xref: /linux/drivers/net/ethernet/freescale/enetc/enetc.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/of_mdio.h>
8 #include <linux/vmalloc.h>
9 
10 /* ENETC overhead: optional extension BD + 1 BD gap */
11 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
12 /* max # of chained Tx BDs is 15, including head and extension BD */
13 #define ENETC_MAX_SKB_FRAGS	13
14 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
15 
16 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
17 			      int active_offloads);
18 
19 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
20 {
21 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
22 	struct enetc_bdr *tx_ring;
23 	int count;
24 
25 	tx_ring = priv->tx_ring[skb->queue_mapping];
26 
27 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
28 		if (unlikely(skb_linearize(skb)))
29 			goto drop_packet_err;
30 
31 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
32 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
33 		netif_stop_subqueue(ndev, tx_ring->index);
34 		return NETDEV_TX_BUSY;
35 	}
36 
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	if (unlikely(!count))
39 		goto drop_packet_err;
40 
41 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
42 		netif_stop_subqueue(ndev, tx_ring->index);
43 
44 	return NETDEV_TX_OK;
45 
46 drop_packet_err:
47 	dev_kfree_skb_any(skb);
48 	return NETDEV_TX_OK;
49 }
50 
51 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
52 {
53 	int l3_start, l3_hsize;
54 	u16 l3_flags, l4_flags;
55 
56 	if (skb->ip_summed != CHECKSUM_PARTIAL)
57 		return false;
58 
59 	switch (skb->csum_offset) {
60 	case offsetof(struct tcphdr, check):
61 		l4_flags = ENETC_TXBD_L4_TCP;
62 		break;
63 	case offsetof(struct udphdr, check):
64 		l4_flags = ENETC_TXBD_L4_UDP;
65 		break;
66 	default:
67 		skb_checksum_help(skb);
68 		return false;
69 	}
70 
71 	l3_start = skb_network_offset(skb);
72 	l3_hsize = skb_network_header_len(skb);
73 
74 	l3_flags = 0;
75 	if (skb->protocol == htons(ETH_P_IPV6))
76 		l3_flags = ENETC_TXBD_L3_IPV6;
77 
78 	/* write BD fields */
79 	txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
80 	txbd->l4_csoff = l4_flags;
81 
82 	return true;
83 }
84 
85 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
86 				struct enetc_tx_swbd *tx_swbd)
87 {
88 	if (tx_swbd->is_dma_page)
89 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
90 			       tx_swbd->len, DMA_TO_DEVICE);
91 	else
92 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
93 				 tx_swbd->len, DMA_TO_DEVICE);
94 	tx_swbd->dma = 0;
95 }
96 
97 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
98 			      struct enetc_tx_swbd *tx_swbd)
99 {
100 	if (tx_swbd->dma)
101 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
102 
103 	if (tx_swbd->skb) {
104 		dev_kfree_skb_any(tx_swbd->skb);
105 		tx_swbd->skb = NULL;
106 	}
107 }
108 
109 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
110 			      int active_offloads)
111 {
112 	struct enetc_tx_swbd *tx_swbd;
113 	skb_frag_t *frag;
114 	int len = skb_headlen(skb);
115 	union enetc_tx_bd temp_bd;
116 	union enetc_tx_bd *txbd;
117 	bool do_vlan, do_tstamp;
118 	int i, count = 0;
119 	unsigned int f;
120 	dma_addr_t dma;
121 	u8 flags = 0;
122 
123 	i = tx_ring->next_to_use;
124 	txbd = ENETC_TXBD(*tx_ring, i);
125 	prefetchw(txbd);
126 
127 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
128 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
129 		goto dma_err;
130 
131 	temp_bd.addr = cpu_to_le64(dma);
132 	temp_bd.buf_len = cpu_to_le16(len);
133 	temp_bd.lstatus = 0;
134 
135 	tx_swbd = &tx_ring->tx_swbd[i];
136 	tx_swbd->dma = dma;
137 	tx_swbd->len = len;
138 	tx_swbd->is_dma_page = 0;
139 	count++;
140 
141 	do_vlan = skb_vlan_tag_present(skb);
142 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
143 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
144 	tx_swbd->do_tstamp = do_tstamp;
145 	tx_swbd->check_wb = tx_swbd->do_tstamp;
146 
147 	if (do_vlan || do_tstamp)
148 		flags |= ENETC_TXBD_FLAGS_EX;
149 
150 	if (enetc_tx_csum(skb, &temp_bd))
151 		flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
152 
153 	/* first BD needs frm_len and offload flags set */
154 	temp_bd.frm_len = cpu_to_le16(skb->len);
155 	temp_bd.flags = flags;
156 
157 	if (flags & ENETC_TXBD_FLAGS_EX) {
158 		u8 e_flags = 0;
159 		*txbd = temp_bd;
160 		enetc_clear_tx_bd(&temp_bd);
161 
162 		/* add extension BD for VLAN and/or timestamping */
163 		flags = 0;
164 		tx_swbd++;
165 		txbd++;
166 		i++;
167 		if (unlikely(i == tx_ring->bd_count)) {
168 			i = 0;
169 			tx_swbd = tx_ring->tx_swbd;
170 			txbd = ENETC_TXBD(*tx_ring, 0);
171 		}
172 		prefetchw(txbd);
173 
174 		if (do_vlan) {
175 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
176 			temp_bd.ext.tpid = 0; /* < C-TAG */
177 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
178 		}
179 
180 		if (do_tstamp) {
181 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
182 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
183 		}
184 
185 		temp_bd.ext.e_flags = e_flags;
186 		count++;
187 	}
188 
189 	frag = &skb_shinfo(skb)->frags[0];
190 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
191 		len = skb_frag_size(frag);
192 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
193 				       DMA_TO_DEVICE);
194 		if (dma_mapping_error(tx_ring->dev, dma))
195 			goto dma_err;
196 
197 		*txbd = temp_bd;
198 		enetc_clear_tx_bd(&temp_bd);
199 
200 		flags = 0;
201 		tx_swbd++;
202 		txbd++;
203 		i++;
204 		if (unlikely(i == tx_ring->bd_count)) {
205 			i = 0;
206 			tx_swbd = tx_ring->tx_swbd;
207 			txbd = ENETC_TXBD(*tx_ring, 0);
208 		}
209 		prefetchw(txbd);
210 
211 		temp_bd.addr = cpu_to_le64(dma);
212 		temp_bd.buf_len = cpu_to_le16(len);
213 
214 		tx_swbd->dma = dma;
215 		tx_swbd->len = len;
216 		tx_swbd->is_dma_page = 1;
217 		count++;
218 	}
219 
220 	/* last BD needs 'F' bit set */
221 	flags |= ENETC_TXBD_FLAGS_F;
222 	temp_bd.flags = flags;
223 	*txbd = temp_bd;
224 
225 	tx_ring->tx_swbd[i].skb = skb;
226 
227 	enetc_bdr_idx_inc(tx_ring, &i);
228 	tx_ring->next_to_use = i;
229 
230 	skb_tx_timestamp(skb);
231 
232 	/* let H/W know BD ring has been updated */
233 	enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
234 
235 	return count;
236 
237 dma_err:
238 	dev_err(tx_ring->dev, "DMA map error");
239 
240 	do {
241 		tx_swbd = &tx_ring->tx_swbd[i];
242 		enetc_free_tx_skb(tx_ring, tx_swbd);
243 		if (i == 0)
244 			i = tx_ring->bd_count;
245 		i--;
246 	} while (count--);
247 
248 	return 0;
249 }
250 
251 static irqreturn_t enetc_msix(int irq, void *data)
252 {
