xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 2a10154abcb75ad0d7b6bfea6210ac743ec60897)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 				FEC_QUIRK_SINGLE_MDIO,
96 	}, {
97 		.name = "imx6q-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 	}, {
102 		.name = "mvf600-fec",
103 		.driver_data = FEC_QUIRK_ENET_MAC,
104 	}, {
105 		.name = "imx6sx-fec",
106 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 	}, {
111 		/* sentinel */
112 	}
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115 
116 enum imx_fec_type {
117 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
118 	IMX27_FEC,	/* runs on i.mx27/35/51 */
119 	IMX28_FEC,
120 	IMX6Q_FEC,
121 	MVF600_FEC,
122 	IMX6SX_FEC,
123 };
124 
125 static const struct of_device_id fec_dt_ids[] = {
126 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 	{ /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135 
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139 
140 #if defined(CONFIG_M5272)
141 /*
142  * Some hardware gets it MAC address out of local flash memory.
143  * if this is non-zero then assume it is the address to get MAC from.
144  */
145 #if defined(CONFIG_NETtel)
146 #define	FEC_FLASHMAC	0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define	FEC_FLASHMAC	0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define	FEC_FLASHMAC	0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define	FEC_FLASHMAC	(0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC	0xffc0406b
155 #else
156 #define	FEC_FLASHMAC	0
157 #endif
158 #endif /* CONFIG_M5272 */
159 
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161  */
162 #define PKT_MAXBUF_SIZE		1522
163 #define PKT_MINBUF_SIZE		64
164 #define PKT_MAXBLR_SIZE		1536
165 
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS		(1 << 1)
168 #define FEC_RACC_PRODIS		(1 << 2)
169 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170 
171 /*
172  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173  * size bits. Other FEC hardware does not, so we need to take that into
174  * account when setting it.
175  */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
179 #else
180 #define	OPT_FRAME_SIZE	0
181 #endif
182 
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST		(1 << 30)
185 #define FEC_MMFR_OP_READ	(2 << 28)
186 #define FEC_MMFR_OP_WRITE	(1 << 28)
187 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
189 #define FEC_MMFR_TA		(2 << 16)
190 #define FEC_MMFR_DATA(v)	(v & 0xffff)
191 /* FEC ECR bits definition */
192 #define FEC_ECR_MAGICEN		(1 << 2)
193 #define FEC_ECR_SLEEP		(1 << 3)
194 
195 #define FEC_MII_TIMEOUT		30000 /* us */
196 
197 /* Transmitter timeout */
198 #define TX_TIMEOUT (2 * HZ)
199 
200 #define FEC_PAUSE_FLAG_AUTONEG	0x1
201 #define FEC_PAUSE_FLAG_ENABLE	0x2
202 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
203 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
204 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
205 
206 #define COPYBREAK_DEFAULT	256
207 
208 #define TSO_HEADER_SIZE		128
209 /* Max number of allowed TCP segments for software TSO */
210 #define FEC_MAX_TSO_SEGS	100
211 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212 
213 #define IS_TSO_HEADER(txq, addr) \
214 	((addr >= txq->tso_hdrs_dma) && \
215 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216 
217 static int mii_cnt;
218 
219 static inline
220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221 				      struct fec_enet_private *fep,
222 				      int queue_id)
223 {
224 	struct bufdesc *new_bd = bdp + 1;
225 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228 	struct bufdesc_ex *ex_base;
229 	struct bufdesc *base;
230 	int ring_size;
231 
232 	if (bdp >= txq->tx_bd_base) {
233 		base = txq->tx_bd_base;
234 		ring_size = txq->tx_ring_size;
235 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236 	} else {
237 		base = rxq->rx_bd_base;
238 		ring_size = rxq->rx_ring_size;
239 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240 	}
241 
242 	if (fep->bufdesc_ex)
243 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244 			ex_base : ex_new_bd);
245 	else
246 		return (new_bd >= (base + ring_size)) ?
247 			base : new_bd;
248 }
249 
250 static inline
251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252 				      struct fec_enet_private *fep,
253 				      int queue_id)
254 {
255 	struct bufdesc *new_bd = bdp - 1;
256 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259 	struct bufdesc_ex *ex_base;
260 	struct bufdesc *base;
261 	int ring_size;
262 
263 	if (bdp >= txq->tx_bd_base) {
264 		base = txq->tx_bd_base;
265 		ring_size = txq->tx_ring_size;
266 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267 	} else {
268 		base = rxq->rx_bd_base;
269 		ring_size = rxq->rx_ring_size;
270 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271 	}
272 
273 	if (fep->bufdesc_ex)
274 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
275 			(ex_new_bd + ring_size) : ex_new_bd);
276 	else
277 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278 }
279 
280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281 				struct fec_enet_private *fep)
282 {
283 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284 }
285 
286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287 					struct fec_enet_priv_tx_q *txq)
288 {
289 	int entries;
290 
291 	entries = ((const char *)txq->dirty_tx -
292 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293 
294 	return entries > 0 ? entries : entries + txq->tx_ring_size;
295 }
296 
297 static void swap_buffer(void *bufaddr, int len)
298 {
299 	int i;
300 	unsigned int *buf = bufaddr;
301 
302 	for (i = 0; i < len; i += 4, buf++)
303 		swab32s(buf);
304 }
305 
306 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307 {
308 	int i;
309 	unsigned int *src = src_buf;
310 	unsigned int *dst = dst_buf;
311 
312 	for (i = 0; i < len; i += 4, src++, dst++)
313 		*dst = swab32p(src);
314 }
315 
316 static void fec_dump(struct net_device *ndev)
317 {
318 	struct fec_enet_private *fep = netdev_priv(ndev);
319 	struct bufdesc *bdp;
320 	struct fec_enet_priv_tx_q *txq;
321 	int index = 0;
322 
323 	netdev_info(ndev, "TX ring dump\n");
324 	pr_info("Nr     SC     addr       len  SKB\n");
325 
326 	txq = fep->tx_queue[0];
327 	bdp = txq->tx_bd_base;
328 
329 	do {
330 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331 			index,
332 			bdp == txq->cur_tx ? 'S' : ' ',
333 			bdp == txq->dirty_tx ? 'H' : ' ',
334 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335 			txq->tx_skbuff[index]);
336 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337 		index++;
338 	} while (bdp != txq->tx_bd_base);
339 }
340 
341 static inline bool is_ipv4_pkt(struct sk_buff *skb)
342 {
343 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344 }
345 
346 static int
347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348 {
349 	/* Only run for packets requiring a checksum. */
350 	if (skb->ip_summed != CHECKSUM_PARTIAL)
351 		return 0;
352 
353 	if (unlikely(skb_cow_head(skb, 0)))
354 		return -1;
355 
356 	if (is_ipv4_pkt(skb))
357 		ip_hdr(skb)->check = 0;
358 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359 
360 	return 0;
361 }
362 
363 static int
364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365 			     struct sk_buff *skb,
366 			     struct net_device *ndev)
367 {
368 	struct fec_enet_private *fep = netdev_priv(ndev);
369 	struct bufdesc *bdp = txq->cur_tx;
370 	struct bufdesc_ex *ebdp;
371 	int nr_frags = skb_shinfo(skb)->nr_frags;
372 	unsigned short queue = skb_get_queue_mapping(skb);
373 	int frag, frag_len;
374 	unsigned short status;
375 	unsigned int estatus = 0;
376 	skb_frag_t *this_frag;
377 	unsigned int index;
378 	void *bufaddr;
379 	dma_addr_t addr;
380 	int i;
381 
382 	for (frag = 0; frag < nr_frags; frag++) {
383 		this_frag = &skb_shinfo(skb)->frags[frag];
384 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385 		ebdp = (struct bufdesc_ex *)bdp;
386 
387 		status = bdp->cbd_sc;
388 		status &= ~BD_ENET_TX_STATS;
389 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390 		frag_len = skb_shinfo(skb)->frags[frag].size;
391 
392 		/* Handle the last BD specially */
393 		if (frag == nr_frags - 1) {
394 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395 			if (fep->bufdesc_ex) {
396 				estatus |= BD_ENET_TX_INT;
397 				if (unlikely(skb_shinfo(skb)->tx_flags &
398 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399 					estatus |= BD_ENET_TX_TS;
400 			}
401 		}
402 
403 		if (fep->bufdesc_ex) {
404 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
405 				estatus |= FEC_TX_BD_FTYPE(queue);
406 			if (skb->ip_summed == CHECKSUM_PARTIAL)
407 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 			ebdp->cbd_bdu = 0;
409 			ebdp->cbd_esc = estatus;
410 		}
411 
412 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413 
414 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415 		if (((unsigned long) bufaddr) & fep->tx_align ||
416 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418 			bufaddr = txq->tx_bounce[index];
419 
420 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421 				swap_buffer(bufaddr, frag_len);
422 		}
423 
424 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 				      DMA_TO_DEVICE);
426 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 			dev_kfree_skb_any(skb);
428 			if (net_ratelimit())
429 				netdev_err(ndev, "Tx DMA memory map failed\n");
430 			goto dma_mapping_error;
431 		}
432 
433 		bdp->cbd_bufaddr = addr;
434 		bdp->cbd_datlen = frag_len;
435 		bdp->cbd_sc = status;
436 	}
437 
438 	txq->cur_tx = bdp;
439 
440 	return 0;
441 
442 dma_mapping_error:
443 	bdp = txq->cur_tx;
444 	for (i = 0; i < frag; i++) {
445 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 				bdp->cbd_datlen, DMA_TO_DEVICE);
448 	}
449 	return NETDEV_TX_OK;
450 }
451 
452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453 				   struct sk_buff *skb, struct net_device *ndev)
454 {
455 	struct fec_enet_private *fep = netdev_priv(ndev);
456 	int nr_frags = skb_shinfo(skb)->nr_frags;
457 	struct bufdesc *bdp, *last_bdp;
458 	void *bufaddr;
459 	dma_addr_t addr;
460 	unsigned short status;
461 	unsigned short buflen;
462 	unsigned short queue;
463 	unsigned int estatus = 0;
464 	unsigned int index;
465 	int entries_free;
466 	int ret;
467 
468 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 	if (entries_free < MAX_SKB_FRAGS + 1) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "NOT enough BD for SG!\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	/* Protocol checksum off-load for TCP and UDP. */
477 	if (fec_enet_clear_csum(skb, ndev)) {
478 		dev_kfree_skb_any(skb);
479 		return NETDEV_TX_OK;
480 	}
481 
482 	/* Fill in a Tx ring entry */
483 	bdp = txq->cur_tx;
484 	status = bdp->cbd_sc;
485 	status &= ~BD_ENET_TX_STATS;
486 
487 	/* Set buffer length and buffer pointer */
488 	bufaddr = skb->data;
489 	buflen = skb_headlen(skb);
490 
491 	queue = skb_get_queue_mapping(skb);
492 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493 	if (((unsigned long) bufaddr) & fep->tx_align ||
494 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495 		memcpy(txq->tx_bounce[index], skb->data, buflen);
496 		bufaddr = txq->tx_bounce[index];
497 
498 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499 			swap_buffer(bufaddr, buflen);
500 	}
501 
502 	/* Push the data cache so the CPM does not get stale memory data. */
503 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 		dev_kfree_skb_any(skb);
506 		if (net_ratelimit())
507 			netdev_err(ndev, "Tx DMA memory map failed\n");
508 		return NETDEV_TX_OK;
509 	}
510 
511 	if (nr_frags) {
512 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513 		if (ret)
514 			return ret;
515 	} else {
516 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 		if (fep->bufdesc_ex) {
518 			estatus = BD_ENET_TX_INT;
519 			if (unlikely(skb_shinfo(skb)->tx_flags &
520 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 				estatus |= BD_ENET_TX_TS;
522 		}
523 	}
524 
525 	if (fep->bufdesc_ex) {
526 
527 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528 
529 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 			fep->hwts_tx_en))
531 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532 
533 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
534 			estatus |= FEC_TX_BD_FTYPE(queue);
535 
536 		if (skb->ip_summed == CHECKSUM_PARTIAL)
537 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538 
539 		ebdp->cbd_bdu = 0;
540 		ebdp->cbd_esc = estatus;
541 	}
542 
543 	last_bdp = txq->cur_tx;
544 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 	/* Save skb pointer */
546 	txq->tx_skbuff[index] = skb;
547 
548 	bdp->cbd_datlen = buflen;
549 	bdp->cbd_bufaddr = addr;
550 
551 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552 	 * it's the last BD of the frame, and to put the CRC on the end.
