xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 
64 #include <asm/cacheflush.h>
65 
66 #include "fec.h"
67 
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70 
71 #define DRIVER_NAME	"fec"
72 
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74 
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE	(1 << 5)
77 #define FEC_ENET_RSEM_V	0x84
78 #define FEC_ENET_RSFL_V	16
79 #define FEC_ENET_RAEM_V	0x8
80 #define FEC_ENET_RAFL_V	0x8
81 #define FEC_ENET_OPD_V	0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
83 
84 static struct platform_device_id fec_devtype[] = {
85 	{
86 		/* keep it for coldfire */
87 		.name = DRIVER_NAME,
88 		.driver_data = 0,
89 	}, {
90 		.name = "imx25-fec",
91 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92 	}, {
93 		.name = "imx27-fec",
94 		.driver_data = FEC_QUIRK_HAS_RACC,
95 	}, {
96 		.name = "imx28-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99 	}, {
100 		.name = "imx6q-fec",
101 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104 				FEC_QUIRK_HAS_RACC,
105 	}, {
106 		.name = "mvf600-fec",
107 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108 	}, {
109 		.name = "imx6sx-fec",
110 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114 				FEC_QUIRK_HAS_RACC,
115 	}, {
116 		/* sentinel */
117 	}
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120 
121 enum imx_fec_type {
122 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
123 	IMX27_FEC,	/* runs on i.mx27/35/51 */
124 	IMX28_FEC,
125 	IMX6Q_FEC,
126 	MVF600_FEC,
127 	IMX6SX_FEC,
128 };
129 
130 static const struct of_device_id fec_dt_ids[] = {
131 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137 	{ /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140 
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144 
145 #if defined(CONFIG_M5272)
146 /*
147  * Some hardware gets it MAC address out of local flash memory.
148  * if this is non-zero then assume it is the address to get MAC from.
149  */
150 #if defined(CONFIG_NETtel)
151 #define	FEC_FLASHMAC	0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define	FEC_FLASHMAC	0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define	FEC_FLASHMAC	0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define	FEC_FLASHMAC	(0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC	0xffc0406b
160 #else
161 #define	FEC_FLASHMAC	0
162 #endif
163 #endif /* CONFIG_M5272 */
164 
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166  */
167 #define PKT_MAXBUF_SIZE		1522
168 #define PKT_MINBUF_SIZE		64
169 #define PKT_MAXBLR_SIZE		1536
170 
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS		(1 << 1)
173 #define FEC_RACC_PRODIS		(1 << 2)
174 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175 
176 /*
177  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178  * size bits. Other FEC hardware does not, so we need to take that into
179  * account when setting it.
180  */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
184 #else
185 #define	OPT_FRAME_SIZE	0
186 #endif
187 
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST		(1 << 30)
190 #define FEC_MMFR_OP_READ	(2 << 28)
191 #define FEC_MMFR_OP_WRITE	(1 << 28)
192 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
194 #define FEC_MMFR_TA		(2 << 16)
195 #define FEC_MMFR_DATA(v)	(v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN		(1 << 2)
198 #define FEC_ECR_SLEEP		(1 << 3)
199 
200 #define FEC_MII_TIMEOUT		30000 /* us */
201 
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204 
205 #define FEC_PAUSE_FLAG_AUTONEG	0x1
206 #define FEC_PAUSE_FLAG_ENABLE	0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
210 
211 #define COPYBREAK_DEFAULT	256
212 
213 #define TSO_HEADER_SIZE		128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS	100
216 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217 
218 #define IS_TSO_HEADER(txq, addr) \
219 	((addr >= txq->tso_hdrs_dma) && \
220 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
221 
222 static int mii_cnt;
223 
224 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 					     struct bufdesc_prop *bd)
226 {
227 	return (bdp >= bd->last) ? bd->base
228 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
229 }
230 
231 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
232 					     struct bufdesc_prop *bd)
233 {
234 	return (bdp <= bd->base) ? bd->last
235 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
236 }
237 
238 static int fec_enet_get_bd_index(struct bufdesc *bdp,
239 				 struct bufdesc_prop *bd)
240 {
241 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
242 }
243 
244 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
245 {
246 	int entries;
247 
248 	entries = (((const char *)txq->dirty_tx -
249 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
250 
251 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
252 }
253 
254 static void swap_buffer(void *bufaddr, int len)
255 {
256 	int i;
257 	unsigned int *buf = bufaddr;
258 
259 	for (i = 0; i < len; i += 4, buf++)
260 		swab32s(buf);
261 }
262 
263 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
264 {
265 	int i;
266 	unsigned int *src = src_buf;
267 	unsigned int *dst = dst_buf;
268 
269 	for (i = 0; i < len; i += 4, src++, dst++)
270 		*dst = swab32p(src);
271 }
272 
273 static void fec_dump(struct net_device *ndev)
274 {
275 	struct fec_enet_private *fep = netdev_priv(ndev);
276 	struct bufdesc *bdp;
277 	struct fec_enet_priv_tx_q *txq;
278 	int index = 0;
279 
280 	netdev_info(ndev, "TX ring dump\n");
281 	pr_info("Nr     SC     addr       len  SKB\n");
282 
283 	txq = fep->tx_queue[0];
284 	bdp = txq->bd.base;
285 
286 	do {
287 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
288 			index,
289 			bdp == txq->bd.cur ? 'S' : ' ',
290 			bdp == txq->dirty_tx ? 'H' : ' ',
291 			fec16_to_cpu(bdp->cbd_sc),
292 			fec32_to_cpu(bdp->cbd_bufaddr),
293 			fec16_to_cpu(bdp->cbd_datlen),
294 			txq->tx_skbuff[index]);
295 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
296 		index++;
297 	} while (bdp != txq->bd.base);
298 }
299 
300 static inline bool is_ipv4_pkt(struct sk_buff *skb)
301 {
302 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
303 }
304 
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308 	/* Only run for packets requiring a checksum. */
309 	if (skb->ip_summed != CHECKSUM_PARTIAL)
310 		return 0;
311 
312 	if (unlikely(skb_cow_head(skb, 0)))
313 		return -1;
314 
315 	if (is_ipv4_pkt(skb))
316 		ip_hdr(skb)->check = 0;
317 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
318 
319 	return 0;
320 }
321 
322 static struct bufdesc *
323 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
324 			     struct sk_buff *skb,
325 			     struct net_device *ndev)
326 {
327 	struct fec_enet_private *fep = netdev_priv(ndev);
328 	struct bufdesc *bdp = txq->bd.cur;
329 	struct bufdesc_ex *ebdp;
330 	int nr_frags = skb_shinfo(skb)->nr_frags;
331 	int frag, frag_len;
332 	unsigned short status;
333 	unsigned int estatus = 0;
334 	skb_frag_t *this_frag;
335 	unsigned int index;
336 	void *bufaddr;
337 	dma_addr_t addr;
338 	int i;
339 
340 	for (frag = 0; frag < nr_frags; frag++) {
341 		this_frag = &skb_shinfo(skb)->frags[frag];
342 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
343 		ebdp = (struct bufdesc_ex *)bdp;
344 
345 		status = fec16_to_cpu(bdp->cbd_sc);
346 		status &= ~BD_ENET_TX_STATS;
347 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
348 		frag_len = skb_shinfo(skb)->frags[frag].size;
349 
350 		/* Handle the last BD specially */
351 		if (frag == nr_frags - 1) {
352 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
353 			if (fep->bufdesc_ex) {
354 				estatus |= BD_ENET_TX_INT;
355 				if (unlikely(skb_shinfo(skb)->tx_flags &
356 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
357 					estatus |= BD_ENET_TX_TS;
358 			}
359 		}
360 
361 		if (fep->bufdesc_ex) {
362 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
363 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
364 			if (skb->ip_summed == CHECKSUM_PARTIAL)
365 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
366 			ebdp->cbd_bdu = 0;
367 			ebdp->cbd_esc = cpu_to_fec32(estatus);
368 		}
369 
370 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
371 
372 		index = fec_enet_get_bd_index(bdp, &txq->bd);
373 		if (((unsigned long) bufaddr) & fep->tx_align ||
374 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
375 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
376 			bufaddr = txq->tx_bounce[index];
377 
378 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
379 				swap_buffer(bufaddr, frag_len);
380 		}
381 
382 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
383 				      DMA_TO_DEVICE);
384 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
385 			if (net_ratelimit())
386 				netdev_err(ndev, "Tx DMA memory map failed\n");
387 			goto dma_mapping_error;
388 		}
389 
390 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
391 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
392 		/* Make sure the updates to rest of the descriptor are
393 		 * performed before transferring ownership.
394 		 */
395 		wmb();
396 		bdp->cbd_sc = cpu_to_fec16(status);
397 	}
398 
399 	return bdp;
400 dma_mapping_error:
401 	bdp = txq->bd.cur;
402 	for (i = 0; i < frag; i++) {
403 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
405 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
406 	}
407 	return ERR_PTR(-ENOMEM);
408 }
409 
410 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
411 				   struct sk_buff *skb, struct net_device *ndev)
412 {
413 	struct fec_enet_private *fep = netdev_priv(ndev);
414 	int nr_frags = skb_shinfo(skb)->nr_frags;
415 	struct bufdesc *bdp, *last_bdp;
416 	void *bufaddr;
417 	dma_addr_t addr;
418 	unsigned short status;
419 	unsigned short buflen;
420 	unsigned int estatus = 0;
421 	unsigned int index;
422 	int entries_free;
423 
424 	entries_free = fec_enet_get_free_txdesc_num(txq);
425 	if (entries_free < MAX_SKB_FRAGS + 1) {
426 		dev_kfree_skb_any(skb);
427 		if (net_ratelimit())
428 			netdev_err(ndev, "NOT enough BD for SG!\n");
429 		return NETDEV_TX_OK;
430 	}
431 
432 	/* Protocol checksum off-load for TCP and UDP. */
433 	if (fec_enet_clear_csum(skb, ndev)) {
434 		dev_kfree_skb_any(skb);
435 		return NETDEV_TX_OK;
436 	}
437 
438 	/* Fill in a Tx ring entry */
439 	bdp = txq->bd.cur;
440 	last_bdp = bdp;
441 	status = fec16_to_cpu(bdp->cbd_sc);
442 	status &= ~BD_ENET_TX_STATS;
443 
444 	/* Set buffer length and buffer pointer */
445 	bufaddr = skb->data;
446 	buflen = skb_headlen(skb);
447 
448 	index = fec_enet_get_bd_index(bdp, &txq->bd);
449 	if (((unsigned long) bufaddr) & fep->tx_align ||
450 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
451 		memcpy(txq->tx_bounce[index], skb->data, buflen);
452 		bufaddr = txq->tx_bounce[index];
453 
454 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
455 			swap_buffer(bufaddr, buflen);
456 	}
457 
458 	/* Push the data cache so the CPM does not get stale memory data. */
459 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
460 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
461 		dev_kfree_skb_any(skb);
462 		if (net_ratelimit())
463 			netdev_err(ndev, "Tx DMA memory map failed\n");
464 		return NETDEV_TX_OK;
465 	}
466 
467 	if (nr_frags) {
468 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
469 		if (IS_ERR(last_bdp)) {
470 			dma_unmap_single(&fep->pdev->dev, addr,
471 					 buflen, DMA_TO_DEVICE);
472 			dev_kfree_skb_any(skb);
473 			return NETDEV_TX_OK;
474 		}
475 	} else {
476 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
477 		if (fep->bufdesc_ex) {
478 			estatus = BD_ENET_TX_INT;
479 			if (unlikely(skb_shinfo(skb)->tx_flags &
480 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
481 				estatus |= BD_ENET_TX_TS;
482 		}
483 	}
484 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
485 	bdp->cbd_datlen = cpu_to_fec16(buflen);
486 
487 	if (fep->bufdesc_ex) {
488 
489 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
490 
491 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
492 			fep->hwts_tx_en))
493 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
494 
495 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
496 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
497 
498 		if (skb->ip_summed == CHECKSUM_PARTIAL)
499 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
500 
501 		ebdp->cbd_bdu = 0;
502 		ebdp->cbd_esc = cpu_to_fec32(estatus);
503 	}
504 
505 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
506 	/* Save skb pointer */
507 	txq->tx_skbuff[index] = skb;
508 
509 	/* Make sure the updates to rest of the descriptor are performed before
510 	 * transferring ownership.
511 	 */
512 	wmb();
513 
514 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
515 	 * it's the last BD of the frame, and to put the CRC on the end.
516 	 */
517 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
518 	bdp->cbd_sc = cpu_to_fec16(status);
519 
520 	/* If this was the last BD in the ring, start at the beginning again. */
521 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
522 
523 	skb_tx_timestamp(skb);
524 
525 	/* Make sure the update to bdp and tx_skbuff are performed before
526 	 * txq->bd.cur.