253 	struct enetc_int_vector	*v = data;
254 	int i;
255 
256 	/* disable interrupts */
257 	enetc_wr_reg(v->rbier, 0);
258 
259 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
260 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
261 
262 	napi_schedule_irqoff(&v->napi);
263 
264 	return IRQ_HANDLED;
265 }
266 
267 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
268 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
269 			       struct napi_struct *napi, int work_limit);
270 
271 static int enetc_poll(struct napi_struct *napi, int budget)
272 {
273 	struct enetc_int_vector
274 		*v = container_of(napi, struct enetc_int_vector, napi);
275 	bool complete = true;
276 	int work_done;
277 	int i;
278 
279 	for (i = 0; i < v->count_tx_rings; i++)
280 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
281 			complete = false;
282 
283 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
284 	if (work_done == budget)
285 		complete = false;
286 
287 	if (!complete)
288 		return budget;
289 
290 	napi_complete_done(napi, work_done);
291 
292 	/* enable interrupts */
293 	enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
294 
295 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
296 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
297 			     ENETC_TBIER_TXTIE);
298 
299 	return work_done;
300 }
301 
302 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
303 {
304 	int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
305 
306 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
307 }
308 
309 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
310 				u64 *tstamp)
311 {
312 	u32 lo, hi, tstamp_lo;
313 
314 	lo = enetc_rd(hw, ENETC_SICTR0);
315 	hi = enetc_rd(hw, ENETC_SICTR1);
316 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
317 	if (lo <= tstamp_lo)
318 		hi -= 1;
319 	*tstamp = (u64)hi << 32 | tstamp_lo;
320 }
321 
322 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
323 {
324 	struct skb_shared_hwtstamps shhwtstamps;
325 
326 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
327 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
328 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
329 		skb_tstamp_tx(skb, &shhwtstamps);
330 	}
331 }
332 
333 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
334 {
335 	struct net_device *ndev = tx_ring->ndev;
336 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
337 	struct enetc_tx_swbd *tx_swbd;
338 	int i, bds_to_clean;
339 	bool do_tstamp;
340 	u64 tstamp = 0;
341 
342 	i = tx_ring->next_to_clean;
343 	tx_swbd = &tx_ring->tx_swbd[i];
344 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
345 
346 	do_tstamp = false;
347 
348 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
349 		bool is_eof = !!tx_swbd->skb;
350 
351 		if (unlikely(tx_swbd->check_wb)) {
352 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
353 			union enetc_tx_bd *txbd;
354 
355 			txbd = ENETC_TXBD(*tx_ring, i);
356 
357 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
358 			    tx_swbd->do_tstamp) {
359 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
360 						    &tstamp);
361 				do_tstamp = true;
362 			}
363 		}
364 
365 		if (likely(tx_swbd->dma))
366 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
367 
368 		if (is_eof) {
369 			if (unlikely(do_tstamp)) {
370 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
371 				do_tstamp = false;
372 			}
373 			napi_consume_skb(tx_swbd->skb, napi_budget);
374 			tx_swbd->skb = NULL;
375 		}
376 
377 		tx_byte_cnt += tx_swbd->len;
378 
379 		bds_to_clean--;
380 		tx_swbd++;
381 		i++;
382 		if (unlikely(i == tx_ring->bd_count)) {
383 			i = 0;
384 			tx_swbd = tx_ring->tx_swbd;
385 		}
386 
387 		/* BD iteration loop end */
388 		if (is_eof) {
389 			tx_frm_cnt++;
390 			/* re-arm interrupt source */
391 			enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
392 				     BIT(16 + tx_ring->index));
393 		}
394 
395 		if (unlikely(!bds_to_clean))
396 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
397 	}
398 
399 	tx_ring->next_to_clean = i;
400 	tx_ring->stats.packets += tx_frm_cnt;
401 	tx_ring->stats.bytes += tx_byte_cnt;
402 
403 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
404 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
405 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
406 		netif_wake_subqueue(ndev, tx_ring->index);
407 	}
408 
409 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
410 }
411 
412 static bool enetc_new_page(struct enetc_bdr *rx_ring,
413 			   struct enetc_rx_swbd *rx_swbd)
414 {
415 	struct page *page;
416 	dma_addr_t addr;
417 
418 	page = dev_alloc_page();
419 	if (unlikely(!page))
420 		return false;
421 
422 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
423 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
424 		__free_page(page);
425 
426 		return false;
427 	}
428 
429 	rx_swbd->dma = addr;
430 	rx_swbd->page = page;
431 	rx_swbd->page_offset = ENETC_RXB_PAD;
432 
433 	return true;
434 }
435 
436 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
437 {
438 	struct enetc_rx_swbd *rx_swbd;
439 	union enetc_rx_bd *rxbd;
440 	int i, j;
441 
442 	i = rx_ring->next_to_use;
443 	rx_swbd = &rx_ring->rx_swbd[i];
444 	rxbd = ENETC_RXBD(*rx_ring, i);
445 
446 	for (j = 0; j < buff_cnt; j++) {
447 		/* try reuse page */
448 		if (unlikely(!rx_swbd->page)) {
449 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
450 				rx_ring->stats.rx_alloc_errs++;
451 				break;
452 			}
453 		}
454 
455 		/* update RxBD */
456 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
457 					   rx_swbd->page_offset);
458 		/* clear 'R" as well */
459 		rxbd->r.lstatus = 0;
460 
461 		rx_swbd++;
462 		rxbd++;
463 		i++;
464 		if (unlikely(i == rx_ring->bd_count)) {
465 			i = 0;
466 			rx_swbd = rx_ring->rx_swbd;
467 			rxbd = ENETC_RXBD(*rx_ring, 0);
468 		}
469 	}
470 
471 	if (likely(j)) {
472 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
473 		rx_ring->next_to_use = i;
474 		/* update ENETC's consumer index */
475 		enetc_wr_reg(rx_ring->rcir, i);
476 	}
477 
478 	return j;
479 }
480 
481 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
482 static void enetc_get_rx_tstamp(struct net_device *ndev,
483 				union enetc_rx_bd *rxbd,
484 				struct sk_buff *skb)
485 {
486 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
487 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
488 	struct enetc_hw *hw = &priv->si->hw;
489 	u32 lo, hi, tstamp_lo;
490 	u64 tstamp;
491 
492 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
493 		lo = enetc_rd(hw, ENETC_SICTR0);
494 		hi = enetc_rd(hw, ENETC_SICTR1);
