xref: /linux/drivers/net/ethernet/freescale/enetc/enetc.c (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/clk.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/vmalloc.h>
10 #include <linux/ptp_classify.h>
11 #include <net/ip6_checksum.h>
12 #include <net/pkt_sched.h>
13 #include <net/tso.h>
14 
15 u32 enetc_port_mac_rd(struct enetc_si *si, u32 reg)
16 {
17 	return enetc_port_rd(&si->hw, reg);
18 }
19 EXPORT_SYMBOL_GPL(enetc_port_mac_rd);
20 
21 void enetc_port_mac_wr(struct enetc_si *si, u32 reg, u32 val)
22 {
23 	enetc_port_wr(&si->hw, reg, val);
24 	if (si->hw_features & ENETC_SI_F_QBU)
25 		enetc_port_wr(&si->hw, reg + si->drvdata->pmac_offset, val);
26 }
27 EXPORT_SYMBOL_GPL(enetc_port_mac_wr);
28 
29 static void enetc_change_preemptible_tcs(struct enetc_ndev_priv *priv,
30 					 u8 preemptible_tcs)
31 {
32 	if (!(priv->si->hw_features & ENETC_SI_F_QBU))
33 		return;
34 
35 	priv->preemptible_tcs = preemptible_tcs;
36 	enetc_mm_commit_preemptible_tcs(priv);
37 }
38 
39 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
40 {
41 	int num_tx_rings = priv->num_tx_rings;
42 
43 	if (priv->xdp_prog)
44 		return num_tx_rings - num_possible_cpus();
45 
46 	return num_tx_rings;
47 }
48 
49 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
50 							struct enetc_bdr *tx_ring)
51 {
52 	int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
53 
54 	return priv->rx_ring[index];
55 }
56 
57 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
58 {
59 	if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
60 		return NULL;
61 
62 	return tx_swbd->skb;
63 }
64 
65 static struct xdp_frame *
66 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
67 {
68 	if (tx_swbd->is_xdp_redirect)
69 		return tx_swbd->xdp_frame;
70 
71 	return NULL;
72 }
73 
74 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
75 				struct enetc_tx_swbd *tx_swbd)
76 {
77 	/* For XDP_TX, pages come from RX, whereas for the other contexts where
78 	 * we have is_dma_page_set, those come from skb_frag_dma_map. We need
79 	 * to match the DMA mapping length, so we need to differentiate those.
80 	 */
81 	if (tx_swbd->is_dma_page)
82 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
83 			       tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
84 			       tx_swbd->dir);
85 	else
86 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
87 				 tx_swbd->len, tx_swbd->dir);
88 	tx_swbd->dma = 0;
89 }
90 
91 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
92 				struct enetc_tx_swbd *tx_swbd)
93 {
94 	struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
95 	struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
96 
97 	if (tx_swbd->dma)
98 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
99 
100 	if (xdp_frame) {
101 		xdp_return_frame(tx_swbd->xdp_frame);
102 		tx_swbd->xdp_frame = NULL;
103 	} else if (skb) {
104 		dev_kfree_skb_any(skb);
105 		tx_swbd->skb = NULL;
106 	}
107 }
108 
109 /* Let H/W know BD ring has been updated */
110 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
111 {
112 	/* includes wmb() */
113 	enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
114 }
115 
116 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
117 			   u8 *msgtype, u8 *twostep,
118 			   u16 *correction_offset, u16 *body_offset)
119 {
120 	unsigned int ptp_class;
121 	struct ptp_header *hdr;
122 	unsigned int type;
123 	u8 *base;
124 
125 	ptp_class = ptp_classify_raw(skb);
126 	if (ptp_class == PTP_CLASS_NONE)
127 		return -EINVAL;
128 
129 	hdr = ptp_parse_header(skb, ptp_class);
130 	if (!hdr)
131 		return -EINVAL;
132 
133 	type = ptp_class & PTP_CLASS_PMASK;
134 	if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
135 		*udp = 1;
136 	else
137 		*udp = 0;
138 
139 	*msgtype = ptp_get_msgtype(hdr, ptp_class);
140 	*twostep = hdr->flag_field[0] & 0x2;
141 
142 	base = skb_mac_header(skb);
143 	*correction_offset = (u8 *)&hdr->correction - base;
144 	*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
145 
146 	return 0;
147 }
148 
149 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
150 {
151 	bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
152 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
153 	struct enetc_hw *hw = &priv->si->hw;
154 	struct enetc_tx_swbd *tx_swbd;
155 	int len = skb_headlen(skb);
156 	union enetc_tx_bd temp_bd;
157 	u8 msgtype, twostep, udp;
158 	union enetc_tx_bd *txbd;
159 	u16 offset1, offset2;
160 	int i, count = 0;
161 	skb_frag_t *frag;
162 	unsigned int f;
163 	dma_addr_t dma;
164 	u8 flags = 0;
165 
166 	i = tx_ring->next_to_use;
167 	txbd = ENETC_TXBD(*tx_ring, i);
168 	prefetchw(txbd);
169 
170 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
171 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
172 		goto dma_err;
173 
174 	temp_bd.addr = cpu_to_le64(dma);
175 	temp_bd.buf_len = cpu_to_le16(len);
176 	temp_bd.lstatus = 0;
177 
178 	tx_swbd = &tx_ring->tx_swbd[i];
179 	tx_swbd->dma = dma;
180 	tx_swbd->len = len;
181 	tx_swbd->is_dma_page = 0;
182 	tx_swbd->dir = DMA_TO_DEVICE;
183 	count++;
184 
185 	do_vlan = skb_vlan_tag_present(skb);
186 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
187 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
188 				    &offset2) ||
189 		    msgtype != PTP_MSGTYPE_SYNC || twostep)
190 			WARN_ONCE(1, "Bad packet for one-step timestamping\n");
191 		else
192 			do_onestep_tstamp = true;
193 	} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
194 		do_twostep_tstamp = true;
195 	}
196 
197 	tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
198 	tx_swbd->qbv_en = !!(priv->active_offloads & ENETC_F_QBV);
199 	tx_swbd->check_wb = tx_swbd->do_twostep_tstamp || tx_swbd->qbv_en;
200 
201 	if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
202 		flags |= ENETC_TXBD_FLAGS_EX;
203 
204 	if (tx_ring->tsd_enable)
205 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
206 
207 	/* first BD needs frm_len and offload flags set */
208 	temp_bd.frm_len = cpu_to_le16(skb->len);
209 	temp_bd.flags = flags;
210 
211 	if (flags & ENETC_TXBD_FLAGS_TSE)
212 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
213 							  flags);
214 
215 	if (flags & ENETC_TXBD_FLAGS_EX) {
216 		u8 e_flags = 0;
217 		*txbd = temp_bd;
218 		enetc_clear_tx_bd(&temp_bd);
219 
220 		/* add extension BD for VLAN and/or timestamping */
221 		flags = 0;
222 		tx_swbd++;
223 		txbd++;
224 		i++;
225 		if (unlikely(i == tx_ring->bd_count)) {
226 			i = 0;
227 			tx_swbd = tx_ring->tx_swbd;
228 			txbd = ENETC_TXBD(*tx_ring, 0);
229 		}
230 		prefetchw(txbd);
231 
232 		if (do_vlan) {
233 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
234 			temp_bd.ext.tpid = 0; /* < C-TAG */
235 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
236 		}
237 
238 		if (do_onestep_tstamp) {
239 			u32 lo, hi, val;
240 			u64 sec, nsec;
241 			u8 *data;
242 
243 			lo = enetc_rd_hot(hw, ENETC_SICTR0);
244 			hi = enetc_rd_hot(hw, ENETC_SICTR1);
245 			sec = (u64)hi << 32 | lo;
246 			nsec = do_div(sec, 1000000000);
247 
248 			/* Configure extension BD */
249 			temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
250 			e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
251 
252 			/* Update originTimestamp field of Sync packet
253 			 * - 48 bits seconds field
254 			 * - 32 bits nanseconds field
255 			 */
256 			data = skb_mac_header(skb);
257 			*(__be16 *)(data + offset2) =
258 				htons((sec >> 32) & 0xffff);
259 			*(__be32 *)(data + offset2 + 2) =
260 				htonl(sec & 0xffffffff);
261 			*(__be32 *)(data + offset2 + 6) = htonl(nsec);
262 
263 			/* Configure single-step register */
264 			val = ENETC_PM0_SINGLE_STEP_EN;
265 			val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
266 			if (udp)
267 				val |= ENETC_PM0_SINGLE_STEP_CH;
268 
269 			enetc_port_mac_wr(priv->si, ENETC_PM0_SINGLE_STEP,
270 					  val);
271 		} else if (do_twostep_tstamp) {
272 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
273 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
274 		}
275 
276 		temp_bd.ext.e_flags = e_flags;
277 		count++;
278 	}
279 
280 	frag = &skb_shinfo(skb)->frags[0];
281 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
282 		len = skb_frag_size(frag);
283 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
284 				       DMA_TO_DEVICE);
285 		if (dma_mapping_error(tx_ring->dev, dma))
286 			goto dma_err;
287 
288 		*txbd = temp_bd;
289 		enetc_clear_tx_bd(&temp_bd);
290 
291 		flags = 0;
292 		tx_swbd++;
293 		txbd++;
294 		i++;
295 		if (unlikely(i == tx_ring->bd_count)) {
296 			i = 0;
297 			tx_swbd = tx_ring->tx_swbd;
298 			txbd = ENETC_TXBD(*tx_ring, 0);
299 		}
300 		prefetchw(txbd);
301 
302 		temp_bd.addr = cpu_to_le64(dma);
303 		temp_bd.buf_len = cpu_to_le16(len);
304 
305 		tx_swbd->dma = dma;
306 		tx_swbd->len = len;
307 		tx_swbd->is_dma_page = 1;
308 		tx_swbd->dir = DMA_TO_DEVICE;
309 		count++;
310 	}
311 
312 	/* last BD needs 'F' bit set */
313 	flags |= ENETC_TXBD_FLAGS_F;
314 	temp_bd.flags = flags;
315 	*txbd = temp_bd;
316 
317 	tx_ring->tx_swbd[i].is_eof = true;
318 	tx_ring->tx_swbd[i].skb = skb;
319 
320 	enetc_bdr_idx_inc(tx_ring, &i);
321 	tx_ring->next_to_use = i;
322 
323 	skb_tx_timestamp(skb);
324 
325 	enetc_update_tx_ring_tail(tx_ring);
326 
327 	return count;
328 
329 dma_err:
330 	dev_err(tx_ring->dev, "DMA map error");
331 
332 	do {
333 		tx_swbd = &tx_ring->tx_swbd[i];
334 		enetc_free_tx_frame(tx_ring, tx_swbd);
335 		if (i == 0)
336 			i = tx_ring->bd_count;
337 		i--;
338 	} while (count--);
339 
340 	return 0;
341 }
342 
343 static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
344 				 struct enetc_tx_swbd *tx_swbd,
345 				 union enetc_tx_bd *txbd, int *i, int hdr_len,
346 				 int data_len)
347 {
348 	union enetc_tx_bd txbd_tmp;
349 	u8 flags = 0, e_flags = 0;
350 	dma_addr_t addr;
351 
352 	enetc_clear_tx_bd(&txbd_tmp);
353 	addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
354 
355 	if (skb_vlan_tag_present(skb))
356 		flags |= ENETC_TXBD_FLAGS_EX;
357 
358 	txbd_tmp.addr = cpu_to_le64(addr);
359 	txbd_tmp.buf_len = cpu_to_le16(hdr_len);
360 
361 	/* first BD needs frm_len and offload flags set */
362 	txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
363 	txbd_tmp.flags = flags;
364 
365 	/* For the TSO header we do not set the dma address since we do not
366 	 * want it unmapped when we do cleanup. We still set len so that we
367 	 * count the bytes sent.