527 	 */
528 	wmb();
529 	txq->bd.cur = bdp;
530 
531 	/* Trigger transmission start */
532 	writel(0, txq->bd.reg_desc_active);
533 
534 	return 0;
535 }
536 
537 static int
538 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
539 			  struct net_device *ndev,
540 			  struct bufdesc *bdp, int index, char *data,
541 			  int size, bool last_tcp, bool is_last)
542 {
543 	struct fec_enet_private *fep = netdev_priv(ndev);
544 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
545 	unsigned short status;
546 	unsigned int estatus = 0;
547 	dma_addr_t addr;
548 
549 	status = fec16_to_cpu(bdp->cbd_sc);
550 	status &= ~BD_ENET_TX_STATS;
551 
552 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
553 
554 	if (((unsigned long) data) & fep->tx_align ||
555 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
556 		memcpy(txq->tx_bounce[index], data, size);
557 		data = txq->tx_bounce[index];
558 
559 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
560 			swap_buffer(data, size);
561 	}
562 
563 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
564 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
565 		dev_kfree_skb_any(skb);
566 		if (net_ratelimit())
567 			netdev_err(ndev, "Tx DMA memory map failed\n");
568 		return NETDEV_TX_BUSY;
569 	}
570 
571 	bdp->cbd_datlen = cpu_to_fec16(size);
572 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
573 
574 	if (fep->bufdesc_ex) {
575 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
576 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
577 		if (skb->ip_summed == CHECKSUM_PARTIAL)
578 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
579 		ebdp->cbd_bdu = 0;
580 		ebdp->cbd_esc = cpu_to_fec32(estatus);
581 	}
582 
583 	/* Handle the last BD specially */
584 	if (last_tcp)
585 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
586 	if (is_last) {
587 		status |= BD_ENET_TX_INTR;
588 		if (fep->bufdesc_ex)
589 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
590 	}
591 
592 	bdp->cbd_sc = cpu_to_fec16(status);
593 
594 	return 0;
595 }
596 
597 static int
598 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
599 			 struct sk_buff *skb, struct net_device *ndev,
600 			 struct bufdesc *bdp, int index)
601 {
602 	struct fec_enet_private *fep = netdev_priv(ndev);
603 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
604 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
605 	void *bufaddr;
606 	unsigned long dmabuf;
607 	unsigned short status;
608 	unsigned int estatus = 0;
609 
610 	status = fec16_to_cpu(bdp->cbd_sc);
611 	status &= ~BD_ENET_TX_STATS;
612 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
613 
614 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
615 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
616 	if (((unsigned long)bufaddr) & fep->tx_align ||
617 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
618 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
619 		bufaddr = txq->tx_bounce[index];
620 
621 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
622 			swap_buffer(bufaddr, hdr_len);
623 
624 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
625 					hdr_len, DMA_TO_DEVICE);
626 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
627 			dev_kfree_skb_any(skb);
628 			if (net_ratelimit())
629 				netdev_err(ndev, "Tx DMA memory map failed\n");
630 			return NETDEV_TX_BUSY;
631 		}
632 	}
633 
634 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
635 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
636 
637 	if (fep->bufdesc_ex) {
638 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
639 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
640 		if (skb->ip_summed == CHECKSUM_PARTIAL)
641 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
642 		ebdp->cbd_bdu = 0;
643 		ebdp->cbd_esc = cpu_to_fec32(estatus);
644 	}
645 
646 	bdp->cbd_sc = cpu_to_fec16(status);
647 
648 	return 0;
649 }
650 
651 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
652 				   struct sk_buff *skb,
653 				   struct net_device *ndev)
654 {
655 	struct fec_enet_private *fep = netdev_priv(ndev);
656 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
657 	int total_len, data_left;
658 	struct bufdesc *bdp = txq->bd.cur;
659 	struct tso_t tso;
660 	unsigned int index = 0;
661 	int ret;
662 
663 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
664 		dev_kfree_skb_any(skb);
665 		if (net_ratelimit())
666 			netdev_err(ndev, "NOT enough BD for TSO!\n");
667 		return NETDEV_TX_OK;
668 	}
669 
670 	/* Protocol checksum off-load for TCP and UDP. */
671 	if (fec_enet_clear_csum(skb, ndev)) {
672 		dev_kfree_skb_any(skb);
673 		return NETDEV_TX_OK;
674 	}
675 
676 	/* Initialize the TSO handler, and prepare the first payload */
677 	tso_start(skb, &tso);
678 
679 	total_len = skb->len - hdr_len;
680 	while (total_len > 0) {
681 		char *hdr;
682 
683 		index = fec_enet_get_bd_index(bdp, &txq->bd);
684 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
685 		total_len -= data_left;
686 
687 		/* prepare packet headers: MAC + IP + TCP */
688 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
689 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
690 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
691 		if (ret)
692 			goto err_release;
693 
694 		while (data_left > 0) {
695 			int size;
696 
697 			size = min_t(int, tso.size, data_left);
698 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
699 			index = fec_enet_get_bd_index(bdp, &txq->bd);
700 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
701 							bdp, index,
702 							tso.data, size,
703 							size == data_left,
704 							total_len == 0);
705 			if (ret)
706 				goto err_release;
707 
708 			data_left -= size;
709 			tso_build_data(skb, &tso, size);
710 		}
711 
712 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713 	}
714 
715 	/* Save skb pointer */
716 	txq->tx_skbuff[index] = skb;
717 
718 	skb_tx_timestamp(skb);
719 	txq->bd.cur = bdp;
720 
721 	/* Trigger transmission start */
722 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
723 	    !readl(txq->bd.reg_desc_active) ||
724 	    !readl(txq->bd.reg_desc_active) ||
725 	    !readl(txq->bd.reg_desc_active) ||
726 	    !readl(txq->bd.reg_desc_active))
727 		writel(0, txq->bd.reg_desc_active);
728 
729 	return 0;
730 
731 err_release:
732 	/* TODO: Release all used data descriptors for TSO */
733 	return ret;
734 }
735 
736 static netdev_tx_t
737 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
738 {
739 	struct fec_enet_private *fep = netdev_priv(ndev);
740 	int entries_free;
741 	unsigned short queue;
742 	struct fec_enet_priv_tx_q *txq;
743 	struct netdev_queue *nq;
744 	int ret;
745 
746 	queue = skb_get_queue_mapping(skb);
747 	txq = fep->tx_queue[queue];
748 	nq = netdev_get_tx_queue(ndev, queue);
749 
750 	if (skb_is_gso(skb))
751 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
752 	else
753 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
754 	if (ret)
755 		return ret;
756 
757 	entries_free = fec_enet_get_free_txdesc_num(txq);
758 	if (entries_free <= txq->tx_stop_threshold)
759 		netif_tx_stop_queue(nq);
760 
761 	return NETDEV_TX_OK;
762 }
763 
764 /* Init RX & TX buffer descriptors
765  */
766 static void fec_enet_bd_init(struct net_device *dev)
767 {
768 	struct fec_enet_private *fep = netdev_priv(dev);
769 	struct fec_enet_priv_tx_q *txq;
770 	struct fec_enet_priv_rx_q *rxq;
771 	struct bufdesc *bdp;
772 	unsigned int i;
773 	unsigned int q;
774 
775 	for (q = 0; q < fep->num_rx_queues; q++) {
776 		/* Initialize the receive buffer descriptors. */
777 		rxq = fep->rx_queue[q];
778 		bdp = rxq->bd.base;
779 
780 		for (i = 0; i < rxq->bd.ring_size; i++) {
781 
782 			/* Initialize the BD for every fragment in the page. */
783 			if (bdp->cbd_bufaddr)
784 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
785 			else
786 				bdp->cbd_sc = cpu_to_fec16(0);
787 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
788 		}
789 
790 		/* Set the last buffer to wrap */
791 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
792 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
793 
794 		rxq->bd.cur = rxq->bd.base;
795 	}
796 
797 	for (q = 0; q < fep->num_tx_queues; q++) {
798 		/* ...and the same for transmit */
799 		txq = fep->tx_queue[q];
800 		bdp = txq->bd.base;
801 		txq->bd.cur = bdp;
802 
803 		for (i = 0; i < txq->bd.ring_size; i++) {
804 			/* Initialize the BD for every fragment in the page. */
805 			bdp->cbd_sc = cpu_to_fec16(0);
806 			if (txq->tx_skbuff[i]) {
807 				dev_kfree_skb_any(txq->tx_skbuff[i]);
808 				txq->tx_skbuff[i] = NULL;
809 			}
810 			bdp->cbd_bufaddr = cpu_to_fec32(0);
811 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
812 		}
813 
814 		/* Set the last buffer to wrap */
815 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
816 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
817 		txq->dirty_tx = bdp;
818 	}
819 }
820 
821 static void fec_enet_active_rxring(struct net_device *ndev)
822 {
823 	struct fec_enet_private *fep = netdev_priv(ndev);
824 	int i;
825 
826 	for (i = 0; i < fep->num_rx_queues; i++)
827 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
828 }
829 
830 static void fec_enet_enable_ring(struct net_device *ndev)
831 {
832 	struct fec_enet_private *fep = netdev_priv(ndev);
833 	struct fec_enet_priv_tx_q *txq;
834 	struct fec_enet_priv_rx_q *rxq;
835 	int i;
836 
837 	for (i = 0; i < fep->num_rx_queues; i++) {
838 		rxq = fep->rx_queue[i];
839 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
840 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
841 
842 		/* enable DMA1/2 */
843 		if (i)
844 			writel(RCMR_MATCHEN | RCMR_CMP(i),
845 			       fep->hwp + FEC_RCMR(i));
846 	}
847 
848 	for (i = 0; i < fep->num_tx_queues; i++) {
849 		txq = fep->tx_queue[i];
850 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
851 
852 		/* enable DMA1/2 */
853 		if (i)
854 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
855 			       fep->hwp + FEC_DMA_CFG(i));
856 	}
857 }
858 
859 static void fec_enet_reset_skb(struct net_device *ndev)
860 {
861 	struct fec_enet_private *fep = netdev_priv(ndev);
862 	struct fec_enet_priv_tx_q *txq;
863 	int i, j;
864 
865 	for (i = 0; i < fep->num_tx_queues; i++) {
866 		txq = fep->tx_queue[i];
867 
868 		for (j = 0; j < txq->bd.ring_size; j++) {
869 			if (txq->tx_skbuff[j]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[j]);
871 				txq->tx_skbuff[j] = NULL;
872 			}
873 		}
874 	}
875 }
876 
877 /*
878  * This function is called to start or restart the FEC during a link
879  * change, transmit timeout, or to reconfigure the FEC.  The network
880  * packet processing for this device must be stopped before this call.
881  */
882 static void
883 fec_restart(struct net_device *ndev)
884 {
885 	struct fec_enet_private *fep = netdev_priv(ndev);
886 	u32 val;
887 	u32 temp_mac[2];
888 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
889 	u32 ecntl = 0x2; /* ETHEREN */
890 
891 	/* Whack a reset.  We should wait for this.
892 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
893 	 * instead of reset MAC itself.
894 	 */
895 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
896 		writel(0, fep->hwp + FEC_ECNTRL);
897 	} else {
898 		writel(1, fep->hwp + FEC_ECNTRL);
899 		udelay(10);
900 	}
901 
902 	/*
903 	 * enet-mac reset will reset mac address registers too,
904 	 * so need to reconfigure it.
905 	 */
906 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
907 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
908 		writel((__force u32)cpu_to_be32(temp_mac[0]),
909 		       fep->hwp + FEC_ADDR_LOW);
910 		writel((__force u32)cpu_to_be32(temp_mac[1]),
911 		       fep->hwp + FEC_ADDR_HIGH);
912 	}
913 
914 	/* Clear any outstanding interrupt. */
915 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
916 
917 	fec_enet_bd_init(ndev);
918 
919 	fec_enet_enable_ring(ndev);
920 
921 	/* Reset tx SKB buffers. */
922 	fec_enet_reset_skb(ndev);
923 
924 	/* Enable MII mode */
925 	if (fep->full_duplex == DUPLEX_FULL) {
926 		/* FD enable */
927 		writel(0x04, fep->hwp + FEC_X_CNTRL);
928 	} else {
929 		/* No Rcv on Xmit */
930 		rcntl |= 0x02;
931 		writel(0x0, fep->hwp + FEC_X_CNTRL);
932 	}
933 
934 	/* Set MII speed */
935 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
936 
937 #if !defined(CONFIG_M5272)
938 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
939 		/* set RX checksum */
940 		val = readl(fep->hwp + FEC_RACC);
941 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
942 			val |= FEC_RACC_OPTIONS;
943 		else
944 			val &= ~FEC_RACC_OPTIONS;
945 		writel(val, fep->hwp + FEC_RACC);
946 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
947 	}
948 #endif
949 
950 	/*
951 	 * The phy interface and speed need to get configured
952 	 * differently on enet-mac.