495 		tstamp_lo = le32_to_cpu(rxbd->r.tstamp);
496 		if (lo <= tstamp_lo)
497 			hi -= 1;
498 
499 		tstamp = (u64)hi << 32 | tstamp_lo;
500 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
501 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
502 	}
503 }
504 #endif
505 
506 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
507 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
508 {
509 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
510 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
511 #endif
512 	/* TODO: hashing */
513 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
514 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
515 
516 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
517 		skb->ip_summed = CHECKSUM_COMPLETE;
518 	}
519 
520 	/* copy VLAN to skb, if one is extracted, for now we assume it's a
521 	 * standard TPID, but HW also supports custom values
522 	 */
523 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
524 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
525 				       le16_to_cpu(rxbd->r.vlan_opt));
526 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
527 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
528 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
529 #endif
530 }
531 
532 static void enetc_process_skb(struct enetc_bdr *rx_ring,
533 			      struct sk_buff *skb)
534 {
535 	skb_record_rx_queue(skb, rx_ring->index);
536 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
537 }
538 
539 static bool enetc_page_reusable(struct page *page)
540 {
541 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
542 }
543 
544 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
545 			     struct enetc_rx_swbd *old)
546 {
547 	struct enetc_rx_swbd *new;
548 
549 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
550 
551 	/* next buf that may reuse a page */
552 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
553 
554 	/* copy page reference */
555 	*new = *old;
556 }
557 
558 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
559 					       int i, u16 size)
560 {
561 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
562 
563 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
564 				      rx_swbd->page_offset,
565 				      size, DMA_FROM_DEVICE);
566 	return rx_swbd;
567 }
568 
569 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
570 			      struct enetc_rx_swbd *rx_swbd)
571 {
572 	if (likely(enetc_page_reusable(rx_swbd->page))) {
573 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
574 		page_ref_inc(rx_swbd->page);
575 
576 		enetc_reuse_page(rx_ring, rx_swbd);
577 
578 		/* sync for use by the device */
579 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
580 						 rx_swbd->page_offset,
581 						 ENETC_RXB_DMA_SIZE,
582 						 DMA_FROM_DEVICE);
583 	} else {
584 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
585 			       PAGE_SIZE, DMA_FROM_DEVICE);
586 	}
587 
588 	rx_swbd->page = NULL;
589 }
590 
591 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
592 						int i, u16 size)
593 {
594 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
595 	struct sk_buff *skb;
596 	void *ba;
597 
598 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
599 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
600 	if (unlikely(!skb)) {
601 		rx_ring->stats.rx_alloc_errs++;
602 		return NULL;
603 	}
604 
605 	skb_reserve(skb, ENETC_RXB_PAD);
606 	__skb_put(skb, size);
607 
608 	enetc_put_rx_buff(rx_ring, rx_swbd);
609 
610 	return skb;
611 }
612 
613 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
614 				     u16 size, struct sk_buff *skb)
615 {
616 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
617 
618 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
619 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
620 
621 	enetc_put_rx_buff(rx_ring, rx_swbd);
622 }
623 
624 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
625 
626 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
627 			       struct napi_struct *napi, int work_limit)
628 {
629 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
630 	int cleaned_cnt, i;
631 
632 	cleaned_cnt = enetc_bd_unused(rx_ring);
633 	/* next descriptor to process */
634 	i = rx_ring->next_to_clean;
635 
636 	while (likely(rx_frm_cnt < work_limit)) {
637 		union enetc_rx_bd *rxbd;
638 		struct sk_buff *skb;
639 		u32 bd_status;
640 		u16 size;
641 
642 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
643 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
644 
645 			cleaned_cnt -= count;
646 		}
647 
648 		rxbd = ENETC_RXBD(*rx_ring, i);
649 		bd_status = le32_to_cpu(rxbd->r.lstatus);
650 		if (!bd_status)
651 			break;
652 
653 		enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
654 		dma_rmb(); /* for reading other rxbd fields */
655 		size = le16_to_cpu(rxbd->r.buf_len);
656 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
657 		if (!skb)
658 			break;
659 
660 		enetc_get_offloads(rx_ring, rxbd, skb);
661 
662 		cleaned_cnt++;
663 		rxbd++;
664 		i++;
665 		if (unlikely(i == rx_ring->bd_count)) {
666 			i = 0;
667 			rxbd = ENETC_RXBD(*rx_ring, 0);
668 		}
669 
670 		if (unlikely(bd_status &
671 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
672 			dev_kfree_skb(skb);
673 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
674 				dma_rmb();
675 				bd_status = le32_to_cpu(rxbd->r.lstatus);
676 				rxbd++;
677 				i++;
678 				if (unlikely(i == rx_ring->bd_count)) {
679 					i = 0;
680 					rxbd = ENETC_RXBD(*rx_ring, 0);
681 				}
682 			}
683 
684 			rx_ring->ndev->stats.rx_dropped++;
685 			rx_ring->ndev->stats.rx_errors++;
686 
687 			break;
688 		}
689 
690 		/* not last BD in frame? */
691 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
692 			bd_status = le32_to_cpu(rxbd->r.lstatus);
693 			size = ENETC_RXB_DMA_SIZE;
694 
695 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
696 				dma_rmb();
697 				size = le16_to_cpu(rxbd->r.buf_len);
698 			}
699 
700 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
701 
702 			cleaned_cnt++;
703 			rxbd++;
704 			i++;
705 			if (unlikely(i == rx_ring->bd_count)) {
706 				i = 0;
707 				rxbd = ENETC_RXBD(*rx_ring, 0);
708 			}
709 		}
710 
711 		rx_byte_cnt += skb->len;
712 
713 		enetc_process_skb(rx_ring, skb);
714 
715 		napi_gro_receive(napi, skb);
716 
717 		rx_frm_cnt++;
718 	}
719 
720 	rx_ring->next_to_clean = i;
721 
722 	rx_ring->stats.packets += rx_frm_cnt;
723 	rx_ring->stats.bytes += rx_byte_cnt;
724 
725 	return rx_frm_cnt;
726 }
727 
728 /* Probing and Init */
729 #define ENETC_MAX_RFS_SIZE 64
