1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 70 #include <asm/cacheflush.h> 71 72 #include "fec.h" 73 74 static void set_multicast_list(struct net_device *ndev); 75 static void fec_enet_itr_coal_init(struct net_device *ndev); 76 77 #define DRIVER_NAME "fec" 78 79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 80 81 /* Pause frame feild and FIFO threshold */ 82 #define FEC_ENET_FCE (1 << 5) 83 #define FEC_ENET_RSEM_V 0x84 84 #define FEC_ENET_RSFL_V 16 85 #define FEC_ENET_RAEM_V 0x8 86 #define FEC_ENET_RAFL_V 0x8 87 #define FEC_ENET_OPD_V 0xFFF0 88 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 89 90 struct fec_devinfo { 91 u32 quirks; 92 }; 93 94 static const struct fec_devinfo fec_imx25_info = { 95 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 96 FEC_QUIRK_HAS_FRREG, 97 }; 98 99 static const struct fec_devinfo fec_imx27_info = { 100 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 101 }; 102 103 static const struct fec_devinfo fec_imx28_info = { 104 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 105 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 107 FEC_QUIRK_NO_HARD_RESET, 108 }; 109 110 static const struct fec_devinfo fec_imx6q_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 114 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 115 }; 116 117 static const struct fec_devinfo fec_mvf600_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 119 }; 120 121 static const struct fec_devinfo fec_imx6x_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 125 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 126 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 127 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 128 }; 129 130 static const struct fec_devinfo fec_imx6ul_info = { 131 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 132 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 133 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 134 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 135 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 136 }; 137 138 static const struct fec_devinfo fec_imx8mq_info = { 139 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 140 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 141 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 142 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 143 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 144 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 145 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 146 }; 147 148 static const struct fec_devinfo fec_imx8qm_info = { 149 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 150 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 151 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 152 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 153 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 154 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 155 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 156 }; 157 158 static struct platform_device_id fec_devtype[] = { 159 { 160 /* keep it for coldfire */ 161 .name = DRIVER_NAME, 162 .driver_data = 0, 163 }, { 164 .name = "imx25-fec", 165 .driver_data = (kernel_ulong_t)&fec_imx25_info, 166 }, { 167 .name = "imx27-fec", 168 .driver_data = (kernel_ulong_t)&fec_imx27_info, 169 }, { 170 .name = "imx28-fec", 171 .driver_data = (kernel_ulong_t)&fec_imx28_info, 172 }, { 173 .name = "imx6q-fec", 174 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 175 }, { 176 .name = "mvf600-fec", 177 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 178 }, { 179 .name = "imx6sx-fec", 180 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 181 }, { 182 .name = "imx6ul-fec", 183 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 184 }, { 185 .name = "imx8mq-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 187 }, { 188 .name = "imx8qm-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 190 }, { 191 /* sentinel */ 192 } 193 }; 194 MODULE_DEVICE_TABLE(platform, fec_devtype); 195 196 enum imx_fec_type { 197 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 198 IMX27_FEC, /* runs on i.mx27/35/51 */ 199 IMX28_FEC, 200 IMX6Q_FEC, 201 MVF600_FEC, 202 IMX6SX_FEC, 203 IMX6UL_FEC, 204 IMX8MQ_FEC, 205 IMX8QM_FEC, 206 }; 207 208 static const struct of_device_id fec_dt_ids[] = { 209 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 210 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 211 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 212 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 213 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 214 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 215 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 216 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 217 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 218 { /* sentinel */ } 219 }; 220 MODULE_DEVICE_TABLE(of, fec_dt_ids); 221 222 static unsigned char macaddr[ETH_ALEN]; 223 module_param_array(macaddr, byte, NULL, 0); 224 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 225 226 #if defined(CONFIG_M5272) 227 /* 228 * Some hardware gets it MAC address out of local flash memory. 229 * if this is non-zero then assume it is the address to get MAC from. 230 */ 231 #if defined(CONFIG_NETtel) 232 #define FEC_FLASHMAC 0xf0006006 233 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 234 #define FEC_FLASHMAC 0xf0006000 235 #elif defined(CONFIG_CANCam) 236 #define FEC_FLASHMAC 0xf0020000 237 #elif defined (CONFIG_M5272C3) 238 #define FEC_FLASHMAC (0xffe04000 + 4) 239 #elif defined(CONFIG_MOD5272) 240 #define FEC_FLASHMAC 0xffc0406b 241 #else 242 #define FEC_FLASHMAC 0 243 #endif 244 #endif /* CONFIG_M5272 */ 245 246 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 247 * 248 * 2048 byte skbufs are allocated. However, alignment requirements 249 * varies between FEC variants. Worst case is 64, so round down by 64. 250 */ 251 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 252 #define PKT_MINBUF_SIZE 64 253 254 /* FEC receive acceleration */ 255 #define FEC_RACC_IPDIS (1 << 1) 256 #define FEC_RACC_PRODIS (1 << 2) 257 #define FEC_RACC_SHIFT16 BIT(7) 258 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 259 260 /* MIB Control Register */ 261 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 262 263 /* 264 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 265 * size bits. Other FEC hardware does not, so we need to take that into 266 * account when setting it. 267 */ 268 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 269 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 270 defined(CONFIG_ARM64) 271 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 272 #else 273 #define OPT_FRAME_SIZE 0 274 #endif 275 276 /* FEC MII MMFR bits definition */ 277 #define FEC_MMFR_ST (1 << 30) 278 #define FEC_MMFR_ST_C45 (0) 279 #define FEC_MMFR_OP_READ (2 << 28) 280 #define FEC_MMFR_OP_READ_C45 (3 << 28) 281 #define FEC_MMFR_OP_WRITE (1 << 28) 282 #define FEC_MMFR_OP_ADDR_WRITE (0) 283 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 284 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 285 #define FEC_MMFR_TA (2 << 16) 286 #define FEC_MMFR_DATA(v) (v & 0xffff) 287 /* FEC ECR bits definition */ 288 #define FEC_ECR_MAGICEN (1 << 2) 289 #define FEC_ECR_SLEEP (1 << 3) 290 291 #define FEC_MII_TIMEOUT 30000 /* us */ 292 293 /* Transmitter timeout */ 294 #define TX_TIMEOUT (2 * HZ) 295 296 #define FEC_PAUSE_FLAG_AUTONEG 0x1 297 #define FEC_PAUSE_FLAG_ENABLE 0x2 298 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 299 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 300 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 301 302 #define COPYBREAK_DEFAULT 256 303 304 /* Max number of allowed TCP segments for software TSO */ 305 #define FEC_MAX_TSO_SEGS 100 306 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 307 308 #define IS_TSO_HEADER(txq, addr) \ 309 ((addr >= txq->tso_hdrs_dma) && \ 310 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 311 312 static int mii_cnt; 313 314 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 315 struct bufdesc_prop *bd) 316 { 317 return (bdp >= bd->last) ? bd->base 318 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 319 } 320 321 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 322 struct bufdesc_prop *bd) 323 { 324 return (bdp <= bd->base) ? bd->last 325 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 326 } 327 328 static int fec_enet_get_bd_index(struct bufdesc *bdp, 329 struct bufdesc_prop *bd) 330 { 331 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 332 } 333 334 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 335 { 336 int entries; 337 338 entries = (((const char *)txq->dirty_tx - 339 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 340 341 return entries >= 0 ? entries : entries + txq->bd.ring_size; 342 } 343 344 static void swap_buffer(void *bufaddr, int len) 345 { 346 int i; 347 unsigned int *buf = bufaddr; 348 349 for (i = 0; i < len; i += 4, buf++) 350 swab32s(buf); 351 } 352 353 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 354 { 355 int i; 356 unsigned int *src = src_buf; 357 unsigned int *dst = dst_buf; 358 359 for (i = 0; i < len; i += 4, src++, dst++) 360 *dst = swab32p(src); 361 } 362 363 static void fec_dump(struct net_device *ndev) 364 { 365 struct fec_enet_private *fep = netdev_priv(ndev); 366 struct bufdesc *bdp; 367 struct fec_enet_priv_tx_q *txq; 368 int index = 0; 369 370 netdev_info(ndev, "TX ring dump\n"); 371 pr_info("Nr SC addr len SKB\n"); 372 373 txq = fep->tx_queue[0]; 374 bdp = txq->bd.base; 375 376 do { 377 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 378 index, 379 bdp == txq->bd.cur ? 'S' : ' ', 380 bdp == txq->dirty_tx ? 'H' : ' ', 381 fec16_to_cpu(bdp->cbd_sc), 382 fec32_to_cpu(bdp->cbd_bufaddr), 383 fec16_to_cpu(bdp->cbd_datlen), 384 txq->tx_skbuff[index]); 385 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 386 index++; 387 } while (bdp != txq->bd.base); 388 } 389 390 static inline bool is_ipv4_pkt(struct sk_buff *skb) 391 { 392 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 393 } 394 395 static int 396 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 397 { 398 /* Only run for packets requiring a checksum. */ 399 if (skb->ip_summed != CHECKSUM_PARTIAL) 400 return 0; 401 402 if (unlikely(skb_cow_head(skb, 0))) 403 return -1; 404 405 if (is_ipv4_pkt(skb)) 406 ip_hdr(skb)->check = 0; 407 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 408 409 return 0; 410 } 411 412 static struct bufdesc * 413 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 414 struct sk_buff *skb, 415 struct net_device *ndev) 416 { 417 struct fec_enet_private *fep = netdev_priv(ndev); 418 struct bufdesc *bdp = txq->bd.cur; 419 struct bufdesc_ex *ebdp; 420 int nr_frags = skb_shinfo(skb)->nr_frags; 421 int frag, frag_len; 422 unsigned short status; 423 unsigned int estatus = 0; 424 skb_frag_t *this_frag; 425 unsigned int index; 426 void *bufaddr; 427 dma_addr_t addr; 428 int i; 429 430 for (frag = 0; frag < nr_frags; frag++) { 431 this_frag = &skb_shinfo(skb)->frags[frag]; 432 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 433 ebdp = (struct bufdesc_ex *)bdp; 434 435 status = fec16_to_cpu(bdp->cbd_sc); 436 status &= ~BD_ENET_TX_STATS; 437 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 438 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 439 440 /* Handle the last BD specially */ 441 if (frag == nr_frags - 1) { 442 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 443 if (fep->bufdesc_ex) { 444 estatus |= BD_ENET_TX_INT; 445 if (unlikely(skb_shinfo(skb)->tx_flags & 446 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 447 estatus |= BD_ENET_TX_TS; 448 } 449 } 450 451 if (fep->bufdesc_ex) { 452 if (fep->quirks & FEC_QUIRK_HAS_AVB) 453 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 454 if (skb->ip_summed == CHECKSUM_PARTIAL) 455 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 456 457 ebdp->cbd_bdu = 0; 458 ebdp->cbd_esc = cpu_to_fec32(estatus); 459 } 460 461 bufaddr = skb_frag_address(this_frag); 462 463 index = fec_enet_get_bd_index(bdp, &txq->bd); 464 if (((unsigned long) bufaddr) & fep->tx_align || 465 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 466 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 467 bufaddr = txq->tx_bounce[index]; 468 469 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 470 swap_buffer(bufaddr, frag_len); 471 } 472 473 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 474 DMA_TO_DEVICE); 475 if (dma_mapping_error(&fep->pdev->dev, addr)) { 476 if (net_ratelimit()) 477 netdev_err(ndev, "Tx DMA memory map failed\n"); 478 goto dma_mapping_error; 479 } 480 481 bdp->cbd_bufaddr = cpu_to_fec32(addr); 482 bdp->cbd_datlen = cpu_to_fec16(frag_len); 483 /* Make sure the updates to rest of the descriptor are 484 * performed before transferring ownership. 485 */ 486 wmb(); 487 bdp->cbd_sc = cpu_to_fec16(status); 488 } 489 490 return bdp; 491 dma_mapping_error: 492 bdp = txq->bd.cur; 493 for (i = 0; i < frag; i++) { 494 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 495 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 496 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 497 } 498 return ERR_PTR(-ENOMEM); 499 } 500 501 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 502 struct sk_buff *skb, struct net_device *ndev) 503 { 504 struct fec_enet_private *fep = netdev_priv(ndev); 505 int nr_frags = skb_shinfo(skb)->nr_frags; 506 struct bufdesc *bdp, *last_bdp; 507 void *bufaddr; 508 dma_addr_t addr; 509 unsigned short status; 510 unsigned short buflen; 511 unsigned int estatus = 0; 512 unsigned int index; 513 int entries_free; 514 515 entries_free = fec_enet_get_free_txdesc_num(txq); 516 if (entries_free < MAX_SKB_FRAGS + 1) { 517 dev_kfree_skb_any(skb); 518 if (net_ratelimit()) 519 netdev_err(ndev, "NOT enough BD for SG!\n"); 520 return NETDEV_TX_OK; 521 } 522 523 /* Protocol checksum off-load for TCP and UDP. */ 524 if (fec_enet_clear_csum(skb, ndev)) { 525 dev_kfree_skb_any(skb); 526 return NETDEV_TX_OK; 527 } 528 529 /* Fill in a Tx ring entry */ 530 bdp = txq->bd.cur; 531 last_bdp = bdp; 532 status = fec16_to_cpu(bdp->cbd_sc); 533 status &= ~BD_ENET_TX_STATS; 534 535 /* Set buffer length and buffer pointer */ 536 bufaddr = skb->data; 537 buflen = skb_headlen(skb); 538 539 index = fec_enet_get_bd_index(bdp, &txq->bd); 540 if (((unsigned long) bufaddr) & fep->tx_align || 541 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 542 memcpy(txq->tx_bounce[index], skb->data, buflen); 543 bufaddr = txq->tx_bounce[index]; 544 545 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 546 swap_buffer(bufaddr, buflen); 547 } 548 549 /* Push the data cache so the CPM does not get stale memory data. */ 550 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 551 if (dma_mapping_error(&fep->pdev->dev, addr)) { 552 dev_kfree_skb_any(skb); 553 if (net_ratelimit()) 554 netdev_err(ndev, "Tx DMA memory map failed\n"); 555 return NETDEV_TX_OK; 556 } 557 558 if (nr_frags) { 559 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 560 if (IS_ERR(last_bdp)) { 561 dma_unmap_single(&fep->pdev->dev, addr, 562 buflen, DMA_TO_DEVICE); 563 dev_kfree_skb_any(skb); 564 return NETDEV_TX_OK; 565 } 566 } else { 567 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 568 if (fep->bufdesc_ex) { 569 estatus = BD_ENET_TX_INT; 570 if (unlikely(skb_shinfo(skb)->tx_flags & 571 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 572 estatus |= BD_ENET_TX_TS; 573 } 574 } 575 bdp->cbd_bufaddr = cpu_to_fec32(addr); 576 bdp->cbd_datlen = cpu_to_fec16(buflen); 577 578 if (fep->bufdesc_ex) { 579 580 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 581 582 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 583 fep->hwts_tx_en)) 584 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 585 586 if (fep->quirks & FEC_QUIRK_HAS_AVB) 587 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 588 589 if (skb->ip_summed == CHECKSUM_PARTIAL) 590 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 591 592 ebdp->cbd_bdu = 0; 593 ebdp->cbd_esc = cpu_to_fec32(estatus); 594 } 595 596 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 597 /* Save skb pointer */ 598 txq->tx_skbuff[index] = skb; 599 600 /* Make sure the updates to rest of the descriptor are performed before 601 * transferring ownership. 