953 	 */
954 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
955 		/* Enable flow control and length check */
956 		rcntl |= 0x40000000 | 0x00000020;
957 
958 		/* RGMII, RMII or MII */
959 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
960 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
961 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
962 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
963 			rcntl |= (1 << 6);
964 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
965 			rcntl |= (1 << 8);
966 		else
967 			rcntl &= ~(1 << 8);
968 
969 		/* 1G, 100M or 10M */
970 		if (fep->phy_dev) {
971 			if (fep->phy_dev->speed == SPEED_1000)
972 				ecntl |= (1 << 5);
973 			else if (fep->phy_dev->speed == SPEED_100)
974 				rcntl &= ~(1 << 9);
975 			else
976 				rcntl |= (1 << 9);
977 		}
978 	} else {
979 #ifdef FEC_MIIGSK_ENR
980 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
981 			u32 cfgr;
982 			/* disable the gasket and wait */
983 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
984 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
985 				udelay(1);
986 
987 			/*
988 			 * configure the gasket:
989 			 *   RMII, 50 MHz, no loopback, no echo
990 			 *   MII, 25 MHz, no loopback, no echo
991 			 */
992 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
994 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
995 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
996 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
997 
998 			/* re-enable the gasket */
999 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000 		}
1001 #endif
1002 	}
1003 
1004 #if !defined(CONFIG_M5272)
1005 	/* enable pause frame*/
1006 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008 	     fep->phy_dev && fep->phy_dev->pause)) {
1009 		rcntl |= FEC_ENET_FCE;
1010 
1011 		/* set FIFO threshold parameter to reduce overrun */
1012 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016 
1017 		/* OPD */
1018 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019 	} else {
1020 		rcntl &= ~FEC_ENET_FCE;
1021 	}
1022 #endif /* !defined(CONFIG_M5272) */
1023 
1024 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025 
1026 	/* Setup multicast filter. */
1027 	set_multicast_list(ndev);
1028 #ifndef CONFIG_M5272
1029 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031 #endif
1032 
1033 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034 		/* enable ENET endian swap */
1035 		ecntl |= (1 << 8);
1036 		/* enable ENET store and forward mode */
1037 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038 	}
1039 
1040 	if (fep->bufdesc_ex)
1041 		ecntl |= (1 << 4);
1042 
1043 #ifndef CONFIG_M5272
1044 	/* Enable the MIB statistic event counters */
1045 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046 #endif
1047 
1048 	/* And last, enable the transmit and receive processing */
1049 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1050 	fec_enet_active_rxring(ndev);
1051 
1052 	if (fep->bufdesc_ex)
1053 		fec_ptp_start_cyclecounter(ndev);
1054 
1055 	/* Enable interrupts we wish to service */
1056 	if (fep->link)
1057 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058 	else
1059 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060 
1061 	/* Init the interrupt coalescing */
1062 	fec_enet_itr_coal_init(ndev);
1063 
1064 }
1065 
1066 static void
1067 fec_stop(struct net_device *ndev)
1068 {
1069 	struct fec_enet_private *fep = netdev_priv(ndev);
1070 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072 	u32 val;
1073 
1074 	/* We cannot expect a graceful transmit stop without link !!! */
1075 	if (fep->link) {
1076 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077 		udelay(10);
1078 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080 	}
1081 
1082 	/* Whack a reset.  We should wait for this.
1083 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084 	 * instead of reset MAC itself.
1085 	 */
1086 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088 			writel(0, fep->hwp + FEC_ECNTRL);
1089 		} else {
1090 			writel(1, fep->hwp + FEC_ECNTRL);
1091 			udelay(10);
1092 		}
1093 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094 	} else {
1095 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096 		val = readl(fep->hwp + FEC_ECNTRL);
1097 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098 		writel(val, fep->hwp + FEC_ECNTRL);
1099 
1100 		if (pdata && pdata->sleep_mode_enable)
1101 			pdata->sleep_mode_enable(true);
1102 	}
1103 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104 
1105 	/* We have to keep ENET enabled to have MII interrupt stay working */
1106 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108 		writel(2, fep->hwp + FEC_ECNTRL);
1109 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110 	}
1111 }
1112 
1113 
1114 static void
1115 fec_timeout(struct net_device *ndev)
1116 {
1117 	struct fec_enet_private *fep = netdev_priv(ndev);
1118 
1119 	fec_dump(ndev);
1120 
1121 	ndev->stats.tx_errors++;
1122 
1123 	schedule_work(&fep->tx_timeout_work);
1124 }
1125 
1126 static void fec_enet_timeout_work(struct work_struct *work)
1127 {
1128 	struct fec_enet_private *fep =
1129 		container_of(work, struct fec_enet_private, tx_timeout_work);
1130 	struct net_device *ndev = fep->netdev;
1131 
1132 	rtnl_lock();
1133 	if (netif_device_present(ndev) || netif_running(ndev)) {
1134 		napi_disable(&fep->napi);
1135 		netif_tx_lock_bh(ndev);
1136 		fec_restart(ndev);
1137 		netif_wake_queue(ndev);
1138 		netif_tx_unlock_bh(ndev);
1139 		napi_enable(&fep->napi);
1140 	}
1141 	rtnl_unlock();
1142 }
1143 
1144 static void
1145 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146 	struct skb_shared_hwtstamps *hwtstamps)
1147 {
1148 	unsigned long flags;
1149 	u64 ns;
1150 
1151 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1152 	ns = timecounter_cyc2time(&fep->tc, ts);
1153 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154 
1155 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1156 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1157 }
1158 
1159 static void
1160 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161 {
1162 	struct	fec_enet_private *fep;
1163 	struct bufdesc *bdp;
1164 	unsigned short status;
1165 	struct	sk_buff	*skb;
1166 	struct fec_enet_priv_tx_q *txq;
1167 	struct netdev_queue *nq;
1168 	int	index = 0;
1169 	int	entries_free;
1170 
1171 	fep = netdev_priv(ndev);
1172 
1173 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174 
1175 	txq = fep->tx_queue[queue_id];
1176 	/* get next bdp of dirty_tx */
1177 	nq = netdev_get_tx_queue(ndev, queue_id);
1178 	bdp = txq->dirty_tx;
1179 
1180 	/* get next bdp of dirty_tx */
1181 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182 
1183 	while (bdp != READ_ONCE(txq->bd.cur)) {
1184 		/* Order the load of bd.cur and cbd_sc */
1185 		rmb();
1186 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187 		if (status & BD_ENET_TX_READY)
1188 			break;
1189 
1190 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1191 
1192 		skb = txq->tx_skbuff[index];
1193 		txq->tx_skbuff[index] = NULL;
1194 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195 			dma_unmap_single(&fep->pdev->dev,
1196 					 fec32_to_cpu(bdp->cbd_bufaddr),
1197 					 fec16_to_cpu(bdp->cbd_datlen),
1198 					 DMA_TO_DEVICE);
1199 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1200 		if (!skb) {
1201 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1202 			continue;
1203 		}
1204 
1205 		/* Check for errors. */
1206 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1207 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1208 				   BD_ENET_TX_CSL)) {
1209 			ndev->stats.tx_errors++;
1210 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1211 				ndev->stats.tx_heartbeat_errors++;
1212 			if (status & BD_ENET_TX_LC)  /* Late collision */
1213 				ndev->stats.tx_window_errors++;
1214 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1215 				ndev->stats.tx_aborted_errors++;
1216 			if (status & BD_ENET_TX_UN)  /* Underrun */
1217 				ndev->stats.tx_fifo_errors++;
1218 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1219 				ndev->stats.tx_carrier_errors++;
1220 		} else {
1221 			ndev->stats.tx_packets++;
1222 			ndev->stats.tx_bytes += skb->len;
1223 		}
1224 
1225 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1226 			fep->bufdesc_ex) {
1227 			struct skb_shared_hwtstamps shhwtstamps;
1228 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1229 
1230 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1231 			skb_tstamp_tx(skb, &shhwtstamps);
1232 		}
1233 
1234 		/* Deferred means some collisions occurred during transmit,
1235 		 * but we eventually sent the packet OK.
1236 		 */
1237 		if (status & BD_ENET_TX_DEF)
1238 			ndev->stats.collisions++;
1239 
1240 		/* Free the sk buffer associated with this last transmit */
1241 		dev_kfree_skb_any(skb);
1242 
1243 		/* Make sure the update to bdp and tx_skbuff are performed
1244 		 * before dirty_tx
1245 		 */
1246 		wmb();
1247 		txq->dirty_tx = bdp;
1248 
1249 		/* Update pointer to next buffer descriptor to be transmitted */
1250 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1251 
1252 		/* Since we have freed up a buffer, the ring is no longer full
1253 		 */
1254 		if (netif_queue_stopped(ndev)) {
1255 			entries_free = fec_enet_get_free_txdesc_num(txq);
1256 			if (entries_free >= txq->tx_wake_threshold)
1257 				netif_tx_wake_queue(nq);
1258 		}
1259 	}
1260 
1261 	/* ERR006538: Keep the transmitter going */
1262 	if (bdp != txq->bd.cur &&
1263 	    readl(txq->bd.reg_desc_active) == 0)
1264 		writel(0, txq->bd.reg_desc_active);
1265 }
1266 
1267 static void
1268 fec_enet_tx(struct net_device *ndev)
1269 {
1270 	struct fec_enet_private *fep = netdev_priv(ndev);
1271 	u16 queue_id;
1272 	/* First process class A queue, then Class B and Best Effort queue */
1273 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1274 		clear_bit(queue_id, &fep->work_tx);
1275 		fec_enet_tx_queue(ndev, queue_id);
1276 	}
1277 	return;
1278 }
1279 
1280 static int
1281 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1282 {
1283 	struct  fec_enet_private *fep = netdev_priv(ndev);
1284 	int off;
1285 
1286 	off = ((unsigned long)skb->data) & fep->rx_align;
1287 	if (off)
1288 		skb_reserve(skb, fep->rx_align + 1 - off);
1289 
1290 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1291 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1292 		if (net_ratelimit())
1293 			netdev_err(ndev, "Rx DMA memory map failed\n");
1294 		return -ENOMEM;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1301 			       struct bufdesc *bdp, u32 length, bool swap)
1302 {
1303 	struct  fec_enet_private *fep = netdev_priv(ndev);
1304 	struct sk_buff *new_skb;
1305 
1306 	if (length > fep->rx_copybreak)
1307 		return false;
1308 
1309 	new_skb = netdev_alloc_skb(ndev, length);
1310 	if (!new_skb)
1311 		return false;
1312 
1313 	dma_sync_single_for_cpu(&fep->pdev->dev,
1314 				fec32_to_cpu(bdp->cbd_bufaddr),
1315 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1316 				DMA_FROM_DEVICE);
1317 	if (!swap)
1318 		memcpy(new_skb->data, (*skb)->data, length);
1319 	else
1320 		swap_buffer2(new_skb->data, (*skb)->data, length);
1321 	*skb = new_skb;
1322 
1323 	return true;
1324 }
1325 
1326 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1327  * When we update through the ring, if the next incoming buffer has
1328  * not been given to the system, we just set the empty indicator,
1329  * effectively tossing the packet.
1330  */
1331 static int
1332 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1333 {
1334 	struct fec_enet_private *fep = netdev_priv(ndev);
1335 	struct fec_enet_priv_rx_q *rxq;
1336 	struct bufdesc *bdp;
1337 	unsigned short status;
1338 	struct  sk_buff *skb_new = NULL;
1339 	struct  sk_buff *skb;
1340 	ushort	pkt_len;
1341 	__u8 *data;
1342 	int	pkt_received = 0;
1343 	struct	bufdesc_ex *ebdp = NULL;
1344 	bool	vlan_packet_rcvd = false;
1345 	u16	vlan_tag;
1346 	int	index = 0;
1347 	bool	is_copybreak;
1348 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1349 
1350 #ifdef CONFIG_M532x
1351 	flush_cache_all();
1352 #endif
1353 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1354 	rxq = fep->rx_queue[queue_id];
1355 
1356 	/* First, grab all of the stats for the incoming packet.
1357 	 * These get messed up if we get called due to a busy condition.
1358 	 */
1359 	bdp = rxq->bd.cur;
1360 
1361 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1362 
1363 		if (pkt_received >= budget)
1364 			break;
1365 		pkt_received++;
1366 
1367 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1368 
1369 		/* Check for errors. */
1370 		status ^= BD_ENET_RX_LAST;
1371 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1372 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1373 			   BD_ENET_RX_CL)) {
1374 			ndev->stats.rx_errors++;
1375 			if (status & BD_ENET_RX_OV) {
1376 				/* FIFO overrun */
1377 				ndev->stats.rx_fifo_errors++;
1378 				goto rx_processing_done;
1379 			}
1380 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1381 						| BD_ENET_RX_LAST)) {
1382 				/* Frame too long or too short. */
1383 				ndev->stats.rx_length_errors++;
1384 				if (status & BD_ENET_RX_LAST)
1385 					netdev_err(ndev, "rcv is not +last\n");
1386 			}
1387 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1388 				ndev->stats.rx_crc_errors++;
1389 			/* Report late collisions as a frame error. */
1390 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1391 				ndev->stats.rx_frame_errors++;
1392 			goto rx_processing_done;
1393 		}
1394 
1395 		/* Process the incoming frame. */
1396 		ndev->stats.rx_packets++;
1397 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1398 		ndev->stats.rx_bytes += pkt_len;
1399 
1400 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1401 		skb = rxq->rx_skbuff[index];
1402 
1403 		/* The packet length includes FCS, but we don't want to
1404 		 * include that when passing upstream as it messes up
1405 		 * bridging applications.