730 void enetc_get_si_caps(struct enetc_si *si)
731 {
732 	struct enetc_hw *hw = &si->hw;
733 	u32 val;
734 
735 	/* find out how many of various resources we have to work with */
736 	val = enetc_rd(hw, ENETC_SICAPR0);
737 	si->num_rx_rings = (val >> 16) & 0xff;
738 	si->num_tx_rings = val & 0xff;
739 
740 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
741 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
742 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
743 
744 	si->num_rss = 0;
745 	val = enetc_rd(hw, ENETC_SIPCAPR0);
746 	if (val & ENETC_SIPCAPR0_RSS) {
747 		u32 rss;
748 
749 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
750 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
751 	}
752 
753 	if (val & ENETC_SIPCAPR0_QBV)
754 		si->hw_features |= ENETC_SI_F_QBV;
755 }
756 
757 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
758 {
759 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
760 					&r->bd_dma_base, GFP_KERNEL);
761 	if (!r->bd_base)
762 		return -ENOMEM;
763 
764 	/* h/w requires 128B alignment */
765 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
766 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
767 				  r->bd_dma_base);
768 		return -EINVAL;
769 	}
770 
771 	return 0;
772 }
773 
774 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
775 {
776 	int err;
777 
778 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
779 	if (!txr->tx_swbd)
780 		return -ENOMEM;
781 
782 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
783 	if (err) {
784 		vfree(txr->tx_swbd);
785 		return err;
786 	}
787 
788 	txr->next_to_clean = 0;
789 	txr->next_to_use = 0;
790 
791 	return 0;
792 }
793 
794 static void enetc_free_txbdr(struct enetc_bdr *txr)
795 {
796 	int size, i;
797 
798 	for (i = 0; i < txr->bd_count; i++)
799 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
800 
801 	size = txr->bd_count * sizeof(union enetc_tx_bd);
802 
803 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
804 	txr->bd_base = NULL;
805 
806 	vfree(txr->tx_swbd);
807 	txr->tx_swbd = NULL;
808 }
809 
810 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
811 {
812 	int i, err;
813 
814 	for (i = 0; i < priv->num_tx_rings; i++) {
815 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
816 
817 		if (err)
818 			goto fail;
819 	}
820 
821 	return 0;
822 
823 fail:
824 	while (i-- > 0)
825 		enetc_free_txbdr(priv->tx_ring[i]);
826 
827 	return err;
828 }
829 
830 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
831 {
832 	int i;
833 
834 	for (i = 0; i < priv->num_tx_rings; i++)
835 		enetc_free_txbdr(priv->tx_ring[i]);
836 }
837 
838 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr)
839 {
840 	int err;
841 
842 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
843 	if (!rxr->rx_swbd)
844 		return -ENOMEM;
845 
846 	err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd));
847 	if (err) {
848 		vfree(rxr->rx_swbd);
849 		return err;
850 	}
851 
852 	rxr->next_to_clean = 0;
853 	rxr->next_to_use = 0;
854 	rxr->next_to_alloc = 0;
855 
856 	return 0;
857 }
858 
859 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
860 {
861 	int size;
862 
863 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
864 
865 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
866 	rxr->bd_base = NULL;
867 
868 	vfree(rxr->rx_swbd);
869 	rxr->rx_swbd = NULL;
870 }
871 
872 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
873 {
874 	int i, err;
875 
876 	for (i = 0; i < priv->num_rx_rings; i++) {
877 		err = enetc_alloc_rxbdr(priv->rx_ring[i]);
878 
879 		if (err)
880 			goto fail;
881 	}
882 
883 	return 0;
884 
885 fail:
886 	while (i-- > 0)
887 		enetc_free_rxbdr(priv->rx_ring[i]);
888 
889 	return err;
890 }
891 
892 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
893 {
894 	int i;
895 
896 	for (i = 0; i < priv->num_rx_rings; i++)
897 		enetc_free_rxbdr(priv->rx_ring[i]);
898 }
899 
900 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
901 {
902 	int i;
903 
904 	if (!tx_ring->tx_swbd)
905 		return;
906 
907 	for (i = 0; i < tx_ring->bd_count; i++) {
908 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
909 
910 		enetc_free_tx_skb(tx_ring, tx_swbd);
911 	}
912 
913 	tx_ring->next_to_clean = 0;
914 	tx_ring->next_to_use = 0;
915 }
916 
917 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
918 {
919 	int i;
920 
921 	if (!rx_ring->rx_swbd)
922 		return;
923 
924 	for (i = 0; i < rx_ring->bd_count; i++) {
925 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
926 
927 		if (!rx_swbd->page)
928 			continue;
929 
930 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
931 			       PAGE_SIZE, DMA_FROM_DEVICE);
932 		__free_page(rx_swbd->page);
933 		rx_swbd->page = NULL;
934 	}
935 
936 	rx_ring->next_to_clean = 0;
937 	rx_ring->next_to_use = 0;
938 	rx_ring->next_to_alloc = 0;
939 }
940 
941 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
942 {
943 	int i;
944 
945 	for (i = 0; i < priv->num_rx_rings; i++)
946 		enetc_free_rx_ring(priv->rx_ring[i]);
947 
948 	for (i = 0; i < priv->num_tx_rings; i++)
949 		enetc_free_tx_ring(priv->tx_ring[i]);
950 }
951 
952 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
953 {
954 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
955 
956 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
957 					   GFP_KERNEL);
958 	if (!cbdr->bd_base)
959 		return -ENOMEM;
960 
961 	/* h/w requires 128B alignment */
962 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
963 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
964 		return -EINVAL;
965 	}
966 
967 	cbdr->next_to_clean = 0;
968 	cbdr->next_to_use = 0;
969 
970 	return 0;
971 }
972 
973 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
974 {
975 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
976 
977 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
978 	cbdr->bd_base = NULL;
979 }
980 
981 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
982 {
983 	/* set CBDR cache attributes */
984 	enetc_wr(hw, ENETC_SICAR2,
985 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
986 
987 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
988 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
989 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
990 
991 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
992 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
993 
994 	/* enable ring */
995 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
996 
997 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
998 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
999 }
1000 
1001 static void enetc_clear_cbdr(struct enetc_hw *hw)