368 	 */
369 	tx_swbd->len = hdr_len;
370 	tx_swbd->do_twostep_tstamp = false;
371 	tx_swbd->check_wb = false;
372 
373 	/* Actually write the header in the BD */
374 	*txbd = txbd_tmp;
375 
376 	/* Add extension BD for VLAN */
377 	if (flags & ENETC_TXBD_FLAGS_EX) {
378 		/* Get the next BD */
379 		enetc_bdr_idx_inc(tx_ring, i);
380 		txbd = ENETC_TXBD(*tx_ring, *i);
381 		tx_swbd = &tx_ring->tx_swbd[*i];
382 		prefetchw(txbd);
383 
384 		/* Setup the VLAN fields */
385 		enetc_clear_tx_bd(&txbd_tmp);
386 		txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
387 		txbd_tmp.ext.tpid = 0; /* < C-TAG */
388 		e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
389 
390 		/* Write the BD */
391 		txbd_tmp.ext.e_flags = e_flags;
392 		*txbd = txbd_tmp;
393 	}
394 }
395 
396 static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
397 				 struct enetc_tx_swbd *tx_swbd,
398 				 union enetc_tx_bd *txbd, char *data,
399 				 int size, bool last_bd)
400 {
401 	union enetc_tx_bd txbd_tmp;
402 	dma_addr_t addr;
403 	u8 flags = 0;
404 
405 	enetc_clear_tx_bd(&txbd_tmp);
406 
407 	addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
408 	if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
409 		netdev_err(tx_ring->ndev, "DMA map error\n");
410 		return -ENOMEM;
411 	}
412 
413 	if (last_bd) {
414 		flags |= ENETC_TXBD_FLAGS_F;
415 		tx_swbd->is_eof = 1;
416 	}
417 
418 	txbd_tmp.addr = cpu_to_le64(addr);
419 	txbd_tmp.buf_len = cpu_to_le16(size);
420 	txbd_tmp.flags = flags;
421 
422 	tx_swbd->dma = addr;
423 	tx_swbd->len = size;
424 	tx_swbd->dir = DMA_TO_DEVICE;
425 
426 	*txbd = txbd_tmp;
427 
428 	return 0;
429 }
430 
431 static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
432 				 char *hdr, int hdr_len, int *l4_hdr_len)
433 {
434 	char *l4_hdr = hdr + skb_transport_offset(skb);
435 	int mac_hdr_len = skb_network_offset(skb);
436 
437 	if (tso->tlen != sizeof(struct udphdr)) {
438 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
439 
440 		tcph->check = 0;
441 	} else {
442 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
443 
444 		udph->check = 0;
445 	}
446 
447 	/* Compute the IP checksum. This is necessary since tso_build_hdr()
448 	 * already incremented the IP ID field.
449 	 */
450 	if (!tso->ipv6) {
451 		struct iphdr *iph = (void *)(hdr + mac_hdr_len);
452 
453 		iph->check = 0;
454 		iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
455 	}
456 
457 	/* Compute the checksum over the L4 header. */
458 	*l4_hdr_len = hdr_len - skb_transport_offset(skb);
459 	return csum_partial(l4_hdr, *l4_hdr_len, 0);
460 }
461 
462 static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
463 				    struct sk_buff *skb, char *hdr, int len,
464 				    __wsum sum)
465 {
466 	char *l4_hdr = hdr + skb_transport_offset(skb);
467 	__sum16 csum_final;
468 
469 	/* Complete the L4 checksum by appending the pseudo-header to the
470 	 * already computed checksum.
471 	 */
472 	if (!tso->ipv6)
473 		csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
474 					       ip_hdr(skb)->daddr,
475 					       len, ip_hdr(skb)->protocol, sum);
476 	else
477 		csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
478 					     &ipv6_hdr(skb)->daddr,
479 					     len, ipv6_hdr(skb)->nexthdr, sum);
480 
481 	if (tso->tlen != sizeof(struct udphdr)) {
482 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
483 
484 		tcph->check = csum_final;
485 	} else {
486 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
487 
488 		udph->check = csum_final;
489 	}
490 }
491 
492 static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
493 {
494 	int hdr_len, total_len, data_len;
495 	struct enetc_tx_swbd *tx_swbd;
496 	union enetc_tx_bd *txbd;
497 	struct tso_t tso;
498 	__wsum csum, csum2;
499 	int count = 0, pos;
500 	int err, i, bd_data_num;
501 
502 	/* Initialize the TSO handler, and prepare the first payload */
503 	hdr_len = tso_start(skb, &tso);
504 	total_len = skb->len - hdr_len;
505 	i = tx_ring->next_to_use;
506 
507 	while (total_len > 0) {
508 		char *hdr;
509 
510 		/* Get the BD */
511 		txbd = ENETC_TXBD(*tx_ring, i);
512 		tx_swbd = &tx_ring->tx_swbd[i];
513 		prefetchw(txbd);
514 
515 		/* Determine the length of this packet */
516 		data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
517 		total_len -= data_len;
518 
519 		/* prepare packet headers: MAC + IP + TCP */
520 		hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
521 		tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
522 
523 		/* compute the csum over the L4 header */
524 		csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
525 		enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
526 		bd_data_num = 0;
527 		count++;
528 
529 		while (data_len > 0) {
530 			int size;
531 
532 			size = min_t(int, tso.size, data_len);
533 
534 			/* Advance the index in the BDR */
535 			enetc_bdr_idx_inc(tx_ring, &i);
536 			txbd = ENETC_TXBD(*tx_ring, i);
537 			tx_swbd = &tx_ring->tx_swbd[i];
538 			prefetchw(txbd);
539 
540 			/* Compute the checksum over this segment of data and
541 			 * add it to the csum already computed (over the L4
542 			 * header and possible other data segments).
543 			 */
544 			csum2 = csum_partial(tso.data, size, 0);
545 			csum = csum_block_add(csum, csum2, pos);
546 			pos += size;
547 
548 			err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
549 						    tso.data, size,
550 						    size == data_len);
551 			if (err)
552 				goto err_map_data;
553 
554 			data_len -= size;
555 			count++;
556 			bd_data_num++;
557 			tso_build_data(skb, &tso, size);
558 
559 			if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
560 				goto err_chained_bd;
561 		}
562 
563 		enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
564 
565 		if (total_len == 0)
566 			tx_swbd->skb = skb;
567 
568 		/* Go to the next BD */
569 		enetc_bdr_idx_inc(tx_ring, &i);
570 	}
571 
572 	tx_ring->next_to_use = i;
573 	enetc_update_tx_ring_tail(tx_ring);
574 
575 	return count;
576 
577 err_map_data:
578 	dev_err(tx_ring->dev, "DMA map error");
579 
580 err_chained_bd:
581 	do {
582 		tx_swbd = &tx_ring->tx_swbd[i];
583 		enetc_free_tx_frame(tx_ring, tx_swbd);
584 		if (i == 0)
585 			i = tx_ring->bd_count;
586 		i--;
587 	} while (count--);
588 
589 	return 0;
590 }
591 
592 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
593 				    struct net_device *ndev)
594 {
595 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
596 	struct enetc_bdr *tx_ring;
597 	int count, err;
598 
599 	/* Queue one-step Sync packet if already locked */
600 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
601 		if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
602 					  &priv->flags)) {
603 			skb_queue_tail(&priv->tx_skbs, skb);
604 			return NETDEV_TX_OK;
605 		}
606 	}
607 
608 	tx_ring = priv->tx_ring[skb->queue_mapping];
609 
610 	if (skb_is_gso(skb)) {
611 		if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
612 			netif_stop_subqueue(ndev, tx_ring->index);
613 			return NETDEV_TX_BUSY;
614 		}
615 
616 		enetc_lock_mdio();
617 		count = enetc_map_tx_tso_buffs(tx_ring, skb);
618 		enetc_unlock_mdio();
619 	} else {
620 		if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
621 			if (unlikely(skb_linearize(skb)))
622 				goto drop_packet_err;
623 
624 		count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
625 		if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
626 			netif_stop_subqueue(ndev, tx_ring->index);
627 			return NETDEV_TX_BUSY;
628 		}
629 
630 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
631 			err = skb_checksum_help(skb);
632 			if (err)
633 				goto drop_packet_err;
634 		}
635 		enetc_lock_mdio();
636 		count = enetc_map_tx_buffs(tx_ring, skb);
637 		enetc_unlock_mdio();
638 	}
639 
640 	if (unlikely(!count))
641 		goto drop_packet_err;
642 
643 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
644 		netif_stop_subqueue(ndev, tx_ring->index);
645 
646 	return NETDEV_TX_OK;
647 
648 drop_packet_err:
649 	dev_kfree_skb_any(skb);
650 	return NETDEV_TX_OK;
651 }
652 
653 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
654 {
655 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
656 	u8 udp, msgtype, twostep;
657 	u16 offset1, offset2;
658 
659 	/* Mark tx timestamp type on skb->cb[0] if requires */
660 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
661 	    (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
662 		skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
663 	} else {
664 		skb->cb[0] = 0;
665 	}
666 
667 	/* Fall back to two-step timestamp if not one-step Sync packet */
668 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
669 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
670 				    &offset1, &offset2) ||
671 		    msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
672 			skb->cb[0] = ENETC_F_TX_TSTAMP;
673 	}
674 
675 	return enetc_start_xmit(skb, ndev);
676 }
677 EXPORT_SYMBOL_GPL(enetc_xmit);
678 
679 static irqreturn_t enetc_msix(int irq, void *data)
680 {
681 	struct enetc_int_vector	*v = data;
682 	int i;
683 
684 	enetc_lock_mdio();
685 
686 	/* disable interrupts */
687 	enetc_wr_reg_hot(v->rbier, 0);
688 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
689 
690 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
691 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
692 
693 	enetc_unlock_mdio();
694 
695 	napi_schedule(&v->napi);
696 
697 	return IRQ_HANDLED;
698 }
699 
700 static void enetc_rx_dim_work(struct work_struct *w)
701 {
702 	struct dim *dim = container_of(w, struct dim, work);
703 	struct dim_cq_moder moder =
704 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
705 	struct enetc_int_vector	*v =
706 		container_of(dim, struct enetc_int_vector, rx_dim);
707 	struct enetc_ndev_priv *priv = netdev_priv(v->rx_ring.ndev);
708 
709 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec, priv->sysclk_freq);
710 	dim->state = DIM_START_MEASURE;
711 }
712 
713 static void enetc_rx_net_dim(struct enetc_int_vector *v)
714 {
715 	struct dim_sample dim_sample = {};
716 
717 	v->comp_cnt++;
718 
719 	if (!v->rx_napi_work)
720 		return;
721 
722 	dim_update_sample(v->comp_cnt,
723 			  v->rx_ring.stats.packets,
724 			  v->rx_ring.stats.bytes,
725 			  &dim_sample);
726 	net_dim(&v->rx_dim, &dim_sample);
727 }
728 
729 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
730 {
731 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
732 
733 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
734 }
735 
736 static bool enetc_page_reusable(struct page *page)
737 {
738 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
739 }
740 
741 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
742 			     struct enetc_rx_swbd *old)
743 {
744 	struct enetc_rx_swbd *new;
745 
746 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
747 
748 	/* next buf that may reuse a page */
749 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
750 
751 	/* copy page reference */
752 	*new = *old;
753 }
754 
755 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
756 				u64 *tstamp)
757 {
758 	u32 lo, hi, tstamp_lo;
759 
760 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
761 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
762 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
763 	if (lo <= tstamp_lo)
764 		hi -= 1;
765 	*tstamp = (u64)hi << 32 | tstamp_lo;
766 }
767 
768 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
769 {
770 	struct skb_shared_hwtstamps shhwtstamps;
771 
772 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
773 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
774 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
775 		skb_txtime_consumed(skb);
776 		skb_tstamp_tx(skb, &shhwtstamps);
777 	}
778 }
779 
780 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
781 				      struct enetc_tx_swbd *tx_swbd)
782 {
783 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
784 	struct enetc_rx_swbd rx_swbd = {
785 		.dma = tx_swbd->dma,
786 		.page = tx_swbd->page,
787 		.page_offset = tx_swbd->page_offset,
788 		.dir = tx_swbd->dir,
789 		.len = tx_swbd->len,
790 	};
791 	struct enetc_bdr *rx_ring;
792 
793 	rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
794 
795 	if (likely(enetc_swbd_unused(rx_ring))) {
796 		enetc_reuse_page(rx_ring, &rx_swbd);
797 
798 		/* sync for use by the device */
799 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
800 						 rx_swbd.page_offset,
801 						 ENETC_RXB_DMA_SIZE_XDP,
802 						 rx_swbd.dir);
803 
804 		rx_ring->stats.recycles++;
805 	} else {
806 		/* RX ring is already full, we need to unmap and free the
807 		 * page, since there's nothing useful we can do with it.
808 		 */
809 		rx_ring->stats.recycle_failures++;
810 
811 		dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
812 			       rx_swbd.dir);
813 		__free_page(rx_swbd.page);
814 	}
815 
816 	rx_ring->xdp.xdp_tx_in_flight--;
817 }
818 
819 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
820 {
821 	int tx_frm_cnt = 0, tx_byte_cnt = 0, tx_win_drop = 0;
822 	struct net_device *ndev = tx_ring->ndev;
823 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
824 	struct enetc_tx_swbd *tx_swbd;
825 	int i, bds_to_clean;
826 	bool do_twostep_tstamp;
827 	u64 tstamp = 0;
828 
829 	i = tx_ring->next_to_clean;
830 	tx_swbd = &tx_ring->tx_swbd[i];
831 
832 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
833 
834 	do_twostep_tstamp = false;
835 
836 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
837 		struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
838 		struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
839 		bool is_eof = tx_swbd->is_eof;
840 
841 		if (unlikely(tx_swbd->check_wb)) {
842 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
843 
844 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
845 			    tx_swbd->do_twostep_tstamp) {
846 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
847 						    &tstamp);
848 				do_twostep_tstamp = true;
849 			}
850 
851 			if (tx_swbd->qbv_en &&
852 			    txbd->wb.status & ENETC_TXBD_STATS_WIN)
853 				tx_win_drop++;
854 		}
855 
856 		if (tx_swbd->is_xdp_tx)
857 			enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
858 		else if (likely(tx_swbd->dma))
859 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
860 
861 		if (xdp_frame) {
862 			xdp_return_frame(xdp_frame);
863 		} else if (skb) {
864 			if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
865 				/* Start work to release lock for next one-step
866 				 * timestamping packet. And send one skb in
867 				 * tx_skbs queue if has.
