1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DPAA2 Ethernet Switch driver 4 * 5 * Copyright 2014-2016 Freescale Semiconductor Inc. 6 * Copyright 2017-2021 NXP 7 * 8 */ 9 10 #include <linux/module.h> 11 12 #include <linux/interrupt.h> 13 #include <linux/msi.h> 14 #include <linux/kthread.h> 15 #include <linux/workqueue.h> 16 #include <linux/iommu.h> 17 #include <net/pkt_cls.h> 18 19 #include <linux/fsl/mc.h> 20 21 #include "dpaa2-switch.h" 22 23 /* Minimal supported DPSW version */ 24 #define DPSW_MIN_VER_MAJOR 8 25 #define DPSW_MIN_VER_MINOR 9 26 27 #define DEFAULT_VLAN_ID 1 28 29 static u16 dpaa2_switch_port_get_fdb_id(struct ethsw_port_priv *port_priv) 30 { 31 return port_priv->fdb->fdb_id; 32 } 33 34 static struct dpaa2_switch_fdb *dpaa2_switch_fdb_get_unused(struct ethsw_core *ethsw) 35 { 36 int i; 37 38 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) 39 if (!ethsw->fdbs[i].in_use) 40 return ðsw->fdbs[i]; 41 return NULL; 42 } 43 44 static struct dpaa2_switch_filter_block * 45 dpaa2_switch_filter_block_get_unused(struct ethsw_core *ethsw) 46 { 47 int i; 48 49 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) 50 if (!ethsw->filter_blocks[i].in_use) 51 return ðsw->filter_blocks[i]; 52 return NULL; 53 } 54 55 static u16 dpaa2_switch_port_set_fdb(struct ethsw_port_priv *port_priv, 56 struct net_device *bridge_dev) 57 { 58 struct ethsw_port_priv *other_port_priv = NULL; 59 struct dpaa2_switch_fdb *fdb; 60 struct net_device *other_dev; 61 struct list_head *iter; 62 63 /* If we leave a bridge (bridge_dev is NULL), find an unused 64 * FDB and use that. 65 */ 66 if (!bridge_dev) { 67 fdb = dpaa2_switch_fdb_get_unused(port_priv->ethsw_data); 68 69 /* If there is no unused FDB, we must be the last port that 70 * leaves the last bridge, all the others are standalone. We 71 * can just keep the FDB that we already have. 72 */ 73 74 if (!fdb) { 75 port_priv->fdb->bridge_dev = NULL; 76 return 0; 77 } 78 79 port_priv->fdb = fdb; 80 port_priv->fdb->in_use = true; 81 port_priv->fdb->bridge_dev = NULL; 82 return 0; 83 } 84 85 /* The below call to netdev_for_each_lower_dev() demands the RTNL lock 86 * being held. Assert on it so that it's easier to catch new code 87 * paths that reach this point without the RTNL lock. 88 */ 89 ASSERT_RTNL(); 90 91 /* If part of a bridge, use the FDB of the first dpaa2 switch interface 92 * to be present in that bridge 93 */ 94 netdev_for_each_lower_dev(bridge_dev, other_dev, iter) { 95 if (!dpaa2_switch_port_dev_check(other_dev)) 96 continue; 97 98 if (other_dev == port_priv->netdev) 99 continue; 100 101 other_port_priv = netdev_priv(other_dev); 102 break; 103 } 104 105 /* The current port is about to change its FDB to the one used by the 106 * first port that joined the bridge. 107 */ 108 if (other_port_priv) { 109 /* The previous FDB is about to become unused, since the 110 * interface is no longer standalone. 111 */ 112 port_priv->fdb->in_use = false; 113 port_priv->fdb->bridge_dev = NULL; 114 115 /* Get a reference to the new FDB */ 116 port_priv->fdb = other_port_priv->fdb; 117 } 118 119 /* Keep track of the new upper bridge device */ 120 port_priv->fdb->bridge_dev = bridge_dev; 121 122 return 0; 123 } 124 125 static void dpaa2_switch_fdb_get_flood_cfg(struct ethsw_core *ethsw, u16 fdb_id, 126 enum dpsw_flood_type type, 127 struct dpsw_egress_flood_cfg *cfg) 128 { 129 int i = 0, j; 130 131 memset(cfg, 0, sizeof(*cfg)); 132 133 /* Add all the DPAA2 switch ports found in the same bridging domain to 134 * the egress flooding domain 135 */ 136 for (j = 0; j < ethsw->sw_attr.num_ifs; j++) { 137 if (!ethsw->ports[j]) 138 continue; 139 if (ethsw->ports[j]->fdb->fdb_id != fdb_id) 140 continue; 141 142 if (type == DPSW_BROADCAST && ethsw->ports[j]->bcast_flood) 143 cfg->if_id[i++] = ethsw->ports[j]->idx; 144 else if (type == DPSW_FLOODING && ethsw->ports[j]->ucast_flood) 145 cfg->if_id[i++] = ethsw->ports[j]->idx; 146 } 147 148 /* Add the CTRL interface to the egress flooding domain */ 149 cfg->if_id[i++] = ethsw->sw_attr.num_ifs; 150 151 cfg->fdb_id = fdb_id; 152 cfg->flood_type = type; 153 cfg->num_ifs = i; 154 } 155 156 static int dpaa2_switch_fdb_set_egress_flood(struct ethsw_core *ethsw, u16 fdb_id) 157 { 158 struct dpsw_egress_flood_cfg flood_cfg; 159 int err; 160 161 /* Setup broadcast flooding domain */ 162 dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_BROADCAST, &flood_cfg); 163 err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle, 164 &flood_cfg); 165 if (err) { 166 dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err); 167 return err; 168 } 169 170 /* Setup unknown flooding domain */ 171 dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_FLOODING, &flood_cfg); 172 