1002 {
1003 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1004 }
1005 
1006 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1007 {
1008 	int *rss_table;
1009 	int i;
1010 
1011 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1012 	if (!rss_table)
1013 		return -ENOMEM;
1014 
1015 	/* Set up RSS table defaults */
1016 	for (i = 0; i < si->num_rss; i++)
1017 		rss_table[i] = i % num_groups;
1018 
1019 	enetc_set_rss_table(si, rss_table, si->num_rss);
1020 
1021 	kfree(rss_table);
1022 
1023 	return 0;
1024 }
1025 
1026 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1027 {
1028 	struct enetc_si *si = priv->si;
1029 	struct enetc_hw *hw = &si->hw;
1030 	int err;
1031 
1032 	enetc_setup_cbdr(hw, &si->cbd_ring);
1033 	/* set SI cache attributes */
1034 	enetc_wr(hw, ENETC_SICAR0,
1035 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1036 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1037 	/* enable SI */
1038 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1039 
1040 	if (si->num_rss) {
1041 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1042 		if (err)
1043 			return err;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1050 {
1051 	struct enetc_si *si = priv->si;
1052 	int cpus = num_online_cpus();
1053 
1054 	priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1055 	priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1056 
1057 	/* Enable all available TX rings in order to configure as many
1058 	 * priorities as possible, when needed.
1059 	 * TODO: Make # of TX rings run-time configurable
1060 	 */
1061 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1062 	priv->num_tx_rings = si->num_tx_rings;
1063 	priv->bdr_int_num = cpus;
1064 
1065 	/* SI specific */
1066 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1067 }
1068 
1069 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1070 {
1071 	struct enetc_si *si = priv->si;
1072 	int err;
1073 
1074 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1075 	if (err)
1076 		return err;
1077 
1078 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1079 				  GFP_KERNEL);
1080 	if (!priv->cls_rules) {
1081 		err = -ENOMEM;
1082 		goto err_alloc_cls;
1083 	}
1084 
1085 	err = enetc_configure_si(priv);
1086 	if (err)
1087 		goto err_config_si;
1088 
1089 	return 0;
1090 
1091 err_config_si:
1092 	kfree(priv->cls_rules);
1093 err_alloc_cls:
1094 	enetc_clear_cbdr(&si->hw);
1095 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1096 
1097 	return err;
1098 }
1099 
1100 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1101 {
1102 	struct enetc_si *si = priv->si;
1103 
1104 	enetc_clear_cbdr(&si->hw);
1105 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1106 
1107 	kfree(priv->cls_rules);
1108 }
1109 
1110 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1111 {
1112 	int idx = tx_ring->index;
1113 	u32 tbmr;
1114 
1115 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1116 		       lower_32_bits(tx_ring->bd_dma_base));
1117 
1118 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1119 		       upper_32_bits(tx_ring->bd_dma_base));
1120 
1121 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1122 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1123 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1124 
1125 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1126 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1127 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1128 
1129 	/* enable Tx ints by setting pkt thr to 1 */
1130 	enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
1131 
1132 	tbmr = ENETC_TBMR_EN;
1133 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1134 		tbmr |= ENETC_TBMR_VIH;
1135 
1136 	/* enable ring */
1137 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1138 
1139 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1140 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1141 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1142 }
1143 
1144 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1145 {
1146 	int idx = rx_ring->index;
1147 	u32 rbmr;
1148 
1149 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1150 		       lower_32_bits(rx_ring->bd_dma_base));
1151 
1152 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1153 		       upper_32_bits(rx_ring->bd_dma_base));
1154 
1155 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1156 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1157 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1158 
1159 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1160 
1161 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1162 
1163 	/* enable Rx ints by setting pkt thr to 1 */
1164 	enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
1165 
1166 	rbmr = ENETC_RBMR_EN;
1167 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1168 	rbmr |= ENETC_RBMR_BDS;
1169 #endif
1170 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1171 		rbmr |= ENETC_RBMR_VTE;
1172 
1173 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1174 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1175 
1176 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1177 
1178 	/* enable ring */
1179 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1180 }
1181 
1182 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1183 {
1184 	int i;
1185 
1186 	for (i = 0; i < priv->num_tx_rings; i++)
1187 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1188 
1189 	for (i = 0; i < priv->num_rx_rings; i++)
1190 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1191 }
1192 
1193 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1194 {
1195 	int idx = rx_ring->index;
1196 
1197 	/* disable EN bit on ring */
1198 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1199 }
1200 
1201 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1202 {
1203 	int delay = 8, timeout = 100;
1204 	int idx = tx_ring->index;
1205 
1206 	/* disable EN bit on ring */
1207 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1208 
1209 	/* wait for busy to clear */
1210 	while (delay < timeout &&
1211 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1212 		msleep(delay);
1213 		delay *= 2;
1214 	}
1215 
1216 	if (delay >= timeout)
1217 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1218 			    idx);
1219 }
1220 
1221 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1222 {
1223 	int i;
1224 
1225 	for (i = 0; i < priv->num_tx_rings; i++)
1226 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1227 
1228 	for (i = 0; i < priv->num_rx_rings; i++)
1229 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1230 