602 */ 603 wmb(); 604 605 /* Send it on its way. Tell FEC it's ready, interrupt when done, 606 * it's the last BD of the frame, and to put the CRC on the end. 607 */ 608 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 609 bdp->cbd_sc = cpu_to_fec16(status); 610 611 /* If this was the last BD in the ring, start at the beginning again. */ 612 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 613 614 skb_tx_timestamp(skb); 615 616 /* Make sure the update to bdp and tx_skbuff are performed before 617 * txq->bd.cur. 618 */ 619 wmb(); 620 txq->bd.cur = bdp; 621 622 /* Trigger transmission start */ 623 writel(0, txq->bd.reg_desc_active); 624 625 return 0; 626 } 627 628 static int 629 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 630 struct net_device *ndev, 631 struct bufdesc *bdp, int index, char *data, 632 int size, bool last_tcp, bool is_last) 633 { 634 struct fec_enet_private *fep = netdev_priv(ndev); 635 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 636 unsigned short status; 637 unsigned int estatus = 0; 638 dma_addr_t addr; 639 640 status = fec16_to_cpu(bdp->cbd_sc); 641 status &= ~BD_ENET_TX_STATS; 642 643 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 644 645 if (((unsigned long) data) & fep->tx_align || 646 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 647 memcpy(txq->tx_bounce[index], data, size); 648 data = txq->tx_bounce[index]; 649 650 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 651 swap_buffer(data, size); 652 } 653 654 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 655 if (dma_mapping_error(&fep->pdev->dev, addr)) { 656 dev_kfree_skb_any(skb); 657 if (net_ratelimit()) 658 netdev_err(ndev, "Tx DMA memory map failed\n"); 659 return NETDEV_TX_BUSY; 660 } 661 662 bdp->cbd_datlen = cpu_to_fec16(size); 663 bdp->cbd_bufaddr = cpu_to_fec32(addr); 664 665 if (fep->bufdesc_ex) { 666 if (fep->quirks & FEC_QUIRK_HAS_AVB) 667 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 668 if (skb->ip_summed == CHECKSUM_PARTIAL) 669 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 670 ebdp->cbd_bdu = 0; 671 ebdp->cbd_esc = cpu_to_fec32(estatus); 672 } 673 674 /* Handle the last BD specially */ 675 if (last_tcp) 676 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 677 if (is_last) { 678 status |= BD_ENET_TX_INTR; 679 if (fep->bufdesc_ex) 680 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 681 } 682 683 bdp->cbd_sc = cpu_to_fec16(status); 684 685 return 0; 686 } 687 688 static int 689 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 690 struct sk_buff *skb, struct net_device *ndev, 691 struct bufdesc *bdp, int index) 692 { 693 struct fec_enet_private *fep = netdev_priv(ndev); 694 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 695 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 696 void *bufaddr; 697 unsigned long dmabuf; 698 unsigned short status; 699 unsigned int estatus = 0; 700 701 status = fec16_to_cpu(bdp->cbd_sc); 702 status &= ~BD_ENET_TX_STATS; 703 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 704 705 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 706 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 707 if (((unsigned long)bufaddr) & fep->tx_align || 708 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 709 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 710 bufaddr = txq->tx_bounce[index]; 711 712 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 713 swap_buffer(bufaddr, hdr_len); 714 715 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 716 hdr_len, DMA_TO_DEVICE); 717 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 718 dev_kfree_skb_any(skb); 719 if (net_ratelimit()) 720 netdev_err(ndev, "Tx DMA memory map failed\n"); 721 return NETDEV_TX_BUSY; 722 } 723 } 724 725 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 726 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 727 728 if (fep->bufdesc_ex) { 729 if (fep->quirks & FEC_QUIRK_HAS_AVB) 730 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 731 if (skb->ip_summed == CHECKSUM_PARTIAL) 732 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 733 ebdp->cbd_bdu = 0; 734 ebdp->cbd_esc = cpu_to_fec32(estatus); 735 } 736 737 bdp->cbd_sc = cpu_to_fec16(status); 738 739 return 0; 740 } 741 742 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 743 struct sk_buff *skb, 744 struct net_device *ndev) 745 { 746 struct fec_enet_private *fep = netdev_priv(ndev); 747 int hdr_len, total_len, data_left; 748 struct bufdesc *bdp = txq->bd.cur; 749 struct tso_t tso; 750 unsigned int index = 0; 751 int ret; 752 753 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 754 dev_kfree_skb_any(skb); 755 if (net_ratelimit()) 756 netdev_err(ndev, "NOT enough BD for TSO!\n"); 757 return NETDEV_TX_OK; 758 } 759 760 /* Protocol checksum off-load for TCP and UDP. */ 761 if (fec_enet_clear_csum(skb, ndev)) { 762 dev_kfree_skb_any(skb); 763 return NETDEV_TX_OK; 764 } 765 766 /* Initialize the TSO handler, and prepare the first payload */ 767 hdr_len = tso_start(skb, &tso); 768 769 total_len = skb->len - hdr_len; 770 while (total_len > 0) { 771 char *hdr; 772 773 index = fec_enet_get_bd_index(bdp, &txq->bd); 774 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 775 total_len -= data_left; 776 777 /* prepare packet headers: MAC + IP + TCP */ 778 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 779 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 780 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 781 if (ret) 782 goto err_release; 783 784 while (data_left > 0) { 785 int size; 786 787 size = min_t(int, tso.size, data_left); 788 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 789 index = fec_enet_get_bd_index(bdp, &txq->bd); 790 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 791 bdp, index, 792 tso.data, size, 793 size == data_left, 794 total_len == 0); 795 if (ret) 796 goto err_release; 797 798 data_left -= size; 799 tso_build_data(skb, &tso, size); 800 } 801 802 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 803 } 804 805 /* Save skb pointer */ 806 txq->tx_skbuff[index] = skb; 807 808 skb_tx_timestamp(skb); 809 txq->bd.cur = bdp; 810 811 /* Trigger transmission start */ 812 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 813 !readl(txq->bd.reg_desc_active) || 814 !readl(txq->bd.reg_desc_active) || 815 !readl(txq->bd.reg_desc_active) || 816 !readl(txq->bd.reg_desc_active)) 817 writel(0, txq->bd.reg_desc_active); 818 819 return 0; 820 821 err_release: 822 /* TODO: Release all used data descriptors for TSO */ 823 return ret; 824 } 825 826 static netdev_tx_t 827 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 828 { 829 struct fec_enet_private *fep = netdev_priv(ndev); 830 int entries_free; 831 unsigned short queue; 832 struct fec_enet_priv_tx_q *txq; 833 struct netdev_queue *nq; 834 int ret; 835 836 queue = skb_get_queue_mapping(skb); 837 txq = fep->tx_queue[queue]; 838 nq = netdev_get_tx_queue(ndev, queue); 839 840 if (skb_is_gso(skb)) 841 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 842 else 843 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 844 if (ret) 845 return ret; 846 847 entries_free = fec_enet_get_free_txdesc_num(txq); 848 if (entries_free <= txq->tx_stop_threshold) 849 netif_tx_stop_queue(nq); 850 851 return NETDEV_TX_OK; 852 } 853 854 /* Init RX & TX buffer descriptors 855 */ 856 static void fec_enet_bd_init(struct net_device *dev) 857 { 858 struct fec_enet_private *fep = netdev_priv(dev); 859 struct fec_enet_priv_tx_q *txq; 860 struct fec_enet_priv_rx_q *rxq; 861 struct bufdesc *bdp; 862 unsigned int i; 863 unsigned int q; 864 865 for (q = 0; q < fep->num_rx_queues; q++) { 866 /* Initialize the receive buffer descriptors. */ 867 rxq = fep->rx_queue[q]; 868 bdp = rxq->bd.base; 869 870 for (i = 0; i < rxq->bd.ring_size; i++) { 871 872 /* Initialize the BD for every fragment in the page. */ 873 if (bdp->cbd_bufaddr) 874 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 875 else 876 bdp->cbd_sc = cpu_to_fec16(0); 877 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 878 } 879 880 /* Set the last buffer to wrap */ 881 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 882 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 883 884 rxq->bd.cur = rxq->bd.base; 885 } 886 887 for (q = 0; q < fep->num_tx_queues; q++) { 888 /* ...and the same for transmit */ 889 txq = fep->tx_queue[q]; 890 bdp = txq->bd.base; 891 txq->bd.cur = bdp; 892 893 for (i = 0; i < txq->bd.ring_size; i++) { 894 /* Initialize the BD for every fragment in the page. */ 895 bdp->cbd_sc = cpu_to_fec16(0); 896 if (bdp->cbd_bufaddr && 897 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 898 dma_unmap_single(&fep->pdev->dev, 899 fec32_to_cpu(bdp->cbd_bufaddr), 900 fec16_to_cpu(bdp->cbd_datlen), 901 DMA_TO_DEVICE); 902 if (txq->tx_skbuff[i]) { 903 dev_kfree_skb_any(txq->tx_skbuff[i]); 904 txq->tx_skbuff[i] = NULL; 905 } 906 bdp->cbd_bufaddr = cpu_to_fec32(0); 907 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 908 } 909 910 /* Set the last buffer to wrap */ 911 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 912 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 913 txq->dirty_tx = bdp; 914 } 915 } 916 917 static void fec_enet_active_rxring(struct net_device *ndev) 918 { 919 struct fec_enet_private *fep = netdev_priv(ndev); 920 int i; 921 922 for (i = 0; i < fep->num_rx_queues; i++) 923 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 924 } 925 926 static void fec_enet_enable_ring(struct net_device *ndev) 927 { 928 struct fec_enet_private *fep = netdev_priv(ndev); 929 struct fec_enet_priv_tx_q *txq; 930 struct fec_enet_priv_rx_q *rxq; 931 int i; 932 933 for (i = 0; i < fep->num_rx_queues; i++) { 934 rxq = fep->rx_queue[i]; 935 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 936 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 937 938 /* enable DMA1/2 */ 939 if (i) 940 writel(RCMR_MATCHEN | RCMR_CMP(i), 941 fep->hwp + FEC_RCMR(i)); 942 } 943 944 for (i = 0; i < fep->num_tx_queues; i++) { 945 txq = fep->tx_queue[i]; 946 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 947 948 /* enable DMA1/2 */ 949 if (i) 950 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 951 fep->hwp + FEC_DMA_CFG(i)); 952 } 953 } 954 955 static void fec_enet_reset_skb(struct net_device *ndev) 956 { 957 struct fec_enet_private *fep = netdev_priv(ndev); 958 struct fec_enet_priv_tx_q *txq; 959 int i, j; 960 961 for (i = 0; i < fep->num_tx_queues; i++) { 962 txq = fep->tx_queue[i]; 963 964 for (j = 0; j < txq->bd.ring_size; j++) { 965 if (txq->tx_skbuff[j]) { 966 dev_kfree_skb_any(txq->tx_skbuff[j]); 967 txq->tx_skbuff[j] = NULL; 968 } 969 } 970 } 971 } 972 973 /* 974 * This function is called to start or restart the FEC during a link 975 * change, transmit timeout, or to reconfigure the FEC. The network 976 * packet processing for this device must be stopped before this call. 977 */ 978 static void 979 fec_restart(struct net_device *ndev) 980 { 981 struct fec_enet_private *fep = netdev_priv(ndev); 982 u32 temp_mac[2]; 983 u32 rcntl = OPT_FRAME_SIZE | 0x04; 984 u32 ecntl = 0x2; /* ETHEREN */ 985 986 /* Whack a reset. We should wait for this. 987 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 988 * instead of reset MAC itself. 989 */ 990 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 991 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 992 writel(0, fep->hwp + FEC_ECNTRL); 993 } else { 994 writel(1, fep->hwp + FEC_ECNTRL); 995 udelay(10); 996 } 997 998 /* 999 * enet-mac reset will reset mac address registers too, 1000 * so need to reconfigure it. 1001 */ 1002 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1003 writel((__force u32)cpu_to_be32(temp_mac[0]), 1004 fep->hwp + FEC_ADDR_LOW); 1005 writel((__force u32)cpu_to_be32(temp_mac[1]), 1006 fep->hwp + FEC_ADDR_HIGH); 1007 1008 /* Clear any outstanding interrupt, except MDIO. */ 1009 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1010 1011 fec_enet_bd_init(ndev); 1012 1013 fec_enet_enable_ring(ndev); 1014 1015 /* Reset tx SKB buffers. */ 1016 fec_enet_reset_skb(ndev); 1017 1018 /* Enable MII mode */ 1019 if (fep->full_duplex == DUPLEX_FULL) { 1020 /* FD enable */ 1021 writel(0x04, fep->hwp + FEC_X_CNTRL); 1022 } else { 1023 /* No Rcv on Xmit */ 1024 rcntl |= 0x02; 1025 writel(0x0, fep->hwp + FEC_X_CNTRL); 1026 } 1027 1028 /* Set MII speed */ 1029 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1030 1031 #if !defined(CONFIG_M5272) 1032 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1033 u32 val = readl(fep->hwp + FEC_RACC); 1034 1035 /* align IP header */ 1036 val |= FEC_RACC_SHIFT16; 1037 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1038 /* set RX checksum */ 1039 val |= FEC_RACC_OPTIONS; 1040 else 1041 val &= ~FEC_RACC_OPTIONS; 1042 writel(val, fep->hwp + FEC_RACC); 1043 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1044 } 1045 #endif 1046 1047 /* 1048 * The phy interface and speed need to get configured 1049 * differently on enet-mac. 1050 */ 1051 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1052 /* Enable flow control and length check */ 1053 rcntl |= 0x40000000 | 0x00000020; 1054 1055 /* RGMII, RMII or MII */ 1056 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1057 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1058 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1059 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1060 rcntl |= (1 << 6); 1061 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1062 rcntl |= (1 << 8); 1063 else 1064 rcntl &= ~(1 << 8); 1065 1066 /* 1G, 100M or 10M */ 1067 if (ndev->phydev) { 1068 if (ndev->phydev->speed == SPEED_1000) 1069 ecntl |= (1 << 5); 1070 else if (ndev->phydev->speed == SPEED_100) 1071 rcntl &= ~(1 << 9); 1072 else 1073 rcntl |= (1 << 9); 1074 } 1075 } else { 1076 #ifdef FEC_MIIGSK_ENR 1077 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1078 u32 cfgr; 1079 /* disable the gasket and