err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle, 173 &flood_cfg); 174 if (err) { 175 dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err); 176 return err; 177 } 178 179 return 0; 180 } 181 182 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 183 dma_addr_t iova_addr) 184 { 185 phys_addr_t phys_addr; 186 187 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 188 189 return phys_to_virt(phys_addr); 190 } 191 192 static int dpaa2_switch_add_vlan(struct ethsw_port_priv *port_priv, u16 vid) 193 { 194 struct ethsw_core *ethsw = port_priv->ethsw_data; 195 struct dpsw_vlan_cfg vcfg = {0}; 196 int err; 197 198 vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 199 err = dpsw_vlan_add(ethsw->mc_io, 0, 200 ethsw->dpsw_handle, vid, &vcfg); 201 if (err) { 202 dev_err(ethsw->dev, "dpsw_vlan_add err %d\n", err); 203 return err; 204 } 205 ethsw->vlans[vid] = ETHSW_VLAN_MEMBER; 206 207 return 0; 208 } 209 210 static bool dpaa2_switch_port_is_up(struct ethsw_port_priv *port_priv) 211 { 212 struct net_device *netdev = port_priv->netdev; 213 struct dpsw_link_state state; 214 int err; 215 216 err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0, 217 port_priv->ethsw_data->dpsw_handle, 218 port_priv->idx, &state); 219 if (err) { 220 netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err); 221 return true; 222 } 223 224 WARN_ONCE(state.up > 1, "Garbage read into link_state"); 225 226 return state.up ? true : false; 227 } 228 229 static int dpaa2_switch_port_set_pvid(struct ethsw_port_priv *port_priv, u16 pvid) 230 { 231 struct ethsw_core *ethsw = port_priv->ethsw_data; 232 struct net_device *netdev = port_priv->netdev; 233 struct dpsw_tci_cfg tci_cfg = { 0 }; 234 bool up; 235 int err, ret; 236 237 err = dpsw_if_get_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, 238 port_priv->idx, &tci_cfg); 239 if (err) { 240 netdev_err(netdev, "dpsw_if_get_tci err %d\n", err); 241 return err; 242 } 243 244 tci_cfg.vlan_id = pvid; 245 246 /* Interface needs to be down to change PVID */ 247 up = dpaa2_switch_port_is_up(port_priv); 248 if (up) { 249 err = dpsw_if_disable(ethsw->mc_io, 0, 250 ethsw->dpsw_handle, 251 port_priv->idx); 252 if (err) { 253 netdev_err(netdev, "dpsw_if_disable err %d\n", err); 254 return err; 255 } 256 } 257 258 err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, 259 port_priv->idx, &tci_cfg); 260 if (err) { 261 netdev_err(netdev, "dpsw_if_set_tci err %d\n", err); 262 goto set_tci_error; 263 } 264 265 /* Delete previous PVID info and mark the new one */ 266 port_priv->vlans[port_priv->pvid] &= ~ETHSW_VLAN_PVID; 267 port_priv->vlans[pvid] |= ETHSW_VLAN_PVID; 268 port_priv->pvid = pvid; 269 270 set_tci_error: 271 if (up) { 272 ret = dpsw_if_enable(ethsw->mc_io, 0, 273 ethsw->dpsw_handle, 274 port_priv->idx); 275 if (ret) { 276 netdev_err(netdev, "dpsw_if_enable err %d\n", ret); 277 return ret; 278 } 279 } 280 281 return err; 282 } 283 284 static int dpaa2_switch_port_add_vlan(struct ethsw_port_priv *port_priv, 285 u16 vid, u16 flags) 286 { 287 struct ethsw_core *ethsw = port_priv->ethsw_data; 288 struct net_device *netdev = port_priv->netdev; 289 struct dpsw_vlan_if_cfg vcfg = {0}; 290 int err; 291 292 if (port_priv->vlans[vid]) { 293 netdev_warn(netdev, "VLAN %d already configured\n", vid); 294 return -EEXIST; 295 } 296 297 /* If hit, this VLAN rule will lead the packet into the FDB table 298 * specified in the vlan configuration below 299 */ 300 vcfg.num_ifs = 1; 301 vcfg.if_id[0] = port_priv->idx; 302 vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 303 vcfg.options |= DPSW_VLAN_ADD_IF_OPT_FDB_ID; 304 err = dpsw_vlan_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); 305 if (err) { 306 netdev_err(netdev, "dpsw_vlan_add_if err %d\n", err); 307 return err; 308 } 309 310 port_priv->vlans[vid] = ETHSW_VLAN_MEMBER; 311 312 if (flags & BRIDGE_VLAN_INFO_UNTAGGED) { 313 err = dpsw_vlan_add_if_untagged(ethsw->mc_io, 0, 314 ethsw->dpsw_handle, 315 vid, &vcfg); 316 if (err) { 317 netdev_err(netdev, 318 "dpsw_vlan_add_if_untagged err %d\n", err); 319 return err; 320 } 321 port_priv->vlans[vid] |= ETHSW_VLAN_UNTAGGED; 322 } 323 324 if (flags & BRIDGE_VLAN_INFO_PVID) { 325 err = dpaa2_switch_port_set_pvid(port_priv, vid); 326 if (err) 327 return err; 328 } 329 330 return 0; 331 } 332 333 static enum dpsw_stp_state br_stp_state_to_dpsw(u8 state) 334 { 335 switch (state) { 336 case BR_STATE_DISABLED: 337 return DPSW_STP_STATE_DISABLED; 338 case BR_STATE_LISTENING: 339 return DPSW_STP_STATE_LISTENING; 340 case BR_STATE_LEARNING: 341 return DPSW_STP_STATE_LEARNING; 342 case BR_STATE_FORWARDING: 343 return DPSW_STP_STATE_FORWARDING; 344 case BR_STATE_BLOCKING: 345 return DPSW_STP_STATE_BLOCKING; 346 default: 