1 /* 2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 4 * 5 * Right now, I am very wasteful with the buffers. I allocate memory 6 * pages and then divide them into 2K frame buffers. This way I know I 7 * have buffers large enough to hold one frame within one buffer descriptor. 8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 9 * will be much more memory efficient and will easily handle lots of 10 * small packets. 11 * 12 * Much better multiple PHY support by Magnus Damm. 13 * Copyright (c) 2000 Ericsson Radio Systems AB. 14 * 15 * Support for FEC controller of ColdFire processors. 16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 17 * 18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 19 * Copyright (c) 2004-2006 Macq Electronique SA. 20 * 21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/string.h> 27 #include <linux/ptrace.h> 28 #include <linux/errno.h> 29 #include <linux/ioport.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/skbuff.h> 36 #include <linux/in.h> 37 #include <linux/ip.h> 38 #include <net/ip.h> 39 #include <net/tso.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/spinlock.h> 44 #include <linux/workqueue.h> 45 #include <linux/bitops.h> 46 #include <linux/io.h> 47 #include <linux/irq.h> 48 #include <linux/clk.h> 49 #include <linux/platform_device.h> 50 #include <linux/phy.h> 51 #include <linux/fec.h> 52 #include <linux/of.h> 53 #include <linux/of_device.h> 54 #include <linux/of_gpio.h> 55 #include <linux/of_mdio.h> 56 #include <linux/of_net.h> 57 #include <linux/regulator/consumer.h> 58 #include <linux/if_vlan.h> 59 #include <linux/pinctrl/consumer.h> 60 #include <linux/prefetch.h> 61 62 #include <asm/cacheflush.h> 63 64 #include "fec.h" 65 66 static void set_multicast_list(struct net_device *ndev); 67 static void fec_enet_itr_coal_init(struct net_device *ndev); 68 69 #define DRIVER_NAME "fec" 70 71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) 72 73 /* Pause frame feild and FIFO threshold */ 74 #define FEC_ENET_FCE (1 << 5) 75 #define FEC_ENET_RSEM_V 0x84 76 #define FEC_ENET_RSFL_V 16 77 #define FEC_ENET_RAEM_V 0x8 78 #define FEC_ENET_RAFL_V 0x8 79 #define FEC_ENET_OPD_V 0xFFF0 80 81 static struct platform_device_id fec_devtype[] = { 82 { 83 /* keep it for coldfire */ 84 .name = DRIVER_NAME, 85 .driver_data = 0, 86 }, { 87 .name = "imx25-fec", 88 .driver_data = FEC_QUIRK_USE_GASKET, 89 }, { 90 .name = "imx27-fec", 91 .driver_data = 0, 92 }, { 93 .name = "imx28-fec", 94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 95 FEC_QUIRK_SINGLE_MDIO, 96 }, { 97 .name = "imx6q-fec", 98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 99 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 100 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358, 101 }, { 102 .name = "mvf600-fec", 103 .driver_data = FEC_QUIRK_ENET_MAC, 104 }, { 105 .name = "imx6sx-fec", 106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 109 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 110 }, { 111 /* sentinel */ 112 } 113 }; 114 MODULE_DEVICE_TABLE(platform, fec_devtype); 115 116 enum imx_fec_type { 117 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 118 IMX27_FEC, /* runs on i.mx27/35/51 */ 119 IMX28_FEC, 120 IMX6Q_FEC, 121 MVF600_FEC, 122 IMX6SX_FEC, 123 }; 124 125 static const struct of_device_id fec_dt_ids[] = { 126 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 127 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 128 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 129 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 130 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 131 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 132 { /* sentinel */ } 133 }; 134 MODULE_DEVICE_TABLE(of, fec_dt_ids); 135 136 static unsigned char macaddr[ETH_ALEN]; 137 module_param_array(macaddr, byte, NULL, 0); 138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 139 140 #if defined(CONFIG_M5272) 141 /* 142 * Some hardware gets it MAC address out of local flash memory. 143 * if this is non-zero then assume it is the address to get MAC from. 144 */ 145 #if defined(CONFIG_NETtel) 146 #define FEC_FLASHMAC 0xf0006006 147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 148 #define FEC_FLASHMAC 0xf0006000 149 #elif defined(CONFIG_CANCam) 150 #define FEC_FLASHMAC 0xf0020000 151 #elif defined (CONFIG_M5272C3) 152 #define FEC_FLASHMAC (0xffe04000 + 4) 153 #elif defined(CONFIG_MOD5272) 154 #define FEC_FLASHMAC 0xffc0406b 155 #else 156 #define FEC_FLASHMAC 0 157 #endif 158 #endif /* CONFIG_M5272 */ 159 160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 161 */ 162 #define PKT_MAXBUF_SIZE 1522 163 #define PKT_MINBUF_SIZE 64 164 #define PKT_MAXBLR_SIZE 1536 165 166 /* FEC receive acceleration */ 167 #define FEC_RACC_IPDIS (1 << 1) 168 #define FEC_RACC_PRODIS (1 << 2) 169 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 170 171 /* 172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 173 * size bits. Other FEC hardware does not, so we need to take that into 174 * account when setting it. 175 */ 176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 177 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) 178 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 179 #else 180 #define OPT_FRAME_SIZE 0 181 #endif 182 183 /* FEC MII MMFR bits definition */ 184 #define FEC_MMFR_ST (1 << 30) 185 #define FEC_MMFR_OP_READ (2 << 28) 186 #define FEC_MMFR_OP_WRITE (1 << 28) 187 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 188 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 189 #define FEC_MMFR_TA (2 << 16) 190 #define FEC_MMFR_DATA(v) (v & 0xffff) 191 /* FEC ECR bits definition */ 192 #define FEC_ECR_MAGICEN (1 << 2) 193 #define FEC_ECR_SLEEP (1 << 3) 194 195 #define FEC_MII_TIMEOUT 30000 /* us */ 196 197 /* Transmitter timeout */ 198 #define TX_TIMEOUT (2 * HZ) 199 200 #define FEC_PAUSE_FLAG_AUTONEG 0x1 201 #define FEC_PAUSE_FLAG_ENABLE 0x2 202 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 203 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 204 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 205 206 #define COPYBREAK_DEFAULT 256 207 208 #define TSO_HEADER_SIZE 128 209 /* Max number of allowed TCP segments for software TSO */ 210 #define FEC_MAX_TSO_SEGS 100 211 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 212 213 #define IS_TSO_HEADER(txq, addr) \ 214 ((addr >= txq->tso_hdrs_dma) && \ 215 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE)) 216 217 static int mii_cnt; 218 219 static inline 220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 221 struct fec_enet_private *fep, 222 int queue_id) 223 { 224 struct bufdesc *new_bd = bdp + 1; 225 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1; 226 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; 227 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; 228 struct bufdesc_ex *ex_base; 229 struct bufdesc *base; 230 int ring_size; 231 232 if (bdp >= txq->tx_bd_base) { 233 base = txq->tx_bd_base; 234 ring_size = txq->tx_ring_size; 235 ex_base = (struct bufdesc_ex *)txq->tx_bd_base; 236 } else { 237 base = rxq->rx_bd_base; 238 ring_size = rxq->rx_ring_size; 239 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; 240 } 241 242 if (fep->bufdesc_ex) 243 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ? 244 ex_base : ex_new_bd); 245 else 246 return (new_bd >= (base + ring_size)) ? 247 base : new_bd; 248 } 249 250 static inline 251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 252 struct fec_enet_private *fep, 253 int queue_id) 254 { 255 struct bufdesc *new_bd = bdp - 1; 256 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1; 257 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; 258 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; 259 struct bufdesc_ex *ex_base; 260 struct bufdesc *base; 261 int ring_size; 262 263 if (bdp >= txq->tx_bd_base) { 264 base = txq->tx_bd_base; 265 ring_size = txq->tx_ring_size; 266 ex_base = (struct bufdesc_ex *)txq->tx_bd_base; 267 } else { 268 base = rxq->rx_bd_base; 269 ring_size = rxq->rx_ring_size; 270 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; 271 } 272 273 if (fep->bufdesc_ex) 274 return (struct bufdesc *)((ex_new_bd < ex_base) ? 275 (ex_new_bd + ring_size) : ex_new_bd); 276 else 277 return (new_bd < base) ? (new_bd + ring_size) : new_bd; 278 } 279 280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp, 281 struct fec_enet_private *fep) 282 { 283 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size; 284 } 285 286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep, 287 struct fec_enet_priv_tx_q *txq) 288 { 289 int entries; 290 291 entries = ((const char *)txq->dirty_tx - 292 (const char *)txq->cur_tx) / fep->bufdesc_size - 1; 293 294 return entries > 0 ? entries : entries + txq->tx_ring_size; 295 } 296 297 static void swap_buffer(void *bufaddr, int len) 298 { 299 int i; 300 unsigned int *buf = bufaddr; 301 302 for (i = 0; i < len; i += 4, buf++) 303 swab32s(buf); 304 } 305 306 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 307 { 308 int i; 309 unsigned int *src = src_buf; 310 unsigned int *dst = dst_buf; 311 312 for (i = 0; i < len; i += 4, src++, dst++) 313 *dst = swab32p(src); 314 } 315 316 static void fec_dump(struct net_device *ndev) 317 { 318 struct fec_enet_private *fep = netdev_priv(ndev); 319 struct bufdesc *bdp; 320 struct fec_enet_priv_tx_q *txq; 321 int index = 0; 322 323 netdev_info(ndev, "TX ring dump\n"); 324 pr_info("Nr SC addr len SKB\n"); 325 326 txq = fep->tx_queue[0]; 327 bdp = txq->tx_bd_base; 328 329 do { 330 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n", 331 index, 332 bdp == txq->cur_tx ? 'S' : ' ', 333 bdp == txq->dirty_tx ? 'H' : ' ', 334 bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen, 335 txq->tx_skbuff[index]); 336 bdp = fec_enet_get_nextdesc(bdp, fep, 0); 337 index++; 338 } while (bdp != txq->tx_bd_base); 339 } 340 341 static inline bool is_ipv4_pkt(struct sk_buff *skb) 342 { 343 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 344 } 345 346 static int 347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 348 { 349 /* Only run for packets requiring a checksum. */ 350 if (skb->ip_summed != CHECKSUM_PARTIAL) 351 return 0; 352 353 if (unlikely(skb_cow_head(skb, 0))) 354 return -1; 355 356 if (is_ipv4_pkt(skb)) 357 ip_hdr(skb)->check = 0; 358 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 359 360 return 0; 361 } 362 363 static int 364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 365 struct sk_buff *skb, 366 struct net_device *ndev) 367 { 368 struct fec_enet_private *fep = netdev_priv(ndev); 369 struct bufdesc *bdp = txq->cur_tx; 370 struct bufdesc_ex *ebdp; 371 int nr_frags = skb_shinfo(skb)->nr_frags; 372 unsigned short queue = skb_get_queue_mapping(skb); 373 int frag, frag_len; 374 unsigned short status; 375 unsigned int estatus = 0; 376 skb_frag_t *this_frag; 377 unsigned int index; 378 void *bufaddr; 379 dma_addr_t addr; 380 int i; 381 382 for (frag = 0; frag < nr_frags; frag++) { 383 this_frag = &skb_shinfo(skb)->frags[frag]; 384 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 385 ebdp = (struct bufdesc_ex *)bdp; 386 387 status = bdp->cbd_sc; 388 status &= ~BD_ENET_TX_STATS; 389 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 390 frag_len = skb_shinfo(skb)->frags[frag].size; 391 392 /* Handle the last BD specially */ 393 if (frag == nr_frags - 1) { 394 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 395 if (fep->bufdesc_ex) { 396 estatus |= BD_ENET_TX_INT; 397 if (unlikely(skb_shinfo(skb)->tx_flags & 398 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 399 estatus |= BD_ENET_TX_TS; 400 } 401 } 402 403 if (fep->bufdesc_ex) { 404 if (fep->quirks & FEC_QUIRK_HAS_AVB) 405 estatus |= FEC_TX_BD_FTYPE(queue); 406 if (skb->ip_summed == CHECKSUM_PARTIAL) 407 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 408 ebdp->cbd_bdu = 0; 409 ebdp->cbd_esc = estatus; 410 } 411 412 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; 413 414 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); 415 if (((unsigned long) bufaddr) & fep->tx_align || 416 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 417 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 418 bufaddr = txq->tx_bounce[index]; 419 420 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 421 swap_buffer(bufaddr, frag_len); 422 } 423 424 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 425 DMA_TO_DEVICE); 426 if (dma_mapping_error(&fep->pdev->dev, addr)) { 427 dev_kfree_skb_any(skb); 428 if (net_ratelimit()) 429 netdev_err(ndev, "Tx DMA memory map failed\n"); 430 goto dma_mapping_error; 431 } 432 433 bdp->cbd_bufaddr = addr; 434 bdp->cbd_datlen = frag_len; 435 bdp->cbd_sc = status; 436 } 437 438 txq->cur_tx = bdp; 439 440 return 0; 441 442 dma_mapping_error: 443 bdp = txq->cur_tx; 444 for (i = 0; i < frag; i++) { 445 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 446 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 447 bdp->cbd_datlen, DMA_TO_DEVICE); 448 } 449 return NETDEV_TX_OK; 450 } 451 452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 453 struct sk_buff *skb, struct net_device *ndev) 454 { 455 struct fec_enet_private *fep = netdev_priv(ndev); 456 int nr_frags = skb_shinfo(skb)->nr_frags; 457 struct bufdesc *bdp, *last_bdp; 458 void *bufaddr; 459 dma_addr_t addr; 460 unsigned short status; 461 unsigned short buflen; 462 unsigned short queue; 463 unsigned int estatus = 0; 464 unsigned int index; 465 int entries_free; 466 int ret; 467 468 entries_free = fec_enet_get_free_txdesc_num(fep, txq); 469 if (entries_free < MAX_SKB_FRAGS + 1) { 470 dev_kfree_skb_any(skb); 471 if (net_ratelimit()) 472 netdev_err(ndev, "NOT enough BD for SG!