 		txq->bd.qid = i;
3151 		txq->bd.base = cbd_base;
3152 		txq->bd.cur = cbd_base;
3153 		txq->bd.dma = bd_dma;
3154 		txq->bd.dsize = dsize;
3155 		txq->bd.dsize_log2 = dsize_log2;
3156 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3157 		bd_dma += size;
3158 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3159 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3160 	}
3161 
3162 
3163 	/* The FEC Ethernet specific entries in the device structure */
3164 	ndev->watchdog_timeo = TX_TIMEOUT;
3165 	ndev->netdev_ops = &fec_netdev_ops;
3166 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3167 
3168 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3169 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3170 
3171 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3172 		/* enable hw VLAN support */
3173 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3174 
3175 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3176 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3177 
3178 		/* enable hw accelerator */
3179 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3180 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3181 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3182 	}
3183 
3184 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3185 		fep->tx_align = 0;
3186 		fep->rx_align = 0x3f;
3187 	}
3188 
3189 	ndev->hw_features = ndev->features;
3190 
3191 	fec_restart(ndev);
3192 
3193 	return 0;
3194 }
3195 
3196 #ifdef CONFIG_OF
3197 static void fec_reset_phy(struct platform_device *pdev)
3198 {
3199 	int err, phy_reset;
3200 	bool active_high = false;
3201 	int msec = 1;
3202 	struct device_node *np = pdev->dev.of_node;
3203 
3204 	if (!np)
3205 		return;
3206 
3207 	of_property_read_u32(np, "phy-reset-duration", &msec);
3208 	/* A sane reset duration should not be longer than 1s */
3209 	if (msec > 1000)
3210 		msec = 1;
3211 
3212 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3213 	if (!gpio_is_valid(phy_reset))
3214 		return;
3215 
3216 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3217 
3218 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3219 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3220 			"phy-reset");
3221 	if (err) {
3222 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3223 		return;
3224 	}
3225 	msleep(msec);
3226 	gpio_set_value_cansleep(phy_reset, !active_high);
3227 }
3228 #else /* CONFIG_OF */
3229 static void fec_reset_phy(struct platform_device *pdev)
3230 {
3231 	/*
3232 	 * In case of platform probe, the reset has been done
3233 	 * by machine code.
3234 	 */
3235 }
3236 #endif /* CONFIG_OF */
3237 
3238 static void
3239 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3240 {
3241 	struct device_node *np = pdev->dev.of_node;
3242 
3243 	*num_tx = *num_rx = 1;
3244 
3245 	if (!np || !of_device_is_available(np))
3246 		return;
3247 
3248 	/* parse the num of tx and rx queues */
3249 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3250 
3251 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3252 
3253 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3254 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3255 			 *num_tx);
3256 		*num_tx = 1;
3257 		return;
3258 	}
3259 
3260 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3261 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3262 			 *num_rx);
3263 		*num_rx = 1;
3264 		return;
3265 	}
3266 
3267 }
3268 
3269 static int
3270 fec_probe(struct platform_device *pdev)
3271 {
3272 	struct fec_enet_private *fep;
3273 	struct fec_platform_data *pdata;
3274 	struct net_device *ndev;
3275 	int i, irq, ret = 0;
3276 	struct resource *r;
3277 	const struct of_device_id *of_id;
3278 	static int dev_id;
3279 	struct device_node *np = pdev->dev.of_node, *phy_node;
3280 	int num_tx_qs;
3281 	int num_rx_qs;
3282 
3283 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3284 
3285 	/* Init network device */
3286 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3287 				  num_tx_qs, num_rx_qs);
3288 	if (!ndev)
3289 		return -ENOMEM;
3290 
3291 	SET_NETDEV_DEV(ndev, &pdev->dev);
3292 
3293 	/* setup board info structure */
3294 	fep = netdev_priv(ndev);
3295 
3296 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3297 	if (of_id)
3298 		pdev->id_entry = of_id->data;
3299 	fep->quirks = pdev->id_entry->driver_data;
3300 
3301 	fep->netdev = ndev;
3302 	fep->num_rx_queues = num_rx_qs;
3303 	fep->num_tx_queues = num_tx_qs;
3304 
3305 #if !defined(CONFIG_M5272)
3306 	/* default enable pause frame auto negotiation */