553 	 */
554 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 	bdp->cbd_sc = status;
556 
557 	/* If this was the last BD in the ring, start at the beginning again. */
558 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559 
560 	skb_tx_timestamp(skb);
561 
562 	txq->cur_tx = bdp;
563 
564 	/* Trigger transmission start */
565 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566 
567 	return 0;
568 }
569 
570 static int
571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572 			  struct net_device *ndev,
573 			  struct bufdesc *bdp, int index, char *data,
574 			  int size, bool last_tcp, bool is_last)
575 {
576 	struct fec_enet_private *fep = netdev_priv(ndev);
577 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578 	unsigned short queue = skb_get_queue_mapping(skb);
579 	unsigned short status;
580 	unsigned int estatus = 0;
581 	dma_addr_t addr;
582 
583 	status = bdp->cbd_sc;
584 	status &= ~BD_ENET_TX_STATS;
585 
586 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587 
588 	if (((unsigned long) data) & fep->tx_align ||
589 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590 		memcpy(txq->tx_bounce[index], data, size);
591 		data = txq->tx_bounce[index];
592 
593 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594 			swap_buffer(data, size);
595 	}
596 
597 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
599 		dev_kfree_skb_any(skb);
600 		if (net_ratelimit())
601 			netdev_err(ndev, "Tx DMA memory map failed\n");
602 		return NETDEV_TX_BUSY;
603 	}
604 
605 	bdp->cbd_datlen = size;
606 	bdp->cbd_bufaddr = addr;
607 
608 	if (fep->bufdesc_ex) {
609 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
610 			estatus |= FEC_TX_BD_FTYPE(queue);
611 		if (skb->ip_summed == CHECKSUM_PARTIAL)
612 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613 		ebdp->cbd_bdu = 0;
614 		ebdp->cbd_esc = estatus;
615 	}
616 
617 	/* Handle the last BD specially */
618 	if (last_tcp)
619 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620 	if (is_last) {
621 		status |= BD_ENET_TX_INTR;
622 		if (fep->bufdesc_ex)
623 			ebdp->cbd_esc |= BD_ENET_TX_INT;
624 	}
625 
626 	bdp->cbd_sc = status;
627 
628 	return 0;
629 }
630 
631 static int
632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633 			 struct sk_buff *skb, struct net_device *ndev,
634 			 struct bufdesc *bdp, int index)
635 {
636 	struct fec_enet_private *fep = netdev_priv(ndev);
637 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639 	unsigned short queue = skb_get_queue_mapping(skb);
640 	void *bufaddr;
641 	unsigned long dmabuf;
642 	unsigned short status;
643 	unsigned int estatus = 0;
644 
645 	status = bdp->cbd_sc;
646 	status &= ~BD_ENET_TX_STATS;
647 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648 
649 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651 	if (((unsigned long)bufaddr) & fep->tx_align ||
652 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654 		bufaddr = txq->tx_bounce[index];
655 
656 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657 			swap_buffer(bufaddr, hdr_len);
658 
659 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660 					hdr_len, DMA_TO_DEVICE);
661 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662 			dev_kfree_skb_any(skb);
663 			if (net_ratelimit())
664 				netdev_err(ndev, "Tx DMA memory map failed\n");
665 			return NETDEV_TX_BUSY;
666 		}
667 	}
668 
669 	bdp->cbd_bufaddr = dmabuf;
670 	bdp->cbd_datlen = hdr_len;
671 
672 	if (fep->bufdesc_ex) {
673 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
674 			estatus |= FEC_TX_BD_FTYPE(queue);
675 		if (skb->ip_summed == CHECKSUM_PARTIAL)
676 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677 		ebdp->cbd_bdu = 0;
678 		ebdp->cbd_esc = estatus;
679 	}
680 
681 	bdp->cbd_sc = status;
682 
683 	return 0;
684 }
685 
686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687 				   struct sk_buff *skb,
688 				   struct net_device *ndev)
689 {
690 	struct fec_enet_private *fep = netdev_priv(ndev);
691 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692 	int total_len, data_left;
693 	struct bufdesc *bdp = txq->cur_tx;
694 	unsigned short queue = skb_get_queue_mapping(skb);
695 	struct tso_t tso;
696 	unsigned int index = 0;
697 	int ret;
698 
699 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700 		dev_kfree_skb_any(skb);
701 		if (net_ratelimit())
702 			netdev_err(ndev, "NOT enough BD for TSO!\n");
703 		return NETDEV_TX_OK;
704 	}
705 
706 	/* Protocol checksum off-load for TCP and UDP. */
707 	if (fec_enet_clear_csum(skb, ndev)) {
708 		dev_kfree_skb_any(skb);
709 		return NETDEV_TX_OK;
710 	}
711 
712 	/* Initialize the TSO handler, and prepare the first payload */
713 	tso_start(skb, &tso);
714 
715 	total_len = skb->len - hdr_len;
716 	while (total_len > 0) {
717 		char *hdr;
718 
719 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721 		total_len -= data_left;
722 
723 		/* prepare packet headers: MAC + IP + TCP */
724 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727 		if (ret)
728 			goto err_release;
729 
730 		while (data_left > 0) {
731 			int size;
732 
733 			size = min_t(int, tso.size, data_left);
734 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735 			index = fec_enet_get_bd_index(txq->tx_bd_base,
736 						      bdp, fep);
737 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738 							bdp, index,
739 							tso.data, size,
740 							size == data_left,
741 							total_len == 0);
742 			if (ret)
743 				goto err_release;
744 
745 			data_left -= size;
746 			tso_build_data(skb, &tso, size);
747 		}
748 
749 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750 	}
751 
752 	/* Save skb pointer */
753 	txq->tx_skbuff[index] = skb;
754 
755 	skb_tx_timestamp(skb);
756 	txq->cur_tx = bdp;
757 
758 	/* Trigger transmission start */
759 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765 
766 	return 0;
767 
768 err_release:
769 	/* TODO: Release all used data descriptors for TSO */
770 	return ret;
771 }
772 
773 static netdev_tx_t
774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775 {
776 	struct fec_enet_private *fep = netdev_priv(ndev);
777 	int entries_free;
778 	unsigned short queue;
779 	struct fec_enet_priv_tx_q *txq;
780 	struct netdev_queue *nq;
781 	int ret;
782 
783 	queue = skb_get_queue_mapping(skb);
784 	txq = fep->tx_queue[queue];
785 	nq = netdev_get_tx_queue(ndev, queue);
786 
787 	if (skb_is_gso(skb))
788 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789 	else
790 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791 	if (ret)
792 		return ret;
793 
794 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795 	if (entries_free <= txq->tx_stop_threshold)
796 		netif_tx_stop_queue(nq);
797 
798 	return NETDEV_TX_OK;
799 }
800 
801 /* Init RX & TX buffer descriptors
802  */
803 static void fec_enet_bd_init(struct net_device *dev)
804 {
805 	struct fec_enet_private *fep = netdev_priv(dev);
806 	struct fec_enet_priv_tx_q *txq;
807 	struct fec_enet_priv_rx_q *rxq;
808 	struct bufdesc *bdp;
809 	unsigned int i;
810 	unsigned int q;
811 
812 	for (q = 0; q < fep->num_rx_queues; q++) {
813 		/* Initialize the receive buffer descriptors. */
814 		rxq = fep->rx_queue[q];
815 		bdp = rxq->rx_bd_base;
816 
817 		for (i = 0; i < rxq->rx_ring_size; i++) {
818 
819 			/* Initialize the BD for every fragment in the page. */
820 			if (bdp->cbd_bufaddr)
821 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
822 			else
823 				bdp->cbd_sc = 0;
824 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
825 		}
826 
827 		/* Set the last buffer to wrap */
828 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
829 		bdp->cbd_sc |= BD_SC_WRAP;
830 
831 		rxq->cur_rx = rxq->rx_bd_base;
832 	}
833 
834 	for (q = 0; q < fep->num_tx_queues; q++) {
835 		/* ...and the same for transmit */
836 		txq = fep->tx_queue[q];
837 		bdp = txq->tx_bd_base;
838 		txq->cur_tx = bdp;
839 
840 		for (i = 0; i < txq->tx_ring_size; i++) {
841 			/* Initialize the BD for every fragment in the page. */
842 			bdp->cbd_sc = 0;
843 			if (txq->tx_skbuff[i]) {
844 				dev_kfree_skb_any(txq->tx_skbuff[i]);
845 				txq->tx_skbuff[i] = NULL;
846 			}
847 			bdp->cbd_bufaddr = 0;
848 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
849 		}
850 
851 		/* Set the last buffer to wrap */
852 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
853 		bdp->cbd_sc |= BD_SC_WRAP;
854 		txq->dirty_tx = bdp;
855 	}
856 }
857 
858 static void fec_enet_active_rxring(struct net_device *ndev)
859 {
860 	struct fec_enet_private *fep = netdev_priv(ndev);
861 	int i;
862 
863 	for (i = 0; i < fep->num_rx_queues; i++)
864 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865 }
866 
867 static void fec_enet_enable_ring(struct net_device *ndev)
868 {
869 	struct fec_enet_private *fep = netdev_priv(ndev);
870 	struct fec_enet_priv_tx_q *txq;
871 	struct fec_enet_priv_rx_q *rxq;
872 	int i;
873 
874 	for (i = 0; i < fep->num_rx_queues; i++) {
875 		rxq = fep->rx_queue[i];
876 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878 
879 		/* enable DMA1/2 */
880 		if (i)
881 			writel(RCMR_MATCHEN | RCMR_CMP(i),
882 			       fep->hwp + FEC_RCMR(i));
883 	}
884 
885 	for (i = 0; i < fep->num_tx_queues; i++) {
886 		txq = fep->tx_queue[i];
887 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888 
889 		/* enable DMA1/2 */
890 		if (i)
891 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892 			       fep->hwp + FEC_DMA_CFG(i));
893 	}
894 }
895 
896 static void fec_enet_reset_skb(struct net_device *ndev)
897 {
898 	struct fec_enet_private *fep = netdev_priv(ndev);
899 	struct fec_enet_priv_tx_q *txq;
900 	int i, j;
901 
902 	for (i = 0; i < fep->num_tx_queues; i++) {
903 		txq = fep->tx_queue[i];
904 
905 		for (j = 0; j < txq->tx_ring_size; j++) {
906 			if (txq->tx_skbuff[j]) {
907 				dev_kfree_skb_any(txq->tx_skbuff[j]);
908 				txq->tx_skbuff[j] = NULL;
909 			}
910 		}
911 	}
912 }
913 
914 /*
915  * This function is called to start or restart the FEC during a link
916  * change, transmit timeout, or to reconfigure the FEC.  The network
917  * packet processing for this device must be stopped before this call.
918  */
919 static void
920 fec_restart(struct net_device *ndev)
921 {
922 	struct fec_enet_private *fep = netdev_priv(ndev);
923 	u32 val;
924 	u32 temp_mac[2];
925 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
926 	u32 ecntl = 0x2; /* ETHEREN */
927 
928 	/* Whack a reset.  We should wait for this.
929 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930 	 * instead of reset MAC itself.
931 	 */
932 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933 		writel(0, fep->hwp + FEC_ECNTRL);
934 	} else {
935 		writel(1, fep->hwp + FEC_ECNTRL);
936 		udelay(10);
937 	}
938 
939 	/*
940 	 * enet-mac reset will reset mac address registers too,
941 	 * so need to reconfigure it.
942 	 */
943 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947 	}
948 
949 	/* Clear any outstanding interrupt. */
950 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
951 
952 	fec_enet_bd_init(ndev);
953 
954 	fec_enet_enable_ring(ndev);
955 
956 	/* Reset tx SKB buffers. */
957 	fec_enet_reset_skb(ndev);
958 
959 	/* Enable MII mode */
960 	if (fep->full_duplex == DUPLEX_FULL) {
961 		/* FD enable */
962 		writel(0x04, fep->hwp + FEC_X_CNTRL);
963 	} else {
964 		/* No Rcv on Xmit */
965 		rcntl |= 0x02;
966 		writel(0x0, fep->hwp + FEC_X_CNTRL);
967 	}
968 
969 	/* Set MII speed */
970 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971 
972 #if !defined(CONFIG_M5272)
973 	/* set RX checksum */
974 	val = readl(fep->hwp + FEC_RACC);
975 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976 		val |= FEC_RACC_OPTIONS;
977 	else
978 		val &= ~FEC_RACC_OPTIONS;
979 	writel(val, fep->hwp + FEC_RACC);
980 #endif
981 
982 	/*
983 	 * The phy interface and speed need to get configured
984 	 * differently on enet-mac.