wait */ 1080 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1081 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1082 udelay(1); 1083 1084 /* 1085 * configure the gasket: 1086 * RMII, 50 MHz, no loopback, no echo 1087 * MII, 25 MHz, no loopback, no echo 1088 */ 1089 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1090 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1091 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1092 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1093 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1094 1095 /* re-enable the gasket */ 1096 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1097 } 1098 #endif 1099 } 1100 1101 #if !defined(CONFIG_M5272) 1102 /* enable pause frame*/ 1103 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1104 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1105 ndev->phydev && ndev->phydev->pause)) { 1106 rcntl |= FEC_ENET_FCE; 1107 1108 /* set FIFO threshold parameter to reduce overrun */ 1109 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1110 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1111 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1112 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1113 1114 /* OPD */ 1115 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1116 } else { 1117 rcntl &= ~FEC_ENET_FCE; 1118 } 1119 #endif /* !defined(CONFIG_M5272) */ 1120 1121 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1122 1123 /* Setup multicast filter. */ 1124 set_multicast_list(ndev); 1125 #ifndef CONFIG_M5272 1126 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1127 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1128 #endif 1129 1130 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1131 /* enable ENET endian swap */ 1132 ecntl |= (1 << 8); 1133 /* enable ENET store and forward mode */ 1134 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1135 } 1136 1137 if (fep->bufdesc_ex) 1138 ecntl |= (1 << 4); 1139 1140 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1141 fep->rgmii_txc_dly) 1142 ecntl |= FEC_ENET_TXC_DLY; 1143 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1144 fep->rgmii_rxc_dly) 1145 ecntl |= FEC_ENET_RXC_DLY; 1146 1147 #ifndef CONFIG_M5272 1148 /* Enable the MIB statistic event counters */ 1149 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1150 #endif 1151 1152 /* And last, enable the transmit and receive processing */ 1153 writel(ecntl, fep->hwp + FEC_ECNTRL); 1154 fec_enet_active_rxring(ndev); 1155 1156 if (fep->bufdesc_ex) 1157 fec_ptp_start_cyclecounter(ndev); 1158 1159 /* Enable interrupts we wish to service */ 1160 if (fep->link) 1161 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1162 else 1163 writel(0, fep->hwp + FEC_IMASK); 1164 1165 /* Init the interrupt coalescing */ 1166 fec_enet_itr_coal_init(ndev); 1167 1168 } 1169 1170 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1171 { 1172 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1173 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1174 1175 if (stop_gpr->gpr) { 1176 if (enabled) 1177 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1178 BIT(stop_gpr->bit), 1179 BIT(stop_gpr->bit)); 1180 else 1181 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1182 BIT(stop_gpr->bit), 0); 1183 } else if (pdata && pdata->sleep_mode_enable) { 1184 pdata->sleep_mode_enable(enabled); 1185 } 1186 } 1187 1188 static void fec_irqs_disable(struct net_device *ndev) 1189 { 1190 struct fec_enet_private *fep = netdev_priv(ndev); 1191 1192 writel(0, fep->hwp + FEC_IMASK); 1193 } 1194 1195 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1196 { 1197 struct fec_enet_private *fep = netdev_priv(ndev); 1198 1199 writel(0, fep->hwp + FEC_IMASK); 1200 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1201 } 1202 1203 static void 1204 fec_stop(struct net_device *ndev) 1205 { 1206 struct fec_enet_private *fep = netdev_priv(ndev); 1207 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1208 u32 val; 1209 1210 /* We cannot expect a graceful transmit stop without link !!! */ 1211 if (fep->link) { 1212 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1213 udelay(10); 1214 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1215 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1216 } 1217 1218 /* Whack a reset. We should wait for this. 1219 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1220 * instead of reset MAC itself. 1221 */ 1222 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1223 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1224 writel(0, fep->hwp + FEC_ECNTRL); 1225 } else { 1226 writel(1, fep->hwp + FEC_ECNTRL); 1227 udelay(10); 1228 } 1229 } else { 1230 val = readl(fep->hwp + FEC_ECNTRL); 1231 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1232 writel(val, fep->hwp + FEC_ECNTRL); 1233 } 1234 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1235 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1236 1237 /* We have to keep ENET enabled to have MII interrupt stay working */ 1238 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1239 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1240 writel(2, fep->hwp + FEC_ECNTRL); 1241 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1242 } 1243 } 1244 1245 1246 static void 1247 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1248 { 1249 struct fec_enet_private *fep = netdev_priv(ndev); 1250 1251 fec_dump(ndev); 1252 1253 ndev->stats.tx_errors++; 1254 1255 schedule_work(&fep->tx_timeout_work); 1256 } 1257 1258 static void fec_enet_timeout_work(struct work_struct *work) 1259 { 1260 struct fec_enet_private *fep = 1261 container_of(work, struct fec_enet_private, tx_timeout_work); 1262 struct net_device *ndev = fep->netdev; 1263 1264 rtnl_lock(); 1265 if (netif_device_present(ndev) || netif_running(ndev)) { 1266 napi_disable(&fep->napi); 1267 netif_tx_lock_bh(ndev); 1268 fec_restart(ndev); 1269 netif_tx_wake_all_queues(ndev); 1270 netif_tx_unlock_bh(ndev); 1271 napi_enable(&fep->napi); 1272 } 1273 rtnl_unlock(); 1274 } 1275 1276 static void 1277 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1278 struct skb_shared_hwtstamps *hwtstamps) 1279 { 1280 unsigned long flags; 1281 u64 ns; 1282 1283 spin_lock_irqsave(&fep->tmreg_lock, flags); 1284 ns = timecounter_cyc2time(&fep->tc, ts); 1285 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1286 1287 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1288 hwtstamps->hwtstamp = ns_to_ktime(ns); 1289 } 1290 1291 static void 1292 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1293 { 1294 struct fec_enet_private *fep; 1295 struct bufdesc *bdp; 1296 unsigned short status; 1297 struct sk_buff *skb; 1298 struct fec_enet_priv_tx_q *txq; 1299 struct netdev_queue *nq; 1300 int index = 0; 1301 int entries_free; 1302 1303 fep = netdev_priv(ndev); 1304 1305 txq = fep->tx_queue[queue_id]; 1306 /* get next bdp of dirty_tx */ 1307 nq = netdev_get_tx_queue(ndev, queue_id); 1308 bdp = txq->dirty_tx; 1309 1310 /* get next bdp of dirty_tx */ 1311 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1312 1313 while (bdp != READ_ONCE(txq->bd.cur)) { 1314 /* Order the load of bd.cur and cbd_sc */ 1315 rmb(); 1316 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1317 if (status & BD_ENET_TX_READY) 1318 break; 1319 1320 index = fec_enet_get_bd_index(bdp, &txq->bd); 1321 1322 skb = txq->tx_skbuff[index]; 1323 txq->tx_skbuff[index] = NULL; 1324 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1325 dma_unmap_single(&fep->pdev->dev, 1326 fec32_to_cpu(bdp->cbd_bufaddr), 1327 fec16_to_cpu(bdp->cbd_datlen), 1328 DMA_TO_DEVICE); 1329 bdp->cbd_bufaddr = cpu_to_fec32(0); 1330 if (!skb) 1331 goto skb_done; 1332 1333 /* Check for errors. */ 1334 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1335 BD_ENET_TX_RL | BD_ENET_TX_UN | 1336 BD_ENET_TX_CSL)) { 1337 ndev->stats.tx_errors++; 1338 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1339 ndev->stats.tx_heartbeat_errors++; 1340 if (status & BD_ENET_TX_LC) /* Late collision */ 1341 ndev->stats.tx_window_errors++; 1342 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1343 ndev->stats.tx_aborted_errors++; 1344 if (status & BD_ENET_TX_UN) /* Underrun */ 1345 ndev->stats.tx_fifo_errors++; 1346 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1347 ndev->stats.tx_carrier_errors++; 1348 } else { 1349 ndev->stats.tx_packets++; 1350 ndev->stats.tx_bytes += skb->len; 1351 } 1352 1353 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1354 * are to time stamp the packet, so we still need to check time 1355 * stamping enabled flag. 1356 */ 1357 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1358 fep->hwts_tx_en) && 1359 fep->bufdesc_ex) { 1360 struct skb_shared_hwtstamps shhwtstamps; 1361 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1362 1363 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1364 skb_tstamp_tx(skb, &shhwtstamps); 1365 } 1366 1367 /* Deferred means some collisions occurred during transmit, 1368 * but we eventually sent the packet OK. 1369 */ 1370 if (status & BD_ENET_TX_DEF) 1371 ndev->stats.collisions++; 1372 1373 /* Free the sk buffer associated with this last transmit */ 1374 dev_kfree_skb_any(skb); 1375 skb_done: 1376 /* Make sure the update to bdp and tx_skbuff are performed 1377 * before dirty_tx 1378 */ 1379 wmb(); 1380 txq->dirty_tx = bdp; 1381 1382 /* Update pointer to next buffer descriptor to be transmitted */ 1383 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1384 1385 /* Since we have freed up a buffer, the ring is no longer full 1386 */ 1387 if (netif_tx_queue_stopped(nq)) { 1388 entries_free = fec_enet_get_free_txdesc_num(txq); 1389 if (entries_free >= txq->tx_wake_threshold) 1390 netif_tx_wake_queue(nq); 1391 } 1392 } 1393 1394 /* ERR006358: Keep the transmitter going */ 1395 if (bdp != txq->bd.cur && 1396 readl(txq->bd.reg_desc_active) == 0) 1397 writel(0, txq->bd.reg_desc_active); 1398 } 1399 1400 static void fec_enet_tx(struct net_device *ndev) 1401 { 1402 struct fec_enet_private *fep = netdev_priv(ndev); 1403 int i; 1404 1405 /* Make sure that AVB queues are processed first. */ 1406 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1407 fec_enet_tx_queue(ndev, i); 1408 } 1409 1410 static int 1411 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1412 { 1413 struct fec_enet_private *fep = netdev_priv(ndev); 1414 int off; 1415 1416 off = ((unsigned long)skb->data) & fep->rx_align; 1417 if (off) 1418 skb_reserve(skb, fep->rx_align + 1 - off); 1419 1420 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1421 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1422 if (net_ratelimit()) 1423 netdev_err(ndev, "Rx DMA memory map failed\n"); 1424 return -ENOMEM; 1425 } 1426 1427 return 0; 1428 } 1429 1430 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1431 struct bufdesc *bdp, u32 length, bool swap) 1432 { 1433 struct fec_enet_private *fep = netdev_priv(ndev); 1434 struct sk_buff *new_skb; 1435 1436 if (length > fep->rx_copybreak) 1437 return false; 1438 1439 new_skb = netdev_alloc_skb(ndev, length); 1440 if (!new_skb) 1441 return false; 1442 1443 dma_sync_single_for_cpu(&fep->pdev->dev, 1444 fec32_to_cpu(bdp->cbd_bufaddr), 1445 FEC_ENET_RX_FRSIZE - fep->rx_align, 1446 DMA_FROM_DEVICE); 1447 if (!swap) 1448 memcpy(new_skb->data, (*skb)->data, length); 1449 else 1450 swap_buffer2(new_skb->data, (*skb)->data, length); 1451 *skb = new_skb; 1452 1453 return true; 1454 } 1455 1456 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1457 * When we update through the ring, if the next incoming buffer has 1458 * not been given to the system, we just set the empty indicator, 1459 * effectively tossing the packet. 1460 */ 1461 static int 1462 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1463 { 1464 struct fec_enet_private *fep = netdev_priv(ndev); 1465 struct fec_enet_priv_rx_q *rxq; 1466 struct bufdesc *bdp; 1467 unsigned short status; 1468 struct sk_buff *skb_new = NULL; 1469 struct sk_buff *skb; 1470 ushort pkt_len; 1471 __u8 *data; 1472 int pkt_received = 0; 1473 struct bufdesc_ex *ebdp = NULL; 1474 bool vlan_packet_rcvd = false; 1475 u16 vlan_tag; 1476 int index = 0; 1477 bool is_copybreak; 1478 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1479 1480 #ifdef CONFIG_M532x 1481 flush_cache_all(); 1482 #endif 1483 rxq = fep->rx_queue[queue_id]; 1484 1485 /* First, grab all of the stats for the incoming packet. 1486 * These get messed up if we get called due to a busy condition. 1487 */ 1488 bdp = rxq->bd.cur; 1489 1490 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1491 1492 if (pkt_received >= budget) 1493 break; 1494 pkt_received++; 1495 1496 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1497 1498 /* Check for errors. */ 1499 status ^= BD_ENET_RX_LAST; 1500 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1501 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1502 BD_ENET_RX_CL)) { 1503 ndev->stats.rx_errors++; 1504 if (status & BD_ENET_RX_OV) { 1505 /* FIFO overrun */ 1506 ndev->stats.rx_fifo_errors++; 1507 goto rx_processing_done; 1508 } 1509 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1510 | BD_ENET_RX_LAST)) { 1511 /* Frame too long or too short. */ 1512 ndev->stats.rx_length_errors++; 1513 if (status & BD_ENET_RX_LAST) 1514 netdev_err(ndev, "rcv is not +last\n"); 1515 } 1516 if (status & BD_ENET_RX_CR) /* CRC Error */ 1517 ndev->stats.rx_crc_errors++; 1518 /* Report late collisions as a frame error. */ 1519 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1520 ndev->stats.rx_frame_errors++; 1521 goto rx_processing_done; 1522 } 1523 1524 /* Process the incoming frame. */ 1525 ndev->stats.rx_packets++; 1526 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1527 ndev->stats.rx_bytes += pkt_len; 1528 1529 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1530 skb = rxq->rx_skbuff[index]; 1531 1532 /* The packet length includes FCS, but we don't want to 1533 * include that when passing upstream as it messes up 1534 * bridging applications. 