1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/property.h> 56 #include <linux/mdio.h> 57 #include <linux/phy.h> 58 #include <linux/fec.h> 59 #include <linux/of.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 /* Pause frame feild and FIFO threshold */ 89 #define FEC_ENET_FCE (1 << 5) 90 #define FEC_ENET_RSEM_V 0x84 91 #define FEC_ENET_RSFL_V 16 92 #define FEC_ENET_RAEM_V 0x8 93 #define FEC_ENET_RAFL_V 0x8 94 #define FEC_ENET_OPD_V 0xFFF0 95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 96 97 #define FEC_ENET_XDP_PASS 0 98 #define FEC_ENET_XDP_CONSUMED BIT(0) 99 #define FEC_ENET_XDP_TX BIT(1) 100 #define FEC_ENET_XDP_REDIR BIT(2) 101 102 struct fec_devinfo { 103 u32 quirks; 104 }; 105 106 static const struct fec_devinfo fec_imx25_info = { 107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx27_info = { 112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 113 FEC_QUIRK_HAS_MDIO_C45, 114 }; 115 116 static const struct fec_devinfo fec_imx28_info = { 117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 121 }; 122 123 static const struct fec_devinfo fec_imx6q_info = { 124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_mvf600_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 133 FEC_QUIRK_HAS_MDIO_C45, 134 }; 135 136 static const struct fec_devinfo fec_imx6x_info = { 137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 143 FEC_QUIRK_HAS_MDIO_C45, 144 }; 145 146 static const struct fec_devinfo fec_imx6ul_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 152 FEC_QUIRK_HAS_MDIO_C45, 153 }; 154 155 static const struct fec_devinfo fec_imx8mq_info = { 156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 163 FEC_QUIRK_HAS_MDIO_C45, 164 }; 165 166 static const struct fec_devinfo fec_imx8qm_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 174 }; 175 176 static const struct fec_devinfo fec_s32v234_info = { 177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 181 FEC_QUIRK_HAS_MDIO_C45, 182 }; 183 184 static struct platform_device_id fec_devtype[] = { 185 { 186 /* keep it for coldfire */ 187 .name = DRIVER_NAME, 188 .driver_data = 0, 189 }, { 190 /* sentinel */ 191 } 192 }; 193 MODULE_DEVICE_TABLE(platform, fec_devtype); 194 195 static const struct of_device_id fec_dt_ids[] = { 196 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, }, 197 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, }, 198 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, }, 199 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, }, 200 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, }, 201 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, }, 202 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, }, 203 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, }, 204 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, }, 205 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, }, 206 { /* sentinel */ } 207 }; 208 MODULE_DEVICE_TABLE(of, fec_dt_ids); 209 210 static unsigned char macaddr[ETH_ALEN]; 211 module_param_array(macaddr, byte, NULL, 0); 212 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 213 214 #if defined(CONFIG_M5272) 215 /* 216 * Some hardware gets it MAC address out of local flash memory. 217 * if this is non-zero then assume it is the address to get MAC from. 218 */ 219 #if defined(CONFIG_NETtel) 220 #define FEC_FLASHMAC 0xf0006006 221 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 222 #define FEC_FLASHMAC 0xf0006000 223 #elif defined(CONFIG_CANCam) 224 #define FEC_FLASHMAC 0xf0020000 225 #elif defined (CONFIG_M5272C3) 226 #define FEC_FLASHMAC (0xffe04000 + 4) 227 #elif defined(CONFIG_MOD5272) 228 #define FEC_FLASHMAC 0xffc0406b 229 #else 230 #define FEC_FLASHMAC 0 231 #endif 232 #endif /* CONFIG_M5272 */ 233 234 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 235 * 236 * 2048 byte skbufs are allocated. However, alignment requirements 237 * varies between FEC variants. Worst case is 64, so round down by 64. 238 */ 239 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 240 #define PKT_MINBUF_SIZE 64 241 242 /* FEC receive acceleration */ 243 #define FEC_RACC_IPDIS (1 << 1) 244 #define FEC_RACC_PRODIS (1 << 2) 245 #define FEC_RACC_SHIFT16 BIT(7) 246 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 247 248 /* MIB Control Register */ 249 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 250 251 /* 252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 253 * size bits. Other FEC hardware does not, so we need to take that into 254 * account when setting it. 255 */ 256 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 257 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 258 defined(CONFIG_ARM64) 259 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 260 #else 261 #define OPT_FRAME_SIZE 0 262 #endif 263 264 /* FEC MII MMFR bits definition */ 265 #define FEC_MMFR_ST (1 << 30) 266 #define FEC_MMFR_ST_C45 (0) 267 #define FEC_MMFR_OP_READ (2 << 28) 268 #define FEC_MMFR_OP_READ_C45 (3 << 28) 269 #define FEC_MMFR_OP_WRITE (1 << 28) 270 #define FEC_MMFR_OP_ADDR_WRITE (0) 271 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 272 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 273 #define FEC_MMFR_TA (2 << 16) 274 #define FEC_MMFR_DATA(v) (v & 0xffff) 275 /* FEC ECR bits definition */ 276 #define FEC_ECR_MAGICEN (1 << 2) 277 #define FEC_ECR_SLEEP (1 << 3) 278 279 #define FEC_MII_TIMEOUT 30000 /* us */ 280 281 /* Transmitter timeout */ 282 #define TX_TIMEOUT (2 * HZ) 283 284 #define FEC_PAUSE_FLAG_AUTONEG 0x1 285 #define FEC_PAUSE_FLAG_ENABLE 0x2 286 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 287 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 288 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 289 290 /* Max number of allowed TCP segments for software TSO */ 291 #define FEC_MAX_TSO_SEGS 100 292 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 293 294 #define IS_TSO_HEADER(txq, addr) \ 295 ((addr >= txq->tso_hdrs_dma) && \ 296 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 297 298 static int mii_cnt; 299 300 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 301 struct bufdesc_prop *bd) 302 { 303 return (bdp >= bd->last) ? bd->base 304 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 305 } 306 307 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 308 struct bufdesc_prop *bd) 309 { 310 return (bdp <= bd->base) ? bd->last 311 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 312 } 313 314 static int fec_enet_get_bd_index(struct bufdesc *bdp, 315 struct bufdesc_prop *bd) 316 { 317 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 318 } 319 320 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 321 { 322 int entries; 323 324 entries = (((const char *)txq->dirty_tx - 325 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 326 327 return entries >= 0 ? entries : entries + txq->bd.ring_size; 328 } 329 330 static void swap_buffer(void *bufaddr, int len) 331 { 332 int i; 333 unsigned int *buf = bufaddr; 334 335 for (i = 0; i < len; i += 4, buf++) 336 swab32s(buf); 337 } 338 339 static void fec_dump(struct net_device *ndev) 340 { 341 struct fec_enet_private *fep = netdev_priv(ndev); 342 struct bufdesc *bdp; 343 struct fec_enet_priv_tx_q *txq; 344 int index = 0; 345 346 netdev_info(ndev, "TX ring dump\n"); 347 pr_info("Nr SC addr len SKB\n"); 348 349 txq = fep->tx_queue[0]; 350 bdp = txq->bd.base; 351 352 do { 353 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 354 index, 355 bdp == txq->bd.cur ? 'S' : ' ', 356 bdp == txq->dirty_tx ? 'H' : ' ', 357 fec16_to_cpu(bdp->cbd_sc), 358 fec32_to_cpu(bdp->cbd_bufaddr), 359 fec16_to_cpu(bdp->cbd_datlen), 360 txq->tx_buf[index].buf_p); 361 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 362 index++; 363 } while (bdp != txq->bd.base); 364 } 365 366 /* 367 * Coldfire does not support DMA coherent allocations, and has historically used 368 * a band-aid with a manual flush in fec_enet_rx_queue. 369 */ 370 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 371 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 372 gfp_t gfp) 373 { 374 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp); 375 } 376 377 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 378 dma_addr_t handle) 379 { 380 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL); 381 } 382 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 383 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 384 gfp_t gfp) 385 { 386 return dma_alloc_coherent(dev, size, handle, gfp); 387 } 388 389 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr, 390 dma_addr_t handle) 391 { 392 dma_free_coherent(dev, size, cpu_addr, handle); 393 } 394 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */ 395 396 struct fec_dma_devres { 397 size_t size; 398 void *vaddr; 399 dma_addr_t dma_handle; 400 }; 401 402 static void fec_dmam_release(struct device *dev, void *res) 403 { 404 struct fec_dma_devres *this = res; 405 406 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle); 407 } 408 409 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle, 410 gfp_t gfp) 411 { 412 struct fec_dma_devres *dr; 413 void *vaddr; 414 415 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp); 416 if (!dr) 417 return NULL; 418 vaddr = fec_dma_alloc(dev, size, handle, gfp); 419 if (!vaddr) { 420 devres_free(dr); 421 return NULL; 422 } 423 dr->vaddr = vaddr; 424 dr->dma_handle = *handle; 425 dr->size = size; 426 devres_add(dev, dr); 427 return vaddr; 428 } 429 430 static inline bool is_ipv4_pkt(struct sk_buff *skb) 431 { 432 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 433 } 434 435 static int 436 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 437 { 438 /* Only run for packets requiring a checksum. */ 439 if (skb->ip_summed != CHECKSUM_PARTIAL) 440 return 0; 441 442 if (unlikely(skb_cow_head(skb, 0))) 443 return -1; 444 445 if (is_ipv4_pkt(skb)) 446 ip_hdr(skb)->check = 0; 447 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 448 449 return 0; 450 } 451 452 static int 453 fec_enet_create_page_pool(struct fec_enet_private *fep, 454 struct fec_enet_priv_rx_q *rxq, int size) 455 { 456 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 457 struct page_pool_params pp_params = { 458 .order = 0, 459 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 460 .pool_size = size, 461 .nid = dev_to_node(&fep->pdev->dev), 462 .dev = &fep->pdev->dev, 463 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 464 .offset = FEC_ENET_XDP_HEADROOM, 465 .max_len = FEC_ENET_RX_FRSIZE, 466 }; 467 int err; 468 469 rxq->page_pool = page_pool_create(&pp_params); 470 if (IS_ERR(rxq->page_pool)) { 471 err = PTR_ERR(rxq->page_pool); 472 rxq->page_pool = NULL; 473 return err; 474 } 475 476 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 477 if (err < 0) 478 goto err_free_pp; 479 480 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 481 rxq->page_pool); 482 if (err) 483 goto err_unregister_rxq; 484 485 return 0; 486 487 err_unregister_rxq: 488 xdp_rxq_info_unreg(&rxq->xdp_rxq); 489 err_free_pp: 490 page_pool_destroy(rxq->page_pool); 491 rxq->page_pool = NULL; 492 return err; 493 } 494 495 static struct bufdesc * 496 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 497 struct sk_buff *skb, 498 struct net_device *ndev) 499 { 500 struct fec_enet_private *fep = netdev_priv(ndev); 501 struct bufdesc *bdp = txq->bd.cur; 502 struct bufdesc_ex *ebdp; 503 int nr_frags = skb_shinfo(skb)->nr_frags; 504 int frag, frag_len; 505 unsigned short status; 506 unsigned int estatus = 0; 507 skb_frag_t *this_frag; 508 unsigned int index; 509 void *bufaddr; 510 dma_addr_t addr; 511 int i; 512 513 for (frag = 0; frag < nr_frags; frag++) { 514 this_frag = &skb_shinfo(skb)->frags[frag]; 515 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 516 ebdp = (struct bufdesc_ex *)bdp; 517 518 status = fec16_to_cpu(bdp->cbd_sc); 519 status &= ~BD_ENET_TX_STATS; 520 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 521 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 522 523 /* Handle the last BD specially */ 524 if (frag == nr_frags - 1) { 525 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 526 if (fep->bufdesc_ex) { 527 estatus |= BD_ENET_TX_INT; 528 if (unlikely(skb_shinfo(skb)->tx_flags & 529 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 530 estatus |= BD_ENET_TX_TS; 531 } 532 } 533 534 if (fep->bufdesc_ex) { 535 if (fep->quirks & FEC_QUIRK_HAS_AVB) 536 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 537 if (skb->ip_summed == CHECKSUM_PARTIAL) 538 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 539 540 ebdp->cbd_bdu = 0; 541 ebdp->cbd_esc = cpu_to_fec32(estatus); 542 } 543 544 bufaddr = skb_frag_address(this_frag); 545 546 index = fec_enet_get_bd_index(bdp, &txq->bd); 547 if (((unsigned long) bufaddr) & fep->tx_align || 548 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 549 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 550 bufaddr = txq->tx_bounce[index]; 551 552 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 553 swap_buffer(bufaddr, frag_len); 554 } 555 556 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 557 DMA_TO_DEVICE); 558 if (dma_mapping_error(&fep->pdev->dev, addr)) { 559 if (net_ratelimit()) 560 netdev_err(ndev, "Tx DMA memory map failed\n"); 561 goto dma_mapping_error; 562 } 563 564 bdp->cbd_bufaddr = cpu_to_fec32(addr); 565 bdp->cbd_datlen = cpu_to_fec16(frag_len); 566 /* Make sure the updates to rest of the descriptor are 567 * performed before transferring ownership. 568 */ 569 wmb(); 570 bdp->cbd_sc = cpu_to_fec16(status); 571 } 572 573 return bdp; 574 dma_mapping_error: 575 bdp = txq->bd.cur; 576 for (i = 0; i < frag; i++) { 577 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 578 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 579 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 580 } 581 return ERR_PTR(-ENOMEM); 582 } 583 584 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 585 struct sk_buff *skb, struct net_device *ndev) 586 { 587 struct fec_enet_private *fep = netdev_priv(ndev); 588 int nr_frags = skb_shinfo(skb)->nr_frags; 589 struct bufdesc *bdp, *last_bdp; 590 void *bufaddr; 591 dma_addr_t addr; 592 unsigned short status; 593 unsigned short buflen; 594 unsigned int estatus = 0; 595 unsigned int index; 596 int entries_free; 597 598 entries_free = fec_enet_get_free_txdesc_num(txq); 599 if (entries_free < MAX_SKB_FRAGS + 1) { 600 dev_kfree_skb_any(skb); 601 if (net_ratelimit()) 602 netdev_err(ndev, "NOT enough BD for SG!\n"); 603 return NETDEV_TX_OK; 604 } 605 606 /* Protocol checksum off-load for TCP and UDP. */ 607 if (fec_enet_clear_csum(skb, ndev)) { 608 dev_kfree_skb_any(skb); 609 return NETDEV_TX_OK; 610 } 611 612 /* Fill in a Tx ring entry */ 613 bdp = txq->bd.cur; 614 last_bdp = bdp; 615 status = fec16_to_cpu(bdp->cbd_sc); 616 status &= ~BD_ENET_TX_STATS; 617 618 /* Set buffer length and buffer pointer */ 619 bufaddr = skb->data; 620 buflen = skb_headlen(skb); 621 622 index = fec_enet_get_bd_index(bdp, &txq->bd); 623 if (((unsigned long) bufaddr) & fep->tx_align || 624 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 625 memcpy(txq->tx_bounce[index], skb->data, buflen); 626 bufaddr = txq->tx_bounce[index]; 627 628 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 629 swap_buffer(bufaddr, buflen); 630 } 631 632 /* Push the data cache so the CPM does not get stale memory data. */ 633 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 634 if (dma_mapping_error(&fep->pdev->dev, addr)) { 635 dev_kfree_skb_any(skb); 636 if (net_ratelimit()) 637 netdev_err(ndev, "Tx DMA memory map failed\n"); 638 return NETDEV_TX_OK; 639 } 640 641 if (nr_frags) { 642 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 643 if (IS_ERR(last_bdp)) { 644 dma_unmap_single(&fep->pdev->dev, addr, 645 buflen, DMA_TO_DEVICE); 646 dev_kfree_skb_any(skb); 647 return NETDEV_TX_OK; 648 } 649 } else { 650 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 651 if (fep->bufdesc_ex) { 652 estatus = BD_ENET_TX_INT; 653 if (unlikely(skb_shinfo(skb)->tx_flags & 654 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 655 estatus |= BD_ENET_TX_TS; 656 } 657 } 658 bdp->cbd_bufaddr = cpu_to_fec32(addr); 659 bdp->cbd_datlen = cpu_to_fec16(buflen); 660 661 if (fep->bufdesc_ex) { 662 663 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 664 665 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 666 fep->hwts_tx_en)) 667 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 668 669 if (fep->quirks & FEC_QUIRK_HAS_AVB) 670 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 671 672 if (skb->ip_summed == CHECKSUM_PARTIAL) 673 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 674 675 ebdp->cbd_bdu = 0; 676 ebdp->cbd_esc = cpu_to_fec32(estatus); 677 } 678 679 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 680 /* Save skb pointer */ 681 txq->tx_buf[index].buf_p = skb; 682 683 /* Make sure the updates to rest of the descriptor are performed before 684 * transferring ownership. 