1231 	udelay(1);
1232 }
1233 
1234 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1235 {
1236 	struct pci_dev *pdev = priv->si->pdev;
1237 	cpumask_t cpu_mask;
1238 	int i, j, err;
1239 
1240 	for (i = 0; i < priv->bdr_int_num; i++) {
1241 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1242 		struct enetc_int_vector *v = priv->int_vector[i];
1243 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1244 		struct enetc_hw *hw = &priv->si->hw;
1245 
1246 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1247 			 priv->ndev->name, i);
1248 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1249 		if (err) {
1250 			dev_err(priv->dev, "request_irq() failed!\n");
1251 			goto irq_err;
1252 		}
1253 
1254 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1255 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1256 
1257 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1258 
1259 		for (j = 0; j < v->count_tx_rings; j++) {
1260 			int idx = v->tx_ring[j].index;
1261 
1262 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1263 		}
1264 		cpumask_clear(&cpu_mask);
1265 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1266 		irq_set_affinity_hint(irq, &cpu_mask);
1267 	}
1268 
1269 	return 0;
1270 
1271 irq_err:
1272 	while (i--) {
1273 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1274 
1275 		irq_set_affinity_hint(irq, NULL);
1276 		free_irq(irq, priv->int_vector[i]);
1277 	}
1278 
1279 	return err;
1280 }
1281 
1282 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1283 {
1284 	struct pci_dev *pdev = priv->si->pdev;
1285 	int i;
1286 
1287 	for (i = 0; i < priv->bdr_int_num; i++) {
1288 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1289 
1290 		irq_set_affinity_hint(irq, NULL);
1291 		free_irq(irq, priv->int_vector[i]);
1292 	}
1293 }
1294 
1295 static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
1296 {
1297 	int i;
1298 
1299 	/* enable Tx & Rx event indication */
1300 	for (i = 0; i < priv->num_rx_rings; i++) {
1301 		enetc_rxbdr_wr(&priv->si->hw, i,
1302 			       ENETC_RBIER, ENETC_RBIER_RXTIE);
1303 	}
1304 
1305 	for (i = 0; i < priv->num_tx_rings; i++) {
1306 		enetc_txbdr_wr(&priv->si->hw, i,
1307 			       ENETC_TBIER, ENETC_TBIER_TXTIE);
1308 	}
1309 }
1310 
1311 static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
1312 {
1313 	int i;
1314 
1315 	for (i = 0; i < priv->num_tx_rings; i++)
1316 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1317 
1318 	for (i = 0; i < priv->num_rx_rings; i++)
1319 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1320 }
1321 
1322 static void adjust_link(struct net_device *ndev)
1323 {
1324 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1325 	struct phy_device *phydev = ndev->phydev;
1326 
1327 	if (priv->active_offloads & ENETC_F_QBV)
1328 		enetc_sched_speed_set(ndev);
1329 
1330 	phy_print_status(phydev);
1331 }
1332 
1333 static int enetc_phy_connect(struct net_device *ndev)
1334 {
1335 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1336 	struct phy_device *phydev;
1337 	struct ethtool_eee edata;
1338 
1339 	if (!priv->phy_node)
1340 		return 0; /* phy-less mode */
1341 
1342 	phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
1343 				0, priv->if_mode);
1344 	if (!phydev) {
1345 		dev_err(&ndev->dev, "could not attach to PHY\n");
1346 		return -ENODEV;
1347 	}
1348 
1349 	phy_attached_info(phydev);
1350 
1351 	/* disable EEE autoneg, until ENETC driver supports it */
1352 	memset(&edata, 0, sizeof(struct ethtool_eee));
1353 	phy_ethtool_set_eee(phydev, &edata);
1354 
1355 	return 0;
1356 }
1357 
1358 int enetc_open(struct net_device *ndev)
1359 {
1360 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1361 	int i, err;
1362 
1363 	err = enetc_setup_irqs(priv);
1364 	if (err)
1365 		return err;
1366 
1367 	err = enetc_phy_connect(ndev);
1368 	if (err)
1369 		goto err_phy_connect;
1370 
1371 	err = enetc_alloc_tx_resources(priv);
1372 	if (err)
1373 		goto err_alloc_tx;
1374 
1375 	err = enetc_alloc_rx_resources(priv);
1376 	if (err)
1377 		goto err_alloc_rx;
1378 
1379 	enetc_setup_bdrs(priv);
1380 
1381 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1382 	if (err)
1383 		goto err_set_queues;
1384 
1385 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1386 	if (err)
1387 		goto err_set_queues;
1388 
1389 	for (i = 0; i < priv->bdr_int_num; i++)
1390 		napi_enable(&priv->int_vector[i]->napi);
1391 
1392 	enetc_enable_interrupts(priv);
1393 
1394 	if (ndev->phydev)
1395 		phy_start(ndev->phydev);
1396 	else
1397 		netif_carrier_on(ndev);
1398 
1399 	netif_tx_start_all_queues(ndev);
1400 
1401 	return 0;
1402 
1403 err_set_queues:
1404 	enetc_free_rx_resources(priv);
1405 err_alloc_rx:
1406 	enetc_free_tx_resources(priv);
1407 err_alloc_tx:
1408 	if (ndev->phydev)
1409 		phy_disconnect(ndev->phydev);
1410 err_phy_connect:
1411 	enetc_free_irqs(priv);
1412 
1413 	return err;
1414 }
1415 
1416 int enetc_close(struct net_device *ndev)
1417 {
1418 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1419 	int i;
1420 
1421 	netif_tx_stop_all_queues(ndev);
1422 
1423 	if (ndev->phydev) {
1424 		phy_stop(ndev->phydev);
1425 		phy_disconnect(ndev->phydev);
1426 	} else {
1427 		netif_carrier_off(ndev);
1428 	}
1429 
1430 	for (i = 0; i < priv->bdr_int_num; i++) {
1431 		napi_synchronize(&priv->int_vector[i]->napi);
1432 		napi_disable(&priv->int_vector[i]->napi);
1433 	}
1434 
1435 	enetc_disable_interrupts(priv);
1436 	enetc_clear_bdrs(priv);
1437 
1438 	enetc_free_rxtx_rings(priv);
1439 	enetc_free_rx_resources(priv);
1440 	enetc_free_tx_resources(priv);
1441 	enetc_free_irqs(priv);
1442 
1443 	return 0;
1444 }
1445 
1446 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1447 {
1448 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1449 	struct tc_mqprio_qopt *mqprio = type_data;
1450 	struct enetc_bdr *tx_ring;
1451 	u8 num_tc;
1452 	int i;
1453 
1454 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1455 	num_tc = mqprio->num_tc;
1456 
1457 	if (!num_tc) {
1458 		netdev_reset_tc(ndev);
1459 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1460 
1461 		/* Reset all ring priorities to 0 */
1462 		for (i = 0; i < priv->num_tx_rings; i++) {
1463 			tx_ring = priv->tx_ring[i];
1464 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1465 		}
1466 
1467 		return 0;
1468 	}
1469 
1470 	/* Check if we have enough BD rings available to accommodate all TCs */
1471 	if (num_tc > priv->num_tx_rings) {
1472 		netdev_err(ndev, "Max %d traffic classes supported\n",
1473 			   priv->num_tx_rings);
1474 		return -EINVAL;
1475 	}
1476 
1477 	/* For the moment, we use only one BD ring per TC.