1406 		 */
1407 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1408 						  need_swap);
1409 		if (!is_copybreak) {
1410 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1411 			if (unlikely(!skb_new)) {
1412 				ndev->stats.rx_dropped++;
1413 				goto rx_processing_done;
1414 			}
1415 			dma_unmap_single(&fep->pdev->dev,
1416 					 fec32_to_cpu(bdp->cbd_bufaddr),
1417 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1418 					 DMA_FROM_DEVICE);
1419 		}
1420 
1421 		prefetch(skb->data - NET_IP_ALIGN);
1422 		skb_put(skb, pkt_len - 4);
1423 		data = skb->data;
1424 		if (!is_copybreak && need_swap)
1425 			swap_buffer(data, pkt_len);
1426 
1427 		/* Extract the enhanced buffer descriptor */
1428 		ebdp = NULL;
1429 		if (fep->bufdesc_ex)
1430 			ebdp = (struct bufdesc_ex *)bdp;
1431 
1432 		/* If this is a VLAN packet remove the VLAN Tag */
1433 		vlan_packet_rcvd = false;
1434 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1435 		    fep->bufdesc_ex &&
1436 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1437 			/* Push and remove the vlan tag */
1438 			struct vlan_hdr *vlan_header =
1439 					(struct vlan_hdr *) (data + ETH_HLEN);
1440 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1441 
1442 			vlan_packet_rcvd = true;
1443 
1444 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1445 			skb_pull(skb, VLAN_HLEN);
1446 		}
1447 
1448 		skb->protocol = eth_type_trans(skb, ndev);
1449 
1450 		/* Get receive timestamp from the skb */
1451 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1452 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1453 					  skb_hwtstamps(skb));
1454 
1455 		if (fep->bufdesc_ex &&
1456 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1457 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1458 				/* don't check it */
1459 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1460 			} else {
1461 				skb_checksum_none_assert(skb);
1462 			}
1463 		}
1464 
1465 		/* Handle received VLAN packets */
1466 		if (vlan_packet_rcvd)
1467 			__vlan_hwaccel_put_tag(skb,
1468 					       htons(ETH_P_8021Q),
1469 					       vlan_tag);
1470 
1471 		napi_gro_receive(&fep->napi, skb);
1472 
1473 		if (is_copybreak) {
1474 			dma_sync_single_for_device(&fep->pdev->dev,
1475 						   fec32_to_cpu(bdp->cbd_bufaddr),
1476 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1477 						   DMA_FROM_DEVICE);
1478 		} else {
1479 			rxq->rx_skbuff[index] = skb_new;
1480 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1481 		}
1482 
1483 rx_processing_done:
1484 		/* Clear the status flags for this buffer */
1485 		status &= ~BD_ENET_RX_STATS;
1486 
1487 		/* Mark the buffer empty */
1488 		status |= BD_ENET_RX_EMPTY;
1489 
1490 		if (fep->bufdesc_ex) {
1491 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1492 
1493 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1494 			ebdp->cbd_prot = 0;
1495 			ebdp->cbd_bdu = 0;
1496 		}
1497 		/* Make sure the updates to rest of the descriptor are
1498 		 * performed before transferring ownership.
1499 		 */
1500 		wmb();
1501 		bdp->cbd_sc = cpu_to_fec16(status);
1502 
1503 		/* Update BD pointer to next entry */
1504 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1505 
1506 		/* Doing this here will keep the FEC running while we process
1507 		 * incoming frames.  On a heavily loaded network, we should be
1508 		 * able to keep up at the expense of system resources.
1509 		 */
1510 		writel(0, rxq->bd.reg_desc_active);
1511 	}
1512 	rxq->bd.cur = bdp;
1513 	return pkt_received;
1514 }
1515 
1516 static int
1517 fec_enet_rx(struct net_device *ndev, int budget)
1518 {
1519 	int     pkt_received = 0;
1520 	u16	queue_id;
1521 	struct fec_enet_private *fep = netdev_priv(ndev);
1522 
1523 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1524 		clear_bit(queue_id, &fep->work_rx);
1525 		pkt_received += fec_enet_rx_queue(ndev,
1526 					budget - pkt_received, queue_id);
1527 	}
1528 	return pkt_received;
1529 }
1530 
1531 static bool
1532 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1533 {
1534 	if (int_events == 0)
1535 		return false;
1536 
1537 	if (int_events & FEC_ENET_RXF)
1538 		fep->work_rx |= (1 << 2);
1539 	if (int_events & FEC_ENET_RXF_1)
1540 		fep->work_rx |= (1 << 0);
1541 	if (int_events & FEC_ENET_RXF_2)
1542 		fep->work_rx |= (1 << 1);
1543 
1544 	if (int_events & FEC_ENET_TXF)
1545 		fep->work_tx |= (1 << 2);
1546 	if (int_events & FEC_ENET_TXF_1)
1547 		fep->work_tx |= (1 << 0);
1548 	if (int_events & FEC_ENET_TXF_2)
1549 		fep->work_tx |= (1 << 1);
1550 
1551 	return true;
1552 }
1553 
1554 static irqreturn_t
1555 fec_enet_interrupt(int irq, void *dev_id)
1556 {
1557 	struct net_device *ndev = dev_id;
1558 	struct fec_enet_private *fep = netdev_priv(ndev);
1559 	uint int_events;
1560 	irqreturn_t ret = IRQ_NONE;
1561 
1562 	int_events = readl(fep->hwp + FEC_IEVENT);
1563 	writel(int_events, fep->hwp + FEC_IEVENT);
1564 	fec_enet_collect_events(fep, int_events);
1565 
1566 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1567 		ret = IRQ_HANDLED;
1568 
1569 		if (napi_schedule_prep(&fep->napi)) {
1570 			/* Disable the NAPI interrupts */
1571 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1572 			__napi_schedule(&fep->napi);
1573 		}
1574 	}
1575 
1576 	if (int_events & FEC_ENET_MII) {
1577 		ret = IRQ_HANDLED;
1578 		complete(&fep->mdio_done);
1579 	}
1580 
1581 	if (fep->ptp_clock)
1582 		fec_ptp_check_pps_event(fep);
1583 
1584 	return ret;
1585 }
1586 
1587 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1588 {
1589 	struct net_device *ndev = napi->dev;
1590 	struct fec_enet_private *fep = netdev_priv(ndev);
1591 	int pkts;
1592 
1593 	pkts = fec_enet_rx(ndev, budget);
1594 
1595 	fec_enet_tx(ndev);
1596 
1597 	if (pkts < budget) {
1598 		napi_complete(napi);
1599 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1600 	}
1601 	return pkts;
1602 }
1603 
1604 /* ------------------------------------------------------------------------- */
1605 static void fec_get_mac(struct net_device *ndev)
1606 {
1607 	struct fec_enet_private *fep = netdev_priv(ndev);
1608 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1609 	unsigned char *iap, tmpaddr[ETH_ALEN];
1610 
1611 	/*
1612 	 * try to get mac address in following order:
1613 	 *
1614 	 * 1) module parameter via kernel command line in form
1615 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1616 	 */
1617 	iap = macaddr;
1618 
1619 	/*
1620 	 * 2) from device tree data
1621 	 */
1622 	if (!is_valid_ether_addr(iap)) {
1623 		struct device_node *np = fep->pdev->dev.of_node;
1624 		if (np) {
1625 			const char *mac = of_get_mac_address(np);
1626 			if (mac)
1627 				iap = (unsigned char *) mac;
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * 3) from flash or fuse (via platform data)
1633 	 */
1634 	if (!is_valid_ether_addr(iap)) {
1635 #ifdef CONFIG_M5272
1636 		if (FEC_FLASHMAC)
1637 			iap = (unsigned char *)FEC_FLASHMAC;
1638 #else
1639 		if (pdata)
1640 			iap = (unsigned char *)&pdata->mac;
1641 #endif
1642 	}
1643 
1644 	/*
1645 	 * 4) FEC mac registers set by bootloader
1646 	 */
1647 	if (!is_valid_ether_addr(iap)) {
1648 		*((__be32 *) &tmpaddr[0]) =
1649 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1650 		*((__be16 *) &tmpaddr[4]) =
1651 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1652 		iap = &tmpaddr[0];
1653 	}
1654 
1655 	/*
1656 	 * 5) random mac address
1657 	 */
1658 	if (!is_valid_ether_addr(iap)) {
1659 		/* Report it and use a random ethernet address instead */
1660 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1661 		eth_hw_addr_random(ndev);
1662 		netdev_info(ndev, "Using random MAC address: %pM\n",
1663 			    ndev->dev_addr);
1664 		return;
1665 	}
1666 
1667 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1668 
1669 	/* Adjust MAC if using macaddr */
1670 	if (iap == macaddr)
1671 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1672 }
1673 
1674 /* ------------------------------------------------------------------------- */
1675 
1676 /*
1677  * Phy section
1678  */
1679 static void fec_enet_adjust_link(struct net_device *ndev)
1680 {
1681 	struct fec_enet_private *fep = netdev_priv(ndev);
1682 	struct phy_device *phy_dev = fep->phy_dev;
1683 	int status_change = 0;
1684 
1685 	/* Prevent a state halted on mii error */
1686 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1687 		phy_dev->state = PHY_RESUMING;
1688 		return;
1689 	}
1690 
1691 	/*
1692 	 * If the netdev is down, or is going down, we're not interested
1693 	 * in link state events, so just mark our idea of the link as down
1694 	 * and ignore the event.
1695 	 */
1696 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1697 		fep->link = 0;
1698 	} else if (phy_dev->link) {
1699 		if (!fep->link) {
1700 			fep->link = phy_dev->link;
1701 			status_change = 1;
1702 		}
1703 
1704 		if (fep->full_duplex != phy_dev->duplex) {
1705 			fep->full_duplex = phy_dev->duplex;
1706 			status_change = 1;
1707 		}
1708 
1709 		if (phy_dev->speed != fep->speed) {
1710 			fep->speed = phy_dev->speed;
1711 			status_change = 1;
1712 		}
1713 
1714 		/* if any of the above changed restart the FEC */
1715 		if (status_change) {
1716 			napi_disable(&fep->napi);
1717 			netif_tx_lock_bh(ndev);
1718 			fec_restart(ndev);
1719 			netif_wake_queue(ndev);
1720 			netif_tx_unlock_bh(ndev);
1721 			napi_enable(&fep->napi);
1722 		}
1723 	} else {
1724 		if (fep->link) {
1725 			napi_disable(&fep->napi);
1726 			netif_tx_lock_bh(ndev);
1727 			fec_stop(ndev);
1728 			netif_tx_unlock_bh(ndev);
1729 			napi_enable(&fep->napi);
1730 			fep->link = phy_dev->link;
1731 			status_change = 1;
1732 		}
1733 	}
1734 
1735 	if (status_change)
1736 		phy_print_status(phy_dev);
1737 }
1738 
1739 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1740 {
1741 	struct fec_enet_private *fep = bus->priv;
1742 	struct device *dev = &fep->pdev->dev;
1743 	unsigned long time_left;
1744 	int ret = 0;
1745 
1746 	ret = pm_runtime_get_sync(dev);
1747 	if (ret < 0)
1748 		return ret;
1749 
1750 	fep->mii_timeout = 0;
1751 	reinit_completion(&fep->mdio_done);
1752 
1753 	/* start a read op */
1754 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1755 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1756 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1757 
1758 	/* wait for end of transfer */
1759 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1760 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1761 	if (time_left == 0) {
1762 		fep->mii_timeout = 1;
1763 		netdev_err(fep->netdev, "MDIO read timeout\n");
1764 		ret = -ETIMEDOUT;
1765 		goto out;
1766 	}
1767 
1768 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1769 
1770 out:
1771 	pm_runtime_mark_last_busy(dev);
1772 	pm_runtime_put_autosuspend(dev);
1773 
1774 	return ret;
1775 }
1776 
1777 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1778 			   u16 value)
1779 {
1780 	struct fec_enet_private *fep = bus->priv;
1781 	struct device *dev = &fep->pdev->dev;
1782 	unsigned long time_left;
1783 	int ret;
1784 
1785 	ret = pm_runtime_get_sync(dev);
1786 	if (ret < 0)
1787 		return ret;
1788 	else
1789 		ret = 0;
1790 
1791 	fep->mii_timeout = 0;
1792 	reinit_completion(&fep->mdio_done);
1793 
1794 	/* start a write op */
1795 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1796 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1797 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1798 		fep->hwp + FEC_MII_DATA);
1799 
1800 	/* wait for end of transfer */
1801 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1802 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1803 	if (time_left == 0) {
1804 		fep->mii_timeout = 1;
1805 		netdev_err(fep->netdev, "MDIO write timeout\n");
1806 		ret  = -ETIMEDOUT;
1807 	}
1808 
1809 	pm_runtime_mark_last_busy(dev);
1810 	pm_runtime_put_autosuspend(dev);
1811 
1812 	return ret;
1813 }
1814 
1815 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1816 {
1817 	struct fec_enet_private *fep = netdev_priv(ndev);
1818 	int ret;
1819 
1820 	if (enable) {
1821 		ret = clk_prepare_enable(fep->clk_ahb);
1822 		if (ret)
1823 			return ret;
1824 		if (fep->clk_enet_out) {
1825 			ret = clk_prepare_enable(fep->clk_enet_out);
1826 			if (ret)
1827 				goto failed_clk_enet_out;
1828 		}
1829 		if (fep->clk_ptp) {
1830 			mutex_lock(&fep->ptp_clk_mutex);
1831 			ret = clk_prepare_enable(fep->clk_ptp);
1832 			if (ret) {
1833 				mutex_unlock(&fep->ptp_clk_mutex);
1834 				goto failed_clk_ptp;
1835 			} else {
1836 				fep->ptp_clk_on = true;
1837 			}
1838 			mutex_unlock(&fep->ptp_clk_mutex);
1839 		}
1840 		if (fep->clk_ref) {
1841 			ret = clk_prepare_enable(fep->clk_ref);
1842 			if (ret)
1843 				goto failed_clk_ref;
1844 		}
1845 	} else {
1846 		clk_disable_unprepare(fep->clk_ahb);
1847 		if (fep->clk_enet_out)
1848 			clk_disable_unprepare(fep->clk_enet_out);
1849 		if (fep->clk_ptp) {
1850 			mutex_lock(&fep->ptp_clk_mutex);
1851 			clk_disable_unprepare(fep->clk_ptp);
1852 			fep->ptp_clk_on = false;
1853 			mutex_unlock(&fep->ptp_clk_mutex);
1854 		}
1855 		if (fep->clk_ref)
1856 			clk_disable_unprepare(fep->clk_ref);
1857 	}
1858 
1859 	return 0;
1860 
1861 failed_clk_ref:
1862 	if (fep->clk_ref)
1863 		clk_disable_unprepare(fep->clk_ref);
1864 failed_clk_ptp:
1865 	if (fep->clk_enet_out)
1866 		clk_disable_unprepare(fep->clk_enet_out);
1867 failed_clk_enet_out:
1868 		clk_disable_unprepare(fep->clk_ahb);
1869 
1870 	return ret;
1871 }
1872 
1873 static int fec_enet_mii_probe(struct net_device *ndev)
1874 {
1875 	struct fec_enet_private *fep = netdev_priv(ndev);
1876 	struct phy_device *phy_dev = NULL;
1877 	char mdio_bus_id[MII_BUS_ID_SIZE];
1878 	char phy_name[MII_BUS_ID_SIZE + 3];
1879 	int phy_id;
1880 	int dev_id = fep->dev_id;
1881 
1882 	fep->phy_dev = NULL;
1883 
1884 	if (fep->phy_node) {
1885 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1886 					 &fec_enet_adjust_link, 0,
1887 					 fep->phy_interface);
1888 		if (!phy_dev)
1889 			return -ENODEV;
1890 	} else {
1891 		/* check for attached phy */
1892 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1893 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1894 				continue;
1895 			if (dev_id--)
1896 				continue;
1897 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1898 			break;
1899 		}
1900 
1901 		if (phy_id >= PHY_MAX_ADDR) {
1902 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1903 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1904 			phy_id = 0;
1905 		}
1906 
1907 		snprintf(phy_name, sizeof(phy_name),
1908 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1909 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1910 				      fep->phy_interface);
1911 	}
1912 
1913 	if (IS_ERR(phy_dev)) {
1914 		netdev_err(ndev, "could not attach to PHY\n");
1915 		return PTR_ERR(phy_dev);
1916 	}
1917 
1918 	/* mask with MAC supported features */
1919 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1920 		phy_dev->supported &= PHY_GBIT_FEATURES;
1921 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1922 #if !defined(CONFIG_M5272)
1923 		phy_dev->supported |= SUPPORTED_Pause;
1924 #endif
1925 	}
1926 	else
1927 		phy_dev->supported &= PHY_BASIC_FEATURES;
1928 
1929 	phy_dev->advertising = phy_dev->supported;
1930 
1931 	fep->phy_dev = phy_dev;
1932 	fep->link = 0;
1933 	fep->full_duplex = 0;
1934 
1935 	phy_attached_info(phy_dev);
1936 
1937 	return 0;
1938 }
1939 
1940 static int fec_enet_mii_init(struct platform_device *pdev)
1941 {
1942 	static struct mii_bus *fec0_mii_bus;
1943 	struct net_device *ndev = platform_get_drvdata(pdev);
1944 	struct fec_enet_private *fep = netdev_priv(ndev);
1945 	struct device_node *node;
1946 	int err = -ENXIO;
1947 	u32 mii_speed, holdtime;
1948 
1949 	/*
1950 	 * The i.MX28 dual fec interfaces are not equal.