868 				 */
869 				schedule_work(&priv->tx_onestep_tstamp);
870 			} else if (unlikely(do_twostep_tstamp)) {
871 				enetc_tstamp_tx(skb, tstamp);
872 				do_twostep_tstamp = false;
873 			}
874 			napi_consume_skb(skb, napi_budget);
875 		}
876 
877 		tx_byte_cnt += tx_swbd->len;
878 		/* Scrub the swbd here so we don't have to do that
879 		 * when we reuse it during xmit
880 		 */
881 		memset(tx_swbd, 0, sizeof(*tx_swbd));
882 
883 		bds_to_clean--;
884 		tx_swbd++;
885 		i++;
886 		if (unlikely(i == tx_ring->bd_count)) {
887 			i = 0;
888 			tx_swbd = tx_ring->tx_swbd;
889 		}
890 
891 		/* BD iteration loop end */
892 		if (is_eof) {
893 			tx_frm_cnt++;
894 			/* re-arm interrupt source */
895 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
896 					 BIT(16 + tx_ring->index));
897 		}
898 
899 		if (unlikely(!bds_to_clean))
900 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
901 	}
902 
903 	tx_ring->next_to_clean = i;
904 	tx_ring->stats.packets += tx_frm_cnt;
905 	tx_ring->stats.bytes += tx_byte_cnt;
906 	tx_ring->stats.win_drop += tx_win_drop;
907 
908 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
909 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
910 		     !test_bit(ENETC_TX_DOWN, &priv->flags) &&
911 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
912 		netif_wake_subqueue(ndev, tx_ring->index);
913 	}
914 
915 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
916 }
917 
918 static bool enetc_new_page(struct enetc_bdr *rx_ring,
919 			   struct enetc_rx_swbd *rx_swbd)
920 {
921 	bool xdp = !!(rx_ring->xdp.prog);
922 	struct page *page;
923 	dma_addr_t addr;
924 
925 	page = dev_alloc_page();
926 	if (unlikely(!page))
927 		return false;
928 
929 	/* For XDP_TX, we forgo dma_unmap -> dma_map */
930 	rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
931 
932 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
933 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
934 		__free_page(page);
935 
936 		return false;
937 	}
938 
939 	rx_swbd->dma = addr;
940 	rx_swbd->page = page;
941 	rx_swbd->page_offset = rx_ring->buffer_offset;
942 
943 	return true;
944 }
945 
946 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
947 {
948 	struct enetc_rx_swbd *rx_swbd;
949 	union enetc_rx_bd *rxbd;
950 	int i, j;
951 
952 	i = rx_ring->next_to_use;
953 	rx_swbd = &rx_ring->rx_swbd[i];
954 	rxbd = enetc_rxbd(rx_ring, i);
955 
956 	for (j = 0; j < buff_cnt; j++) {
957 		/* try reuse page */
958 		if (unlikely(!rx_swbd->page)) {
959 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
960 				rx_ring->stats.rx_alloc_errs++;
961 				break;
962 			}
963 		}
964 
965 		/* update RxBD */
966 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
967 					   rx_swbd->page_offset);
968 		/* clear 'R" as well */
969 		rxbd->r.lstatus = 0;
970 
971 		enetc_rxbd_next(rx_ring, &rxbd, &i);
972 		rx_swbd = &rx_ring->rx_swbd[i];
973 	}
974 
975 	if (likely(j)) {
976 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
977 		rx_ring->next_to_use = i;
978 
979 		/* update ENETC's consumer index */
980 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
981 	}
982 
983 	return j;
984 }
985 
986 static void enetc_get_rx_tstamp(struct net_device *ndev,
987 				union enetc_rx_bd *rxbd,
988 				struct sk_buff *skb)
989 {
990 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
991 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
992 	struct enetc_hw *hw = &priv->si->hw;
993 	u32 lo, hi, tstamp_lo;
994 	u64 tstamp;
995 
996 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
997 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
998 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
999 		rxbd = enetc_rxbd_ext(rxbd);
1000 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
1001 		if (lo <= tstamp_lo)
1002 			hi -= 1;
1003 
1004 		tstamp = (u64)hi << 32 | tstamp_lo;
1005 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1006 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
1007 	}
1008 }
1009 
1010 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
1011 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
1012 {
1013 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1014 
1015 	/* TODO: hashing */
1016 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
1017 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
1018 
1019 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
1020 		skb->ip_summed = CHECKSUM_COMPLETE;
1021 	}
1022 
1023 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
1024 		__be16 tpid = 0;
1025 
1026 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
1027 		case 0:
1028 			tpid = htons(ETH_P_8021Q);
1029 			break;
1030 		case 1:
1031 			tpid = htons(ETH_P_8021AD);
1032 			break;
1033 		case 2:
1034 			tpid = htons(enetc_port_rd(&priv->si->hw,
1035 						   ENETC_PCVLANR1));
1036 			break;
1037 		case 3:
1038 			tpid = htons(enetc_port_rd(&priv->si->hw,
1039 						   ENETC_PCVLANR2));
1040 			break;
1041 		default:
1042 			break;
1043 		}
1044 
1045 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
1046 	}
1047 
1048 	if (IS_ENABLED(CONFIG_FSL_ENETC_PTP_CLOCK) &&
1049 	    (priv->active_offloads & ENETC_F_RX_TSTAMP))
1050 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
1051 }
1052 
1053 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
1054  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
1055  * mapped buffers.
1056  */
1057 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
1058 					       int i, u16 size)
1059 {
1060 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1061 
1062 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
1063 				      rx_swbd->page_offset,
1064 				      size, rx_swbd->dir);
1065 	return rx_swbd;
1066 }
1067 
1068 /* Reuse the current page without performing half-page buffer flipping */
1069 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
1070 			      struct enetc_rx_swbd *rx_swbd)
1071 {
1072 	size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
1073 
1074 	enetc_reuse_page(rx_ring, rx_swbd);
1075 
1076 	dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
1077 					 rx_swbd->page_offset,
1078 					 buffer_size, rx_swbd->dir);
1079 
1080 	rx_swbd->page = NULL;
1081 }
1082 
1083 /* Reuse the current page by performing half-page buffer flipping */
1084 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
1085 			       struct enetc_rx_swbd *rx_swbd)
1086 {
1087 	if (likely(enetc_page_reusable(rx_swbd->page))) {
1088 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
1089 		page_ref_inc(rx_swbd->page);
1090 
1091 		enetc_put_rx_buff(rx_ring, rx_swbd);
1092 	} else {
1093 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1094 			       rx_swbd->dir);
1095 		rx_swbd->page = NULL;
1096 	}
1097 }
1098 
1099 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
1100 						int i, u16 size)
1101 {
1102 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1103 	struct sk_buff *skb;
1104 	void *ba;
1105 
1106 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
1107 	skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
1108 	if (unlikely(!skb)) {
1109 		rx_ring->stats.rx_alloc_errs++;
1110 		return NULL;
1111 	}
1112 
1113 	skb_reserve(skb, rx_ring->buffer_offset);
1114 	__skb_put(skb, size);
1115 
1116 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1117 
1118 	return skb;
1119 }
1120 
1121 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
1122 				     u16 size, struct sk_buff *skb)
1123 {
1124 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1125 
1126 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
1127 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
1128 
1129 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1130 }
1131 
1132 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
1133 					      u32 bd_status,
1134 					      union enetc_rx_bd **rxbd, int *i)
1135 {
1136 	if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
1137 		return false;
1138 
1139 	enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1140 	enetc_rxbd_next(rx_ring, rxbd, i);
1141 
1142 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1143 		dma_rmb();
1144 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1145 
1146 		enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1147 		enetc_rxbd_next(rx_ring, rxbd, i);
1148 	}
1149 
1150 	rx_ring->ndev->stats.rx_dropped++;
1151 	rx_ring->ndev->stats.rx_errors++;
1152 
1153 	return true;
1154 }
1155 
1156 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
1157 				       u32 bd_status, union enetc_rx_bd **rxbd,
1158 				       int *i, int *cleaned_cnt, int buffer_size)
1159 {
1160 	struct sk_buff *skb;
1161 	u16 size;
1162 
1163 	size = le16_to_cpu((*rxbd)->r.buf_len);
1164 	skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
1165 	if (!skb)
1166 		return NULL;
1167 
1168 	enetc_get_offloads(rx_ring, *rxbd, skb);
1169 
1170 	(*cleaned_cnt)++;
1171 
1172 	enetc_rxbd_next(rx_ring, rxbd, i);
1173 
1174 	/* not last BD in frame? */
1175 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1176 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1177 		size = buffer_size;
1178 
1179 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1180 			dma_rmb();
1181 			size = le16_to_cpu((*rxbd)->r.buf_len);
1182 		}
1183 
1184 		enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
1185 
1186 		(*cleaned_cnt)++;
1187 
1188 		enetc_rxbd_next(rx_ring, rxbd, i);
1189 	}
1190 
1191 	skb_record_rx_queue(skb, rx_ring->index);
1192 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
1193 
1194 	return skb;
1195 }
1196 
1197 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
1198 
1199 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
1200 			       struct napi_struct *napi, int work_limit)
1201 {
1202 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1203 	int cleaned_cnt, i;
1204 
1205 	cleaned_cnt = enetc_bd_unused(rx_ring);
1206 	/* next descriptor to process */
1207 	i = rx_ring->next_to_clean;
1208 
1209 	while (likely(rx_frm_cnt < work_limit)) {
1210 		union enetc_rx_bd *rxbd;
1211 		struct sk_buff *skb;
1212 		u32 bd_status;
1213 
1214 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
1215 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
1216 							    cleaned_cnt);
1217 
1218 		rxbd = enetc_rxbd(rx_ring, i);
1219 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1220 		if (!bd_status)
1221 			break;
1222 
1223 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1224 		dma_rmb(); /* for reading other rxbd fields */
1225 
1226 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1227 						      &rxbd, &i))
1228 			break;
1229 
1230 		skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
1231 				      &cleaned_cnt, ENETC_RXB_DMA_SIZE);
1232 		if (!skb)
1233 			break;
1234 
1235 		/* When set, the outer VLAN header is extracted and reported
1236 		 * in the receive buffer descriptor. So rx_byte_cnt should
1237 		 * add the length of the extracted VLAN header.
1238 		 */
1239 		if (bd_status & ENETC_RXBD_FLAG_VLAN)
1240 			rx_byte_cnt += VLAN_HLEN;
1241 		rx_byte_cnt += skb->len + ETH_HLEN;
1242 		rx_frm_cnt++;
1243 
1244 		napi_gro_receive(napi, skb);
1245 	}
1246 
1247 	rx_ring->next_to_clean = i;
1248 
1249 	rx_ring->stats.packets += rx_frm_cnt;
1250 	rx_ring->stats.bytes += rx_byte_cnt;
1251 
1252 	return rx_frm_cnt;
1253 }
1254 
1255 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
1256 				  struct enetc_tx_swbd *tx_swbd,
1257 				  int frm_len)
1258 {
1259 	union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1260 
1261 	prefetchw(txbd);
1262 
1263 	enetc_clear_tx_bd(txbd);
1264 	txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
1265 	txbd->buf_len = cpu_to_le16(tx_swbd->len);
1266 	txbd->frm_len = cpu_to_le16(frm_len);
1267 
1268 	memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
1269 }
1270 
1271 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
1272  * descriptors.