\n"); 473 return NETDEV_TX_OK; 474 } 475 476 /* Protocol checksum off-load for TCP and UDP. */ 477 if (fec_enet_clear_csum(skb, ndev)) { 478 dev_kfree_skb_any(skb); 479 return NETDEV_TX_OK; 480 } 481 482 /* Fill in a Tx ring entry */ 483 bdp = txq->cur_tx; 484 status = bdp->cbd_sc; 485 status &= ~BD_ENET_TX_STATS; 486 487 /* Set buffer length and buffer pointer */ 488 bufaddr = skb->data; 489 buflen = skb_headlen(skb); 490 491 queue = skb_get_queue_mapping(skb); 492 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); 493 if (((unsigned long) bufaddr) & fep->tx_align || 494 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 495 memcpy(txq->tx_bounce[index], skb->data, buflen); 496 bufaddr = txq->tx_bounce[index]; 497 498 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 499 swap_buffer(bufaddr, buflen); 500 } 501 502 /* Push the data cache so the CPM does not get stale memory data. */ 503 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 504 if (dma_mapping_error(&fep->pdev->dev, addr)) { 505 dev_kfree_skb_any(skb); 506 if (net_ratelimit()) 507 netdev_err(ndev, "Tx DMA memory map failed\n"); 508 return NETDEV_TX_OK; 509 } 510 511 if (nr_frags) { 512 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 513 if (ret) 514 return ret; 515 } else { 516 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 517 if (fep->bufdesc_ex) { 518 estatus = BD_ENET_TX_INT; 519 if (unlikely(skb_shinfo(skb)->tx_flags & 520 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 521 estatus |= BD_ENET_TX_TS; 522 } 523 } 524 525 if (fep->bufdesc_ex) { 526 527 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 528 529 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 530 fep->hwts_tx_en)) 531 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 532 533 if (fep->quirks & FEC_QUIRK_HAS_AVB) 534 estatus |= FEC_TX_BD_FTYPE(queue); 535 536 if (skb->ip_summed == CHECKSUM_PARTIAL) 537 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 538 539 ebdp->cbd_bdu = 0; 540 ebdp->cbd_esc = estatus; 541 } 542 543 last_bdp = txq->cur_tx; 544 index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep); 545 /* Save skb pointer */ 546 txq->tx_skbuff[index] = skb; 547 548 bdp->cbd_datlen = buflen; 549 bdp->cbd_bufaddr = addr; 550 551 /* Send it on its way. Tell FEC it's ready, interrupt when done, 552 * it's the last BD of the frame, and to put the CRC on the end. 553 */ 554 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 555 bdp->cbd_sc = status; 556 557 /* If this was the last BD in the ring, start at the beginning again. */ 558 bdp = fec_enet_get_nextdesc(last_bdp, fep, queue); 559 560 skb_tx_timestamp(skb); 561 562 txq->cur_tx = bdp; 563 564 /* Trigger transmission start */ 565 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); 566 567 return 0; 568 } 569 570 static int 571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 572 struct net_device *ndev, 573 struct bufdesc *bdp, int index, char *data, 574 int size, bool last_tcp, bool is_last) 575 { 576 struct fec_enet_private *fep = netdev_priv(ndev); 577 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 578 unsigned short queue = skb_get_queue_mapping(skb); 579 unsigned short status; 580 unsigned int estatus = 0; 581 dma_addr_t addr; 582 583 status = bdp->cbd_sc; 584 status &= ~BD_ENET_TX_STATS; 585 586 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 587 588 if (((unsigned long) data) & fep->tx_align || 589 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 590 memcpy(txq->tx_bounce[index], data, size); 591 data = txq->tx_bounce[index]; 592 593 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 594 swap_buffer(data, size); 595 } 596 597 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 598 if (dma_mapping_error(&fep->pdev->dev, addr)) { 599 dev_kfree_skb_any(skb); 600 if (net_ratelimit()) 601 netdev_err(ndev, "Tx DMA memory map failed\n"); 602 return NETDEV_TX_BUSY; 603 } 604 605 bdp->cbd_datlen = size; 606 bdp->cbd_bufaddr = addr; 607 608 if (fep->bufdesc_ex) { 609 if (fep->quirks & FEC_QUIRK_HAS_AVB) 610 estatus |= FEC_TX_BD_FTYPE(queue); 611 if (skb->ip_summed == CHECKSUM_PARTIAL) 612 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 613 ebdp->cbd_bdu = 0; 614 ebdp->cbd_esc = estatus; 615 } 616 617 /* Handle the last BD specially */ 618 if (last_tcp) 619 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 620 if (is_last) { 621 status |= BD_ENET_TX_INTR; 622 if (fep->bufdesc_ex) 623 ebdp->cbd_esc |= BD_ENET_TX_INT; 624 } 625 626 bdp->cbd_sc = status; 627 628 return 0; 629 } 630 631 static int 632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 633 struct sk_buff *skb, struct net_device *ndev, 634 struct bufdesc *bdp, int index) 635 { 636 struct fec_enet_private *fep = netdev_priv(ndev); 637 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 638 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 639 unsigned short queue = skb_get_queue_mapping(skb); 640 void *bufaddr; 641 unsigned long dmabuf; 642 unsigned short status; 643 unsigned int estatus = 0; 644 645 status = bdp->cbd_sc; 646 status &= ~BD_ENET_TX_STATS; 647 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 648 649 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 650 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 651 if (((unsigned long)bufaddr) & fep->tx_align || 652 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 653 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 654 bufaddr = txq->tx_bounce[index]; 655 656 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 657 swap_buffer(bufaddr, hdr_len); 658 659 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 660 hdr_len, DMA_TO_DEVICE); 661 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 662 dev_kfree_skb_any(skb); 663 if (net_ratelimit()) 664 netdev_err(ndev, "Tx DMA memory map failed\n"); 665 return NETDEV_TX_BUSY; 666 } 667 } 668 669 bdp->cbd_bufaddr = dmabuf; 670 bdp->cbd_datlen = hdr_len; 671 672 if (fep->bufdesc_ex) { 673 if (fep->quirks & FEC_QUIRK_HAS_AVB) 674 estatus |= FEC_TX_BD_FTYPE(queue); 675 if (skb->ip_summed == CHECKSUM_PARTIAL) 676 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 677 ebdp->cbd_bdu = 0; 678 ebdp->cbd_esc = estatus; 679 } 680 681 bdp->cbd_sc = status; 682 683 return 0; 684 } 685 686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 687 struct sk_buff *skb, 688 struct net_device *ndev) 689 { 690 struct fec_enet_private *fep = netdev_priv(ndev); 691 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 692 int total_len, data_left; 693 struct bufdesc *bdp = txq->cur_tx; 694 unsigned short queue = skb_get_queue_mapping(skb); 695 struct tso_t tso; 696 unsigned int index = 0; 697 int ret; 698 699 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) { 700 dev_kfree_skb_any(skb); 701 if (net_ratelimit()) 702 netdev_err(ndev, "NOT enough BD for TSO!\n"); 703 return NETDEV_TX_OK; 704 } 705 706 /* Protocol checksum off-load for TCP and UDP. */ 707 if (fec_enet_clear_csum(skb, ndev)) { 708 dev_kfree_skb_any(skb); 709 return NETDEV_TX_OK; 710 } 711 712 /* Initialize the TSO handler, and prepare the first payload */ 713 tso_start(skb, &tso); 714 715 total_len = skb->len - hdr_len; 716 while (total_len > 0) { 717 char *hdr; 718 719 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); 720 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 721 total_len -= data_left; 722 723 /* prepare packet headers: MAC + IP + TCP */ 724 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 725 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 726 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 727 if (ret) 728 goto err_release; 729 730 while (data_left > 0) { 731 int size; 732 733 size = min_t(int, tso.size, data_left); 734 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 735 index = fec_enet_get_bd_index(txq->tx_bd_base, 736 bdp, fep); 737 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 738 bdp, index, 739 tso.data, size, 740 size == data_left, 741 total_len == 0); 742 if (ret) 743 goto err_release; 744 745 data_left -= size; 746 tso_build_data(skb, &tso, size); 747 } 748 749 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 750 } 751 752 /* Save skb pointer */ 753 txq->tx_skbuff[index] = skb; 754 755 skb_tx_timestamp(skb); 756 txq->cur_tx = bdp; 757 758 /* Trigger transmission start */ 759 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 760 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || 761 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || 762 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || 763 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue))) 764 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); 765 766 return 0; 767 768 err_release: 769 /* TODO: Release all used data descriptors for TSO */ 770 return ret; 771 } 772 773 static netdev_tx_t 774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 775 { 776 struct fec_enet_private *fep = netdev_priv(ndev); 777 int entries_free; 778 unsigned short queue; 779 struct fec_enet_priv_tx_q *txq; 780 struct netdev_queue *nq; 781 int ret; 782 783 queue = skb_get_queue_mapping(skb); 784 txq = fep->tx_queue[queue]; 785 nq = netdev_get_tx_queue(ndev, queue); 786 787 if (skb_is_gso(skb)) 788 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 789 else 790 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 791 if (ret) 792 return ret; 793 794 entries_free = fec_enet_get_free_txdesc_num(fep, txq); 795 if (entries_free <= txq->tx_stop_threshold) 796 netif_tx_stop_queue(nq); 797 798 return NETDEV_TX_OK; 799 } 800 801 /* Init RX & TX buffer descriptors 802 */ 803 static void fec_enet_bd_init(struct net_device *dev) 804 { 805 struct fec_enet_private *fep = netdev_priv(dev); 806 struct fec_enet_priv_tx_q *txq; 807 struct fec_enet_priv_rx_q *rxq; 808 struct bufdesc *bdp; 809 unsigned int i; 810 unsigned int q; 811 812 for (q = 0; q < fep->num_rx_queues; q++) { 813 /* Initialize the receive buffer descriptors. */ 814 rxq = fep->rx_queue[q]; 815 bdp = rxq->rx_bd_base; 816 817 for (i = 0; i < rxq->rx_ring_size; i++) { 818 819 /* Initialize the BD for every fragment in the page. */ 820 if (bdp->cbd_bufaddr) 821 bdp->cbd_sc = BD_ENET_RX_EMPTY; 822 else 823 bdp->cbd_sc = 0; 824 bdp = fec_enet_get_nextdesc(bdp, fep, q); 825 } 826 827 /* Set the last buffer to wrap */ 828 bdp = fec_enet_get_prevdesc(bdp, fep, q); 829 bdp->cbd_sc |= BD_SC_WRAP; 830 831 rxq->cur_rx = rxq->rx_bd_base; 832 } 833 834 for (q = 0; q < fep->num_tx_queues; q++) { 835 /* ...and the same for transmit */ 836 txq = fep->tx_queue[q]; 837 bdp = txq->tx_bd_base; 838 txq->cur_tx = bdp; 839 840 for (i = 0; i < txq->tx_ring_size; i++) { 841 /* Initialize the BD for every fragment in the page. */ 842 bdp->cbd_sc = 0; 843 if (txq->tx_skbuff[i]) { 844 dev_kfree_skb_any(txq->tx_skbuff[i]); 845 txq->tx_skbuff[i] = NULL; 846 } 847 bdp->cbd_bufaddr = 0; 848 bdp = fec_enet_get_nextdesc(bdp, fep, q); 849 } 850 851 /* Set the last buffer to wrap */ 852 bdp = fec_enet_get_prevdesc(bdp, fep, q); 853 bdp->cbd_sc |= BD_SC_WRAP; 854 txq->dirty_tx = bdp; 855 } 856 } 857 858 static void fec_enet_active_rxring(struct net_device *ndev) 859 { 860 struct fec_enet_private *fep = netdev_priv(ndev); 861 int i; 862 863 for (i = 0; i < fep->num_rx_queues; i++) 864 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i)); 865 } 866 867 static void fec_enet_enable_ring(struct net_device *ndev) 868 { 869 struct fec_enet_private *fep = netdev_priv(ndev); 870 struct fec_enet_priv_tx_q *txq; 871 struct fec_enet_priv_rx_q *rxq; 872 int i; 873 874 for (i = 0; i < fep->num_rx_queues; i++) { 875 rxq = fep->rx_queue[i]; 876 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i)); 877 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 878 879 /* enable DMA1/2 */ 880 if (i) 881 writel(RCMR_MATCHEN | RCMR_CMP(i), 882 fep->hwp + FEC_RCMR(i)); 883 } 884 885 for (i = 0; i < fep->num_tx_queues; i++) { 886 txq = fep->tx_queue[i]; 887 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i)); 888 889 /* enable DMA1/2 */ 890 if (i) 891 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 892 fep->hwp + FEC_DMA_CFG(i)); 893 } 894 } 895 896 static void fec_enet_reset_skb(struct net_device *ndev) 897 { 898 struct fec_enet_private *fep = netdev_priv(ndev); 899 struct fec_enet_priv_tx_q *txq; 900 int i, j; 901 902 for (i = 0; i < fep->num_tx_queues; i++) { 903 txq = fep->tx_queue[i]; 904 905 for (j = 0; j < txq->tx_ring_size; j++) { 906 if (txq->tx_skbuff[j]) { 907 dev_kfree_skb_any(txq->tx_skbuff[j]); 908 txq->tx_skbuff[j] = NULL; 909 } 910 } 911 } 912 } 913 914 /* 915 * This function is called to start or restart the FEC during a link 916 * change, transmit timeout, or to reconfigure the FEC. The network 917 * packet processing for this device must be stopped before this call. 918 */ 919 static void 920 fec_restart(struct net_device *ndev) 921 { 922 struct fec_enet_private *fep = netdev_priv(ndev); 923 u32 val; 924 u32 temp_mac[2]; 925 u32 rcntl = OPT_FRAME_SIZE | 0x04; 926 u32 ecntl = 0x2; /* ETHEREN */ 927 928 /* Whack a reset. We should wait for this. 929 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 930 * instead of reset MAC itself. 