685 */ 686 wmb(); 687 688 /* Send it on its way. Tell FEC it's ready, interrupt when done, 689 * it's the last BD of the frame, and to put the CRC on the end. 690 */ 691 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 692 bdp->cbd_sc = cpu_to_fec16(status); 693 694 /* If this was the last BD in the ring, start at the beginning again. */ 695 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 696 697 skb_tx_timestamp(skb); 698 699 /* Make sure the update to bdp is performed before txq->bd.cur. */ 700 wmb(); 701 txq->bd.cur = bdp; 702 703 /* Trigger transmission start */ 704 writel(0, txq->bd.reg_desc_active); 705 706 return 0; 707 } 708 709 static int 710 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 711 struct net_device *ndev, 712 struct bufdesc *bdp, int index, char *data, 713 int size, bool last_tcp, bool is_last) 714 { 715 struct fec_enet_private *fep = netdev_priv(ndev); 716 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 717 unsigned short status; 718 unsigned int estatus = 0; 719 dma_addr_t addr; 720 721 status = fec16_to_cpu(bdp->cbd_sc); 722 status &= ~BD_ENET_TX_STATS; 723 724 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 725 726 if (((unsigned long) data) & fep->tx_align || 727 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 728 memcpy(txq->tx_bounce[index], data, size); 729 data = txq->tx_bounce[index]; 730 731 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 732 swap_buffer(data, size); 733 } 734 735 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 736 if (dma_mapping_error(&fep->pdev->dev, addr)) { 737 dev_kfree_skb_any(skb); 738 if (net_ratelimit()) 739 netdev_err(ndev, "Tx DMA memory map failed\n"); 740 return NETDEV_TX_OK; 741 } 742 743 bdp->cbd_datlen = cpu_to_fec16(size); 744 bdp->cbd_bufaddr = cpu_to_fec32(addr); 745 746 if (fep->bufdesc_ex) { 747 if (fep->quirks & FEC_QUIRK_HAS_AVB) 748 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 749 if (skb->ip_summed == CHECKSUM_PARTIAL) 750 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 751 ebdp->cbd_bdu = 0; 752 ebdp->cbd_esc = cpu_to_fec32(estatus); 753 } 754 755 /* Handle the last BD specially */ 756 if (last_tcp) 757 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 758 if (is_last) { 759 status |= BD_ENET_TX_INTR; 760 if (fep->bufdesc_ex) 761 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 762 } 763 764 bdp->cbd_sc = cpu_to_fec16(status); 765 766 return 0; 767 } 768 769 static int 770 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 771 struct sk_buff *skb, struct net_device *ndev, 772 struct bufdesc *bdp, int index) 773 { 774 struct fec_enet_private *fep = netdev_priv(ndev); 775 int hdr_len = skb_tcp_all_headers(skb); 776 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 777 void *bufaddr; 778 unsigned long dmabuf; 779 unsigned short status; 780 unsigned int estatus = 0; 781 782 status = fec16_to_cpu(bdp->cbd_sc); 783 status &= ~BD_ENET_TX_STATS; 784 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 785 786 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 787 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 788 if (((unsigned long)bufaddr) & fep->tx_align || 789 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 790 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 791 bufaddr = txq->tx_bounce[index]; 792 793 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 794 swap_buffer(bufaddr, hdr_len); 795 796 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 797 hdr_len, DMA_TO_DEVICE); 798 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 799 dev_kfree_skb_any(skb); 800 if (net_ratelimit()) 801 netdev_err(ndev, "Tx DMA memory map failed\n"); 802 return NETDEV_TX_OK; 803 } 804 } 805 806 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 807 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 808 809 if (fep->bufdesc_ex) { 810 if (fep->quirks & FEC_QUIRK_HAS_AVB) 811 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 812 if (skb->ip_summed == CHECKSUM_PARTIAL) 813 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 814 ebdp->cbd_bdu = 0; 815 ebdp->cbd_esc = cpu_to_fec32(estatus); 816 } 817 818 bdp->cbd_sc = cpu_to_fec16(status); 819 820 return 0; 821 } 822 823 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 824 struct sk_buff *skb, 825 struct net_device *ndev) 826 { 827 struct fec_enet_private *fep = netdev_priv(ndev); 828 int hdr_len, total_len, data_left; 829 struct bufdesc *bdp = txq->bd.cur; 830 struct tso_t tso; 831 unsigned int index = 0; 832 int ret; 833 834 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 835 dev_kfree_skb_any(skb); 836 if (net_ratelimit()) 837 netdev_err(ndev, "NOT enough BD for TSO!\n"); 838 return NETDEV_TX_OK; 839 } 840 841 /* Protocol checksum off-load for TCP and UDP. */ 842 if (fec_enet_clear_csum(skb, ndev)) { 843 dev_kfree_skb_any(skb); 844 return NETDEV_TX_OK; 845 } 846 847 /* Initialize the TSO handler, and prepare the first payload */ 848 hdr_len = tso_start(skb, &tso); 849 850 total_len = skb->len - hdr_len; 851 while (total_len > 0) { 852 char *hdr; 853 854 index = fec_enet_get_bd_index(bdp, &txq->bd); 855 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 856 total_len -= data_left; 857 858 /* prepare packet headers: MAC + IP + TCP */ 859 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 860 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 861 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 862 if (ret) 863 goto err_release; 864 865 while (data_left > 0) { 866 int size; 867 868 size = min_t(int, tso.size, data_left); 869 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 870 index = fec_enet_get_bd_index(bdp, &txq->bd); 871 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 872 bdp, index, 873 tso.data, size, 874 size == data_left, 875 total_len == 0); 876 if (ret) 877 goto err_release; 878 879 data_left -= size; 880 tso_build_data(skb, &tso, size); 881 } 882 883 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 884 } 885 886 /* Save skb pointer */ 887 txq->tx_buf[index].buf_p = skb; 888 889 skb_tx_timestamp(skb); 890 txq->bd.cur = bdp; 891 892 /* Trigger transmission start */ 893 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 894 !readl(txq->bd.reg_desc_active) || 895 !readl(txq->bd.reg_desc_active) || 896 !readl(txq->bd.reg_desc_active) || 897 !readl(txq->bd.reg_desc_active)) 898 writel(0, txq->bd.reg_desc_active); 899 900 return 0; 901 902 err_release: 903 /* TODO: Release all used data descriptors for TSO */ 904 return ret; 905 } 906 907 static netdev_tx_t 908 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 909 { 910 struct fec_enet_private *fep = netdev_priv(ndev); 911 int entries_free; 912 unsigned short queue; 913 struct fec_enet_priv_tx_q *txq; 914 struct netdev_queue *nq; 915 int ret; 916 917 queue = skb_get_queue_mapping(skb); 918 txq = fep->tx_queue[queue]; 919 nq = netdev_get_tx_queue(ndev, queue); 920 921 if (skb_is_gso(skb)) 922 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 923 else 924 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 925 if (ret) 926 return ret; 927 928 entries_free = fec_enet_get_free_txdesc_num(txq); 929 if (entries_free <= txq->tx_stop_threshold) 930 netif_tx_stop_queue(nq); 931 932 return NETDEV_TX_OK; 933 } 934 935 /* Init RX & TX buffer descriptors 936 */ 937 static void fec_enet_bd_init(struct net_device *dev) 938 { 939 struct fec_enet_private *fep = netdev_priv(dev); 940 struct fec_enet_priv_tx_q *txq; 941 struct fec_enet_priv_rx_q *rxq; 942 struct bufdesc *bdp; 943 unsigned int i; 944 unsigned int q; 945 946 for (q = 0; q < fep->num_rx_queues; q++) { 947 /* Initialize the receive buffer descriptors. */ 948 rxq = fep->rx_queue[q]; 949 bdp = rxq->bd.base; 950 951 for (i = 0; i < rxq->bd.ring_size; i++) { 952 953 /* Initialize the BD for every fragment in the page. */ 954 if (bdp->cbd_bufaddr) 955 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 956 else 957 bdp->cbd_sc = cpu_to_fec16(0); 958 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 959 } 960 961 /* Set the last buffer to wrap */ 962 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 963 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 964 965 rxq->bd.cur = rxq->bd.base; 966 } 967 968 for (q = 0; q < fep->num_tx_queues; q++) { 969 /* ...and the same for transmit */ 970 txq = fep->tx_queue[q]; 971 bdp = txq->bd.base; 972 txq->bd.cur = bdp; 973 974 for (i = 0; i < txq->bd.ring_size; i++) { 975 /* Initialize the BD for every fragment in the page. */ 976 bdp->cbd_sc = cpu_to_fec16(0); 977 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 978 if (bdp->cbd_bufaddr && 979 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 980 dma_unmap_single(&fep->pdev->dev, 981 fec32_to_cpu(bdp->cbd_bufaddr), 982 fec16_to_cpu(bdp->cbd_datlen), 983 DMA_TO_DEVICE); 984 if (txq->tx_buf[i].buf_p) 985 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 986 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 987 if (bdp->cbd_bufaddr) 988 dma_unmap_single(&fep->pdev->dev, 989 fec32_to_cpu(bdp->cbd_bufaddr), 990 fec16_to_cpu(bdp->cbd_datlen), 991 DMA_TO_DEVICE); 992 993 if (txq->tx_buf[i].buf_p) 994 xdp_return_frame(txq->tx_buf[i].buf_p); 995 } else { 996 struct page *page = txq->tx_buf[i].buf_p; 997 998 if (page) 999 page_pool_put_page(page->pp, page, 0, false); 1000 } 1001 1002 txq->tx_buf[i].buf_p = NULL; 1003 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1004 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 1005 bdp->cbd_bufaddr = cpu_to_fec32(0); 1006 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1007 } 1008 1009 /* Set the last buffer to wrap */ 1010 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 1011 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 1012 txq->dirty_tx = bdp; 1013 } 1014 } 1015 1016 static void fec_enet_active_rxring(struct net_device *ndev) 1017 { 1018 struct fec_enet_private *fep = netdev_priv(ndev); 1019 int i; 1020 1021 for (i = 0; i < fep->num_rx_queues; i++) 1022 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1023 } 1024 1025 static void fec_enet_enable_ring(struct net_device *ndev) 1026 { 1027 struct fec_enet_private *fep = netdev_priv(ndev); 1028 struct fec_enet_priv_tx_q *txq; 1029 struct fec_enet_priv_rx_q *rxq; 1030 int i; 1031 1032 for (i = 0; i < fep->num_rx_queues; i++) { 1033 rxq = fep->rx_queue[i]; 1034 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1035 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1036 1037 /* enable DMA1/2 */ 1038 if (i) 1039 writel(RCMR_MATCHEN | RCMR_CMP(i), 1040 fep->hwp + FEC_RCMR(i)); 1041 } 1042 1043 for (i = 0; i < fep->num_tx_queues; i++) { 1044 txq = fep->tx_queue[i]; 1045 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1046 1047 /* enable DMA1/2 */ 1048 if (i) 1049 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1050 fep->hwp + FEC_DMA_CFG(i)); 1051 } 1052 } 1053 1054 /* 1055 * This function is called to start or restart the FEC during a link 1056 * change, transmit timeout, or to reconfigure the FEC. The network 1057 * packet processing for this device must be stopped before this call. 1058 */ 1059 static void 1060 fec_restart(struct net_device *ndev) 1061 { 1062 struct fec_enet_private *fep = netdev_priv(ndev); 1063 u32 temp_mac[2]; 1064 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1065 u32 ecntl = 0x2; /* ETHEREN */ 1066 1067 /* Whack a reset. We should wait for this. 1068 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1069 * instead of reset MAC itself. 1070 */ 1071 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1072 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1073 writel(0, fep->hwp + FEC_ECNTRL); 1074 } else { 1075 writel(1, fep->hwp + FEC_ECNTRL); 1076 udelay(10); 1077 } 1078 1079 /* 1080 * enet-mac reset will reset mac address registers too, 1081 * so need to reconfigure it. 1082 */ 1083 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1084 writel((__force u32)cpu_to_be32(temp_mac[0]), 1085 fep->hwp + FEC_ADDR_LOW); 1086 writel((__force u32)cpu_to_be32(temp_mac[1]), 1087 fep->hwp + FEC_ADDR_HIGH); 1088 1089 /* Clear any outstanding interrupt, except MDIO. */ 1090 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1091 1092 fec_enet_bd_init(ndev); 1093 1094 fec_enet_enable_ring(ndev); 1095 1096 /* Enable MII mode */ 1097 if (fep->full_duplex == DUPLEX_FULL) { 1098 /* FD enable */ 1099 writel(0x04, fep->hwp + FEC_X_CNTRL); 1100 } else { 1101 /* No Rcv on Xmit */ 1102 rcntl |= 0x02; 1103 writel(0x0, fep->hwp + FEC_X_CNTRL); 1104 } 1105 1106 /* Set MII speed */ 1107 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1108 1109 #if !defined(CONFIG_M5272) 1110 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1111 u32 val = readl(fep->hwp + FEC_RACC); 1112 1113 /* align IP header */ 1114 val |= FEC_RACC_SHIFT16; 1115 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1116 /* set RX checksum */ 1117 val |= FEC_RACC_OPTIONS; 1118 else 1119 val &= ~FEC_RACC_OPTIONS; 1120 writel(val, fep->hwp + FEC_RACC); 1121 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1122 } 1123 #endif 1124 1125 /* 1126 * The phy interface and speed need to get configured 1127 * differently on enet-mac. 1128 */ 1129 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1130 /* Enable flow control and length check */ 1131 rcntl |= 0x40000000 | 0x00000020; 1132 1133 /* RGMII, RMII or MII */ 1134 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1135 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1136 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1137 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1138 rcntl |= (1 << 6); 1139 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1140 rcntl |= (1 << 8); 1141 else 1142 rcntl &= ~(1 << 8); 1143 1144 /* 1G, 100M or 10M */ 1145 if (ndev->phydev) { 1146 if (ndev->phydev->speed == SPEED_1000) 1147 ecntl |= (1 << 5); 1148 else if (ndev->phydev->speed == SPEED_100) 1149 rcntl &= ~(1 << 9); 1150 else 1151 rcntl |= (1 << 9); 1152 } 1153 } else { 1154 #ifdef FEC_MIIGSK_ENR 1155 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1156 u32 cfgr; 1157 /* disable the gasket and wait */ 1158 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1159 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1160 udelay(1); 1161 1162 /* 1163 * configure the gasket: 1164 * RMII, 50 MHz, no loopback, no echo 1165 * MII, 25 MHz, no loopback, no echo 1166 */ 1167 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1168 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1169 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1170 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1171 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1172 1173 /* re-enable the gasket */ 1174 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1175 } 1176 #endif 1177 } 1178 1179 #if !defined(CONFIG_M5272) 1180 /* enable pause frame*/ 1181 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1182 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1183 ndev->phydev && ndev->phydev->pause)) { 1184 rcntl |= FEC_ENET_FCE; 1185 1186 /* set FIFO threshold parameter to reduce overrun */ 1187 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1188 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1189 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1190 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1191 1192 /* OPD */ 1193 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1194 } else { 1195 rcntl &= ~FEC_ENET_FCE; 1196 } 1197 #endif /* !defined(CONFIG_M5272) */ 1198 1199 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1200 1201 /* Setup multicast filter. */ 1202 set_multicast_list(ndev); 1203 #ifndef CONFIG_M5272 1204 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1205 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1206 #endif 1207 1208 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1209 /* enable ENET endian swap */ 1210 ecntl |= (1 << 8); 1211 /* enable ENET store and forward mode */ 1212 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1213 } 1214 1215 if (fep->bufdesc_ex) 1216 ecntl |= (1 << 4); 1217 1218 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1219 fep->rgmii_txc_dly) 1220 ecntl |= FEC_ENET_TXC_DLY; 1221 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1222 fep->rgmii_rxc_dly) 1223 ecntl |= FEC_ENET_RXC_DLY; 1224 1225 #ifndef CONFIG_M5272 1226 /* Enable the MIB statistic event counters */ 1227 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1228 #endif 1229 1230 /* And last, enable the transmit and receive processing */ 1231 writel(ecntl, fep->hwp + FEC_ECNTRL); 1232 fec_enet_active_rxring(ndev); 1233 1234 if (fep->bufdesc_ex) 1235 fec_ptp_start_cyclecounter(ndev); 1236 1237 /* Enable interrupts we wish to service */ 1238 if (fep->link) 1239 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1240 else 1241 writel(0, fep->hwp + FEC_IMASK); 1242 1243 /* Init the interrupt coalescing */ 1244 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1245 fec_enet_itr_coal_set(ndev); 1246 } 1247 1248 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1249 { 1250 if (!(of_machine_is_compatible("fsl,imx8qm") || 1251 of_machine_is_compatible("fsl,imx8qxp") || 1252 of_machine_is_compatible("fsl,imx8dxl"))) 1253 return 0; 1254 1255 return imx_scu_get_handle(&fep->ipc_handle); 1256 } 1257 1258 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1259 { 1260 struct device_node *np = fep->pdev->dev.of_node; 1261 u32 rsrc_id, val; 1262 int idx; 1263 1264 if (!np || !fep->ipc_handle) 1265 return; 1266 1267 idx = of_alias_get_id(np, "ethernet"); 1268 if (idx < 0) 1269 idx = 0; 1270 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1271 1272 val = enabled ? 