1273  */
1274 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
1275 			 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
1276 {
1277 	struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
1278 	int i, k, frm_len = tmp_tx_swbd->len;
1279 
1280 	if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
1281 		return false;
1282 
1283 	while (unlikely(!tmp_tx_swbd->is_eof)) {
1284 		tmp_tx_swbd++;
1285 		frm_len += tmp_tx_swbd->len;
1286 	}
1287 
1288 	i = tx_ring->next_to_use;
1289 
1290 	for (k = 0; k < num_tx_swbd; k++) {
1291 		struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
1292 
1293 		enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
1294 
1295 		/* last BD needs 'F' bit set */
1296 		if (xdp_tx_swbd->is_eof) {
1297 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1298 
1299 			txbd->flags = ENETC_TXBD_FLAGS_F;
1300 		}
1301 
1302 		enetc_bdr_idx_inc(tx_ring, &i);
1303 	}
1304 
1305 	tx_ring->next_to_use = i;
1306 
1307 	return true;
1308 }
1309 
1310 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1311 					  struct enetc_tx_swbd *xdp_tx_arr,
1312 					  struct xdp_frame *xdp_frame)
1313 {
1314 	struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1315 	struct skb_shared_info *shinfo;
1316 	void *data = xdp_frame->data;
1317 	int len = xdp_frame->len;
1318 	skb_frag_t *frag;
1319 	dma_addr_t dma;
1320 	unsigned int f;
1321 	int n = 0;
1322 
1323 	dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1324 	if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1325 		netdev_err(tx_ring->ndev, "DMA map error\n");
1326 		return -1;
1327 	}
1328 
1329 	xdp_tx_swbd->dma = dma;
1330 	xdp_tx_swbd->dir = DMA_TO_DEVICE;
1331 	xdp_tx_swbd->len = len;
1332 	xdp_tx_swbd->is_xdp_redirect = true;
1333 	xdp_tx_swbd->is_eof = false;
1334 	xdp_tx_swbd->xdp_frame = NULL;
1335 
1336 	n++;
1337 
1338 	if (!xdp_frame_has_frags(xdp_frame))
1339 		goto out;
1340 
1341 	xdp_tx_swbd = &xdp_tx_arr[n];
1342 
1343 	shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1344 
1345 	for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1346 	     f++, frag++) {
1347 		data = skb_frag_address(frag);
1348 		len = skb_frag_size(frag);
1349 
1350 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1351 		if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1352 			/* Undo the DMA mapping for all fragments */
1353 			while (--n >= 0)
1354 				enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1355 
1356 			netdev_err(tx_ring->ndev, "DMA map error\n");
1357 			return -1;
1358 		}
1359 
1360 		xdp_tx_swbd->dma = dma;
1361 		xdp_tx_swbd->dir = DMA_TO_DEVICE;
1362 		xdp_tx_swbd->len = len;
1363 		xdp_tx_swbd->is_xdp_redirect = true;
1364 		xdp_tx_swbd->is_eof = false;
1365 		xdp_tx_swbd->xdp_frame = NULL;
1366 
1367 		n++;
1368 		xdp_tx_swbd = &xdp_tx_arr[n];
1369 	}
1370 out:
1371 	xdp_tx_arr[n - 1].is_eof = true;
1372 	xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1373 
1374 	return n;
1375 }
1376 
1377 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1378 		   struct xdp_frame **frames, u32 flags)
1379 {
1380 	struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1381 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1382 	struct enetc_bdr *tx_ring;
1383 	int xdp_tx_bd_cnt, i, k;
1384 	int xdp_tx_frm_cnt = 0;
1385 
1386 	if (unlikely(test_bit(ENETC_TX_DOWN, &priv->flags)))
1387 		return -ENETDOWN;
1388 
1389 	enetc_lock_mdio();
1390 
1391 	tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1392 
1393 	prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1394 
1395 	for (k = 0; k < num_frames; k++) {
1396 		xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1397 							       xdp_redirect_arr,
1398 							       frames[k]);
1399 		if (unlikely(xdp_tx_bd_cnt < 0))
1400 			break;
1401 
1402 		if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1403 					   xdp_tx_bd_cnt))) {
1404 			for (i = 0; i < xdp_tx_bd_cnt; i++)
1405 				enetc_unmap_tx_buff(tx_ring,
1406 						    &xdp_redirect_arr[i]);
1407 			tx_ring->stats.xdp_tx_drops++;
1408 			break;
1409 		}
1410 
1411 		xdp_tx_frm_cnt++;
1412 	}
1413 
1414 	if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1415 		enetc_update_tx_ring_tail(tx_ring);
1416 
1417 	tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1418 
1419 	enetc_unlock_mdio();
1420 
1421 	return xdp_tx_frm_cnt;
1422 }
1423 EXPORT_SYMBOL_GPL(enetc_xdp_xmit);
1424 
1425 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1426 				     struct xdp_buff *xdp_buff, u16 size)
1427 {
1428 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1429 	void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1430 
1431 	/* To be used for XDP_TX */
1432 	rx_swbd->len = size;
1433 
1434 	xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1435 			 rx_ring->buffer_offset, size, false);
1436 }
1437 
1438 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1439 				     u16 size, struct xdp_buff *xdp_buff)
1440 {
1441 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1442 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1443 	skb_frag_t *frag;
1444 
1445 	/* To be used for XDP_TX */
1446 	rx_swbd->len = size;
1447 
1448 	if (!xdp_buff_has_frags(xdp_buff)) {
1449 		xdp_buff_set_frags_flag(xdp_buff);
1450 		shinfo->xdp_frags_size = size;
1451 		shinfo->nr_frags = 0;
1452 	} else {
1453 		shinfo->xdp_frags_size += size;
1454 	}
1455 
1456 	if (page_is_pfmemalloc(rx_swbd->page))
1457 		xdp_buff_set_frag_pfmemalloc(xdp_buff);
1458 
1459 	frag = &shinfo->frags[shinfo->nr_frags];
1460 	skb_frag_fill_page_desc(frag, rx_swbd->page, rx_swbd->page_offset,
1461 				size);
1462 
1463 	shinfo->nr_frags++;
1464 }
1465 
1466 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1467 				 union enetc_rx_bd **rxbd, int *i,
1468 				 int *cleaned_cnt, struct xdp_buff *xdp_buff)
1469 {
1470 	u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1471 
1472 	xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1473 
1474 	enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1475 	(*cleaned_cnt)++;
1476 	enetc_rxbd_next(rx_ring, rxbd, i);
1477 
1478 	/* not last BD in frame? */
1479 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1480 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1481 		size = ENETC_RXB_DMA_SIZE_XDP;
1482 
1483 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1484 			dma_rmb();
1485 			size = le16_to_cpu((*rxbd)->r.buf_len);
1486 		}
1487 
1488 		enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1489 		(*cleaned_cnt)++;
1490 		enetc_rxbd_next(rx_ring, rxbd, i);
1491 	}
1492 }
1493 
1494 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1495  * recycled back into the RX ring in enetc_clean_tx_ring.
1496  */
1497 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1498 					struct enetc_bdr *rx_ring,
1499 					int rx_ring_first, int rx_ring_last)
1500 {
1501 	int n = 0;
1502 
1503 	for (; rx_ring_first != rx_ring_last;
1504 	     n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1505 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1506 		struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1507 
1508 		/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1509 		tx_swbd->dma = rx_swbd->dma;
1510 		tx_swbd->dir = rx_swbd->dir;
1511 		tx_swbd->page = rx_swbd->page;
1512 		tx_swbd->page_offset = rx_swbd->page_offset;
1513 		tx_swbd->len = rx_swbd->len;
1514 		tx_swbd->is_dma_page = true;
1515 		tx_swbd->is_xdp_tx = true;
1516 		tx_swbd->is_eof = false;
1517 	}
1518 
1519 	/* We rely on caller providing an rx_ring_last > rx_ring_first */
1520 	xdp_tx_arr[n - 1].is_eof = true;
1521 
1522 	return n;
1523 }
1524 
1525 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1526 			   int rx_ring_last)
1527 {
1528 	while (rx_ring_first != rx_ring_last) {
1529 		enetc_put_rx_buff(rx_ring,
1530 				  &rx_ring->rx_swbd[rx_ring_first]);
1531 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1532 	}
1533 }
1534 
1535 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1536 				   struct napi_struct *napi, int work_limit,
1537 				   struct bpf_prog *prog)
1538 {
1539 	int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1540 	struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1541 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1542 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1543 	struct enetc_bdr *tx_ring;
1544 	int cleaned_cnt, i;
1545 	u32 xdp_act;
1546 
1547 	cleaned_cnt = enetc_bd_unused(rx_ring);
1548 	/* next descriptor to process */
1549 	i = rx_ring->next_to_clean;
1550 
1551 	while (likely(rx_frm_cnt < work_limit)) {
1552 		union enetc_rx_bd *rxbd, *orig_rxbd;
1553 		int orig_i, orig_cleaned_cnt;
1554 		struct xdp_buff xdp_buff;
1555 		struct sk_buff *skb;
1556 		u32 bd_status;
1557 		int err;
1558 
1559 		rxbd = enetc_rxbd(rx_ring, i);
1560 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1561 		if (!bd_status)
1562 			break;
1563 
1564 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1565 		dma_rmb(); /* for reading other rxbd fields */
1566 
1567 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1568 						      &rxbd, &i))
1569 			break;
1570 
1571 		orig_rxbd = rxbd;
1572 		orig_cleaned_cnt = cleaned_cnt;
1573 		orig_i = i;
1574 
1575 		enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1576 				     &cleaned_cnt, &xdp_buff);
1577 
1578 		/* When set, the outer VLAN header is extracted and reported
1579 		 * in the receive buffer descriptor. So rx_byte_cnt should
1580 		 * add the length of the extracted VLAN header.
1581 		 */
1582 		if (bd_status & ENETC_RXBD_FLAG_VLAN)
1583 			rx_byte_cnt += VLAN_HLEN;
1584 		rx_byte_cnt += xdp_get_buff_len(&xdp_buff);
1585 
1586 		xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1587 
1588 		switch (xdp_act) {
1589 		default:
1590 			bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
1591 			fallthrough;
1592 		case XDP_ABORTED:
1593 			trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1594 			fallthrough;
1595 		case XDP_DROP:
1596 			enetc_xdp_drop(rx_ring, orig_i, i);
1597 			rx_ring->stats.xdp_drops++;
1598 			break;
1599 		case XDP_PASS:
1600 			rxbd = orig_rxbd;
1601 			cleaned_cnt = orig_cleaned_cnt;
1602 			i = orig_i;
1603 
1604 			skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1605 					      &i, &cleaned_cnt,
1606 					      ENETC_RXB_DMA_SIZE_XDP);
1607 			if (unlikely(!skb))
1608 				goto out;
1609 
1610 			napi_gro_receive(napi, skb);
1611 			break;
1612 		case XDP_TX:
1613 			tx_ring = priv->xdp_tx_ring[rx_ring->index];
1614 			if (unlikely(test_bit(ENETC_TX_DOWN, &priv->flags))) {
1615 				enetc_xdp_drop(rx_ring, orig_i, i);
1616 				tx_ring->stats.xdp_tx_drops++;
1617 				break;
1618 			}
1619 
1620 			xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1621 								     rx_ring,
1622 								     orig_i, i);
1623 
1624 			if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1625 				enetc_xdp_drop(rx_ring, orig_i, i);
1626 				tx_ring->stats.xdp_tx_drops++;
1627 			} else {
1628 				tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1629 				rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1630 				xdp_tx_frm_cnt++;
1631 				/* The XDP_TX enqueue was successful, so we
1632 				 * need to scrub the RX software BDs because
1633 				 * the ownership of the buffers no longer
1634 				 * belongs to the RX ring, and we must prevent
1635 				 * enetc_refill_rx_ring() from reusing
1636 				 * rx_swbd->page.