347 return DPSW_STP_STATE_DISABLED; 348 } 349 } 350 351 static int dpaa2_switch_port_set_stp_state(struct ethsw_port_priv *port_priv, u8 state) 352 { 353 struct dpsw_stp_cfg stp_cfg = {0}; 354 int err; 355 u16 vid; 356 357 if (!netif_running(port_priv->netdev) || state == port_priv->stp_state) 358 return 0; /* Nothing to do */ 359 360 stp_cfg.state = br_stp_state_to_dpsw(state); 361 for (vid = 0; vid <= VLAN_VID_MASK; vid++) { 362 if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) { 363 stp_cfg.vlan_id = vid; 364 err = dpsw_if_set_stp(port_priv->ethsw_data->mc_io, 0, 365 port_priv->ethsw_data->dpsw_handle, 366 port_priv->idx, &stp_cfg); 367 if (err) { 368 netdev_err(port_priv->netdev, 369 "dpsw_if_set_stp err %d\n", err); 370 return err; 371 } 372 } 373 } 374 375 port_priv->stp_state = state; 376 377 return 0; 378 } 379 380 static int dpaa2_switch_dellink(struct ethsw_core *ethsw, u16 vid) 381 { 382 struct ethsw_port_priv *ppriv_local = NULL; 383 int i, err; 384 385 if (!ethsw->vlans[vid]) 386 return -ENOENT; 387 388 err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, vid); 389 if (err) { 390 dev_err(ethsw->dev, "dpsw_vlan_remove err %d\n", err); 391 return err; 392 } 393 ethsw->vlans[vid] = 0; 394 395 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { 396 ppriv_local = ethsw->ports[i]; 397 ppriv_local->vlans[vid] = 0; 398 } 399 400 return 0; 401 } 402 403 static int dpaa2_switch_port_fdb_add_uc(struct ethsw_port_priv *port_priv, 404 const unsigned char *addr) 405 { 406 struct dpsw_fdb_unicast_cfg entry = {0}; 407 u16 fdb_id; 408 int err; 409 410 entry.if_egress = port_priv->idx; 411 entry.type = DPSW_FDB_ENTRY_STATIC; 412 ether_addr_copy(entry.mac_addr, addr); 413 414 fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 415 err = dpsw_fdb_add_unicast(port_priv->ethsw_data->mc_io, 0, 416 port_priv->ethsw_data->dpsw_handle, 417 fdb_id, &entry); 418 if (err) 419 netdev_err(port_priv->netdev, 420 "dpsw_fdb_add_unicast err %d\n", err); 421 return err; 422 } 423 424 static int dpaa2_switch_port_fdb_del_uc(struct ethsw_port_priv *port_priv, 425 const unsigned char *addr) 426 { 427 struct dpsw_fdb_unicast_cfg entry = {0}; 428 u16 fdb_id; 429 int err; 430 431 entry.if_egress = port_priv->idx; 432 entry.type = DPSW_FDB_ENTRY_STATIC; 433 ether_addr_copy(entry.mac_addr, addr); 434 435 fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 436 err = dpsw_fdb_remove_unicast(port_priv->ethsw_data->mc_io, 0, 437 port_priv->ethsw_data->dpsw_handle, 438 fdb_id, &entry); 439 /* Silently discard error for calling multiple times the del command */ 440 if (err && err != -ENXIO) 441 netdev_err(port_priv->netdev, 442 "dpsw_fdb_remove_unicast err %d\n", err); 443 return err; 444 } 445 446 static int dpaa2_switch_port_fdb_add_mc(struct ethsw_port_priv *port_priv, 447 const unsigned char *addr) 448 { 449 struct dpsw_fdb_multicast_cfg entry = {0}; 450 u16 fdb_id; 451 int err; 452 453 ether_addr_copy(entry.mac_addr, addr); 454 entry.type = DPSW_FDB_ENTRY_STATIC; 455 entry.num_ifs = 1; 456 entry.if_id[0] = port_priv->idx; 457 458 fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 459 err = dpsw_fdb_add_multicast(port_priv->ethsw_data->mc_io, 0, 460 port_priv->ethsw_data->dpsw_handle, 461 fdb_id, &entry); 462 /* Silently discard error for calling multiple times the add command */ 463 if (err && err != -ENXIO) 464 netdev_err(port_priv->netdev, "dpsw_fdb_add_multicast err %d\n", 465 err); 466 return err; 467 } 468 469 static int dpaa2_switch_port_fdb_del_mc(struct ethsw_port_priv *port_priv, 470 const unsigned char *addr) 471 { 472 struct dpsw_fdb_multicast_cfg entry = {0}; 473 u16 fdb_id; 474 int err; 475 476 ether_addr_copy(entry.mac_addr, addr); 477 entry.type = DPSW_FDB_ENTRY_STATIC; 478 entry.num_ifs = 1; 479 entry.if_id[0] = port_priv->idx; 480 481 fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 482 err = dpsw_fdb_remove_multicast(port_priv->ethsw_data->mc_io, 0, 483 port_priv->ethsw_data->dpsw_handle, 484 fdb_id, &entry); 485 /* Silently discard error for calling multiple times the del command */ 486 if (err && err != -ENAVAIL) 487 netdev_err(port_priv->netdev, 488 "dpsw_fdb_remove_multicast err %d\n", err); 489 return err; 490 } 491 492 static void dpaa2_switch_port_get_stats(struct net_device *netdev, 493 struct rtnl_link_stats64 *stats) 494 { 495 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 496 u64 tmp; 497 int err; 498 499 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 500 port_priv->ethsw_data->dpsw_handle, 501 port_priv->idx, 502 DPSW_CNT_ING_FRAME, &stats->rx_packets); 503 if (err) 504 goto error; 505 506 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 507 port_priv->ethsw_data->dpsw_handle, 508 port_priv->idx, 