1 : 0; 1273 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1274 } 1275 1276 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1277 { 1278 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1279 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1280 1281 if (stop_gpr->gpr) { 1282 if (enabled) 1283 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1284 BIT(stop_gpr->bit), 1285 BIT(stop_gpr->bit)); 1286 else 1287 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1288 BIT(stop_gpr->bit), 0); 1289 } else if (pdata && pdata->sleep_mode_enable) { 1290 pdata->sleep_mode_enable(enabled); 1291 } else { 1292 fec_enet_ipg_stop_set(fep, enabled); 1293 } 1294 } 1295 1296 static void fec_irqs_disable(struct net_device *ndev) 1297 { 1298 struct fec_enet_private *fep = netdev_priv(ndev); 1299 1300 writel(0, fep->hwp + FEC_IMASK); 1301 } 1302 1303 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1304 { 1305 struct fec_enet_private *fep = netdev_priv(ndev); 1306 1307 writel(0, fep->hwp + FEC_IMASK); 1308 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1309 } 1310 1311 static void 1312 fec_stop(struct net_device *ndev) 1313 { 1314 struct fec_enet_private *fep = netdev_priv(ndev); 1315 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1316 u32 val; 1317 1318 /* We cannot expect a graceful transmit stop without link !!! */ 1319 if (fep->link) { 1320 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1321 udelay(10); 1322 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1323 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1324 } 1325 1326 /* Whack a reset. We should wait for this. 1327 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1328 * instead of reset MAC itself. 1329 */ 1330 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1331 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1332 writel(0, fep->hwp + FEC_ECNTRL); 1333 } else { 1334 writel(1, fep->hwp + FEC_ECNTRL); 1335 udelay(10); 1336 } 1337 } else { 1338 val = readl(fep->hwp + FEC_ECNTRL); 1339 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1340 writel(val, fep->hwp + FEC_ECNTRL); 1341 } 1342 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1343 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1344 1345 /* We have to keep ENET enabled to have MII interrupt stay working */ 1346 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1347 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1348 writel(2, fep->hwp + FEC_ECNTRL); 1349 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1350 } 1351 } 1352 1353 1354 static void 1355 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1356 { 1357 struct fec_enet_private *fep = netdev_priv(ndev); 1358 1359 fec_dump(ndev); 1360 1361 ndev->stats.tx_errors++; 1362 1363 schedule_work(&fep->tx_timeout_work); 1364 } 1365 1366 static void fec_enet_timeout_work(struct work_struct *work) 1367 { 1368 struct fec_enet_private *fep = 1369 container_of(work, struct fec_enet_private, tx_timeout_work); 1370 struct net_device *ndev = fep->netdev; 1371 1372 rtnl_lock(); 1373 if (netif_device_present(ndev) || netif_running(ndev)) { 1374 napi_disable(&fep->napi); 1375 netif_tx_lock_bh(ndev); 1376 fec_restart(ndev); 1377 netif_tx_wake_all_queues(ndev); 1378 netif_tx_unlock_bh(ndev); 1379 napi_enable(&fep->napi); 1380 } 1381 rtnl_unlock(); 1382 } 1383 1384 static void 1385 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1386 struct skb_shared_hwtstamps *hwtstamps) 1387 { 1388 unsigned long flags; 1389 u64 ns; 1390 1391 spin_lock_irqsave(&fep->tmreg_lock, flags); 1392 ns = timecounter_cyc2time(&fep->tc, ts); 1393 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1394 1395 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1396 hwtstamps->hwtstamp = ns_to_ktime(ns); 1397 } 1398 1399 static void 1400 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1401 { 1402 struct fec_enet_private *fep; 1403 struct xdp_frame *xdpf; 1404 struct bufdesc *bdp; 1405 unsigned short status; 1406 struct sk_buff *skb; 1407 struct fec_enet_priv_tx_q *txq; 1408 struct netdev_queue *nq; 1409 int index = 0; 1410 int entries_free; 1411 struct page *page; 1412 int frame_len; 1413 1414 fep = netdev_priv(ndev); 1415 1416 txq = fep->tx_queue[queue_id]; 1417 /* get next bdp of dirty_tx */ 1418 nq = netdev_get_tx_queue(ndev, queue_id); 1419 bdp = txq->dirty_tx; 1420 1421 /* get next bdp of dirty_tx */ 1422 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1423 1424 while (bdp != READ_ONCE(txq->bd.cur)) { 1425 /* Order the load of bd.cur and cbd_sc */ 1426 rmb(); 1427 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1428 if (status & BD_ENET_TX_READY) 1429 break; 1430 1431 index = fec_enet_get_bd_index(bdp, &txq->bd); 1432 1433 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1434 skb = txq->tx_buf[index].buf_p; 1435 if (bdp->cbd_bufaddr && 1436 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1437 dma_unmap_single(&fep->pdev->dev, 1438 fec32_to_cpu(bdp->cbd_bufaddr), 1439 fec16_to_cpu(bdp->cbd_datlen), 1440 DMA_TO_DEVICE); 1441 bdp->cbd_bufaddr = cpu_to_fec32(0); 1442 if (!skb) 1443 goto tx_buf_done; 1444 } else { 1445 /* Tx processing cannot call any XDP (or page pool) APIs if 1446 * the "budget" is 0. Because NAPI is called with budget of 1447 * 0 (such as netpoll) indicates we may be in an IRQ context, 1448 * however, we can't use the page pool from IRQ context. 1449 */ 1450 if (unlikely(!budget)) 1451 break; 1452 1453 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1454 xdpf = txq->tx_buf[index].buf_p; 1455 if (bdp->cbd_bufaddr) 1456 dma_unmap_single(&fep->pdev->dev, 1457 fec32_to_cpu(bdp->cbd_bufaddr), 1458 fec16_to_cpu(bdp->cbd_datlen), 1459 DMA_TO_DEVICE); 1460 } else { 1461 page = txq->tx_buf[index].buf_p; 1462 } 1463 1464 bdp->cbd_bufaddr = cpu_to_fec32(0); 1465 if (unlikely(!txq->tx_buf[index].buf_p)) { 1466 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1467 goto tx_buf_done; 1468 } 1469 1470 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1471 } 1472 1473 /* Check for errors. */ 1474 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1475 BD_ENET_TX_RL | BD_ENET_TX_UN | 1476 BD_ENET_TX_CSL)) { 1477 ndev->stats.tx_errors++; 1478 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1479 ndev->stats.tx_heartbeat_errors++; 1480 if (status & BD_ENET_TX_LC) /* Late collision */ 1481 ndev->stats.tx_window_errors++; 1482 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1483 ndev->stats.tx_aborted_errors++; 1484 if (status & BD_ENET_TX_UN) /* Underrun */ 1485 ndev->stats.tx_fifo_errors++; 1486 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1487 ndev->stats.tx_carrier_errors++; 1488 } else { 1489 ndev->stats.tx_packets++; 1490 1491 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1492 ndev->stats.tx_bytes += skb->len; 1493 else 1494 ndev->stats.tx_bytes += frame_len; 1495 } 1496 1497 /* Deferred means some collisions occurred during transmit, 1498 * but we eventually sent the packet OK. 1499 */ 1500 if (status & BD_ENET_TX_DEF) 1501 ndev->stats.collisions++; 1502 1503 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1504 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1505 * are to time stamp the packet, so we still need to check time 1506 * stamping enabled flag. 1507 */ 1508 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1509 fep->hwts_tx_en) && fep->bufdesc_ex) { 1510 struct skb_shared_hwtstamps shhwtstamps; 1511 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1512 1513 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1514 skb_tstamp_tx(skb, &shhwtstamps); 1515 } 1516 1517 /* Free the sk buffer associated with this last transmit */ 1518 napi_consume_skb(skb, budget); 1519 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1520 xdp_return_frame_rx_napi(xdpf); 1521 } else { /* recycle pages of XDP_TX frames */ 1522 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1523 page_pool_put_page(page->pp, page, 0, true); 1524 } 1525 1526 txq->tx_buf[index].buf_p = NULL; 1527 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1528 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1529 1530 tx_buf_done: 1531 /* Make sure the update to bdp and tx_buf are performed 1532 * before dirty_tx 1533 */ 1534 wmb(); 1535 txq->dirty_tx = bdp; 1536 1537 /* Update pointer to next buffer descriptor to be transmitted */ 1538 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1539 1540 /* Since we have freed up a buffer, the ring is no longer full 1541 */ 1542 if (netif_tx_queue_stopped(nq)) { 1543 entries_free = fec_enet_get_free_txdesc_num(txq); 1544 if (entries_free >= txq->tx_wake_threshold) 1545 netif_tx_wake_queue(nq); 1546 } 1547 } 1548 1549 /* ERR006358: Keep the transmitter going */ 1550 if (bdp != txq->bd.cur && 1551 readl(txq->bd.reg_desc_active) == 0) 1552 writel(0, txq->bd.reg_desc_active); 1553 } 1554 1555 static void fec_enet_tx(struct net_device *ndev, int budget) 1556 { 1557 struct fec_enet_private *fep = netdev_priv(ndev); 1558 int i; 1559 1560 /* Make sure that AVB queues are processed first. */ 1561 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1562 fec_enet_tx_queue(ndev, i, budget); 1563 } 1564 1565 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1566 struct bufdesc *bdp, int index) 1567 { 1568 struct page *new_page; 1569 dma_addr_t phys_addr; 1570 1571 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1572 WARN_ON(!new_page); 1573 rxq->rx_skb_info[index].page = new_page; 1574 1575 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1576 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1577 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1578 } 1579 1580 static u32 1581 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1582 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1583 { 1584 unsigned int sync, len = xdp->data_end - xdp->data; 1585 u32 ret = FEC_ENET_XDP_PASS; 1586 struct page *page; 1587 int err; 1588 u32 act; 1589 1590 act = bpf_prog_run_xdp(prog, xdp); 1591 1592 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1593 * max len CPU touch 1594 */ 1595 sync = xdp->data_end - xdp->data; 1596 sync = max(sync, len); 1597 1598 switch (act) { 1599 case XDP_PASS: 1600 rxq->stats[RX_XDP_PASS]++; 1601 ret = FEC_ENET_XDP_PASS; 1602 break; 1603 1604 case XDP_REDIRECT: 1605 rxq->stats[RX_XDP_REDIRECT]++; 1606 err = xdp_do_redirect(fep->netdev, xdp, prog); 1607 if (unlikely(err)) 1608 goto xdp_err; 1609 1610 ret = FEC_ENET_XDP_REDIR; 1611 break; 1612 1613 case XDP_TX: 1614 rxq->stats[RX_XDP_TX]++; 1615 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1616 if (unlikely(err)) { 1617 rxq->stats[RX_XDP_TX_ERRORS]++; 1618 goto xdp_err; 1619 } 1620 1621 ret = FEC_ENET_XDP_TX; 1622 break; 1623 1624 default: 1625 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1626 fallthrough; 1627 1628 case XDP_ABORTED: 1629 fallthrough; /* handle aborts by dropping packet */ 1630 1631 case XDP_DROP: 1632 rxq->stats[RX_XDP_DROP]++; 1633 xdp_err: 1634 ret = FEC_ENET_XDP_CONSUMED; 1635 page = virt_to_head_page(xdp->data); 1636 page_pool_put_page(rxq->page_pool, page, sync, true); 1637 if (act != XDP_DROP) 1638 trace_xdp_exception(fep->netdev, prog, act); 1639 break; 1640 } 1641 1642 return ret; 1643 } 1644 1645 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1646 * When we update through the ring, if the next incoming buffer has 1647 * not been given to the system, we just set the empty indicator, 1648 * effectively tossing the packet. 1649 */ 1650 static int 1651 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1652 { 1653 struct fec_enet_private *fep = netdev_priv(ndev); 1654 struct fec_enet_priv_rx_q *rxq; 1655 struct bufdesc *bdp; 1656 unsigned short status; 1657 struct sk_buff *skb; 1658 ushort pkt_len; 1659 __u8 *data; 1660 int pkt_received = 0; 1661 struct bufdesc_ex *ebdp = NULL; 1662 bool vlan_packet_rcvd = false; 1663 u16 vlan_tag; 1664 int index = 0; 1665 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1666 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1667 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1668 u32 data_start = FEC_ENET_XDP_HEADROOM; 1669 int cpu = smp_processor_id(); 1670 struct xdp_buff xdp; 1671 struct page *page; 1672 u32 sub_len = 4; 1673 1674 #if !defined(CONFIG_M5272) 1675 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1676 * FEC_RACC_SHIFT16 is set by default in the probe function. 1677 */ 1678 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1679 data_start += 2; 1680 sub_len += 2; 1681 } 1682 #endif 1683 1684 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA) 1685 /* 1686 * Hacky flush of all caches instead of using the DMA API for the TSO 1687 * headers. 1688 */ 1689 flush_cache_all(); 1690 #endif 1691 rxq = fep->rx_queue[queue_id]; 1692 1693 /* First, grab all of the stats for the incoming packet. 1694 * These get messed up if we get called due to a busy condition. 1695 */ 1696 bdp = rxq->bd.cur; 1697 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1698 1699 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1700 1701 if (pkt_received >= budget) 1702 break; 1703 pkt_received++; 1704 1705 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1706 1707 /* Check for errors. */ 1708 status ^= BD_ENET_RX_LAST; 1709 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1710 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1711 BD_ENET_RX_CL)) { 1712 ndev->stats.rx_errors++; 1713 if (status & BD_ENET_RX_OV) { 1714 /* FIFO overrun */ 1715 ndev->stats.rx_fifo_errors++; 1716 goto rx_processing_done; 1717 } 1718 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1719 | BD_ENET_RX_LAST)) { 1720 /* Frame too long or too short. */ 1721 ndev->stats.rx_length_errors++; 1722 if (status & BD_ENET_RX_LAST) 1723 netdev_err(ndev, "rcv is not +last\n"); 1724 } 1725 if (status & BD_ENET_RX_CR) /* CRC Error */ 1726 ndev->stats.rx_crc_errors++; 1727 /* Report late collisions as a frame error. */ 1728 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1729 ndev->stats.rx_frame_errors++; 1730 goto rx_processing_done; 1731 } 1732 1733 /* Process the incoming frame. */ 1734 ndev->stats.rx_packets++; 1735 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1736 ndev->stats.rx_bytes += pkt_len; 1737 1738 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1739 page = rxq->rx_skb_info[index].page; 1740 dma_sync_single_for_cpu(&fep->pdev->dev, 1741 fec32_to_cpu(bdp->cbd_bufaddr), 1742 pkt_len, 1743 DMA_FROM_DEVICE); 1744 prefetch(page_address(page)); 1745 fec_enet_update_cbd(rxq, bdp, index); 1746 1747 if (xdp_prog) { 1748 xdp_buff_clear_frags_flag(&xdp); 1749 /* subtract 16bit shift and FCS */ 1750 xdp_prepare_buff(&xdp, page_address(page), 1751 data_start, pkt_len - sub_len, false); 1752 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1753 xdp_result |= ret; 1754 if (ret != FEC_ENET_XDP_PASS) 1755 goto rx_processing_done; 1756 } 1757 1758 /* The packet length includes FCS, but we don't want to 1759 * include that when passing upstream as it messes up 1760 * bridging applications. 1761 */ 1762 skb = build_skb(page_address(page), PAGE_SIZE); 1763 if (unlikely(!skb)) { 1764 page_pool_recycle_direct(rxq->page_pool, page); 1765 ndev->stats.rx_dropped++; 1766 1767 netdev_err_once(ndev, "build_skb failed!\n"); 1768 goto rx_processing_done; 1769 } 1770 1771 skb_reserve(skb, data_start); 1772 skb_put(skb, pkt_len - sub_len); 1773 skb_mark_for_recycle(skb); 1774 1775 if (unlikely(need_swap)) { 1776 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1777 swap_buffer(data, pkt_len); 1778 } 1779 data = skb->data; 1780 1781 /* Extract the enhanced buffer descriptor */ 1782 ebdp = NULL; 1783 if (fep->bufdesc_ex) 1784 ebdp = (struct bufdesc_ex *)bdp; 1785 1786 /* If this is a VLAN packet remove the VLAN Tag */ 1787 vlan_packet_rcvd = false; 1788 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1789 fep->bufdesc_ex && 1790 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1791 /* Push and remove the vlan tag */ 1792 struct vlan_hdr *vlan_header = 1793 (struct vlan_hdr *) (data + ETH_HLEN); 1794 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1795 1796 vlan_packet_rcvd = true; 1797 1798 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1799 skb_pull(skb, VLAN_HLEN); 1800 } 1801 1802 skb->protocol = eth_type_trans(skb, ndev); 1803 1804 /* Get receive timestamp from the skb */ 1805 if (fep->hwts_rx_en && fep->bufdesc_ex) 1806 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1807 skb_hwtstamps(skb)); 1808 1809 if (fep->bufdesc_ex && 1810 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1811 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1812 /* don't check it */ 1813 skb->ip_summed = CHECKSUM_UNNECESSARY; 1814 } else { 1815 skb_checksum_none_assert(skb); 1816 } 1817 } 1818 1819 /* Handle received VLAN packets */ 1820 if (vlan_packet_rcvd) 1821 __vlan_hwaccel_put_tag(skb, 1822 htons(ETH_P_8021Q), 1823 vlan_tag); 1824 1825 skb_record_rx_queue(skb, queue_id); 1826 napi_gro_receive(&fep->napi, skb); 1827 1828 rx_processing_done: 1829 /* Clear the status flags for this buffer */ 1830 status &= ~BD_ENET_RX_STATS; 1831 1832 /* Mark the buffer empty */ 1833 status |= BD_ENET_RX_EMPTY; 1834 1835 if (fep->bufdesc_ex) { 1836 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1837 1838 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1839 ebdp->cbd_prot = 0; 1840 ebdp->cbd_bdu = 0; 1841 } 1842 /* Make sure the updates to rest of the descriptor are 1843 * performed before transferring ownership. 