3307 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3308 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3309 #endif
3310 
3311 	/* Select default pin state */
3312 	pinctrl_pm_select_default_state(&pdev->dev);
3313 
3314 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3315 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3316 	if (IS_ERR(fep->hwp)) {
3317 		ret = PTR_ERR(fep->hwp);
3318 		goto failed_ioremap;
3319 	}
3320 
3321 	fep->pdev = pdev;
3322 	fep->dev_id = dev_id++;
3323 
3324 	platform_set_drvdata(pdev, ndev);
3325 
3326 	if (of_get_property(np, "fsl,magic-packet", NULL))
3327 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3328 
3329 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3330 	if (!phy_node && of_phy_is_fixed_link(np)) {
3331 		ret = of_phy_register_fixed_link(np);
3332 		if (ret < 0) {
3333 			dev_err(&pdev->dev,
3334 				"broken fixed-link specification\n");
3335 			goto failed_phy;
3336 		}
3337 		phy_node = of_node_get(np);
3338 	}
3339 	fep->phy_node = phy_node;
3340 
3341 	ret = of_get_phy_mode(pdev->dev.of_node);
3342 	if (ret < 0) {
3343 		pdata = dev_get_platdata(&pdev->dev);
3344 		if (pdata)
3345 			fep->phy_interface = pdata->phy;
3346 		else
3347 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3348 	} else {
3349 		fep->phy_interface = ret;
3350 	}
3351 
3352 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3353 	if (IS_ERR(fep->clk_ipg)) {
3354 		ret = PTR_ERR(fep->clk_ipg);
3355 		goto failed_clk;
3356 	}
3357 
3358 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3359 	if (IS_ERR(fep->clk_ahb)) {
3360 		ret = PTR_ERR(fep->clk_ahb);
3361 		goto failed_clk;
3362 	}
3363 
3364 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3365 
3366 	/* enet_out is optional, depends on board */
3367 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3368 	if (IS_ERR(fep->clk_enet_out))
3369 		fep->clk_enet_out = NULL;
3370 
3371 	fep->ptp_clk_on = false;
3372 	mutex_init(&fep->ptp_clk_mutex);
3373 
3374 	/* clk_ref is optional, depends on board */
3375 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3376 	if (IS_ERR(fep->clk_ref))
3377 		fep->clk_ref = NULL;
3378 
3379 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3380 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3381 	if (IS_ERR(fep->clk_ptp)) {
3382 		fep->clk_ptp = NULL;
3383 		fep->bufdesc_ex = false;
3384 	}
3385 
3386 	ret = fec_enet_clk_enable(ndev, true);
3387 	if (ret)
3388 		goto failed_clk;
3389 
3390 	ret = clk_prepare_enable(fep->clk_ipg);
3391 	if (ret)
3392 		goto failed_clk_ipg;
3393 
3394 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3395 	if (!IS_ERR(fep->reg_phy)) {
3396 		ret = regulator_enable(fep->reg_phy);
3397 		if (ret) {
3398 			dev_err(&pdev->dev,
3399 				"Failed to enable phy regulator: %d\n", ret);
3400 			goto failed_regulator;
3401 		}
3402 	} else {
3403 		fep->reg_phy = NULL;
3404 	}
3405 
3406 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3407 	pm_runtime_use_autosuspend(&pdev->dev);
3408 	pm_runtime_get_noresume(&pdev->dev);
3409 	pm_runtime_set_active(&pdev->dev);
3410 	pm_runtime_enable(&pdev->dev);
3411 
3412 	fec_reset_phy(pdev);
3413 
3414 	if (fep->bufdesc_ex)
3415 		fec_ptp_init(pdev);
3416 
3417 	ret = fec_enet_init(ndev);
3418 	if (ret)
3419 		goto failed_init;
3420 
3421 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3422 		irq = platform_get_irq(pdev, i);
3423 		if (irq < 0) {
3424 			if (i)
3425 				break;
3426 			ret = irq;
3427 			goto failed_irq;
3428 		}
3429 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3430 				       0, pdev->name, ndev);
3431 		if (ret)
3432 			goto failed_irq;
3433 
3434 		fep->irq[i] = irq;
3435 	}
3436 
3437 	init_completion(&fep->mdio_done);
3438 	ret = fec_enet_mii_init(pdev);
3439 	if (ret)
3440 		goto failed_mii_init;
3441 
3442 	/* Carrier starts down, phylib will bring it up */
3443 	netif_carrier_off(ndev);
3444 	fec_enet_clk_enable(ndev, false);
3445 	pinctrl_pm_select_sleep_state(&pdev->dev);
3446 
3447 	ret = register_netdev(ndev);
3448 	if (ret)
3449 		goto failed_register;
3450 
3451 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3452 			   FEC_WOL_HAS_MAGIC_PACKET);
3453 
3454 	if (fep->bufdesc_ex && fep->ptp_clock)
3455 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3456 
3457 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3458 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3459 
3460 	pm_runtime_mark_last_busy(&pdev->dev);
3461 	pm_runtime_put_autosuspend(&pdev->dev);
3462 