985 	 */
986 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987 		/* Enable flow control and length check */
988 		rcntl |= 0x40000000 | 0x00000020;
989 
990 		/* RGMII, RMII or MII */
991 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
992 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
993 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
994 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
995 			rcntl |= (1 << 6);
996 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
997 			rcntl |= (1 << 8);
998 		else
999 			rcntl &= ~(1 << 8);
1000 
1001 		/* 1G, 100M or 10M */
1002 		if (fep->phy_dev) {
1003 			if (fep->phy_dev->speed == SPEED_1000)
1004 				ecntl |= (1 << 5);
1005 			else if (fep->phy_dev->speed == SPEED_100)
1006 				rcntl &= ~(1 << 9);
1007 			else
1008 				rcntl |= (1 << 9);
1009 		}
1010 	} else {
1011 #ifdef FEC_MIIGSK_ENR
1012 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1013 			u32 cfgr;
1014 			/* disable the gasket and wait */
1015 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1016 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1017 				udelay(1);
1018 
1019 			/*
1020 			 * configure the gasket:
1021 			 *   RMII, 50 MHz, no loopback, no echo
1022 			 *   MII, 25 MHz, no loopback, no echo
1023 			 */
1024 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1026 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1027 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1028 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1029 
1030 			/* re-enable the gasket */
1031 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1032 		}
1033 #endif
1034 	}
1035 
1036 #if !defined(CONFIG_M5272)
1037 	/* enable pause frame*/
1038 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1039 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1040 	     fep->phy_dev && fep->phy_dev->pause)) {
1041 		rcntl |= FEC_ENET_FCE;
1042 
1043 		/* set FIFO threshold parameter to reduce overrun */
1044 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1045 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1046 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1047 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1048 
1049 		/* OPD */
1050 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1051 	} else {
1052 		rcntl &= ~FEC_ENET_FCE;
1053 	}
1054 #endif /* !defined(CONFIG_M5272) */
1055 
1056 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1057 
1058 	/* Setup multicast filter. */
1059 	set_multicast_list(ndev);
1060 #ifndef CONFIG_M5272
1061 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1062 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1063 #endif
1064 
1065 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1066 		/* enable ENET endian swap */
1067 		ecntl |= (1 << 8);
1068 		/* enable ENET store and forward mode */
1069 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1070 	}
1071 
1072 	if (fep->bufdesc_ex)
1073 		ecntl |= (1 << 4);
1074 
1075 #ifndef CONFIG_M5272
1076 	/* Enable the MIB statistic event counters */
1077 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1078 #endif
1079 
1080 	/* And last, enable the transmit and receive processing */
1081 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1082 	fec_enet_active_rxring(ndev);
1083 
1084 	if (fep->bufdesc_ex)
1085 		fec_ptp_start_cyclecounter(ndev);
1086 
1087 	/* Enable interrupts we wish to service */
1088 	if (fep->link)
1089 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1090 	else
1091 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1092 
1093 	/* Init the interrupt coalescing */
1094 	fec_enet_itr_coal_init(ndev);
1095 
1096 }
1097 
1098 static void
1099 fec_stop(struct net_device *ndev)
1100 {
1101 	struct fec_enet_private *fep = netdev_priv(ndev);
1102 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1103 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1104 	u32 val;
1105 
1106 	/* We cannot expect a graceful transmit stop without link !!! */
1107 	if (fep->link) {
1108 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1109 		udelay(10);
1110 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1111 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1112 	}
1113 
1114 	/* Whack a reset.  We should wait for this.
1115 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1116 	 * instead of reset MAC itself.
1117 	 */
1118 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1119 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1120 			writel(0, fep->hwp + FEC_ECNTRL);
1121 		} else {
1122 			writel(1, fep->hwp + FEC_ECNTRL);
1123 			udelay(10);
1124 		}
1125 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1126 	} else {
1127 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1128 		val = readl(fep->hwp + FEC_ECNTRL);
1129 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1130 		writel(val, fep->hwp + FEC_ECNTRL);
1131 
1132 		if (pdata && pdata->sleep_mode_enable)
1133 			pdata->sleep_mode_enable(true);
1134 	}
1135 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1136 
1137 	/* We have to keep ENET enabled to have MII interrupt stay working */
1138 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1139 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1140 		writel(2, fep->hwp + FEC_ECNTRL);
1141 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1142 	}
1143 }
1144 
1145 
1146 static void
1147 fec_timeout(struct net_device *ndev)
1148 {
1149 	struct fec_enet_private *fep = netdev_priv(ndev);
1150 
1151 	fec_dump(ndev);
1152 
1153 	ndev->stats.tx_errors++;
1154 
1155 	schedule_work(&fep->tx_timeout_work);
1156 }
1157 
1158 static void fec_enet_timeout_work(struct work_struct *work)
1159 {
1160 	struct fec_enet_private *fep =
1161 		container_of(work, struct fec_enet_private, tx_timeout_work);
1162 	struct net_device *ndev = fep->netdev;
1163 
1164 	rtnl_lock();
1165 	if (netif_device_present(ndev) || netif_running(ndev)) {
1166 		napi_disable(&fep->napi);
1167 		netif_tx_lock_bh(ndev);
1168 		fec_restart(ndev);
1169 		netif_wake_queue(ndev);
1170 		netif_tx_unlock_bh(ndev);
1171 		napi_enable(&fep->napi);
1172 	}
1173 	rtnl_unlock();
1174 }
1175 
1176 static void
1177 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1178 	struct skb_shared_hwtstamps *hwtstamps)
1179 {
1180 	unsigned long flags;
1181 	u64 ns;
1182 
1183 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1184 	ns = timecounter_cyc2time(&fep->tc, ts);
1185 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1186 
1187 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1188 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1189 }
1190 
1191 static void
1192 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1193 {
1194 	struct	fec_enet_private *fep;
1195 	struct bufdesc *bdp;
1196 	unsigned short status;
1197 	struct	sk_buff	*skb;
1198 	struct fec_enet_priv_tx_q *txq;
1199 	struct netdev_queue *nq;
1200 	int	index = 0;
1201 	int	entries_free;
1202 
1203 	fep = netdev_priv(ndev);
1204 
1205 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1206 
1207 	txq = fep->tx_queue[queue_id];
1208 	/* get next bdp of dirty_tx */
1209 	nq = netdev_get_tx_queue(ndev, queue_id);
1210 	bdp = txq->dirty_tx;
1211 
1212 	/* get next bdp of dirty_tx */
1213 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1214 
1215 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1216 
1217 		/* current queue is empty */
1218 		if (bdp == txq->cur_tx)
1219 			break;
1220 
1221 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1222 
1223 		skb = txq->tx_skbuff[index];
1224 		txq->tx_skbuff[index] = NULL;
1225 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1226 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1227 					bdp->cbd_datlen, DMA_TO_DEVICE);
1228 		bdp->cbd_bufaddr = 0;
1229 		if (!skb) {
1230 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1231 			continue;
1232 		}
1233 
1234 		/* Check for errors. */
1235 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1236 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1237 				   BD_ENET_TX_CSL)) {
1238 			ndev->stats.tx_errors++;
1239 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1240 				ndev->stats.tx_heartbeat_errors++;
1241 			if (status & BD_ENET_TX_LC)  /* Late collision */
1242 				ndev->stats.tx_window_errors++;
1243 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1244 				ndev->stats.tx_aborted_errors++;
1245 			if (status & BD_ENET_TX_UN)  /* Underrun */
1246 				ndev->stats.tx_fifo_errors++;
1247 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1248 				ndev->stats.tx_carrier_errors++;
1249 		} else {
1250 			ndev->stats.tx_packets++;
1251 			ndev->stats.tx_bytes += skb->len;
1252 		}
1253 
1254 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1255 			fep->bufdesc_ex) {
1256 			struct skb_shared_hwtstamps shhwtstamps;
1257 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1258 
1259 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1260 			skb_tstamp_tx(skb, &shhwtstamps);
1261 		}
1262 
1263 		/* Deferred means some collisions occurred during transmit,
1264 		 * but we eventually sent the packet OK.
1265 		 */
1266 		if (status & BD_ENET_TX_DEF)
1267 			ndev->stats.collisions++;
1268 
1269 		/* Free the sk buffer associated with this last transmit */
1270 		dev_kfree_skb_any(skb);
1271 
1272 		txq->dirty_tx = bdp;
1273 
1274 		/* Update pointer to next buffer descriptor to be transmitted */
1275 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1276 
1277 		/* Since we have freed up a buffer, the ring is no longer full
1278 		 */
1279 		if (netif_queue_stopped(ndev)) {
1280 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1281 			if (entries_free >= txq->tx_wake_threshold)
1282 				netif_tx_wake_queue(nq);
1283 		}
1284 	}
1285 
1286 	/* ERR006538: Keep the transmitter going */
1287 	if (bdp != txq->cur_tx &&
1288 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1289 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1290 }
1291 
1292 static void
1293 fec_enet_tx(struct net_device *ndev)
1294 {
1295 	struct fec_enet_private *fep = netdev_priv(ndev);
1296 	u16 queue_id;
1297 	/* First process class A queue, then Class B and Best Effort queue */
1298 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1299 		clear_bit(queue_id, &fep->work_tx);
1300 		fec_enet_tx_queue(ndev, queue_id);
1301 	}
1302 	return;
1303 }
1304 
1305 static int
1306 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1307 {
1308 	struct  fec_enet_private *fep = netdev_priv(ndev);
1309 	int off;
1310 
1311 	off = ((unsigned long)skb->data) & fep->rx_align;
1312 	if (off)
1313 		skb_reserve(skb, fep->rx_align + 1 - off);
1314 
1315 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1316 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1317 					  DMA_FROM_DEVICE);
1318 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1319 		if (net_ratelimit())
1320 			netdev_err(ndev, "Rx DMA memory map failed\n");
1321 		return -ENOMEM;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1328 			       struct bufdesc *bdp, u32 length, bool swap)
1329 {
1330 	struct  fec_enet_private *fep = netdev_priv(ndev);
1331 	struct sk_buff *new_skb;
1332 
1333 	if (length > fep->rx_copybreak)
1334 		return false;
1335 
1336 	new_skb = netdev_alloc_skb(ndev, length);
1337 	if (!new_skb)
1338 		return false;
1339 
1340 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1341 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1342 				DMA_FROM_DEVICE);
1343 	if (!swap)
1344 		memcpy(new_skb->data, (*skb)->data, length);
1345 	else
1346 		swap_buffer2(new_skb->data, (*skb)->data, length);
1347 	*skb = new_skb;
1348 
1349 	return true;
1350 }
1351 
1352 /* During a receive, the cur_rx points to the current incoming buffer.
1353  * When we update through the ring, if the next incoming buffer has
1354  * not been given to the system, we just set the empty indicator,
1355  * effectively tossing the packet.
1356  */
1357 static int
1358 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1359 {
1360 	struct fec_enet_private *fep = netdev_priv(ndev);
1361 	struct fec_enet_priv_rx_q *rxq;
1362 	struct bufdesc *bdp;
1363 	unsigned short status;
1364 	struct  sk_buff *skb_new = NULL;
1365 	struct  sk_buff *skb;
1366 	ushort	pkt_len;
1367 	__u8 *data;
1368 	int	pkt_received = 0;
1369 	struct	bufdesc_ex *ebdp = NULL;
1370 	bool	vlan_packet_rcvd = false;
1371 	u16	vlan_tag;
1372 	int	index = 0;
1373 	bool	is_copybreak;
1374 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1375 
1376 #ifdef CONFIG_M532x
1377 	flush_cache_all();
1378 #endif
1379 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1380 	rxq = fep->rx_queue[queue_id];
1381 
1382 	/* First, grab all of the stats for the incoming packet.
1383 	 * These get messed up if we get called due to a busy condition.
1384 	 */
1385 	bdp = rxq->cur_rx;
1386 
1387 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1388 
1389 		if (pkt_received >= budget)
1390 			break;
1391 		pkt_received++;
1392 
1393 		/* Since we have allocated space to hold a complete frame,
1394 		 * the last indicator should be set.
1395 		 */
1396 		if ((status & BD_ENET_RX_LAST) == 0)
1397 			netdev_err(ndev, "rcv is not +last\n");
1398 
1399 
1400 		/* Check for errors. */
1401 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1402 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1403 			ndev->stats.rx_errors++;
1404 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1405 				/* Frame too long or too short. */
1406 				ndev->stats.rx_length_errors++;
1407 			}
1408 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1409 				ndev->stats.rx_frame_errors++;
1410 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1411 				ndev->stats.rx_crc_errors++;
1412 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1413 				ndev->stats.rx_fifo_errors++;
1414 		}
1415 
1416 		/* Report late collisions as a frame error.
1417 		 * On this error, the BD is closed, but we don't know what we
1418 		 * have in the buffer.  So, just drop this frame on the floor.
1419 		 */
1420 		if (status & BD_ENET_RX_CL) {
1421 			ndev->stats.rx_errors++;
1422 			ndev->stats.rx_frame_errors++;
1423 			goto rx_processing_done;
1424 		}
1425 
1426 		/* Process the incoming frame. */
1427 		ndev->stats.rx_packets++;
1428 		pkt_len = bdp->cbd_datlen;
1429 		ndev->stats.rx_bytes += pkt_len;
1430 
1431 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1432 		skb = rxq->rx_skbuff[index];
1433 
1434 		/* The packet length includes FCS, but we don't want to
1435 		 * include that when passing upstream as it messes up
1436 		 * bridging applications.