1844 */ 1845 wmb(); 1846 bdp->cbd_sc = cpu_to_fec16(status); 1847 1848 /* Update BD pointer to next entry */ 1849 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1850 1851 /* Doing this here will keep the FEC running while we process 1852 * incoming frames. On a heavily loaded network, we should be 1853 * able to keep up at the expense of system resources. 1854 */ 1855 writel(0, rxq->bd.reg_desc_active); 1856 } 1857 rxq->bd.cur = bdp; 1858 1859 if (xdp_result & FEC_ENET_XDP_REDIR) 1860 xdp_do_flush(); 1861 1862 return pkt_received; 1863 } 1864 1865 static int fec_enet_rx(struct net_device *ndev, int budget) 1866 { 1867 struct fec_enet_private *fep = netdev_priv(ndev); 1868 int i, done = 0; 1869 1870 /* Make sure that AVB queues are processed first. */ 1871 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1872 done += fec_enet_rx_queue(ndev, budget - done, i); 1873 1874 return done; 1875 } 1876 1877 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1878 { 1879 uint int_events; 1880 1881 int_events = readl(fep->hwp + FEC_IEVENT); 1882 1883 /* Don't clear MDIO events, we poll for those */ 1884 int_events &= ~FEC_ENET_MII; 1885 1886 writel(int_events, fep->hwp + FEC_IEVENT); 1887 1888 return int_events != 0; 1889 } 1890 1891 static irqreturn_t 1892 fec_enet_interrupt(int irq, void *dev_id) 1893 { 1894 struct net_device *ndev = dev_id; 1895 struct fec_enet_private *fep = netdev_priv(ndev); 1896 irqreturn_t ret = IRQ_NONE; 1897 1898 if (fec_enet_collect_events(fep) && fep->link) { 1899 ret = IRQ_HANDLED; 1900 1901 if (napi_schedule_prep(&fep->napi)) { 1902 /* Disable interrupts */ 1903 writel(0, fep->hwp + FEC_IMASK); 1904 __napi_schedule(&fep->napi); 1905 } 1906 } 1907 1908 return ret; 1909 } 1910 1911 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1912 { 1913 struct net_device *ndev = napi->dev; 1914 struct fec_enet_private *fep = netdev_priv(ndev); 1915 int done = 0; 1916 1917 do { 1918 done += fec_enet_rx(ndev, budget - done); 1919 fec_enet_tx(ndev, budget); 1920 } while ((done < budget) && fec_enet_collect_events(fep)); 1921 1922 if (done < budget) { 1923 napi_complete_done(napi, done); 1924 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1925 } 1926 1927 return done; 1928 } 1929 1930 /* ------------------------------------------------------------------------- */ 1931 static int fec_get_mac(struct net_device *ndev) 1932 { 1933 struct fec_enet_private *fep = netdev_priv(ndev); 1934 unsigned char *iap, tmpaddr[ETH_ALEN]; 1935 int ret; 1936 1937 /* 1938 * try to get mac address in following order: 1939 * 1940 * 1) module parameter via kernel command line in form 1941 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1942 */ 1943 iap = macaddr; 1944 1945 /* 1946 * 2) from device tree data 1947 */ 1948 if (!is_valid_ether_addr(iap)) { 1949 struct device_node *np = fep->pdev->dev.of_node; 1950 if (np) { 1951 ret = of_get_mac_address(np, tmpaddr); 1952 if (!ret) 1953 iap = tmpaddr; 1954 else if (ret == -EPROBE_DEFER) 1955 return ret; 1956 } 1957 } 1958 1959 /* 1960 * 3) from flash or fuse (via platform data) 1961 */ 1962 if (!is_valid_ether_addr(iap)) { 1963 #ifdef CONFIG_M5272 1964 if (FEC_FLASHMAC) 1965 iap = (unsigned char *)FEC_FLASHMAC; 1966 #else 1967 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1968 1969 if (pdata) 1970 iap = (unsigned char *)&pdata->mac; 1971 #endif 1972 } 1973 1974 /* 1975 * 4) FEC mac registers set by bootloader 1976 */ 1977 if (!is_valid_ether_addr(iap)) { 1978 *((__be32 *) &tmpaddr[0]) = 1979 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1980 *((__be16 *) &tmpaddr[4]) = 1981 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1982 iap = &tmpaddr[0]; 1983 } 1984 1985 /* 1986 * 5) random mac address 1987 */ 1988 if (!is_valid_ether_addr(iap)) { 1989 /* Report it and use a random ethernet address instead */ 1990 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1991 eth_hw_addr_random(ndev); 1992 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1993 ndev->dev_addr); 1994 return 0; 1995 } 1996 1997 /* Adjust MAC if using macaddr */ 1998 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1999 2000 return 0; 2001 } 2002 2003 /* ------------------------------------------------------------------------- */ 2004 2005 /* 2006 * Phy section 2007 */ 2008 static void fec_enet_adjust_link(struct net_device *ndev) 2009 { 2010 struct fec_enet_private *fep = netdev_priv(ndev); 2011 struct phy_device *phy_dev = ndev->phydev; 2012 int status_change = 0; 2013 2014 /* 2015 * If the netdev is down, or is going down, we're not interested 2016 * in link state events, so just mark our idea of the link as down 2017 * and ignore the event. 2018 */ 2019 if (!netif_running(ndev) || !netif_device_present(ndev)) { 2020 fep->link = 0; 2021 } else if (phy_dev->link) { 2022 if (!fep->link) { 2023 fep->link = phy_dev->link; 2024 status_change = 1; 2025 } 2026 2027 if (fep->full_duplex != phy_dev->duplex) { 2028 fep->full_duplex = phy_dev->duplex; 2029 status_change = 1; 2030 } 2031 2032 if (phy_dev->speed != fep->speed) { 2033 fep->speed = phy_dev->speed; 2034 status_change = 1; 2035 } 2036 2037 /* if any of the above changed restart the FEC */ 2038 if (status_change) { 2039 netif_stop_queue(ndev); 2040 napi_disable(&fep->napi); 2041 netif_tx_lock_bh(ndev); 2042 fec_restart(ndev); 2043 netif_tx_wake_all_queues(ndev); 2044 netif_tx_unlock_bh(ndev); 2045 napi_enable(&fep->napi); 2046 } 2047 } else { 2048 if (fep->link) { 2049 netif_stop_queue(ndev); 2050 napi_disable(&fep->napi); 2051 netif_tx_lock_bh(ndev); 2052 fec_stop(ndev); 2053 netif_tx_unlock_bh(ndev); 2054 napi_enable(&fep->napi); 2055 fep->link = phy_dev->link; 2056 status_change = 1; 2057 } 2058 } 2059 2060 if (status_change) 2061 phy_print_status(phy_dev); 2062 } 2063 2064 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2065 { 2066 uint ievent; 2067 int ret; 2068 2069 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2070 ievent & FEC_ENET_MII, 2, 30000); 2071 2072 if (!ret) 2073 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2074 2075 return ret; 2076 } 2077 2078 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2079 { 2080 struct fec_enet_private *fep = bus->priv; 2081 struct device *dev = &fep->pdev->dev; 2082 int ret = 0, frame_start, frame_addr, frame_op; 2083 2084 ret = pm_runtime_resume_and_get(dev); 2085 if (ret < 0) 2086 return ret; 2087 2088 /* C22 read */ 2089 frame_op = FEC_MMFR_OP_READ; 2090 frame_start = FEC_MMFR_ST; 2091 frame_addr = regnum; 2092 2093 /* start a read op */ 2094 writel(frame_start | frame_op | 2095 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2096 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2097 2098 /* wait for end of transfer */ 2099 ret = fec_enet_mdio_wait(fep); 2100 if (ret) { 2101 netdev_err(fep->netdev, "MDIO read timeout\n"); 2102 goto out; 2103 } 2104 2105 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2106 2107 out: 2108 pm_runtime_mark_last_busy(dev); 2109 pm_runtime_put_autosuspend(dev); 2110 2111 return ret; 2112 } 2113 2114 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2115 int devad, int regnum) 2116 { 2117 struct fec_enet_private *fep = bus->priv; 2118 struct device *dev = &fep->pdev->dev; 2119 int ret = 0, frame_start, frame_op; 2120 2121 ret = pm_runtime_resume_and_get(dev); 2122 if (ret < 0) 2123 return ret; 2124 2125 frame_start = FEC_MMFR_ST_C45; 2126 2127 /* write address */ 2128 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2129 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2130 FEC_MMFR_TA | (regnum & 0xFFFF), 2131 fep->hwp + FEC_MII_DATA); 2132 2133 /* wait for end of transfer */ 2134 ret = fec_enet_mdio_wait(fep); 2135 if (ret) { 2136 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2137 goto out; 2138 } 2139 2140 frame_op = FEC_MMFR_OP_READ_C45; 2141 2142 /* start a read op */ 2143 writel(frame_start | frame_op | 2144 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2145 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2146 2147 /* wait for end of transfer */ 2148 ret = fec_enet_mdio_wait(fep); 2149 if (ret) { 2150 netdev_err(fep->netdev, "MDIO read timeout\n"); 2151 goto out; 2152 } 2153 2154 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2155 2156 out: 2157 pm_runtime_mark_last_busy(dev); 2158 pm_runtime_put_autosuspend(dev); 2159 2160 return ret; 2161 } 2162 2163 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2164 u16 value) 2165 { 2166 struct fec_enet_private *fep = bus->priv; 2167 struct device *dev = &fep->pdev->dev; 2168 int ret, frame_start, frame_addr; 2169 2170 ret = pm_runtime_resume_and_get(dev); 2171 if (ret < 0) 2172 return ret; 2173 2174 /* C22 write */ 2175 frame_start = FEC_MMFR_ST; 2176 frame_addr = regnum; 2177 2178 /* start a write op */ 2179 writel(frame_start | FEC_MMFR_OP_WRITE | 2180 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2181 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2182 fep->hwp + FEC_MII_DATA); 2183 2184 /* wait for end of transfer */ 2185 ret = fec_enet_mdio_wait(fep); 2186 if (ret) 2187 netdev_err(fep->netdev, "MDIO write timeout\n"); 2188 2189 pm_runtime_mark_last_busy(dev); 2190 pm_runtime_put_autosuspend(dev); 2191 2192 return ret; 2193 } 2194 2195 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2196 int devad, int regnum, u16 value) 2197 { 2198 struct fec_enet_private *fep = bus->priv; 2199 struct device *dev = &fep->pdev->dev; 2200 int ret, frame_start; 2201 2202 ret = pm_runtime_resume_and_get(dev); 2203 if (ret < 0) 2204 return ret; 2205 2206 frame_start = FEC_MMFR_ST_C45; 2207 2208 /* write address */ 2209 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2210 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2211 FEC_MMFR_TA | (regnum & 0xFFFF), 2212 fep->hwp + FEC_MII_DATA); 2213 2214 /* wait for end of transfer */ 2215 ret = fec_enet_mdio_wait(fep); 2216 if (ret) { 2217 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2218 goto out; 2219 } 2220 2221 /* start a write op */ 2222 writel(frame_start | FEC_MMFR_OP_WRITE | 2223 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2224 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2225 fep->hwp + FEC_MII_DATA); 2226 2227 /* wait for end of transfer */ 2228 ret = fec_enet_mdio_wait(fep); 2229 if (ret) 2230 netdev_err(fep->netdev, "MDIO write timeout\n"); 2231 2232 out: 2233 pm_runtime_mark_last_busy(dev); 2234 pm_runtime_put_autosuspend(dev); 2235 2236 return ret; 2237 } 2238 2239 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2240 { 2241 struct fec_enet_private *fep = netdev_priv(ndev); 2242 struct phy_device *phy_dev = ndev->phydev; 2243 2244 if (phy_dev) { 2245 phy_reset_after_clk_enable(phy_dev); 2246 } else if (fep->phy_node) { 2247 /* 2248 * If the PHY still is not bound to the MAC, but there is 2249 * OF PHY node and a matching PHY device instance already, 2250 * use the OF PHY node to obtain the PHY device instance, 2251 * and then use that PHY device instance when triggering 2252 * the PHY reset. 2253 */ 2254 phy_dev = of_phy_find_device(fep->phy_node); 2255 phy_reset_after_clk_enable(phy_dev); 2256 put_device(&phy_dev->mdio.dev); 2257 } 2258 } 2259 2260 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2261 { 2262 struct fec_enet_private *fep = netdev_priv(ndev); 2263 int ret; 2264 2265 if (enable) { 2266 ret = clk_prepare_enable(fep->clk_enet_out); 2267 if (ret) 2268 return ret; 2269 2270 if (fep->clk_ptp) { 2271 mutex_lock(&fep->ptp_clk_mutex); 2272 ret = clk_prepare_enable(fep->clk_ptp); 2273 if (ret) { 2274 mutex_unlock(&fep->ptp_clk_mutex); 2275 goto failed_clk_ptp; 2276 } else { 2277 fep->ptp_clk_on = true; 2278 } 2279 mutex_unlock(&fep->ptp_clk_mutex); 2280 } 2281 2282 ret = clk_prepare_enable(fep->clk_ref); 2283 if (ret) 2284 goto failed_clk_ref; 2285 2286 ret = clk_prepare_enable(fep->clk_2x_txclk); 2287 if (ret) 2288 goto failed_clk_2x_txclk; 2289 2290 fec_enet_phy_reset_after_clk_enable(ndev); 2291 } else { 2292 clk_disable_unprepare(fep->clk_enet_out); 2293 if (fep->clk_ptp) { 2294 mutex_lock(&fep->ptp_clk_mutex); 2295 clk_disable_unprepare(fep->clk_ptp); 2296 fep->ptp_clk_on = false; 2297 mutex_unlock(&fep->ptp_clk_mutex); 2298 } 2299 clk_disable_unprepare(fep->clk_ref); 2300 clk_disable_unprepare(fep->clk_2x_txclk); 2301 } 2302 2303 return 0; 2304 2305 failed_clk_2x_txclk: 2306 if (fep->clk_ref) 2307 clk_disable_unprepare(fep->clk_ref); 2308 failed_clk_ref: 2309 if (fep->clk_ptp) { 2310 mutex_lock(&fep->ptp_clk_mutex); 2311 clk_disable_unprepare(fep->clk_ptp); 2312 fep->ptp_clk_on = false; 2313 mutex_unlock(&fep->ptp_clk_mutex); 2314 } 2315 failed_clk_ptp: 2316 clk_disable_unprepare(fep->clk_enet_out); 2317 2318 return ret; 2319 } 2320 2321 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2322 struct device_node *np) 2323 { 2324 u32 rgmii_tx_delay, rgmii_rx_delay; 2325 2326 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2327 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2328 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2329 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2330 return -EINVAL; 2331 } else if (rgmii_tx_delay == 2000) { 2332 fep->rgmii_txc_dly = true; 2333 } 2334 } 2335 2336 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2337 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2338 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2339 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2340 return -EINVAL; 2341 } else if (rgmii_rx_delay == 2000) { 2342 fep->rgmii_rxc_dly = true; 2343 } 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int fec_enet_mii_probe(struct net_device *ndev) 2350 { 2351 struct fec_enet_private *fep = netdev_priv(ndev); 2352 struct phy_device *phy_dev = NULL; 2353 char mdio_bus_id[MII_BUS_ID_SIZE]; 2354 char phy_name[MII_BUS_ID_SIZE + 3]; 2355 int phy_id; 2356 int dev_id = fep->dev_id; 2357 2358 if (fep->phy_node) { 2359 phy_dev = of_phy_connect(ndev, fep->phy_node, 2360 &fec_enet_adjust_link, 0, 2361 fep->phy_interface); 2362 if (!phy_dev) { 2363 netdev_err(ndev, "Unable to connect to phy\n"); 2364 return -ENODEV; 2365 } 2366 } else { 2367 /* check for attached phy */ 2368 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2369 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2370 continue; 2371 if (dev_id--) 2372 continue; 2373 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2374 break; 2375 } 2376 2377 if (phy_id >= PHY_MAX_ADDR) { 2378 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2379 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2380 phy_id = 0; 2381 } 2382 2383 snprintf(phy_name, sizeof(phy_name), 2384 PHY_ID_FMT, mdio_bus_id, phy_id); 2385 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2386 fep->phy_interface); 2387 } 2388 2389 if (IS_ERR(phy_dev)) { 2390 netdev_err(ndev, "could not attach to PHY\n"); 2391 return PTR_ERR(phy_dev); 2392 } 2393 2394 /* mask with MAC supported features */ 2395 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2396 phy_set_max_speed(phy_dev, 1000); 2397 phy_remove_link_mode(phy_dev, 2398 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2399 #if !defined(CONFIG_M5272) 2400 phy_support_sym_pause(phy_dev); 2401 #endif 2402 } 2403 else 2404 phy_set_max_speed(phy_dev, 100); 2405 2406 fep->link = 0; 2407 fep->full_duplex = 0; 2408 2409 phy_dev->mac_managed_pm = true; 2410 2411 phy_attached_info(phy_dev); 2412 2413 return 0; 2414 } 2415 2416 static int fec_enet_mii_init(struct platform_device *pdev) 2417 { 2418 static struct mii_bus *fec0_mii_bus; 2419 struct net_device *ndev = platform_get_drvdata(pdev); 2420 struct fec_enet_private *fep = netdev_priv(ndev); 2421 bool suppress_preamble = false; 2422 struct device_node *node; 2423 int err = -ENXIO; 2424 u32 mii_speed, holdtime; 2425 u32 bus_freq; 2426 2427 /* 2428 * The i.MX28 dual fec interfaces are not equal. 2429 * Here are the differences: 2430 * 2431 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2432 * - fec0 acts as the 1588 time master while fec1 is slave 2433 * - external phys can only be configured by fec0 2434 * 2435 * That is to say fec1 can not work independently. It only works 2436 * when fec0 is working. The reason behind this design is that the 2437 * second interface is added primarily for Switch mode. 2438 * 2439 * Because of the last point above, both phys are attached on fec0 2440 * mdio interface in board design, and need to be configured by 2441 * fec0 mii_bus. 2442 */ 2443 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2444 /* fec1 uses fec0 mii_bus */ 2445 if (mii_cnt && fec0_mii_bus) { 2446 fep->mii_bus = fec0_mii_bus; 2447 mii_cnt++; 2448 return 0; 2449 } 2450 return -ENOENT; 2451 } 2452 2453 bus_freq = 2500000; /* 2.5MHz by default */ 2454 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2455 if (node) { 2456 of_property_read_u32(node, "clock-frequency", &bus_freq); 2457 suppress_preamble = of_property_read_bool(node, 2458 "suppress-preamble"); 2459 } 2460 2461 /* 2462 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2463 * 2464 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2465 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2466 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2467 * document. 