1535 */ 1536 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1537 need_swap); 1538 if (!is_copybreak) { 1539 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1540 if (unlikely(!skb_new)) { 1541 ndev->stats.rx_dropped++; 1542 goto rx_processing_done; 1543 } 1544 dma_unmap_single(&fep->pdev->dev, 1545 fec32_to_cpu(bdp->cbd_bufaddr), 1546 FEC_ENET_RX_FRSIZE - fep->rx_align, 1547 DMA_FROM_DEVICE); 1548 } 1549 1550 prefetch(skb->data - NET_IP_ALIGN); 1551 skb_put(skb, pkt_len - 4); 1552 data = skb->data; 1553 1554 if (!is_copybreak && need_swap) 1555 swap_buffer(data, pkt_len); 1556 1557 #if !defined(CONFIG_M5272) 1558 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1559 data = skb_pull_inline(skb, 2); 1560 #endif 1561 1562 /* Extract the enhanced buffer descriptor */ 1563 ebdp = NULL; 1564 if (fep->bufdesc_ex) 1565 ebdp = (struct bufdesc_ex *)bdp; 1566 1567 /* If this is a VLAN packet remove the VLAN Tag */ 1568 vlan_packet_rcvd = false; 1569 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1570 fep->bufdesc_ex && 1571 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1572 /* Push and remove the vlan tag */ 1573 struct vlan_hdr *vlan_header = 1574 (struct vlan_hdr *) (data + ETH_HLEN); 1575 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1576 1577 vlan_packet_rcvd = true; 1578 1579 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1580 skb_pull(skb, VLAN_HLEN); 1581 } 1582 1583 skb->protocol = eth_type_trans(skb, ndev); 1584 1585 /* Get receive timestamp from the skb */ 1586 if (fep->hwts_rx_en && fep->bufdesc_ex) 1587 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1588 skb_hwtstamps(skb)); 1589 1590 if (fep->bufdesc_ex && 1591 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1592 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1593 /* don't check it */ 1594 skb->ip_summed = CHECKSUM_UNNECESSARY; 1595 } else { 1596 skb_checksum_none_assert(skb); 1597 } 1598 } 1599 1600 /* Handle received VLAN packets */ 1601 if (vlan_packet_rcvd) 1602 __vlan_hwaccel_put_tag(skb, 1603 htons(ETH_P_8021Q), 1604 vlan_tag); 1605 1606 skb_record_rx_queue(skb, queue_id); 1607 napi_gro_receive(&fep->napi, skb); 1608 1609 if (is_copybreak) { 1610 dma_sync_single_for_device(&fep->pdev->dev, 1611 fec32_to_cpu(bdp->cbd_bufaddr), 1612 FEC_ENET_RX_FRSIZE - fep->rx_align, 1613 DMA_FROM_DEVICE); 1614 } else { 1615 rxq->rx_skbuff[index] = skb_new; 1616 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1617 } 1618 1619 rx_processing_done: 1620 /* Clear the status flags for this buffer */ 1621 status &= ~BD_ENET_RX_STATS; 1622 1623 /* Mark the buffer empty */ 1624 status |= BD_ENET_RX_EMPTY; 1625 1626 if (fep->bufdesc_ex) { 1627 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1628 1629 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1630 ebdp->cbd_prot = 0; 1631 ebdp->cbd_bdu = 0; 1632 } 1633 /* Make sure the updates to rest of the descriptor are 1634 * performed before transferring ownership. 1635 */ 1636 wmb(); 1637 bdp->cbd_sc = cpu_to_fec16(status); 1638 1639 /* Update BD pointer to next entry */ 1640 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1641 1642 /* Doing this here will keep the FEC running while we process 1643 * incoming frames. On a heavily loaded network, we should be 1644 * able to keep up at the expense of system resources. 1645 */ 1646 writel(0, rxq->bd.reg_desc_active); 1647 } 1648 rxq->bd.cur = bdp; 1649 return pkt_received; 1650 } 1651 1652 static int fec_enet_rx(struct net_device *ndev, int budget) 1653 { 1654 struct fec_enet_private *fep = netdev_priv(ndev); 1655 int i, done = 0; 1656 1657 /* Make sure that AVB queues are processed first. */ 1658 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1659 done += fec_enet_rx_queue(ndev, budget - done, i); 1660 1661 return done; 1662 } 1663 1664 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1665 { 1666 uint int_events; 1667 1668 int_events = readl(fep->hwp + FEC_IEVENT); 1669 1670 /* Don't clear MDIO events, we poll for those */ 1671 int_events &= ~FEC_ENET_MII; 1672 1673 writel(int_events, fep->hwp + FEC_IEVENT); 1674 1675 return int_events != 0; 1676 } 1677 1678 static irqreturn_t 1679 fec_enet_interrupt(int irq, void *dev_id) 1680 { 1681 struct net_device *ndev = dev_id; 1682 struct fec_enet_private *fep = netdev_priv(ndev); 1683 irqreturn_t ret = IRQ_NONE; 1684 1685 if (fec_enet_collect_events(fep) && fep->link) { 1686 ret = IRQ_HANDLED; 1687 1688 if (napi_schedule_prep(&fep->napi)) { 1689 /* Disable interrupts */ 1690 writel(0, fep->hwp + FEC_IMASK); 1691 __napi_schedule(&fep->napi); 1692 } 1693 } 1694 1695 return ret; 1696 } 1697 1698 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1699 { 1700 struct net_device *ndev = napi->dev; 1701 struct fec_enet_private *fep = netdev_priv(ndev); 1702 int done = 0; 1703 1704 do { 1705 done += fec_enet_rx(ndev, budget - done); 1706 fec_enet_tx(ndev); 1707 } while ((done < budget) && fec_enet_collect_events(fep)); 1708 1709 if (done < budget) { 1710 napi_complete_done(napi, done); 1711 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1712 } 1713 1714 return done; 1715 } 1716 1717 /* ------------------------------------------------------------------------- */ 1718 static int fec_get_mac(struct net_device *ndev) 1719 { 1720 struct fec_enet_private *fep = netdev_priv(ndev); 1721 unsigned char *iap, tmpaddr[ETH_ALEN]; 1722 int ret; 1723 1724 /* 1725 * try to get mac address in following order: 1726 * 1727 * 1) module parameter via kernel command line in form 1728 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1729 */ 1730 iap = macaddr; 1731 1732 /* 1733 * 2) from device tree data 1734 */ 1735 if (!is_valid_ether_addr(iap)) { 1736 struct device_node *np = fep->pdev->dev.of_node; 1737 if (np) { 1738 ret = of_get_mac_address(np, tmpaddr); 1739 if (!ret) 1740 iap = tmpaddr; 1741 else if (ret == -EPROBE_DEFER) 1742 return ret; 1743 } 1744 } 1745 1746 /* 1747 * 3) from flash or fuse (via platform data) 1748 */ 1749 if (!is_valid_ether_addr(iap)) { 1750 #ifdef CONFIG_M5272 1751 if (FEC_FLASHMAC) 1752 iap = (unsigned char *)FEC_FLASHMAC; 1753 #else 1754 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1755 1756 if (pdata) 1757 iap = (unsigned char *)&pdata->mac; 1758 #endif 1759 } 1760 1761 /* 1762 * 4) FEC mac registers set by bootloader 1763 */ 1764 if (!is_valid_ether_addr(iap)) { 1765 *((__be32 *) &tmpaddr[0]) = 1766 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1767 *((__be16 *) &tmpaddr[4]) = 1768 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1769 iap = &tmpaddr[0]; 1770 } 1771 1772 /* 1773 * 5) random mac address 1774 */ 1775 if (!is_valid_ether_addr(iap)) { 1776 /* Report it and use a random ethernet address instead */ 1777 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1778 eth_hw_addr_random(ndev); 1779 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1780 ndev->dev_addr); 1781 return 0; 1782 } 1783 1784 /* Adjust MAC if using macaddr */ 1785 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1786 1787 return 0; 1788 } 1789 1790 /* ------------------------------------------------------------------------- */ 1791 1792 /* 1793 * Phy section 1794 */ 1795 static void fec_enet_adjust_link(struct net_device *ndev) 1796 { 1797 struct fec_enet_private *fep = netdev_priv(ndev); 1798 struct phy_device *phy_dev = ndev->phydev; 1799 int status_change = 0; 1800 1801 /* 1802 * If the netdev is down, or is going down, we're not interested 1803 * in link state events, so just mark our idea of the link as down 1804 * and ignore the event. 1805 */ 1806 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1807 fep->link = 0; 1808 } else if (phy_dev->link) { 1809 if (!fep->link) { 1810 fep->link = phy_dev->link; 1811 status_change = 1; 1812 } 1813 1814 if (fep->full_duplex != phy_dev->duplex) { 1815 fep->full_duplex = phy_dev->duplex; 1816 status_change = 1; 1817 } 1818 1819 if (phy_dev->speed != fep->speed) { 1820 fep->speed = phy_dev->speed; 1821 status_change = 1; 1822 } 1823 1824 /* if any of the above changed restart the FEC */ 1825 if (status_change) { 1826 napi_disable(&fep->napi); 1827 netif_tx_lock_bh(ndev); 1828 fec_restart(ndev); 1829 netif_tx_wake_all_queues(ndev); 1830 netif_tx_unlock_bh(ndev); 1831 napi_enable(&fep->napi); 1832 } 1833 } else { 1834 if (fep->link) { 1835 napi_disable(&fep->napi); 1836 netif_tx_lock_bh(ndev); 1837 fec_stop(ndev); 1838 netif_tx_unlock_bh(ndev); 1839 napi_enable(&fep->napi); 1840 fep->link = phy_dev->link; 1841 status_change = 1; 1842 } 1843 } 1844 1845 if (status_change) 1846 phy_print_status(phy_dev); 1847 } 1848 1849 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1850 { 1851 uint ievent; 1852 int ret; 1853 1854 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1855 ievent & FEC_ENET_MII, 2, 30000); 1856 1857 if (!ret) 1858 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1859 1860 return ret; 1861 } 1862 1863 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1864 { 1865 struct fec_enet_private *fep = bus->priv; 1866 struct device *dev = &fep->pdev->dev; 1867 int ret = 0, frame_start, frame_addr, frame_op; 1868 bool is_c45 = !!(regnum & MII_ADDR_C45); 1869 1870 ret = pm_runtime_resume_and_get(dev); 1871 if (ret < 0) 1872 return ret; 1873 1874 if (is_c45) { 1875 frame_start = FEC_MMFR_ST_C45; 1876 1877 /* write address */ 1878 frame_addr = (regnum >> 16); 1879 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1880 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1881 FEC_MMFR_TA | (regnum & 0xFFFF), 1882 fep->hwp + FEC_MII_DATA); 1883 1884 /* wait for end of transfer */ 1885 ret = fec_enet_mdio_wait(fep); 1886 if (ret) { 1887 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1888 goto out; 1889 } 1890 1891 frame_op = FEC_MMFR_OP_READ_C45; 1892 1893 } else { 1894 /* C22 read */ 1895 frame_op = FEC_MMFR_OP_READ; 1896 frame_start = FEC_MMFR_ST; 1897 frame_addr = regnum; 1898 } 1899 1900 /* start a read op */ 1901 writel(frame_start | frame_op | 1902 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1903 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1904 1905 /* wait for end of transfer */ 1906 ret = fec_enet_mdio_wait(fep); 1907 if (ret) { 1908 netdev_err(fep->netdev, "MDIO read timeout\n"); 1909 goto out; 1910 } 1911 1912 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1913 1914 out: 1915 pm_runtime_mark_last_busy(dev); 1916 pm_runtime_put_autosuspend(dev); 1917 1918 return ret; 1919 } 1920 1921 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1922 u16 value) 1923 { 1924 struct fec_enet_private *fep = bus->priv; 1925 struct device *dev = &fep->pdev->dev; 1926 int ret, frame_start, frame_addr; 1927 bool is_c45 = !!(regnum & MII_ADDR_C45); 1928 1929 ret = pm_runtime_resume_and_get(dev); 1930 if (ret < 0) 1931 return ret; 1932 1933 if (is_c45) { 1934 frame_start = FEC_MMFR_ST_C45; 1935 1936 /* write address */ 1937 frame_addr = (regnum >> 16); 1938 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1939 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1940 FEC_MMFR_TA | (regnum & 0xFFFF), 1941 fep->hwp + FEC_MII_DATA); 1942 1943 /* wait for end of transfer */ 1944 ret = fec_enet_mdio_wait(fep); 1945 if (ret) { 1946 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1947 goto out; 1948 } 1949 } else { 1950 /* C22 write */ 1951 frame_start = FEC_MMFR_ST; 1952 frame_addr = regnum; 1953 } 1954 1955 /* start a write op */ 1956 writel(frame_start | FEC_MMFR_OP_WRITE | 1957 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1958 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1959 fep->hwp + FEC_MII_DATA); 1960 1961 /* wait for end of transfer */ 1962 ret = fec_enet_mdio_wait(fep); 1963 if (ret) 1964 netdev_err(fep->netdev, "MDIO write timeout\n"); 1965 1966 out: 1967 pm_runtime_mark_last_busy(dev); 1968 pm_runtime_put_autosuspend(dev); 1969 1970 return ret; 1971 } 1972 1973 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1974 { 1975 struct fec_enet_private *fep = netdev_priv(ndev); 1976 struct phy_device *phy_dev = ndev->phydev; 1977 1978 if (phy_dev) { 1979 phy_reset_after_clk_enable(phy_dev); 1980 } else if (fep->phy_node) { 1981 /* 1982 * If the PHY still is not bound to the MAC, but there is 1983 * OF PHY node and a matching PHY device instance already, 1984 * use the OF PHY node to obtain the PHY device instance, 1985 * and then use that PHY device instance when triggering 1986 * the PHY reset. 1987 */ 1988 phy_dev = of_phy_find_device(fep->phy_node); 1989 phy_reset_after_clk_enable(phy_dev); 1990 put_device(&phy_dev->mdio.dev); 1991 } 1992 } 1993 1994 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1995 { 1996 struct fec_enet_private *fep = netdev_priv(ndev); 1997 int ret; 1998 1999 if (enable) { 2000 ret = clk_prepare_enable(fep->clk_enet_out); 2001 if (ret) 2002 return ret; 2003 2004 if (fep->clk_ptp) { 2005 mutex_lock(&fep->ptp_clk_mutex); 2006 ret = clk_prepare_enable(fep->clk_ptp); 2007 if (ret) { 2008 mutex_unlock(&fep->ptp_clk_mutex); 2009 goto failed_clk_ptp; 2010 } else { 2011 fep->ptp_clk_on = true; 2012 } 2013 mutex_unlock(&fep->ptp_clk_mutex); 2014 } 2015 2016 ret = clk_prepare_enable(fep->clk_ref); 2017 if (ret) 2018 goto failed_clk_ref; 2019 2020 ret = clk_prepare_enable(fep->clk_2x_txclk); 2021 if (ret) 2022 goto failed_clk_2x_txclk; 2023 2024 fec_enet_phy_reset_after_clk_enable(ndev); 2025 } else { 2026 clk_disable_unprepare(fep->clk_enet_out); 2027 if (fep->clk_ptp) { 2028 mutex_lock(&fep->ptp_clk_mutex); 2029 clk_disable_unprepare(fep->clk_ptp); 2030 fep->ptp_clk_on = false; 2031 mutex_unlock(&fep->ptp_clk_mutex); 2032 } 2033 clk_disable_unprepare(fep->clk_ref); 2034 clk_disable_unprepare(fep->clk_2x_txclk); 2035 } 2036 2037 return 0; 2038 2039 failed_clk_2x_txclk: 2040 if (fep->clk_ref) 2041 clk_disable_unprepare(fep->clk_ref); 2042 failed_clk_ref: 2043 if (fep->clk_ptp) { 2044 mutex_lock(&fep->ptp_clk_mutex); 2045 clk_disable_unprepare(fep->clk_ptp); 2046 fep->ptp_clk_on = false; 2047 mutex_unlock(&fep->ptp_clk_mutex); 2048 } 2049 failed_clk_ptp: 2050 clk_disable_unprepare(fep->clk_enet_out); 2051 2052 return ret; 2053 } 2054 2055 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2056 struct device_node *np) 2057 { 2058 u32 rgmii_tx_delay, rgmii_rx_delay; 2059 2060 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2061 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2062 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2063 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2064 return -EINVAL; 2065 } else if (rgmii_tx_delay == 2000) { 2066 fep->rgmii_txc_dly = true; 2067 } 2068 } 2069 2070 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2071 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2072 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2073 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2074 return -EINVAL; 2075 } else if (rgmii_rx_delay == 2000) { 2076 fep->rgmii_rxc_dly = true; 2077 } 2078 } 2079 2080 return 0; 2081 } 2082 2083 static int fec_enet_mii_probe(struct net_device *ndev) 2084 { 2085 struct fec_enet_private *fep = netdev_priv(ndev); 2086 struct phy_device *phy_dev = NULL; 2087 char mdio_bus_id[MII_BUS_ID_SIZE]; 2088 char phy_name[MII_BUS_ID_SIZE + 3]; 2089 int phy_id; 2090 int dev_id = fep->dev_id; 2091 2092 if (fep->phy_node) { 2093 phy_dev = of_phy_connect(ndev, fep->phy_node, 2094 &fec_enet_adjust_link, 0, 2095 fep->phy_interface); 2096 if (!phy_dev) { 2097 netdev_err(ndev, "Unable to connect to phy\n"); 2098 return -ENODEV; 2099 } 2100 } else { 2101 /* check for attached phy */ 2102 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2103 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2104 continue; 2105 if (dev_id--) 2106 continue; 2107 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2108 break; 2109 } 2110 2111 if (phy_id >= PHY_MAX_ADDR) { 2112 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2113 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2114 phy_id = 0; 2115 } 2116 2117 snprintf(phy_name, sizeof(phy_name), 2118 PHY_ID_FMT, mdio_bus_id, phy_id); 2119 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2120 fep->phy_interface); 2121 } 2122 2123 if (IS_ERR(phy_dev)) { 2124 netdev_err(ndev, "could not attach to PHY\n"); 2125 return PTR_ERR(phy_dev); 2126 } 2127 2128 /* mask with MAC supported features */ 2129 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2130 phy_set_max_speed(phy_dev, 1000); 2131 phy_remove_link_mode(phy_dev, 2132 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2133 #if !defined(CONFIG_M5272) 2134 phy_support_sym_pause(phy_dev); 2135 #endif 2136 } 2137 else 2138 phy_set_max_speed(phy_dev, 100); 2139 2140 fep->link = 0; 2141 fep->full_duplex = 0; 2142 2143 phy_dev->mac_managed_pm = 1; 2144 2145 phy_attached_info(phy_dev); 2146 2147 return 0; 2148 } 2149 2150 static int fec_enet_mii_init(struct platform_device *pdev) 2151 { 2152 static struct mii_bus *fec0_mii_bus; 2153 struct net_device *ndev = platform_get_drvdata(pdev); 2154 struct fec_enet_private *fep = netdev_priv(ndev); 2155 bool suppress_preamble = false; 2156 struct device_node *node; 2157 int err = -ENXIO; 2158 u32 mii_speed, holdtime; 2159 u32 bus_freq; 2160 2161 /* 2162 * The i.MX28 dual fec interfaces are not equal. 