1437 		 */
1438 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1439 						  need_swap);
1440 		if (!is_copybreak) {
1441 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1442 			if (unlikely(!skb_new)) {
1443 				ndev->stats.rx_dropped++;
1444 				goto rx_processing_done;
1445 			}
1446 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1447 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1448 					 DMA_FROM_DEVICE);
1449 		}
1450 
1451 		prefetch(skb->data - NET_IP_ALIGN);
1452 		skb_put(skb, pkt_len - 4);
1453 		data = skb->data;
1454 		if (!is_copybreak && need_swap)
1455 			swap_buffer(data, pkt_len);
1456 
1457 		/* Extract the enhanced buffer descriptor */
1458 		ebdp = NULL;
1459 		if (fep->bufdesc_ex)
1460 			ebdp = (struct bufdesc_ex *)bdp;
1461 
1462 		/* If this is a VLAN packet remove the VLAN Tag */
1463 		vlan_packet_rcvd = false;
1464 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1465 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1466 			/* Push and remove the vlan tag */
1467 			struct vlan_hdr *vlan_header =
1468 					(struct vlan_hdr *) (data + ETH_HLEN);
1469 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1470 
1471 			vlan_packet_rcvd = true;
1472 
1473 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1474 			skb_pull(skb, VLAN_HLEN);
1475 		}
1476 
1477 		skb->protocol = eth_type_trans(skb, ndev);
1478 
1479 		/* Get receive timestamp from the skb */
1480 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1481 			fec_enet_hwtstamp(fep, ebdp->ts,
1482 					  skb_hwtstamps(skb));
1483 
1484 		if (fep->bufdesc_ex &&
1485 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1486 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1487 				/* don't check it */
1488 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1489 			} else {
1490 				skb_checksum_none_assert(skb);
1491 			}
1492 		}
1493 
1494 		/* Handle received VLAN packets */
1495 		if (vlan_packet_rcvd)
1496 			__vlan_hwaccel_put_tag(skb,
1497 					       htons(ETH_P_8021Q),
1498 					       vlan_tag);
1499 
1500 		napi_gro_receive(&fep->napi, skb);
1501 
1502 		if (is_copybreak) {
1503 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1504 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1505 						   DMA_FROM_DEVICE);
1506 		} else {
1507 			rxq->rx_skbuff[index] = skb_new;
1508 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1509 		}
1510 
1511 rx_processing_done:
1512 		/* Clear the status flags for this buffer */
1513 		status &= ~BD_ENET_RX_STATS;
1514 
1515 		/* Mark the buffer empty */
1516 		status |= BD_ENET_RX_EMPTY;
1517 		bdp->cbd_sc = status;
1518 
1519 		if (fep->bufdesc_ex) {
1520 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1521 
1522 			ebdp->cbd_esc = BD_ENET_RX_INT;
1523 			ebdp->cbd_prot = 0;
1524 			ebdp->cbd_bdu = 0;
1525 		}
1526 
1527 		/* Update BD pointer to next entry */
1528 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1529 
1530 		/* Doing this here will keep the FEC running while we process
1531 		 * incoming frames.  On a heavily loaded network, we should be
1532 		 * able to keep up at the expense of system resources.
1533 		 */
1534 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1535 	}
1536 	rxq->cur_rx = bdp;
1537 	return pkt_received;
1538 }
1539 
1540 static int
1541 fec_enet_rx(struct net_device *ndev, int budget)
1542 {
1543 	int     pkt_received = 0;
1544 	u16	queue_id;
1545 	struct fec_enet_private *fep = netdev_priv(ndev);
1546 
1547 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1548 		clear_bit(queue_id, &fep->work_rx);
1549 		pkt_received += fec_enet_rx_queue(ndev,
1550 					budget - pkt_received, queue_id);
1551 	}
1552 	return pkt_received;
1553 }
1554 
1555 static bool
1556 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1557 {
1558 	if (int_events == 0)
1559 		return false;
1560 
1561 	if (int_events & FEC_ENET_RXF)
1562 		fep->work_rx |= (1 << 2);
1563 	if (int_events & FEC_ENET_RXF_1)
1564 		fep->work_rx |= (1 << 0);
1565 	if (int_events & FEC_ENET_RXF_2)
1566 		fep->work_rx |= (1 << 1);
1567 
1568 	if (int_events & FEC_ENET_TXF)
1569 		fep->work_tx |= (1 << 2);
1570 	if (int_events & FEC_ENET_TXF_1)
1571 		fep->work_tx |= (1 << 0);
1572 	if (int_events & FEC_ENET_TXF_2)
1573 		fep->work_tx |= (1 << 1);
1574 
1575 	return true;
1576 }
1577 
1578 static irqreturn_t
1579 fec_enet_interrupt(int irq, void *dev_id)
1580 {
1581 	struct net_device *ndev = dev_id;
1582 	struct fec_enet_private *fep = netdev_priv(ndev);
1583 	uint int_events;
1584 	irqreturn_t ret = IRQ_NONE;
1585 
1586 	int_events = readl(fep->hwp + FEC_IEVENT);
1587 	writel(int_events, fep->hwp + FEC_IEVENT);
1588 	fec_enet_collect_events(fep, int_events);
1589 
1590 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1591 		ret = IRQ_HANDLED;
1592 
1593 		if (napi_schedule_prep(&fep->napi)) {
1594 			/* Disable the NAPI interrupts */
1595 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1596 			__napi_schedule(&fep->napi);
1597 		}
1598 	}
1599 
1600 	if (int_events & FEC_ENET_MII) {
1601 		ret = IRQ_HANDLED;
1602 		complete(&fep->mdio_done);
1603 	}
1604 
1605 	if (fep->ptp_clock)
1606 		fec_ptp_check_pps_event(fep);
1607 
1608 	return ret;
1609 }
1610 
1611 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1612 {
1613 	struct net_device *ndev = napi->dev;
1614 	struct fec_enet_private *fep = netdev_priv(ndev);
1615 	int pkts;
1616 
1617 	pkts = fec_enet_rx(ndev, budget);
1618 
1619 	fec_enet_tx(ndev);
1620 
1621 	if (pkts < budget) {
1622 		napi_complete(napi);
1623 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624 	}
1625 	return pkts;
1626 }
1627 
1628 /* ------------------------------------------------------------------------- */
1629 static void fec_get_mac(struct net_device *ndev)
1630 {
1631 	struct fec_enet_private *fep = netdev_priv(ndev);
1632 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633 	unsigned char *iap, tmpaddr[ETH_ALEN];
1634 
1635 	/*
1636 	 * try to get mac address in following order:
1637 	 *
1638 	 * 1) module parameter via kernel command line in form
1639 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640 	 */
1641 	iap = macaddr;
1642 
1643 	/*
1644 	 * 2) from device tree data
1645 	 */
1646 	if (!is_valid_ether_addr(iap)) {
1647 		struct device_node *np = fep->pdev->dev.of_node;
1648 		if (np) {
1649 			const char *mac = of_get_mac_address(np);
1650 			if (mac)
1651 				iap = (unsigned char *) mac;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * 3) from flash or fuse (via platform data)
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 #ifdef CONFIG_M5272
1660 		if (FEC_FLASHMAC)
1661 			iap = (unsigned char *)FEC_FLASHMAC;
1662 #else
1663 		if (pdata)
1664 			iap = (unsigned char *)&pdata->mac;
1665 #endif
1666 	}
1667 
1668 	/*
1669 	 * 4) FEC mac registers set by bootloader
1670 	 */
1671 	if (!is_valid_ether_addr(iap)) {
1672 		*((__be32 *) &tmpaddr[0]) =
1673 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674 		*((__be16 *) &tmpaddr[4]) =
1675 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676 		iap = &tmpaddr[0];
1677 	}
1678 
1679 	/*
1680 	 * 5) random mac address
1681 	 */
1682 	if (!is_valid_ether_addr(iap)) {
1683 		/* Report it and use a random ethernet address instead */
1684 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685 		eth_hw_addr_random(ndev);
1686 		netdev_info(ndev, "Using random MAC address: %pM\n",
1687 			    ndev->dev_addr);
1688 		return;
1689 	}
1690 
1691 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692 
1693 	/* Adjust MAC if using macaddr */
1694 	if (iap == macaddr)
1695 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696 }
1697 
1698 /* ------------------------------------------------------------------------- */
1699 
1700 /*
1701  * Phy section
1702  */
1703 static void fec_enet_adjust_link(struct net_device *ndev)
1704 {
1705 	struct fec_enet_private *fep = netdev_priv(ndev);
1706 	struct phy_device *phy_dev = fep->phy_dev;
1707 	int status_change = 0;
1708 
1709 	/* Prevent a state halted on mii error */
1710 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711 		phy_dev->state = PHY_RESUMING;
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * If the netdev is down, or is going down, we're not interested
1717 	 * in link state events, so just mark our idea of the link as down
1718 	 * and ignore the event.
1719 	 */
1720 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721 		fep->link = 0;
1722 	} else if (phy_dev->link) {
1723 		if (!fep->link) {
1724 			fep->link = phy_dev->link;
1725 			status_change = 1;
1726 		}
1727 
1728 		if (fep->full_duplex != phy_dev->duplex) {
1729 			fep->full_duplex = phy_dev->duplex;
1730 			status_change = 1;
1731 		}
1732 
1733 		if (phy_dev->speed != fep->speed) {
1734 			fep->speed = phy_dev->speed;
1735 			status_change = 1;
1736 		}
1737 
1738 		/* if any of the above changed restart the FEC */
1739 		if (status_change) {
1740 			napi_disable(&fep->napi);
1741 			netif_tx_lock_bh(ndev);
1742 			fec_restart(ndev);
1743 			netif_wake_queue(ndev);
1744 			netif_tx_unlock_bh(ndev);
1745 			napi_enable(&fep->napi);
1746 		}
1747 	} else {
1748 		if (fep->link) {
1749 			napi_disable(&fep->napi);
1750 			netif_tx_lock_bh(ndev);
1751 			fec_stop(ndev);
1752 			netif_tx_unlock_bh(ndev);
1753 			napi_enable(&fep->napi);
1754 			fep->link = phy_dev->link;
1755 			status_change = 1;
1756 		}
1757 	}
1758 
1759 	if (status_change)
1760 		phy_print_status(phy_dev);
1761 }
1762 
1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764 {
1765 	struct fec_enet_private *fep = bus->priv;
1766 	unsigned long time_left;
1767 
1768 	fep->mii_timeout = 0;
1769 	init_completion(&fep->mdio_done);
1770 
1771 	/* start a read op */
1772 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1773 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1774 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1775 
1776 	/* wait for end of transfer */
1777 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1778 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1779 	if (time_left == 0) {
1780 		fep->mii_timeout = 1;
1781 		netdev_err(fep->netdev, "MDIO read timeout\n");
1782 		return -ETIMEDOUT;
1783 	}
1784 
1785 	/* return value */
1786 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1787 }
1788 
1789 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1790 			   u16 value)
1791 {
1792 	struct fec_enet_private *fep = bus->priv;
1793 	unsigned long time_left;
1794 
1795 	fep->mii_timeout = 0;
1796 	init_completion(&fep->mdio_done);
1797 
1798 	/* start a write op */
1799 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802 		fep->hwp + FEC_MII_DATA);
1803 
1804 	/* wait for end of transfer */
1805 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1806 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1807 	if (time_left == 0) {
1808 		fep->mii_timeout = 1;
1809 		netdev_err(fep->netdev, "MDIO write timeout\n");
1810 		return -ETIMEDOUT;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1817 {
1818 	struct fec_enet_private *fep = netdev_priv(ndev);
1819 	int ret;
1820 
1821 	if (enable) {
1822 		ret = clk_prepare_enable(fep->clk_ahb);
1823 		if (ret)
1824 			return ret;
1825 		ret = clk_prepare_enable(fep->clk_ipg);
1826 		if (ret)
1827 			goto failed_clk_ipg;
1828 		if (fep->clk_enet_out) {
1829 			ret = clk_prepare_enable(fep->clk_enet_out);
1830 			if (ret)
1831 				goto failed_clk_enet_out;
1832 		}
1833 		if (fep->clk_ptp) {
1834 			mutex_lock(&fep->ptp_clk_mutex);
1835 			ret = clk_prepare_enable(fep->clk_ptp);
1836 			if (ret) {
1837 				mutex_unlock(&fep->ptp_clk_mutex);
1838 				goto failed_clk_ptp;
1839 			} else {
1840 				fep->ptp_clk_on = true;
1841 			}
1842 			mutex_unlock(&fep->ptp_clk_mutex);
1843 		}
1844 		if (fep->clk_ref) {
1845 			ret = clk_prepare_enable(fep->clk_ref);
1846 			if (ret)
1847 				goto failed_clk_ref;
1848 		}
1849 	} else {
1850 		clk_disable_unprepare(fep->clk_ahb);
1851 		clk_disable_unprepare(fep->clk_ipg);
1852 		if (fep->clk_enet_out)
1853 			clk_disable_unprepare(fep->clk_enet_out);
1854 		if (fep->clk_ptp) {
1855 			mutex_lock(&fep->ptp_clk_mutex);
1856 			clk_disable_unprepare(fep->clk_ptp);
1857 			fep->ptp_clk_on = false;
1858 			mutex_unlock(&fep->ptp_clk_mutex);
1859 		}
1860 		if (fep->clk_ref)
1861 			clk_disable_unprepare(fep->clk_ref);
1862 	}
1863 
1864 	return 0;
1865 
1866 failed_clk_ref:
1867 	if (fep->clk_ref)
1868 		clk_disable_unprepare(fep->clk_ref);
1869 failed_clk_ptp:
1870 	if (fep->clk_enet_out)
1871 		clk_disable_unprepare(fep->clk_enet_out);
1872 failed_clk_enet_out:
1873 		clk_disable_unprepare(fep->clk_ipg);
1874 failed_clk_ipg:
1875 		clk_disable_unprepare(fep->clk_ahb);
1876 
1877 	return ret;
1878 }
1879 
1880 static int fec_enet_mii_probe(struct net_device *ndev)
1881 {
1882 	struct fec_enet_private *fep = netdev_priv(ndev);
1883 	struct phy_device *phy_dev = NULL;
1884 	char mdio_bus_id[MII_BUS_ID_SIZE];
1885 	char phy_name[MII_BUS_ID_SIZE + 3];
1886 	int phy_id;
1887 	int dev_id = fep->dev_id;
1888 
1889 	fep->phy_dev = NULL;
1890 
1891 	if (fep->phy_node) {
1892 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1893 					 &fec_enet_adjust_link, 0,
1894 					 fep->phy_interface);
1895 		if (!phy_dev)
1896 			return -ENODEV;
1897 	} else {
1898 		/* check for attached phy */
1899 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1900 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1901 				continue;
1902 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1903 				continue;
1904 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1905 				continue;
1906 			if (dev_id--)
1907 				continue;
1908 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909 			break;
1910 		}
1911 
1912 		if (phy_id >= PHY_MAX_ADDR) {
1913 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915 			phy_id = 0;
1916 		}
1917 
1918 		snprintf(phy_name, sizeof(phy_name),
1919 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1920 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921 				      fep->phy_interface);
1922 	}
1923 
1924 	if (IS_ERR(phy_dev)) {
1925 		netdev_err(ndev, "could not attach to PHY\n");
1926 		return PTR_ERR(phy_dev);
1927 	}
1928 
1929 	/* mask with MAC supported features */
1930 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1931 		phy_dev->supported &= PHY_GBIT_FEATURES;
1932 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933 #if !defined(CONFIG_M5272)
1934 		phy_dev->supported |= SUPPORTED_Pause;
1935 #endif
1936 	}
1937 	else
1938 		phy_dev->supported &= PHY_BASIC_FEATURES;
1939 
1940 	phy_dev->advertising = phy_dev->supported;
1941 
1942 	fep->phy_dev = phy_dev;
1943 	fep->link = 0;
1944 	fep->full_duplex = 0;
1945 
1946 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1947 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1948 		    fep->phy_dev->irq);
1949 
1950 	return 0;
1951 }
1952 
1953 static int fec_enet_mii_init(struct platform_device *pdev)
1954 {
1955 	static struct mii_bus *fec0_mii_bus;
1956 	struct net_device *ndev = platform_get_drvdata(pdev);
1957 	struct fec_enet_private *fep = netdev_priv(ndev);
1958 	struct device_node *node;
1959 	int err = -ENXIO, i;
1960 	u32 mii_speed, holdtime;
1961 
1962 	/*
1963 	 * The i.MX28 dual fec interfaces are not equal.