2468 */ 2469 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2470 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2471 mii_speed--; 2472 if (mii_speed > 63) { 2473 dev_err(&pdev->dev, 2474 "fec clock (%lu) too fast to get right mii speed\n", 2475 clk_get_rate(fep->clk_ipg)); 2476 err = -EINVAL; 2477 goto err_out; 2478 } 2479 2480 /* 2481 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2482 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2483 * versions are RAZ there, so just ignore the difference and write the 2484 * register always. 2485 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2486 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2487 * output. 2488 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2489 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2490 * holdtime cannot result in a value greater than 3. 2491 */ 2492 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2493 2494 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2495 2496 if (suppress_preamble) 2497 fep->phy_speed |= BIT(7); 2498 2499 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2500 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2501 * MII event generation condition: 2502 * - writing MSCR: 2503 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2504 * mscr_reg_data_in[7:0] != 0 2505 * - writing MMFR: 2506 * - mscr[7:0]_not_zero 2507 */ 2508 writel(0, fep->hwp + FEC_MII_DATA); 2509 } 2510 2511 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2512 2513 /* Clear any pending transaction complete indication */ 2514 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2515 2516 fep->mii_bus = mdiobus_alloc(); 2517 if (fep->mii_bus == NULL) { 2518 err = -ENOMEM; 2519 goto err_out; 2520 } 2521 2522 fep->mii_bus->name = "fec_enet_mii_bus"; 2523 fep->mii_bus->read = fec_enet_mdio_read_c22; 2524 fep->mii_bus->write = fec_enet_mdio_write_c22; 2525 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2526 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2527 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2528 } 2529 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2530 pdev->name, fep->dev_id + 1); 2531 fep->mii_bus->priv = fep; 2532 fep->mii_bus->parent = &pdev->dev; 2533 2534 err = of_mdiobus_register(fep->mii_bus, node); 2535 if (err) 2536 goto err_out_free_mdiobus; 2537 of_node_put(node); 2538 2539 mii_cnt++; 2540 2541 /* save fec0 mii_bus */ 2542 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2543 fec0_mii_bus = fep->mii_bus; 2544 2545 return 0; 2546 2547 err_out_free_mdiobus: 2548 mdiobus_free(fep->mii_bus); 2549 err_out: 2550 of_node_put(node); 2551 return err; 2552 } 2553 2554 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2555 { 2556 if (--mii_cnt == 0) { 2557 mdiobus_unregister(fep->mii_bus); 2558 mdiobus_free(fep->mii_bus); 2559 } 2560 } 2561 2562 static void fec_enet_get_drvinfo(struct net_device *ndev, 2563 struct ethtool_drvinfo *info) 2564 { 2565 struct fec_enet_private *fep = netdev_priv(ndev); 2566 2567 strscpy(info->driver, fep->pdev->dev.driver->name, 2568 sizeof(info->driver)); 2569 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2570 } 2571 2572 static int fec_enet_get_regs_len(struct net_device *ndev) 2573 { 2574 struct fec_enet_private *fep = netdev_priv(ndev); 2575 struct resource *r; 2576 int s = 0; 2577 2578 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2579 if (r) 2580 s = resource_size(r); 2581 2582 return s; 2583 } 2584 2585 /* List of registers that can be safety be read to dump them with ethtool */ 2586 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2587 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2588 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2589 static __u32 fec_enet_register_version = 2; 2590 static u32 fec_enet_register_offset[] = { 2591 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2592 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2593 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2594 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2595 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2596 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2597 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2598 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2599 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2600 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2601 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2602 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2603 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2604 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2605 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2606 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2607 RMON_T_P_GTE2048, RMON_T_OCTETS, 2608 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2609 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2610 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2611 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2612 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2613 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2614 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2615 RMON_R_P_GTE2048, RMON_R_OCTETS, 2616 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2617 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2618 }; 2619 /* for i.MX6ul */ 2620 static u32 fec_enet_register_offset_6ul[] = { 2621 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2622 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2623 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2624 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2625 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2626 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2627 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2628 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2629 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2630 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2631 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2632 RMON_T_P_GTE2048, RMON_T_OCTETS, 2633 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2634 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2635 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2636 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2637 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2638 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2639 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2640 RMON_R_P_GTE2048, RMON_R_OCTETS, 2641 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2642 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2643 }; 2644 #else 2645 static __u32 fec_enet_register_version = 1; 2646 static u32 fec_enet_register_offset[] = { 2647 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2648 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2649 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2650 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2651 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2652 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2653 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2654 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2655 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2656 }; 2657 #endif 2658 2659 static void fec_enet_get_regs(struct net_device *ndev, 2660 struct ethtool_regs *regs, void *regbuf) 2661 { 2662 struct fec_enet_private *fep = netdev_priv(ndev); 2663 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2664 struct device *dev = &fep->pdev->dev; 2665 u32 *buf = (u32 *)regbuf; 2666 u32 i, off; 2667 int ret; 2668 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2669 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2670 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2671 u32 *reg_list; 2672 u32 reg_cnt; 2673 2674 if (!of_machine_is_compatible("fsl,imx6ul")) { 2675 reg_list = fec_enet_register_offset; 2676 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2677 } else { 2678 reg_list = fec_enet_register_offset_6ul; 2679 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2680 } 2681 #else 2682 /* coldfire */ 2683 static u32 *reg_list = fec_enet_register_offset; 2684 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2685 #endif 2686 ret = pm_runtime_resume_and_get(dev); 2687 if (ret < 0) 2688 return; 2689 2690 regs->version = fec_enet_register_version; 2691 2692 memset(buf, 0, regs->len); 2693 2694 for (i = 0; i < reg_cnt; i++) { 2695 off = reg_list[i]; 2696 2697 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2698 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2699 continue; 2700 2701 off >>= 2; 2702 buf[off] = readl(&theregs[off]); 2703 } 2704 2705 pm_runtime_mark_last_busy(dev); 2706 pm_runtime_put_autosuspend(dev); 2707 } 2708 2709 static int fec_enet_get_ts_info(struct net_device *ndev, 2710 struct ethtool_ts_info *info) 2711 { 2712 struct fec_enet_private *fep = netdev_priv(ndev); 2713 2714 if (fep->bufdesc_ex) { 2715 2716 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2717 SOF_TIMESTAMPING_RX_SOFTWARE | 2718 SOF_TIMESTAMPING_SOFTWARE | 2719 SOF_TIMESTAMPING_TX_HARDWARE | 2720 SOF_TIMESTAMPING_RX_HARDWARE | 2721 SOF_TIMESTAMPING_RAW_HARDWARE; 2722 if (fep->ptp_clock) 2723 info->phc_index = ptp_clock_index(fep->ptp_clock); 2724 else 2725 info->phc_index = -1; 2726 2727 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2728 (1 << HWTSTAMP_TX_ON); 2729 2730 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2731 (1 << HWTSTAMP_FILTER_ALL); 2732 return 0; 2733 } else { 2734 return ethtool_op_get_ts_info(ndev, info); 2735 } 2736 } 2737 2738 #if !defined(CONFIG_M5272) 2739 2740 static void fec_enet_get_pauseparam(struct net_device *ndev, 2741 struct ethtool_pauseparam *pause) 2742 { 2743 struct fec_enet_private *fep = netdev_priv(ndev); 2744 2745 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2746 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2747 pause->rx_pause = pause->tx_pause; 2748 } 2749 2750 static int fec_enet_set_pauseparam(struct net_device *ndev, 2751 struct ethtool_pauseparam *pause) 2752 { 2753 struct fec_enet_private *fep = netdev_priv(ndev); 2754 2755 if (!ndev->phydev) 2756 return -ENODEV; 2757 2758 if (pause->tx_pause != pause->rx_pause) { 2759 netdev_info(ndev, 2760 "hardware only support enable/disable both tx and rx"); 2761 return -EINVAL; 2762 } 2763 2764 fep->pause_flag = 0; 2765 2766 /* tx pause must be same as rx pause */ 2767 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2768 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2769 2770 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2771 pause->autoneg); 2772 2773 if (pause->autoneg) { 2774 if (netif_running(ndev)) 2775 fec_stop(ndev); 2776 phy_start_aneg(ndev->phydev); 2777 } 2778 if (netif_running(ndev)) { 2779 napi_disable(&fep->napi); 2780 netif_tx_lock_bh(ndev); 2781 fec_restart(ndev); 2782 netif_tx_wake_all_queues(ndev); 2783 netif_tx_unlock_bh(ndev); 2784 napi_enable(&fep->napi); 2785 } 2786 2787 return 0; 2788 } 2789 2790 static const struct fec_stat { 2791 char name[ETH_GSTRING_LEN]; 2792 u16 offset; 2793 } fec_stats[] = { 2794 /* RMON TX */ 2795 { "tx_dropped", RMON_T_DROP }, 2796 { "tx_packets", RMON_T_PACKETS }, 2797 { "tx_broadcast", RMON_T_BC_PKT }, 2798 { "tx_multicast", RMON_T_MC_PKT }, 2799 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2800 { "tx_undersize", RMON_T_UNDERSIZE }, 2801 { "tx_oversize", RMON_T_OVERSIZE }, 2802 { "tx_fragment", RMON_T_FRAG }, 2803 { "tx_jabber", RMON_T_JAB }, 2804 { "tx_collision", RMON_T_COL }, 2805 { "tx_64byte", RMON_T_P64 }, 2806 { "tx_65to127byte", RMON_T_P65TO127 }, 2807 { "tx_128to255byte", RMON_T_P128TO255 }, 2808 { "tx_256to511byte", RMON_T_P256TO511 }, 2809 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2810 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2811 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2812 { "tx_octets", RMON_T_OCTETS }, 2813 2814 /* IEEE TX */ 2815 { "IEEE_tx_drop", IEEE_T_DROP }, 2816 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2817 { "IEEE_tx_1col", IEEE_T_1COL }, 2818 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2819 { "IEEE_tx_def", IEEE_T_DEF }, 2820 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2821 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2822 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2823 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2824 { "IEEE_tx_sqe", IEEE_T_SQE }, 2825 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2826 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2827 2828 /* RMON RX */ 2829 { "rx_packets", RMON_R_PACKETS }, 2830 { "rx_broadcast", RMON_R_BC_PKT }, 2831 { "rx_multicast", RMON_R_MC_PKT }, 2832 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2833 { "rx_undersize", RMON_R_UNDERSIZE }, 2834 { "rx_oversize", RMON_R_OVERSIZE }, 2835 { "rx_fragment", RMON_R_FRAG }, 2836 { "rx_jabber", RMON_R_JAB }, 2837 { "rx_64byte", RMON_R_P64 }, 2838 { "rx_65to127byte", RMON_R_P65TO127 }, 2839 { "rx_128to255byte", RMON_R_P128TO255 }, 2840 { "rx_256to511byte", RMON_R_P256TO511 }, 2841 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2842 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2843 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2844 { "rx_octets", RMON_R_OCTETS }, 2845 2846 /* IEEE RX */ 2847 { "IEEE_rx_drop", IEEE_R_DROP }, 2848 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2849 { "IEEE_rx_crc", IEEE_R_CRC }, 2850 { "IEEE_rx_align", IEEE_R_ALIGN }, 2851 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2852 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2853 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2854 }; 2855 2856 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2857 2858 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2859 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2860 "rx_xdp_pass", /* RX_XDP_PASS, */ 2861 "rx_xdp_drop", /* RX_XDP_DROP, */ 2862 "rx_xdp_tx", /* RX_XDP_TX, */ 2863 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2864 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2865 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2866 }; 2867 2868 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2869 { 2870 struct fec_enet_private *fep = netdev_priv(dev); 2871 int i; 2872 2873 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2874 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2875 } 2876 2877 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2878 { 2879 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2880 struct fec_enet_priv_rx_q *rxq; 2881 int i, j; 2882 2883 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2884 rxq = fep->rx_queue[i]; 2885 2886 for (j = 0; j < XDP_STATS_TOTAL; j++) 2887 xdp_stats[j] += rxq->stats[j]; 2888 } 2889 2890 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2891 } 2892 2893 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2894 { 2895 #ifdef CONFIG_PAGE_POOL_STATS 2896 struct page_pool_stats stats = {}; 2897 struct fec_enet_priv_rx_q *rxq; 2898 int i; 2899 2900 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2901 rxq = fep->rx_queue[i]; 2902 2903 if (!rxq->page_pool) 2904 continue; 2905 2906 page_pool_get_stats(rxq->page_pool, &stats); 2907 } 2908 2909 page_pool_ethtool_stats_get(data, &stats); 2910 #endif 2911 } 2912 2913 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2914 struct ethtool_stats *stats, u64 *data) 2915 { 2916 struct fec_enet_private *fep = netdev_priv(dev); 2917 2918 if (netif_running(dev)) 2919 fec_enet_update_ethtool_stats(dev); 2920 2921 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2922 data += FEC_STATS_SIZE / sizeof(u64); 2923 2924 fec_enet_get_xdp_stats(fep, data); 2925 data += XDP_STATS_TOTAL; 2926 2927 fec_enet_page_pool_stats(fep, data); 2928 } 2929 2930 static void fec_enet_get_strings(struct net_device *netdev, 2931 u32 stringset, u8 *data) 2932 { 2933 int i; 2934 switch (stringset) { 2935 case ETH_SS_STATS: 2936 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2937 ethtool_puts(&data, fec_stats[i].name); 2938 } 2939 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2940 ethtool_puts(&data, fec_xdp_stat_strs[i]); 2941 } 2942 page_pool_ethtool_stats_get_strings(data); 2943 2944 break; 2945 case ETH_SS_TEST: 2946 net_selftest_get_strings(data); 2947 break; 2948 } 2949 } 2950 2951 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2952 { 2953 int count; 2954 2955 switch (sset) { 2956 case ETH_SS_STATS: 2957 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2958 count += page_pool_ethtool_stats_get_count(); 2959 return count; 2960 2961 case ETH_SS_TEST: 2962 return net_selftest_get_count(); 2963 default: 2964 return -EOPNOTSUPP; 2965 } 2966 } 2967 2968 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2969 { 2970 struct fec_enet_private *fep = netdev_priv(dev); 2971 struct fec_enet_priv_rx_q *rxq; 2972 int i, j; 2973 2974 /* Disable MIB statistics counters */ 2975 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2976 2977 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2978 writel(0, fep->hwp + fec_stats[i].offset); 2979 2980 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2981 rxq = fep->rx_queue[i]; 2982 for (j = 0; j < XDP_STATS_TOTAL; j++) 2983 rxq->stats[j] = 0; 2984 } 2985 2986 /* Don't disable MIB statistics counters */ 2987 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2988 } 2989 2990 #else /* !defined(CONFIG_M5272) */ 2991 #define FEC_STATS_SIZE 0 2992 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2993 { 2994 } 2995 2996 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2997 { 2998 } 2999 #endif /* !defined(CONFIG_M5272) */ 3000 3001 /* ITR clock source is enet system clock (clk_ahb). 