1951 	 * Here are the differences:
1952 	 *
1953 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1954 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1955 	 *  - external phys can only be configured by fec0
1956 	 *
1957 	 * That is to say fec1 can not work independently. It only works
1958 	 * when fec0 is working. The reason behind this design is that the
1959 	 * second interface is added primarily for Switch mode.
1960 	 *
1961 	 * Because of the last point above, both phys are attached on fec0
1962 	 * mdio interface in board design, and need to be configured by
1963 	 * fec0 mii_bus.
1964 	 */
1965 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1966 		/* fec1 uses fec0 mii_bus */
1967 		if (mii_cnt && fec0_mii_bus) {
1968 			fep->mii_bus = fec0_mii_bus;
1969 			mii_cnt++;
1970 			return 0;
1971 		}
1972 		return -ENOENT;
1973 	}
1974 
1975 	fep->mii_timeout = 0;
1976 
1977 	/*
1978 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1979 	 *
1980 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1981 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1982 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1983 	 * document.
1984 	 */
1985 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1986 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1987 		mii_speed--;
1988 	if (mii_speed > 63) {
1989 		dev_err(&pdev->dev,
1990 			"fec clock (%lu) to fast to get right mii speed\n",
1991 			clk_get_rate(fep->clk_ipg));
1992 		err = -EINVAL;
1993 		goto err_out;
1994 	}
1995 
1996 	/*
1997 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
1998 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
1999 	 * versions are RAZ there, so just ignore the difference and write the
2000 	 * register always.
2001 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2002 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2003 	 * output.
2004 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2005 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2006 	 * holdtime cannot result in a value greater than 3.
2007 	 */
2008 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2009 
2010 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2011 
2012 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2013 
2014 	fep->mii_bus = mdiobus_alloc();
2015 	if (fep->mii_bus == NULL) {
2016 		err = -ENOMEM;
2017 		goto err_out;
2018 	}
2019 
2020 	fep->mii_bus->name = "fec_enet_mii_bus";
2021 	fep->mii_bus->read = fec_enet_mdio_read;
2022 	fep->mii_bus->write = fec_enet_mdio_write;
2023 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2024 		pdev->name, fep->dev_id + 1);
2025 	fep->mii_bus->priv = fep;
2026 	fep->mii_bus->parent = &pdev->dev;
2027 
2028 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2029 	if (node) {
2030 		err = of_mdiobus_register(fep->mii_bus, node);
2031 		of_node_put(node);
2032 	} else {
2033 		err = mdiobus_register(fep->mii_bus);
2034 	}
2035 
2036 	if (err)
2037 		goto err_out_free_mdiobus;
2038 
2039 	mii_cnt++;
2040 
2041 	/* save fec0 mii_bus */
2042 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2043 		fec0_mii_bus = fep->mii_bus;
2044 
2045 	return 0;
2046 
2047 err_out_free_mdiobus:
2048 	mdiobus_free(fep->mii_bus);
2049 err_out:
2050 	return err;
2051 }
2052 
2053 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2054 {
2055 	if (--mii_cnt == 0) {
2056 		mdiobus_unregister(fep->mii_bus);
2057 		mdiobus_free(fep->mii_bus);
2058 	}
2059 }
2060 
2061 static int fec_enet_get_settings(struct net_device *ndev,
2062 				  struct ethtool_cmd *cmd)
2063 {
2064 	struct fec_enet_private *fep = netdev_priv(ndev);
2065 	struct phy_device *phydev = fep->phy_dev;
2066 
2067 	if (!phydev)
2068 		return -ENODEV;
2069 
2070 	return phy_ethtool_gset(phydev, cmd);
2071 }
2072 
2073 static int fec_enet_set_settings(struct net_device *ndev,
2074 				 struct ethtool_cmd *cmd)
2075 {
2076 	struct fec_enet_private *fep = netdev_priv(ndev);
2077 	struct phy_device *phydev = fep->phy_dev;
2078 
2079 	if (!phydev)
2080 		return -ENODEV;
2081 
2082 	return phy_ethtool_sset(phydev, cmd);
2083 }
2084 
2085 static void fec_enet_get_drvinfo(struct net_device *ndev,
2086 				 struct ethtool_drvinfo *info)
2087 {
2088 	struct fec_enet_private *fep = netdev_priv(ndev);
2089 
2090 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2091 		sizeof(info->driver));
2092 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2093 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2094 }
2095 
2096 static int fec_enet_get_regs_len(struct net_device *ndev)
2097 {
2098 	struct fec_enet_private *fep = netdev_priv(ndev);
2099 	struct resource *r;
2100 	int s = 0;
2101 
2102 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2103 	if (r)
2104 		s = resource_size(r);
2105 
2106 	return s;
2107 }
2108 
2109 /* List of registers that can be safety be read to dump them with ethtool */
2110 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2111 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2112 static u32 fec_enet_register_offset[] = {
2113 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2114 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2115 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2116 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2117 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2118 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2119 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2120 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2121 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2122 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2123 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2124 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2125 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2126 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2127 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2128 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2129 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2130 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2131 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2132 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2133 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2134 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2135 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2136 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2137 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2138 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2139 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2140 };
2141 #else
2142 static u32 fec_enet_register_offset[] = {
2143 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2144 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2145 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2146 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2147 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2148 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2149 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2150 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2151 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2152 };
2153 #endif
2154 
2155 static void fec_enet_get_regs(struct net_device *ndev,
2156 			      struct ethtool_regs *regs, void *regbuf)
2157 {
2158 	struct fec_enet_private *fep = netdev_priv(ndev);
2159 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2160 	u32 *buf = (u32 *)regbuf;
2161 	u32 i, off;
2162 
2163 	memset(buf, 0, regs->len);
2164 
2165 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2166 		off = fec_enet_register_offset[i] / 4;
2167 		buf[off] = readl(&theregs[off]);
2168 	}
2169 }
2170 
2171 static int fec_enet_get_ts_info(struct net_device *ndev,
2172 				struct ethtool_ts_info *info)
2173 {
2174 	struct fec_enet_private *fep = netdev_priv(ndev);
2175 
2176 	if (fep->bufdesc_ex) {
2177 
2178 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2179 					SOF_TIMESTAMPING_RX_SOFTWARE |
2180 					SOF_TIMESTAMPING_SOFTWARE |
2181 					SOF_TIMESTAMPING_TX_HARDWARE |
2182 					SOF_TIMESTAMPING_RX_HARDWARE |
2183 					SOF_TIMESTAMPING_RAW_HARDWARE;
2184 		if (fep->ptp_clock)
2185 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2186 		else
2187 			info->phc_index = -1;
2188 
2189 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2190 				 (1 << HWTSTAMP_TX_ON);
2191 
2192 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2193 				   (1 << HWTSTAMP_FILTER_ALL);
2194 		return 0;
2195 	} else {
2196 		return ethtool_op_get_ts_info(ndev, info);
2197 	}
2198 }
2199 
2200 #if !defined(CONFIG_M5272)
2201 
2202 static void fec_enet_get_pauseparam(struct net_device *ndev,
2203 				    struct ethtool_pauseparam *pause)
2204 {
2205 	struct fec_enet_private *fep = netdev_priv(ndev);
2206 
2207 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2208 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2209 	pause->rx_pause = pause->tx_pause;
2210 }
2211 
2212 static int fec_enet_set_pauseparam(struct net_device *ndev,
2213 				   struct ethtool_pauseparam *pause)
2214 {
2215 	struct fec_enet_private *fep = netdev_priv(ndev);
2216 
2217 	if (!fep->phy_dev)
2218 		return -ENODEV;
2219 
2220 	if (pause->tx_pause != pause->rx_pause) {
2221 		netdev_info(ndev,
2222 			"hardware only support enable/disable both tx and rx");
2223 		return -EINVAL;
2224 	}
2225 
2226 	fep->pause_flag = 0;
2227 
2228 	/* tx pause must be same as rx pause */
2229 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2230 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2231 
2232 	if (pause->rx_pause || pause->autoneg) {
2233 		fep->phy_dev->supported |= ADVERTISED_Pause;
2234 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2235 	} else {
2236 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2237 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2238 	}
2239 
2240 	if (pause->autoneg) {
2241 		if (netif_running(ndev))
2242 			fec_stop(ndev);
2243 		phy_start_aneg(fep->phy_dev);
2244 	}
2245 	if (netif_running(ndev)) {
2246 		napi_disable(&fep->napi);
2247 		netif_tx_lock_bh(ndev);
2248 		fec_restart(ndev);
2249 		netif_wake_queue(ndev);
2250 		netif_tx_unlock_bh(ndev);
2251 		napi_enable(&fep->napi);
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 static const struct fec_stat {
2258 	char name[ETH_GSTRING_LEN];
2259 	u16 offset;
2260 } fec_stats[] = {
2261 	/* RMON TX */
2262 	{ "tx_dropped", RMON_T_DROP },
2263 	{ "tx_packets", RMON_T_PACKETS },
2264 	{ "tx_broadcast", RMON_T_BC_PKT },
2265 	{ "tx_multicast", RMON_T_MC_PKT },
2266 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2267 	{ "tx_undersize", RMON_T_UNDERSIZE },
2268 	{ "tx_oversize", RMON_T_OVERSIZE },
2269 	{ "tx_fragment", RMON_T_FRAG },
2270 	{ "tx_jabber", RMON_T_JAB },
2271 	{ "tx_collision", RMON_T_COL },
2272 	{ "tx_64byte", RMON_T_P64 },
2273 	{ "tx_65to127byte", RMON_T_P65TO127 },
2274 	{ "tx_128to255byte", RMON_T_P128TO255 },
2275 	{ "tx_256to511byte", RMON_T_P256TO511 },
2276 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2277 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2278 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2279 	{ "tx_octets", RMON_T_OCTETS },
2280 
2281 	/* IEEE TX */
2282 	{ "IEEE_tx_drop", IEEE_T_DROP },
2283 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2284 	{ "IEEE_tx_1col", IEEE_T_1COL },
2285 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2286 	{ "IEEE_tx_def", IEEE_T_DEF },
2287 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2288 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2289 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2290 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2291 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2292 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2293 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2294 
2295 	/* RMON RX */
2296 	{ "rx_packets", RMON_R_PACKETS },
2297 	{ "rx_broadcast", RMON_R_BC_PKT },
2298 	{ "rx_multicast", RMON_R_MC_PKT },
2299 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2300 	{ "rx_undersize", RMON_R_UNDERSIZE },
2301 	{ "rx_oversize", RMON_R_OVERSIZE },
2302 	{ "rx_fragment", RMON_R_FRAG },
2303 	{ "rx_jabber", RMON_R_JAB },
2304 	{ "rx_64byte", RMON_R_P64 },
2305 	{ "rx_65to127byte", RMON_R_P65TO127 },
2306 	{ "rx_128to255byte", RMON_R_P128TO255 },
2307 	{ "rx_256to511byte", RMON_R_P256TO511 },
2308 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2309 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2310 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2311 	{ "rx_octets", RMON_R_OCTETS },
2312 
2313 	/* IEEE RX */
2314 	{ "IEEE_rx_drop", IEEE_R_DROP },
2315 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2316 	{ "IEEE_rx_crc", IEEE_R_CRC },
2317 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2318 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2319 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2320 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2321 };
2322 
2323 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2324 	struct ethtool_stats *stats, u64 *data)
2325 {
2326 	struct fec_enet_private *fep = netdev_priv(dev);
2327 	int i;
2328 
2329 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2330 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2331 }
2332 
2333 static void fec_enet_get_strings(struct net_device *netdev,
2334 	u32 stringset, u8 *data)
2335 {
2336 	int i;
2337 	switch (stringset) {
2338 	case ETH_SS_STATS:
2339 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2340 			memcpy(data + i * ETH_GSTRING_LEN,
2341 				fec_stats[i].name, ETH_GSTRING_LEN);
2342 		break;
2343 	}
2344 }
2345 
2346 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2347 {
2348 	switch (sset) {
2349 	case ETH_SS_STATS:
2350 		return ARRAY_SIZE(fec_stats);
2351 	default:
2352 		return -EOPNOTSUPP;
2353 	}
2354 }
2355 #endif /* !defined(CONFIG_M5272) */
2356 
2357 static int fec_enet_nway_reset(struct net_device *dev)
2358 {
2359 	struct fec_enet_private *fep = netdev_priv(dev);
2360 	struct phy_device *phydev = fep->phy_dev;
2361 
2362 	if (!phydev)
2363 		return -ENODEV;
2364 
2365 	return genphy_restart_aneg(phydev);
2366 }
2367 
2368 /* ITR clock source is enet system clock (clk_ahb).