2163 * Here are the differences: 2164 * 2165 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2166 * - fec0 acts as the 1588 time master while fec1 is slave 2167 * - external phys can only be configured by fec0 2168 * 2169 * That is to say fec1 can not work independently. It only works 2170 * when fec0 is working. The reason behind this design is that the 2171 * second interface is added primarily for Switch mode. 2172 * 2173 * Because of the last point above, both phys are attached on fec0 2174 * mdio interface in board design, and need to be configured by 2175 * fec0 mii_bus. 2176 */ 2177 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2178 /* fec1 uses fec0 mii_bus */ 2179 if (mii_cnt && fec0_mii_bus) { 2180 fep->mii_bus = fec0_mii_bus; 2181 mii_cnt++; 2182 return 0; 2183 } 2184 return -ENOENT; 2185 } 2186 2187 bus_freq = 2500000; /* 2.5MHz by default */ 2188 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2189 if (node) { 2190 of_property_read_u32(node, "clock-frequency", &bus_freq); 2191 suppress_preamble = of_property_read_bool(node, 2192 "suppress-preamble"); 2193 } 2194 2195 /* 2196 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2197 * 2198 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2199 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2200 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2201 * document. 2202 */ 2203 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2204 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2205 mii_speed--; 2206 if (mii_speed > 63) { 2207 dev_err(&pdev->dev, 2208 "fec clock (%lu) too fast to get right mii speed\n", 2209 clk_get_rate(fep->clk_ipg)); 2210 err = -EINVAL; 2211 goto err_out; 2212 } 2213 2214 /* 2215 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2216 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2217 * versions are RAZ there, so just ignore the difference and write the 2218 * register always. 2219 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2220 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2221 * output. 2222 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2223 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2224 * holdtime cannot result in a value greater than 3. 2225 */ 2226 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2227 2228 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2229 2230 if (suppress_preamble) 2231 fep->phy_speed |= BIT(7); 2232 2233 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2234 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2235 * MII event generation condition: 2236 * - writing MSCR: 2237 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2238 * mscr_reg_data_in[7:0] != 0 2239 * - writing MMFR: 2240 * - mscr[7:0]_not_zero 2241 */ 2242 writel(0, fep->hwp + FEC_MII_DATA); 2243 } 2244 2245 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2246 2247 /* Clear any pending transaction complete indication */ 2248 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2249 2250 fep->mii_bus = mdiobus_alloc(); 2251 if (fep->mii_bus == NULL) { 2252 err = -ENOMEM; 2253 goto err_out; 2254 } 2255 2256 fep->mii_bus->name = "fec_enet_mii_bus"; 2257 fep->mii_bus->read = fec_enet_mdio_read; 2258 fep->mii_bus->write = fec_enet_mdio_write; 2259 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2260 pdev->name, fep->dev_id + 1); 2261 fep->mii_bus->priv = fep; 2262 fep->mii_bus->parent = &pdev->dev; 2263 2264 err = of_mdiobus_register(fep->mii_bus, node); 2265 if (err) 2266 goto err_out_free_mdiobus; 2267 of_node_put(node); 2268 2269 mii_cnt++; 2270 2271 /* save fec0 mii_bus */ 2272 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2273 fec0_mii_bus = fep->mii_bus; 2274 2275 return 0; 2276 2277 err_out_free_mdiobus: 2278 mdiobus_free(fep->mii_bus); 2279 err_out: 2280 of_node_put(node); 2281 return err; 2282 } 2283 2284 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2285 { 2286 if (--mii_cnt == 0) { 2287 mdiobus_unregister(fep->mii_bus); 2288 mdiobus_free(fep->mii_bus); 2289 } 2290 } 2291 2292 static void fec_enet_get_drvinfo(struct net_device *ndev, 2293 struct ethtool_drvinfo *info) 2294 { 2295 struct fec_enet_private *fep = netdev_priv(ndev); 2296 2297 strlcpy(info->driver, fep->pdev->dev.driver->name, 2298 sizeof(info->driver)); 2299 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2300 } 2301 2302 static int fec_enet_get_regs_len(struct net_device *ndev) 2303 { 2304 struct fec_enet_private *fep = netdev_priv(ndev); 2305 struct resource *r; 2306 int s = 0; 2307 2308 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2309 if (r) 2310 s = resource_size(r); 2311 2312 return s; 2313 } 2314 2315 /* List of registers that can be safety be read to dump them with ethtool */ 2316 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2317 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2318 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2319 static __u32 fec_enet_register_version = 2; 2320 static u32 fec_enet_register_offset[] = { 2321 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2322 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2323 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2324 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2325 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2326 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2327 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2328 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2329 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2330 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2331 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2332 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2333 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2334 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2335 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2336 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2337 RMON_T_P_GTE2048, RMON_T_OCTETS, 2338 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2339 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2340 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2341 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2342 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2343 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2344 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2345 RMON_R_P_GTE2048, RMON_R_OCTETS, 2346 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2347 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2348 }; 2349 #else 2350 static __u32 fec_enet_register_version = 1; 2351 static u32 fec_enet_register_offset[] = { 2352 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2353 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2354 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2355 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2356 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2357 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2358 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2359 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2360 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2361 }; 2362 #endif 2363 2364 static void fec_enet_get_regs(struct net_device *ndev, 2365 struct ethtool_regs *regs, void *regbuf) 2366 { 2367 struct fec_enet_private *fep = netdev_priv(ndev); 2368 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2369 struct device *dev = &fep->pdev->dev; 2370 u32 *buf = (u32 *)regbuf; 2371 u32 i, off; 2372 int ret; 2373 2374 ret = pm_runtime_resume_and_get(dev); 2375 if (ret < 0) 2376 return; 2377 2378 regs->version = fec_enet_register_version; 2379 2380 memset(buf, 0, regs->len); 2381 2382 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2383 off = fec_enet_register_offset[i]; 2384 2385 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2386 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2387 continue; 2388 2389 off >>= 2; 2390 buf[off] = readl(&theregs[off]); 2391 } 2392 2393 pm_runtime_mark_last_busy(dev); 2394 pm_runtime_put_autosuspend(dev); 2395 } 2396 2397 static int fec_enet_get_ts_info(struct net_device *ndev, 2398 struct ethtool_ts_info *info) 2399 { 2400 struct fec_enet_private *fep = netdev_priv(ndev); 2401 2402 if (fep->bufdesc_ex) { 2403 2404 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2405 SOF_TIMESTAMPING_RX_SOFTWARE | 2406 SOF_TIMESTAMPING_SOFTWARE | 2407 SOF_TIMESTAMPING_TX_HARDWARE | 2408 SOF_TIMESTAMPING_RX_HARDWARE | 2409 SOF_TIMESTAMPING_RAW_HARDWARE; 2410 if (fep->ptp_clock) 2411 info->phc_index = ptp_clock_index(fep->ptp_clock); 2412 else 2413 info->phc_index = -1; 2414 2415 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2416 (1 << HWTSTAMP_TX_ON); 2417 2418 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2419 (1 << HWTSTAMP_FILTER_ALL); 2420 return 0; 2421 } else { 2422 return ethtool_op_get_ts_info(ndev, info); 2423 } 2424 } 2425 2426 #if !defined(CONFIG_M5272) 2427 2428 static void fec_enet_get_pauseparam(struct net_device *ndev, 2429 struct ethtool_pauseparam *pause) 2430 { 2431 struct fec_enet_private *fep = netdev_priv(ndev); 2432 2433 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2434 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2435 pause->rx_pause = pause->tx_pause; 2436 } 2437 2438 static int fec_enet_set_pauseparam(struct net_device *ndev, 2439 struct ethtool_pauseparam *pause) 2440 { 2441 struct fec_enet_private *fep = netdev_priv(ndev); 2442 2443 if (!ndev->phydev) 2444 return -ENODEV; 2445 2446 if (pause->tx_pause != pause->rx_pause) { 2447 netdev_info(ndev, 2448 "hardware only support enable/disable both tx and rx"); 2449 return -EINVAL; 2450 } 2451 2452 fep->pause_flag = 0; 2453 2454 /* tx pause must be same as rx pause */ 2455 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2456 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2457 2458 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2459 pause->autoneg); 2460 2461 if (pause->autoneg) { 2462 if (netif_running(ndev)) 2463 fec_stop(ndev); 2464 phy_start_aneg(ndev->phydev); 2465 } 2466 if (netif_running(ndev)) { 2467 napi_disable(&fep->napi); 2468 netif_tx_lock_bh(ndev); 2469 fec_restart(ndev); 2470 netif_tx_wake_all_queues(ndev); 2471 netif_tx_unlock_bh(ndev); 2472 napi_enable(&fep->napi); 2473 } 2474 2475 return 0; 2476 } 2477 2478 static const struct fec_stat { 2479 char name[ETH_GSTRING_LEN]; 2480 u16 offset; 2481 } fec_stats[] = { 2482 /* RMON TX */ 2483 { "tx_dropped", RMON_T_DROP }, 2484 { "tx_packets", RMON_T_PACKETS }, 2485 { "tx_broadcast", RMON_T_BC_PKT }, 2486 { "tx_multicast", RMON_T_MC_PKT }, 2487 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2488 { "tx_undersize", RMON_T_UNDERSIZE }, 2489 { "tx_oversize", RMON_T_OVERSIZE }, 2490 { "tx_fragment", RMON_T_FRAG }, 2491 { "tx_jabber", RMON_T_JAB }, 2492 { "tx_collision", RMON_T_COL }, 2493 { "tx_64byte", RMON_T_P64 }, 2494 { "tx_65to127byte", RMON_T_P65TO127 }, 2495 { "tx_128to255byte", RMON_T_P128TO255 }, 2496 { "tx_256to511byte", RMON_T_P256TO511 }, 2497 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2498 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2499 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2500 { "tx_octets", RMON_T_OCTETS }, 2501 2502 /* IEEE TX */ 2503 { "IEEE_tx_drop", IEEE_T_DROP }, 2504 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2505 { "IEEE_tx_1col", IEEE_T_1COL }, 2506 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2507 { "IEEE_tx_def", IEEE_T_DEF }, 2508 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2509 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2510 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2511 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2512 { "IEEE_tx_sqe", IEEE_T_SQE }, 2513 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2514 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2515 2516 /* RMON RX */ 2517 { "rx_packets", RMON_R_PACKETS }, 2518 { "rx_broadcast", RMON_R_BC_PKT }, 2519 { "rx_multicast", RMON_R_MC_PKT }, 2520 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2521 { "rx_undersize", RMON_R_UNDERSIZE }, 2522 { "rx_oversize", RMON_R_OVERSIZE }, 2523 { "rx_fragment", RMON_R_FRAG }, 2524 { "rx_jabber", RMON_R_JAB }, 2525 { "rx_64byte", RMON_R_P64 }, 2526 { "rx_65to127byte", RMON_R_P65TO127 }, 2527 { "rx_128to255byte", RMON_R_P128TO255 }, 2528 { "rx_256to511byte", RMON_R_P256TO511 }, 2529 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2530 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2531 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2532 { "rx_octets", RMON_R_OCTETS }, 2533 2534 /* IEEE RX */ 2535 { "IEEE_rx_drop", IEEE_R_DROP }, 2536 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2537 { "IEEE_rx_crc", IEEE_R_CRC }, 2538 { "IEEE_rx_align", IEEE_R_ALIGN }, 2539 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2540 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2541 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2542 }; 2543 2544 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2545 2546 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2547 { 2548 struct fec_enet_private *fep = netdev_priv(dev); 2549 int i; 2550 2551 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2552 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2553 } 2554 2555 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2556 struct ethtool_stats *stats, u64 *data) 2557 { 2558 struct fec_enet_private *fep = netdev_priv(dev); 2559 2560 if (netif_running(dev)) 2561 fec_enet_update_ethtool_stats(dev); 2562 2563 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2564 } 2565 2566 static void fec_enet_get_strings(struct net_device *netdev, 2567 u32 stringset, u8 *data) 2568 { 2569 int i; 2570 switch (stringset) { 2571 case ETH_SS_STATS: 2572 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2573 memcpy(data + i * ETH_GSTRING_LEN, 2574 fec_stats[i].name, ETH_GSTRING_LEN); 2575 break; 2576 case ETH_SS_TEST: 2577 net_selftest_get_strings(data); 2578 break; 2579 } 2580 } 2581 2582 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2583 { 2584 switch (sset) { 2585 case ETH_SS_STATS: 2586 return ARRAY_SIZE(fec_stats); 2587 case ETH_SS_TEST: 2588 return net_selftest_get_count(); 2589 default: 2590 return -EOPNOTSUPP; 2591 } 2592 } 2593 2594 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2595 { 2596 struct fec_enet_private *fep = netdev_priv(dev); 2597 int i; 2598 2599 /* Disable MIB statistics counters */ 2600 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2601 2602 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2603 writel(0, fep->hwp + fec_stats[i].offset); 2604 2605 /* Don't disable MIB statistics counters */ 2606 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2607 } 2608 2609 #else /* !defined(CONFIG_M5272) */ 2610 #define FEC_STATS_SIZE 0 2611 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2612 { 2613 } 2614 2615 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2616 { 2617 } 2618 #endif /* !defined(CONFIG_M5272) */ 2619 2620 /* ITR clock source is enet system clock (clk_ahb). 