3002 * TCTT unit is cycle_ns * 64 cycle 3003 * So, the ICTT value = X us / (cycle_ns * 64) 3004 */ 3005 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 3006 { 3007 struct fec_enet_private *fep = netdev_priv(ndev); 3008 3009 return us * (fep->itr_clk_rate / 64000) / 1000; 3010 } 3011 3012 /* Set threshold for interrupt coalescing */ 3013 static void fec_enet_itr_coal_set(struct net_device *ndev) 3014 { 3015 struct fec_enet_private *fep = netdev_priv(ndev); 3016 int rx_itr, tx_itr; 3017 3018 /* Must be greater than zero to avoid unpredictable behavior */ 3019 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 3020 !fep->tx_time_itr || !fep->tx_pkts_itr) 3021 return; 3022 3023 /* Select enet system clock as Interrupt Coalescing 3024 * timer Clock Source 3025 */ 3026 rx_itr = FEC_ITR_CLK_SEL; 3027 tx_itr = FEC_ITR_CLK_SEL; 3028 3029 /* set ICFT and ICTT */ 3030 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3031 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3032 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3033 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3034 3035 rx_itr |= FEC_ITR_EN; 3036 tx_itr |= FEC_ITR_EN; 3037 3038 writel(tx_itr, fep->hwp + FEC_TXIC0); 3039 writel(rx_itr, fep->hwp + FEC_RXIC0); 3040 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3041 writel(tx_itr, fep->hwp + FEC_TXIC1); 3042 writel(rx_itr, fep->hwp + FEC_RXIC1); 3043 writel(tx_itr, fep->hwp + FEC_TXIC2); 3044 writel(rx_itr, fep->hwp + FEC_RXIC2); 3045 } 3046 } 3047 3048 static int fec_enet_get_coalesce(struct net_device *ndev, 3049 struct ethtool_coalesce *ec, 3050 struct kernel_ethtool_coalesce *kernel_coal, 3051 struct netlink_ext_ack *extack) 3052 { 3053 struct fec_enet_private *fep = netdev_priv(ndev); 3054 3055 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3056 return -EOPNOTSUPP; 3057 3058 ec->rx_coalesce_usecs = fep->rx_time_itr; 3059 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3060 3061 ec->tx_coalesce_usecs = fep->tx_time_itr; 3062 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3063 3064 return 0; 3065 } 3066 3067 static int fec_enet_set_coalesce(struct net_device *ndev, 3068 struct ethtool_coalesce *ec, 3069 struct kernel_ethtool_coalesce *kernel_coal, 3070 struct netlink_ext_ack *extack) 3071 { 3072 struct fec_enet_private *fep = netdev_priv(ndev); 3073 struct device *dev = &fep->pdev->dev; 3074 unsigned int cycle; 3075 3076 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3077 return -EOPNOTSUPP; 3078 3079 if (ec->rx_max_coalesced_frames > 255) { 3080 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3081 return -EINVAL; 3082 } 3083 3084 if (ec->tx_max_coalesced_frames > 255) { 3085 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3086 return -EINVAL; 3087 } 3088 3089 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3090 if (cycle > 0xFFFF) { 3091 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3092 return -EINVAL; 3093 } 3094 3095 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3096 if (cycle > 0xFFFF) { 3097 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3098 return -EINVAL; 3099 } 3100 3101 fep->rx_time_itr = ec->rx_coalesce_usecs; 3102 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3103 3104 fep->tx_time_itr = ec->tx_coalesce_usecs; 3105 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3106 3107 fec_enet_itr_coal_set(ndev); 3108 3109 return 0; 3110 } 3111 3112 /* LPI Sleep Ts count base on tx clk (clk_ref). 3113 * The lpi sleep cnt value = X us / (cycle_ns). 3114 */ 3115 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3116 { 3117 struct fec_enet_private *fep = netdev_priv(ndev); 3118 3119 return us * (fep->clk_ref_rate / 1000) / 1000; 3120 } 3121 3122 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3123 { 3124 struct fec_enet_private *fep = netdev_priv(ndev); 3125 struct ethtool_keee *p = &fep->eee; 3126 unsigned int sleep_cycle, wake_cycle; 3127 int ret = 0; 3128 3129 if (enable) { 3130 ret = phy_init_eee(ndev->phydev, false); 3131 if (ret) 3132 return ret; 3133 3134 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3135 wake_cycle = sleep_cycle; 3136 } else { 3137 sleep_cycle = 0; 3138 wake_cycle = 0; 3139 } 3140 3141 p->tx_lpi_enabled = enable; 3142 3143 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3144 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3145 3146 return 0; 3147 } 3148 3149 static int 3150 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata) 3151 { 3152 struct fec_enet_private *fep = netdev_priv(ndev); 3153 struct ethtool_keee *p = &fep->eee; 3154 3155 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3156 return -EOPNOTSUPP; 3157 3158 if (!netif_running(ndev)) 3159 return -ENETDOWN; 3160 3161 edata->tx_lpi_timer = p->tx_lpi_timer; 3162 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3163 3164 return phy_ethtool_get_eee(ndev->phydev, edata); 3165 } 3166 3167 static int 3168 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata) 3169 { 3170 struct fec_enet_private *fep = netdev_priv(ndev); 3171 struct ethtool_keee *p = &fep->eee; 3172 int ret = 0; 3173 3174 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3175 return -EOPNOTSUPP; 3176 3177 if (!netif_running(ndev)) 3178 return -ENETDOWN; 3179 3180 p->tx_lpi_timer = edata->tx_lpi_timer; 3181 3182 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3183 !edata->tx_lpi_timer) 3184 ret = fec_enet_eee_mode_set(ndev, false); 3185 else 3186 ret = fec_enet_eee_mode_set(ndev, true); 3187 3188 if (ret) 3189 return ret; 3190 3191 return phy_ethtool_set_eee(ndev->phydev, edata); 3192 } 3193 3194 static void 3195 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3196 { 3197 struct fec_enet_private *fep = netdev_priv(ndev); 3198 3199 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3200 wol->supported = WAKE_MAGIC; 3201 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3202 } else { 3203 wol->supported = wol->wolopts = 0; 3204 } 3205 } 3206 3207 static int 3208 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3209 { 3210 struct fec_enet_private *fep = netdev_priv(ndev); 3211 3212 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3213 return -EINVAL; 3214 3215 if (wol->wolopts & ~WAKE_MAGIC) 3216 return -EINVAL; 3217 3218 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3219 if (device_may_wakeup(&ndev->dev)) 3220 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3221 else 3222 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3223 3224 return 0; 3225 } 3226 3227 static const struct ethtool_ops fec_enet_ethtool_ops = { 3228 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3229 ETHTOOL_COALESCE_MAX_FRAMES, 3230 .get_drvinfo = fec_enet_get_drvinfo, 3231 .get_regs_len = fec_enet_get_regs_len, 3232 .get_regs = fec_enet_get_regs, 3233 .nway_reset = phy_ethtool_nway_reset, 3234 .get_link = ethtool_op_get_link, 3235 .get_coalesce = fec_enet_get_coalesce, 3236 .set_coalesce = fec_enet_set_coalesce, 3237 #ifndef CONFIG_M5272 3238 .get_pauseparam = fec_enet_get_pauseparam, 3239 .set_pauseparam = fec_enet_set_pauseparam, 3240 .get_strings = fec_enet_get_strings, 3241 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3242 .get_sset_count = fec_enet_get_sset_count, 3243 #endif 3244 .get_ts_info = fec_enet_get_ts_info, 3245 .get_wol = fec_enet_get_wol, 3246 .set_wol = fec_enet_set_wol, 3247 .get_eee = fec_enet_get_eee, 3248 .set_eee = fec_enet_set_eee, 3249 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3250 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3251 .self_test = net_selftest, 3252 }; 3253 3254 static void fec_enet_free_buffers(struct net_device *ndev) 3255 { 3256 struct fec_enet_private *fep = netdev_priv(ndev); 3257 unsigned int i; 3258 struct fec_enet_priv_tx_q *txq; 3259 struct fec_enet_priv_rx_q *rxq; 3260 unsigned int q; 3261 3262 for (q = 0; q < fep->num_rx_queues; q++) { 3263 rxq = fep->rx_queue[q]; 3264 for (i = 0; i < rxq->bd.ring_size; i++) 3265 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3266 3267 for (i = 0; i < XDP_STATS_TOTAL; i++) 3268 rxq->stats[i] = 0; 3269 3270 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3271 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3272 page_pool_destroy(rxq->page_pool); 3273 rxq->page_pool = NULL; 3274 } 3275 3276 for (q = 0; q < fep->num_tx_queues; q++) { 3277 txq = fep->tx_queue[q]; 3278 for (i = 0; i < txq->bd.ring_size; i++) { 3279 kfree(txq->tx_bounce[i]); 3280 txq->tx_bounce[i] = NULL; 3281 3282 if (!txq->tx_buf[i].buf_p) { 3283 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3284 continue; 3285 } 3286 3287 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3288 dev_kfree_skb(txq->tx_buf[i].buf_p); 3289 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3290 xdp_return_frame(txq->tx_buf[i].buf_p); 3291 } else { 3292 struct page *page = txq->tx_buf[i].buf_p; 3293 3294 page_pool_put_page(page->pp, page, 0, false); 3295 } 3296 3297 txq->tx_buf[i].buf_p = NULL; 3298 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3299 } 3300 } 3301 } 3302 3303 static void fec_enet_free_queue(struct net_device *ndev) 3304 { 3305 struct fec_enet_private *fep = netdev_priv(ndev); 3306 int i; 3307 struct fec_enet_priv_tx_q *txq; 3308 3309 for (i = 0; i < fep->num_tx_queues; i++) 3310 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3311 txq = fep->tx_queue[i]; 3312 fec_dma_free(&fep->pdev->dev, 3313 txq->bd.ring_size * TSO_HEADER_SIZE, 3314 txq->tso_hdrs, txq->tso_hdrs_dma); 3315 } 3316 3317 for (i = 0; i < fep->num_rx_queues; i++) 3318 kfree(fep->rx_queue[i]); 3319 for (i = 0; i < fep->num_tx_queues; i++) 3320 kfree(fep->tx_queue[i]); 3321 } 3322 3323 static int fec_enet_alloc_queue(struct net_device *ndev) 3324 { 3325 struct fec_enet_private *fep = netdev_priv(ndev); 3326 int i; 3327 int ret = 0; 3328 struct fec_enet_priv_tx_q *txq; 3329 3330 for (i = 0; i < fep->num_tx_queues; i++) { 3331 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3332 if (!txq) { 3333 ret = -ENOMEM; 3334 goto alloc_failed; 3335 } 3336 3337 fep->tx_queue[i] = txq; 3338 txq->bd.ring_size = TX_RING_SIZE; 3339 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3340 3341 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3342 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3343 3344 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev, 3345 txq->bd.ring_size * TSO_HEADER_SIZE, 3346 &txq->tso_hdrs_dma, GFP_KERNEL); 3347 if (!txq->tso_hdrs) { 3348 ret = -ENOMEM; 3349 goto alloc_failed; 3350 } 3351 } 3352 3353 for (i = 0; i < fep->num_rx_queues; i++) { 3354 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3355 GFP_KERNEL); 3356 if (!fep->rx_queue[i]) { 3357 ret = -ENOMEM; 3358 goto alloc_failed; 3359 } 3360 3361 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3362 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3363 } 3364 return ret; 3365 3366 alloc_failed: 3367 fec_enet_free_queue(ndev); 3368 return ret; 3369 } 3370 3371 static int 3372 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3373 { 3374 struct fec_enet_private *fep = netdev_priv(ndev); 3375 struct fec_enet_priv_rx_q *rxq; 3376 dma_addr_t phys_addr; 3377 struct bufdesc *bdp; 3378 struct page *page; 3379 int i, err; 3380 3381 rxq = fep->rx_queue[queue]; 3382 bdp = rxq->bd.base; 3383 3384 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3385 if (err < 0) { 3386 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3387 return err; 3388 } 3389 3390 for (i = 0; i < rxq->bd.ring_size; i++) { 3391 page = page_pool_dev_alloc_pages(rxq->page_pool); 3392 if (!page) 3393 goto err_alloc; 3394 3395 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3396 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3397 3398 rxq->rx_skb_info[i].page = page; 3399 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3400 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3401 3402 if (fep->bufdesc_ex) { 3403 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3404 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3405 } 3406 3407 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3408 } 3409 3410 /* Set the last buffer to wrap. */ 3411 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3412 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3413 return 0; 3414 3415 err_alloc: 3416 fec_enet_free_buffers(ndev); 3417 return -ENOMEM; 3418 } 3419 3420 static int 3421 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3422 { 3423 struct fec_enet_private *fep = netdev_priv(ndev); 3424 unsigned int i; 3425 struct bufdesc *bdp; 3426 struct fec_enet_priv_tx_q *txq; 3427 3428 txq = fep->tx_queue[queue]; 3429 bdp = txq->bd.base; 3430 for (i = 0; i < txq->bd.ring_size; i++) { 3431 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3432 if (!txq->tx_bounce[i]) 3433 goto err_alloc; 3434 3435 bdp->cbd_sc = cpu_to_fec16(0); 3436 bdp->cbd_bufaddr = cpu_to_fec32(0); 3437 3438 if (fep->bufdesc_ex) { 3439 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3440 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3441 } 3442 3443 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3444 } 3445 3446 /* Set the last buffer to wrap. */ 3447 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3448 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3449 3450 return 0; 3451 3452 err_alloc: 3453 fec_enet_free_buffers(ndev); 3454 return -ENOMEM; 3455 } 3456 3457 static int fec_enet_alloc_buffers(struct net_device *ndev) 3458 { 3459 struct fec_enet_private *fep = netdev_priv(ndev); 3460 unsigned int i; 3461 3462 for (i = 0; i < fep->num_rx_queues; i++) 3463 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3464 return -ENOMEM; 3465 3466 for (i = 0; i < fep->num_tx_queues; i++) 3467 if (fec_enet_alloc_txq_buffers(ndev, i)) 3468 return -ENOMEM; 3469 return 0; 3470 } 3471 3472 static int 3473 fec_enet_open(struct net_device *ndev) 3474 { 3475 struct fec_enet_private *fep = netdev_priv(ndev); 3476 int ret; 3477 bool reset_again; 3478 3479 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3480 if (ret < 0) 3481 return ret; 3482 3483 pinctrl_pm_select_default_state(&fep->pdev->dev); 3484 ret = fec_enet_clk_enable(ndev, true); 3485 if (ret) 3486 goto clk_enable; 3487 3488 /* During the first fec_enet_open call the PHY isn't probed at this 3489 * point. Therefore the phy_reset_after_clk_enable() call within 3490 * fec_enet_clk_enable() fails. As we need this reset in order to be 3491 * sure the PHY is working correctly we check if we need to reset again 3492 * later when the PHY is probed 3493 */ 3494 if (ndev->phydev && ndev->phydev->drv) 3495 reset_again = false; 3496 else 3497 reset_again = true; 3498 3499 /* I should reset the ring buffers here, but I don't yet know 3500 * a simple way to do that. 3501 */ 3502 3503 ret = fec_enet_alloc_buffers(ndev); 3504 if (ret) 3505 goto err_enet_alloc; 3506 3507 /* Init MAC prior to mii bus probe */ 3508 fec_restart(ndev); 3509 3510 /* Call phy_reset_after_clk_enable() again if it failed during 3511 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3512 */ 3513 if (reset_again) 3514 fec_enet_phy_reset_after_clk_enable(ndev); 3515 3516 /* Probe and connect to PHY when open the interface */ 3517 ret = fec_enet_mii_probe(ndev); 3518 if (ret) 3519 goto err_enet_mii_probe; 3520 3521 if (fep->quirks & FEC_QUIRK_ERR006687) 3522 imx6q_cpuidle_fec_irqs_used(); 3523 3524 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3525 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3526 3527 napi_enable(&fep->napi); 3528 phy_start(ndev->phydev); 3529 netif_tx_start_all_queues(ndev); 3530 3531 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3532 FEC_WOL_FLAG_ENABLE); 3533 3534 return 0; 3535 3536 err_enet_mii_probe: 3537 fec_enet_free_buffers(ndev); 3538 err_enet_alloc: 3539 fec_enet_clk_enable(ndev, false); 3540 clk_enable: 3541 pm_runtime_mark_last_busy(&fep->pdev->dev); 3542 pm_runtime_put_autosuspend(&fep->pdev->dev); 3543 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3544 return ret; 3545 } 3546 3547 static int 3548 fec_enet_close(struct net_device *ndev) 3549 { 3550 struct fec_enet_private *fep = netdev_priv(ndev); 3551 3552 phy_stop(ndev->phydev); 3553 3554 if (netif_device_present(ndev)) { 3555 napi_disable(&fep->napi); 3556 netif_tx_disable(ndev); 3557 fec_stop(ndev); 3558 } 3559 3560 phy_disconnect(ndev->phydev); 3561 3562 if (fep->quirks & FEC_QUIRK_ERR006687) 3563 imx6q_cpuidle_fec_irqs_unused(); 3564 3565 fec_enet_update_ethtool_stats(ndev); 3566 3567 fec_enet_clk_enable(ndev, false); 3568 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3569 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3570 3571 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3572 pm_runtime_mark_last_busy(&fep->pdev->dev); 3573 pm_runtime_put_autosuspend(&fep->pdev->dev); 3574 3575 fec_enet_free_buffers(ndev); 3576 3577 return 0; 3578 } 3579 3580 /* Set or clear the multicast filter for this adaptor. 