1637 				 */
1638 				while (orig_i != i) {
1639 					rx_ring->rx_swbd[orig_i].page = NULL;
1640 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1641 				}
1642 			}
1643 			break;
1644 		case XDP_REDIRECT:
1645 			err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1646 			if (unlikely(err)) {
1647 				enetc_xdp_drop(rx_ring, orig_i, i);
1648 				rx_ring->stats.xdp_redirect_failures++;
1649 			} else {
1650 				while (orig_i != i) {
1651 					enetc_flip_rx_buff(rx_ring,
1652 							   &rx_ring->rx_swbd[orig_i]);
1653 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1654 				}
1655 				xdp_redirect_frm_cnt++;
1656 				rx_ring->stats.xdp_redirect++;
1657 			}
1658 		}
1659 
1660 		rx_frm_cnt++;
1661 	}
1662 
1663 out:
1664 	rx_ring->next_to_clean = i;
1665 
1666 	rx_ring->stats.packets += rx_frm_cnt;
1667 	rx_ring->stats.bytes += rx_byte_cnt;
1668 
1669 	if (xdp_redirect_frm_cnt)
1670 		xdp_do_flush();
1671 
1672 	if (xdp_tx_frm_cnt)
1673 		enetc_update_tx_ring_tail(tx_ring);
1674 
1675 	if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1676 		enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1677 				     rx_ring->xdp.xdp_tx_in_flight);
1678 
1679 	return rx_frm_cnt;
1680 }
1681 
1682 static int enetc_poll(struct napi_struct *napi, int budget)
1683 {
1684 	struct enetc_int_vector
1685 		*v = container_of(napi, struct enetc_int_vector, napi);
1686 	struct enetc_bdr *rx_ring = &v->rx_ring;
1687 	struct bpf_prog *prog;
1688 	bool complete = true;
1689 	int work_done;
1690 	int i;
1691 
1692 	enetc_lock_mdio();
1693 
1694 	for (i = 0; i < v->count_tx_rings; i++)
1695 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1696 			complete = false;
1697 
1698 	prog = rx_ring->xdp.prog;
1699 	if (prog)
1700 		work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1701 	else
1702 		work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1703 	if (work_done == budget)
1704 		complete = false;
1705 	if (work_done)
1706 		v->rx_napi_work = true;
1707 
1708 	if (!complete) {
1709 		enetc_unlock_mdio();
1710 		return budget;
1711 	}
1712 
1713 	napi_complete_done(napi, work_done);
1714 
1715 	if (likely(v->rx_dim_en))
1716 		enetc_rx_net_dim(v);
1717 
1718 	v->rx_napi_work = false;
1719 
1720 	/* enable interrupts */
1721 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1722 
1723 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1724 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1725 				 ENETC_TBIER_TXTIE);
1726 
1727 	enetc_unlock_mdio();
1728 
1729 	return work_done;
1730 }
1731 
1732 /* Probing and Init */
1733 #define ENETC_MAX_RFS_SIZE 64
1734 void enetc_get_si_caps(struct enetc_si *si)
1735 {
1736 	struct enetc_hw *hw = &si->hw;
1737 	u32 val;
1738 
1739 	/* find out how many of various resources we have to work with */
1740 	val = enetc_rd(hw, ENETC_SICAPR0);
1741 	si->num_rx_rings = (val >> 16) & 0xff;
1742 	si->num_tx_rings = val & 0xff;
1743 
1744 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1745 	if (val & ENETC_SIPCAPR0_RFS) {
1746 		val = enetc_rd(hw, ENETC_SIRFSCAPR);
1747 		si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1748 		si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1749 	} else {
1750 		/* ENETC which not supports RFS */
1751 		si->num_fs_entries = 0;
1752 	}
1753 
1754 	si->num_rss = 0;
1755 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1756 	if (val & ENETC_SIPCAPR0_RSS) {
1757 		u32 rss;
1758 
1759 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1760 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1761 	}
1762 }
1763 EXPORT_SYMBOL_GPL(enetc_get_si_caps);
1764 
1765 static int enetc_dma_alloc_bdr(struct enetc_bdr_resource *res)
1766 {
1767 	size_t bd_base_size = res->bd_count * res->bd_size;
1768 
1769 	res->bd_base = dma_alloc_coherent(res->dev, bd_base_size,
1770 					  &res->bd_dma_base, GFP_KERNEL);
1771 	if (!res->bd_base)
1772 		return -ENOMEM;
1773 
1774 	/* h/w requires 128B alignment */
1775 	if (!IS_ALIGNED(res->bd_dma_base, 128)) {
1776 		dma_free_coherent(res->dev, bd_base_size, res->bd_base,
1777 				  res->bd_dma_base);
1778 		return -EINVAL;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void enetc_dma_free_bdr(const struct enetc_bdr_resource *res)
1785 {
1786 	size_t bd_base_size = res->bd_count * res->bd_size;
1787 
1788 	dma_free_coherent(res->dev, bd_base_size, res->bd_base,
1789 			  res->bd_dma_base);
1790 }
1791 
1792 static int enetc_alloc_tx_resource(struct enetc_bdr_resource *res,
1793 				   struct device *dev, size_t bd_count)
1794 {
1795 	int err;
1796 
1797 	res->dev = dev;
1798 	res->bd_count = bd_count;
1799 	res->bd_size = sizeof(union enetc_tx_bd);
1800 
1801 	res->tx_swbd = vcalloc(bd_count, sizeof(*res->tx_swbd));
1802 	if (!res->tx_swbd)
1803 		return -ENOMEM;
1804 
1805 	err = enetc_dma_alloc_bdr(res);
1806 	if (err)
1807 		goto err_alloc_bdr;
1808 
1809 	res->tso_headers = dma_alloc_coherent(dev, bd_count * TSO_HEADER_SIZE,
1810 					      &res->tso_headers_dma,
1811 					      GFP_KERNEL);
1812 	if (!res->tso_headers) {
1813 		err = -ENOMEM;
1814 		goto err_alloc_tso;
1815 	}
1816 
1817 	return 0;
1818 
1819 err_alloc_tso:
1820 	enetc_dma_free_bdr(res);
1821 err_alloc_bdr:
1822 	vfree(res->tx_swbd);
1823 	res->tx_swbd = NULL;
1824 
1825 	return err;
1826 }
1827 
1828 static void enetc_free_tx_resource(const struct enetc_bdr_resource *res)
1829 {
1830 	dma_free_coherent(res->dev, res->bd_count * TSO_HEADER_SIZE,
1831 			  res->tso_headers, res->tso_headers_dma);
1832 	enetc_dma_free_bdr(res);
1833 	vfree(res->tx_swbd);
1834 }
1835 
1836 static struct enetc_bdr_resource *
1837 enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1838 {
1839 	struct enetc_bdr_resource *tx_res;
1840 	int i, err;
1841 
1842 	tx_res = kcalloc(priv->num_tx_rings, sizeof(*tx_res), GFP_KERNEL);
1843 	if (!tx_res)
1844 		return ERR_PTR(-ENOMEM);
1845 
1846 	for (i = 0; i < priv->num_tx_rings; i++) {
1847 		struct enetc_bdr *tx_ring = priv->tx_ring[i];
1848 
1849 		err = enetc_alloc_tx_resource(&tx_res[i], tx_ring->dev,
1850 					      tx_ring->bd_count);
1851 		if (err)
1852 			goto fail;
1853 	}
1854 
1855 	return tx_res;
1856 
1857 fail:
1858 	while (i-- > 0)
1859 		enetc_free_tx_resource(&tx_res[i]);
1860 
1861 	kfree(tx_res);
1862 
1863 	return ERR_PTR(err);
1864 }
1865 
1866 static void enetc_free_tx_resources(const struct enetc_bdr_resource *tx_res,
1867 				    size_t num_resources)
1868 {
1869 	size_t i;
1870 
1871 	for (i = 0; i < num_resources; i++)
1872 		enetc_free_tx_resource(&tx_res[i]);
1873 
1874 	kfree(tx_res);
1875 }
1876 
1877 static int enetc_alloc_rx_resource(struct enetc_bdr_resource *res,
1878 				   struct device *dev, size_t bd_count,
1879 				   bool extended)
1880 {
1881 	int err;
1882 
1883 	res->dev = dev;
1884 	res->bd_count = bd_count;
1885 	res->bd_size = sizeof(union enetc_rx_bd);
1886 	if (extended)
1887 		res->bd_size *= 2;
1888 
1889 	res->rx_swbd = vcalloc(bd_count, sizeof(struct enetc_rx_swbd));
1890 	if (!res->rx_swbd)
1891 		return -ENOMEM;
1892 
1893 	err = enetc_dma_alloc_bdr(res);
1894 	if (err) {
1895 		vfree(res->rx_swbd);
1896 		return err;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static void enetc_free_rx_resource(const struct enetc_bdr_resource *res)
1903 {
1904 	enetc_dma_free_bdr(res);
1905 	vfree(res->rx_swbd);
1906 }
1907 
1908 static struct enetc_bdr_resource *
1909 enetc_alloc_rx_resources(struct enetc_ndev_priv *priv, bool extended)
1910 {
1911 	struct enetc_bdr_resource *rx_res;
1912 	int i, err;
1913 
1914 	rx_res = kcalloc(priv->num_rx_rings, sizeof(*rx_res), GFP_KERNEL);
1915 	if (!rx_res)
1916 		return ERR_PTR(-ENOMEM);
1917 
1918 	for (i = 0; i < priv->num_rx_rings; i++) {
1919 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
1920 
1921 		err = enetc_alloc_rx_resource(&rx_res[i], rx_ring->dev,
1922 					      rx_ring->bd_count, extended);
1923 		if (err)
1924 			goto fail;
1925 	}
1926 
1927 	return rx_res;
1928 
1929 fail:
1930 	while (i-- > 0)
1931 		enetc_free_rx_resource(&rx_res[i]);
1932 
1933 	kfree(rx_res);
1934 
1935 	return ERR_PTR(err);
1936 }
1937 
1938 static void enetc_free_rx_resources(const struct enetc_bdr_resource *rx_res,
1939 				    size_t num_resources)
1940 {
1941 	size_t i;
1942 
1943 	for (i = 0; i < num_resources; i++)
1944 		enetc_free_rx_resource(&rx_res[i]);
1945 
1946 	kfree(rx_res);
1947 }
1948 
1949 static void enetc_assign_tx_resource(struct enetc_bdr *tx_ring,
1950 				     const struct enetc_bdr_resource *res)
1951 {
1952 	tx_ring->bd_base = res ? res->bd_base : NULL;
1953 	tx_ring->bd_dma_base = res ? res->bd_dma_base : 0;
1954 	tx_ring->tx_swbd = res ? res->tx_swbd : NULL;
1955 	tx_ring->tso_headers = res ? res->tso_headers : NULL;
1956 	tx_ring->tso_headers_dma = res ? res->tso_headers_dma : 0;
1957 }
1958 
1959 static void enetc_assign_rx_resource(struct enetc_bdr *rx_ring,
1960 				     const struct enetc_bdr_resource *res)
1961 {
1962 	rx_ring->bd_base = res ? res->bd_base : NULL;
1963 	rx_ring->bd_dma_base = res ? res->bd_dma_base : 0;
1964 	rx_ring->rx_swbd = res ? res->rx_swbd : NULL;
1965 }
1966 
1967 static void enetc_assign_tx_resources(struct enetc_ndev_priv *priv,
1968 				      const struct enetc_bdr_resource *res)
1969 {
1970 	int i;
1971 
1972 	if (priv->tx_res)
1973 		enetc_free_tx_resources(priv->tx_res, priv->num_tx_rings);
1974 
1975 	for (i = 0; i < priv->num_tx_rings; i++) {
1976 		enetc_assign_tx_resource(priv->tx_ring[i],
1977 					 res ? &res[i] : NULL);
1978 	}
1979 
1980 	priv->tx_res = res;
1981 }
1982 
1983 static void enetc_assign_rx_resources(struct enetc_ndev_priv *priv,
1984 				      const struct enetc_bdr_resource *res)
1985 {
1986 	int i;
1987 
1988 	if (priv->rx_res)
1989 		enetc_free_rx_resources(priv->rx_res, priv->num_rx_rings);
1990 
1991 	for (i = 0; i < priv->num_rx_rings; i++) {
1992 		enetc_assign_rx_resource(priv->rx_ring[i],
1993 					 res ? &res[i] : NULL);
1994 	}
1995 
1996 	priv->rx_res = res;
1997 }
1998 
1999 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < tx_ring->bd_count; i++) {
2004 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
2005 
2006 		enetc_free_tx_frame(tx_ring, tx_swbd);
2007 	}
2008 }
2009 
2010 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
2011 {
2012 	int i;
2013 
2014 	for (i = 0; i < rx_ring->bd_count; i++) {
2015 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
2016 
2017 		if (!rx_swbd->page)
2018 			continue;
2019 
2020 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
2021 			       rx_swbd->dir);
2022 		__free_page(rx_swbd->page);
2023 		rx_swbd->page = NULL;
2024 	}
2025 }
2026 
2027 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
2028 {
2029 	int i;
2030 
2031 	for (i = 0; i < priv->num_rx_rings; i++)
2032 		enetc_free_rx_ring(priv->rx_ring[i]);
2033 
2034 	for (i = 0; i < priv->num_tx_rings; i++)
2035 		enetc_free_tx_ring(priv->tx_ring[i]);
2036 }
2037 
2038 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
2039 {
2040 	int *rss_table;
2041 	int i;
2042 
2043 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
2044 	if (!rss_table)
2045 		return -ENOMEM;
2046 
2047 	/* Set up RSS table defaults */
2048 	for (i = 0; i < si->num_rss; i++)
2049 		rss_table[i] = i % num_groups;
2050 
2051 	enetc_set_rss_table(si, rss_table, si->num_rss);
2052 
2053 	kfree(rss_table);
2054 
2055 	return 0;
2056 }
2057 
2058 int enetc_configure_si(struct enetc_ndev_priv *priv)
2059 {
2060 	struct enetc_si *si = priv->si;
2061 	struct enetc_hw *hw = &si->hw;
2062 	int err;
2063 
2064 	/* set SI cache attributes */
2065 	enetc_wr(hw, ENETC_SICAR0,
2066 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
2067 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
2068 	/* enable SI */
2069 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
2070 
2071 	/* TODO: RSS support for i.MX95 will be supported later, and the
2072 	 * is_enetc_rev1() condition will be removed
2073 	 */
2074 	if (si->num_rss && is_enetc_rev1(si)) {
2075 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
2076 		if (err)
2077 			return err;
2078 	}
2079 
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(enetc_configure_si);
2083 
2084 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
2085 {
2086 	struct enetc_si *si = priv->si;
2087 	int cpus = num_online_cpus();
2088 
2089 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
2090 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
2091 
2092 	/* Enable all available TX rings in order to configure as many
2093 	 * priorities as possible, when needed.