1964 	 * Here are the differences:
1965 	 *
1966 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1967 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1968 	 *  - external phys can only be configured by fec0
1969 	 *
1970 	 * That is to say fec1 can not work independently. It only works
1971 	 * when fec0 is working. The reason behind this design is that the
1972 	 * second interface is added primarily for Switch mode.
1973 	 *
1974 	 * Because of the last point above, both phys are attached on fec0
1975 	 * mdio interface in board design, and need to be configured by
1976 	 * fec0 mii_bus.
1977 	 */
1978 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1979 		/* fec1 uses fec0 mii_bus */
1980 		if (mii_cnt && fec0_mii_bus) {
1981 			fep->mii_bus = fec0_mii_bus;
1982 			mii_cnt++;
1983 			return 0;
1984 		}
1985 		return -ENOENT;
1986 	}
1987 
1988 	fep->mii_timeout = 0;
1989 
1990 	/*
1991 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1992 	 *
1993 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1994 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1995 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1996 	 * document.
1997 	 */
1998 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1999 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2000 		mii_speed--;
2001 	if (mii_speed > 63) {
2002 		dev_err(&pdev->dev,
2003 			"fec clock (%lu) to fast to get right mii speed\n",
2004 			clk_get_rate(fep->clk_ipg));
2005 		err = -EINVAL;
2006 		goto err_out;
2007 	}
2008 
2009 	/*
2010 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2011 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2012 	 * versions are RAZ there, so just ignore the difference and write the
2013 	 * register always.
2014 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2015 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2016 	 * output.
2017 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2018 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2019 	 * holdtime cannot result in a value greater than 3.
2020 	 */
2021 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2022 
2023 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2024 
2025 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2026 
2027 	fep->mii_bus = mdiobus_alloc();
2028 	if (fep->mii_bus == NULL) {
2029 		err = -ENOMEM;
2030 		goto err_out;
2031 	}
2032 
2033 	fep->mii_bus->name = "fec_enet_mii_bus";
2034 	fep->mii_bus->read = fec_enet_mdio_read;
2035 	fep->mii_bus->write = fec_enet_mdio_write;
2036 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2037 		pdev->name, fep->dev_id + 1);
2038 	fep->mii_bus->priv = fep;
2039 	fep->mii_bus->parent = &pdev->dev;
2040 
2041 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2042 	if (!fep->mii_bus->irq) {
2043 		err = -ENOMEM;
2044 		goto err_out_free_mdiobus;
2045 	}
2046 
2047 	for (i = 0; i < PHY_MAX_ADDR; i++)
2048 		fep->mii_bus->irq[i] = PHY_POLL;
2049 
2050 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2051 	if (node) {
2052 		err = of_mdiobus_register(fep->mii_bus, node);
2053 		of_node_put(node);
2054 	} else {
2055 		err = mdiobus_register(fep->mii_bus);
2056 	}
2057 
2058 	if (err)
2059 		goto err_out_free_mdio_irq;
2060 
2061 	mii_cnt++;
2062 
2063 	/* save fec0 mii_bus */
2064 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2065 		fec0_mii_bus = fep->mii_bus;
2066 
2067 	return 0;
2068 
2069 err_out_free_mdio_irq:
2070 	kfree(fep->mii_bus->irq);
2071 err_out_free_mdiobus:
2072 	mdiobus_free(fep->mii_bus);
2073 err_out:
2074 	return err;
2075 }
2076 
2077 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2078 {
2079 	if (--mii_cnt == 0) {
2080 		mdiobus_unregister(fep->mii_bus);
2081 		kfree(fep->mii_bus->irq);
2082 		mdiobus_free(fep->mii_bus);
2083 	}
2084 }
2085 
2086 static int fec_enet_get_settings(struct net_device *ndev,
2087 				  struct ethtool_cmd *cmd)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 	struct phy_device *phydev = fep->phy_dev;
2091 
2092 	if (!phydev)
2093 		return -ENODEV;
2094 
2095 	return phy_ethtool_gset(phydev, cmd);
2096 }
2097 
2098 static int fec_enet_set_settings(struct net_device *ndev,
2099 				 struct ethtool_cmd *cmd)
2100 {
2101 	struct fec_enet_private *fep = netdev_priv(ndev);
2102 	struct phy_device *phydev = fep->phy_dev;
2103 
2104 	if (!phydev)
2105 		return -ENODEV;
2106 
2107 	return phy_ethtool_sset(phydev, cmd);
2108 }
2109 
2110 static void fec_enet_get_drvinfo(struct net_device *ndev,
2111 				 struct ethtool_drvinfo *info)
2112 {
2113 	struct fec_enet_private *fep = netdev_priv(ndev);
2114 
2115 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2116 		sizeof(info->driver));
2117 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2118 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2119 }
2120 
2121 static int fec_enet_get_regs_len(struct net_device *ndev)
2122 {
2123 	struct fec_enet_private *fep = netdev_priv(ndev);
2124 	struct resource *r;
2125 	int s = 0;
2126 
2127 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2128 	if (r)
2129 		s = resource_size(r);
2130 
2131 	return s;
2132 }
2133 
2134 /* List of registers that can be safety be read to dump them with ethtool */
2135 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2136 	defined(CONFIG_M520x) || defined(CONFIG_M532x) ||		\
2137 	defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2138 static u32 fec_enet_register_offset[] = {
2139 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2140 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2141 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2142 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2143 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2144 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2145 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2146 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2147 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2148 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2149 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2150 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2151 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2152 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2153 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2154 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2155 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2156 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2157 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2158 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2159 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2160 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2161 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2162 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2163 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2164 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2165 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2166 };
2167 #else
2168 static u32 fec_enet_register_offset[] = {
2169 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2170 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2171 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2172 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2173 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2174 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2175 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2176 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2177 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2178 };
2179 #endif
2180 
2181 static void fec_enet_get_regs(struct net_device *ndev,
2182 			      struct ethtool_regs *regs, void *regbuf)
2183 {
2184 	struct fec_enet_private *fep = netdev_priv(ndev);
2185 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2186 	u32 *buf = (u32 *)regbuf;
2187 	u32 i, off;
2188 
2189 	memset(buf, 0, regs->len);
2190 
2191 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2192 		off = fec_enet_register_offset[i] / 4;
2193 		buf[off] = readl(&theregs[off]);
2194 	}
2195 }
2196 
2197 static int fec_enet_get_ts_info(struct net_device *ndev,
2198 				struct ethtool_ts_info *info)
2199 {
2200 	struct fec_enet_private *fep = netdev_priv(ndev);
2201 
2202 	if (fep->bufdesc_ex) {
2203 
2204 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2205 					SOF_TIMESTAMPING_RX_SOFTWARE |
2206 					SOF_TIMESTAMPING_SOFTWARE |
2207 					SOF_TIMESTAMPING_TX_HARDWARE |
2208 					SOF_TIMESTAMPING_RX_HARDWARE |
2209 					SOF_TIMESTAMPING_RAW_HARDWARE;
2210 		if (fep->ptp_clock)
2211 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2212 		else
2213 			info->phc_index = -1;
2214 
2215 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2216 				 (1 << HWTSTAMP_TX_ON);
2217 
2218 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2219 				   (1 << HWTSTAMP_FILTER_ALL);
2220 		return 0;
2221 	} else {
2222 		return ethtool_op_get_ts_info(ndev, info);
2223 	}
2224 }
2225 
2226 #if !defined(CONFIG_M5272)
2227 
2228 static void fec_enet_get_pauseparam(struct net_device *ndev,
2229 				    struct ethtool_pauseparam *pause)
2230 {
2231 	struct fec_enet_private *fep = netdev_priv(ndev);
2232 
2233 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2234 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2235 	pause->rx_pause = pause->tx_pause;
2236 }
2237 
2238 static int fec_enet_set_pauseparam(struct net_device *ndev,
2239 				   struct ethtool_pauseparam *pause)
2240 {
2241 	struct fec_enet_private *fep = netdev_priv(ndev);
2242 
2243 	if (!fep->phy_dev)
2244 		return -ENODEV;
2245 
2246 	if (pause->tx_pause != pause->rx_pause) {
2247 		netdev_info(ndev,
2248 			"hardware only support enable/disable both tx and rx");
2249 		return -EINVAL;
2250 	}
2251 
2252 	fep->pause_flag = 0;
2253 
2254 	/* tx pause must be same as rx pause */
2255 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2256 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2257 
2258 	if (pause->rx_pause || pause->autoneg) {
2259 		fep->phy_dev->supported |= ADVERTISED_Pause;
2260 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2261 	} else {
2262 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2263 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2264 	}
2265 
2266 	if (pause->autoneg) {
2267 		if (netif_running(ndev))
2268 			fec_stop(ndev);
2269 		phy_start_aneg(fep->phy_dev);
2270 	}
2271 	if (netif_running(ndev)) {
2272 		napi_disable(&fep->napi);
2273 		netif_tx_lock_bh(ndev);
2274 		fec_restart(ndev);
2275 		netif_wake_queue(ndev);
2276 		netif_tx_unlock_bh(ndev);
2277 		napi_enable(&fep->napi);
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static const struct fec_stat {
2284 	char name[ETH_GSTRING_LEN];
2285 	u16 offset;
2286 } fec_stats[] = {
2287 	/* RMON TX */
2288 	{ "tx_dropped", RMON_T_DROP },
2289 	{ "tx_packets", RMON_T_PACKETS },
2290 	{ "tx_broadcast", RMON_T_BC_PKT },
2291 	{ "tx_multicast", RMON_T_MC_PKT },
2292 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2293 	{ "tx_undersize", RMON_T_UNDERSIZE },
2294 	{ "tx_oversize", RMON_T_OVERSIZE },
2295 	{ "tx_fragment", RMON_T_FRAG },
2296 	{ "tx_jabber", RMON_T_JAB },
2297 	{ "tx_collision", RMON_T_COL },
2298 	{ "tx_64byte", RMON_T_P64 },
2299 	{ "tx_65to127byte", RMON_T_P65TO127 },
2300 	{ "tx_128to255byte", RMON_T_P128TO255 },
2301 	{ "tx_256to511byte", RMON_T_P256TO511 },
2302 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2303 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2304 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2305 	{ "tx_octets", RMON_T_OCTETS },
2306 
2307 	/* IEEE TX */
2308 	{ "IEEE_tx_drop", IEEE_T_DROP },
2309 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2310 	{ "IEEE_tx_1col", IEEE_T_1COL },
2311 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2312 	{ "IEEE_tx_def", IEEE_T_DEF },
2313 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2314 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2315 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2316 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2317 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2318 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2319 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2320 
2321 	/* RMON RX */
2322 	{ "rx_packets", RMON_R_PACKETS },
2323 	{ "rx_broadcast", RMON_R_BC_PKT },
2324 	{ "rx_multicast", RMON_R_MC_PKT },
2325 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2326 	{ "rx_undersize", RMON_R_UNDERSIZE },
2327 	{ "rx_oversize", RMON_R_OVERSIZE },
2328 	{ "rx_fragment", RMON_R_FRAG },
2329 	{ "rx_jabber", RMON_R_JAB },
2330 	{ "rx_64byte", RMON_R_P64 },
2331 	{ "rx_65to127byte", RMON_R_P65TO127 },
2332 	{ "rx_128to255byte", RMON_R_P128TO255 },
2333 	{ "rx_256to511byte", RMON_R_P256TO511 },
2334 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2335 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2336 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2337 	{ "rx_octets", RMON_R_OCTETS },
2338 
2339 	/* IEEE RX */
2340 	{ "IEEE_rx_drop", IEEE_R_DROP },
2341 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2342 	{ "IEEE_rx_crc", IEEE_R_CRC },
2343 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2344 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2345 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2346 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2347 };
2348 
2349 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2350 	struct ethtool_stats *stats, u64 *data)
2351 {
2352 	struct fec_enet_private *fep = netdev_priv(dev);
2353 	int i;
2354 
2355 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2356 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2357 }
2358 
2359 static void fec_enet_get_strings(struct net_device *netdev,
2360 	u32 stringset, u8 *data)
2361 {
2362 	int i;
2363 	switch (stringset) {
2364 	case ETH_SS_STATS:
2365 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2366 			memcpy(data + i * ETH_GSTRING_LEN,
2367 				fec_stats[i].name, ETH_GSTRING_LEN);
2368 		break;
2369 	}
2370 }
2371 
2372 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2373 {
2374 	switch (sset) {
2375 	case ETH_SS_STATS:
2376 		return ARRAY_SIZE(fec_stats);
2377 	default:
2378 		return -EOPNOTSUPP;
2379 	}
2380 }
2381 #endif /* !defined(CONFIG_M5272) */
2382 
2383 static int fec_enet_nway_reset(struct net_device *dev)
2384 {
2385 	struct fec_enet_private *fep = netdev_priv(dev);
2386 	struct phy_device *phydev = fep->phy_dev;
2387 
2388 	if (!phydev)
2389 		return -ENODEV;
2390 
2391 	return genphy_restart_aneg(phydev);
2392 }
2393 
2394 /* ITR clock source is enet system clock (clk_ahb).