3581 * Skeleton taken from sunlance driver. 3582 * The CPM Ethernet implementation allows Multicast as well as individual 3583 * MAC address filtering. Some of the drivers check to make sure it is 3584 * a group multicast address, and discard those that are not. I guess I 3585 * will do the same for now, but just remove the test if you want 3586 * individual filtering as well (do the upper net layers want or support 3587 * this kind of feature?). 3588 */ 3589 3590 #define FEC_HASH_BITS 6 /* #bits in hash */ 3591 3592 static void set_multicast_list(struct net_device *ndev) 3593 { 3594 struct fec_enet_private *fep = netdev_priv(ndev); 3595 struct netdev_hw_addr *ha; 3596 unsigned int crc, tmp; 3597 unsigned char hash; 3598 unsigned int hash_high = 0, hash_low = 0; 3599 3600 if (ndev->flags & IFF_PROMISC) { 3601 tmp = readl(fep->hwp + FEC_R_CNTRL); 3602 tmp |= 0x8; 3603 writel(tmp, fep->hwp + FEC_R_CNTRL); 3604 return; 3605 } 3606 3607 tmp = readl(fep->hwp + FEC_R_CNTRL); 3608 tmp &= ~0x8; 3609 writel(tmp, fep->hwp + FEC_R_CNTRL); 3610 3611 if (ndev->flags & IFF_ALLMULTI) { 3612 /* Catch all multicast addresses, so set the 3613 * filter to all 1's 3614 */ 3615 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3616 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3617 3618 return; 3619 } 3620 3621 /* Add the addresses in hash register */ 3622 netdev_for_each_mc_addr(ha, ndev) { 3623 /* calculate crc32 value of mac address */ 3624 crc = ether_crc_le(ndev->addr_len, ha->addr); 3625 3626 /* only upper 6 bits (FEC_HASH_BITS) are used 3627 * which point to specific bit in the hash registers 3628 */ 3629 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3630 3631 if (hash > 31) 3632 hash_high |= 1 << (hash - 32); 3633 else 3634 hash_low |= 1 << hash; 3635 } 3636 3637 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3638 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3639 } 3640 3641 /* Set a MAC change in hardware. */ 3642 static int 3643 fec_set_mac_address(struct net_device *ndev, void *p) 3644 { 3645 struct fec_enet_private *fep = netdev_priv(ndev); 3646 struct sockaddr *addr = p; 3647 3648 if (addr) { 3649 if (!is_valid_ether_addr(addr->sa_data)) 3650 return -EADDRNOTAVAIL; 3651 eth_hw_addr_set(ndev, addr->sa_data); 3652 } 3653 3654 /* Add netif status check here to avoid system hang in below case: 3655 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3656 * After ethx down, fec all clocks are gated off and then register 3657 * access causes system hang. 3658 */ 3659 if (!netif_running(ndev)) 3660 return 0; 3661 3662 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3663 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3664 fep->hwp + FEC_ADDR_LOW); 3665 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3666 fep->hwp + FEC_ADDR_HIGH); 3667 return 0; 3668 } 3669 3670 #ifdef CONFIG_NET_POLL_CONTROLLER 3671 /** 3672 * fec_poll_controller - FEC Poll controller function 3673 * @dev: The FEC network adapter 3674 * 3675 * Polled functionality used by netconsole and others in non interrupt mode 3676 * 3677 */ 3678 static void fec_poll_controller(struct net_device *dev) 3679 { 3680 int i; 3681 struct fec_enet_private *fep = netdev_priv(dev); 3682 3683 for (i = 0; i < FEC_IRQ_NUM; i++) { 3684 if (fep->irq[i] > 0) { 3685 disable_irq(fep->irq[i]); 3686 fec_enet_interrupt(fep->irq[i], dev); 3687 enable_irq(fep->irq[i]); 3688 } 3689 } 3690 } 3691 #endif 3692 3693 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3694 netdev_features_t features) 3695 { 3696 struct fec_enet_private *fep = netdev_priv(netdev); 3697 netdev_features_t changed = features ^ netdev->features; 3698 3699 netdev->features = features; 3700 3701 /* Receive checksum has been changed */ 3702 if (changed & NETIF_F_RXCSUM) { 3703 if (features & NETIF_F_RXCSUM) 3704 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3705 else 3706 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3707 } 3708 } 3709 3710 static int fec_set_features(struct net_device *netdev, 3711 netdev_features_t features) 3712 { 3713 struct fec_enet_private *fep = netdev_priv(netdev); 3714 netdev_features_t changed = features ^ netdev->features; 3715 3716 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3717 napi_disable(&fep->napi); 3718 netif_tx_lock_bh(netdev); 3719 fec_stop(netdev); 3720 fec_enet_set_netdev_features(netdev, features); 3721 fec_restart(netdev); 3722 netif_tx_wake_all_queues(netdev); 3723 netif_tx_unlock_bh(netdev); 3724 napi_enable(&fep->napi); 3725 } else { 3726 fec_enet_set_netdev_features(netdev, features); 3727 } 3728 3729 return 0; 3730 } 3731 3732 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3733 struct net_device *sb_dev) 3734 { 3735 struct fec_enet_private *fep = netdev_priv(ndev); 3736 u16 vlan_tag = 0; 3737 3738 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3739 return netdev_pick_tx(ndev, skb, NULL); 3740 3741 /* VLAN is present in the payload.*/ 3742 if (eth_type_vlan(skb->protocol)) { 3743 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3744 3745 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3746 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3747 } else if (skb_vlan_tag_present(skb)) { 3748 vlan_tag = skb->vlan_tci; 3749 } else { 3750 return vlan_tag; 3751 } 3752 3753 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3754 } 3755 3756 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3757 { 3758 struct fec_enet_private *fep = netdev_priv(dev); 3759 bool is_run = netif_running(dev); 3760 struct bpf_prog *old_prog; 3761 3762 switch (bpf->command) { 3763 case XDP_SETUP_PROG: 3764 /* No need to support the SoCs that require to 3765 * do the frame swap because the performance wouldn't be 3766 * better than the skb mode. 3767 */ 3768 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3769 return -EOPNOTSUPP; 3770 3771 if (!bpf->prog) 3772 xdp_features_clear_redirect_target(dev); 3773 3774 if (is_run) { 3775 napi_disable(&fep->napi); 3776 netif_tx_disable(dev); 3777 } 3778 3779 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3780 if (old_prog) 3781 bpf_prog_put(old_prog); 3782 3783 fec_restart(dev); 3784 3785 if (is_run) { 3786 napi_enable(&fep->napi); 3787 netif_tx_start_all_queues(dev); 3788 } 3789 3790 if (bpf->prog) 3791 xdp_features_set_redirect_target(dev, false); 3792 3793 return 0; 3794 3795 case XDP_SETUP_XSK_POOL: 3796 return -EOPNOTSUPP; 3797 3798 default: 3799 return -EOPNOTSUPP; 3800 } 3801 } 3802 3803 static int 3804 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3805 { 3806 if (unlikely(index < 0)) 3807 return 0; 3808 3809 return (index % fep->num_tx_queues); 3810 } 3811 3812 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3813 struct fec_enet_priv_tx_q *txq, 3814 void *frame, u32 dma_sync_len, 3815 bool ndo_xmit) 3816 { 3817 unsigned int index, status, estatus; 3818 struct bufdesc *bdp; 3819 dma_addr_t dma_addr; 3820 int entries_free; 3821 u16 frame_len; 3822 3823 entries_free = fec_enet_get_free_txdesc_num(txq); 3824 if (entries_free < MAX_SKB_FRAGS + 1) { 3825 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3826 return -EBUSY; 3827 } 3828 3829 /* Fill in a Tx ring entry */ 3830 bdp = txq->bd.cur; 3831 status = fec16_to_cpu(bdp->cbd_sc); 3832 status &= ~BD_ENET_TX_STATS; 3833 3834 index = fec_enet_get_bd_index(bdp, &txq->bd); 3835 3836 if (ndo_xmit) { 3837 struct xdp_frame *xdpf = frame; 3838 3839 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3840 xdpf->len, DMA_TO_DEVICE); 3841 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3842 return -ENOMEM; 3843 3844 frame_len = xdpf->len; 3845 txq->tx_buf[index].buf_p = xdpf; 3846 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3847 } else { 3848 struct xdp_buff *xdpb = frame; 3849 struct page *page; 3850 3851 page = virt_to_page(xdpb->data); 3852 dma_addr = page_pool_get_dma_addr(page) + 3853 (xdpb->data - xdpb->data_hard_start); 3854 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3855 dma_sync_len, DMA_BIDIRECTIONAL); 3856 frame_len = xdpb->data_end - xdpb->data; 3857 txq->tx_buf[index].buf_p = page; 3858 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3859 } 3860 3861 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3862 if (fep->bufdesc_ex) 3863 estatus = BD_ENET_TX_INT; 3864 3865 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3866 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3867 3868 if (fep->bufdesc_ex) { 3869 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3870 3871 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3872 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3873 3874 ebdp->cbd_bdu = 0; 3875 ebdp->cbd_esc = cpu_to_fec32(estatus); 3876 } 3877 3878 /* Make sure the updates to rest of the descriptor are performed before 3879 * transferring ownership. 3880 */ 3881 dma_wmb(); 3882 3883 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3884 * it's the last BD of the frame, and to put the CRC on the end. 3885 */ 3886 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3887 bdp->cbd_sc = cpu_to_fec16(status); 3888 3889 /* If this was the last BD in the ring, start at the beginning again. */ 3890 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3891 3892 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3893 dma_wmb(); 3894 3895 txq->bd.cur = bdp; 3896 3897 /* Trigger transmission start */ 3898 writel(0, txq->bd.reg_desc_active); 3899 3900 return 0; 3901 } 3902 3903 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3904 int cpu, struct xdp_buff *xdp, 3905 u32 dma_sync_len) 3906 { 3907 struct fec_enet_priv_tx_q *txq; 3908 struct netdev_queue *nq; 3909 int queue, ret; 3910 3911 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3912 txq = fep->tx_queue[queue]; 3913 nq = netdev_get_tx_queue(fep->netdev, queue); 3914 3915 __netif_tx_lock(nq, cpu); 3916 3917 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3918 txq_trans_cond_update(nq); 3919 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3920 3921 __netif_tx_unlock(nq); 3922 3923 return ret; 3924 } 3925 3926 static int fec_enet_xdp_xmit(struct net_device *dev, 3927 int num_frames, 3928 struct xdp_frame **frames, 3929 u32 flags) 3930 { 3931 struct fec_enet_private *fep = netdev_priv(dev); 3932 struct fec_enet_priv_tx_q *txq; 3933 int cpu = smp_processor_id(); 3934 unsigned int sent_frames = 0; 3935 struct netdev_queue *nq; 3936 unsigned int queue; 3937 int i; 3938 3939 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3940 txq = fep->tx_queue[queue]; 3941 nq = netdev_get_tx_queue(fep->netdev, queue); 3942 3943 __netif_tx_lock(nq, cpu); 3944 3945 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3946 txq_trans_cond_update(nq); 3947 for (i = 0; i < num_frames; i++) { 3948 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3949 break; 3950 sent_frames++; 3951 } 3952 3953 __netif_tx_unlock(nq); 3954 3955 return sent_frames; 3956 } 3957 3958 static int fec_hwtstamp_get(struct net_device *ndev, 3959 struct kernel_hwtstamp_config *config) 3960 { 3961 struct fec_enet_private *fep = netdev_priv(ndev); 3962 3963 if (!netif_running(ndev)) 3964 return -EINVAL; 3965 3966 if (!fep->bufdesc_ex) 3967 return -EOPNOTSUPP; 3968 3969 fec_ptp_get(ndev, config); 3970 3971 return 0; 3972 } 3973 3974 static int fec_hwtstamp_set(struct net_device *ndev, 3975 struct kernel_hwtstamp_config *config, 3976 struct netlink_ext_ack *extack) 3977 { 3978 struct fec_enet_private *fep = netdev_priv(ndev); 3979 3980 if (!netif_running(ndev)) 3981 return -EINVAL; 3982 3983 if (!fep->bufdesc_ex) 3984 return -EOPNOTSUPP; 3985 3986 return fec_ptp_set(ndev, config, extack); 3987 } 3988 3989 static const struct net_device_ops fec_netdev_ops = { 3990 .ndo_open = fec_enet_open, 3991 .ndo_stop = fec_enet_close, 3992 .ndo_start_xmit = fec_enet_start_xmit, 3993 .ndo_select_queue = fec_enet_select_queue, 3994 .ndo_set_rx_mode = set_multicast_list, 3995 .ndo_validate_addr = eth_validate_addr, 3996 .ndo_tx_timeout = fec_timeout, 3997 .ndo_set_mac_address = fec_set_mac_address, 3998 .ndo_eth_ioctl = phy_do_ioctl_running, 3999 #ifdef CONFIG_NET_POLL_CONTROLLER 4000 .ndo_poll_controller = fec_poll_controller, 4001 #endif 4002 .ndo_set_features = fec_set_features, 4003 .ndo_bpf = fec_enet_bpf, 4004 .ndo_xdp_xmit = fec_enet_xdp_xmit, 4005 .ndo_hwtstamp_get = fec_hwtstamp_get, 4006 .ndo_hwtstamp_set = fec_hwtstamp_set, 4007 }; 4008 4009 static const unsigned short offset_des_active_rxq[] = { 4010 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 4011 }; 4012 4013 static const unsigned short offset_des_active_txq[] = { 4014 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 4015 }; 4016 4017 /* 4018 * XXX: We need to clean up on failure exits here. 4019 * 4020 */ 4021 static int fec_enet_init(struct net_device *ndev) 4022 { 4023 struct fec_enet_private *fep = netdev_priv(ndev); 4024 struct bufdesc *cbd_base; 4025 dma_addr_t bd_dma; 4026 int bd_size; 4027 unsigned int i; 4028 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4029 sizeof(struct bufdesc); 4030 unsigned dsize_log2 = __fls(dsize); 4031 int ret; 4032 4033 WARN_ON(dsize != (1 << dsize_log2)); 4034 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4035 fep->rx_align = 0xf; 4036 fep->tx_align = 0xf; 4037 #else 4038 fep->rx_align = 0x3; 4039 fep->tx_align = 0x3; 4040 #endif 4041 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4042 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4043 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4044 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4045 4046 /* Check mask of the streaming and coherent API */ 4047 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4048 if (ret < 0) { 4049 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4050 return ret; 4051 } 4052 4053 ret = fec_enet_alloc_queue(ndev); 4054 if (ret) 4055 return ret; 4056 4057 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4058 4059 /* Allocate memory for buffer descriptors. */ 4060 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma, 4061 GFP_KERNEL); 4062 if (!cbd_base) { 4063 ret = -ENOMEM; 4064 goto free_queue_mem; 4065 } 4066 4067 /* Get the Ethernet address */ 4068 ret = fec_get_mac(ndev); 4069 if (ret) 4070 goto free_queue_mem; 4071 4072 /* Set receive and transmit descriptor base. */ 4073 for (i = 0; i < fep->num_rx_queues; i++) { 4074 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4075 unsigned size = dsize * rxq->bd.ring_size; 4076 4077 rxq->bd.qid = i; 4078 rxq->bd.base = cbd_base; 4079 rxq->bd.cur = cbd_base; 4080 rxq->bd.dma = bd_dma; 4081 rxq->bd.dsize = dsize; 4082 rxq->bd.dsize_log2 = dsize_log2; 4083 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4084 bd_dma += size; 4085 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4086 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4087 } 4088 4089 for (i = 0; i < fep->num_tx_queues; i++) { 4090 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4091 unsigned size = dsize * txq->bd.ring_size; 4092 4093 txq->bd.qid = i; 4094 txq->bd.base = cbd_base; 4095 txq->bd.cur = cbd_base; 4096 txq->bd.dma = bd_dma; 4097 txq->bd.dsize = dsize; 4098 txq->bd.dsize_log2 = dsize_log2; 4099 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4100 bd_dma += size; 4101 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4102 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4103 } 4104 4105 4106 /* The FEC Ethernet specific entries in the device structure */ 4107 ndev->watchdog_timeo = TX_TIMEOUT; 4108 ndev->netdev_ops = &fec_netdev_ops; 4109 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4110 4111 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4112 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4113 4114 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4115 /* enable hw VLAN support */ 4116 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4117 4118 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4119 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4120 4121 /* enable hw accelerator */ 4122 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4123 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4124 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4125 } 4126 4127 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4128 fep->tx_align = 0; 4129 fep->rx_align = 0x3f; 4130 } 4131 4132 ndev->hw_features = ndev->features; 4133 4134 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4135 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4136 