2094 	 * TODO: Make # of TX rings run-time configurable
2095 	 */
2096 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
2097 	priv->num_tx_rings = si->num_tx_rings;
2098 	priv->bdr_int_num = priv->num_rx_rings;
2099 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
2100 	priv->tx_ictt = enetc_usecs_to_cycles(600, priv->sysclk_freq);
2101 }
2102 EXPORT_SYMBOL_GPL(enetc_init_si_rings_params);
2103 
2104 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
2105 {
2106 	struct enetc_si *si = priv->si;
2107 
2108 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
2109 				  GFP_KERNEL);
2110 	if (!priv->cls_rules)
2111 		return -ENOMEM;
2112 
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL_GPL(enetc_alloc_si_resources);
2116 
2117 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
2118 {
2119 	kfree(priv->cls_rules);
2120 }
2121 EXPORT_SYMBOL_GPL(enetc_free_si_resources);
2122 
2123 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2124 {
2125 	int idx = tx_ring->index;
2126 	u32 tbmr;
2127 
2128 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
2129 		       lower_32_bits(tx_ring->bd_dma_base));
2130 
2131 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
2132 		       upper_32_bits(tx_ring->bd_dma_base));
2133 
2134 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
2135 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
2136 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
2137 
2138 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
2139 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
2140 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
2141 
2142 	/* enable Tx ints by setting pkt thr to 1 */
2143 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
2144 
2145 	tbmr = ENETC_TBMR_SET_PRIO(tx_ring->prio);
2146 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
2147 		tbmr |= ENETC_TBMR_VIH;
2148 
2149 	/* enable ring */
2150 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2151 
2152 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
2153 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
2154 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
2155 }
2156 
2157 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring,
2158 			      bool extended)
2159 {
2160 	int idx = rx_ring->index;
2161 	u32 rbmr = 0;
2162 
2163 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
2164 		       lower_32_bits(rx_ring->bd_dma_base));
2165 
2166 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
2167 		       upper_32_bits(rx_ring->bd_dma_base));
2168 
2169 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
2170 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
2171 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
2172 
2173 	if (rx_ring->xdp.prog)
2174 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
2175 	else
2176 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
2177 
2178 	/* Also prepare the consumer index in case page allocation never
2179 	 * succeeds. In that case, hardware will never advance producer index
2180 	 * to match consumer index, and will drop all frames.
2181 	 */
2182 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
2183 	enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, 1);
2184 
2185 	/* enable Rx ints by setting pkt thr to 1 */
2186 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
2187 
2188 	rx_ring->ext_en = extended;
2189 	if (rx_ring->ext_en)
2190 		rbmr |= ENETC_RBMR_BDS;
2191 
2192 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
2193 		rbmr |= ENETC_RBMR_VTE;
2194 
2195 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
2196 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
2197 
2198 	rx_ring->next_to_clean = 0;
2199 	rx_ring->next_to_use = 0;
2200 	rx_ring->next_to_alloc = 0;
2201 
2202 	enetc_lock_mdio();
2203 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
2204 	enetc_unlock_mdio();
2205 
2206 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2207 }
2208 
2209 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv, bool extended)
2210 {
2211 	struct enetc_hw *hw = &priv->si->hw;
2212 	int i;
2213 
2214 	for (i = 0; i < priv->num_tx_rings; i++)
2215 		enetc_setup_txbdr(hw, priv->tx_ring[i]);
2216 
2217 	for (i = 0; i < priv->num_rx_rings; i++)
2218 		enetc_setup_rxbdr(hw, priv->rx_ring[i], extended);
2219 }
2220 
2221 static void enetc_enable_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2222 {
2223 	int idx = tx_ring->index;
2224 	u32 tbmr;
2225 
2226 	tbmr = enetc_txbdr_rd(hw, idx, ENETC_TBMR);
2227 	tbmr |= ENETC_TBMR_EN;
2228 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2229 }
2230 
2231 static void enetc_enable_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2232 {
2233 	int idx = rx_ring->index;
2234 	u32 rbmr;
2235 
2236 	rbmr = enetc_rxbdr_rd(hw, idx, ENETC_RBMR);
2237 	rbmr |= ENETC_RBMR_EN;
2238 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2239 }
2240 
2241 static void enetc_enable_rx_bdrs(struct enetc_ndev_priv *priv)
2242 {
2243 	struct enetc_hw *hw = &priv->si->hw;
2244 	int i;
2245 
2246 	for (i = 0; i < priv->num_rx_rings; i++)
2247 		enetc_enable_rxbdr(hw, priv->rx_ring[i]);
2248 }
2249 
2250 static void enetc_enable_tx_bdrs(struct enetc_ndev_priv *priv)
2251 {
2252 	struct enetc_hw *hw = &priv->si->hw;
2253 	int i;
2254 
2255 	for (i = 0; i < priv->num_tx_rings; i++)
2256 		enetc_enable_txbdr(hw, priv->tx_ring[i]);
2257 }
2258 
2259 static void enetc_disable_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2260 {
2261 	int idx = rx_ring->index;
2262 
2263 	/* disable EN bit on ring */
2264 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
2265 }
2266 
2267 static void enetc_disable_txbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2268 {
2269 	int idx = rx_ring->index;
2270 
2271 	/* disable EN bit on ring */
2272 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
2273 }
2274 
2275 static void enetc_disable_rx_bdrs(struct enetc_ndev_priv *priv)
2276 {
2277 	struct enetc_hw *hw = &priv->si->hw;
2278 	int i;
2279 
2280 	for (i = 0; i < priv->num_rx_rings; i++)
2281 		enetc_disable_rxbdr(hw, priv->rx_ring[i]);
2282 }
2283 
2284 static void enetc_disable_tx_bdrs(struct enetc_ndev_priv *priv)
2285 {
2286 	struct enetc_hw *hw = &priv->si->hw;
2287 	int i;
2288 
2289 	for (i = 0; i < priv->num_tx_rings; i++)
2290 		enetc_disable_txbdr(hw, priv->tx_ring[i]);
2291 }
2292 
2293 static void enetc_wait_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2294 {
2295 	int delay = 8, timeout = 100;
2296 	int idx = tx_ring->index;
2297 
2298 	/* wait for busy to clear */
2299 	while (delay < timeout &&
2300 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
2301 		msleep(delay);
2302 		delay *= 2;
2303 	}
2304 
2305 	if (delay >= timeout)
2306 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
2307 			    idx);
2308 }
2309 
2310 static void enetc_wait_bdrs(struct enetc_ndev_priv *priv)
2311 {
2312 	struct enetc_hw *hw = &priv->si->hw;
2313 	int i;
2314 
2315 	for (i = 0; i < priv->num_tx_rings; i++)
2316 		enetc_wait_txbdr(hw, priv->tx_ring[i]);
2317 }
2318 
2319 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
2320 {
2321 	struct pci_dev *pdev = priv->si->pdev;
2322 	struct enetc_hw *hw = &priv->si->hw;
2323 	int i, j, err;
2324 
2325 	for (i = 0; i < priv->bdr_int_num; i++) {
2326 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2327 		struct enetc_int_vector *v = priv->int_vector[i];
2328 		int entry = ENETC_BDR_INT_BASE_IDX + i;
2329 
2330 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
2331 			 priv->ndev->name, i);
2332 		err = request_irq(irq, enetc_msix, IRQF_NO_AUTOEN, v->name, v);
2333 		if (err) {
2334 			dev_err(priv->dev, "request_irq() failed!\n");
2335 			goto irq_err;
2336 		}
2337 
2338 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
2339 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
2340 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
2341 
2342 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
2343 
2344 		for (j = 0; j < v->count_tx_rings; j++) {
2345 			int idx = v->tx_ring[j].index;
2346 
2347 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
2348 		}
2349 		irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
2350 	}
2351 
2352 	return 0;
2353 
2354 irq_err:
2355 	while (i--) {
2356 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2357 
2358 		irq_set_affinity_hint(irq, NULL);
2359 		free_irq(irq, priv->int_vector[i]);
2360 	}
2361 
2362 	return err;
2363 }
2364 
2365 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
2366 {
2367 	struct pci_dev *pdev = priv->si->pdev;
2368 	int i;
2369 
2370 	for (i = 0; i < priv->bdr_int_num; i++) {
2371 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2372 
2373 		irq_set_affinity_hint(irq, NULL);
2374 		free_irq(irq, priv->int_vector[i]);
2375 	}
2376 }
2377 
2378 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
2379 {
2380 	struct enetc_hw *hw = &priv->si->hw;
2381 	u32 icpt, ictt;
2382 	int i;
2383 
2384 	/* enable Tx & Rx event indication */
2385 	if (priv->ic_mode &
2386 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
2387 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
2388 		/* init to non-0 minimum, will be adjusted later */
2389 		ictt = 0x1;
2390 	} else {
2391 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
2392 		ictt = 0;
2393 	}
2394 
2395 	for (i = 0; i < priv->num_rx_rings; i++) {
2396 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
2397 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
2398 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
2399 	}
2400 
2401 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
2402 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
2403 	else
2404 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
2405 
2406 	for (i = 0; i < priv->num_tx_rings; i++) {
2407 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
2408 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
2409 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
2410 	}
2411 }
2412 
2413 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
2414 {
2415 	struct enetc_hw *hw = &priv->si->hw;
2416 	int i;
2417 
2418 	for (i = 0; i < priv->num_tx_rings; i++)
2419 		enetc_txbdr_wr(hw, i, ENETC_TBIER, 0);
2420 
2421 	for (i = 0; i < priv->num_rx_rings; i++)
2422 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, 0);
2423 }
2424 
2425 static int enetc_phylink_connect(struct net_device *ndev)
2426 {
2427 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2428 	struct ethtool_keee edata;
2429 	int err;
2430 
2431 	if (!priv->phylink) {
2432 		/* phy-less mode */
2433 		netif_carrier_on(ndev);
2434 		return 0;
2435 	}
2436 
2437 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
2438 	if (err) {
2439 		dev_err(&ndev->dev, "could not attach to PHY\n");
2440 		return err;
2441 	}
2442 
2443 	/* disable EEE autoneg, until ENETC driver supports it */
2444 	memset(&edata, 0, sizeof(struct ethtool_keee));
2445 	phylink_ethtool_set_eee(priv->phylink, &edata);
2446 
2447 	phylink_start(priv->phylink);
2448 
2449 	return 0;
2450 }
2451 
2452 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2453 {
2454 	struct enetc_ndev_priv *priv;
2455 	struct sk_buff *skb;
2456 
2457 	priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2458 
2459 	netif_tx_lock_bh(priv->ndev);
2460 
2461 	clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2462 	skb = skb_dequeue(&priv->tx_skbs);
2463 	if (skb)
2464 		enetc_start_xmit(skb, priv->ndev);
2465 
2466 	netif_tx_unlock_bh(priv->ndev);
2467 }
2468 
2469 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2470 {
2471 	INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2472 	skb_queue_head_init(&priv->tx_skbs);
2473 }
2474 
2475 void enetc_start(struct net_device *ndev)
2476 {
2477 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2478 	int i;
2479 
2480 	enetc_setup_interrupts(priv);
2481 
2482 	for (i = 0; i < priv->bdr_int_num; i++) {
2483 		int irq = pci_irq_vector(priv->si->pdev,
2484 					 ENETC_BDR_INT_BASE_IDX + i);
2485 
2486 		napi_enable(&priv->int_vector[i]->napi);
2487 		enable_irq(irq);
2488 	}
2489 
2490 	enetc_enable_tx_bdrs(priv);
2491 
2492 	enetc_enable_rx_bdrs(priv);
2493 
2494 	netif_tx_start_all_queues(ndev);
2495 
2496 	clear_bit(ENETC_TX_DOWN, &priv->flags);
2497 }
2498 EXPORT_SYMBOL_GPL(enetc_start);
2499 
2500 int enetc_open(struct net_device *ndev)
2501 {
2502 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2503 	struct enetc_bdr_resource *tx_res, *rx_res;
2504 	bool extended;
2505 	int err;
2506 
2507 	extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
2508 
2509 	err = clk_prepare_enable(priv->ref_clk);
2510 	if (err)
2511 		return err;
2512 
2513 	err = enetc_setup_irqs(priv);
2514 	if (err)
2515 		goto err_setup_irqs;
2516 
2517 	err = enetc_phylink_connect(ndev);
2518 	if (err)
2519 		goto err_phy_connect;
2520 
2521 	tx_res = enetc_alloc_tx_resources(priv);
2522 	if (IS_ERR(tx_res)) {
2523 		err = PTR_ERR(tx_res);
2524 		goto err_alloc_tx;
2525 	}
2526 
2527 	rx_res = enetc_alloc_rx_resources(priv, extended);
2528 	if (IS_ERR(rx_res)) {
2529 		err = PTR_ERR(rx_res);
2530 		goto err_alloc_rx;
2531 	}
2532 
2533 	enetc_tx_onestep_tstamp_init(priv);
2534 	enetc_assign_tx_resources(priv, tx_res);
2535 	enetc_assign_rx_resources(priv, rx_res);
2536 	enetc_setup_bdrs(priv, extended);
2537 	enetc_start(ndev);
2538 
2539 	return 0;
2540 
2541 err_alloc_rx:
2542 	enetc_free_tx_resources(tx_res, priv->num_tx_rings);
2543 err_alloc_tx:
2544 	if (priv->phylink)
2545 		phylink_disconnect_phy(priv->phylink);
2546 err_phy_connect:
2547 	enetc_free_irqs(priv);
2548 err_setup_irqs:
2549 	clk_disable_unprepare(priv->ref_clk);
2550 
2551 	return err;
2552 }
2553 EXPORT_SYMBOL_GPL(enetc_open);
2554 
2555 void enetc_stop(struct net_device *ndev)
2556 {
2557 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2558 	int i;
2559 
2560 	set_bit(ENETC_TX_DOWN, &priv->flags);
2561 
2562 	netif_tx_stop_all_queues(ndev);
2563 
2564 	enetc_disable_rx_bdrs(priv);
2565 
2566 	enetc_wait_bdrs(priv);
2567 
2568 	enetc_disable_tx_bdrs(priv);
2569 
2570 	for (i = 0; i < priv->bdr_int_num; i++) {
2571 		int irq = pci_irq_vector(priv->si->pdev,
2572 					 ENETC_BDR_INT_BASE_IDX + i);
2573 
2574 		disable_irq(irq);
2575 		napi_synchronize(&priv->int_vector[i]->napi);
2576 		napi_disable(&priv->int_vector[i]->napi);
2577 	}
2578 
2579 	enetc_clear_interrupts(priv);
2580 }
2581 EXPORT_SYMBOL_GPL(enetc_stop);
2582 
2583 int enetc_close(struct net_device *ndev)
2584 {
2585 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2586 
2587 	enetc_stop(ndev);
2588 
2589 	if (priv->phylink) {
2590 		phylink_stop(priv->phylink);
2591 		phylink_disconnect_phy(priv->phylink);
2592 	} else {
2593 		netif_carrier_off(ndev);
2594 	}
2595 
2596 	enetc_free_rxtx_rings(priv);
2597 
2598 	/* Avoids dangling pointers and also frees old resources */
2599 	enetc_assign_rx_resources(priv, NULL);
2600 	enetc_assign_tx_resources(priv, NULL);
2601 
2602 	enetc_free_irqs(priv);
2603 	clk_disable_unprepare(priv->ref_clk);
2604 
2605 	return 0;
2606 }
2607 EXPORT_SYMBOL_GPL(enetc_close);
2608 
2609 static int enetc_reconfigure(struct enetc_ndev_priv *priv, bool extended,
2610 			     int (*cb)(struct enetc_ndev_priv *priv, void *ctx),
2611 			     void *ctx)
2612 {
2613 	struct enetc_bdr_resource *tx_res, *rx_res;
2614 	int err;
2615 
2616 	ASSERT_RTNL();
2617 
2618 	/* If the interface is down, run the callback right away,
2619 	 * without reconfiguration.