2395  * TCTT unit is cycle_ns * 64 cycle
2396  * So, the ICTT value = X us / (cycle_ns * 64)
2397  */
2398 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2399 {
2400 	struct fec_enet_private *fep = netdev_priv(ndev);
2401 
2402 	return us * (fep->itr_clk_rate / 64000) / 1000;
2403 }
2404 
2405 /* Set threshold for interrupt coalescing */
2406 static void fec_enet_itr_coal_set(struct net_device *ndev)
2407 {
2408 	struct fec_enet_private *fep = netdev_priv(ndev);
2409 	int rx_itr, tx_itr;
2410 
2411 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2412 		return;
2413 
2414 	/* Must be greater than zero to avoid unpredictable behavior */
2415 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2416 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2417 		return;
2418 
2419 	/* Select enet system clock as Interrupt Coalescing
2420 	 * timer Clock Source
2421 	 */
2422 	rx_itr = FEC_ITR_CLK_SEL;
2423 	tx_itr = FEC_ITR_CLK_SEL;
2424 
2425 	/* set ICFT and ICTT */
2426 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2427 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2428 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2429 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2430 
2431 	rx_itr |= FEC_ITR_EN;
2432 	tx_itr |= FEC_ITR_EN;
2433 
2434 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2435 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2436 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2437 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2438 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2439 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2440 }
2441 
2442 static int
2443 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2444 {
2445 	struct fec_enet_private *fep = netdev_priv(ndev);
2446 
2447 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2448 		return -EOPNOTSUPP;
2449 
2450 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2451 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2452 
2453 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2454 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2455 
2456 	return 0;
2457 }
2458 
2459 static int
2460 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2461 {
2462 	struct fec_enet_private *fep = netdev_priv(ndev);
2463 	unsigned int cycle;
2464 
2465 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2466 		return -EOPNOTSUPP;
2467 
2468 	if (ec->rx_max_coalesced_frames > 255) {
2469 		pr_err("Rx coalesced frames exceed hardware limiation");
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (ec->tx_max_coalesced_frames > 255) {
2474 		pr_err("Tx coalesced frame exceed hardware limiation");
2475 		return -EINVAL;
2476 	}
2477 
2478 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2479 	if (cycle > 0xFFFF) {
2480 		pr_err("Rx coalesed usec exceeed hardware limiation");
2481 		return -EINVAL;
2482 	}
2483 
2484 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2485 	if (cycle > 0xFFFF) {
2486 		pr_err("Rx coalesed usec exceeed hardware limiation");
2487 		return -EINVAL;
2488 	}
2489 
2490 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2491 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2492 
2493 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2494 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2495 
2496 	fec_enet_itr_coal_set(ndev);
2497 
2498 	return 0;
2499 }
2500 
2501 static void fec_enet_itr_coal_init(struct net_device *ndev)
2502 {
2503 	struct ethtool_coalesce ec;
2504 
2505 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2506 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2507 
2508 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2509 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510 
2511 	fec_enet_set_coalesce(ndev, &ec);
2512 }
2513 
2514 static int fec_enet_get_tunable(struct net_device *netdev,
2515 				const struct ethtool_tunable *tuna,
2516 				void *data)
2517 {
2518 	struct fec_enet_private *fep = netdev_priv(netdev);
2519 	int ret = 0;
2520 
2521 	switch (tuna->id) {
2522 	case ETHTOOL_RX_COPYBREAK:
2523 		*(u32 *)data = fep->rx_copybreak;
2524 		break;
2525 	default:
2526 		ret = -EINVAL;
2527 		break;
2528 	}
2529 
2530 	return ret;
2531 }
2532 
2533 static int fec_enet_set_tunable(struct net_device *netdev,
2534 				const struct ethtool_tunable *tuna,
2535 				const void *data)
2536 {
2537 	struct fec_enet_private *fep = netdev_priv(netdev);
2538 	int ret = 0;
2539 
2540 	switch (tuna->id) {
2541 	case ETHTOOL_RX_COPYBREAK:
2542 		fep->rx_copybreak = *(u32 *)data;
2543 		break;
2544 	default:
2545 		ret = -EINVAL;
2546 		break;
2547 	}
2548 
2549 	return ret;
2550 }
2551 
2552 static void
2553 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2554 {
2555 	struct fec_enet_private *fep = netdev_priv(ndev);
2556 
2557 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2558 		wol->supported = WAKE_MAGIC;
2559 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2560 	} else {
2561 		wol->supported = wol->wolopts = 0;
2562 	}
2563 }
2564 
2565 static int
2566 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2567 {
2568 	struct fec_enet_private *fep = netdev_priv(ndev);
2569 
2570 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2571 		return -EINVAL;
2572 
2573 	if (wol->wolopts & ~WAKE_MAGIC)
2574 		return -EINVAL;
2575 
2576 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2577 	if (device_may_wakeup(&ndev->dev)) {
2578 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2579 		if (fep->irq[0] > 0)
2580 			enable_irq_wake(fep->irq[0]);
2581 	} else {
2582 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2583 		if (fep->irq[0] > 0)
2584 			disable_irq_wake(fep->irq[0]);
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 static const struct ethtool_ops fec_enet_ethtool_ops = {
2591 	.get_settings		= fec_enet_get_settings,
2592 	.set_settings		= fec_enet_set_settings,
2593 	.get_drvinfo		= fec_enet_get_drvinfo,
2594 	.get_regs_len		= fec_enet_get_regs_len,
2595 	.get_regs		= fec_enet_get_regs,
2596 	.nway_reset		= fec_enet_nway_reset,
2597 	.get_link		= ethtool_op_get_link,
2598 	.get_coalesce		= fec_enet_get_coalesce,
2599 	.set_coalesce		= fec_enet_set_coalesce,
2600 #ifndef CONFIG_M5272
2601 	.get_pauseparam		= fec_enet_get_pauseparam,
2602 	.set_pauseparam		= fec_enet_set_pauseparam,
2603 	.get_strings		= fec_enet_get_strings,
2604 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2605 	.get_sset_count		= fec_enet_get_sset_count,
2606 #endif
2607 	.get_ts_info		= fec_enet_get_ts_info,
2608 	.get_tunable		= fec_enet_get_tunable,
2609 	.set_tunable		= fec_enet_set_tunable,
2610 	.get_wol		= fec_enet_get_wol,
2611 	.set_wol		= fec_enet_set_wol,
2612 };
2613 
2614 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2615 {
2616 	struct fec_enet_private *fep = netdev_priv(ndev);
2617 	struct phy_device *phydev = fep->phy_dev;
2618 
2619 	if (!netif_running(ndev))
2620 		return -EINVAL;
2621 
2622 	if (!phydev)
2623 		return -ENODEV;
2624 
2625 	if (fep->bufdesc_ex) {
2626 		if (cmd == SIOCSHWTSTAMP)
2627 			return fec_ptp_set(ndev, rq);
2628 		if (cmd == SIOCGHWTSTAMP)
2629 			return fec_ptp_get(ndev, rq);
2630 	}
2631 
2632 	return phy_mii_ioctl(phydev, rq, cmd);
2633 }
2634 
2635 static void fec_enet_free_buffers(struct net_device *ndev)
2636 {
2637 	struct fec_enet_private *fep = netdev_priv(ndev);
2638 	unsigned int i;
2639 	struct sk_buff *skb;
2640 	struct bufdesc	*bdp;
2641 	struct fec_enet_priv_tx_q *txq;
2642 	struct fec_enet_priv_rx_q *rxq;
2643 	unsigned int q;
2644 
2645 	for (q = 0; q < fep->num_rx_queues; q++) {
2646 		rxq = fep->rx_queue[q];
2647 		bdp = rxq->rx_bd_base;
2648 		for (i = 0; i < rxq->rx_ring_size; i++) {
2649 			skb = rxq->rx_skbuff[i];
2650 			rxq->rx_skbuff[i] = NULL;
2651 			if (skb) {
2652 				dma_unmap_single(&fep->pdev->dev,
2653 						 bdp->cbd_bufaddr,
2654 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2655 						 DMA_FROM_DEVICE);
2656 				dev_kfree_skb(skb);
2657 			}
2658 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2659 		}
2660 	}
2661 
2662 	for (q = 0; q < fep->num_tx_queues; q++) {
2663 		txq = fep->tx_queue[q];
2664 		bdp = txq->tx_bd_base;
2665 		for (i = 0; i < txq->tx_ring_size; i++) {
2666 			kfree(txq->tx_bounce[i]);
2667 			txq->tx_bounce[i] = NULL;
2668 			skb = txq->tx_skbuff[i];
2669 			txq->tx_skbuff[i] = NULL;
2670 			dev_kfree_skb(skb);
2671 		}
2672 	}
2673 }
2674 
2675 static void fec_enet_free_queue(struct net_device *ndev)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 	int i;
2679 	struct fec_enet_priv_tx_q *txq;
2680 
2681 	for (i = 0; i < fep->num_tx_queues; i++)
2682 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2683 			txq = fep->tx_queue[i];
2684 			dma_free_coherent(NULL,
2685 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2686 					  txq->tso_hdrs,
2687 					  txq->tso_hdrs_dma);
2688 		}
2689 
2690 	for (i = 0; i < fep->num_rx_queues; i++)
2691 		kfree(fep->rx_queue[i]);
2692 	for (i = 0; i < fep->num_tx_queues; i++)
2693 		kfree(fep->tx_queue[i]);
2694 }
2695 
2696 static int fec_enet_alloc_queue(struct net_device *ndev)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 	int i;
2700 	int ret = 0;
2701 	struct fec_enet_priv_tx_q *txq;
2702 
2703 	for (i = 0; i < fep->num_tx_queues; i++) {
2704 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2705 		if (!txq) {
2706 			ret = -ENOMEM;
2707 			goto alloc_failed;
2708 		}
2709 
2710 		fep->tx_queue[i] = txq;
2711 		txq->tx_ring_size = TX_RING_SIZE;
2712 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2713 
2714 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2715 		txq->tx_wake_threshold =
2716 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2717 
2718 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2719 					txq->tx_ring_size * TSO_HEADER_SIZE,
2720 					&txq->tso_hdrs_dma,
2721 					GFP_KERNEL);
2722 		if (!txq->tso_hdrs) {
2723 			ret = -ENOMEM;
2724 			goto alloc_failed;
2725 		}
2726 	}
2727 
2728 	for (i = 0; i < fep->num_rx_queues; i++) {
2729 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2730 					   GFP_KERNEL);
2731 		if (!fep->rx_queue[i]) {
2732 			ret = -ENOMEM;
2733 			goto alloc_failed;
2734 		}
2735 
2736 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2737 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2738 	}
2739 	return ret;
2740 
2741 alloc_failed:
2742 	fec_enet_free_queue(ndev);
2743 	return ret;
2744 }
2745 
2746 static int
2747 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2748 {
2749 	struct fec_enet_private *fep = netdev_priv(ndev);
2750 	unsigned int i;
2751 	struct sk_buff *skb;
2752 	struct bufdesc	*bdp;
2753 	struct fec_enet_priv_rx_q *rxq;
2754 
2755 	rxq = fep->rx_queue[queue];
2756 	bdp = rxq->rx_bd_base;
2757 	for (i = 0; i < rxq->rx_ring_size; i++) {
2758 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2759 		if (!skb)
2760 			goto err_alloc;
2761 
2762 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2763 			dev_kfree_skb(skb);
2764 			goto err_alloc;
2765 		}
2766 
2767 		rxq->rx_skbuff[i] = skb;
2768 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2769 
2770 		if (fep->bufdesc_ex) {
2771 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2772 			ebdp->cbd_esc = BD_ENET_RX_INT;
2773 		}
2774 
2775 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2776 	}
2777 
2778 	/* Set the last buffer to wrap. */
2779 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2780 	bdp->cbd_sc |= BD_SC_WRAP;
2781 	return 0;
2782 
2783  err_alloc:
2784 	fec_enet_free_buffers(ndev);
2785 	return -ENOMEM;
2786 }
2787 
2788 static int
2789 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2790 {
2791 	struct fec_enet_private *fep = netdev_priv(ndev);
2792 	unsigned int i;
2793 	struct bufdesc  *bdp;
2794 	struct fec_enet_priv_tx_q *txq;
2795 
2796 	txq = fep->tx_queue[queue];
2797 	bdp = txq->tx_bd_base;
2798 	for (i = 0; i < txq->tx_ring_size; i++) {
2799 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2800 		if (!txq->tx_bounce[i])
2801 			goto err_alloc;
2802 
2803 		bdp->cbd_sc = 0;
2804 		bdp->cbd_bufaddr = 0;
2805 
2806 		if (fep->bufdesc_ex) {
2807 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2808 			ebdp->cbd_esc = BD_ENET_TX_INT;
2809 		}
2810 
2811 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2812 	}
2813 
2814 	/* Set the last buffer to wrap. */
2815 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2816 	bdp->cbd_sc |= BD_SC_WRAP;
2817 
2818 	return 0;
2819 
2820  err_alloc:
2821 	fec_enet_free_buffers(ndev);
2822 	return -ENOMEM;
2823 }
2824 
2825 static int fec_enet_alloc_buffers(struct net_device *ndev)
2826 {
2827 	struct fec_enet_private *fep = netdev_priv(ndev);
2828 	unsigned int i;
2829 
2830 	for (i = 0; i < fep->num_rx_queues; i++)
2831 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2832 			return -ENOMEM;
2833 
2834 	for (i = 0; i < fep->num_tx_queues; i++)
2835 		if (fec_enet_alloc_txq_buffers(ndev, i))
2836 			return -ENOMEM;
2837 	return 0;
2838 }
2839 
2840 static int
2841 fec_enet_open(struct net_device *ndev)
2842 {
2843 	struct fec_enet_private *fep = netdev_priv(ndev);
2844 	int ret;
2845 
2846 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2847 	ret = fec_enet_clk_enable(ndev, true);
2848 	if (ret)
2849 		return ret;
2850 
2851 	/* I should reset the ring buffers here, but I don't yet know
2852 	 * a simple way to do that.