931 */ 932 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 933 writel(0, fep->hwp + FEC_ECNTRL); 934 } else { 935 writel(1, fep->hwp + FEC_ECNTRL); 936 udelay(10); 937 } 938 939 /* 940 * enet-mac reset will reset mac address registers too, 941 * so need to reconfigure it. 942 */ 943 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 944 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 945 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); 946 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); 947 } 948 949 /* Clear any outstanding interrupt. */ 950 writel(0xffffffff, fep->hwp + FEC_IEVENT); 951 952 fec_enet_bd_init(ndev); 953 954 fec_enet_enable_ring(ndev); 955 956 /* Reset tx SKB buffers. */ 957 fec_enet_reset_skb(ndev); 958 959 /* Enable MII mode */ 960 if (fep->full_duplex == DUPLEX_FULL) { 961 /* FD enable */ 962 writel(0x04, fep->hwp + FEC_X_CNTRL); 963 } else { 964 /* No Rcv on Xmit */ 965 rcntl |= 0x02; 966 writel(0x0, fep->hwp + FEC_X_CNTRL); 967 } 968 969 /* Set MII speed */ 970 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 971 972 #if !defined(CONFIG_M5272) 973 /* set RX checksum */ 974 val = readl(fep->hwp + FEC_RACC); 975 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 976 val |= FEC_RACC_OPTIONS; 977 else 978 val &= ~FEC_RACC_OPTIONS; 979 writel(val, fep->hwp + FEC_RACC); 980 #endif 981 982 /* 983 * The phy interface and speed need to get configured 984 * differently on enet-mac. 985 */ 986 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 987 /* Enable flow control and length check */ 988 rcntl |= 0x40000000 | 0x00000020; 989 990 /* RGMII, RMII or MII */ 991 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 992 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 993 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 994 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 995 rcntl |= (1 << 6); 996 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 997 rcntl |= (1 << 8); 998 else 999 rcntl &= ~(1 << 8); 1000 1001 /* 1G, 100M or 10M */ 1002 if (fep->phy_dev) { 1003 if (fep->phy_dev->speed == SPEED_1000) 1004 ecntl |= (1 << 5); 1005 else if (fep->phy_dev->speed == SPEED_100) 1006 rcntl &= ~(1 << 9); 1007 else 1008 rcntl |= (1 << 9); 1009 } 1010 } else { 1011 #ifdef FEC_MIIGSK_ENR 1012 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1013 u32 cfgr; 1014 /* disable the gasket and wait */ 1015 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1016 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1017 udelay(1); 1018 1019 /* 1020 * configure the gasket: 1021 * RMII, 50 MHz, no loopback, no echo 1022 * MII, 25 MHz, no loopback, no echo 1023 */ 1024 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1025 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1026 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10) 1027 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1028 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1029 1030 /* re-enable the gasket */ 1031 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1032 } 1033 #endif 1034 } 1035 1036 #if !defined(CONFIG_M5272) 1037 /* enable pause frame*/ 1038 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1039 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1040 fep->phy_dev && fep->phy_dev->pause)) { 1041 rcntl |= FEC_ENET_FCE; 1042 1043 /* set FIFO threshold parameter to reduce overrun */ 1044 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1045 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1046 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1047 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1048 1049 /* OPD */ 1050 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1051 } else { 1052 rcntl &= ~FEC_ENET_FCE; 1053 } 1054 #endif /* !defined(CONFIG_M5272) */ 1055 1056 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1057 1058 /* Setup multicast filter. */ 1059 set_multicast_list(ndev); 1060 #ifndef CONFIG_M5272 1061 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1062 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1063 #endif 1064 1065 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1066 /* enable ENET endian swap */ 1067 ecntl |= (1 << 8); 1068 /* enable ENET store and forward mode */ 1069 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1070 } 1071 1072 if (fep->bufdesc_ex) 1073 ecntl |= (1 << 4); 1074 1075 #ifndef CONFIG_M5272 1076 /* Enable the MIB statistic event counters */ 1077 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1078 #endif 1079 1080 /* And last, enable the transmit and receive processing */ 1081 writel(ecntl, fep->hwp + FEC_ECNTRL); 1082 fec_enet_active_rxring(ndev); 1083 1084 if (fep->bufdesc_ex) 1085 fec_ptp_start_cyclecounter(ndev); 1086 1087 /* Enable interrupts we wish to service */ 1088 if (fep->link) 1089 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1090 else 1091 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1092 1093 /* Init the interrupt coalescing */ 1094 fec_enet_itr_coal_init(ndev); 1095 1096 } 1097 1098 static void 1099 fec_stop(struct net_device *ndev) 1100 { 1101 struct fec_enet_private *fep = netdev_priv(ndev); 1102 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1103 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1104 u32 val; 1105 1106 /* We cannot expect a graceful transmit stop without link !!! */ 1107 if (fep->link) { 1108 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1109 udelay(10); 1110 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1111 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1112 } 1113 1114 /* Whack a reset. We should wait for this. 1115 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1116 * instead of reset MAC itself. 1117 */ 1118 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1119 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1120 writel(0, fep->hwp + FEC_ECNTRL); 1121 } else { 1122 writel(1, fep->hwp + FEC_ECNTRL); 1123 udelay(10); 1124 } 1125 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1126 } else { 1127 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1128 val = readl(fep->hwp + FEC_ECNTRL); 1129 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1130 writel(val, fep->hwp + FEC_ECNTRL); 1131 1132 if (pdata && pdata->sleep_mode_enable) 1133 pdata->sleep_mode_enable(true); 1134 } 1135 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1136 1137 /* We have to keep ENET enabled to have MII interrupt stay working */ 1138 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1139 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1140 writel(2, fep->hwp + FEC_ECNTRL); 1141 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1142 } 1143 } 1144 1145 1146 static void 1147 fec_timeout(struct net_device *ndev) 1148 { 1149 struct fec_enet_private *fep = netdev_priv(ndev); 1150 1151 fec_dump(ndev); 1152 1153 ndev->stats.tx_errors++; 1154 1155 schedule_work(&fep->tx_timeout_work); 1156 } 1157 1158 static void fec_enet_timeout_work(struct work_struct *work) 1159 { 1160 struct fec_enet_private *fep = 1161 container_of(work, struct fec_enet_private, tx_timeout_work); 1162 struct net_device *ndev = fep->netdev; 1163 1164 rtnl_lock(); 1165 if (netif_device_present(ndev) || netif_running(ndev)) { 1166 napi_disable(&fep->napi); 1167 netif_tx_lock_bh(ndev); 1168 fec_restart(ndev); 1169 netif_wake_queue(ndev); 1170 netif_tx_unlock_bh(ndev); 1171 napi_enable(&fep->napi); 1172 } 1173 rtnl_unlock(); 1174 } 1175 1176 static void 1177 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1178 struct skb_shared_hwtstamps *hwtstamps) 1179 { 1180 unsigned long flags; 1181 u64 ns; 1182 1183 spin_lock_irqsave(&fep->tmreg_lock, flags); 1184 ns = timecounter_cyc2time(&fep->tc, ts); 1185 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1186 1187 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1188 hwtstamps->hwtstamp = ns_to_ktime(ns); 1189 } 1190 1191 static void 1192 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1193 { 1194 struct fec_enet_private *fep; 1195 struct bufdesc *bdp; 1196 unsigned short status; 1197 struct sk_buff *skb; 1198 struct fec_enet_priv_tx_q *txq; 1199 struct netdev_queue *nq; 1200 int index = 0; 1201 int entries_free; 1202 1203 fep = netdev_priv(ndev); 1204 1205 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1206 1207 txq = fep->tx_queue[queue_id]; 1208 /* get next bdp of dirty_tx */ 1209 nq = netdev_get_tx_queue(ndev, queue_id); 1210 bdp = txq->dirty_tx; 1211 1212 /* get next bdp of dirty_tx */ 1213 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); 1214 1215 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { 1216 1217 /* current queue is empty */ 1218 if (bdp == txq->cur_tx) 1219 break; 1220 1221 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); 1222 1223 skb = txq->tx_skbuff[index]; 1224 txq->tx_skbuff[index] = NULL; 1225 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr)) 1226 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 1227 bdp->cbd_datlen, DMA_TO_DEVICE); 1228 bdp->cbd_bufaddr = 0; 1229 if (!skb) { 1230 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); 1231 continue; 1232 } 1233 1234 /* Check for errors. */ 1235 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1236 BD_ENET_TX_RL | BD_ENET_TX_UN | 1237 BD_ENET_TX_CSL)) { 1238 ndev->stats.tx_errors++; 1239 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1240 ndev->stats.tx_heartbeat_errors++; 1241 if (status & BD_ENET_TX_LC) /* Late collision */ 1242 ndev->stats.tx_window_errors++; 1243 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1244 ndev->stats.tx_aborted_errors++; 1245 if (status & BD_ENET_TX_UN) /* Underrun */ 1246 ndev->stats.tx_fifo_errors++; 1247 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1248 ndev->stats.tx_carrier_errors++; 1249 } else { 1250 ndev->stats.tx_packets++; 1251 ndev->stats.tx_bytes += skb->len; 1252 } 1253 1254 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1255 fep->bufdesc_ex) { 1256 struct skb_shared_hwtstamps shhwtstamps; 1257 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1258 1259 fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps); 1260 skb_tstamp_tx(skb, &shhwtstamps); 1261 } 1262 1263 /* Deferred means some collisions occurred during transmit, 1264 * but we eventually sent the packet OK. 1265 */ 1266 if (status & BD_ENET_TX_DEF) 1267 ndev->stats.collisions++; 1268 1269 /* Free the sk buffer associated with this last transmit */ 1270 dev_kfree_skb_any(skb); 1271 1272 txq->dirty_tx = bdp; 1273 1274 /* Update pointer to next buffer descriptor to be transmitted */ 1275 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); 1276 1277 /* Since we have freed up a buffer, the ring is no longer full 1278 */ 1279 if (netif_queue_stopped(ndev)) { 1280 entries_free = fec_enet_get_free_txdesc_num(fep, txq); 1281 if (entries_free >= txq->tx_wake_threshold) 1282 netif_tx_wake_queue(nq); 1283 } 1284 } 1285 1286 /* ERR006538: Keep the transmitter going */ 1287 if (bdp != txq->cur_tx && 1288 readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0) 1289 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id)); 1290 } 1291 1292 static void 1293 fec_enet_tx(struct net_device *ndev) 1294 { 1295 struct fec_enet_private *fep = netdev_priv(ndev); 1296 u16 queue_id; 1297 /* First process class A queue, then Class B and Best Effort queue */ 1298 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { 1299 clear_bit(queue_id, &fep->work_tx); 1300 fec_enet_tx_queue(ndev, queue_id); 1301 } 1302 return; 1303 } 1304 1305 static int 1306 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1307 { 1308 struct fec_enet_private *fep = netdev_priv(ndev); 1309 int off; 1310 1311 off = ((unsigned long)skb->data) & fep->rx_align; 1312 if (off) 1313 skb_reserve(skb, fep->rx_align + 1 - off); 1314 1315 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, 1316 FEC_ENET_RX_FRSIZE - fep->rx_align, 1317 DMA_FROM_DEVICE); 1318 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) { 1319 if (net_ratelimit()) 1320 netdev_err(ndev, "Rx DMA memory map failed\n"); 1321 return -ENOMEM; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1328 struct bufdesc *bdp, u32 length, bool swap) 1329 { 1330 struct fec_enet_private *fep = netdev_priv(ndev); 1331 struct sk_buff *new_skb; 1332 1333 if (length > fep->rx_copybreak) 1334 return false; 1335 1336 new_skb = netdev_alloc_skb(ndev, length); 1337 if (!new_skb) 1338 return false; 1339 1340 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr, 1341 FEC_ENET_RX_FRSIZE - fep->rx_align, 1342 DMA_FROM_DEVICE); 1343 if (!swap) 1344 memcpy(new_skb->data, (*skb)->data, length); 1345 else 1346 swap_buffer2(new_skb->data, (*skb)->data, length); 1347 *skb = new_skb; 1348 1349 return true; 1350 } 1351 1352 /* During a receive, the cur_rx points to the current incoming buffer. 