2620 	 */
2621 	if (!netif_running(priv->ndev)) {
2622 		if (cb) {
2623 			err = cb(priv, ctx);
2624 			if (err)
2625 				return err;
2626 		}
2627 
2628 		return 0;
2629 	}
2630 
2631 	tx_res = enetc_alloc_tx_resources(priv);
2632 	if (IS_ERR(tx_res)) {
2633 		err = PTR_ERR(tx_res);
2634 		goto out;
2635 	}
2636 
2637 	rx_res = enetc_alloc_rx_resources(priv, extended);
2638 	if (IS_ERR(rx_res)) {
2639 		err = PTR_ERR(rx_res);
2640 		goto out_free_tx_res;
2641 	}
2642 
2643 	enetc_stop(priv->ndev);
2644 	enetc_free_rxtx_rings(priv);
2645 
2646 	/* Interface is down, run optional callback now */
2647 	if (cb) {
2648 		err = cb(priv, ctx);
2649 		if (err)
2650 			goto out_restart;
2651 	}
2652 
2653 	enetc_assign_tx_resources(priv, tx_res);
2654 	enetc_assign_rx_resources(priv, rx_res);
2655 	enetc_setup_bdrs(priv, extended);
2656 	enetc_start(priv->ndev);
2657 
2658 	return 0;
2659 
2660 out_restart:
2661 	enetc_setup_bdrs(priv, extended);
2662 	enetc_start(priv->ndev);
2663 	enetc_free_rx_resources(rx_res, priv->num_rx_rings);
2664 out_free_tx_res:
2665 	enetc_free_tx_resources(tx_res, priv->num_tx_rings);
2666 out:
2667 	return err;
2668 }
2669 
2670 static void enetc_debug_tx_ring_prios(struct enetc_ndev_priv *priv)
2671 {
2672 	int i;
2673 
2674 	for (i = 0; i < priv->num_tx_rings; i++)
2675 		netdev_dbg(priv->ndev, "TX ring %d prio %d\n", i,
2676 			   priv->tx_ring[i]->prio);
2677 }
2678 
2679 void enetc_reset_tc_mqprio(struct net_device *ndev)
2680 {
2681 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2682 	struct enetc_hw *hw = &priv->si->hw;
2683 	struct enetc_bdr *tx_ring;
2684 	int num_stack_tx_queues;
2685 	int i;
2686 
2687 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2688 
2689 	netdev_reset_tc(ndev);
2690 	netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2691 	priv->min_num_stack_tx_queues = num_possible_cpus();
2692 
2693 	/* Reset all ring priorities to 0 */
2694 	for (i = 0; i < priv->num_tx_rings; i++) {
2695 		tx_ring = priv->tx_ring[i];
2696 		tx_ring->prio = 0;
2697 		enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2698 	}
2699 
2700 	enetc_debug_tx_ring_prios(priv);
2701 
2702 	enetc_change_preemptible_tcs(priv, 0);
2703 }
2704 EXPORT_SYMBOL_GPL(enetc_reset_tc_mqprio);
2705 
2706 int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2707 {
2708 	struct tc_mqprio_qopt_offload *mqprio = type_data;
2709 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2710 	struct tc_mqprio_qopt *qopt = &mqprio->qopt;
2711 	struct enetc_hw *hw = &priv->si->hw;
2712 	int num_stack_tx_queues = 0;
2713 	struct enetc_bdr *tx_ring;
2714 	u8 num_tc = qopt->num_tc;
2715 	int offset, count;
2716 	int err, tc, q;
2717 
2718 	if (!num_tc) {
2719 		enetc_reset_tc_mqprio(ndev);
2720 		return 0;
2721 	}
2722 
2723 	err = netdev_set_num_tc(ndev, num_tc);
2724 	if (err)
2725 		return err;
2726 
2727 	for (tc = 0; tc < num_tc; tc++) {
2728 		offset = qopt->offset[tc];
2729 		count = qopt->count[tc];
2730 		num_stack_tx_queues += count;
2731 
2732 		err = netdev_set_tc_queue(ndev, tc, count, offset);
2733 		if (err)
2734 			goto err_reset_tc;
2735 
2736 		for (q = offset; q < offset + count; q++) {
2737 			tx_ring = priv->tx_ring[q];
2738 			/* The prio_tc_map is skb_tx_hash()'s way of selecting
2739 			 * between TX queues based on skb->priority. As such,
2740 			 * there's nothing to offload based on it.
2741 			 * Make the mqprio "traffic class" be the priority of
2742 			 * this ring group, and leave the Tx IPV to traffic
2743 			 * class mapping as its default mapping value of 1:1.
2744 			 */
2745 			tx_ring->prio = tc;
2746 			enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2747 		}
2748 	}
2749 
2750 	err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2751 	if (err)
2752 		goto err_reset_tc;
2753 
2754 	priv->min_num_stack_tx_queues = num_stack_tx_queues;
2755 
2756 	enetc_debug_tx_ring_prios(priv);
2757 
2758 	enetc_change_preemptible_tcs(priv, mqprio->preemptible_tcs);
2759 
2760 	return 0;
2761 
2762 err_reset_tc:
2763 	enetc_reset_tc_mqprio(ndev);
2764 	return err;
2765 }
2766 EXPORT_SYMBOL_GPL(enetc_setup_tc_mqprio);
2767 
2768 static int enetc_reconfigure_xdp_cb(struct enetc_ndev_priv *priv, void *ctx)
2769 {
2770 	struct bpf_prog *old_prog, *prog = ctx;
2771 	int num_stack_tx_queues;
2772 	int err, i;
2773 
2774 	old_prog = xchg(&priv->xdp_prog, prog);
2775 
2776 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2777 	err = netif_set_real_num_tx_queues(priv->ndev, num_stack_tx_queues);
2778 	if (err) {
2779 		xchg(&priv->xdp_prog, old_prog);
2780 		return err;
2781 	}
2782 
2783 	if (old_prog)
2784 		bpf_prog_put(old_prog);
2785 
2786 	for (i = 0; i < priv->num_rx_rings; i++) {
2787 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
2788 
2789 		rx_ring->xdp.prog = prog;
2790 
2791 		if (prog)
2792 			rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2793 		else
2794 			rx_ring->buffer_offset = ENETC_RXB_PAD;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 static int enetc_setup_xdp_prog(struct net_device *ndev, struct bpf_prog *prog,
2801 				struct netlink_ext_ack *extack)
2802 {
2803 	int num_xdp_tx_queues = prog ? num_possible_cpus() : 0;
2804 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2805 	bool extended;
2806 
2807 	if (priv->min_num_stack_tx_queues + num_xdp_tx_queues >
2808 	    priv->num_tx_rings) {
2809 		NL_SET_ERR_MSG_FMT_MOD(extack,
2810 				       "Reserving %d XDP TXQs leaves under %d for stack (total %d)",
2811 				       num_xdp_tx_queues,
2812 				       priv->min_num_stack_tx_queues,
2813 				       priv->num_tx_rings);
2814 		return -EBUSY;
2815 	}
2816 
2817 	extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
2818 
2819 	/* The buffer layout is changing, so we need to drain the old
2820 	 * RX buffers and seed new ones.