2369  * TCTT unit is cycle_ns * 64 cycle
2370  * So, the ICTT value = X us / (cycle_ns * 64)
2371  */
2372 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2373 {
2374 	struct fec_enet_private *fep = netdev_priv(ndev);
2375 
2376 	return us * (fep->itr_clk_rate / 64000) / 1000;
2377 }
2378 
2379 /* Set threshold for interrupt coalescing */
2380 static void fec_enet_itr_coal_set(struct net_device *ndev)
2381 {
2382 	struct fec_enet_private *fep = netdev_priv(ndev);
2383 	int rx_itr, tx_itr;
2384 
2385 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2386 		return;
2387 
2388 	/* Must be greater than zero to avoid unpredictable behavior */
2389 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2390 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2391 		return;
2392 
2393 	/* Select enet system clock as Interrupt Coalescing
2394 	 * timer Clock Source
2395 	 */
2396 	rx_itr = FEC_ITR_CLK_SEL;
2397 	tx_itr = FEC_ITR_CLK_SEL;
2398 
2399 	/* set ICFT and ICTT */
2400 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2401 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2402 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2403 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2404 
2405 	rx_itr |= FEC_ITR_EN;
2406 	tx_itr |= FEC_ITR_EN;
2407 
2408 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2409 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2410 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2411 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2412 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2413 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2414 }
2415 
2416 static int
2417 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2418 {
2419 	struct fec_enet_private *fep = netdev_priv(ndev);
2420 
2421 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2422 		return -EOPNOTSUPP;
2423 
2424 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2425 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2426 
2427 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2428 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2429 
2430 	return 0;
2431 }
2432 
2433 static int
2434 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2435 {
2436 	struct fec_enet_private *fep = netdev_priv(ndev);
2437 	unsigned int cycle;
2438 
2439 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2440 		return -EOPNOTSUPP;
2441 
2442 	if (ec->rx_max_coalesced_frames > 255) {
2443 		pr_err("Rx coalesced frames exceed hardware limiation");
2444 		return -EINVAL;
2445 	}
2446 
2447 	if (ec->tx_max_coalesced_frames > 255) {
2448 		pr_err("Tx coalesced frame exceed hardware limiation");
2449 		return -EINVAL;
2450 	}
2451 
2452 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2453 	if (cycle > 0xFFFF) {
2454 		pr_err("Rx coalesed usec exceeed hardware limiation");
2455 		return -EINVAL;
2456 	}
2457 
2458 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2459 	if (cycle > 0xFFFF) {
2460 		pr_err("Rx coalesed usec exceeed hardware limiation");
2461 		return -EINVAL;
2462 	}
2463 
2464 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2465 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2466 
2467 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2468 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2469 
2470 	fec_enet_itr_coal_set(ndev);
2471 
2472 	return 0;
2473 }
2474 
2475 static void fec_enet_itr_coal_init(struct net_device *ndev)
2476 {
2477 	struct ethtool_coalesce ec;
2478 
2479 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2480 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2481 
2482 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2483 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2484 
2485 	fec_enet_set_coalesce(ndev, &ec);
2486 }
2487 
2488 static int fec_enet_get_tunable(struct net_device *netdev,
2489 				const struct ethtool_tunable *tuna,
2490 				void *data)
2491 {
2492 	struct fec_enet_private *fep = netdev_priv(netdev);
2493 	int ret = 0;
2494 
2495 	switch (tuna->id) {
2496 	case ETHTOOL_RX_COPYBREAK:
2497 		*(u32 *)data = fep->rx_copybreak;
2498 		break;
2499 	default:
2500 		ret = -EINVAL;
2501 		break;
2502 	}
2503 
2504 	return ret;
2505 }
2506 
2507 static int fec_enet_set_tunable(struct net_device *netdev,
2508 				const struct ethtool_tunable *tuna,
2509 				const void *data)
2510 {
2511 	struct fec_enet_private *fep = netdev_priv(netdev);
2512 	int ret = 0;
2513 
2514 	switch (tuna->id) {
2515 	case ETHTOOL_RX_COPYBREAK:
2516 		fep->rx_copybreak = *(u32 *)data;
2517 		break;
2518 	default:
2519 		ret = -EINVAL;
2520 		break;
2521 	}
2522 
2523 	return ret;
2524 }
2525 
2526 static void
2527 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2528 {
2529 	struct fec_enet_private *fep = netdev_priv(ndev);
2530 
2531 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2532 		wol->supported = WAKE_MAGIC;
2533 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2534 	} else {
2535 		wol->supported = wol->wolopts = 0;
2536 	}
2537 }
2538 
2539 static int
2540 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2541 {
2542 	struct fec_enet_private *fep = netdev_priv(ndev);
2543 
2544 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2545 		return -EINVAL;
2546 
2547 	if (wol->wolopts & ~WAKE_MAGIC)
2548 		return -EINVAL;
2549 
2550 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2551 	if (device_may_wakeup(&ndev->dev)) {
2552 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2553 		if (fep->irq[0] > 0)
2554 			enable_irq_wake(fep->irq[0]);
2555 	} else {
2556 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2557 		if (fep->irq[0] > 0)
2558 			disable_irq_wake(fep->irq[0]);
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static const struct ethtool_ops fec_enet_ethtool_ops = {
2565 	.get_settings		= fec_enet_get_settings,
2566 	.set_settings		= fec_enet_set_settings,
2567 	.get_drvinfo		= fec_enet_get_drvinfo,
2568 	.get_regs_len		= fec_enet_get_regs_len,
2569 	.get_regs		= fec_enet_get_regs,
2570 	.nway_reset		= fec_enet_nway_reset,
2571 	.get_link		= ethtool_op_get_link,
2572 	.get_coalesce		= fec_enet_get_coalesce,
2573 	.set_coalesce		= fec_enet_set_coalesce,
2574 #ifndef CONFIG_M5272
2575 	.get_pauseparam		= fec_enet_get_pauseparam,
2576 	.set_pauseparam		= fec_enet_set_pauseparam,
2577 	.get_strings		= fec_enet_get_strings,
2578 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2579 	.get_sset_count		= fec_enet_get_sset_count,
2580 #endif
2581 	.get_ts_info		= fec_enet_get_ts_info,
2582 	.get_tunable		= fec_enet_get_tunable,
2583 	.set_tunable		= fec_enet_set_tunable,
2584 	.get_wol		= fec_enet_get_wol,
2585 	.set_wol		= fec_enet_set_wol,
2586 };
2587 
2588 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2589 {
2590 	struct fec_enet_private *fep = netdev_priv(ndev);
2591 	struct phy_device *phydev = fep->phy_dev;
2592 
2593 	if (!netif_running(ndev))
2594 		return -EINVAL;
2595 
2596 	if (!phydev)
2597 		return -ENODEV;
2598 
2599 	if (fep->bufdesc_ex) {
2600 		if (cmd == SIOCSHWTSTAMP)
2601 			return fec_ptp_set(ndev, rq);
2602 		if (cmd == SIOCGHWTSTAMP)
2603 			return fec_ptp_get(ndev, rq);
2604 	}
2605 
2606 	return phy_mii_ioctl(phydev, rq, cmd);
2607 }
2608 
2609 static void fec_enet_free_buffers(struct net_device *ndev)
2610 {
2611 	struct fec_enet_private *fep = netdev_priv(ndev);
2612 	unsigned int i;
2613 	struct sk_buff *skb;
2614 	struct bufdesc	*bdp;
2615 	struct fec_enet_priv_tx_q *txq;
2616 	struct fec_enet_priv_rx_q *rxq;
2617 	unsigned int q;
2618 
2619 	for (q = 0; q < fep->num_rx_queues; q++) {
2620 		rxq = fep->rx_queue[q];
2621 		bdp = rxq->bd.base;
2622 		for (i = 0; i < rxq->bd.ring_size; i++) {
2623 			skb = rxq->rx_skbuff[i];
2624 			rxq->rx_skbuff[i] = NULL;
2625 			if (skb) {
2626 				dma_unmap_single(&fep->pdev->dev,
2627 						 fec32_to_cpu(bdp->cbd_bufaddr),
2628 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2629 						 DMA_FROM_DEVICE);
2630 				dev_kfree_skb(skb);
2631 			}
2632 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2633 		}
2634 	}
2635 
2636 	for (q = 0; q < fep->num_tx_queues; q++) {
2637 		txq = fep->tx_queue[q];
2638 		bdp = txq->bd.base;
2639 		for (i = 0; i < txq->bd.ring_size; i++) {
2640 			kfree(txq->tx_bounce[i]);
2641 			txq->tx_bounce[i] = NULL;
2642 			skb = txq->tx_skbuff[i];
2643 			txq->tx_skbuff[i] = NULL;
2644 			dev_kfree_skb(skb);
2645 		}
2646 	}
2647 }
2648 
2649 static void fec_enet_free_queue(struct net_device *ndev)
2650 {
2651 	struct fec_enet_private *fep = netdev_priv(ndev);
2652 	int i;
2653 	struct fec_enet_priv_tx_q *txq;
2654 
2655 	for (i = 0; i < fep->num_tx_queues; i++)
2656 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2657 			txq = fep->tx_queue[i];
2658 			dma_free_coherent(NULL,
2659 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2660 					  txq->tso_hdrs,
2661 					  txq->tso_hdrs_dma);
2662 		}
2663 
2664 	for (i = 0; i < fep->num_rx_queues; i++)
2665 		kfree(fep->rx_queue[i]);
2666 	for (i = 0; i < fep->num_tx_queues; i++)
2667 		kfree(fep->tx_queue[i]);
2668 }
2669 
2670 static int fec_enet_alloc_queue(struct net_device *ndev)
2671 {
2672 	struct fec_enet_private *fep = netdev_priv(ndev);
2673 	int i;
2674 	int ret = 0;
2675 	struct fec_enet_priv_tx_q *txq;
2676 
2677 	for (i = 0; i < fep->num_tx_queues; i++) {
2678 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2679 		if (!txq) {
2680 			ret = -ENOMEM;
2681 			goto alloc_failed;
2682 		}
2683 
2684 		fep->tx_queue[i] = txq;
2685 		txq->bd.ring_size = TX_RING_SIZE;
2686 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2687 
2688 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2689 		txq->tx_wake_threshold =
2690 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2691 
2692 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2693 					txq->bd.ring_size * TSO_HEADER_SIZE,
2694 					&txq->tso_hdrs_dma,
2695 					GFP_KERNEL);
2696 		if (!txq->tso_hdrs) {
2697 			ret = -ENOMEM;
2698 			goto alloc_failed;
2699 		}
2700 	}
2701 
2702 	for (i = 0; i < fep->num_rx_queues; i++) {
2703 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2704 					   GFP_KERNEL);
2705 		if (!fep->rx_queue[i]) {
2706 			ret = -ENOMEM;
2707 			goto alloc_failed;
2708 		}
2709 
2710 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2711 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2712 	}
2713 	return ret;
2714 
2715 alloc_failed:
2716 	fec_enet_free_queue(ndev);
2717 	return ret;
2718 }
2719 
2720 static int
2721 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2722 {
2723 	struct fec_enet_private *fep = netdev_priv(ndev);
2724 	unsigned int i;
2725 	struct sk_buff *skb;
2726 	struct bufdesc	*bdp;
2727 	struct fec_enet_priv_rx_q *rxq;
2728 
2729 	rxq = fep->rx_queue[queue];
2730 	bdp = rxq->bd.base;
2731 	for (i = 0; i < rxq->bd.ring_size; i++) {
2732 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2733 		if (!skb)
2734 			goto err_alloc;
2735 
2736 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2737 			dev_kfree_skb(skb);
2738 			goto err_alloc;
2739 		}
2740 
2741 		rxq->rx_skbuff[i] = skb;
2742 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2743 
2744 		if (fep->bufdesc_ex) {
2745 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2746 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2747 		}
2748 
2749 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2750 	}
2751 
2752 	/* Set the last buffer to wrap. */
2753 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2754 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2755 	return 0;
2756 
2757  err_alloc:
2758 	fec_enet_free_buffers(ndev);
2759 	return -ENOMEM;
2760 }
2761 
2762 static int
2763 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2764 {
2765 	struct fec_enet_private *fep = netdev_priv(ndev);
2766 	unsigned int i;
2767 	struct bufdesc  *bdp;
2768 	struct fec_enet_priv_tx_q *txq;
2769 
2770 	txq = fep->tx_queue[queue];
2771 	bdp = txq->bd.base;
2772 	for (i = 0; i < txq->bd.ring_size; i++) {
2773 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2774 		if (!txq->tx_bounce[i])
2775 			goto err_alloc;
2776 
2777 		bdp->cbd_sc = cpu_to_fec16(0);
2778 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2779 
2780 		if (fep->bufdesc_ex) {
2781 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2782 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2783 		}
2784 
2785 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2786 	}
2787 
2788 	/* Set the last buffer to wrap. */
2789 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2790 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2791 
2792 	return 0;
2793 
2794  err_alloc:
2795 	fec_enet_free_buffers(ndev);
2796 	return -ENOMEM;
2797 }
2798 
2799 static int fec_enet_alloc_buffers(struct net_device *ndev)
2800 {
2801 	struct fec_enet_private *fep = netdev_priv(ndev);
2802 	unsigned int i;
2803 
2804 	for (i = 0; i < fep->num_rx_queues; i++)
2805 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2806 			return -ENOMEM;
2807 
2808 	for (i = 0; i < fep->num_tx_queues; i++)
2809 		if (fec_enet_alloc_txq_buffers(ndev, i))
2810 			return -ENOMEM;
2811 	return 0;
2812 }
2813 
2814 static int
2815 fec_enet_open(struct net_device *ndev)
2816 {
2817 	struct fec_enet_private *fep = netdev_priv(ndev);
2818 	int ret;
2819 
2820 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2821 	if (ret < 0)
2822 		return ret;
2823 
2824 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2825 	ret = fec_enet_clk_enable(ndev, true);
2826 	if (ret)
2827 		goto clk_enable;
2828 
2829 	/* I should reset the ring buffers here, but I don't yet know
2830 	 * a simple way to do that.