1353 * When we update through the ring, if the next incoming buffer has 1354 * not been given to the system, we just set the empty indicator, 1355 * effectively tossing the packet. 1356 */ 1357 static int 1358 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1359 { 1360 struct fec_enet_private *fep = netdev_priv(ndev); 1361 struct fec_enet_priv_rx_q *rxq; 1362 struct bufdesc *bdp; 1363 unsigned short status; 1364 struct sk_buff *skb_new = NULL; 1365 struct sk_buff *skb; 1366 ushort pkt_len; 1367 __u8 *data; 1368 int pkt_received = 0; 1369 struct bufdesc_ex *ebdp = NULL; 1370 bool vlan_packet_rcvd = false; 1371 u16 vlan_tag; 1372 int index = 0; 1373 bool is_copybreak; 1374 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1375 1376 #ifdef CONFIG_M532x 1377 flush_cache_all(); 1378 #endif 1379 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1380 rxq = fep->rx_queue[queue_id]; 1381 1382 /* First, grab all of the stats for the incoming packet. 1383 * These get messed up if we get called due to a busy condition. 1384 */ 1385 bdp = rxq->cur_rx; 1386 1387 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { 1388 1389 if (pkt_received >= budget) 1390 break; 1391 pkt_received++; 1392 1393 /* Since we have allocated space to hold a complete frame, 1394 * the last indicator should be set. 1395 */ 1396 if ((status & BD_ENET_RX_LAST) == 0) 1397 netdev_err(ndev, "rcv is not +last\n"); 1398 1399 1400 /* Check for errors. */ 1401 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1402 BD_ENET_RX_CR | BD_ENET_RX_OV)) { 1403 ndev->stats.rx_errors++; 1404 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { 1405 /* Frame too long or too short. */ 1406 ndev->stats.rx_length_errors++; 1407 } 1408 if (status & BD_ENET_RX_NO) /* Frame alignment */ 1409 ndev->stats.rx_frame_errors++; 1410 if (status & BD_ENET_RX_CR) /* CRC Error */ 1411 ndev->stats.rx_crc_errors++; 1412 if (status & BD_ENET_RX_OV) /* FIFO overrun */ 1413 ndev->stats.rx_fifo_errors++; 1414 } 1415 1416 /* Report late collisions as a frame error. 1417 * On this error, the BD is closed, but we don't know what we 1418 * have in the buffer. So, just drop this frame on the floor. 1419 */ 1420 if (status & BD_ENET_RX_CL) { 1421 ndev->stats.rx_errors++; 1422 ndev->stats.rx_frame_errors++; 1423 goto rx_processing_done; 1424 } 1425 1426 /* Process the incoming frame. */ 1427 ndev->stats.rx_packets++; 1428 pkt_len = bdp->cbd_datlen; 1429 ndev->stats.rx_bytes += pkt_len; 1430 1431 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep); 1432 skb = rxq->rx_skbuff[index]; 1433 1434 /* The packet length includes FCS, but we don't want to 1435 * include that when passing upstream as it messes up 1436 * bridging applications. 1437 */ 1438 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1439 need_swap); 1440 if (!is_copybreak) { 1441 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1442 if (unlikely(!skb_new)) { 1443 ndev->stats.rx_dropped++; 1444 goto rx_processing_done; 1445 } 1446 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 1447 FEC_ENET_RX_FRSIZE - fep->rx_align, 1448 DMA_FROM_DEVICE); 1449 } 1450 1451 prefetch(skb->data - NET_IP_ALIGN); 1452 skb_put(skb, pkt_len - 4); 1453 data = skb->data; 1454 if (!is_copybreak && need_swap) 1455 swap_buffer(data, pkt_len); 1456 1457 /* Extract the enhanced buffer descriptor */ 1458 ebdp = NULL; 1459 if (fep->bufdesc_ex) 1460 ebdp = (struct bufdesc_ex *)bdp; 1461 1462 /* If this is a VLAN packet remove the VLAN Tag */ 1463 vlan_packet_rcvd = false; 1464 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1465 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) { 1466 /* Push and remove the vlan tag */ 1467 struct vlan_hdr *vlan_header = 1468 (struct vlan_hdr *) (data + ETH_HLEN); 1469 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1470 1471 vlan_packet_rcvd = true; 1472 1473 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1474 skb_pull(skb, VLAN_HLEN); 1475 } 1476 1477 skb->protocol = eth_type_trans(skb, ndev); 1478 1479 /* Get receive timestamp from the skb */ 1480 if (fep->hwts_rx_en && fep->bufdesc_ex) 1481 fec_enet_hwtstamp(fep, ebdp->ts, 1482 skb_hwtstamps(skb)); 1483 1484 if (fep->bufdesc_ex && 1485 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1486 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) { 1487 /* don't check it */ 1488 skb->ip_summed = CHECKSUM_UNNECESSARY; 1489 } else { 1490 skb_checksum_none_assert(skb); 1491 } 1492 } 1493 1494 /* Handle received VLAN packets */ 1495 if (vlan_packet_rcvd) 1496 __vlan_hwaccel_put_tag(skb, 1497 htons(ETH_P_8021Q), 1498 vlan_tag); 1499 1500 napi_gro_receive(&fep->napi, skb); 1501 1502 if (is_copybreak) { 1503 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr, 1504 FEC_ENET_RX_FRSIZE - fep->rx_align, 1505 DMA_FROM_DEVICE); 1506 } else { 1507 rxq->rx_skbuff[index] = skb_new; 1508 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1509 } 1510 1511 rx_processing_done: 1512 /* Clear the status flags for this buffer */ 1513 status &= ~BD_ENET_RX_STATS; 1514 1515 /* Mark the buffer empty */ 1516 status |= BD_ENET_RX_EMPTY; 1517 bdp->cbd_sc = status; 1518 1519 if (fep->bufdesc_ex) { 1520 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1521 1522 ebdp->cbd_esc = BD_ENET_RX_INT; 1523 ebdp->cbd_prot = 0; 1524 ebdp->cbd_bdu = 0; 1525 } 1526 1527 /* Update BD pointer to next entry */ 1528 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); 1529 1530 /* Doing this here will keep the FEC running while we process 1531 * incoming frames. On a heavily loaded network, we should be 1532 * able to keep up at the expense of system resources. 1533 */ 1534 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id)); 1535 } 1536 rxq->cur_rx = bdp; 1537 return pkt_received; 1538 } 1539 1540 static int 1541 fec_enet_rx(struct net_device *ndev, int budget) 1542 { 1543 int pkt_received = 0; 1544 u16 queue_id; 1545 struct fec_enet_private *fep = netdev_priv(ndev); 1546 1547 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { 1548 clear_bit(queue_id, &fep->work_rx); 1549 pkt_received += fec_enet_rx_queue(ndev, 1550 budget - pkt_received, queue_id); 1551 } 1552 return pkt_received; 1553 } 1554 1555 static bool 1556 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) 1557 { 1558 if (int_events == 0) 1559 return false; 1560 1561 if (int_events & FEC_ENET_RXF) 1562 fep->work_rx |= (1 << 2); 1563 if (int_events & FEC_ENET_RXF_1) 1564 fep->work_rx |= (1 << 0); 1565 if (int_events & FEC_ENET_RXF_2) 1566 fep->work_rx |= (1 << 1); 1567 1568 if (int_events & FEC_ENET_TXF) 1569 fep->work_tx |= (1 << 2); 1570 if (int_events & FEC_ENET_TXF_1) 1571 fep->work_tx |= (1 << 0); 1572 if (int_events & FEC_ENET_TXF_2) 1573 fep->work_tx |= (1 << 1); 1574 1575 return true; 1576 } 1577 1578 static irqreturn_t 1579 fec_enet_interrupt(int irq, void *dev_id) 1580 { 1581 struct net_device *ndev = dev_id; 1582 struct fec_enet_private *fep = netdev_priv(ndev); 1583 uint int_events; 1584 irqreturn_t ret = IRQ_NONE; 1585 1586 int_events = readl(fep->hwp + FEC_IEVENT); 1587 writel(int_events, fep->hwp + FEC_IEVENT); 1588 fec_enet_collect_events(fep, int_events); 1589 1590 if ((fep->work_tx || fep->work_rx) && fep->link) { 1591 ret = IRQ_HANDLED; 1592 1593 if (napi_schedule_prep(&fep->napi)) { 1594 /* Disable the NAPI interrupts */ 1595 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1596 __napi_schedule(&fep->napi); 1597 } 1598 } 1599 1600 if (int_events & FEC_ENET_MII) { 1601 ret = IRQ_HANDLED; 1602 complete(&fep->mdio_done); 1603 } 1604 1605 if (fep->ptp_clock) 1606 fec_ptp_check_pps_event(fep); 1607 1608 return ret; 1609 } 1610 1611 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1612 { 1613 struct net_device *ndev = napi->dev; 1614 struct fec_enet_private *fep = netdev_priv(ndev); 1615 int pkts; 1616 1617 pkts = fec_enet_rx(ndev, budget); 1618 1619 fec_enet_tx(ndev); 1620 1621 if (pkts < budget) { 1622 napi_complete(napi); 1623 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1624 } 1625 return pkts; 1626 } 1627 1628 /* ------------------------------------------------------------------------- */ 1629 static void fec_get_mac(struct net_device *ndev) 1630 { 1631 struct fec_enet_private *fep = netdev_priv(ndev); 1632 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1633 unsigned char *iap, tmpaddr[ETH_ALEN]; 1634 1635 /* 1636 * try to get mac address in following order: 1637 * 1638 * 1) module parameter via kernel command line in form 1639 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1640 */ 1641 iap = macaddr; 1642 1643 /* 1644 * 2) from device tree data 1645 */ 1646 if (!is_valid_ether_addr(iap)) { 1647 struct device_node *np = fep->pdev->dev.of_node; 1648 if (np) { 1649 const char *mac = of_get_mac_address(np); 1650 if (mac) 1651 iap = (unsigned char *) mac; 1652 } 1653 } 1654 1655 /* 1656 * 3) from flash or fuse (via platform data) 1657 */ 1658 if (!is_valid_ether_addr(iap)) { 1659 #ifdef CONFIG_M5272 1660 if (FEC_FLASHMAC) 1661 iap = (unsigned char *)FEC_FLASHMAC; 1662 #else 1663 if (pdata) 1664 iap = (unsigned char *)&pdata->mac; 1665 #endif 1666 } 1667 1668 /* 1669 * 4) FEC mac registers set by bootloader 1670 */ 1671 if (!is_valid_ether_addr(iap)) { 1672 *((__be32 *) &tmpaddr[0]) = 1673 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1674 *((__be16 *) &tmpaddr[4]) = 1675 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1676 iap = &tmpaddr[0]; 1677 } 1678 1679 /* 1680 * 5) random mac address 1681 */ 1682 if (!is_valid_ether_addr(iap)) { 1683 /* Report it and use a random ethernet address instead */ 1684 netdev_err(ndev, "Invalid MAC address: %pM\n", iap); 1685 eth_hw_addr_random(ndev); 1686 netdev_info(ndev, "Using random MAC address: %pM\n", 1687 ndev->dev_addr); 1688 return; 1689 } 1690 1691 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1692 1693 /* Adjust MAC if using macaddr */ 1694 if (iap == macaddr) 1695 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1696 } 1697 1698 /* ------------------------------------------------------------------------- */ 1699 1700 /* 1701 * Phy section 1702 */ 1703 static void fec_enet_adjust_link(struct net_device *ndev) 1704 { 1705 struct fec_enet_private *fep = netdev_priv(ndev); 1706 struct phy_device *phy_dev = fep->phy_dev; 1707 int status_change = 0; 1708 1709 /* Prevent a state halted on mii error */ 1710 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { 1711 phy_dev->state = PHY_RESUMING; 1712 return; 1713 } 1714 1715 /* 1716 * If the netdev is down, or is going down, we're not interested 1717 * in link state events, so just mark our idea of the link as down 1718 * and ignore the event. 