509 DPSW_CNT_EGR_FRAME, &stats->tx_packets); 510 if (err) 511 goto error; 512 513 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 514 port_priv->ethsw_data->dpsw_handle, 515 port_priv->idx, 516 DPSW_CNT_ING_BYTE, &stats->rx_bytes); 517 if (err) 518 goto error; 519 520 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 521 port_priv->ethsw_data->dpsw_handle, 522 port_priv->idx, 523 DPSW_CNT_EGR_BYTE, &stats->tx_bytes); 524 if (err) 525 goto error; 526 527 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 528 port_priv->ethsw_data->dpsw_handle, 529 port_priv->idx, 530 DPSW_CNT_ING_FRAME_DISCARD, 531 &stats->rx_dropped); 532 if (err) 533 goto error; 534 535 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 536 port_priv->ethsw_data->dpsw_handle, 537 port_priv->idx, 538 DPSW_CNT_ING_FLTR_FRAME, 539 &tmp); 540 if (err) 541 goto error; 542 stats->rx_dropped += tmp; 543 544 err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, 545 port_priv->ethsw_data->dpsw_handle, 546 port_priv->idx, 547 DPSW_CNT_EGR_FRAME_DISCARD, 548 &stats->tx_dropped); 549 if (err) 550 goto error; 551 552 return; 553 554 error: 555 netdev_err(netdev, "dpsw_if_get_counter err %d\n", err); 556 } 557 558 static bool dpaa2_switch_port_has_offload_stats(const struct net_device *netdev, 559 int attr_id) 560 { 561 return (attr_id == IFLA_OFFLOAD_XSTATS_CPU_HIT); 562 } 563 564 static int dpaa2_switch_port_get_offload_stats(int attr_id, 565 const struct net_device *netdev, 566 void *sp) 567 { 568 switch (attr_id) { 569 case IFLA_OFFLOAD_XSTATS_CPU_HIT: 570 dpaa2_switch_port_get_stats((struct net_device *)netdev, sp); 571 return 0; 572 } 573 574 return -EINVAL; 575 } 576 577 static int dpaa2_switch_port_change_mtu(struct net_device *netdev, int mtu) 578 { 579 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 580 int err; 581 582 err = dpsw_if_set_max_frame_length(port_priv->ethsw_data->mc_io, 583 0, 584 port_priv->ethsw_data->dpsw_handle, 585 port_priv->idx, 586 (u16)ETHSW_L2_MAX_FRM(mtu)); 587 if (err) { 588 netdev_err(netdev, 589 "dpsw_if_set_max_frame_length() err %d\n", err); 590 return err; 591 } 592 593 netdev->mtu = mtu; 594 return 0; 595 } 596 597 static int dpaa2_switch_port_link_state_update(struct net_device *netdev) 598 { 599 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 600 struct dpsw_link_state state; 601 int err; 602 603 /* When we manage the MAC/PHY using phylink there is no need 604 * to manually update the netif_carrier. 605 */ 606 if (dpaa2_switch_port_is_type_phy(port_priv)) 607 return 0; 608 609 /* Interrupts are received even though no one issued an 'ifconfig up' 610 * on the switch interface. Ignore these link state update interrupts 611 */ 612 if (!netif_running(netdev)) 613 return 0; 614 615 err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0, 616 port_priv->ethsw_data->dpsw_handle, 617 port_priv->idx, &state); 618 if (err) { 619 netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err); 620 return err; 621 } 622 623 WARN_ONCE(state.up > 1, "Garbage read into link_state"); 624 625 if (state.up != port_priv->link_state) { 626 if (state.up) { 627 netif_carrier_on(netdev); 628 netif_tx_start_all_queues(netdev); 629 } else { 630 netif_carrier_off(netdev); 631 netif_tx_stop_all_queues(netdev); 632 } 633 port_priv->link_state = state.up; 634 } 635 636 return 0; 637 } 638 639 /* Manage all NAPI instances for the control interface. 640 * 641 * We only have one RX queue and one Tx Conf queue for all 642 * switch ports. Therefore, we only need to enable the NAPI instance once, the 643 * first time one of the switch ports runs .dev_open(). 644 */ 645 646 static void dpaa2_switch_enable_ctrl_if_napi(struct ethsw_core *ethsw) 647 { 648 int i; 649 650 /* Access to the ethsw->napi_users relies on the RTNL lock */ 651 ASSERT_RTNL(); 652 653 /* a new interface is using the NAPI instance */ 654 ethsw->napi_users++; 655 656 /* if there is already a user of the instance, return */ 657 if (ethsw->napi_users > 1) 658 return; 659 660 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) 661 napi_enable(ðsw->fq[i].napi); 662 } 663 664 static void dpaa2_switch_disable_ctrl_if_napi(struct ethsw_core *ethsw) 665 { 666 int i; 667 668 /* Access to the ethsw->napi_users relies on the RTNL lock */ 669 ASSERT_RTNL(); 670 671 /* If we are not the last interface using the NAPI, return */ 672 ethsw->napi_users--; 673 if (ethsw->napi_users) 674 return; 675 676 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) 677 napi_disable(ðsw->fq[i].napi); 678 } 679 680 static int dpaa2_switch_port_open(struct net_device *netdev) 681 { 682 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 683 struct ethsw_core *ethsw = port_priv->ethsw_data; 684 int err; 685 686 if (!dpaa2_switch_port_is_type_phy(port_priv)) { 687 /* Explicitly set carrier off, otherwise 688 * netif_carrier_ok() will return true and cause 'ip link show' 689 * to report the LOWER_UP flag, even though the link 690 * notification wasn't even received. 