3463 	return 0;
3464 
3465 failed_register:
3466 	fec_enet_mii_remove(fep);
3467 failed_mii_init:
3468 failed_irq:
3469 failed_init:
3470 	fec_ptp_stop(pdev);
3471 	if (fep->reg_phy)
3472 		regulator_disable(fep->reg_phy);
3473 failed_regulator:
3474 	clk_disable_unprepare(fep->clk_ipg);
3475 failed_clk_ipg:
3476 	fec_enet_clk_enable(ndev, false);
3477 failed_clk:
3478 failed_phy:
3479 	of_node_put(phy_node);
3480 failed_ioremap:
3481 	free_netdev(ndev);
3482 
3483 	return ret;
3484 }
3485 
3486 static int
3487 fec_drv_remove(struct platform_device *pdev)
3488 {
3489 	struct net_device *ndev = platform_get_drvdata(pdev);
3490 	struct fec_enet_private *fep = netdev_priv(ndev);
3491 
3492 	cancel_work_sync(&fep->tx_timeout_work);
3493 	fec_ptp_stop(pdev);
3494 	unregister_netdev(ndev);
3495 	fec_enet_mii_remove(fep);
3496 	if (fep->reg_phy)
3497 		regulator_disable(fep->reg_phy);
3498 	of_node_put(fep->phy_node);
3499 	free_netdev(ndev);
3500 
3501 	return 0;
3502 }
3503 
3504 static int __maybe_unused fec_suspend(struct device *dev)
3505 {
3506 	struct net_device *ndev = dev_get_drvdata(dev);
3507 	struct fec_enet_private *fep = netdev_priv(ndev);
3508 
3509 	rtnl_lock();
3510 	if (netif_running(ndev)) {
3511 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3512 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3513 		phy_stop(fep->phy_dev);
3514 		napi_disable(&fep->napi);
3515 		netif_tx_lock_bh(ndev);
3516 		netif_device_detach(ndev);
3517 		netif_tx_unlock_bh(ndev);
3518 		fec_stop(ndev);
3519 		fec_enet_clk_enable(ndev, false);
3520 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3521 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3522 	}
3523 	rtnl_unlock();
3524 
3525 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3526 		regulator_disable(fep->reg_phy);
3527 
3528 	/* SOC supply clock to phy, when clock is disabled, phy link down
3529 	 * SOC control phy regulator, when regulator is disabled, phy link down
3530 	 */
3531 	if (fep->clk_enet_out || fep->reg_phy)
3532 		fep->link = 0;
3533 
3534 	return 0;
3535 }
3536 
3537 static int __maybe_unused fec_resume(struct device *dev)
3538 {
3539 	struct net_device *ndev = dev_get_drvdata(dev);
3540 	struct fec_enet_private *fep = netdev_priv(ndev);
3541 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3542 	int ret;
3543 	int val;
3544 
3545 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3546 		ret = regulator_enable(fep->reg_phy);
3547 		if (ret)
3548 			return ret;
3549 	}
3550 
3551 	rtnl_lock();
3552 	if (netif_running(ndev)) {
3553 		ret = fec_enet_clk_enable(ndev, true);
3554 		if (ret) {
3555 			rtnl_unlock();
3556 			goto failed_clk;
3557 		}
3558 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3559 			if (pdata && pdata->sleep_mode_enable)
3560 				pdata->sleep_mode_enable(false);
3561 			val = readl(fep->hwp + FEC_ECNTRL);
3562 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3563 			writel(val, fep->hwp + FEC_ECNTRL);
3564 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3565 		} else {
3566 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3567 		}
3568 		fec_restart(ndev);
3569 		netif_tx_lock_bh(ndev);
3570 		netif_device_attach(ndev);
3571 		netif_tx_unlock_bh(ndev);
3572 		napi_enable(&fep->napi);
3573 		phy_start(fep->phy_dev);
3574 	}
3575 	rtnl_unlock();
3576 
3577 	return 0;
3578 
3579 failed_clk:
3580 	if (fep->reg_phy)
3581 		regulator_disable(fep->reg_phy);
3582 	return ret;
3583 }
3584 
3585 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3586 {
3587 	struct net_device *ndev = dev_get_drvdata(dev);
3588 	struct fec_enet_private *fep = netdev_priv(ndev);
3589 
3590 	clk_disable_unprepare(fep->clk_ipg);
3591 
3592 	return 0;
3593 }
3594 
3595 static int __maybe_unused fec_runtime_resume(struct device *dev)
3596 {
3597 	struct net_device *ndev = dev_get_drvdata(dev);
3598 	struct fec_enet_private *fep = netdev_priv(ndev);
3599 
3600 	return clk_prepare_enable(fep->clk_ipg);
3601 }
3602 
3603 static const struct dev_pm_ops fec_pm_ops = {
3604 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3605 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3606 };
3607 
3608 static struct platform_driver fec_driver = {
3609 	.driver	= {
3610 		.name	= DRIVER_NAME,
3611 		.pm	= &fec_pm_ops,
3612 		.of_match_table = fec_dt_ids,
3613 	},
3614 	.id_table = fec_devtype,
3615 	.probe	= fec_probe,
3616 	.remove	= fec_drv_remove,
3617 };
3618 
3619 module_platform_driver(fec_driver);
3620 
3621 MODULE_ALIAS("platform:"DRIVER_NAME);
3622 MODULE_LICENSE("GPL");
3623