1478 	 *
1479 	 * Configure num_tc BD rings with increasing priorities.
1480 	 */
1481 	for (i = 0; i < num_tc; i++) {
1482 		tx_ring = priv->tx_ring[i];
1483 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1484 	}
1485 
1486 	/* Reset the number of netdev queues based on the TC count */
1487 	netif_set_real_num_tx_queues(ndev, num_tc);
1488 
1489 	netdev_set_num_tc(ndev, num_tc);
1490 
1491 	/* Each TC is associated with one netdev queue */
1492 	for (i = 0; i < num_tc; i++)
1493 		netdev_set_tc_queue(ndev, i, 1, i);
1494 
1495 	return 0;
1496 }
1497 
1498 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1499 		   void *type_data)
1500 {
1501 	switch (type) {
1502 	case TC_SETUP_QDISC_MQPRIO:
1503 		return enetc_setup_tc_mqprio(ndev, type_data);
1504 	case TC_SETUP_QDISC_TAPRIO:
1505 		return enetc_setup_tc_taprio(ndev, type_data);
1506 	case TC_SETUP_QDISC_CBS:
1507 		return enetc_setup_tc_cbs(ndev, type_data);
1508 	default:
1509 		return -EOPNOTSUPP;
1510 	}
1511 }
1512 
1513 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1514 {
1515 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1516 	struct net_device_stats *stats = &ndev->stats;
1517 	unsigned long packets = 0, bytes = 0;
1518 	int i;
1519 
1520 	for (i = 0; i < priv->num_rx_rings; i++) {
1521 		packets += priv->rx_ring[i]->stats.packets;
1522 		bytes	+= priv->rx_ring[i]->stats.bytes;
1523 	}
1524 
1525 	stats->rx_packets = packets;
1526 	stats->rx_bytes = bytes;
1527 	bytes = 0;
1528 	packets = 0;
1529 
1530 	for (i = 0; i < priv->num_tx_rings; i++) {
1531 		packets += priv->tx_ring[i]->stats.packets;
1532 		bytes	+= priv->tx_ring[i]->stats.bytes;
1533 	}
1534 
1535 	stats->tx_packets = packets;
1536 	stats->tx_bytes = bytes;
1537 
1538 	return stats;
1539 }
1540 
1541 static int enetc_set_rss(struct net_device *ndev, int en)
1542 {
1543 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1544 	struct enetc_hw *hw = &priv->si->hw;
1545 	u32 reg;
1546 
1547 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1548 
1549 	reg = enetc_rd(hw, ENETC_SIMR);
1550 	reg &= ~ENETC_SIMR_RSSE;
1551 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1552 	enetc_wr(hw, ENETC_SIMR, reg);
1553 
1554 	return 0;
1555 }
1556 
1557 int enetc_set_features(struct net_device *ndev,
1558 		       netdev_features_t features)
1559 {
1560 	netdev_features_t changed = ndev->features ^ features;
1561 
1562 	if (changed & NETIF_F_RXHASH)
1563 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1564 
1565 	return 0;
1566 }
1567 
1568 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1569 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1570 {
1571 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1572 	struct hwtstamp_config config;
1573 
1574 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1575 		return -EFAULT;
1576 
1577 	switch (config.tx_type) {
1578 	case HWTSTAMP_TX_OFF:
1579 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1580 		break;
1581 	case HWTSTAMP_TX_ON:
1582 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1583 		break;
1584 	default:
1585 		return -ERANGE;
1586 	}
1587 
1588 	switch (config.rx_filter) {
1589 	case HWTSTAMP_FILTER_NONE:
1590 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1591 		break;
1592 	default:
1593 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1594 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1595 	}
1596 
1597 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1598 	       -EFAULT : 0;
1599 }
1600 
1601 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1602 {
1603 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1604 	struct hwtstamp_config config;
1605 
1606 	config.flags = 0;
1607 
1608 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1609 		config.tx_type = HWTSTAMP_TX_ON;
1610 	else
1611 		config.tx_type = HWTSTAMP_TX_OFF;
1612 
1613 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1614 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1615 
1616 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1617 	       -EFAULT : 0;
1618 }
1619 #endif
1620 
1621 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1622 {
1623 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1624 	if (cmd == SIOCSHWTSTAMP)
1625 		return enetc_hwtstamp_set(ndev, rq);
1626 	if (cmd == SIOCGHWTSTAMP)
1627 		return enetc_hwtstamp_get(ndev, rq);
1628 #endif
1629 
1630 	if (!ndev->phydev)
1631 		return -EOPNOTSUPP;
1632 	return phy_mii_ioctl(ndev->phydev, rq, cmd);
1633 }
1634 
1635 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1636 {
1637 	struct pci_dev *pdev = priv->si->pdev;
1638 	int size, v_tx_rings;
1639 	int i, n, err, nvec;
1640 
1641 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1642 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1643 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1644 
1645 	if (n < 0)
1646 		return n;
1647 
1648 	if (n != nvec)
1649 		return -EPERM;
1650 
1651 	/* # of tx rings per int vector */