691 */ 692 netif_carrier_off(netdev); 693 } 694 695 err = dpsw_if_enable(port_priv->ethsw_data->mc_io, 0, 696 port_priv->ethsw_data->dpsw_handle, 697 port_priv->idx); 698 if (err) { 699 netdev_err(netdev, "dpsw_if_enable err %d\n", err); 700 return err; 701 } 702 703 dpaa2_switch_enable_ctrl_if_napi(ethsw); 704 705 if (dpaa2_switch_port_is_type_phy(port_priv)) 706 phylink_start(port_priv->mac->phylink); 707 708 return 0; 709 } 710 711 static int dpaa2_switch_port_stop(struct net_device *netdev) 712 { 713 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 714 struct ethsw_core *ethsw = port_priv->ethsw_data; 715 int err; 716 717 if (dpaa2_switch_port_is_type_phy(port_priv)) { 718 phylink_stop(port_priv->mac->phylink); 719 } else { 720 netif_tx_stop_all_queues(netdev); 721 netif_carrier_off(netdev); 722 } 723 724 err = dpsw_if_disable(port_priv->ethsw_data->mc_io, 0, 725 port_priv->ethsw_data->dpsw_handle, 726 port_priv->idx); 727 if (err) { 728 netdev_err(netdev, "dpsw_if_disable err %d\n", err); 729 return err; 730 } 731 732 dpaa2_switch_disable_ctrl_if_napi(ethsw); 733 734 return 0; 735 } 736 737 static int dpaa2_switch_port_parent_id(struct net_device *dev, 738 struct netdev_phys_item_id *ppid) 739 { 740 struct ethsw_port_priv *port_priv = netdev_priv(dev); 741 742 ppid->id_len = 1; 743 ppid->id[0] = port_priv->ethsw_data->dev_id; 744 745 return 0; 746 } 747 748 static int dpaa2_switch_port_get_phys_name(struct net_device *netdev, char *name, 749 size_t len) 750 { 751 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 752 int err; 753 754 err = snprintf(name, len, "p%d", port_priv->idx); 755 if (err >= len) 756 return -EINVAL; 757 758 return 0; 759 } 760 761 struct ethsw_dump_ctx { 762 struct net_device *dev; 763 struct sk_buff *skb; 764 struct netlink_callback *cb; 765 int idx; 766 }; 767 768 static int dpaa2_switch_fdb_dump_nl(struct fdb_dump_entry *entry, 769 struct ethsw_dump_ctx *dump) 770 { 771 int is_dynamic = entry->type & DPSW_FDB_ENTRY_DINAMIC; 772 u32 portid = NETLINK_CB(dump->cb->skb).portid; 773 u32 seq = dump->cb->nlh->nlmsg_seq; 774 struct nlmsghdr *nlh; 775 struct ndmsg *ndm; 776 777 if (dump->idx < dump->cb->args[2]) 778 goto skip; 779 780 nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH, 781 sizeof(*ndm), NLM_F_MULTI); 782 if (!nlh) 783 return -EMSGSIZE; 784 785 ndm = nlmsg_data(nlh); 786 ndm->ndm_family = AF_BRIDGE; 787 ndm->ndm_pad1 = 0; 788 ndm->ndm_pad2 = 0; 789 ndm->ndm_flags = NTF_SELF; 790 ndm->ndm_type = 0; 791 ndm->ndm_ifindex = dump->dev->ifindex; 792 ndm->ndm_state = is_dynamic ? NUD_REACHABLE : NUD_NOARP; 793 794 if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, entry->mac_addr)) 795 goto nla_put_failure; 796 797 nlmsg_end(dump->skb, nlh); 798 799 skip: 800 dump->idx++; 801 return 0; 802 803 nla_put_failure: 804 nlmsg_cancel(dump->skb, nlh); 805 return -EMSGSIZE; 806 } 807 808 static int dpaa2_switch_port_fdb_valid_entry(struct fdb_dump_entry *entry, 809 struct ethsw_port_priv *port_priv) 810 { 811 int idx = port_priv->idx; 812 int valid; 813 814 if (entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST) 815 valid = entry->if_info == port_priv->idx; 816 else 817 valid = entry->if_mask[idx / 8] & BIT(idx % 8); 818 819 return valid; 820 } 821 822 static int dpaa2_switch_fdb_iterate(struct ethsw_port_priv *port_priv, 823 dpaa2_switch_fdb_cb_t cb, void *data) 824 { 825 struct net_device *net_dev = port_priv->netdev; 826 struct ethsw_core *ethsw = port_priv->ethsw_data; 827 struct device *dev = net_dev->dev.parent; 828 struct fdb_dump_entry *fdb_entries; 829 struct fdb_dump_entry fdb_entry; 830 dma_addr_t fdb_dump_iova; 831 u16 num_fdb_entries; 832 u32 fdb_dump_size; 833 int err = 0, i; 834 u8 *dma_mem; 835 u16 fdb_id; 836 837 fdb_dump_size = ethsw->sw_attr.max_fdb_entries * sizeof(fdb_entry); 838 dma_mem = kzalloc(fdb_dump_size, GFP_KERNEL); 839 if (!dma_mem) 840 return -ENOMEM; 841 842 fdb_dump_iova = dma_map_single(dev, dma_mem, fdb_dump_size, 843 DMA_FROM_DEVICE); 844 if (dma_mapping_error(dev, fdb_dump_iova)) { 845 netdev_err(net_dev, "dma_map_single() failed\n"); 846 err = -ENOMEM; 847 goto err_map; 848 } 849 850 fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); 851 err = dpsw_fdb_dump(ethsw->mc_io, 0, ethsw->dpsw_handle, fdb_id, 852 fdb_dump_iova, fdb_dump_size, &num_fdb_entries); 853 if (err) { 854 netdev_err(net_dev, "dpsw_fdb_dump() = %d\n", err); 855 goto err_dump; 856 } 857 858 dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_FROM_DEVICE); 859 860 fdb_entries = (struct fdb_dump_entry *)dma_mem; 861 for (i = 0; i < num_fdb_entries; i++) { 862 fdb_entry = fdb_entries[i]; 863 864 err = cb(port_priv, &fdb_entry, data); 865 if (err) 866 goto end; 867 } 868 869 end: 870 kfree(dma_mem); 871 872 return 0; 873 874 err_dump: 875 dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_TO_DEVICE); 876 err_map: 877 kfree(dma_mem); 878 return err; 879 } 880 881 static int dpaa2_switch_fdb_entry_dump(struct ethsw_port_priv *port_priv, 882 struct fdb_dump_entry *fdb_entry, 883 void *data) 884 { 885 if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv)) 886 return 0; 887 888 return dpaa2_switch_fdb_dump_nl(fdb_entry, data); 889 } 890 891 static int dpaa2_switch_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, 892 struct net_device *net_dev, 893 struct net_device *filter_dev, int *idx) 894 { 895 struct ethsw_port_priv *port_priv = netdev_priv(net_dev); 896 struct ethsw_dump_ctx dump = { 897 .dev = net_dev, 898 .skb = skb, 899 .cb = cb, 900 .idx = *idx, 901 }; 902 int err; 903 904 err = dpaa2_switch_fdb_iterate(port_priv, dpaa2_switch_fdb_entry_dump, &dump); 905 *idx = dump.idx; 906 907 return err; 908 } 909 910 static int dpaa2_switch_fdb_entry_fast_age(struct ethsw_port_priv *port_priv, 911 struct fdb_dump_entry *fdb_entry, 912 void *data __always_unused) 913 { 914 if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv)) 915 return 0; 916 917 if (!(fdb_entry->type & DPSW_FDB_ENTRY_TYPE_DYNAMIC)) 918 return 0; 919 920 if (fdb_entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST) 921 dpaa2_switch_port_fdb_del_uc(port_priv, fdb_entry->mac_addr); 922 else 923 dpaa2_switch_port_fdb_del_mc(port_priv, fdb_entry->mac_addr); 924 925 return 0; 926 } 927 928 static void dpaa2_switch_port_fast_age(struct ethsw_port_priv *port_priv) 929 { 930 dpaa2_switch_fdb_iterate(port_priv, 931 dpaa2_switch_fdb_entry_fast_age, NULL); 932 } 933 934 static int dpaa2_switch_port_vlan_add(struct net_device *netdev, __be16 proto, 935 u16 vid) 936 { 937 struct switchdev_obj_port_vlan vlan = { 938 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, 939 .vid = vid, 940 .obj.orig_dev = netdev, 941 /* This API only allows programming tagged, non-PVID VIDs */ 942 .flags = 0, 943 }; 944 945 return dpaa2_switch_port_vlans_add(netdev, &vlan); 946 } 947 948 static int dpaa2_switch_port_vlan_kill(struct net_device *netdev, __be16 proto, 949 u16 vid) 950 { 951 struct switchdev_obj_port_vlan vlan = { 952 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, 953 .vid = vid, 954 .obj.orig_dev = netdev, 955 /* This API only allows programming tagged, non-PVID VIDs */ 956 .flags = 0, 957 }; 958 959 return dpaa2_switch_port_vlans_del(netdev, &vlan); 960 } 961 962 static int dpaa2_switch_port_set_mac_addr(struct ethsw_port_priv *port_priv) 963 { 964 struct ethsw_core *ethsw = port_priv->ethsw_data; 965 struct net_device *net_dev = port_priv->netdev; 966 struct device *dev = net_dev->dev.parent; 967 u8 mac_addr[ETH_ALEN]; 968 int err; 969 970 if (!(ethsw->features & ETHSW_FEATURE_MAC_ADDR)) 971 return 0; 972 973 /* Get firmware address, if any */ 974 err = dpsw_if_get_port_mac_addr(ethsw->mc_io, 0, ethsw->dpsw_handle, 975 port_priv->idx, mac_addr); 976 if (err) { 977 dev_err(dev, "dpsw_if_get_port_mac_addr() failed\n"); 978 return err; 979 } 980 981 /* First check if firmware has any address configured by bootloader */ 982 if (!is_zero_ether_addr(mac_addr)) { 983 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 984 } else { 985 /* No MAC address configured, fill in net_dev->dev_addr 986 * with a random one 987 */ 988 eth_hw_addr_random(net_dev); 989 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 990 991 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 992 * practical purposes, this will be our "permanent" mac address, 993 * at least until the next reboot. This move will also permit 994 * register_netdevice() to properly fill up net_dev->perm_addr. 995 */ 996 net_dev->addr_assign_type = NET_ADDR_PERM; 997 } 998 999 return 0; 1000 } 1001 1002 static void dpaa2_switch_free_fd(const struct ethsw_core *ethsw, 1003 const struct dpaa2_fd *fd) 1004 { 1005 struct device *dev = ethsw->dev; 1006 unsigned char *buffer_start; 1007 struct sk_buff **skbh, *skb; 1008 dma_addr_t fd_addr; 1009 1010 fd_addr = dpaa2_fd_get_addr(fd); 1011 skbh = dpaa2_iova_to_virt(ethsw->iommu_domain, fd_addr); 1012 1013 skb = *skbh; 1014 buffer_start = (unsigned char *)skbh; 1015 1016 dma_unmap_single(dev, fd_addr, 1017 skb_tail_pointer(skb) - buffer_start, 1018 DMA_TO_DEVICE); 1019 1020 /* Move on with skb release */ 1021 dev_kfree_skb(skb); 1022 } 1023 1024 static int