2831 	 */
2832 
2833 	ret = fec_enet_alloc_buffers(ndev);
2834 	if (ret)
2835 		goto err_enet_alloc;
2836 
2837 	/* Init MAC prior to mii bus probe */
2838 	fec_restart(ndev);
2839 
2840 	/* Probe and connect to PHY when open the interface */
2841 	ret = fec_enet_mii_probe(ndev);
2842 	if (ret)
2843 		goto err_enet_mii_probe;
2844 
2845 	napi_enable(&fep->napi);
2846 	phy_start(fep->phy_dev);
2847 	netif_tx_start_all_queues(ndev);
2848 
2849 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2850 				 FEC_WOL_FLAG_ENABLE);
2851 
2852 	return 0;
2853 
2854 err_enet_mii_probe:
2855 	fec_enet_free_buffers(ndev);
2856 err_enet_alloc:
2857 	fec_enet_clk_enable(ndev, false);
2858 clk_enable:
2859 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2860 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2861 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2862 	return ret;
2863 }
2864 
2865 static int
2866 fec_enet_close(struct net_device *ndev)
2867 {
2868 	struct fec_enet_private *fep = netdev_priv(ndev);
2869 
2870 	phy_stop(fep->phy_dev);
2871 
2872 	if (netif_device_present(ndev)) {
2873 		napi_disable(&fep->napi);
2874 		netif_tx_disable(ndev);
2875 		fec_stop(ndev);
2876 	}
2877 
2878 	phy_disconnect(fep->phy_dev);
2879 	fep->phy_dev = NULL;
2880 
2881 	fec_enet_clk_enable(ndev, false);
2882 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2883 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2884 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2885 
2886 	fec_enet_free_buffers(ndev);
2887 
2888 	return 0;
2889 }
2890 
2891 /* Set or clear the multicast filter for this adaptor.
2892  * Skeleton taken from sunlance driver.
2893  * The CPM Ethernet implementation allows Multicast as well as individual
2894  * MAC address filtering.  Some of the drivers check to make sure it is
2895  * a group multicast address, and discard those that are not.  I guess I
2896  * will do the same for now, but just remove the test if you want
2897  * individual filtering as well (do the upper net layers want or support
2898  * this kind of feature?).
2899  */
2900 
2901 #define HASH_BITS	6		/* #bits in hash */
2902 #define CRC32_POLY	0xEDB88320
2903 
2904 static void set_multicast_list(struct net_device *ndev)
2905 {
2906 	struct fec_enet_private *fep = netdev_priv(ndev);
2907 	struct netdev_hw_addr *ha;
2908 	unsigned int i, bit, data, crc, tmp;
2909 	unsigned char hash;
2910 
2911 	if (ndev->flags & IFF_PROMISC) {
2912 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2913 		tmp |= 0x8;
2914 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2915 		return;
2916 	}
2917 
2918 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2919 	tmp &= ~0x8;
2920 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2921 
2922 	if (ndev->flags & IFF_ALLMULTI) {
2923 		/* Catch all multicast addresses, so set the
2924 		 * filter to all 1's
2925 		 */
2926 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2927 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2928 
2929 		return;
2930 	}
2931 
2932 	/* Clear filter and add the addresses in hash register
2933 	 */
2934 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2935 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2936 
2937 	netdev_for_each_mc_addr(ha, ndev) {
2938 		/* calculate crc32 value of mac address */
2939 		crc = 0xffffffff;
2940 
2941 		for (i = 0; i < ndev->addr_len; i++) {
2942 			data = ha->addr[i];
2943 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2944 				crc = (crc >> 1) ^
2945 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2946 			}
2947 		}
2948 
2949 		/* only upper 6 bits (HASH_BITS) are used
2950 		 * which point to specific bit in he hash registers
2951 		 */
2952 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2953 
2954 		if (hash > 31) {
2955 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2956 			tmp |= 1 << (hash - 32);
2957 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2958 		} else {
2959 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2960 			tmp |= 1 << hash;
2961 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2962 		}
2963 	}
2964 }
2965 
2966 /* Set a MAC change in hardware. */
2967 static int
2968 fec_set_mac_address(struct net_device *ndev, void *p)
2969 {
2970 	struct fec_enet_private *fep = netdev_priv(ndev);
2971 	struct sockaddr *addr = p;
2972 
2973 	if (addr) {
2974 		if (!is_valid_ether_addr(addr->sa_data))
2975 			return -EADDRNOTAVAIL;
2976 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2977 	}
2978 
2979 	/* Add netif status check here to avoid system hang in below case:
2980 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2981 	 * After ethx down, fec all clocks are gated off and then register
2982 	 * access causes system hang.
2983 	 */
2984 	if (!netif_running(ndev))
2985 		return 0;
2986 
2987 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2988 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2989 		fep->hwp + FEC_ADDR_LOW);
2990 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2991 		fep->hwp + FEC_ADDR_HIGH);
2992 	return 0;
2993 }
2994 
2995 #ifdef CONFIG_NET_POLL_CONTROLLER
2996 /**
2997  * fec_poll_controller - FEC Poll controller function
2998  * @dev: The FEC network adapter
2999  *
3000  * Polled functionality used by netconsole and others in non interrupt mode
3001  *
3002  */
3003 static void fec_poll_controller(struct net_device *dev)
3004 {
3005 	int i;
3006 	struct fec_enet_private *fep = netdev_priv(dev);
3007 
3008 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3009 		if (fep->irq[i] > 0) {
3010 			disable_irq(fep->irq[i]);
3011 			fec_enet_interrupt(fep->irq[i], dev);
3012 			enable_irq(fep->irq[i]);
3013 		}
3014 	}
3015 }
3016 #endif
3017 
3018 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3019 	netdev_features_t features)
3020 {
3021 	struct fec_enet_private *fep = netdev_priv(netdev);
3022 	netdev_features_t changed = features ^ netdev->features;
3023 
3024 	netdev->features = features;
3025 
3026 	/* Receive checksum has been changed */
3027 	if (changed & NETIF_F_RXCSUM) {
3028 		if (features & NETIF_F_RXCSUM)
3029 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3030 		else
3031 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3032 	}
3033 }
3034 
3035 static int fec_set_features(struct net_device *netdev,
3036 	netdev_features_t features)
3037 {
3038 	struct fec_enet_private *fep = netdev_priv(netdev);
3039 	netdev_features_t changed = features ^ netdev->features;
3040 
3041 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3042 		napi_disable(&fep->napi);
3043 		netif_tx_lock_bh(netdev);
3044 		fec_stop(netdev);
3045 		fec_enet_set_netdev_features(netdev, features);
3046 		fec_restart(netdev);
3047 		netif_tx_wake_all_queues(netdev);
3048 		netif_tx_unlock_bh(netdev);
3049 		napi_enable(&fep->napi);
3050 	} else {
3051 		fec_enet_set_netdev_features(netdev, features);
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 static const struct net_device_ops fec_netdev_ops = {
3058 	.ndo_open		= fec_enet_open,
3059 	.ndo_stop		= fec_enet_close,
3060 	.ndo_start_xmit		= fec_enet_start_xmit,
3061 	.ndo_set_rx_mode	= set_multicast_list,
3062 	.ndo_change_mtu		= eth_change_mtu,
3063 	.ndo_validate_addr	= eth_validate_addr,
3064 	.ndo_tx_timeout		= fec_timeout,
3065 	.ndo_set_mac_address	= fec_set_mac_address,
3066 	.ndo_do_ioctl		= fec_enet_ioctl,
3067 #ifdef CONFIG_NET_POLL_CONTROLLER
3068 	.ndo_poll_controller	= fec_poll_controller,
3069 #endif
3070 	.ndo_set_features	= fec_set_features,
3071 };
3072 
3073 static const unsigned short offset_des_active_rxq[] = {
3074 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3075 };
3076 
3077 static const unsigned short offset_des_active_txq[] = {
3078 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3079 };
3080 
3081  /*
3082   * XXX:  We need to clean up on failure exits here.
3083   *
3084   */
3085 static int fec_enet_init(struct net_device *ndev)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(ndev);
3088 	struct bufdesc *cbd_base;
3089 	dma_addr_t bd_dma;
3090 	int bd_size;
3091 	unsigned int i;
3092 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3093 			sizeof(struct bufdesc);
3094 	unsigned dsize_log2 = __fls(dsize);
3095 
3096 	WARN_ON(dsize != (1 << dsize_log2));
3097 #if defined(CONFIG_ARM)
3098 	fep->rx_align = 0xf;
3099 	fep->tx_align = 0xf;
3100 #else
3101 	fep->rx_align = 0x3;
3102 	fep->tx_align = 0x3;
3103 #endif
3104 
3105 	fec_enet_alloc_queue(ndev);
3106 
3107 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3108 
3109 	/* Allocate memory for buffer descriptors. */
3110 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3111 				       GFP_KERNEL);
3112 	if (!cbd_base) {
3113 		return -ENOMEM;
3114 	}
3115 
3116 	memset(cbd_base, 0, bd_size);
3117 
3118 	/* Get the Ethernet address */
3119 	fec_get_mac(ndev);
3120 	/* make sure MAC we just acquired is programmed into the hw */
3121 	fec_set_mac_address(ndev, NULL);
3122 
3123 	/* Set receive and transmit descriptor base. */
3124 	for (i = 0; i < fep->num_rx_queues; i++) {
3125 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3126 		unsigned size = dsize * rxq->bd.ring_size;
3127 
3128 		rxq->bd.qid = i;
3129 		rxq->bd.base = cbd_base;
3130 		rxq->bd.cur = cbd_base;
3131 		rxq->bd.dma = bd_dma;
3132 		rxq->bd.dsize = dsize;
3133 		rxq->bd.dsize_log2 = dsize_log2;
3134 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3135 		bd_dma += size;
3136 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3137 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3138 	}
3139 
3140 	for (i = 0; i < fep->num_tx_queues; i++) {
3141 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3142 		unsigned size = dsize * txq->bd.ring_size;
3143 
3144 		txq->bd.qid = i;
3145 		txq->bd.base = cbd_base;
3146 		txq->bd.cur = cbd_base;
3147 		txq->bd.dma = bd_dma;
3148 		txq->bd.dsize = dsize;
3149 		txq->bd.dsize_log2 = dsize_log2;
3150 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3151 		bd_dma += size;
3152 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3153 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3154 	}
3155 
3156 
3157 	/* The FEC Ethernet specific entries in the device structure */
3158 	ndev->watchdog_timeo = TX_TIMEOUT;
3159 	ndev->netdev_ops = &fec_netdev_ops;
3160 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3161 
3162 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3163 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3164 
3165 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3166 		/* enable hw VLAN support */
3167 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3168 
3169 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3170 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3171 
3172 		/* enable hw accelerator */
3173 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3174 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3175 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3176 	}
3177 
3178 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3179 		fep->tx_align = 0;
3180 		fep->rx_align = 0x3f;
3181 	}
3182 
3183 	ndev->hw_features = ndev->features;
3184 
3185 	fec_restart(ndev);
3186 
3187 	return 0;
3188 }
3189 
3190 #ifdef CONFIG_OF
3191 static void fec_reset_phy(struct platform_device *pdev)
3192 {
3193 	int err, phy_reset;
3194 	bool active_high = false;
3195 	int msec = 1;
3196 	struct device_node *np = pdev->dev.of_node;
3197 
3198 	if (!np)
3199 		return;
3200 
3201 	of_property_read_u32(np, "phy-reset-duration", &msec);
3202 	/* A sane reset duration should not be longer than 1s */
3203 	if (msec > 1000)
3204 		msec = 1;
3205 
3206 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3207 	if (!gpio_is_valid(phy_reset))
3208 		return;
3209 
3210 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3211 
3212 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3213 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3214 			"phy-reset");
3215 	if (err) {
3216 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3217 		return;
3218 	}
3219 	msleep(msec);
3220 	gpio_set_value_cansleep(phy_reset, !active_high);
3221 }
3222 #else /* CONFIG_OF */
3223 static void fec_reset_phy(struct platform_device *pdev)
3224 {
3225 	/*
3226 	 * In case of platform probe, the reset has been done
3227 	 * by machine code.