2853 	 */
2854 
2855 	ret = fec_enet_alloc_buffers(ndev);
2856 	if (ret)
2857 		goto err_enet_alloc;
2858 
2859 	/* Probe and connect to PHY when open the interface */
2860 	ret = fec_enet_mii_probe(ndev);
2861 	if (ret)
2862 		goto err_enet_mii_probe;
2863 
2864 	fec_restart(ndev);
2865 	napi_enable(&fep->napi);
2866 	phy_start(fep->phy_dev);
2867 	netif_tx_start_all_queues(ndev);
2868 
2869 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2870 				 FEC_WOL_FLAG_ENABLE);
2871 
2872 	return 0;
2873 
2874 err_enet_mii_probe:
2875 	fec_enet_free_buffers(ndev);
2876 err_enet_alloc:
2877 	fec_enet_clk_enable(ndev, false);
2878 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2879 	return ret;
2880 }
2881 
2882 static int
2883 fec_enet_close(struct net_device *ndev)
2884 {
2885 	struct fec_enet_private *fep = netdev_priv(ndev);
2886 
2887 	phy_stop(fep->phy_dev);
2888 
2889 	if (netif_device_present(ndev)) {
2890 		napi_disable(&fep->napi);
2891 		netif_tx_disable(ndev);
2892 		fec_stop(ndev);
2893 	}
2894 
2895 	phy_disconnect(fep->phy_dev);
2896 	fep->phy_dev = NULL;
2897 
2898 	fec_enet_clk_enable(ndev, false);
2899 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2900 	fec_enet_free_buffers(ndev);
2901 
2902 	return 0;
2903 }
2904 
2905 /* Set or clear the multicast filter for this adaptor.
2906  * Skeleton taken from sunlance driver.
2907  * The CPM Ethernet implementation allows Multicast as well as individual
2908  * MAC address filtering.  Some of the drivers check to make sure it is
2909  * a group multicast address, and discard those that are not.  I guess I
2910  * will do the same for now, but just remove the test if you want
2911  * individual filtering as well (do the upper net layers want or support
2912  * this kind of feature?).
2913  */
2914 
2915 #define HASH_BITS	6		/* #bits in hash */
2916 #define CRC32_POLY	0xEDB88320
2917 
2918 static void set_multicast_list(struct net_device *ndev)
2919 {
2920 	struct fec_enet_private *fep = netdev_priv(ndev);
2921 	struct netdev_hw_addr *ha;
2922 	unsigned int i, bit, data, crc, tmp;
2923 	unsigned char hash;
2924 
2925 	if (ndev->flags & IFF_PROMISC) {
2926 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2927 		tmp |= 0x8;
2928 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2929 		return;
2930 	}
2931 
2932 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2933 	tmp &= ~0x8;
2934 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2935 
2936 	if (ndev->flags & IFF_ALLMULTI) {
2937 		/* Catch all multicast addresses, so set the
2938 		 * filter to all 1's
2939 		 */
2940 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2941 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942 
2943 		return;
2944 	}
2945 
2946 	/* Clear filter and add the addresses in hash register
2947 	 */
2948 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2949 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2950 
2951 	netdev_for_each_mc_addr(ha, ndev) {
2952 		/* calculate crc32 value of mac address */
2953 		crc = 0xffffffff;
2954 
2955 		for (i = 0; i < ndev->addr_len; i++) {
2956 			data = ha->addr[i];
2957 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2958 				crc = (crc >> 1) ^
2959 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2960 			}
2961 		}
2962 
2963 		/* only upper 6 bits (HASH_BITS) are used
2964 		 * which point to specific bit in he hash registers
2965 		 */
2966 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2967 
2968 		if (hash > 31) {
2969 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2970 			tmp |= 1 << (hash - 32);
2971 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2972 		} else {
2973 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2974 			tmp |= 1 << hash;
2975 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2976 		}
2977 	}
2978 }
2979 
2980 /* Set a MAC change in hardware. */
2981 static int
2982 fec_set_mac_address(struct net_device *ndev, void *p)
2983 {
2984 	struct fec_enet_private *fep = netdev_priv(ndev);
2985 	struct sockaddr *addr = p;
2986 
2987 	if (addr) {
2988 		if (!is_valid_ether_addr(addr->sa_data))
2989 			return -EADDRNOTAVAIL;
2990 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2991 	}
2992 
2993 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2994 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2995 		fep->hwp + FEC_ADDR_LOW);
2996 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2997 		fep->hwp + FEC_ADDR_HIGH);
2998 	return 0;
2999 }
3000 
3001 #ifdef CONFIG_NET_POLL_CONTROLLER
3002 /**
3003  * fec_poll_controller - FEC Poll controller function
3004  * @dev: The FEC network adapter
3005  *
3006  * Polled functionality used by netconsole and others in non interrupt mode
3007  *
3008  */
3009 static void fec_poll_controller(struct net_device *dev)
3010 {
3011 	int i;
3012 	struct fec_enet_private *fep = netdev_priv(dev);
3013 
3014 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3015 		if (fep->irq[i] > 0) {
3016 			disable_irq(fep->irq[i]);
3017 			fec_enet_interrupt(fep->irq[i], dev);
3018 			enable_irq(fep->irq[i]);
3019 		}
3020 	}
3021 }
3022 #endif
3023 
3024 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3025 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3026 	netdev_features_t features)
3027 {
3028 	struct fec_enet_private *fep = netdev_priv(netdev);
3029 	netdev_features_t changed = features ^ netdev->features;
3030 
3031 	netdev->features = features;
3032 
3033 	/* Receive checksum has been changed */
3034 	if (changed & NETIF_F_RXCSUM) {
3035 		if (features & NETIF_F_RXCSUM)
3036 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3037 		else
3038 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3039 	}
3040 }
3041 
3042 static int fec_set_features(struct net_device *netdev,
3043 	netdev_features_t features)
3044 {
3045 	struct fec_enet_private *fep = netdev_priv(netdev);
3046 	netdev_features_t changed = features ^ netdev->features;
3047 
3048 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3049 		napi_disable(&fep->napi);
3050 		netif_tx_lock_bh(netdev);
3051 		fec_stop(netdev);
3052 		fec_enet_set_netdev_features(netdev, features);
3053 		fec_restart(netdev);
3054 		netif_tx_wake_all_queues(netdev);
3055 		netif_tx_unlock_bh(netdev);
3056 		napi_enable(&fep->napi);
3057 	} else {
3058 		fec_enet_set_netdev_features(netdev, features);
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 static const struct net_device_ops fec_netdev_ops = {
3065 	.ndo_open		= fec_enet_open,
3066 	.ndo_stop		= fec_enet_close,
3067 	.ndo_start_xmit		= fec_enet_start_xmit,
3068 	.ndo_set_rx_mode	= set_multicast_list,
3069 	.ndo_change_mtu		= eth_change_mtu,
3070 	.ndo_validate_addr	= eth_validate_addr,
3071 	.ndo_tx_timeout		= fec_timeout,
3072 	.ndo_set_mac_address	= fec_set_mac_address,
3073 	.ndo_do_ioctl		= fec_enet_ioctl,
3074 #ifdef CONFIG_NET_POLL_CONTROLLER
3075 	.ndo_poll_controller	= fec_poll_controller,
3076 #endif
3077 	.ndo_set_features	= fec_set_features,
3078 };
3079 
3080  /*
3081   * XXX:  We need to clean up on failure exits here.
3082   *
3083   */
3084 static int fec_enet_init(struct net_device *ndev)
3085 {
3086 	struct fec_enet_private *fep = netdev_priv(ndev);
3087 	struct fec_enet_priv_tx_q *txq;
3088 	struct fec_enet_priv_rx_q *rxq;
3089 	struct bufdesc *cbd_base;
3090 	dma_addr_t bd_dma;
3091 	int bd_size;
3092 	unsigned int i;
3093 
3094 #if defined(CONFIG_ARM)
3095 	fep->rx_align = 0xf;
3096 	fep->tx_align = 0xf;
3097 #else
3098 	fep->rx_align = 0x3;
3099 	fep->tx_align = 0x3;
3100 #endif
3101 
3102 	fec_enet_alloc_queue(ndev);
3103 
3104 	if (fep->bufdesc_ex)
3105 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3106 	else
3107 		fep->bufdesc_size = sizeof(struct bufdesc);
3108 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3109 			fep->bufdesc_size;
3110 
3111 	/* Allocate memory for buffer descriptors. */
3112 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3113 				      GFP_KERNEL);
3114 	if (!cbd_base) {
3115 		return -ENOMEM;
3116 	}
3117 
3118 	memset(cbd_base, 0, bd_size);
3119 
3120 	/* Get the Ethernet address */
3121 	fec_get_mac(ndev);
3122 	/* make sure MAC we just acquired is programmed into the hw */
3123 	fec_set_mac_address(ndev, NULL);
3124 
3125 	/* Set receive and transmit descriptor base. */
3126 	for (i = 0; i < fep->num_rx_queues; i++) {
3127 		rxq = fep->rx_queue[i];
3128 		rxq->index = i;
3129 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3130 		rxq->bd_dma = bd_dma;
3131 		if (fep->bufdesc_ex) {
3132 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3133 			cbd_base = (struct bufdesc *)
3134 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3135 		} else {
3136 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3137 			cbd_base += rxq->rx_ring_size;
3138 		}
3139 	}
3140 
3141 	for (i = 0; i < fep->num_tx_queues; i++) {
3142 		txq = fep->tx_queue[i];
3143 		txq->index = i;
3144 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3145 		txq->bd_dma = bd_dma;
3146 		if (fep->bufdesc_ex) {
3147 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3148 			cbd_base = (struct bufdesc *)
3149 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3150 		} else {
3151 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3152 			cbd_base += txq->tx_ring_size;
3153 		}
3154 	}
3155 
3156 
3157 	/* The FEC Ethernet specific entries in the device structure */
3158 	ndev->watchdog_timeo = TX_TIMEOUT;
3159 	ndev->netdev_ops = &fec_netdev_ops;
3160 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3161 
3162 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3163 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3164 
3165 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3166 		/* enable hw VLAN support */
3167 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3168 
3169 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3170 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3171 
3172 		/* enable hw accelerator */
3173 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3174 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3175 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3176 	}
3177 
3178 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3179 		fep->tx_align = 0;
3180 		fep->rx_align = 0x3f;
3181 	}
3182 
3183 	ndev->hw_features = ndev->features;
3184 
3185 	fec_restart(ndev);
3186 
3187 	return 0;
3188 }
3189 
3190 #ifdef CONFIG_OF
3191 static void fec_reset_phy(struct platform_device *pdev)
3192 {
3193 	int err, phy_reset;
3194 	int msec = 1;
3195 	struct device_node *np = pdev->dev.of_node;
3196 
3197 	if (!np)
3198 		return;
3199 
3200 	of_property_read_u32(np, "phy-reset-duration", &msec);
3201 	/* A sane reset duration should not be longer than 1s */
3202 	if (msec > 1000)
3203 		msec = 1;
3204 
3205 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3206 	if (!gpio_is_valid(phy_reset))
3207 		return;
3208 
3209 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3210 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3211 	if (err) {
3212 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3213 		return;
3214 	}
3215 	msleep(msec);
3216 	gpio_set_value(phy_reset, 1);
3217 }
3218 #else /* CONFIG_OF */
3219 static void fec_reset_phy(struct platform_device *pdev)
3220 {
3221 	/*
3222 	 * In case of platform probe, the reset has been done
3223 	 * by machine code.