1719 */ 1720 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1721 fep->link = 0; 1722 } else if (phy_dev->link) { 1723 if (!fep->link) { 1724 fep->link = phy_dev->link; 1725 status_change = 1; 1726 } 1727 1728 if (fep->full_duplex != phy_dev->duplex) { 1729 fep->full_duplex = phy_dev->duplex; 1730 status_change = 1; 1731 } 1732 1733 if (phy_dev->speed != fep->speed) { 1734 fep->speed = phy_dev->speed; 1735 status_change = 1; 1736 } 1737 1738 /* if any of the above changed restart the FEC */ 1739 if (status_change) { 1740 napi_disable(&fep->napi); 1741 netif_tx_lock_bh(ndev); 1742 fec_restart(ndev); 1743 netif_wake_queue(ndev); 1744 netif_tx_unlock_bh(ndev); 1745 napi_enable(&fep->napi); 1746 } 1747 } else { 1748 if (fep->link) { 1749 napi_disable(&fep->napi); 1750 netif_tx_lock_bh(ndev); 1751 fec_stop(ndev); 1752 netif_tx_unlock_bh(ndev); 1753 napi_enable(&fep->napi); 1754 fep->link = phy_dev->link; 1755 status_change = 1; 1756 } 1757 } 1758 1759 if (status_change) 1760 phy_print_status(phy_dev); 1761 } 1762 1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1764 { 1765 struct fec_enet_private *fep = bus->priv; 1766 unsigned long time_left; 1767 1768 fep->mii_timeout = 0; 1769 init_completion(&fep->mdio_done); 1770 1771 /* start a read op */ 1772 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | 1773 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1774 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1775 1776 /* wait for end of transfer */ 1777 time_left = wait_for_completion_timeout(&fep->mdio_done, 1778 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1779 if (time_left == 0) { 1780 fep->mii_timeout = 1; 1781 netdev_err(fep->netdev, "MDIO read timeout\n"); 1782 return -ETIMEDOUT; 1783 } 1784 1785 /* return value */ 1786 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1787 } 1788 1789 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1790 u16 value) 1791 { 1792 struct fec_enet_private *fep = bus->priv; 1793 unsigned long time_left; 1794 1795 fep->mii_timeout = 0; 1796 init_completion(&fep->mdio_done); 1797 1798 /* start a write op */ 1799 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | 1800 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 1801 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1802 fep->hwp + FEC_MII_DATA); 1803 1804 /* wait for end of transfer */ 1805 time_left = wait_for_completion_timeout(&fep->mdio_done, 1806 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1807 if (time_left == 0) { 1808 fep->mii_timeout = 1; 1809 netdev_err(fep->netdev, "MDIO write timeout\n"); 1810 return -ETIMEDOUT; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1817 { 1818 struct fec_enet_private *fep = netdev_priv(ndev); 1819 int ret; 1820 1821 if (enable) { 1822 ret = clk_prepare_enable(fep->clk_ahb); 1823 if (ret) 1824 return ret; 1825 ret = clk_prepare_enable(fep->clk_ipg); 1826 if (ret) 1827 goto failed_clk_ipg; 1828 if (fep->clk_enet_out) { 1829 ret = clk_prepare_enable(fep->clk_enet_out); 1830 if (ret) 1831 goto failed_clk_enet_out; 1832 } 1833 if (fep->clk_ptp) { 1834 mutex_lock(&fep->ptp_clk_mutex); 1835 ret = clk_prepare_enable(fep->clk_ptp); 1836 if (ret) { 1837 mutex_unlock(&fep->ptp_clk_mutex); 1838 goto failed_clk_ptp; 1839 } else { 1840 fep->ptp_clk_on = true; 1841 } 1842 mutex_unlock(&fep->ptp_clk_mutex); 1843 } 1844 if (fep->clk_ref) { 1845 ret = clk_prepare_enable(fep->clk_ref); 1846 if (ret) 1847 goto failed_clk_ref; 1848 } 1849 } else { 1850 clk_disable_unprepare(fep->clk_ahb); 1851 clk_disable_unprepare(fep->clk_ipg); 1852 if (fep->clk_enet_out) 1853 clk_disable_unprepare(fep->clk_enet_out); 1854 if (fep->clk_ptp) { 1855 mutex_lock(&fep->ptp_clk_mutex); 1856 clk_disable_unprepare(fep->clk_ptp); 1857 fep->ptp_clk_on = false; 1858 mutex_unlock(&fep->ptp_clk_mutex); 1859 } 1860 if (fep->clk_ref) 1861 clk_disable_unprepare(fep->clk_ref); 1862 } 1863 1864 return 0; 1865 1866 failed_clk_ref: 1867 if (fep->clk_ref) 1868 clk_disable_unprepare(fep->clk_ref); 1869 failed_clk_ptp: 1870 if (fep->clk_enet_out) 1871 clk_disable_unprepare(fep->clk_enet_out); 1872 failed_clk_enet_out: 1873 clk_disable_unprepare(fep->clk_ipg); 1874 failed_clk_ipg: 1875 clk_disable_unprepare(fep->clk_ahb); 1876 1877 return ret; 1878 } 1879 1880 static int fec_enet_mii_probe(struct net_device *ndev) 1881 { 1882 struct fec_enet_private *fep = netdev_priv(ndev); 1883 struct phy_device *phy_dev = NULL; 1884 char mdio_bus_id[MII_BUS_ID_SIZE]; 1885 char phy_name[MII_BUS_ID_SIZE + 3]; 1886 int phy_id; 1887 int dev_id = fep->dev_id; 1888 1889 fep->phy_dev = NULL; 1890 1891 if (fep->phy_node) { 1892 phy_dev = of_phy_connect(ndev, fep->phy_node, 1893 &fec_enet_adjust_link, 0, 1894 fep->phy_interface); 1895 if (!phy_dev) 1896 return -ENODEV; 1897 } else { 1898 /* check for attached phy */ 1899 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1900 if ((fep->mii_bus->phy_mask & (1 << phy_id))) 1901 continue; 1902 if (fep->mii_bus->phy_map[phy_id] == NULL) 1903 continue; 1904 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) 1905 continue; 1906 if (dev_id--) 1907 continue; 1908 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1909 break; 1910 } 1911 1912 if (phy_id >= PHY_MAX_ADDR) { 1913 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1914 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1915 phy_id = 0; 1916 } 1917 1918 snprintf(phy_name, sizeof(phy_name), 1919 PHY_ID_FMT, mdio_bus_id, phy_id); 1920 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 1921 fep->phy_interface); 1922 } 1923 1924 if (IS_ERR(phy_dev)) { 1925 netdev_err(ndev, "could not attach to PHY\n"); 1926 return PTR_ERR(phy_dev); 1927 } 1928 1929 /* mask with MAC supported features */ 1930 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 1931 phy_dev->supported &= PHY_GBIT_FEATURES; 1932 phy_dev->supported &= ~SUPPORTED_1000baseT_Half; 1933 #if !defined(CONFIG_M5272) 1934 phy_dev->supported |= SUPPORTED_Pause; 1935 #endif 1936 } 1937 else 1938 phy_dev->supported &= PHY_BASIC_FEATURES; 1939 1940 phy_dev->advertising = phy_dev->supported; 1941 1942 fep->phy_dev = phy_dev; 1943 fep->link = 0; 1944 fep->full_duplex = 0; 1945 1946 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", 1947 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), 1948 fep->phy_dev->irq); 1949 1950 return 0; 1951 } 1952 1953 static int fec_enet_mii_init(struct platform_device *pdev) 1954 { 1955 static struct mii_bus *fec0_mii_bus; 1956 struct net_device *ndev = platform_get_drvdata(pdev); 1957 struct fec_enet_private *fep = netdev_priv(ndev); 1958 struct device_node *node; 1959 int err = -ENXIO, i; 1960 u32 mii_speed, holdtime; 1961 1962 /* 1963 * The i.MX28 dual fec interfaces are not equal. 1964 * Here are the differences: 1965 * 1966 * - fec0 supports MII & RMII modes while fec1 only supports RMII 1967 * - fec0 acts as the 1588 time master while fec1 is slave 1968 * - external phys can only be configured by fec0 1969 * 1970 * That is to say fec1 can not work independently. It only works 1971 * when fec0 is working. The reason behind this design is that the 1972 * second interface is added primarily for Switch mode. 1973 * 1974 * Because of the last point above, both phys are attached on fec0 1975 * mdio interface in board design, and need to be configured by 1976 * fec0 mii_bus. 1977 */ 1978 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 1979 /* fec1 uses fec0 mii_bus */ 1980 if (mii_cnt && fec0_mii_bus) { 1981 fep->mii_bus = fec0_mii_bus; 1982 mii_cnt++; 1983 return 0; 1984 } 1985 return -ENOENT; 1986 } 1987 1988 fep->mii_timeout = 0; 1989 1990 /* 1991 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 1992 * 1993 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 1994 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 1995 * Reference Manual has an error on this, and gets fixed on i.MX6Q 1996 * document. 1997 */ 1998 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); 1999 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2000 mii_speed--; 2001 if (mii_speed > 63) { 2002 dev_err(&pdev->dev, 2003 "fec clock (%lu) to fast to get right mii speed\n", 2004 clk_get_rate(fep->clk_ipg)); 2005 err = -EINVAL; 2006 goto err_out; 2007 } 2008 2009 /* 2010 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2011 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2012 * versions are RAZ there, so just ignore the difference and write the 2013 * register always. 2014 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2015 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2016 * output. 2017 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2018 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2019 * holdtime cannot result in a value greater than 3. 2020 */ 2021 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2022 2023 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2024 2025 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2026 2027 fep->mii_bus = mdiobus_alloc(); 2028 if (fep->mii_bus == NULL) { 2029 err = -ENOMEM; 2030 goto err_out; 2031 } 2032 2033 fep->mii_bus->name = "fec_enet_mii_bus"; 2034 fep->mii_bus->read = fec_enet_mdio_read; 2035 fep->mii_bus->write = fec_enet_mdio_write; 2036 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2037 pdev->name, fep->dev_id + 1); 2038 fep->mii_bus->priv = fep; 2039 fep->mii_bus->parent = &pdev->dev; 2040 2041 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 2042 if (!fep->mii_bus->irq) { 2043 err = -ENOMEM; 2044 goto err_out_free_mdiobus; 2045 } 2046 2047 for (i = 0; i < PHY_MAX_ADDR; i++) 2048 fep->mii_bus->irq[i] = PHY_POLL; 2049 2050 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2051 if (node) { 2052 err = of_mdiobus_register(fep->mii_bus, node); 2053 of_node_put(node); 2054 } else { 2055 err = mdiobus_register(fep->mii_bus); 2056 } 2057 2058 if (err) 2059 goto err_out_free_mdio_irq; 2060 2061 mii_cnt++; 2062 2063 /* save fec0 mii_bus */ 2064 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2065 fec0_mii_bus = fep->mii_bus; 2066 2067 return 0; 2068 2069 err_out_free_mdio_irq: 2070 kfree(fep->mii_bus->irq); 2071 err_out_free_mdiobus: 2072 mdiobus_free(fep->mii_bus); 2073 err_out: 2074 return err; 2075 } 2076 2077 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2078 { 2079 if (--mii_cnt == 0) { 2080 mdiobus_unregister(fep->mii_bus); 2081 kfree(fep->mii_bus->irq); 2082 mdiobus_free(fep->mii_bus); 2083 } 2084 } 2085 2086 static int fec_enet_get_settings(struct net_device *ndev, 2087 struct ethtool_cmd *cmd) 2088 { 2089 struct fec_enet_private *fep = netdev_priv(ndev); 2090 struct phy_device *phydev = fep->phy_dev; 2091 2092 if (!phydev) 2093 return -ENODEV; 2094 2095 return phy_ethtool_gset(phydev, cmd); 2096 } 2097 2098 static int fec_enet_set_settings(struct net_device *ndev, 2099 struct ethtool_cmd *cmd) 2100 { 2101 struct fec_enet_private *fep = netdev_priv(ndev); 2102 struct phy_device *phydev = fep->phy_dev; 2103 2104 if (!phydev) 2105 return -ENODEV; 2106 2107 return phy_ethtool_sset(phydev, cmd); 2108 } 2109 2110 static void fec_enet_get_drvinfo(struct net_device *ndev, 2111 struct ethtool_drvinfo *info) 2112 { 2113 struct fec_enet_private *fep = netdev_priv(ndev); 2114 2115 strlcpy(info->driver, fep->pdev->dev.driver->name, 2116 sizeof(info->driver)); 2117 strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); 2118 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2119 } 2120 2121 static int fec_enet_get_regs_len(struct net_device *ndev) 2122 { 2123 struct fec_enet_private *fep = netdev_priv(ndev); 2124 struct resource *r; 2125 int s = 0; 2126 2127 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2128 if (r) 2129 s = resource_size(r); 2130 2131 return s; 2132 } 2133 2134 /* List of registers that can be safety be read to dump them with ethtool */ 2135 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2136 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \ 2137 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28) 2138 static u32 fec_enet_register_offset[] = { 2139 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2140 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2141 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2142 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2143 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2144 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2145 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2146 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2147 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2148 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2149 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2150 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2151 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2152 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2153 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2154 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2155 RMON_T_P_GTE2048, RMON_T_OCTETS, 2156 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2157 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2158 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2159 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2160 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2161 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2162 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2163 RMON_R_P_GTE2048, RMON_R_OCTETS, 2164 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2165 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2166 }; 2167 #else 2168 static u32 fec_enet_register_offset[] = { 2169 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2170 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2171 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2172 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2173 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2174 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2175 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2176 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2177 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2178 }; 2179 #endif 2180 2181 static void fec_enet_get_regs(struct net_device *ndev, 2182 struct ethtool_regs *regs, void *regbuf) 2183 { 2184 struct fec_enet_private *fep = netdev_priv(ndev); 2185 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2186 u32 *buf = (u32 *)regbuf; 2187 u32 i, off; 2188 2189 memset(buf, 0, regs->len); 2190 2191 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2192 off = fec_enet_register_offset[i] / 4; 2193 buf[off] = readl(&theregs[off]); 2194 } 2195 } 2196 2197 static int fec_enet_get_ts_info(struct net_device *ndev, 2198 struct ethtool_ts_info *info) 2199 { 2200 struct fec_enet_private *fep = netdev_priv(ndev); 2201 2202 if (fep->bufdesc_ex) { 2203 2204 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2205 SOF_TIMESTAMPING_RX_SOFTWARE | 2206 SOF_TIMESTAMPING_SOFTWARE | 2207 SOF_TIMESTAMPING_TX_HARDWARE | 2208 SOF_TIMESTAMPING_RX_HARDWARE | 2209 SOF_TIMESTAMPING_RAW_HARDWARE; 2210 if (fep->ptp_clock) 2211 info->phc_index = ptp_clock_index(fep->ptp_clock); 2212 else 2213 info->phc_index = -1; 2214 2215 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2216 (1 << HWTSTAMP_TX_ON); 2217 2218 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2219 (1 << HWTSTAMP_FILTER_ALL); 2220 return 0; 2221 } else { 2222 return ethtool_op_get_ts_info(ndev, info); 2223 } 2224 } 2225 2226 #if !defined(CONFIG_M5272) 2227 2228 static void fec_enet_get_pauseparam(struct net_device *ndev, 2229 struct ethtool_pauseparam *pause) 2230 { 2231 struct fec_enet_private *fep = netdev_priv(ndev); 2232 2233 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2234 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2235 pause->rx_pause = pause->tx_pause; 2236 } 2237 2238 static int fec_enet_set_pauseparam(struct net_device *ndev, 2239 struct ethtool_pauseparam *pause) 2240 { 2241 struct fec_enet_private *fep = netdev_priv(ndev); 2242 2243 if (!fep->phy_dev) 2244 return -ENODEV; 2245 2246 if (pause->tx_pause != pause->rx_pause) { 2247 netdev_info(ndev, 2248 "hardware only support enable/disable both tx and rx"); 2249 return -EINVAL; 2250 } 2251 2252 fep->pause_flag = 0; 2253 2254 /* tx pause must be same as rx pause */ 2255 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2256 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2257 2258 if (pause->rx_pause || pause->autoneg) { 2259 fep->phy_dev->supported |= ADVERTISED_Pause; 2260 fep->phy_dev->advertising |= ADVERTISED_Pause; 2261 } else { 2262 fep->phy_dev->supported &= ~ADVERTISED_Pause; 2263 fep->phy_dev->advertising &= ~ADVERTISED_Pause; 2264 } 2265 2266 if (pause->autoneg) { 2267 if (netif_running(ndev)) 2268 fec_stop(ndev); 2269 phy_start_aneg(fep->phy_dev); 2270 } 2271 if (netif_running(ndev)) { 2272 napi_disable(&fep->napi); 2273 netif_tx_lock_bh(ndev); 2274 fec_restart(ndev); 2275 netif_wake_queue(ndev); 2276 netif_tx_unlock_bh(ndev); 2277 napi_enable(&fep->napi); 2278 } 2279 2280 return 0; 2281 } 2282 2283 static const struct fec_stat { 2284 char name[ETH_GSTRING_LEN]; 2285 u16 offset; 2286 } fec_stats[] = { 2287 /* RMON TX */ 2288 { "tx_dropped", RMON_T_DROP }, 2289 { "tx_packets", RMON_T_PACKETS }, 2290 { "tx_broadcast", RMON_T_BC_PKT }, 2291 { "tx_multicast", RMON_T_MC_PKT }, 2292 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2293 { "tx_undersize", RMON_T_UNDERSIZE }, 2294 { "tx_oversize", RMON_T_OVERSIZE }, 2295 { "tx_fragment", RMON_T_FRAG }, 2296 { "tx_jabber", RMON_T_JAB }, 2297 { "tx_collision", RMON_T_COL }, 2298 { "tx_64byte", RMON_T_P64 }, 2299 { "tx_65to127byte", RMON_T_P65TO127 }, 2300 { "tx_128to255byte", RMON_T_P128TO255 }, 2301 { "tx_256to511byte", RMON_T_P256TO511 }, 2302 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2303 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2304 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2305 { "tx_octets", RMON_T_OCTETS }, 2306 2307 /* IEEE TX */ 2308 { "IEEE_tx_drop", IEEE_T_DROP }, 2309 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2310 { "IEEE_tx_1col", IEEE_T_1COL }, 2311 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2312 { "IEEE_tx_def", IEEE_T_DEF }, 2313 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2314 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2315 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2316 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2317 { "IEEE_tx_sqe", IEEE_T_SQE }, 2318 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2319 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2320 2321 /* RMON RX */ 2322 { "rx_packets", RMON_R_PACKETS }, 2323 { "rx_broadcast", RMON_R_BC_PKT }, 2324 { "rx_multicast", RMON_R_MC_PKT }, 2325 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2326 { "rx_undersize", RMON_R_UNDERSIZE }, 2327 { "rx_oversize", RMON_R_OVERSIZE }, 2328 { "rx_fragment", RMON_R_FRAG }, 2329 { "rx_jabber", RMON_R_JAB }, 2330 { "rx_64byte", RMON_R_P64 }, 2331 { "rx_65to127byte", RMON_R_P65TO127 }, 2332 { "rx_128to255byte", RMON_R_P128TO255 }, 2333 { "rx_256to511byte", RMON_R_P256TO511 }, 2334 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2335 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2336 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2337 { "rx_octets", RMON_R_OCTETS }, 2338 2339 /* IEEE RX */ 2340 { "IEEE_rx_drop", IEEE_R_DROP }, 2341 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2342 { "IEEE_rx_crc", IEEE_R_CRC }, 2343 { "IEEE_rx_align", IEEE_R_ALIGN }, 2344 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2345 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2346 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2347 }; 2348 2349 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2350 struct ethtool_stats *stats, u64 *data) 2351 { 2352 struct fec_enet_private *fep = netdev_priv(dev); 2353 int i; 2354 2355 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2356 data[i] = readl(fep->hwp + fec_stats[i].offset); 2357 } 2358 2359 static void fec_enet_get_strings(struct net_device *netdev, 2360 u32 stringset, u8 *data) 2361 { 2362 int i; 2363 switch (stringset) { 2364 case ETH_SS_STATS: 2365 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2366 memcpy(data + i * ETH_GSTRING_LEN, 2367 fec_stats[i].name, ETH_GSTRING_LEN); 2368 break; 2369 } 2370 } 2371 2372 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2373 { 2374 switch (sset) { 2375 case ETH_SS_STATS: 2376 return ARRAY_SIZE(fec_stats); 2377 default: 2378 return -EOPNOTSUPP; 2379 } 2380 } 2381 #endif /* !defined(CONFIG_M5272) */ 2382 2383 static int fec_enet_nway_reset(struct net_device *dev) 2384 { 2385 struct fec_enet_private *fep = netdev_priv(dev); 2386 struct phy_device *phydev = fep->phy_dev; 2387 2388 if (!phydev) 2389 return -ENODEV; 2390 2391 return genphy_restart_aneg(phydev); 2392 } 2393 2394 /* ITR clock source is enet system clock (clk_ahb). 2395 * TCTT unit is cycle_ns * 64 cycle 2396 * So, the ICTT value = X us / (cycle_ns * 64) 2397 */ 2398 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2399 { 2400 struct fec_enet_private *fep = netdev_priv(ndev); 2401 2402 return us * (fep->itr_clk_rate / 64000) / 1000; 2403 } 2404 2405 /* Set threshold for interrupt coalescing */ 2406 static void fec_enet_itr_coal_set(struct net_device *ndev) 2407 { 2408 struct fec_enet_private *fep = netdev_priv(ndev); 2409 int rx_itr, tx_itr; 2410 2411 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 2412 return; 2413 2414 /* Must be greater than zero to avoid unpredictable behavior */ 2415 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2416 !fep->tx_time_itr || !fep->tx_pkts_itr) 2417 return; 2418 2419 /* Select enet system clock as Interrupt Coalescing 2420 * timer Clock Source 2421 */ 2422 rx_itr = FEC_ITR_CLK_SEL; 2423 tx_itr = FEC_ITR_CLK_SEL; 2424 2425 /* set ICFT and ICTT */ 2426 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2427 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2428 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2429 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2430 2431 rx_itr |= FEC_ITR_EN; 2432 tx_itr |= FEC_ITR_EN; 2433 2434 writel(tx_itr, fep->hwp + FEC_TXIC0); 2435 writel(rx_itr, fep->hwp + FEC_RXIC0); 2436 writel(tx_itr, fep->hwp + FEC_TXIC1); 2437 writel(rx_itr, fep->hwp + FEC_RXIC1); 2438 writel(tx_itr, fep->hwp + FEC_TXIC2); 2439 writel(rx_itr, fep->hwp + FEC_RXIC2); 2440 } 2441 2442 static int 2443 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2444 { 2445 struct fec_enet_private *fep = netdev_priv(ndev); 2446 2447 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 2448 return -EOPNOTSUPP; 2449 2450 ec->rx_coalesce_usecs = fep->rx_time_itr; 2451 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2452 2453 ec->tx_coalesce_usecs = fep->tx_time_itr; 2454 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2455 2456 return 0; 2457 } 2458 2459 static int 2460 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2461 { 2462 struct fec_enet_private *fep = netdev_priv(ndev); 2463 unsigned int cycle; 2464 2465 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 2466 return -EOPNOTSUPP; 2467 2468 if (ec->rx_max_coalesced_frames > 255) { 2469 pr_err("Rx coalesced frames exceed hardware limiation"); 2470 return -EINVAL; 2471 } 2472 2473 if (ec->tx_max_coalesced_frames > 255) { 2474 pr_err("Tx coalesced frame exceed hardware limiation"); 2475 return -EINVAL; 2476 } 2477 2478 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); 2479 if (cycle > 0xFFFF) { 2480 pr_err("Rx coalesed usec exceeed hardware limiation"); 2481 return -EINVAL; 2482 } 2483 2484 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); 2485 if (cycle > 0xFFFF) { 2486 pr_err("Rx coalesed usec exceeed hardware limiation"); 2487 return -EINVAL; 2488 } 2489 2490 fep->rx_time_itr = ec->rx_coalesce_usecs; 2491 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2492 2493 fep->tx_time_itr = ec->tx_coalesce_usecs; 2494 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2495 2496 fec_enet_itr_coal_set(ndev); 2497 2498 return 0; 2499 } 2500 2501 static void fec_enet_itr_coal_init(struct net_device *ndev) 2502 { 2503 struct ethtool_coalesce ec; 2504 2505 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2506 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2507 2508 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2509 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2510 2511 fec_enet_set_coalesce(ndev, &ec); 2512 } 2513 2514 static int fec_enet_get_tunable(struct net_device *netdev, 2515 const struct ethtool_tunable *tuna, 2516 void *data) 2517 { 2518 struct fec_enet_private *fep = netdev_priv(netdev); 2519 int ret = 0; 2520 2521 switch (tuna->id) { 2522 case ETHTOOL_RX_COPYBREAK: 2523 *(u32 *)data = fep->rx_copybreak; 2524 break; 2525 default: 2526 ret = -EINVAL; 2527 break; 2528 } 2529 2530 return ret; 2531 } 2532 2533 static int fec_enet_set_tunable(struct net_device *netdev, 2534 const struct ethtool_tunable *tuna, 2535 const void *data) 2536 { 2537 struct fec_enet_private *fep = netdev_priv(netdev); 2538 int ret = 0; 2539 2540 switch (tuna->id) { 2541 case ETHTOOL_RX_COPYBREAK: 2542 fep->rx_copybreak = *(u32 *)data; 2543 break; 2544 default: 2545 ret = -EINVAL; 2546 break; 2547 } 2548 2549 return ret; 2550 } 2551 2552 static void 2553 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2554 { 2555 struct fec_enet_private *fep = netdev_priv(ndev); 2556 2557 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2558 wol->supported = WAKE_MAGIC; 2559 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2560 } else { 2561 wol->supported = wol->wolopts = 0; 2562 } 2563 } 2564 2565 static int 2566 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2567 { 2568 struct fec_enet_private *fep = netdev_priv(ndev); 2569 2570 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2571 return -EINVAL; 2572 2573 if (wol->wolopts & ~WAKE_MAGIC) 2574 return -EINVAL; 2575 2576 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2577 if (device_may_wakeup(&ndev->dev)) { 2578 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2579 if (fep->irq[0] > 0) 2580 enable_irq_wake(fep->irq[0]); 2581 } else { 2582 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2583 if (fep->irq[0] > 0) 2584 disable_irq_wake(fep->irq[0]); 2585 } 2586 2587 return 0; 2588 } 2589 2590 static const struct ethtool_ops fec_enet_ethtool_ops = { 2591 .get_settings = fec_enet_get_settings, 2592 .set_settings = fec_enet_set_settings, 2593 .get_drvinfo = fec_enet_get_drvinfo, 2594 .get_regs_len = fec_enet_get_regs_len, 2595 .get_regs = fec_enet_get_regs, 2596 .nway_reset = fec_enet_nway_reset, 2597 .get_link = ethtool_op_get_link, 2598 .get_coalesce = fec_enet_get_coalesce, 2599 .set_coalesce = fec_enet_set_coalesce, 2600 #ifndef CONFIG_M5272 2601 .get_pauseparam = fec_enet_get_pauseparam, 2602 .set_pauseparam = fec_enet_set_pauseparam, 2603 .get_strings = fec_enet_get_strings, 2604 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2605 .get_sset_count = fec_enet_get_sset_count, 2606 #endif 2607 .get_ts_info = fec_enet_get_ts_info, 2608 .get_tunable = fec_enet_get_tunable, 2609 .set_tunable = fec_enet_set_tunable, 2610 .get_wol = fec_enet_get_wol, 2611 .set_wol = fec_enet_set_wol, 2612 }; 2613 2614 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2615 { 2616 struct fec_enet_private *fep = netdev_priv(ndev); 2617 struct phy_device *phydev = fep->phy_dev; 2618 2619 if (!netif_running(ndev)) 2620 return -EINVAL; 2621 2622 if (!phydev) 2623 return -ENODEV; 2624 2625 if (fep->bufdesc_ex) { 2626 if (cmd == SIOCSHWTSTAMP) 2627 return fec_ptp_set(ndev, rq); 2628 if (cmd == SIOCGHWTSTAMP) 2629 return fec_ptp_get(ndev, rq); 2630 } 2631 2632 return phy_mii_ioctl(phydev, rq, cmd); 2633 } 2634 2635 static void fec_enet_free_buffers(struct net_device *ndev) 2636 { 2637 struct fec_enet_private *fep = netdev_priv(ndev); 2638 unsigned int i; 2639 struct sk_buff *skb; 2640 struct bufdesc *bdp; 2641 struct fec_enet_priv_tx_q *txq; 