3228 	 */
3229 }
3230 #endif /* CONFIG_OF */
3231 
3232 static void
3233 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3234 {
3235 	struct device_node *np = pdev->dev.of_node;
3236 
3237 	*num_tx = *num_rx = 1;
3238 
3239 	if (!np || !of_device_is_available(np))
3240 		return;
3241 
3242 	/* parse the num of tx and rx queues */
3243 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3244 
3245 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3246 
3247 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3248 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3249 			 *num_tx);
3250 		*num_tx = 1;
3251 		return;
3252 	}
3253 
3254 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3255 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3256 			 *num_rx);
3257 		*num_rx = 1;
3258 		return;
3259 	}
3260 
3261 }
3262 
3263 static int
3264 fec_probe(struct platform_device *pdev)
3265 {
3266 	struct fec_enet_private *fep;
3267 	struct fec_platform_data *pdata;
3268 	struct net_device *ndev;
3269 	int i, irq, ret = 0;
3270 	struct resource *r;
3271 	const struct of_device_id *of_id;
3272 	static int dev_id;
3273 	struct device_node *np = pdev->dev.of_node, *phy_node;
3274 	int num_tx_qs;
3275 	int num_rx_qs;
3276 
3277 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3278 
3279 	/* Init network device */
3280 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3281 				  num_tx_qs, num_rx_qs);
3282 	if (!ndev)
3283 		return -ENOMEM;
3284 
3285 	SET_NETDEV_DEV(ndev, &pdev->dev);
3286 
3287 	/* setup board info structure */
3288 	fep = netdev_priv(ndev);
3289 
3290 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3291 	if (of_id)
3292 		pdev->id_entry = of_id->data;
3293 	fep->quirks = pdev->id_entry->driver_data;
3294 
3295 	fep->netdev = ndev;
3296 	fep->num_rx_queues = num_rx_qs;
3297 	fep->num_tx_queues = num_tx_qs;
3298 
3299 #if !defined(CONFIG_M5272)
3300 	/* default enable pause frame auto negotiation */
3301 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3302 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3303 #endif
3304 
3305 	/* Select default pin state */
3306 	pinctrl_pm_select_default_state(&pdev->dev);
3307 
3308 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3309 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3310 	if (IS_ERR(fep->hwp)) {
3311 		ret = PTR_ERR(fep->hwp);
3312 		goto failed_ioremap;
3313 	}
3314 
3315 	fep->pdev = pdev;
3316 	fep->dev_id = dev_id++;
3317 
3318 	platform_set_drvdata(pdev, ndev);
3319 
3320 	if (of_get_property(np, "fsl,magic-packet", NULL))
3321 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3322 
3323 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3324 	if (!phy_node && of_phy_is_fixed_link(np)) {
3325 		ret = of_phy_register_fixed_link(np);
3326 		if (ret < 0) {
3327 			dev_err(&pdev->dev,
3328 				"broken fixed-link specification\n");
3329 			goto failed_phy;
3330 		}
3331 		phy_node = of_node_get(np);
3332 	}
3333 	fep->phy_node = phy_node;
3334 
3335 	ret = of_get_phy_mode(pdev->dev.of_node);
3336 	if (ret < 0) {
3337 		pdata = dev_get_platdata(&pdev->dev);
3338 		if (pdata)
3339 			fep->phy_interface = pdata->phy;
3340 		else
3341 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3342 	} else {
3343 		fep->phy_interface = ret;
3344 	}
3345 
3346 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3347 	if (IS_ERR(fep->clk_ipg)) {
3348 		ret = PTR_ERR(fep->clk_ipg);
3349 		goto failed_clk;
3350 	}
3351 
3352 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3353 	if (IS_ERR(fep->clk_ahb)) {
3354 		ret = PTR_ERR(fep->clk_ahb);
3355 		goto failed_clk;
3356 	}
3357 
3358 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3359 
3360 	/* enet_out is optional, depends on board */
3361 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3362 	if (IS_ERR(fep->clk_enet_out))
3363 		fep->clk_enet_out = NULL;
3364 
3365 	fep->ptp_clk_on = false;
3366 	mutex_init(&fep->ptp_clk_mutex);
3367 
3368 	/* clk_ref is optional, depends on board */
3369 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3370 	if (IS_ERR(fep->clk_ref))
3371 		fep->clk_ref = NULL;
3372 
3373 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3374 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3375 	if (IS_ERR(fep->clk_ptp)) {
3376 		fep->clk_ptp = NULL;
3377 		fep->bufdesc_ex = false;
3378 	}
3379 
3380 	ret = fec_enet_clk_enable(ndev, true);
3381 	if (ret)
3382 		goto failed_clk;
3383 
3384 	ret = clk_prepare_enable(fep->clk_ipg);
3385 	if (ret)
3386 		goto failed_clk_ipg;
3387 
3388 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3389 	if (!IS_ERR(fep->reg_phy)) {
3390 		ret = regulator_enable(fep->reg_phy);
3391 		if (ret) {
3392 			dev_err(&pdev->dev,
3393 				"Failed to enable phy regulator: %d\n", ret);
3394 			goto failed_regulator;
3395 		}
3396 	} else {
3397 		fep->reg_phy = NULL;
3398 	}
3399 
3400 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3401 	pm_runtime_use_autosuspend(&pdev->dev);
3402 	pm_runtime_get_noresume(&pdev->dev);
3403 	pm_runtime_set_active(&pdev->dev);
3404 	pm_runtime_enable(&pdev->dev);
3405 
3406 	fec_reset_phy(pdev);
3407 
3408 	if (fep->bufdesc_ex)
3409 		fec_ptp_init(pdev);
3410 
3411 	ret = fec_enet_init(ndev);
3412 	if (ret)
3413 		goto failed_init;
3414 
3415 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3416 		irq = platform_get_irq(pdev, i);
3417 		if (irq < 0) {
3418 			if (i)
3419 				break;
3420 			ret = irq;
3421 			goto failed_irq;
3422 		}
3423 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3424 				       0, pdev->name, ndev);
3425 		if (ret)
3426 			goto failed_irq;
3427 
3428 		fep->irq[i] = irq;
3429 	}
3430 
3431 	init_completion(&fep->mdio_done);
3432 	ret = fec_enet_mii_init(pdev);
3433 	if (ret)
3434 		goto failed_mii_init;
3435 
3436 	/* Carrier starts down, phylib will bring it up */
3437 	netif_carrier_off(ndev);
3438 	fec_enet_clk_enable(ndev, false);
3439 	pinctrl_pm_select_sleep_state(&pdev->dev);
3440 
3441 	ret = register_netdev(ndev);
3442 	if (ret)
3443 		goto failed_register;
3444 
3445 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3446 			   FEC_WOL_HAS_MAGIC_PACKET);
3447 
3448 	if (fep->bufdesc_ex && fep->ptp_clock)
3449 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3450 
3451 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3452 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3453 
3454 	pm_runtime_mark_last_busy(&pdev->dev);
3455 	pm_runtime_put_autosuspend(&pdev->dev);
3456 
3457 	return 0;
3458 
3459 failed_register:
3460 	fec_enet_mii_remove(fep);
3461 failed_mii_init:
3462 failed_irq:
3463 failed_init:
3464 	fec_ptp_stop(pdev);
3465 	if (fep->reg_phy)
3466 		regulator_disable(fep->reg_phy);
3467 failed_regulator:
3468 	clk_disable_unprepare(fep->clk_ipg);
3469 failed_clk_ipg:
3470 	fec_enet_clk_enable(ndev, false);
3471 failed_clk:
3472 failed_phy:
3473 	of_node_put(phy_node);
3474 failed_ioremap:
3475 	free_netdev(ndev);
3476 
3477 	return ret;
3478 }
3479 
3480 static int
3481 fec_drv_remove(struct platform_device *pdev)
3482 {
3483 	struct net_device *ndev = platform_get_drvdata(pdev);
3484 	struct fec_enet_private *fep = netdev_priv(ndev);
3485 
3486 	cancel_work_sync(&fep->tx_timeout_work);
3487 	fec_ptp_stop(pdev);
3488 	unregister_netdev(ndev);
3489 	fec_enet_mii_remove(fep);
3490 	if (fep->reg_phy)
3491 		regulator_disable(fep->reg_phy);
3492 	of_node_put(fep->phy_node);
3493 	free_netdev(ndev);
3494 
3495 	return 0;
3496 }
3497 
3498 static int __maybe_unused fec_suspend(struct device *dev)
3499 {
3500 	struct net_device *ndev = dev_get_drvdata(dev);
3501 	struct fec_enet_private *fep = netdev_priv(ndev);
3502 
3503 	rtnl_lock();
3504 	if (netif_running(ndev)) {
3505 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3506 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3507 		phy_stop(fep->phy_dev);
3508 		napi_disable(&fep->napi);
3509 		netif_tx_lock_bh(ndev);
3510 		netif_device_detach(ndev);
3511 		netif_tx_unlock_bh(ndev);
3512 		fec_stop(ndev);
3513 		fec_enet_clk_enable(ndev, false);
3514 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3515 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3516 	}
3517 	rtnl_unlock();
3518 
3519 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3520 		regulator_disable(fep->reg_phy);
3521 
3522 	/* SOC supply clock to phy, when clock is disabled, phy link down
3523 	 * SOC control phy regulator, when regulator is disabled, phy link down
3524 	 */
3525 	if (fep->clk_enet_out || fep->reg_phy)
3526 		fep->link = 0;
3527 
3528 	return 0;
3529 }
3530 
3531 static int __maybe_unused fec_resume(struct device *dev)
3532 {
3533 	struct net_device *ndev = dev_get_drvdata(dev);
3534 	struct fec_enet_private *fep = netdev_priv(ndev);
3535 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3536 	int ret;
3537 	int val;
3538 
3539 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3540 		ret = regulator_enable(fep->reg_phy);
3541 		if (ret)
3542 			return ret;
3543 	}
3544 
3545 	rtnl_lock();
3546 	if (netif_running(ndev)) {
3547 		ret = fec_enet_clk_enable(ndev, true);
3548 		if (ret) {
3549 			rtnl_unlock();
3550 			goto failed_clk;
3551 		}
3552 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3553 			if (pdata && pdata->sleep_mode_enable)
3554 				pdata->sleep_mode_enable(false);
3555 			val = readl(fep->hwp + FEC_ECNTRL);
3556 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3557 			writel(val, fep->hwp + FEC_ECNTRL);
3558 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3559 		} else {
3560 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3561 		}
3562 		fec_restart(ndev);
3563 		netif_tx_lock_bh(ndev);
3564 		netif_device_attach(ndev);
3565 		netif_tx_unlock_bh(ndev);
3566 		napi_enable(&fep->napi);
3567 		phy_start(fep->phy_dev);
3568 	}
3569 	rtnl_unlock();
3570 
3571 	return 0;
3572 
3573 failed_clk:
3574 	if (fep->reg_phy)
3575 		regulator_disable(fep->reg_phy);
3576 	return ret;
3577 }
3578 
3579 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3580 {
3581 	struct net_device *ndev = dev_get_drvdata(dev);
3582 	struct fec_enet_private *fep = netdev_priv(ndev);
3583 
3584 	clk_disable_unprepare(fep->clk_ipg);
3585 
3586 	return 0;
3587 }
3588 
3589 static int __maybe_unused fec_runtime_resume(struct device *dev)
3590 {
3591 	struct net_device *ndev = dev_get_drvdata(dev);
3592 	struct fec_enet_private *fep = netdev_priv(ndev);
3593 
3594 	return clk_prepare_enable(fep->clk_ipg);
3595 }
3596 
3597 static const struct dev_pm_ops fec_pm_ops = {
3598 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3599 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3600 };
3601 
3602 static struct platform_driver fec_driver = {
3603 	.driver	= {
3604 		.name	= DRIVER_NAME,
3605 		.pm	= &fec_pm_ops,
3606 		.of_match_table = fec_dt_ids,
3607 	},
3608 	.id_table = fec_devtype,
3609 	.probe	= fec_probe,
3610 	.remove	= fec_drv_remove,
3611 };
3612 
3613 module_platform_driver(fec_driver);
3614 
3615 MODULE_ALIAS("platform:"DRIVER_NAME);
3616 MODULE_LICENSE("GPL");
3617