3224 	 */
3225 }
3226 #endif /* CONFIG_OF */
3227 
3228 static void
3229 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3230 {
3231 	struct device_node *np = pdev->dev.of_node;
3232 	int err;
3233 
3234 	*num_tx = *num_rx = 1;
3235 
3236 	if (!np || !of_device_is_available(np))
3237 		return;
3238 
3239 	/* parse the num of tx and rx queues */
3240 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3241 	if (err)
3242 		*num_tx = 1;
3243 
3244 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3245 	if (err)
3246 		*num_rx = 1;
3247 
3248 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3249 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3250 			 *num_tx);
3251 		*num_tx = 1;
3252 		return;
3253 	}
3254 
3255 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3256 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3257 			 *num_rx);
3258 		*num_rx = 1;
3259 		return;
3260 	}
3261 
3262 }
3263 
3264 static int
3265 fec_probe(struct platform_device *pdev)
3266 {
3267 	struct fec_enet_private *fep;
3268 	struct fec_platform_data *pdata;
3269 	struct net_device *ndev;
3270 	int i, irq, ret = 0;
3271 	struct resource *r;
3272 	const struct of_device_id *of_id;
3273 	static int dev_id;
3274 	struct device_node *np = pdev->dev.of_node, *phy_node;
3275 	int num_tx_qs;
3276 	int num_rx_qs;
3277 
3278 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3279 
3280 	/* Init network device */
3281 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3282 				  num_tx_qs, num_rx_qs);
3283 	if (!ndev)
3284 		return -ENOMEM;
3285 
3286 	SET_NETDEV_DEV(ndev, &pdev->dev);
3287 
3288 	/* setup board info structure */
3289 	fep = netdev_priv(ndev);
3290 
3291 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3292 	if (of_id)
3293 		pdev->id_entry = of_id->data;
3294 	fep->quirks = pdev->id_entry->driver_data;
3295 
3296 	fep->netdev = ndev;
3297 	fep->num_rx_queues = num_rx_qs;
3298 	fep->num_tx_queues = num_tx_qs;
3299 
3300 #if !defined(CONFIG_M5272)
3301 	/* default enable pause frame auto negotiation */
3302 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3303 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3304 #endif
3305 
3306 	/* Select default pin state */
3307 	pinctrl_pm_select_default_state(&pdev->dev);
3308 
3309 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3310 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3311 	if (IS_ERR(fep->hwp)) {
3312 		ret = PTR_ERR(fep->hwp);
3313 		goto failed_ioremap;
3314 	}
3315 
3316 	fep->pdev = pdev;
3317 	fep->dev_id = dev_id++;
3318 
3319 	platform_set_drvdata(pdev, ndev);
3320 
3321 	if (of_get_property(np, "fsl,magic-packet", NULL))
3322 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3323 
3324 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3325 	if (!phy_node && of_phy_is_fixed_link(np)) {
3326 		ret = of_phy_register_fixed_link(np);
3327 		if (ret < 0) {
3328 			dev_err(&pdev->dev,
3329 				"broken fixed-link specification\n");
3330 			goto failed_phy;
3331 		}
3332 		phy_node = of_node_get(np);
3333 	}
3334 	fep->phy_node = phy_node;
3335 
3336 	ret = of_get_phy_mode(pdev->dev.of_node);
3337 	if (ret < 0) {
3338 		pdata = dev_get_platdata(&pdev->dev);
3339 		if (pdata)
3340 			fep->phy_interface = pdata->phy;
3341 		else
3342 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3343 	} else {
3344 		fep->phy_interface = ret;
3345 	}
3346 
3347 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3348 	if (IS_ERR(fep->clk_ipg)) {
3349 		ret = PTR_ERR(fep->clk_ipg);
3350 		goto failed_clk;
3351 	}
3352 
3353 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3354 	if (IS_ERR(fep->clk_ahb)) {
3355 		ret = PTR_ERR(fep->clk_ahb);
3356 		goto failed_clk;
3357 	}
3358 
3359 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3360 
3361 	/* enet_out is optional, depends on board */
3362 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3363 	if (IS_ERR(fep->clk_enet_out))
3364 		fep->clk_enet_out = NULL;
3365 
3366 	fep->ptp_clk_on = false;
3367 	mutex_init(&fep->ptp_clk_mutex);
3368 
3369 	/* clk_ref is optional, depends on board */
3370 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3371 	if (IS_ERR(fep->clk_ref))
3372 		fep->clk_ref = NULL;
3373 
3374 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3375 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3376 	if (IS_ERR(fep->clk_ptp)) {
3377 		fep->clk_ptp = NULL;
3378 		fep->bufdesc_ex = false;
3379 	}
3380 
3381 	ret = fec_enet_clk_enable(ndev, true);
3382 	if (ret)
3383 		goto failed_clk;
3384 
3385 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3386 	if (!IS_ERR(fep->reg_phy)) {
3387 		ret = regulator_enable(fep->reg_phy);
3388 		if (ret) {
3389 			dev_err(&pdev->dev,
3390 				"Failed to enable phy regulator: %d\n", ret);
3391 			goto failed_regulator;
3392 		}
3393 	} else {
3394 		fep->reg_phy = NULL;
3395 	}
3396 
3397 	fec_reset_phy(pdev);
3398 
3399 	if (fep->bufdesc_ex)
3400 		fec_ptp_init(pdev);
3401 
3402 	ret = fec_enet_init(ndev);
3403 	if (ret)
3404 		goto failed_init;
3405 
3406 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3407 		irq = platform_get_irq(pdev, i);
3408 		if (irq < 0) {
3409 			if (i)
3410 				break;
3411 			ret = irq;
3412 			goto failed_irq;
3413 		}
3414 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3415 				       0, pdev->name, ndev);
3416 		if (ret)
3417 			goto failed_irq;
3418 
3419 		fep->irq[i] = irq;
3420 	}
3421 
3422 	init_completion(&fep->mdio_done);
3423 	ret = fec_enet_mii_init(pdev);
3424 	if (ret)
3425 		goto failed_mii_init;
3426 
3427 	/* Carrier starts down, phylib will bring it up */
3428 	netif_carrier_off(ndev);
3429 	fec_enet_clk_enable(ndev, false);
3430 	pinctrl_pm_select_sleep_state(&pdev->dev);
3431 
3432 	ret = register_netdev(ndev);
3433 	if (ret)
3434 		goto failed_register;
3435 
3436 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3437 			   FEC_WOL_HAS_MAGIC_PACKET);
3438 
3439 	if (fep->bufdesc_ex && fep->ptp_clock)
3440 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3441 
3442 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3443 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3444 	return 0;
3445 
3446 failed_register:
3447 	fec_enet_mii_remove(fep);
3448 failed_mii_init:
3449 failed_irq:
3450 failed_init:
3451 	if (fep->reg_phy)
3452 		regulator_disable(fep->reg_phy);
3453 failed_regulator:
3454 	fec_enet_clk_enable(ndev, false);
3455 failed_clk:
3456 failed_phy:
3457 	of_node_put(phy_node);
3458 failed_ioremap:
3459 	free_netdev(ndev);
3460 
3461 	return ret;
3462 }
3463 
3464 static int
3465 fec_drv_remove(struct platform_device *pdev)
3466 {
3467 	struct net_device *ndev = platform_get_drvdata(pdev);
3468 	struct fec_enet_private *fep = netdev_priv(ndev);
3469 
3470 	cancel_delayed_work_sync(&fep->time_keep);
3471 	cancel_work_sync(&fep->tx_timeout_work);
3472 	unregister_netdev(ndev);
3473 	fec_enet_mii_remove(fep);
3474 	if (fep->reg_phy)
3475 		regulator_disable(fep->reg_phy);
3476 	if (fep->ptp_clock)
3477 		ptp_clock_unregister(fep->ptp_clock);
3478 	of_node_put(fep->phy_node);
3479 	free_netdev(ndev);
3480 
3481 	return 0;
3482 }
3483 
3484 static int __maybe_unused fec_suspend(struct device *dev)
3485 {
3486 	struct net_device *ndev = dev_get_drvdata(dev);
3487 	struct fec_enet_private *fep = netdev_priv(ndev);
3488 
3489 	rtnl_lock();
3490 	if (netif_running(ndev)) {
3491 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3492 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3493 		phy_stop(fep->phy_dev);
3494 		napi_disable(&fep->napi);
3495 		netif_tx_lock_bh(ndev);
3496 		netif_device_detach(ndev);
3497 		netif_tx_unlock_bh(ndev);
3498 		fec_stop(ndev);
3499 		fec_enet_clk_enable(ndev, false);
3500 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3501 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3502 	}
3503 	rtnl_unlock();
3504 
3505 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3506 		regulator_disable(fep->reg_phy);
3507 
3508 	/* SOC supply clock to phy, when clock is disabled, phy link down
3509 	 * SOC control phy regulator, when regulator is disabled, phy link down
3510 	 */
3511 	if (fep->clk_enet_out || fep->reg_phy)
3512 		fep->link = 0;
3513 
3514 	return 0;
3515 }
3516 
3517 static int __maybe_unused fec_resume(struct device *dev)
3518 {
3519 	struct net_device *ndev = dev_get_drvdata(dev);
3520 	struct fec_enet_private *fep = netdev_priv(ndev);
3521 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3522 	int ret;
3523 	int val;
3524 
3525 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3526 		ret = regulator_enable(fep->reg_phy);
3527 		if (ret)
3528 			return ret;
3529 	}
3530 
3531 	rtnl_lock();
3532 	if (netif_running(ndev)) {
3533 		ret = fec_enet_clk_enable(ndev, true);
3534 		if (ret) {
3535 			rtnl_unlock();
3536 			goto failed_clk;
3537 		}
3538 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3539 			if (pdata && pdata->sleep_mode_enable)
3540 				pdata->sleep_mode_enable(false);
3541 			val = readl(fep->hwp + FEC_ECNTRL);
3542 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3543 			writel(val, fep->hwp + FEC_ECNTRL);
3544 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3545 		} else {
3546 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3547 		}
3548 		fec_restart(ndev);
3549 		netif_tx_lock_bh(ndev);
3550 		netif_device_attach(ndev);
3551 		netif_tx_unlock_bh(ndev);
3552 		napi_enable(&fep->napi);
3553 		phy_start(fep->phy_dev);
3554 	}
3555 	rtnl_unlock();
3556 
3557 	return 0;
3558 
3559 failed_clk:
3560 	if (fep->reg_phy)
3561 		regulator_disable(fep->reg_phy);
3562 	return ret;
3563 }
3564 
3565 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3566 
3567 static struct platform_driver fec_driver = {
3568 	.driver	= {
3569 		.name	= DRIVER_NAME,
3570 		.pm	= &fec_pm_ops,
3571 		.of_match_table = fec_dt_ids,
3572 	},
3573 	.id_table = fec_devtype,
3574 	.probe	= fec_probe,
3575 	.remove	= fec_drv_remove,
3576 };
3577 
3578 module_platform_driver(fec_driver);
3579 
3580 MODULE_ALIAS("platform:"DRIVER_NAME);
3581 MODULE_LICENSE("GPL");
3582