2621 * TCTT unit is cycle_ns * 64 cycle 2622 * So, the ICTT value = X us / (cycle_ns * 64) 2623 */ 2624 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2625 { 2626 struct fec_enet_private *fep = netdev_priv(ndev); 2627 2628 return us * (fep->itr_clk_rate / 64000) / 1000; 2629 } 2630 2631 /* Set threshold for interrupt coalescing */ 2632 static void fec_enet_itr_coal_set(struct net_device *ndev) 2633 { 2634 struct fec_enet_private *fep = netdev_priv(ndev); 2635 int rx_itr, tx_itr; 2636 2637 /* Must be greater than zero to avoid unpredictable behavior */ 2638 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2639 !fep->tx_time_itr || !fep->tx_pkts_itr) 2640 return; 2641 2642 /* Select enet system clock as Interrupt Coalescing 2643 * timer Clock Source 2644 */ 2645 rx_itr = FEC_ITR_CLK_SEL; 2646 tx_itr = FEC_ITR_CLK_SEL; 2647 2648 /* set ICFT and ICTT */ 2649 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2650 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2651 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2652 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2653 2654 rx_itr |= FEC_ITR_EN; 2655 tx_itr |= FEC_ITR_EN; 2656 2657 writel(tx_itr, fep->hwp + FEC_TXIC0); 2658 writel(rx_itr, fep->hwp + FEC_RXIC0); 2659 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2660 writel(tx_itr, fep->hwp + FEC_TXIC1); 2661 writel(rx_itr, fep->hwp + FEC_RXIC1); 2662 writel(tx_itr, fep->hwp + FEC_TXIC2); 2663 writel(rx_itr, fep->hwp + FEC_RXIC2); 2664 } 2665 } 2666 2667 static int fec_enet_get_coalesce(struct net_device *ndev, 2668 struct ethtool_coalesce *ec, 2669 struct kernel_ethtool_coalesce *kernel_coal, 2670 struct netlink_ext_ack *extack) 2671 { 2672 struct fec_enet_private *fep = netdev_priv(ndev); 2673 2674 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2675 return -EOPNOTSUPP; 2676 2677 ec->rx_coalesce_usecs = fep->rx_time_itr; 2678 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2679 2680 ec->tx_coalesce_usecs = fep->tx_time_itr; 2681 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2682 2683 return 0; 2684 } 2685 2686 static int fec_enet_set_coalesce(struct net_device *ndev, 2687 struct ethtool_coalesce *ec, 2688 struct kernel_ethtool_coalesce *kernel_coal, 2689 struct netlink_ext_ack *extack) 2690 { 2691 struct fec_enet_private *fep = netdev_priv(ndev); 2692 struct device *dev = &fep->pdev->dev; 2693 unsigned int cycle; 2694 2695 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2696 return -EOPNOTSUPP; 2697 2698 if (ec->rx_max_coalesced_frames > 255) { 2699 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2700 return -EINVAL; 2701 } 2702 2703 if (ec->tx_max_coalesced_frames > 255) { 2704 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2705 return -EINVAL; 2706 } 2707 2708 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2709 if (cycle > 0xFFFF) { 2710 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2711 return -EINVAL; 2712 } 2713 2714 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2715 if (cycle > 0xFFFF) { 2716 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2717 return -EINVAL; 2718 } 2719 2720 fep->rx_time_itr = ec->rx_coalesce_usecs; 2721 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2722 2723 fep->tx_time_itr = ec->tx_coalesce_usecs; 2724 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2725 2726 fec_enet_itr_coal_set(ndev); 2727 2728 return 0; 2729 } 2730 2731 static void fec_enet_itr_coal_init(struct net_device *ndev) 2732 { 2733 struct ethtool_coalesce ec; 2734 2735 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2736 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2737 2738 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2739 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2740 2741 fec_enet_set_coalesce(ndev, &ec, NULL, NULL); 2742 } 2743 2744 static int fec_enet_get_tunable(struct net_device *netdev, 2745 const struct ethtool_tunable *tuna, 2746 void *data) 2747 { 2748 struct fec_enet_private *fep = netdev_priv(netdev); 2749 int ret = 0; 2750 2751 switch (tuna->id) { 2752 case ETHTOOL_RX_COPYBREAK: 2753 *(u32 *)data = fep->rx_copybreak; 2754 break; 2755 default: 2756 ret = -EINVAL; 2757 break; 2758 } 2759 2760 return ret; 2761 } 2762 2763 static int fec_enet_set_tunable(struct net_device *netdev, 2764 const struct ethtool_tunable *tuna, 2765 const void *data) 2766 { 2767 struct fec_enet_private *fep = netdev_priv(netdev); 2768 int ret = 0; 2769 2770 switch (tuna->id) { 2771 case ETHTOOL_RX_COPYBREAK: 2772 fep->rx_copybreak = *(u32 *)data; 2773 break; 2774 default: 2775 ret = -EINVAL; 2776 break; 2777 } 2778 2779 return ret; 2780 } 2781 2782 /* LPI Sleep Ts count base on tx clk (clk_ref). 2783 * The lpi sleep cnt value = X us / (cycle_ns). 2784 */ 2785 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2786 { 2787 struct fec_enet_private *fep = netdev_priv(ndev); 2788 2789 return us * (fep->clk_ref_rate / 1000) / 1000; 2790 } 2791 2792 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2793 { 2794 struct fec_enet_private *fep = netdev_priv(ndev); 2795 struct ethtool_eee *p = &fep->eee; 2796 unsigned int sleep_cycle, wake_cycle; 2797 int ret = 0; 2798 2799 if (enable) { 2800 ret = phy_init_eee(ndev->phydev, false); 2801 if (ret) 2802 return ret; 2803 2804 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2805 wake_cycle = sleep_cycle; 2806 } else { 2807 sleep_cycle = 0; 2808 wake_cycle = 0; 2809 } 2810 2811 p->tx_lpi_enabled = enable; 2812 p->eee_enabled = enable; 2813 p->eee_active = enable; 2814 2815 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2816 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2817 2818 return 0; 2819 } 2820 2821 static int 2822 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2823 { 2824 struct fec_enet_private *fep = netdev_priv(ndev); 2825 struct ethtool_eee *p = &fep->eee; 2826 2827 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2828 return -EOPNOTSUPP; 2829 2830 if (!netif_running(ndev)) 2831 return -ENETDOWN; 2832 2833 edata->eee_enabled = p->eee_enabled; 2834 edata->eee_active = p->eee_active; 2835 edata->tx_lpi_timer = p->tx_lpi_timer; 2836 edata->tx_lpi_enabled = p->tx_lpi_enabled; 2837 2838 return phy_ethtool_get_eee(ndev->phydev, edata); 2839 } 2840 2841 static int 2842 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2843 { 2844 struct fec_enet_private *fep = netdev_priv(ndev); 2845 struct ethtool_eee *p = &fep->eee; 2846 int ret = 0; 2847 2848 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2849 return -EOPNOTSUPP; 2850 2851 if (!netif_running(ndev)) 2852 return -ENETDOWN; 2853 2854 p->tx_lpi_timer = edata->tx_lpi_timer; 2855 2856 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 2857 !edata->tx_lpi_timer) 2858 ret = fec_enet_eee_mode_set(ndev, false); 2859 else 2860 ret = fec_enet_eee_mode_set(ndev, true); 2861 2862 if (ret) 2863 return ret; 2864 2865 return phy_ethtool_set_eee(ndev->phydev, edata); 2866 } 2867 2868 static void 2869 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2870 { 2871 struct fec_enet_private *fep = netdev_priv(ndev); 2872 2873 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2874 wol->supported = WAKE_MAGIC; 2875 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2876 } else { 2877 wol->supported = wol->wolopts = 0; 2878 } 2879 } 2880 2881 static int 2882 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2883 { 2884 struct fec_enet_private *fep = netdev_priv(ndev); 2885 2886 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2887 return -EINVAL; 2888 2889 if (wol->wolopts & ~WAKE_MAGIC) 2890 return -EINVAL; 2891 2892 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2893 if (device_may_wakeup(&ndev->dev)) 2894 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2895 else 2896 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2897 2898 return 0; 2899 } 2900 2901 static const struct ethtool_ops fec_enet_ethtool_ops = { 2902 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2903 ETHTOOL_COALESCE_MAX_FRAMES, 2904 .get_drvinfo = fec_enet_get_drvinfo, 2905 .get_regs_len = fec_enet_get_regs_len, 2906 .get_regs = fec_enet_get_regs, 2907 .nway_reset = phy_ethtool_nway_reset, 2908 .get_link = ethtool_op_get_link, 2909 .get_coalesce = fec_enet_get_coalesce, 2910 .set_coalesce = fec_enet_set_coalesce, 2911 #ifndef CONFIG_M5272 2912 .get_pauseparam = fec_enet_get_pauseparam, 2913 .set_pauseparam = fec_enet_set_pauseparam, 2914 .get_strings = fec_enet_get_strings, 2915 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2916 .get_sset_count = fec_enet_get_sset_count, 2917 #endif 2918 .get_ts_info = fec_enet_get_ts_info, 2919 .get_tunable = fec_enet_get_tunable, 2920 .set_tunable = fec_enet_set_tunable, 2921 .get_wol = fec_enet_get_wol, 2922 .set_wol = fec_enet_set_wol, 2923 .get_eee = fec_enet_get_eee, 2924 .set_eee = fec_enet_set_eee, 2925 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2926 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2927 .self_test = net_selftest, 2928 }; 2929 2930 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2931 { 2932 struct fec_enet_private *fep = netdev_priv(ndev); 2933 struct phy_device *phydev = ndev->phydev; 2934 2935 if (!netif_running(ndev)) 2936 return -EINVAL; 2937 2938 if (!phydev) 2939 return -ENODEV; 2940 2941 if (fep->bufdesc_ex) { 2942 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2943 2944 if (cmd == SIOCSHWTSTAMP) { 2945 if (use_fec_hwts) 2946 return fec_ptp_set(ndev, rq); 2947 fec_ptp_disable_hwts(ndev); 2948 } else if (cmd == SIOCGHWTSTAMP) { 2949 if (use_fec_hwts) 2950 return fec_ptp_get(ndev, rq); 2951 } 2952 } 2953 2954 return phy_mii_ioctl(phydev, rq, cmd); 2955 } 2956 2957 static void fec_enet_free_buffers(struct net_device *ndev) 2958 { 2959 struct fec_enet_private *fep = netdev_priv(ndev); 2960 unsigned int i; 2961 struct sk_buff *skb; 2962 struct bufdesc *bdp; 2963 struct fec_enet_priv_tx_q *txq; 2964 struct fec_enet_priv_rx_q *rxq; 2965 unsigned int q; 2966 2967 for (q = 0; q < fep->num_rx_queues; q++) { 2968 rxq = fep->rx_queue[q]; 2969 bdp = rxq->bd.base; 2970 for (i = 0; i < rxq->bd.ring_size; i++) { 2971 skb = rxq->rx_skbuff[i]; 2972 rxq->rx_skbuff[i] = NULL; 2973 if (skb) { 2974 dma_unmap_single(&fep->pdev->dev, 2975 fec32_to_cpu(bdp->cbd_bufaddr), 2976 FEC_ENET_RX_FRSIZE - fep->rx_align, 2977 DMA_FROM_DEVICE); 2978 dev_kfree_skb(skb); 2979 } 2980 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2981 } 2982 } 2983 2984 for (q = 0; q < fep->num_tx_queues; q++) { 2985 txq = fep->tx_queue[q]; 2986 for (i = 0; i < txq->bd.ring_size; i++) { 2987 kfree(txq->tx_bounce[i]); 2988 txq->tx_bounce[i] = NULL; 2989 skb = txq->tx_skbuff[i]; 2990 txq->tx_skbuff[i] = NULL; 2991 dev_kfree_skb(skb); 2992 } 2993 } 2994 } 2995 2996 static void fec_enet_free_queue(struct net_device *ndev) 2997 { 2998 struct fec_enet_private *fep = netdev_priv(ndev); 2999 int i; 3000 struct fec_enet_priv_tx_q *txq; 3001 3002 for (i = 0; i < fep->num_tx_queues; i++) 3003 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3004 txq = fep->tx_queue[i]; 3005 dma_free_coherent(&fep->pdev->dev, 3006 txq->bd.ring_size * TSO_HEADER_SIZE, 3007 txq->tso_hdrs, 3008 txq->tso_hdrs_dma); 3009 } 3010 3011 for (i = 0; i < fep->num_rx_queues; i++) 3012 kfree(fep->rx_queue[i]); 3013 for (i = 0; i < fep->num_tx_queues; i++) 3014 kfree(fep->tx_queue[i]); 3015 } 3016 3017 static int fec_enet_alloc_queue(struct net_device *ndev) 3018 { 3019 struct fec_enet_private *fep = netdev_priv(ndev); 3020 int i; 3021 int ret = 0; 3022 struct fec_enet_priv_tx_q *txq; 3023 3024 for (i = 0; i < fep->num_tx_queues; i++) { 3025 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3026 if (!txq) { 3027 ret = -ENOMEM; 3028 goto alloc_failed; 3029 } 3030 3031 fep->tx_queue[i] = txq; 3032 txq->bd.ring_size = TX_RING_SIZE; 3033 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3034 3035 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3036 txq->tx_wake_threshold = 3037 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3038 3039 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3040 txq->bd.ring_size * TSO_HEADER_SIZE, 3041 &txq->tso_hdrs_dma, 3042 GFP_KERNEL); 3043 if (!txq->tso_hdrs) { 3044 ret = -ENOMEM; 3045 goto alloc_failed; 3046 } 3047 } 3048 3049 for (i = 0; i < fep->num_rx_queues; i++) { 3050 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3051 GFP_KERNEL); 3052 if (!fep->rx_queue[i]) { 3053 ret = -ENOMEM; 3054 goto alloc_failed; 3055 } 3056 3057 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3058 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3059 } 3060 return ret; 3061 3062 alloc_failed: 3063 fec_enet_free_queue(ndev); 3064 return ret; 3065 } 3066 3067 static int 3068 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3069 { 3070 struct fec_enet_private *fep = netdev_priv(ndev); 3071 unsigned int i; 3072 struct sk_buff *skb; 3073 struct bufdesc *bdp; 3074 struct fec_enet_priv_rx_q *rxq; 3075 3076 rxq = fep->rx_queue[queue]; 3077 bdp = rxq->bd.base; 3078 for (i = 0; i < rxq->bd.ring_size; i++) { 3079 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 3080 if (!skb) 3081 goto err_alloc; 3082 3083 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 3084 dev_kfree_skb(skb); 3085 goto err_alloc; 3086 } 3087 3088 rxq->rx_skbuff[i] = skb; 3089 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3090 3091 if (fep->bufdesc_ex) { 3092 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3093 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3094 } 3095 3096 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3097 } 3098 3099 /* Set the last buffer to wrap. */ 3100 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3101 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3102 return 0; 3103 3104 err_alloc: 3105 fec_enet_free_buffers(ndev); 3106 return -ENOMEM; 3107 } 3108 3109 static int 3110 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3111 { 3112 struct fec_enet_private *fep = netdev_priv(ndev); 3113 unsigned int i; 3114 struct bufdesc *bdp; 3115 struct fec_enet_priv_tx_q *txq; 3116 3117 txq = fep->tx_queue[queue]; 3118 bdp = txq->bd.base; 3119 for (i = 0; i < txq->bd.ring_size; i++) { 3120 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3121 if (!txq->tx_bounce[i]) 3122 goto err_alloc; 3123 3124 bdp->cbd_sc = cpu_to_fec16(0); 3125 bdp->cbd_bufaddr = cpu_to_fec32(0); 3126 3127 if (fep->bufdesc_ex) { 3128 