dpaa2_switch_build_single_fd(struct ethsw_core *ethsw, 1025 struct sk_buff *skb, 1026 struct dpaa2_fd *fd) 1027 { 1028 struct device *dev = ethsw->dev; 1029 struct sk_buff **skbh; 1030 dma_addr_t addr; 1031 u8 *buff_start; 1032 void *hwa; 1033 1034 buff_start = PTR_ALIGN(skb->data - DPAA2_SWITCH_TX_DATA_OFFSET - 1035 DPAA2_SWITCH_TX_BUF_ALIGN, 1036 DPAA2_SWITCH_TX_BUF_ALIGN); 1037 1038 /* Clear FAS to have consistent values for TX confirmation. It is 1039 * located in the first 8 bytes of the buffer's hardware annotation 1040 * area 1041 */ 1042 hwa = buff_start + DPAA2_SWITCH_SWA_SIZE; 1043 memset(hwa, 0, 8); 1044 1045 /* Store a backpointer to the skb at the beginning of the buffer 1046 * (in the private data area) such that we can release it 1047 * on Tx confirm 1048 */ 1049 skbh = (struct sk_buff **)buff_start; 1050 *skbh = skb; 1051 1052 addr = dma_map_single(dev, buff_start, 1053 skb_tail_pointer(skb) - buff_start, 1054 DMA_TO_DEVICE); 1055 if (unlikely(dma_mapping_error(dev, addr))) 1056 return -ENOMEM; 1057 1058 /* Setup the FD fields */ 1059 memset(fd, 0, sizeof(*fd)); 1060 1061 dpaa2_fd_set_addr(fd, addr); 1062 dpaa2_fd_set_offset(fd, (u16)(skb->data - buff_start)); 1063 dpaa2_fd_set_len(fd, skb->len); 1064 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1065 1066 return 0; 1067 } 1068 1069 static netdev_tx_t dpaa2_switch_port_tx(struct sk_buff *skb, 1070 struct net_device *net_dev) 1071 { 1072 struct ethsw_port_priv *port_priv = netdev_priv(net_dev); 1073 struct ethsw_core *ethsw = port_priv->ethsw_data; 1074 int retries = DPAA2_SWITCH_SWP_BUSY_RETRIES; 1075 struct dpaa2_fd fd; 1076 int err; 1077 1078 if (unlikely(skb_headroom(skb) < DPAA2_SWITCH_NEEDED_HEADROOM)) { 1079 struct sk_buff *ns; 1080 1081 ns = skb_realloc_headroom(skb, DPAA2_SWITCH_NEEDED_HEADROOM); 1082 if (unlikely(!ns)) { 1083 net_err_ratelimited("%s: Error reallocating skb headroom\n", net_dev->name); 1084 goto err_free_skb; 1085 } 1086 dev_consume_skb_any(skb); 1087 skb = ns; 1088 } 1089 1090 /* We'll be holding a back-reference to the skb until Tx confirmation */ 1091 skb = skb_unshare(skb, GFP_ATOMIC); 1092 if (unlikely(!skb)) { 1093 /* skb_unshare() has already freed the skb */ 1094 net_err_ratelimited("%s: Error copying the socket buffer\n", net_dev->name); 1095 goto err_exit; 1096 } 1097 1098 /* At this stage, we do not support non-linear skbs so just try to 1099 * linearize the skb and if that's not working, just drop the packet. 1100 */ 1101 err = skb_linearize(skb); 1102 if (err) { 1103 net_err_ratelimited("%s: skb_linearize error (%d)!\n", net_dev->name, err); 1104 goto err_free_skb; 1105 } 1106 1107 err = dpaa2_switch_build_single_fd(ethsw, skb, &fd); 1108 if (unlikely(err)) { 1109 net_err_ratelimited("%s: ethsw_build_*_fd() %d\n", net_dev->name, err); 1110 goto err_free_skb; 1111 } 1112 1113 do { 1114 err = dpaa2_io_service_enqueue_qd(NULL, 1115 port_priv->tx_qdid, 1116 8, 0, &fd); 1117 retries--; 1118 } while (err == -EBUSY && retries); 1119 1120 if (unlikely(err < 0)) { 1121 dpaa2_switch_free_fd(ethsw, &fd); 1122 goto err_exit; 1123 } 1124 1125 return NETDEV_TX_OK; 1126 1127 err_free_skb: 1128 dev_kfree_skb(skb); 1129 err_exit: 1130 return NETDEV_TX_OK; 1131 } 1132 1133 static int 1134 dpaa2_switch_setup_tc_cls_flower(struct dpaa2_switch_filter_block *filter_block, 1135 struct flow_cls_offload *f) 1136 { 1137 switch (f->command) { 1138 case FLOW_CLS_REPLACE: 1139 return dpaa2_switch_cls_flower_replace(filter_block, f); 1140 case FLOW_CLS_DESTROY: 1141 return dpaa2_switch_cls_flower_destroy(filter_block, f); 1142 default: 1143 return -EOPNOTSUPP; 1144 } 1145 } 1146 1147 static int 1148 dpaa2_switch_setup_tc_cls_matchall(struct dpaa2_switch_filter_block *block, 1149 struct tc_cls_matchall_offload *f) 1150 { 1151 switch (f->command) { 1152 case TC_CLSMATCHALL_REPLACE: 1153 return dpaa2_switch_cls_matchall_replace(block, f); 1154 case TC_CLSMATCHALL_DESTROY: 1155 return dpaa2_switch_cls_matchall_destroy(block, f); 1156 default: 1157 return -EOPNOTSUPP; 1158 } 1159 } 1160 1161 static int dpaa2_switch_port_setup_tc_block_cb_ig(enum tc_setup_type type, 1162 void *type_data, 1163 void *cb_priv) 1164 { 1165 switch (type) { 1166 case TC_SETUP_CLSFLOWER: 1167 return dpaa2_switch_setup_tc_cls_flower(cb_priv, type_data); 1168 case TC_SETUP_CLSMATCHALL: 1169 return dpaa2_switch_setup_tc_cls_matchall(cb_priv, type_data); 1170 default: 1171 return -EOPNOTSUPP; 1172 } 1173 } 1174 1175 static LIST_HEAD(dpaa2_switch_block_cb_list); 1176 1177 static int 1178 dpaa2_switch_port_acl_tbl_bind(struct ethsw_port_priv *port_priv, 1179 struct dpaa2_switch_filter_block *block) 1180 { 1181 struct ethsw_core *ethsw = port_priv->ethsw_data; 1182 struct net_device *netdev = port_priv->netdev; 