2642 struct fec_enet_priv_rx_q *rxq; 2643 unsigned int q; 2644 2645 for (q = 0; q < fep->num_rx_queues; q++) { 2646 rxq = fep->rx_queue[q]; 2647 bdp = rxq->rx_bd_base; 2648 for (i = 0; i < rxq->rx_ring_size; i++) { 2649 skb = rxq->rx_skbuff[i]; 2650 rxq->rx_skbuff[i] = NULL; 2651 if (skb) { 2652 dma_unmap_single(&fep->pdev->dev, 2653 bdp->cbd_bufaddr, 2654 FEC_ENET_RX_FRSIZE - fep->rx_align, 2655 DMA_FROM_DEVICE); 2656 dev_kfree_skb(skb); 2657 } 2658 bdp = fec_enet_get_nextdesc(bdp, fep, q); 2659 } 2660 } 2661 2662 for (q = 0; q < fep->num_tx_queues; q++) { 2663 txq = fep->tx_queue[q]; 2664 bdp = txq->tx_bd_base; 2665 for (i = 0; i < txq->tx_ring_size; i++) { 2666 kfree(txq->tx_bounce[i]); 2667 txq->tx_bounce[i] = NULL; 2668 skb = txq->tx_skbuff[i]; 2669 txq->tx_skbuff[i] = NULL; 2670 dev_kfree_skb(skb); 2671 } 2672 } 2673 } 2674 2675 static void fec_enet_free_queue(struct net_device *ndev) 2676 { 2677 struct fec_enet_private *fep = netdev_priv(ndev); 2678 int i; 2679 struct fec_enet_priv_tx_q *txq; 2680 2681 for (i = 0; i < fep->num_tx_queues; i++) 2682 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2683 txq = fep->tx_queue[i]; 2684 dma_free_coherent(NULL, 2685 txq->tx_ring_size * TSO_HEADER_SIZE, 2686 txq->tso_hdrs, 2687 txq->tso_hdrs_dma); 2688 } 2689 2690 for (i = 0; i < fep->num_rx_queues; i++) 2691 kfree(fep->rx_queue[i]); 2692 for (i = 0; i < fep->num_tx_queues; i++) 2693 kfree(fep->tx_queue[i]); 2694 } 2695 2696 static int fec_enet_alloc_queue(struct net_device *ndev) 2697 { 2698 struct fec_enet_private *fep = netdev_priv(ndev); 2699 int i; 2700 int ret = 0; 2701 struct fec_enet_priv_tx_q *txq; 2702 2703 for (i = 0; i < fep->num_tx_queues; i++) { 2704 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2705 if (!txq) { 2706 ret = -ENOMEM; 2707 goto alloc_failed; 2708 } 2709 2710 fep->tx_queue[i] = txq; 2711 txq->tx_ring_size = TX_RING_SIZE; 2712 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size; 2713 2714 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2715 txq->tx_wake_threshold = 2716 (txq->tx_ring_size - txq->tx_stop_threshold) / 2; 2717 2718 txq->tso_hdrs = dma_alloc_coherent(NULL, 2719 txq->tx_ring_size * TSO_HEADER_SIZE, 2720 &txq->tso_hdrs_dma, 2721 GFP_KERNEL); 2722 if (!txq->tso_hdrs) { 2723 ret = -ENOMEM; 2724 goto alloc_failed; 2725 } 2726 } 2727 2728 for (i = 0; i < fep->num_rx_queues; i++) { 2729 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2730 GFP_KERNEL); 2731 if (!fep->rx_queue[i]) { 2732 ret = -ENOMEM; 2733 goto alloc_failed; 2734 } 2735 2736 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE; 2737 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size; 2738 } 2739 return ret; 2740 2741 alloc_failed: 2742 fec_enet_free_queue(ndev); 2743 return ret; 2744 } 2745 2746 static int 2747 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2748 { 2749 struct fec_enet_private *fep = netdev_priv(ndev); 2750 unsigned int i; 2751 struct sk_buff *skb; 2752 struct bufdesc *bdp; 2753 struct fec_enet_priv_rx_q *rxq; 2754 2755 rxq = fep->rx_queue[queue]; 2756 bdp = rxq->rx_bd_base; 2757 for (i = 0; i < rxq->rx_ring_size; i++) { 2758 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2759 if (!skb) 2760 goto err_alloc; 2761 2762 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2763 dev_kfree_skb(skb); 2764 goto err_alloc; 2765 } 2766 2767 rxq->rx_skbuff[i] = skb; 2768 bdp->cbd_sc = BD_ENET_RX_EMPTY; 2769 2770 if (fep->bufdesc_ex) { 2771 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2772 ebdp->cbd_esc = BD_ENET_RX_INT; 2773 } 2774 2775 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 2776 } 2777 2778 /* Set the last buffer to wrap. */ 2779 bdp = fec_enet_get_prevdesc(bdp, fep, queue); 2780 bdp->cbd_sc |= BD_SC_WRAP; 2781 return 0; 2782 2783 err_alloc: 2784 fec_enet_free_buffers(ndev); 2785 return -ENOMEM; 2786 } 2787 2788 static int 2789 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2790 { 2791 struct fec_enet_private *fep = netdev_priv(ndev); 2792 unsigned int i; 2793 struct bufdesc *bdp; 2794 struct fec_enet_priv_tx_q *txq; 2795 2796 txq = fep->tx_queue[queue]; 2797 bdp = txq->tx_bd_base; 2798 for (i = 0; i < txq->tx_ring_size; i++) { 2799 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2800 if (!txq->tx_bounce[i]) 2801 goto err_alloc; 2802 2803 bdp->cbd_sc = 0; 2804 bdp->cbd_bufaddr = 0; 2805 2806 if (fep->bufdesc_ex) { 2807 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2808 ebdp->cbd_esc = BD_ENET_TX_INT; 2809 } 2810 2811 bdp = fec_enet_get_nextdesc(bdp, fep, queue); 2812 } 2813 2814 /* Set the last buffer to wrap. */ 2815 bdp = fec_enet_get_prevdesc(bdp, fep, queue); 2816 bdp->cbd_sc |= BD_SC_WRAP; 2817 2818 return 0; 2819 2820 err_alloc: 2821 fec_enet_free_buffers(ndev); 2822 return -ENOMEM; 2823 } 2824 2825 static int fec_enet_alloc_buffers(struct net_device *ndev) 2826 { 2827 struct fec_enet_private *fep = netdev_priv(ndev); 2828 unsigned int i; 2829 2830 for (i = 0; i < fep->num_rx_queues; i++) 2831 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2832 return -ENOMEM; 2833 2834 for (i = 0; i < fep->num_tx_queues; i++) 2835 if (fec_enet_alloc_txq_buffers(ndev, i)) 2836 return -ENOMEM; 2837 return 0; 2838 } 2839 2840 static int 2841 fec_enet_open(struct net_device *ndev) 2842 { 2843 struct fec_enet_private *fep = netdev_priv(ndev); 2844 int ret; 2845 2846 pinctrl_pm_select_default_state(&fep->pdev->dev); 2847 ret = fec_enet_clk_enable(ndev, true); 2848 if (ret) 2849 return ret; 2850 2851 /* I should reset the ring buffers here, but I don't yet know 2852 * a simple way to do that. 2853 */ 2854 2855 ret = fec_enet_alloc_buffers(ndev); 2856 if (ret) 2857 goto err_enet_alloc; 2858 2859 /* Probe and connect to PHY when open the interface */ 2860 ret = fec_enet_mii_probe(ndev); 2861 if (ret) 2862 goto err_enet_mii_probe; 2863 2864 fec_restart(ndev); 2865 napi_enable(&fep->napi); 2866 phy_start(fep->phy_dev); 2867 netif_tx_start_all_queues(ndev); 2868 2869 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2870 FEC_WOL_FLAG_ENABLE); 2871 2872 return 0; 2873 2874 err_enet_mii_probe: 2875 fec_enet_free_buffers(ndev); 2876 err_enet_alloc: 2877 fec_enet_clk_enable(ndev, false); 2878 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2879 return ret; 2880 } 2881 2882 static int 2883 fec_enet_close(struct net_device *ndev) 2884 { 2885 struct fec_enet_private *fep = netdev_priv(ndev); 2886 2887 phy_stop(fep->phy_dev); 2888 2889 if (netif_device_present(ndev)) { 2890 napi_disable(&fep->napi); 2891 netif_tx_disable(ndev); 2892 fec_stop(ndev); 2893 } 2894 2895 phy_disconnect(fep->phy_dev); 2896 fep->phy_dev = NULL; 2897 2898 fec_enet_clk_enable(ndev, false); 2899 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2900 fec_enet_free_buffers(ndev); 2901 2902 return 0; 2903 } 2904 2905 /* Set or clear the multicast filter for this adaptor. 2906 * Skeleton taken from sunlance driver. 2907 * The CPM Ethernet implementation allows Multicast as well as individual 2908 * MAC address filtering. Some of the drivers check to make sure it is 2909 * a group multicast address, and discard those that are not. I guess I 2910 * will do the same for now, but just remove the test if you want 2911 * individual filtering as well (do the upper net layers want or support 2912 * this kind of feature?). 2913 */ 2914 2915 #define HASH_BITS 6 /* #bits in hash */ 2916 #define CRC32_POLY 0xEDB88320 2917 2918 static void set_multicast_list(struct net_device *ndev) 2919 { 2920 struct fec_enet_private *fep = netdev_priv(ndev); 2921 struct netdev_hw_addr *ha; 2922 unsigned int i, bit, data, crc, tmp; 2923 unsigned char hash; 2924 2925 if (ndev->flags & IFF_PROMISC) { 2926 tmp = readl(fep->hwp + FEC_R_CNTRL); 2927 tmp |= 0x8; 2928 writel(tmp, fep->hwp + FEC_R_CNTRL); 2929 return; 2930 } 2931 2932 tmp = readl(fep->hwp + FEC_R_CNTRL); 2933 tmp &= ~0x8; 2934 writel(tmp, fep->hwp + FEC_R_CNTRL); 2935 2936 if (ndev->flags & IFF_ALLMULTI) { 2937 /* Catch all multicast addresses, so set the 2938 * filter to all 1's 2939 */ 2940 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2941 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2942 2943 return; 2944 } 2945 2946 /* Clear filter and add the addresses in hash register 2947 */ 2948 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2949 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2950 2951 netdev_for_each_mc_addr(ha, ndev) { 2952 /* calculate crc32 value of mac address */ 2953 crc = 0xffffffff; 2954 2955 for (i = 0; i < ndev->addr_len; i++) { 2956 data = ha->addr[i]; 2957 for (bit = 0; bit < 8; bit++, data >>= 1) { 2958 crc = (crc >> 1) ^ 2959 (((crc ^ data) & 1) ? CRC32_POLY : 0); 2960 } 2961 } 2962 2963 /* only upper 6 bits (HASH_BITS) are used 2964 * which point to specific bit in he hash registers 2965 */ 2966 hash = (crc >> (32 - HASH_BITS)) & 0x3f; 2967 2968 if (hash > 31) { 2969 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2970 tmp |= 1 << (hash - 32); 2971 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 2972 } else { 2973 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2974 tmp |= 1 << hash; 2975 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 2976 } 2977 } 2978 } 2979 2980 /* Set a MAC change in hardware. */ 2981 static int 2982 fec_set_mac_address(struct net_device *ndev, void *p) 2983 { 2984 struct fec_enet_private *fep = netdev_priv(ndev); 2985 struct sockaddr *addr = p; 2986 2987 if (addr) { 2988 if (!is_valid_ether_addr(addr->sa_data)) 2989 return -EADDRNOTAVAIL; 2990 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 2991 } 2992 2993 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 2994 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 2995 fep->hwp + FEC_ADDR_LOW); 2996 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 2997 fep->hwp + FEC_ADDR_HIGH); 2998 return 0; 2999 } 3000 3001 #ifdef CONFIG_NET_POLL_CONTROLLER 3002 /** 3003 * fec_poll_controller - FEC Poll controller function 3004 * @dev: The FEC network adapter 3005 * 3006 * Polled functionality used by netconsole and others in non interrupt mode 3007 * 3008 */ 3009 static void fec_poll_controller(struct net_device *dev) 3010 { 3011 int i; 3012 struct fec_enet_private *fep = netdev_priv(dev); 3013 3014 for (i = 0; i < FEC_IRQ_NUM; i++) { 3015 if (fep->irq[i] > 0) { 3016 disable_irq(fep->irq[i]); 3017 fec_enet_interrupt(fep->irq[i], dev); 3018 enable_irq(fep->irq[i]); 3019 } 3020 } 3021 } 3022 #endif 3023 3024 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM 3025 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3026 netdev_features_t features) 3027 { 3028 struct fec_enet_private *fep = netdev_priv(netdev); 3029 netdev_features_t changed = features ^ netdev->features; 3030 3031 netdev->features = features; 3032 3033 /* Receive checksum has been changed */ 3034 if (changed & NETIF_F_RXCSUM) { 3035 if (features & NETIF_F_RXCSUM) 3036 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3037 else 3038 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3039 } 3040 } 3041 3042 static int fec_set_features(struct net_device *netdev, 3043 netdev_features_t features) 3044 { 3045 struct fec_enet_private *fep = netdev_priv(netdev); 3046 netdev_features_t changed = features ^ netdev->features; 3047 3048 if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) { 3049 napi_disable(&fep->napi); 3050 netif_tx_lock_bh(netdev); 3051 fec_stop(netdev); 3052 fec_enet_set_netdev_features(netdev, features); 3053 fec_restart(netdev); 3054 netif_tx_wake_all_queues(netdev); 3055 netif_tx_unlock_bh(netdev); 3056 napi_enable(&fep->napi); 3057 } else { 3058 fec_enet_set_netdev_features(netdev, features); 3059 } 3060 3061 return 0; 3062 } 3063 3064 static const struct net_device_ops fec_netdev_ops = { 3065 .ndo_open = fec_enet_open, 3066 .ndo_stop = fec_enet_close, 3067 .ndo_start_xmit = fec_enet_start_xmit, 3068 .ndo_set_rx_mode = set_multicast_list, 3069 .ndo_change_mtu = eth_change_mtu, 3070 .ndo_validate_addr = eth_validate_addr, 3071 .ndo_tx_timeout = fec_timeout, 3072 .ndo_set_mac_address = fec_set_mac_address, 3073 .ndo_do_ioctl = fec_enet_ioctl, 3074 #ifdef CONFIG_NET_POLL_CONTROLLER 3075 .ndo_poll_controller = fec_poll_controller, 3076 #endif 3077 .ndo_set_features = fec_set_features, 3078 }; 3079 3080 /* 3081 * XXX: We need to clean up on failure exits here. 3082 * 3083 */ 3084 static int fec_enet_init(struct net_device *ndev) 3085 { 3086 struct fec_enet_private *fep = netdev_priv(ndev); 3087 struct fec_enet_priv_tx_q *txq; 3088 struct fec_enet_priv_rx_q *rxq; 3089 struct bufdesc *cbd_base; 3090 dma_addr_t bd_dma; 3091 int bd_size; 3092 unsigned int i; 3093 3094 #if defined(CONFIG_ARM) 3095 fep->rx_align = 0xf; 3096 fep->tx_align = 0xf; 3097 #else 3098 fep->rx_align = 0x3; 3099 fep->tx_align = 0x3; 3100 #endif 3101 3102 fec_enet_alloc_queue(ndev); 3103 3104 if (fep->bufdesc_ex) 3105 fep->bufdesc_size = sizeof(struct bufdesc_ex); 3106 else 3107 fep->bufdesc_size = sizeof(struct bufdesc); 3108 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * 3109 fep->bufdesc_size; 3110 3111 /* Allocate memory for buffer