2821 	 */
2822 	return enetc_reconfigure(priv, extended, enetc_reconfigure_xdp_cb, prog);
2823 }
2824 
2825 int enetc_setup_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
2826 {
2827 	switch (bpf->command) {
2828 	case XDP_SETUP_PROG:
2829 		return enetc_setup_xdp_prog(ndev, bpf->prog, bpf->extack);
2830 	default:
2831 		return -EINVAL;
2832 	}
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(enetc_setup_bpf);
2837 
2838 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2839 {
2840 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2841 	struct net_device_stats *stats = &ndev->stats;
2842 	unsigned long packets = 0, bytes = 0;
2843 	unsigned long tx_dropped = 0;
2844 	int i;
2845 
2846 	for (i = 0; i < priv->num_rx_rings; i++) {
2847 		packets += priv->rx_ring[i]->stats.packets;
2848 		bytes	+= priv->rx_ring[i]->stats.bytes;
2849 	}
2850 
2851 	stats->rx_packets = packets;
2852 	stats->rx_bytes = bytes;
2853 	bytes = 0;
2854 	packets = 0;
2855 
2856 	for (i = 0; i < priv->num_tx_rings; i++) {
2857 		packets += priv->tx_ring[i]->stats.packets;
2858 		bytes	+= priv->tx_ring[i]->stats.bytes;
2859 		tx_dropped += priv->tx_ring[i]->stats.win_drop;
2860 	}
2861 
2862 	stats->tx_packets = packets;
2863 	stats->tx_bytes = bytes;
2864 	stats->tx_dropped = tx_dropped;
2865 
2866 	return stats;
2867 }
2868 EXPORT_SYMBOL_GPL(enetc_get_stats);
2869 
2870 static int enetc_set_rss(struct net_device *ndev, int en)
2871 {
2872 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2873 	struct enetc_hw *hw = &priv->si->hw;
2874 	u32 reg;
2875 
2876 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2877 
2878 	reg = enetc_rd(hw, ENETC_SIMR);
2879 	reg &= ~ENETC_SIMR_RSSE;
2880 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
2881 	enetc_wr(hw, ENETC_SIMR, reg);
2882 
2883 	return 0;
2884 }
2885 
2886 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2887 {
2888 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2889 	struct enetc_hw *hw = &priv->si->hw;
2890 	int i;
2891 
2892 	for (i = 0; i < priv->num_rx_rings; i++)
2893 		enetc_bdr_enable_rxvlan(hw, i, en);
2894 }
2895 
2896 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2897 {
2898 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2899 	struct enetc_hw *hw = &priv->si->hw;
2900 	int i;
2901 
2902 	for (i = 0; i < priv->num_tx_rings; i++)
2903 		enetc_bdr_enable_txvlan(hw, i, en);
2904 }
2905 
2906 void enetc_set_features(struct net_device *ndev, netdev_features_t features)
2907 {
2908 	netdev_features_t changed = ndev->features ^ features;
2909 
2910 	if (changed & NETIF_F_RXHASH)
2911 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2912 
2913 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2914 		enetc_enable_rxvlan(ndev,
2915 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2916 
2917 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2918 		enetc_enable_txvlan(ndev,
2919 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2920 }
2921 EXPORT_SYMBOL_GPL(enetc_set_features);
2922 
2923 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2924 {
2925 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2926 	int err, new_offloads = priv->active_offloads;
2927 	struct hwtstamp_config config;
2928 
2929 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2930 		return -EFAULT;
2931 
2932 	switch (config.tx_type) {
2933 	case HWTSTAMP_TX_OFF:
2934 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2935 		break;
2936 	case HWTSTAMP_TX_ON:
2937 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2938 		new_offloads |= ENETC_F_TX_TSTAMP;
2939 		break;
2940 	case HWTSTAMP_TX_ONESTEP_SYNC:
2941 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2942 		new_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2943 		break;
2944 	default:
2945 		return -ERANGE;
2946 	}
2947 
2948 	switch (config.rx_filter) {
2949 	case HWTSTAMP_FILTER_NONE:
2950 		new_offloads &= ~ENETC_F_RX_TSTAMP;
2951 		break;
2952 	default:
2953 		new_offloads |= ENETC_F_RX_TSTAMP;
2954 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2955 	}
2956 
2957 	if ((new_offloads ^ priv->active_offloads) & ENETC_F_RX_TSTAMP) {
2958 		bool extended = !!(new_offloads & ENETC_F_RX_TSTAMP);
2959 
2960 		err = enetc_reconfigure(priv, extended, NULL, NULL);
2961 		if (err)
2962 			return err;
2963 	}
2964 
2965 	priv->active_offloads = new_offloads;
2966 
2967 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2968 	       -EFAULT : 0;
2969 }
2970 
2971 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2972 {
2973 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2974 	struct hwtstamp_config config;
2975 
2976 	config.flags = 0;
2977 
2978 	if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2979 		config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2980 	else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2981 		config.tx_type = HWTSTAMP_TX_ON;
2982 	else
2983 		config.tx_type = HWTSTAMP_TX_OFF;
2984 
2985 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2986 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2987 
2988 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2989 	       -EFAULT : 0;
2990 }
2991 
2992 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2993 {
2994 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2995 
2996 	if (IS_ENABLED(CONFIG_FSL_ENETC_PTP_CLOCK)) {
2997 		if (cmd == SIOCSHWTSTAMP)
2998 			return enetc_hwtstamp_set(ndev, rq);
2999 		if (cmd == SIOCGHWTSTAMP)
3000 			return enetc_hwtstamp_get(ndev, rq);
3001 	}
3002 
3003 	if (!priv->phylink)
3004 		return -EOPNOTSUPP;
3005 
3006 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
3007 }
3008 EXPORT_SYMBOL_GPL(enetc_ioctl);
3009 
3010 static int enetc_int_vector_init(struct enetc_ndev_priv *priv, int i,
3011 				 int v_tx_rings)
3012 {
3013 	struct enetc_int_vector *v;
3014 	struct enetc_bdr *bdr;
3015 	int j, err;
3016 
3017 	v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
3018 	if (!v)
3019 		return -ENOMEM;
3020 
3021 	priv->int_vector[i] = v;
3022 	bdr = &v->rx_ring;
3023 	bdr->index = i;
3024 	bdr->ndev = priv->ndev;
3025 	bdr->dev = priv->dev;
3026 	bdr->bd_count = priv->rx_bd_count;
3027 	bdr->buffer_offset = ENETC_RXB_PAD;
3028 	priv->rx_ring[i] = bdr;
3029 
3030 	err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
3031 	if (err)
3032 		goto free_vector;
3033 
3034 	err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq, MEM_TYPE_PAGE_SHARED,
3035 					 NULL);
3036 	if (err) {
3037 		xdp_rxq_info_unreg(&bdr->xdp.rxq);
3038 		goto free_vector;
3039 	}
3040 
3041 	/* init defaults for adaptive IC */
3042 	if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
3043 		v->rx_ictt = 0x1;
3044 		v->rx_dim_en = true;
3045 	}
3046 
3047 	INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
3048 	netif_napi_add(priv->ndev, &v->napi, enetc_poll);
3049 	v->count_tx_rings = v_tx_rings;
3050 
3051 	for (j = 0; j < v_tx_rings; j++) {
3052 		int idx;
3053 
3054 		/* default tx ring mapping policy */
3055 		idx = priv->bdr_int_num * j + i;
3056 		__set_bit(idx, &v->tx_rings_map);
3057 		bdr = &v->tx_ring[j];
3058 		bdr->index = idx;
3059 		bdr->ndev = priv->ndev;
3060 		bdr->dev = priv->dev;
3061 		bdr->bd_count = priv->tx_bd_count;
3062 		priv->tx_ring[idx] = bdr;
3063 	}
3064 
3065 	return 0;
3066 
3067 free_vector:
3068 	priv->rx_ring[i] = NULL;
3069 	priv->int_vector[i] = NULL;
3070 	kfree(v);
3071 
3072 	return err;
3073 }
3074 
3075 static void enetc_int_vector_destroy(struct enetc_ndev_priv *priv, int i)
3076 {
3077 	struct enetc_int_vector *v = priv->int_vector[i];
3078 	struct enetc_bdr *rx_ring = &v->rx_ring;
3079 	int j, tx_ring_index;
3080 
3081 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
3082 	xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
3083 	netif_napi_del(&v->napi);
3084 	cancel_work_sync(&v->rx_dim.work);
3085 
3086 	for (j = 0; j < v->count_tx_rings; j++) {
3087 		tx_ring_index = priv->bdr_int_num * j + i;
3088 		priv->tx_ring[tx_ring_index] = NULL;
3089 	}
3090 
3091 	priv->rx_ring[i] = NULL;
3092 	priv->int_vector[i] = NULL;
3093 	kfree(v);
3094 }
3095 
3096 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
3097 {
3098 	struct pci_dev *pdev = priv->si->pdev;
3099 	int v_tx_rings, v_remainder;
3100 	int num_stack_tx_queues;
3101 	int first_xdp_tx_ring;
3102 	int i, n, err, nvec;
3103 
3104 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
3105 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
3106 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
3107 
3108 	if (n < 0)
3109 		return n;
3110 
3111 	if (n != nvec)
3112 		return -EPERM;
3113 
3114 	/* # of tx rings per int vector */
3115 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
3116 	v_remainder = priv->num_tx_rings % priv->bdr_int_num;
3117 
3118 	for (i = 0; i < priv->bdr_int_num; i++) {
3119 		/* Distribute the remaining TX rings to the first v_remainder
3120 		 * interrupt vectors
3121 		 */
3122 		int num_tx_rings = i < v_remainder ? v_tx_rings + 1 : v_tx_rings;
3123 
3124 		err = enetc_int_vector_init(priv, i, num_tx_rings);
3125 		if (err)
3126 			goto fail;
3127 	}
3128 
3129 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
3130 
3131 	err = netif_set_real_num_tx_queues(priv->ndev, num_stack_tx_queues);
3132 	if (err)
3133 		goto fail;
3134 
3135 	err = netif_set_real_num_rx_queues(priv->ndev, priv->num_rx_rings);
3136 	if (err)
3137 		goto fail;
3138 
3139 	priv->min_num_stack_tx_queues = num_possible_cpus();
3140 	first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
3141 	priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
3142 
3143 	return 0;
3144 
3145 fail:
3146 	while (i--)
3147 		enetc_int_vector_destroy(priv, i);
3148 
3149 	pci_free_irq_vectors(pdev);
3150 
3151 	return err;
3152 }
3153 EXPORT_SYMBOL_GPL(enetc_alloc_msix);
3154 
3155 void enetc_free_msix(struct enetc_ndev_priv *priv)
3156 {
3157 	int i;
3158 
3159 	for (i = 0; i < priv->bdr_int_num; i++)
3160 		enetc_int_vector_destroy(priv, i);
3161 
3162 	/* disable all MSIX for this device */
3163 	pci_free_irq_vectors(priv->si->pdev);
3164 }
3165 EXPORT_SYMBOL_GPL(enetc_free_msix);
3166 
3167 static void enetc_kfree_si(struct enetc_si *si)
3168 {
3169 	char *p = (char *)si - si->pad;
3170 
3171 	kfree(p);
3172 }
3173 
3174 static void enetc_detect_errata(struct enetc_si *si)
3175 {
3176 	if (si->pdev->revision == ENETC_REV1)
3177 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
3178 }
3179 
3180 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
3181 {
3182 	struct enetc_si *si, *p;
3183 	struct enetc_hw *hw;
3184 	size_t alloc_size;
3185 	int err, len;
3186 
3187 	pcie_flr(pdev);
3188 	err = pci_enable_device_mem(pdev);
3189 	if (err)
3190 		return dev_err_probe(&pdev->dev, err, "device enable failed\n");
3191 
3192 	/* set up for high or low dma */
3193 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3194 	if (err) {
3195 		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3196 		goto err_dma;
3197 	}
3198 
3199 	err = pci_request_mem_regions(pdev, name);
3200 	if (err) {
3201 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
3202 		goto err_pci_mem_reg;
3203 	}
3204 
3205 	pci_set_master(pdev);
3206 
3207 	alloc_size = sizeof(struct enetc_si);
3208 	if (sizeof_priv) {
3209 		/* align priv to 32B */
3210 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
3211 		alloc_size += sizeof_priv;
3212 	}
3213 	/* force 32B alignment for enetc_si */
3214 	alloc_size += ENETC_SI_ALIGN - 1;
3215 
3216 	p = kzalloc(alloc_size, GFP_KERNEL);
3217 	if (!p) {
3218 		err = -ENOMEM;
3219 		goto err_alloc_si;
3220 	}
3221 
3222 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
3223 	si->pad = (char *)si - (char *)p;
3224 
3225 	pci_set_drvdata(pdev, si);
3226 	si->pdev = pdev;
3227 	hw = &si->hw;
3228 
3229 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
3230 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
3231 	if (!hw->reg) {
3232 		err = -ENXIO;
3233 		dev_err(&pdev->dev, "ioremap() failed\n");
3234 		goto err_ioremap;
3235 	}
3236 	if (len > ENETC_PORT_BASE)
3237 		hw->port = hw->reg + ENETC_PORT_BASE;
3238 	if (len > ENETC_GLOBAL_BASE)
3239 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
3240 
3241 	enetc_detect_errata(si);
3242 
3243 	return 0;
3244 
3245 err_ioremap:
3246 	enetc_kfree_si(si);
3247 err_alloc_si:
3248 	pci_release_mem_regions(pdev);
3249 err_pci_mem_reg:
3250 err_dma:
3251 	pci_disable_device(pdev);
3252 
3253 	return err;
3254 }
3255 EXPORT_SYMBOL_GPL(enetc_pci_probe);
3256 
3257 void enetc_pci_remove(struct pci_dev *pdev)
3258 {
3259 	struct enetc_si *si = pci_get_drvdata(pdev);
3260 	struct enetc_hw *hw = &si->hw;
3261 
3262 	iounmap(hw->reg);
3263 	enetc_kfree_si(si);
3264 	pci_release_mem_regions(pdev);
3265 	pci_disable_device(pdev);
3266 }
3267 EXPORT_SYMBOL_GPL(enetc_pci_remove);
3268 
3269 static const struct enetc_drvdata enetc_pf_data = {
3270 	.sysclk_freq = ENETC_CLK_400M,
3271 	.pmac_offset = ENETC_PMAC_OFFSET,
3272 	.eth_ops = &enetc_pf_ethtool_ops,
3273 };
3274 
3275 static const struct enetc_drvdata enetc4_pf_data = {
3276 	.sysclk_freq = ENETC_CLK_333M,
3277 	.pmac_offset = ENETC4_PMAC_OFFSET,
3278 	.eth_ops = &enetc4_pf_ethtool_ops,
3279 };
3280 
3281 static const struct enetc_drvdata enetc_vf_data = {
3282 	.sysclk_freq = ENETC_CLK_400M,
3283 	.eth_ops = &enetc_vf_ethtool_ops,
3284 };
3285 
3286 static const struct enetc_platform_info enetc_info[] = {
3287 	{ .revision = ENETC_REV_1_0,
3288 	  .dev_id = ENETC_DEV_ID_PF,
3289 	  .data = &enetc_pf_data,
3290 	},
3291 	{ .revision = ENETC_REV_4_1,
3292 	  .dev_id = NXP_ENETC_PF_DEV_ID,
3293 	  .data = &enetc4_pf_data,
3294 	},
3295 	{ .revision = ENETC_REV_1_0,
3296 	  .dev_id = ENETC_DEV_ID_VF,
3297 	  .data = &enetc_vf_data,
3298 	},
3299 };
3300 
3301 int enetc_get_driver_data(struct enetc_si *si)
3302 {
3303 	u16 dev_id = si->pdev->device;
3304 	int i;
3305 
3306 	for (i = 0; i < ARRAY_SIZE(enetc_info); i++) {
3307 		if (si->revision == enetc_info[i].revision &&
3308 		    dev_id == enetc_info[i].dev_id) {
3309 			si->drvdata = enetc_info[i].data;
3310 
3311 			return 0;
3312 		}
3313 	}
3314 
3315 	return -ERANGE;
3316 }
3317 EXPORT_SYMBOL_GPL(enetc_get_driver_data);
3318 
3319 MODULE_DESCRIPTION("NXP ENETC Ethernet driver");
3320 MODULE_LICENSE("Dual BSD/GPL");
3321