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3129 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3130 } 3131 3132 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3133 } 3134 3135 /* Set the last buffer to wrap. */ 3136 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3137 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3138 3139 return 0; 3140 3141 err_alloc: 3142 fec_enet_free_buffers(ndev); 3143 return -ENOMEM; 3144 } 3145 3146 static int fec_enet_alloc_buffers(struct net_device *ndev) 3147 { 3148 struct fec_enet_private *fep = netdev_priv(ndev); 3149 unsigned int i; 3150 3151 for (i = 0; i < fep->num_rx_queues; i++) 3152 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3153 return -ENOMEM; 3154 3155 for (i = 0; i < fep->num_tx_queues; i++) 3156 if (fec_enet_alloc_txq_buffers(ndev, i)) 3157 return -ENOMEM; 3158 return 0; 3159 } 3160 3161 static int 3162 fec_enet_open(struct net_device *ndev) 3163 { 3164 struct fec_enet_private *fep = netdev_priv(ndev); 3165 int ret; 3166 bool reset_again; 3167 3168 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3169 if (ret < 0) 3170 return ret; 3171 3172 pinctrl_pm_select_default_state(&fep->pdev->dev); 3173 ret = fec_enet_clk_enable(ndev, true); 3174 if (ret) 3175 goto clk_enable; 3176 3177 /* During the first fec_enet_open call the PHY isn't probed at this 3178 * point. Therefore the phy_reset_after_clk_enable() call within 3179 * fec_enet_clk_enable() fails. As we need this reset in order to be 3180 * sure the PHY is working correctly we check if we need to reset again 3181 * later when the PHY is probed 3182 */ 3183 if (ndev->phydev && ndev->phydev->drv) 3184 reset_again = false; 3185 else 3186 reset_again = true; 3187 3188 /* I should reset the ring buffers here, but I don't yet know 3189 * a simple way to do that. 3190 */ 3191 3192 ret = fec_enet_alloc_buffers(ndev); 3193 if (ret) 3194 goto err_enet_alloc; 3195 3196 /* Init MAC prior to mii bus probe */ 3197 fec_restart(ndev); 3198 3199 /* Call phy_reset_after_clk_enable() again if it failed during 3200 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3201 */ 3202 if (reset_again) 3203 fec_enet_phy_reset_after_clk_enable(ndev); 3204 3205 /* Probe and connect to PHY when open the interface */ 3206 ret = fec_enet_mii_probe(ndev); 3207 if (ret) 3208 goto err_enet_mii_probe; 3209 3210 if (fep->quirks & FEC_QUIRK_ERR006687) 3211 imx6q_cpuidle_fec_irqs_used(); 3212 3213 napi_enable(&fep->napi); 3214 phy_start(ndev->phydev); 3215 netif_tx_start_all_queues(ndev); 3216 3217 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3218 FEC_WOL_FLAG_ENABLE); 3219 3220 return 0; 3221 3222 err_enet_mii_probe: 3223 fec_enet_free_buffers(ndev); 3224 err_enet_alloc: 3225 fec_enet_clk_enable(ndev, false); 3226 clk_enable: 3227 pm_runtime_mark_last_busy(&fep->pdev->dev); 3228 pm_runtime_put_autosuspend(&fep->pdev->dev); 3229 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3230 return ret; 3231 } 3232 3233 static int 3234 fec_enet_close(struct net_device *ndev) 3235 { 3236 struct fec_enet_private *fep = netdev_priv(ndev); 3237 3238 phy_stop(ndev->phydev); 3239 3240 if (netif_device_present(ndev)) { 3241 napi_disable(&fep->napi); 3242 netif_tx_disable(ndev); 3243 fec_stop(ndev); 3244 } 3245 3246 phy_disconnect(ndev->phydev); 3247 3248 if (fep->quirks & FEC_QUIRK_ERR006687) 3249 imx6q_cpuidle_fec_irqs_unused(); 3250 3251 fec_enet_update_ethtool_stats(ndev); 3252 3253 fec_enet_clk_enable(ndev, false); 3254 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3255 pm_runtime_mark_last_busy(&fep->pdev->dev); 3256 pm_runtime_put_autosuspend(&fep->pdev->dev); 3257 3258 fec_enet_free_buffers(ndev); 3259 3260 return 0; 3261 } 3262 3263 /* Set or clear the multicast filter for this adaptor. 3264 * Skeleton taken from sunlance driver. 3265 * The CPM Ethernet implementation allows Multicast as well as individual 3266 * MAC address filtering. Some of the drivers check to make sure it is 3267 * a group multicast address, and discard those that are not. I guess I 3268 * will do the same for now, but just remove the test if you want 3269 * individual filtering as well (do the upper net layers want or support 3270 * this kind of feature?). 3271 */ 3272 3273 #define FEC_HASH_BITS 6 /* #bits in hash */ 3274 3275 static void set_multicast_list(struct net_device *ndev) 3276 { 3277 struct fec_enet_private *fep = netdev_priv(ndev); 3278 struct netdev_hw_addr *ha; 3279 unsigned int crc, tmp; 3280 unsigned char hash; 3281 unsigned int hash_high = 0, hash_low = 0; 3282 3283 if (ndev->flags & IFF_PROMISC) { 3284 tmp = readl(fep->hwp + FEC_R_CNTRL); 3285 tmp |= 0x8; 3286 writel(tmp, fep->hwp + FEC_R_CNTRL); 3287 return; 3288 } 3289 3290 tmp = readl(fep->hwp + FEC_R_CNTRL); 3291 tmp &= ~0x8; 3292 writel(tmp, fep->hwp + FEC_R_CNTRL); 3293 3294 if (ndev->flags & IFF_ALLMULTI) { 3295 /* Catch all multicast addresses, so set the 3296 * filter to all 1's 3297 */ 3298 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3299 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3300 3301 return; 3302 } 3303 3304 /* Add the addresses in hash register */ 3305 netdev_for_each_mc_addr(ha, ndev) { 3306 /* calculate crc32 value of mac address */ 3307 crc = ether_crc_le(ndev->addr_len, ha->addr); 3308 3309 /* only upper 6 bits (FEC_HASH_BITS) are used 3310 * which point to specific bit in the hash registers 3311 */ 3312 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3313 3314 if (hash > 31) 3315 hash_high |= 1 << (hash - 32); 3316 else 3317 hash_low |= 1 << hash; 3318 } 3319 3320 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3321 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3322 } 3323 3324 /* Set a MAC change in hardware. */ 3325 static int 3326 fec_set_mac_address(struct net_device *ndev, void *p) 3327 { 3328 struct fec_enet_private *fep = netdev_priv(ndev); 3329 struct sockaddr *addr = p; 3330 3331 if (addr) { 3332 if (!is_valid_ether_addr(addr->sa_data)) 3333 return -EADDRNOTAVAIL; 3334 eth_hw_addr_set(ndev, addr->sa_data); 3335 } 3336 3337 /* Add netif status check here to avoid system hang in below case: 3338 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3339 * After ethx down, fec all clocks are gated off and then register 3340 * access causes system hang. 3341 */ 3342 if (!netif_running(ndev)) 3343 return 0; 3344 3345 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3346 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3347 fep->hwp + FEC_ADDR_LOW); 3348 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3349 fep->hwp + FEC_ADDR_HIGH); 3350 return 0; 3351 } 3352 3353 #ifdef CONFIG_NET_POLL_CONTROLLER 3354 /** 3355 * fec_poll_controller - FEC Poll controller function 3356 * @dev: The FEC network adapter 3357 * 3358 * Polled functionality used by netconsole and others in non interrupt mode 3359 * 3360 */ 3361 static void fec_poll_controller(struct net_device *dev) 3362 { 3363 int i; 3364 struct fec_enet_private *fep = netdev_priv(dev); 3365 3366 for (i = 0; i < FEC_IRQ_NUM; i++) { 3367 if (fep->irq[i] > 0) { 3368 disable_irq(fep->irq[i]); 3369 fec_enet_interrupt(fep->irq[i], dev); 3370 enable_irq(fep->irq[i]); 3371 } 3372 } 3373 } 3374 #endif 3375 3376 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3377 netdev_features_t features) 3378 { 3379 struct fec_enet_private *fep = netdev_priv(netdev); 3380 netdev_features_t changed = features ^ netdev->features; 3381 3382 netdev->features = features; 3383 3384 /* Receive checksum has been changed */ 3385 if (changed & NETIF_F_RXCSUM) { 3386 if (features & NETIF_F_RXCSUM) 3387 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3388 else 3389 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3390 } 3391 } 3392 3393 static int fec_set_features(struct net_device *netdev, 3394 netdev_features_t features) 3395 { 3396 struct fec_enet_private *fep = netdev_priv(netdev); 3397 netdev_features_t changed = features ^ netdev->features; 3398 3399 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3400 napi_disable(&fep->napi); 3401 netif_tx_lock_bh(netdev); 3402 fec_stop(netdev); 3403 fec_enet_set_netdev_features(netdev, features); 3404 fec_restart(netdev); 3405 netif_tx_wake_all_queues(netdev); 3406 netif_tx_unlock_bh(netdev); 3407 napi_enable(&fep->napi); 3408 } else { 3409 fec_enet_set_netdev_features(netdev, features); 3410 } 3411 3412 return 0; 3413 } 3414 3415 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3416 { 3417 struct vlan_ethhdr *vhdr; 3418 unsigned short vlan_TCI = 0; 3419 3420 if (skb->protocol == htons(ETH_P_ALL)) { 3421 vhdr = (struct vlan_ethhdr *)(skb->data); 3422 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3423 } 3424 3425 return vlan_TCI; 3426 } 3427 3428 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3429 struct net_device *sb_dev) 3430 { 3431 struct fec_enet_private *fep = netdev_priv(ndev); 3432 u16 vlan_tag; 3433 3434 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3435 return netdev_pick_tx(ndev, skb, NULL); 3436 3437 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3438 if (!vlan_tag) 3439 return vlan_tag; 3440 3441 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3442 } 3443 3444 static const struct net_device_ops fec_netdev_ops = { 3445 .ndo_open = fec_enet_open, 3446 .ndo_stop = fec_enet_close, 3447 .ndo_start_xmit = fec_enet_start_xmit, 3448 .ndo_select_queue = fec_enet_select_queue, 3449 .ndo_set_rx_mode = set_multicast_list, 3450 .ndo_validate_addr = eth_validate_addr, 3451 .ndo_tx_timeout = fec_timeout, 3452 .ndo_set_mac_address = fec_set_mac_address, 3453 .ndo_eth_ioctl = fec_enet_ioctl, 3454 #ifdef CONFIG_NET_POLL_CONTROLLER 3455 .ndo_poll_controller = fec_poll_controller, 3456 #endif 3457 .ndo_set_features = fec_set_features, 3458 }; 3459 3460 static const unsigned short offset_des_active_rxq[] = { 3461 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3462 }; 3463 3464 static const unsigned short offset_des_active_txq[] = { 3465 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3466 }; 3467 3468 /* 3469 * XXX: We need to clean up on failure exits here. 3470 * 3471 */ 3472 static int fec_enet_init(struct net_device *ndev) 3473 { 3474 struct fec_enet_private *fep = netdev_priv(ndev); 3475 struct bufdesc *cbd_base; 3476 dma_addr_t bd_dma; 3477 int bd_size; 3478 unsigned int i; 3479 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3480 sizeof(struct bufdesc); 3481 unsigned dsize_log2 = __fls(dsize); 3482 int ret; 3483 3484 WARN_ON(dsize != (1 << dsize_log2)); 3485 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3486 fep->rx_align = 0xf; 3487 fep->tx_align = 0xf; 3488 #else 3489 fep->rx_align = 0x3; 3490 fep->tx_align = 0x3; 3491 #endif 3492 3493 /* Check mask of the streaming and coherent API */ 3494 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3495 if (ret < 0) { 3496 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3497 return ret; 3498 } 3499 3500 ret = fec_enet_alloc_queue(ndev); 3501 if (ret) 3502 return ret; 3503 3504 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3505 3506 /* Allocate memory for buffer descriptors. */ 3507 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3508 GFP_KERNEL); 3509 if (!cbd_base) { 3510 ret = -ENOMEM; 3511 goto free_queue_mem; 3512 } 3513 3514 /* Get the Ethernet address */ 3515 ret = fec_get_mac(ndev); 3516 if (ret) 3517 goto free_queue_mem; 3518 3519 /* make sure MAC we just acquired is programmed into the hw */ 3520 fec_set_mac_address(ndev, NULL); 3521 3522 /* Set receive and transmit descriptor base. */ 3523 for (i = 0; i < fep->num_rx_queues; i++) { 3524 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3525 unsigned size = dsize * rxq->bd.ring_size; 3526 3527 rxq->bd.qid = i; 3528 rxq->bd.base = cbd_base; 3529 rxq->bd.cur = cbd_base; 3530 rxq->bd.dma = bd_dma; 3531 rxq->bd.dsize = dsize; 3532 rxq->bd.dsize_log2 = dsize_log2; 3533 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3534 bd_dma += size; 3535 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3536 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3537 } 3538 3539 for (i = 0; i < fep->num_tx_queues; i++) { 3540 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3541 unsigned size = dsize * txq->bd.ring_size; 3542 3543 txq->bd.qid = i; 3544 txq->bd.base = cbd_base; 3545 txq->bd.cur = cbd_base; 3546 txq->bd.dma = bd_dma; 3547 txq->bd.dsize = dsize; 3548 txq->bd.dsize_log2 = dsize_log2; 3549 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3550 bd_dma += size; 3551 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3552 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3553 } 3554 3555 3556 /* The FEC Ethernet specific entries in the device structure */ 3557 ndev->watchdog_timeo = TX_TIMEOUT; 3558 ndev->netdev_ops = &fec_netdev_ops; 3559 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3560 3561 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3562 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3563 3564 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3565 /* enable hw VLAN support */ 3566 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3567 3568 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3569 netif_set_gso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3570 3571 /* enable hw accelerator */ 3572 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3573 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3574 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3575 } 3576 3577 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3578 fep->tx_align = 0; 3579 fep->rx_align = 0x3f; 3580 } 3581 3582 ndev->hw_features = ndev->features; 3583 3584 fec_restart(ndev); 3585 3586 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3587 fec_enet_clear_ethtool_stats(ndev); 3588 else 3589 fec_enet_update_ethtool_stats(ndev); 3590 3591 return 0; 3592 3593 free_queue_mem: 3594 fec_enet_free_queue(ndev); 3595 return ret; 3596 } 3597 3598 #ifdef CONFIG_OF 3599 static int fec_reset_phy(struct platform_device *pdev) 3600 { 3601 int err, phy_reset; 3602 bool active_high = false; 3603 int msec = 1, phy_post_delay = 0; 3604 struct device_node *np = pdev->dev.of_node; 3605 3606 if (!np) 3607 return 0; 3608 3609 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3610 /* A sane reset duration should not be longer than 1s */ 3611 if (!err && msec > 1000) 3612 msec = 1; 3613 3614 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3615 if (phy_reset == -EPROBE_DEFER) 3616 return phy_reset; 3617 else if (!gpio_is_valid(phy_reset)) 3618 return 0; 3619 3620 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3621 /* valid reset duration should be less than 1s */ 3622 if (!err && phy_post_delay > 1000) 3623 return -EINVAL; 3624 3625 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3626 3627 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3628 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3629 "phy-reset"); 3630 if (err) { 3631 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3632 return err; 3633 } 3634 3635 if (msec > 20) 3636 msleep(msec); 3637 else 3638 usleep_range(msec * 1000, msec * 1000 + 1000); 3639 3640 gpio_set_value_cansleep(phy_reset, !active_high); 3641 3642 if (!phy_post_delay) 3643 return 