descriptors. */ 3112 cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma, 3113 GFP_KERNEL); 3114 if (!cbd_base) { 3115 return -ENOMEM; 3116 } 3117 3118 memset(cbd_base, 0, bd_size); 3119 3120 /* Get the Ethernet address */ 3121 fec_get_mac(ndev); 3122 /* make sure MAC we just acquired is programmed into the hw */ 3123 fec_set_mac_address(ndev, NULL); 3124 3125 /* Set receive and transmit descriptor base. */ 3126 for (i = 0; i < fep->num_rx_queues; i++) { 3127 rxq = fep->rx_queue[i]; 3128 rxq->index = i; 3129 rxq->rx_bd_base = (struct bufdesc *)cbd_base; 3130 rxq->bd_dma = bd_dma; 3131 if (fep->bufdesc_ex) { 3132 bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size; 3133 cbd_base = (struct bufdesc *) 3134 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size); 3135 } else { 3136 bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size; 3137 cbd_base += rxq->rx_ring_size; 3138 } 3139 } 3140 3141 for (i = 0; i < fep->num_tx_queues; i++) { 3142 txq = fep->tx_queue[i]; 3143 txq->index = i; 3144 txq->tx_bd_base = (struct bufdesc *)cbd_base; 3145 txq->bd_dma = bd_dma; 3146 if (fep->bufdesc_ex) { 3147 bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size; 3148 cbd_base = (struct bufdesc *) 3149 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size); 3150 } else { 3151 bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size; 3152 cbd_base += txq->tx_ring_size; 3153 } 3154 } 3155 3156 3157 /* The FEC Ethernet specific entries in the device structure */ 3158 ndev->watchdog_timeo = TX_TIMEOUT; 3159 ndev->netdev_ops = &fec_netdev_ops; 3160 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3161 3162 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3163 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3164 3165 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3166 /* enable hw VLAN support */ 3167 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3168 3169 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3170 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3171 3172 /* enable hw accelerator */ 3173 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3174 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3175 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3176 } 3177 3178 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3179 fep->tx_align = 0; 3180 fep->rx_align = 0x3f; 3181 } 3182 3183 ndev->hw_features = ndev->features; 3184 3185 fec_restart(ndev); 3186 3187 return 0; 3188 } 3189 3190 #ifdef CONFIG_OF 3191 static void fec_reset_phy(struct platform_device *pdev) 3192 { 3193 int err, phy_reset; 3194 int msec = 1; 3195 struct device_node *np = pdev->dev.of_node; 3196 3197 if (!np) 3198 return; 3199 3200 of_property_read_u32(np, "phy-reset-duration", &msec); 3201 /* A sane reset duration should not be longer than 1s */ 3202 if (msec > 1000) 3203 msec = 1; 3204 3205 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3206 if (!gpio_is_valid(phy_reset)) 3207 return; 3208 3209 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3210 GPIOF_OUT_INIT_LOW, "phy-reset"); 3211 if (err) { 3212 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3213 return; 3214 } 3215 msleep(msec); 3216 gpio_set_value(phy_reset, 1); 3217 } 3218 #else /* CONFIG_OF */ 3219 static void fec_reset_phy(struct platform_device *pdev) 3220 { 3221 /* 3222 * In case of platform probe, the reset has been done 3223 * by machine code. 3224 */ 3225 } 3226 #endif /* CONFIG_OF */ 3227 3228 static void 3229 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3230 { 3231 struct device_node *np = pdev->dev.of_node; 3232 int err; 3233 3234 *num_tx = *num_rx = 1; 3235 3236 if (!np || !of_device_is_available(np)) 3237 return; 3238 3239 /* parse the num of tx and rx queues */ 3240 err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3241 if (err) 3242 *num_tx = 1; 3243 3244 err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3245 if (err) 3246 *num_rx = 1; 3247 3248 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3249 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3250 *num_tx); 3251 *num_tx = 1; 3252 return; 3253 } 3254 3255 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3256 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3257 *num_rx); 3258 *num_rx = 1; 3259 return; 3260 } 3261 3262 } 3263 3264 static int 3265 fec_probe(struct platform_device *pdev) 3266 { 3267 struct fec_enet_private *fep; 3268 struct fec_platform_data *pdata; 3269 struct net_device *ndev; 3270 int i, irq, ret = 0; 3271 struct resource *r; 3272 const struct of_device_id *of_id; 3273 static int dev_id; 3274 struct device_node *np = pdev->dev.of_node, *phy_node; 3275 int num_tx_qs; 3276 int num_rx_qs; 3277 3278 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3279 3280 /* Init network device */ 3281 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private), 3282 num_tx_qs, num_rx_qs); 3283 if (!ndev) 3284 return -ENOMEM; 3285 3286 SET_NETDEV_DEV(ndev, &pdev->dev); 3287 3288 /* setup board info structure */ 3289 fep = netdev_priv(ndev); 3290 3291 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3292 if (of_id) 3293 pdev->id_entry = of_id->data; 3294 fep->quirks = pdev->id_entry->driver_data; 3295 3296 fep->netdev = ndev; 3297 fep->num_rx_queues = num_rx_qs; 3298 fep->num_tx_queues = num_tx_qs; 3299 3300 #if !defined(CONFIG_M5272) 3301 /* default enable pause frame auto negotiation */ 3302 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3303 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3304 #endif 3305 3306 /* Select default pin state */ 3307 pinctrl_pm_select_default_state(&pdev->dev); 3308 3309 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3310 fep->hwp = devm_ioremap_resource(&pdev->dev, r); 3311 if (IS_ERR(fep->hwp)) { 3312 ret = PTR_ERR(fep->hwp); 3313 goto failed_ioremap; 3314 } 3315 3316 fep->pdev = pdev; 3317 fep->dev_id = dev_id++; 3318 3319 platform_set_drvdata(pdev, ndev); 3320 3321 if (of_get_property(np, "fsl,magic-packet", NULL)) 3322 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3323 3324 phy_node = of_parse_phandle(np, "phy-handle", 0); 3325 if (!phy_node && of_phy_is_fixed_link(np)) { 3326 ret = of_phy_register_fixed_link(np); 3327 if (ret < 0) { 3328 dev_err(&pdev->dev, 3329 "broken fixed-link specification\n"); 3330 goto failed_phy; 3331 } 3332 phy_node = of_node_get(np); 3333 } 3334 fep->phy_node = phy_node; 3335 3336 ret = of_get_phy_mode(pdev->dev.of_node); 3337 if (ret < 0) { 3338 pdata = dev_get_platdata(&pdev->dev); 3339 if (pdata) 3340 fep->phy_interface = pdata->phy; 3341 else 3342 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3343 } else { 3344 fep->phy_interface = ret; 3345 } 3346 3347 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3348 if (IS_ERR(fep->clk_ipg)) { 3349 ret = PTR_ERR(fep->clk_ipg); 3350 goto failed_clk; 3351 } 3352 3353 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3354 if (IS_ERR(fep->clk_ahb)) { 3355 ret = PTR_ERR(fep->clk_ahb); 3356 goto failed_clk; 3357 } 3358 3359 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3360 3361 /* enet_out is optional, depends on board */ 3362 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3363 if (IS_ERR(fep->clk_enet_out)) 3364 fep->clk_enet_out = NULL; 3365 3366 fep->ptp_clk_on = false; 3367 mutex_init(&fep->ptp_clk_mutex); 3368 3369 /* clk_ref is optional, depends on board */ 3370 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3371 if (IS_ERR(fep->clk_ref)) 3372 fep->clk_ref = NULL; 3373 3374 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3375 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3376 if (IS_ERR(fep->clk_ptp)) { 3377 fep->clk_ptp = NULL; 3378 fep->bufdesc_ex = false; 3379 } 3380 3381 ret = fec_enet_clk_enable(ndev, true); 3382 if (ret) 3383 goto failed_clk; 3384 3385 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); 3386 if (!IS_ERR(fep->reg_phy)) { 3387 ret = regulator_enable(fep->reg_phy); 3388 if (ret) { 3389 dev_err(&pdev->dev, 3390 "Failed to enable phy regulator: %d\n", ret); 3391 goto failed_regulator; 3392 } 3393 } else { 3394 fep->reg_phy = NULL; 3395 } 3396 3397 fec_reset_phy(pdev); 3398 3399 if (fep->bufdesc_ex) 3400 fec_ptp_init(pdev); 3401 3402 ret = fec_enet_init(ndev); 3403 if (ret) 3404 goto failed_init; 3405 3406 for (i = 0; i < FEC_IRQ_NUM; i++) { 3407 irq = platform_get_irq(pdev, i); 3408 if (irq < 0) { 3409 if (i) 3410 break; 3411 ret = irq; 3412 goto failed_irq; 3413 } 3414 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3415 0, pdev->name, ndev); 3416 if (ret) 3417 goto failed_irq; 3418 3419 fep->irq[i] = irq; 3420 } 3421 3422 init_completion(&fep->mdio_done); 3423 ret = fec_enet_mii_init(pdev); 3424 if (ret) 3425 goto failed_mii_init; 3426 3427 /* Carrier starts down, phylib will bring it up */ 3428 netif_carrier_off(ndev); 3429 fec_enet_clk_enable(ndev, false); 3430 pinctrl_pm_select_sleep_state(&pdev->dev); 3431 3432 ret = register_netdev(ndev); 3433 if (ret) 3434 goto failed_register; 3435 3436 device_init_wakeup(&ndev->dev, fep->wol_flag & 3437 FEC_WOL_HAS_MAGIC_PACKET); 3438 3439 if (fep->bufdesc_ex && fep->ptp_clock) 3440 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3441 3442 fep->rx_copybreak = COPYBREAK_DEFAULT; 3443 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3444 return 0; 3445 3446 failed_register: 3447 fec_enet_mii_remove(fep); 3448 failed_mii_init: 3449 failed_irq: 3450 failed_init: 3451 if (fep->reg_phy) 3452 regulator_disable(fep->reg_phy); 3453 failed_regulator: 3454 fec_enet_clk_enable(ndev, false); 3455 failed_clk: 3456 failed_phy: 3457 of_node_put(phy_node); 3458 failed_ioremap: 3459 free_netdev(ndev); 3460 3461 return ret; 3462 } 3463 3464 static int 3465 fec_drv_remove(struct platform_device *pdev) 3466 { 3467 struct net_device *ndev = platform_get_drvdata(pdev); 3468 struct fec_enet_private *fep = netdev_priv(ndev); 3469 3470 cancel_delayed_work_sync(&fep->time_keep); 3471 cancel_work_sync(&fep->tx_timeout_work); 3472 unregister_netdev(ndev); 3473 fec_enet_mii_remove(fep); 3474 if (fep->reg_phy) 3475 regulator_disable(fep->reg_phy); 3476 if (fep->ptp_clock) 3477 ptp_clock_unregister(fep->ptp_clock); 3478 of_node_put(fep->phy_node); 3479 free_netdev(ndev); 3480 3481 return 0; 3482 } 3483 3484 static int __maybe_unused fec_suspend(struct device *dev) 3485 { 3486 struct net_device *ndev = dev_get_drvdata(dev); 3487 struct fec_enet_private *fep = netdev_priv(ndev); 3488 3489 rtnl_lock(); 3490 if (netif_running(ndev)) { 3491 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3492 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3493 phy_stop(fep->phy_dev); 3494 napi_disable(&fep->napi); 3495 netif_tx_lock_bh(ndev); 3496 netif_device_detach(ndev); 3497 netif_tx_unlock_bh(ndev); 3498 fec_stop(ndev); 3499 fec_enet_clk_enable(ndev, false); 3500 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3501 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3502 } 3503 rtnl_unlock(); 3504 3505 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3506 regulator_disable(fep->reg_phy); 3507 3508 /* SOC supply clock to phy, when clock is disabled, phy link down 3509 * SOC control phy regulator, when regulator is disabled, phy link down 3510 */ 3511 if (fep->clk_enet_out || fep->reg_phy) 3512 fep->link = 0; 3513 3514 return 0; 3515 } 3516 3517 static int __maybe_unused fec_resume(struct device *dev) 3518 { 3519 struct net_device *ndev = dev_get_drvdata(dev); 3520 struct fec_enet_private *fep = netdev_priv(ndev); 3521 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 3522 int ret; 3523 int val; 3524 3525 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3526 ret = regulator_enable(fep->reg_phy); 3527 if (ret) 3528 return ret; 3529 } 3530 3531 rtnl_lock(); 3532 if (netif_running(ndev)) { 3533 ret = fec_enet_clk_enable(ndev, true); 3534 if (ret) { 3535 rtnl_unlock(); 3536 goto failed_clk; 3537 } 3538 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3539 if (pdata && pdata->sleep_mode_enable) 3540 pdata->sleep_mode_enable(false); 3541 val = readl(fep->hwp + FEC_ECNTRL); 3542 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3543 writel(val, fep->hwp + FEC_ECNTRL); 3544 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3545 } else { 3546 pinctrl_pm_select_default_state(&fep->pdev->dev); 3547 } 3548 fec_restart(ndev); 3549 netif_tx_lock_bh(ndev); 3550 netif_device_attach(ndev); 3551 netif_tx_unlock_bh(ndev); 3552 napi_enable(&fep->napi); 3553 phy_start(fep->phy_dev); 3554 } 3555 rtnl_unlock(); 3556 3557 return 0; 3558 3559 failed_clk: 3560 if (fep->reg_phy) 3561 regulator_disable(fep->reg_phy); 3562 return ret; 3563 } 3564 3565 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume); 3566 3567 static struct platform_driver fec_driver = { 3568 .driver = { 3569 .name = DRIVER_NAME, 3570 .pm = &fec_pm_ops, 3571 .of_match_table = fec_dt_ids, 3572 }, 3573 .id_table = fec_devtype, 3574 .probe = fec_probe, 3575 .remove = fec_drv_remove, 3576 }; 3577 3578 module_platform_driver(fec_driver); 3579 3580 MODULE_ALIAS("platform:"DRIVER_NAME); 3581 MODULE_LICENSE("GPL"); 3582