1652 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1653 	size = sizeof(struct enetc_int_vector) +
1654 	       sizeof(struct enetc_bdr) * v_tx_rings;
1655 
1656 	for (i = 0; i < priv->bdr_int_num; i++) {
1657 		struct enetc_int_vector *v;
1658 		struct enetc_bdr *bdr;
1659 		int j;
1660 
1661 		v = kzalloc(size, GFP_KERNEL);
1662 		if (!v) {
1663 			err = -ENOMEM;
1664 			goto fail;
1665 		}
1666 
1667 		priv->int_vector[i] = v;
1668 
1669 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1670 			       NAPI_POLL_WEIGHT);
1671 		v->count_tx_rings = v_tx_rings;
1672 
1673 		for (j = 0; j < v_tx_rings; j++) {
1674 			int idx;
1675 
1676 			/* default tx ring mapping policy */
1677 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1678 				idx = 2 * j + i; /* 2 CPUs */
1679 			else
1680 				idx = j + i * v_tx_rings; /* default */
1681 
1682 			__set_bit(idx, &v->tx_rings_map);
1683 			bdr = &v->tx_ring[j];
1684 			bdr->index = idx;
1685 			bdr->ndev = priv->ndev;
1686 			bdr->dev = priv->dev;
1687 			bdr->bd_count = priv->tx_bd_count;
1688 			priv->tx_ring[idx] = bdr;
1689 		}
1690 
1691 		bdr = &v->rx_ring;
1692 		bdr->index = i;
1693 		bdr->ndev = priv->ndev;
1694 		bdr->dev = priv->dev;
1695 		bdr->bd_count = priv->rx_bd_count;
1696 		priv->rx_ring[i] = bdr;
1697 	}
1698 
1699 	return 0;
1700 
1701 fail:
1702 	while (i--) {
1703 		netif_napi_del(&priv->int_vector[i]->napi);
1704 		kfree(priv->int_vector[i]);
1705 	}
1706 
1707 	pci_free_irq_vectors(pdev);
1708 
1709 	return err;
1710 }
1711 
1712 void enetc_free_msix(struct enetc_ndev_priv *priv)
1713 {
1714 	int i;
1715 
1716 	for (i = 0; i < priv->bdr_int_num; i++) {
1717 		struct enetc_int_vector *v = priv->int_vector[i];
1718 
1719 		netif_napi_del(&v->napi);
1720 	}
1721 
1722 	for (i = 0; i < priv->num_rx_rings; i++)
1723 		priv->rx_ring[i] = NULL;
1724 
1725 	for (i = 0; i < priv->num_tx_rings; i++)
1726 		priv->tx_ring[i] = NULL;
1727 
1728 	for (i = 0; i < priv->bdr_int_num; i++) {
1729 		kfree(priv->int_vector[i]);
1730 		priv->int_vector[i] = NULL;
1731 	}
1732 
1733 	/* disable all MSIX for this device */
1734 	pci_free_irq_vectors(priv->si->pdev);
1735 }
1736 
1737 static void enetc_kfree_si(struct enetc_si *si)
1738 {
1739 	char *p = (char *)si - si->pad;
1740 
1741 	kfree(p);
1742 }
1743 
1744 static void enetc_detect_errata(struct enetc_si *si)
1745 {
1746 	if (si->pdev->revision == ENETC_REV1)
1747 		si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1748 			     ENETC_ERR_UCMCSWP;
1749 }
1750 
1751 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1752 {
1753 	struct enetc_si *si, *p;
1754 	struct enetc_hw *hw;
1755 	size_t alloc_size;
1756 	int err, len;
1757 
1758 	pcie_flr(pdev);
1759 	err = pci_enable_device_mem(pdev);
1760 	if (err) {
1761 		dev_err(&pdev->dev, "device enable failed\n");
1762 		return err;
1763 	}
1764 
1765 	/* set up for high or low dma */
1766 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1767 	if (err) {
1768 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1769 		if (err) {
1770 			dev_err(&pdev->dev,
1771 				"DMA configuration failed: 0x%x\n", err);
1772 			goto err_dma;
1773 		}
1774 	}
1775 
1776 	err = pci_request_mem_regions(pdev, name);
1777 	if (err) {
1778 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1779 		goto err_pci_mem_reg;
1780 	}
1781 
1782 	pci_set_master(pdev);
1783 
1784 	alloc_size = sizeof(struct enetc_si);
1785 	if (sizeof_priv) {
1786 		/* align priv to 32B */
1787 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1788 		alloc_size += sizeof_priv;
1789 	}
1790 	/* force 32B alignment for enetc_si */
1791 	alloc_size += ENETC_SI_ALIGN - 1;
1792 
1793 	p = kzalloc(alloc_size, GFP_KERNEL);
1794 	if (!p) {
1795 		err = -ENOMEM;
1796 		goto err_alloc_si;
1797 	}
1798 
1799 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1800 	si->pad = (char *)si - (char *)p;
1801 
1802 	pci_set_drvdata(pdev, si);
1803 	si->pdev = pdev;
1804 	hw = &si->hw;
1805 
1806 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1807 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1808 	if (!hw->reg) {
1809 		err = -ENXIO;
1810 		dev_err(&pdev->dev, "ioremap() failed\n");
1811 		goto err_ioremap;
1812 	}
1813 	if (len > ENETC_PORT_BASE)
1814 		hw->port = hw->reg + ENETC_PORT_BASE;
1815 	if (len > ENETC_GLOBAL_BASE)
1816 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1817 
1818 	enetc_detect_errata(si);
1819 
1820 	return 0;
1821 
1822 err_ioremap:
1823 	enetc_kfree_si(si);
1824 err_alloc_si:
1825 	pci_release_mem_regions(pdev);
1826 err_pci_mem_reg:
1827 err_dma:
1828 	pci_disable_device(pdev);
1829 
1830 	return err;
1831 }
1832 
1833 void enetc_pci_remove(struct pci_dev *pdev)
1834 {
1835 	struct enetc_si *si = pci_get_drvdata(pdev);
1836 	struct enetc_hw *hw = &si->hw;
1837 
1838 	iounmap(hw->reg);
1839 	enetc_kfree_si(si);
1840 	pci_release_mem_regions(pdev);
1841 	pci_disable_device(pdev);
1842 }
1843