NETDEV_XDP_ACT_REDIRECT; 4137 4138 fec_restart(ndev); 4139 4140 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4141 fec_enet_clear_ethtool_stats(ndev); 4142 else 4143 fec_enet_update_ethtool_stats(ndev); 4144 4145 return 0; 4146 4147 free_queue_mem: 4148 fec_enet_free_queue(ndev); 4149 return ret; 4150 } 4151 4152 #ifdef CONFIG_OF 4153 static int fec_reset_phy(struct platform_device *pdev) 4154 { 4155 struct gpio_desc *phy_reset; 4156 int msec = 1, phy_post_delay = 0; 4157 struct device_node *np = pdev->dev.of_node; 4158 int err; 4159 4160 if (!np) 4161 return 0; 4162 4163 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4164 /* A sane reset duration should not be longer than 1s */ 4165 if (!err && msec > 1000) 4166 msec = 1; 4167 4168 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4169 /* valid reset duration should be less than 1s */ 4170 if (!err && phy_post_delay > 1000) 4171 return -EINVAL; 4172 4173 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4174 GPIOD_OUT_HIGH); 4175 if (IS_ERR(phy_reset)) 4176 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4177 "failed to get phy-reset-gpios\n"); 4178 4179 if (!phy_reset) 4180 return 0; 4181 4182 if (msec > 20) 4183 msleep(msec); 4184 else 4185 usleep_range(msec * 1000, msec * 1000 + 1000); 4186 4187 gpiod_set_value_cansleep(phy_reset, 0); 4188 4189 if (!phy_post_delay) 4190 return 0; 4191 4192 if (phy_post_delay > 20) 4193 msleep(phy_post_delay); 4194 else 4195 usleep_range(phy_post_delay * 1000, 4196 phy_post_delay * 1000 + 1000); 4197 4198 return 0; 4199 } 4200 #else /* CONFIG_OF */ 4201 static int fec_reset_phy(struct platform_device *pdev) 4202 { 4203 /* 4204 * In case of platform probe, the reset has been done 4205 * by machine code. 4206 */ 4207 return 0; 4208 } 4209 #endif /* CONFIG_OF */ 4210 4211 static void 4212 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4213 { 4214 struct device_node *np = pdev->dev.of_node; 4215 4216 *num_tx = *num_rx = 1; 4217 4218 if (!np || !of_device_is_available(np)) 4219 return; 4220 4221 /* parse the num of tx and rx queues */ 4222 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4223 4224 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4225 4226 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4227 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4228 *num_tx); 4229 *num_tx = 1; 4230 return; 4231 } 4232 4233 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4234 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4235 *num_rx); 4236 *num_rx = 1; 4237 return; 4238 } 4239 4240 } 4241 4242 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4243 { 4244 int irq_cnt = platform_irq_count(pdev); 4245 4246 if (irq_cnt > FEC_IRQ_NUM) 4247 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4248 else if (irq_cnt == 2) 4249 irq_cnt = 1; /* last for pps */ 4250 else if (irq_cnt <= 0) 4251 irq_cnt = 1; /* At least 1 irq is needed */ 4252 return irq_cnt; 4253 } 4254 4255 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4256 { 4257 struct net_device *ndev = platform_get_drvdata(pdev); 4258 struct fec_enet_private *fep = netdev_priv(ndev); 4259 4260 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4261 fep->wake_irq = fep->irq[2]; 4262 else 4263 fep->wake_irq = fep->irq[0]; 4264 } 4265 4266 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4267 struct device_node *np) 4268 { 4269 struct device_node *gpr_np; 4270 u32 out_val[3]; 4271 int ret = 0; 4272 4273 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4274 if (!gpr_np) 4275 return 0; 4276 4277 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4278 ARRAY_SIZE(out_val)); 4279 if (ret) { 4280 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4281 goto out; 4282 } 4283 4284 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4285 if (IS_ERR(fep->stop_gpr.gpr)) { 4286 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4287 ret = PTR_ERR(fep->stop_gpr.gpr); 4288 fep->stop_gpr.gpr = NULL; 4289 goto out; 4290 } 4291 4292 fep->stop_gpr.reg = out_val[1]; 4293 fep->stop_gpr.bit = out_val[2]; 4294 4295 out: 4296 of_node_put(gpr_np); 4297 4298 return ret; 4299 } 4300 4301 static int 4302 fec_probe(struct platform_device *pdev) 4303 { 4304 struct fec_enet_private *fep; 4305 struct fec_platform_data *pdata; 4306 phy_interface_t interface; 4307 struct net_device *ndev; 4308 int i, irq, ret = 0; 4309 static int dev_id; 4310 struct device_node *np = pdev->dev.of_node, *phy_node; 4311 int num_tx_qs; 4312 int num_rx_qs; 4313 char irq_name[8]; 4314 int irq_cnt; 4315 const struct fec_devinfo *dev_info; 4316 4317 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4318 4319 /* Init network device */ 4320 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4321 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4322 if (!ndev) 4323 return -ENOMEM; 4324 4325 SET_NETDEV_DEV(ndev, &pdev->dev); 4326 4327 /* setup board info structure */ 4328 fep = netdev_priv(ndev); 4329 4330 dev_info = device_get_match_data(&pdev->dev); 4331 if (!dev_info) 4332 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data; 4333 if (dev_info) 4334 fep->quirks = dev_info->quirks; 4335 4336 fep->netdev = ndev; 4337 fep->num_rx_queues = num_rx_qs; 4338 fep->num_tx_queues = num_tx_qs; 4339 4340 #if !defined(CONFIG_M5272) 4341 /* default enable pause frame auto negotiation */ 4342 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4343 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4344 #endif 4345 4346 /* Select default pin state */ 4347 pinctrl_pm_select_default_state(&pdev->dev); 4348 4349 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4350 if (IS_ERR(fep->hwp)) { 4351 ret = PTR_ERR(fep->hwp); 4352 goto failed_ioremap; 4353 } 4354 4355 fep->pdev = pdev; 4356 fep->dev_id = dev_id++; 4357 4358 platform_set_drvdata(pdev, ndev); 4359 4360 if ((of_machine_is_compatible("fsl,imx6q") || 4361 of_machine_is_compatible("fsl,imx6dl")) && 4362 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4363 fep->quirks |= FEC_QUIRK_ERR006687; 4364 4365 ret = fec_enet_ipc_handle_init(fep); 4366 if (ret) 4367 goto failed_ipc_init; 4368 4369 if (of_property_read_bool(np, "fsl,magic-packet")) 4370 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4371 4372 ret = fec_enet_init_stop_mode(fep, np); 4373 if (ret) 4374 goto failed_stop_mode; 4375 4376 phy_node = of_parse_phandle(np, "phy-handle", 0); 4377 if (!phy_node && of_phy_is_fixed_link(np)) { 4378 ret = of_phy_register_fixed_link(np); 4379 if (ret < 0) { 4380 dev_err(&pdev->dev, 4381 "broken fixed-link specification\n"); 4382 goto failed_phy; 4383 } 4384 phy_node = of_node_get(np); 4385 } 4386 fep->phy_node = phy_node; 4387 4388 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4389 if (ret) { 4390 pdata = dev_get_platdata(&pdev->dev); 4391 if (pdata) 4392 fep->phy_interface = pdata->phy; 4393 else 4394 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4395 } else { 4396 fep->phy_interface = interface; 4397 } 4398 4399 ret = fec_enet_parse_rgmii_delay(fep, np); 4400 if (ret) 4401 goto failed_rgmii_delay; 4402 4403 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4404 if (IS_ERR(fep->clk_ipg)) { 4405 ret = PTR_ERR(fep->clk_ipg); 4406 goto failed_clk; 4407 } 4408 4409 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4410 if (IS_ERR(fep->clk_ahb)) { 4411 ret = PTR_ERR(fep->clk_ahb); 4412 goto failed_clk; 4413 } 4414 4415 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4416 4417 /* enet_out is optional, depends on board */ 4418 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4419 if (IS_ERR(fep->clk_enet_out)) { 4420 ret = PTR_ERR(fep->clk_enet_out); 4421 goto failed_clk; 4422 } 4423 4424 fep->ptp_clk_on = false; 4425 mutex_init(&fep->ptp_clk_mutex); 4426 4427 /* clk_ref is optional, depends on board */ 4428 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4429 if (IS_ERR(fep->clk_ref)) { 4430 ret = PTR_ERR(fep->clk_ref); 4431 goto failed_clk; 4432 } 4433 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4434 4435 /* clk_2x_txclk is optional, depends on board */ 4436 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4437 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4438 if (IS_ERR(fep->clk_2x_txclk)) 4439 fep->clk_2x_txclk = NULL; 4440 } 4441 4442 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4443 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4444 if (IS_ERR(fep->clk_ptp)) { 4445 fep->clk_ptp = NULL; 4446 fep->bufdesc_ex = false; 4447 } 4448 4449 ret = fec_enet_clk_enable(ndev, true); 4450 if (ret) 4451 goto failed_clk; 4452 4453 ret = clk_prepare_enable(fep->clk_ipg); 4454 if (ret) 4455 goto failed_clk_ipg; 4456 ret = clk_prepare_enable(fep->clk_ahb); 4457 if (ret) 4458 goto failed_clk_ahb; 4459 4460 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4461 if (!IS_ERR(fep->reg_phy)) { 4462 ret = regulator_enable(fep->reg_phy); 4463 if (ret) { 4464 dev_err(&pdev->dev, 4465 "Failed to enable phy regulator: %d\n", ret); 4466 goto failed_regulator; 4467 } 4468 } else { 4469 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4470 ret = -EPROBE_DEFER; 4471 goto failed_regulator; 4472 } 4473 fep->reg_phy = NULL; 4474 } 4475 4476 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4477 pm_runtime_use_autosuspend(&pdev->dev); 4478 pm_runtime_get_noresume(&pdev->dev); 4479 pm_runtime_set_active(&pdev->dev); 4480 pm_runtime_enable(&pdev->dev); 4481 4482 ret = fec_reset_phy(pdev); 4483 if (ret) 4484 goto failed_reset; 4485 4486 irq_cnt = fec_enet_get_irq_cnt(pdev); 4487 if (fep->bufdesc_ex) 4488 fec_ptp_init(pdev, irq_cnt); 4489 4490 ret = fec_enet_init(ndev); 4491 if (ret) 4492 goto failed_init; 4493 4494 for (i = 0; i < irq_cnt; i++) { 4495 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4496 irq = platform_get_irq_byname_optional(pdev, irq_name); 4497 if (irq < 0) 4498 irq = platform_get_irq(pdev, i); 4499 if (irq < 0) { 4500 ret = irq; 4501 goto failed_irq; 4502 } 4503 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4504 0, pdev->name, ndev); 4505 if (ret) 4506 goto failed_irq; 4507 4508 fep->irq[i] = irq; 4509 } 4510 4511 /* Decide which interrupt line is wakeup capable */ 4512 fec_enet_get_wakeup_irq(pdev); 4513 4514 ret = fec_enet_mii_init(pdev); 4515 if (ret) 4516 goto failed_mii_init; 4517 4518 /* Carrier starts down, phylib will bring it up */ 4519 netif_carrier_off(ndev); 4520 fec_enet_clk_enable(ndev, false); 4521 pinctrl_pm_select_sleep_state(&pdev->dev); 4522 4523 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4524 4525 ret = register_netdev(ndev); 4526 if (ret) 4527 goto failed_register; 4528 4529 device_init_wakeup(&ndev->dev, fep->wol_flag & 4530 FEC_WOL_HAS_MAGIC_PACKET); 4531 4532 if (fep->bufdesc_ex && fep->ptp_clock) 4533 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4534 4535 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4536 4537 pm_runtime_mark_last_busy(&pdev->dev); 4538 pm_runtime_put_autosuspend(&pdev->dev); 4539 4540 return 0; 4541 4542 failed_register: 4543 fec_enet_mii_remove(fep); 4544 failed_mii_init: 4545 failed_irq: 4546 failed_init: 4547 fec_ptp_stop(pdev); 4548 failed_reset: 4549 pm_runtime_put_noidle(&pdev->dev); 4550 pm_runtime_disable(&pdev->dev); 4551 if (fep->reg_phy) 4552 regulator_disable(fep->reg_phy); 4553 failed_regulator: 4554 clk_disable_unprepare(fep->clk_ahb); 4555 failed_clk_ahb: 4556 clk_disable_unprepare(fep->clk_ipg); 4557 failed_clk_ipg: 4558 fec_enet_clk_enable(ndev, false); 4559 failed_clk: 4560 failed_rgmii_delay: 4561 if (of_phy_is_fixed_link(np)) 4562 of_phy_deregister_fixed_link(np); 4563 of_node_put(phy_node); 4564 failed_stop_mode: 4565 failed_ipc_init: 4566 failed_phy: 4567 dev_id--; 4568 failed_ioremap: 4569 free_netdev(ndev); 4570 4571 return ret; 4572 } 4573 4574 static void 4575 fec_drv_remove(struct platform_device *pdev) 4576 { 4577 struct net_device *ndev = platform_get_drvdata(pdev); 4578 struct fec_enet_private *fep = netdev_priv(ndev); 4579 struct device_node *np = pdev->dev.of_node; 4580 int ret; 4581 4582 ret = pm_runtime_get_sync(&pdev->dev); 4583 if (ret < 0) 4584 dev_err(&pdev->dev, 4585 "Failed to resume device in remove callback (%pe)\n", 4586 ERR_PTR(ret)); 4587 4588 cancel_work_sync(&fep->tx_timeout_work); 4589 fec_ptp_stop(pdev); 4590 unregister_netdev(ndev); 4591 fec_enet_mii_remove(fep); 4592 if (fep->reg_phy) 4593 regulator_disable(fep->reg_phy); 4594 4595 if (of_phy_is_fixed_link(np)) 4596 of_phy_deregister_fixed_link(np); 4597 of_node_put(fep->phy_node); 4598 4599 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4600 * disabling them again. 4601 */ 4602 if (ret >= 0) { 4603 clk_disable_unprepare(fep->clk_ahb); 4604 clk_disable_unprepare(fep->clk_ipg); 4605 } 4606 pm_runtime_put_noidle(&pdev->dev); 4607 pm_runtime_disable(&pdev->dev); 4608 4609 free_netdev(ndev); 4610 } 4611 4612 static int __maybe_unused fec_suspend(struct device *dev) 4613 { 4614 struct net_device *ndev = dev_get_drvdata(dev); 4615 struct fec_enet_private *fep = netdev_priv(ndev); 4616 int ret; 4617 4618 rtnl_lock(); 4619 if (netif_running(ndev)) { 4620 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4621 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4622 phy_stop(ndev->phydev); 4623 napi_disable(&fep->napi); 4624 netif_tx_lock_bh(ndev); 4625 netif_device_detach(ndev); 4626 netif_tx_unlock_bh(ndev); 4627 fec_stop(ndev); 4628 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4629 fec_irqs_disable(ndev); 4630 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4631 } else { 4632 fec_irqs_disable_except_wakeup(ndev); 4633 if (fep->wake_irq > 0) { 4634 disable_irq(fep->wake_irq); 4635 enable_irq_wake(fep->wake_irq); 4636 } 4637 fec_enet_stop_mode(fep, true); 4638 } 4639 /* It's safe to disable clocks since interrupts are masked */ 4640 fec_enet_clk_enable(ndev, false); 4641 4642 fep->rpm_active = !pm_runtime_status_suspended(dev); 4643 if (fep->rpm_active) { 4644 ret = pm_runtime_force_suspend(dev); 4645 if (ret < 0) { 4646 rtnl_unlock(); 4647 return ret; 4648 } 4649 } 4650 } 4651 rtnl_unlock(); 4652 4653 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4654 regulator_disable(fep->reg_phy); 4655 4656 /* SOC supply clock to phy, when clock is disabled, phy link down 4657 * SOC control phy regulator, when regulator is disabled, phy link down 4658 */ 4659 if (fep->clk_enet_out || fep->reg_phy) 4660 fep->link = 0; 4661 4662 return 0; 4663 } 4664 4665 static int __maybe_unused fec_resume(struct device *dev) 4666 { 4667 struct net_device *ndev = dev_get_drvdata(dev); 4668 struct fec_enet_private *fep = netdev_priv(ndev); 4669 int ret; 4670 int val; 4671 4672 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4673 ret = regulator_enable(fep->reg_phy); 4674 if (ret) 4675 return ret; 4676 } 4677 4678 rtnl_lock(); 4679 if (netif_running(ndev)) { 4680 if (fep->rpm_active) 4681 pm_runtime_force_resume(dev); 4682 4683 ret = fec_enet_clk_enable(ndev, true); 4684 if (ret) { 4685 rtnl_unlock(); 4686 goto failed_clk; 4687 } 4688 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4689 fec_enet_stop_mode(fep, false); 4690 if (fep->wake_irq) { 4691 disable_irq_wake(fep->wake_irq); 4692 enable_irq(fep->wake_irq); 4693 } 4694 4695 val = readl(fep->hwp + FEC_ECNTRL); 4696 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4697 writel(val, fep->hwp + FEC_ECNTRL); 4698 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4699 } else { 4700 pinctrl_pm_select_default_state(&fep->pdev->dev); 4701 } 4702 fec_restart(ndev); 4703 netif_tx_lock_bh(ndev); 4704 netif_device_attach(ndev); 4705 netif_tx_unlock_bh(ndev); 4706 napi_enable(&fep->napi); 4707 phy_init_hw(ndev->phydev); 4708 phy_start(ndev->phydev); 4709 } 4710 rtnl_unlock(); 4711 4712 return 0; 4713 4714 failed_clk: 4715 if (fep->reg_phy) 4716 regulator_disable(fep->reg_phy); 4717 return ret; 4718 } 4719 4720 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4721 { 4722 struct net_device *ndev = dev_get_drvdata(dev); 4723 struct fec_enet_private *fep = netdev_priv(ndev); 4724 4725 clk_disable_unprepare(fep->clk_ahb); 4726 clk_disable_unprepare(fep->clk_ipg); 4727 4728 return 0; 4729 } 4730 4731 static int __maybe_unused fec_runtime_resume(struct device *dev) 4732 { 4733 struct net_device *ndev = dev_get_drvdata(dev); 4734 struct fec_enet_private *fep = netdev_priv(ndev); 4735 int ret; 4736 4737 ret = clk_prepare_enable(fep->clk_ahb); 4738 if (ret) 4739 return ret; 4740 ret = clk_prepare_enable(fep->clk_ipg); 4741 if (ret) 4742 goto failed_clk_ipg; 4743 4744 return 0; 4745 4746 failed_clk_ipg: 4747 clk_disable_unprepare(fep->clk_ahb); 4748 return ret; 4749 } 4750 4751 static const struct dev_pm_ops fec_pm_ops = { 4752 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4753 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4754 }; 4755 4756 static struct platform_driver fec_driver = { 4757 .driver = { 4758 .name = DRIVER_NAME, 4759 .pm = &fec_pm_ops, 4760 .of_match_table = fec_dt_ids, 4761 .suppress_bind_attrs = true, 4762 }, 4763 .id_table = fec_devtype, 4764 .probe = fec_probe, 4765 .remove_new = fec_drv_remove, 4766 }; 4767 4768 module_platform_driver(fec_driver); 4769 4770 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver"); 4771 MODULE_LICENSE("GPL"); 4772