0; 3644 3645 if (phy_post_delay > 20) 3646 msleep(phy_post_delay); 3647 else 3648 usleep_range(phy_post_delay * 1000, 3649 phy_post_delay * 1000 + 1000); 3650 3651 return 0; 3652 } 3653 #else /* CONFIG_OF */ 3654 static int fec_reset_phy(struct platform_device *pdev) 3655 { 3656 /* 3657 * In case of platform probe, the reset has been done 3658 * by machine code. 3659 */ 3660 return 0; 3661 } 3662 #endif /* CONFIG_OF */ 3663 3664 static void 3665 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3666 { 3667 struct device_node *np = pdev->dev.of_node; 3668 3669 *num_tx = *num_rx = 1; 3670 3671 if (!np || !of_device_is_available(np)) 3672 return; 3673 3674 /* parse the num of tx and rx queues */ 3675 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3676 3677 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3678 3679 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3680 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3681 *num_tx); 3682 *num_tx = 1; 3683 return; 3684 } 3685 3686 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3687 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3688 *num_rx); 3689 *num_rx = 1; 3690 return; 3691 } 3692 3693 } 3694 3695 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3696 { 3697 int irq_cnt = platform_irq_count(pdev); 3698 3699 if (irq_cnt > FEC_IRQ_NUM) 3700 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3701 else if (irq_cnt == 2) 3702 irq_cnt = 1; /* last for pps */ 3703 else if (irq_cnt <= 0) 3704 irq_cnt = 1; /* At least 1 irq is needed */ 3705 return irq_cnt; 3706 } 3707 3708 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 3709 { 3710 struct net_device *ndev = platform_get_drvdata(pdev); 3711 struct fec_enet_private *fep = netdev_priv(ndev); 3712 3713 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 3714 fep->wake_irq = fep->irq[2]; 3715 else 3716 fep->wake_irq = fep->irq[0]; 3717 } 3718 3719 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3720 struct device_node *np) 3721 { 3722 struct device_node *gpr_np; 3723 u32 out_val[3]; 3724 int ret = 0; 3725 3726 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3727 if (!gpr_np) 3728 return 0; 3729 3730 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3731 ARRAY_SIZE(out_val)); 3732 if (ret) { 3733 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3734 goto out; 3735 } 3736 3737 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3738 if (IS_ERR(fep->stop_gpr.gpr)) { 3739 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3740 ret = PTR_ERR(fep->stop_gpr.gpr); 3741 fep->stop_gpr.gpr = NULL; 3742 goto out; 3743 } 3744 3745 fep->stop_gpr.reg = out_val[1]; 3746 fep->stop_gpr.bit = out_val[2]; 3747 3748 out: 3749 of_node_put(gpr_np); 3750 3751 return ret; 3752 } 3753 3754 static int 3755 fec_probe(struct platform_device *pdev) 3756 { 3757 struct fec_enet_private *fep; 3758 struct fec_platform_data *pdata; 3759 phy_interface_t interface; 3760 struct net_device *ndev; 3761 int i, irq, ret = 0; 3762 const struct of_device_id *of_id; 3763 static int dev_id; 3764 struct device_node *np = pdev->dev.of_node, *phy_node; 3765 int num_tx_qs; 3766 int num_rx_qs; 3767 char irq_name[8]; 3768 int irq_cnt; 3769 struct fec_devinfo *dev_info; 3770 3771 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3772 3773 /* Init network device */ 3774 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3775 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3776 if (!ndev) 3777 return -ENOMEM; 3778 3779 SET_NETDEV_DEV(ndev, &pdev->dev); 3780 3781 /* setup board info structure */ 3782 fep = netdev_priv(ndev); 3783 3784 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3785 if (of_id) 3786 pdev->id_entry = of_id->data; 3787 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3788 if (dev_info) 3789 fep->quirks = dev_info->quirks; 3790 3791 fep->netdev = ndev; 3792 fep->num_rx_queues = num_rx_qs; 3793 fep->num_tx_queues = num_tx_qs; 3794 3795 #if !defined(CONFIG_M5272) 3796 /* default enable pause frame auto negotiation */ 3797 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3798 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3799 #endif 3800 3801 /* Select default pin state */ 3802 pinctrl_pm_select_default_state(&pdev->dev); 3803 3804 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3805 if (IS_ERR(fep->hwp)) { 3806 ret = PTR_ERR(fep->hwp); 3807 goto failed_ioremap; 3808 } 3809 3810 fep->pdev = pdev; 3811 fep->dev_id = dev_id++; 3812 3813 platform_set_drvdata(pdev, ndev); 3814 3815 if ((of_machine_is_compatible("fsl,imx6q") || 3816 of_machine_is_compatible("fsl,imx6dl")) && 3817 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3818 fep->quirks |= FEC_QUIRK_ERR006687; 3819 3820 if (of_get_property(np, "fsl,magic-packet", NULL)) 3821 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3822 3823 ret = fec_enet_init_stop_mode(fep, np); 3824 if (ret) 3825 goto failed_stop_mode; 3826 3827 phy_node = of_parse_phandle(np, "phy-handle", 0); 3828 if (!phy_node && of_phy_is_fixed_link(np)) { 3829 ret = of_phy_register_fixed_link(np); 3830 if (ret < 0) { 3831 dev_err(&pdev->dev, 3832 "broken fixed-link specification\n"); 3833 goto failed_phy; 3834 } 3835 phy_node = of_node_get(np); 3836 } 3837 fep->phy_node = phy_node; 3838 3839 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3840 if (ret) { 3841 pdata = dev_get_platdata(&pdev->dev); 3842 if (pdata) 3843 fep->phy_interface = pdata->phy; 3844 else 3845 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3846 } else { 3847 fep->phy_interface = interface; 3848 } 3849 3850 ret = fec_enet_parse_rgmii_delay(fep, np); 3851 if (ret) 3852 goto failed_rgmii_delay; 3853 3854 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3855 if (IS_ERR(fep->clk_ipg)) { 3856 ret = PTR_ERR(fep->clk_ipg); 3857 goto failed_clk; 3858 } 3859 3860 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3861 if (IS_ERR(fep->clk_ahb)) { 3862 ret = PTR_ERR(fep->clk_ahb); 3863 goto failed_clk; 3864 } 3865 3866 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3867 3868 /* enet_out is optional, depends on board */ 3869 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3870 if (IS_ERR(fep->clk_enet_out)) 3871 fep->clk_enet_out = NULL; 3872 3873 fep->ptp_clk_on = false; 3874 mutex_init(&fep->ptp_clk_mutex); 3875 3876 /* clk_ref is optional, depends on board */ 3877 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3878 if (IS_ERR(fep->clk_ref)) 3879 fep->clk_ref = NULL; 3880 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 3881 3882 /* clk_2x_txclk is optional, depends on board */ 3883 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 3884 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 3885 if (IS_ERR(fep->clk_2x_txclk)) 3886 fep->clk_2x_txclk = NULL; 3887 } 3888 3889 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3890 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3891 if (IS_ERR(fep->clk_ptp)) { 3892 fep->clk_ptp = NULL; 3893 fep->bufdesc_ex = false; 3894 } 3895 3896 ret = fec_enet_clk_enable(ndev, true); 3897 if (ret) 3898 goto failed_clk; 3899 3900 ret = clk_prepare_enable(fep->clk_ipg); 3901 if (ret) 3902 goto failed_clk_ipg; 3903 ret = clk_prepare_enable(fep->clk_ahb); 3904 if (ret) 3905 goto failed_clk_ahb; 3906 3907 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3908 if (!IS_ERR(fep->reg_phy)) { 3909 ret = regulator_enable(fep->reg_phy); 3910 if (ret) { 3911 dev_err(&pdev->dev, 3912 "Failed to enable phy regulator: %d\n", ret); 3913 goto failed_regulator; 3914 } 3915 } else { 3916 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3917 ret = -EPROBE_DEFER; 3918 goto failed_regulator; 3919 } 3920 fep->reg_phy = NULL; 3921 } 3922 3923 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3924 pm_runtime_use_autosuspend(&pdev->dev); 3925 pm_runtime_get_noresume(&pdev->dev); 3926 pm_runtime_set_active(&pdev->dev); 3927 pm_runtime_enable(&pdev->dev); 3928 3929 ret = fec_reset_phy(pdev); 3930 if (ret) 3931 goto failed_reset; 3932 3933 irq_cnt = fec_enet_get_irq_cnt(pdev); 3934 if (fep->bufdesc_ex) 3935 fec_ptp_init(pdev, irq_cnt); 3936 3937 ret = fec_enet_init(ndev); 3938 if (ret) 3939 goto failed_init; 3940 3941 for (i = 0; i < irq_cnt; i++) { 3942 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3943 irq = platform_get_irq_byname_optional(pdev, irq_name); 3944 if (irq < 0) 3945 irq = platform_get_irq(pdev, i); 3946 if (irq < 0) { 3947 ret = irq; 3948 goto failed_irq; 3949 } 3950 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3951 0, pdev->name, ndev); 3952 if (ret) 3953 goto failed_irq; 3954 3955 fep->irq[i] = irq; 3956 } 3957 3958 /* Decide which interrupt line is wakeup capable */ 3959 fec_enet_get_wakeup_irq(pdev); 3960 3961 ret = fec_enet_mii_init(pdev); 3962 if (ret) 3963 goto failed_mii_init; 3964 3965 /* Carrier starts down, phylib will bring it up */ 3966 netif_carrier_off(ndev); 3967 fec_enet_clk_enable(ndev, false); 3968 pinctrl_pm_select_sleep_state(&pdev->dev); 3969 3970 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3971 3972 ret = register_netdev(ndev); 3973 if (ret) 3974 goto failed_register; 3975 3976 device_init_wakeup(&ndev->dev, fep->wol_flag & 3977 FEC_WOL_HAS_MAGIC_PACKET); 3978 3979 if (fep->bufdesc_ex && fep->ptp_clock) 3980 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3981 3982 fep->rx_copybreak = COPYBREAK_DEFAULT; 3983 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3984 3985 pm_runtime_mark_last_busy(&pdev->dev); 3986 pm_runtime_put_autosuspend(&pdev->dev); 3987 3988 return 0; 3989 3990 failed_register: 3991 fec_enet_mii_remove(fep); 3992 failed_mii_init: 3993 failed_irq: 3994 failed_init: 3995 fec_ptp_stop(pdev); 3996 failed_reset: 3997 pm_runtime_put_noidle(&pdev->dev); 3998 pm_runtime_disable(&pdev->dev); 3999 if (fep->reg_phy) 4000 regulator_disable(fep->reg_phy); 4001 failed_regulator: 4002 clk_disable_unprepare(fep->clk_ahb); 4003 failed_clk_ahb: 4004 clk_disable_unprepare(fep->clk_ipg); 4005 failed_clk_ipg: 4006 fec_enet_clk_enable(ndev, false); 4007 failed_clk: 4008 failed_rgmii_delay: 4009 if (of_phy_is_fixed_link(np)) 4010 of_phy_deregister_fixed_link(np); 4011 of_node_put(phy_node); 4012 failed_stop_mode: 4013 failed_phy: 4014 dev_id--; 4015 failed_ioremap: 4016 free_netdev(ndev); 4017 4018 return ret; 4019 } 4020 4021 static int 4022 fec_drv_remove(struct platform_device *pdev) 4023 { 4024 struct net_device *ndev = platform_get_drvdata(pdev); 4025 struct fec_enet_private *fep = netdev_priv(ndev); 4026 struct device_node *np = pdev->dev.of_node; 4027 int ret; 4028 4029 ret = pm_runtime_resume_and_get(&pdev->dev); 4030 if (ret < 0) 4031 return ret; 4032 4033 cancel_work_sync(&fep->tx_timeout_work); 4034 fec_ptp_stop(pdev); 4035 unregister_netdev(ndev); 4036 fec_enet_mii_remove(fep); 4037 if (fep->reg_phy) 4038 regulator_disable(fep->reg_phy); 4039 4040 if (of_phy_is_fixed_link(np)) 4041 of_phy_deregister_fixed_link(np); 4042 of_node_put(fep->phy_node); 4043 4044 clk_disable_unprepare(fep->clk_ahb); 4045 clk_disable_unprepare(fep->clk_ipg); 4046 pm_runtime_put_noidle(&pdev->dev); 4047 pm_runtime_disable(&pdev->dev); 4048 4049 free_netdev(ndev); 4050 return 0; 4051 } 4052 4053 static int __maybe_unused fec_suspend(struct device *dev) 4054 { 4055 struct net_device *ndev = dev_get_drvdata(dev); 4056 struct fec_enet_private *fep = netdev_priv(ndev); 4057 4058 rtnl_lock(); 4059 if (netif_running(ndev)) { 4060 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4061 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4062 phy_stop(ndev->phydev); 4063 napi_disable(&fep->napi); 4064 netif_tx_lock_bh(ndev); 4065 netif_device_detach(ndev); 4066 netif_tx_unlock_bh(ndev); 4067 fec_stop(ndev); 4068 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4069 fec_irqs_disable(ndev); 4070 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4071 } else { 4072 fec_irqs_disable_except_wakeup(ndev); 4073 if (fep->wake_irq > 0) { 4074 disable_irq(fep->wake_irq); 4075 enable_irq_wake(fep->wake_irq); 4076 } 4077 fec_enet_stop_mode(fep, true); 4078 } 4079 /* It's safe to disable clocks since interrupts are masked */ 4080 fec_enet_clk_enable(ndev, false); 4081 } 4082 rtnl_unlock(); 4083 4084 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4085 regulator_disable(fep->reg_phy); 4086 4087 /* SOC supply clock to phy, when clock is disabled, phy link down 4088 * SOC control phy regulator, when regulator is disabled, phy link down 4089 */ 4090 if (fep->clk_enet_out || fep->reg_phy) 4091 fep->link = 0; 4092 4093 return 0; 4094 } 4095 4096 static int __maybe_unused fec_resume(struct device *dev) 4097 { 4098 struct net_device *ndev = dev_get_drvdata(dev); 4099 struct fec_enet_private *fep = netdev_priv(ndev); 4100 int ret; 4101 int val; 4102 4103 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4104 ret = regulator_enable(fep->reg_phy); 4105 if (ret) 4106 return ret; 4107 } 4108 4109 rtnl_lock(); 4110 if (netif_running(ndev)) { 4111 ret = fec_enet_clk_enable(ndev, true); 4112 if (ret) { 4113 rtnl_unlock(); 4114 goto failed_clk; 4115 } 4116 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4117 fec_enet_stop_mode(fep, false); 4118 if (fep->wake_irq) { 4119 disable_irq_wake(fep->wake_irq); 4120 enable_irq(fep->wake_irq); 4121 } 4122 4123 val = readl(fep->hwp + FEC_ECNTRL); 4124 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4125 writel(val, fep->hwp + FEC_ECNTRL); 4126 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4127 } else { 4128 pinctrl_pm_select_default_state(&fep->pdev->dev); 4129 } 4130 fec_restart(ndev); 4131 netif_tx_lock_bh(ndev); 4132 netif_device_attach(ndev); 4133 netif_tx_unlock_bh(ndev); 4134 napi_enable(&fep->napi); 4135 phy_init_hw(ndev->phydev); 4136 phy_start(ndev->phydev); 4137 } 4138 rtnl_unlock(); 4139 4140 return 0; 4141 4142 failed_clk: 4143 if (fep->reg_phy) 4144 regulator_disable(fep->reg_phy); 4145 return ret; 4146 } 4147 4148 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4149 { 4150 struct net_device *ndev = dev_get_drvdata(dev); 4151 struct fec_enet_private *fep = netdev_priv(ndev); 4152 4153 clk_disable_unprepare(fep->clk_ahb); 4154 clk_disable_unprepare(fep->clk_ipg); 4155 4156 return 0; 4157 } 4158 4159 static int __maybe_unused fec_runtime_resume(struct device *dev) 4160 { 4161 struct net_device *ndev = dev_get_drvdata(dev); 4162 struct fec_enet_private *fep = netdev_priv(ndev); 4163 int ret; 4164 4165 ret = clk_prepare_enable(fep->clk_ahb); 4166 if (ret) 4167 return ret; 4168 ret = clk_prepare_enable(fep->clk_ipg); 4169 if (ret) 4170 goto failed_clk_ipg; 4171 4172 return 0; 4173 4174 failed_clk_ipg: 4175 clk_disable_unprepare(fep->clk_ahb); 4176 return ret; 4177 } 4178 4179 static const struct dev_pm_ops fec_pm_ops = { 4180 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4181 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4182 }; 4183 4184 static struct platform_driver fec_driver = { 4185 .driver = { 4186 .name = DRIVER_NAME, 4187 .pm = &fec_pm_ops, 4188 .of_match_table = fec_dt_ids, 4189 .suppress_bind_attrs = true, 4190 }, 4191 .id_table = fec_devtype, 4192 .probe = fec_probe, 4193 .remove = fec_drv_remove, 4194 }; 4195 4196 module_platform_driver(fec_driver); 4197 4198 MODULE_LICENSE("GPL"); 4199