1183 struct dpsw_acl_if_cfg acl_if_cfg; 1184 int err; 1185 1186 if (port_priv->filter_block) 1187 return -EINVAL; 1188 1189 acl_if_cfg.if_id[0] = port_priv->idx; 1190 acl_if_cfg.num_ifs = 1; 1191 err = dpsw_acl_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle, 1192 block->acl_id, &acl_if_cfg); 1193 if (err) { 1194 netdev_err(netdev, "dpsw_acl_add_if err %d\n", err); 1195 return err; 1196 } 1197 1198 block->ports |= BIT(port_priv->idx); 1199 port_priv->filter_block = block; 1200 1201 return 0; 1202 } 1203 1204 static int 1205 dpaa2_switch_port_acl_tbl_unbind(struct ethsw_port_priv *port_priv, 1206 struct dpaa2_switch_filter_block *block) 1207 { 1208 struct ethsw_core *ethsw = port_priv->ethsw_data; 1209 struct net_device *netdev = port_priv->netdev; 1210 struct dpsw_acl_if_cfg acl_if_cfg; 1211 int err; 1212 1213 if (port_priv->filter_block != block) 1214 return -EINVAL; 1215 1216 acl_if_cfg.if_id[0] = port_priv->idx; 1217 acl_if_cfg.num_ifs = 1; 1218 err = dpsw_acl_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, 1219 block->acl_id, &acl_if_cfg); 1220 if (err) { 1221 netdev_err(netdev, "dpsw_acl_add_if err %d\n", err); 1222 return err; 1223 } 1224 1225 block->ports &= ~BIT(port_priv->idx); 1226 port_priv->filter_block = NULL; 1227 return 0; 1228 } 1229 1230 static int dpaa2_switch_port_block_bind(struct ethsw_port_priv *port_priv, 1231 struct dpaa2_switch_filter_block *block) 1232 { 1233 struct dpaa2_switch_filter_block *old_block = port_priv->filter_block; 1234 int err; 1235 1236 /* Offload all the mirror entries found in the block on this new port 1237 * joining it. 1238 */ 1239 err = dpaa2_switch_block_offload_mirror(block, port_priv); 1240 if (err) 1241 return err; 1242 1243 /* If the port is already bound to this ACL table then do nothing. This 1244 * can happen when this port is the first one to join a tc block 1245 */ 1246 if (port_priv->filter_block == block) 1247 return 0; 1248 1249 err = dpaa2_switch_port_acl_tbl_unbind(port_priv, old_block); 1250 if (err) 1251 return err; 1252 1253 /* Mark the previous ACL table as being unused if this was the last 1254 * port that was using it. 1255 */ 1256 if (old_block->ports == 0) 1257 old_block->in_use = false; 1258 1259 return dpaa2_switch_port_acl_tbl_bind(port_priv, block); 1260 } 1261 1262 static int 1263 dpaa2_switch_port_block_unbind(struct ethsw_port_priv *port_priv, 1264 struct dpaa2_switch_filter_block *block) 1265 { 1266 struct ethsw_core *ethsw = port_priv->ethsw_data; 1267 struct dpaa2_switch_filter_block *new_block; 1268 int err; 1269 1270 /* Unoffload all the mirror entries found in the block from the 1271 * port leaving it. 1272 */ 1273 err = dpaa2_switch_block_unoffload_mirror(block, port_priv); 1274 if (err) 1275 return err; 1276 1277 /* We are the last port that leaves a block (an ACL table). 1278 * We'll continue to use this table. 1279 */ 1280 if (block->ports == BIT(port_priv->idx)) 1281 return 0; 1282 1283 err = dpaa2_switch_port_acl_tbl_unbind(port_priv, block); 1284 if (err) 1285 return err; 1286 1287 if (block->ports == 0) 1288 block->in_use = false; 1289 1290 new_block = dpaa2_switch_filter_block_get_unused(ethsw); 1291 new_block->in_use = true; 1292 return dpaa2_switch_port_acl_tbl_bind(port_priv, new_block); 1293 } 1294 1295 static int dpaa2_switch_setup_tc_block_bind(struct net_device *netdev, 1296 struct flow_block_offload *f) 1297 { 1298 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1299 struct ethsw_core *ethsw = port_priv->ethsw_data; 1300 struct dpaa2_switch_filter_block *filter_block; 1301 struct flow_block_cb *block_cb; 1302 bool register_block = false; 1303 int err; 1304 1305 block_cb = flow_block_cb_lookup(f->block, 1306 dpaa2_switch_port_setup_tc_block_cb_ig, 1307 ethsw); 1308 1309 if (!block_cb) { 1310 /* If the filter block is not already known, then this port 1311 * must be the first to join it. In this case, we can just 1312 * continue to use our private table 1313 */ 1314 filter_block = port_priv->filter_block; 1315 1316 block_cb = flow_block_cb_alloc(dpaa2_switch_port_setup_tc_block_cb_ig, 1317 ethsw, filter_block, NULL); 1318 if (IS_ERR(block_cb)) 1319 return PTR_ERR(block_cb); 1320 1321 register_block = true; 1322 } else { 1323 filter_block = flow_block_cb_priv(block_cb); 1324 } 1325 1326 flow_block_cb_incref(block_cb); 1327 err = dpaa2_switch_port_block_bind(port_priv, filter_block); 1328 if (err) 1329 goto err_block_bind; 1330 1331 if (register_block) { 1332 flow_block_cb_add(block_cb, f); 1333 list_add_tail(&block_cb->driver_list, 1334 &dpaa2_switch_block_cb_list); 1335 } 1336 1337 return 0; 1338 1339 err_block_bind: 1340 if (!flow_block_cb_decref(block_cb)) 1341 flow_block_cb_free(block_cb); 1342 return err; 1343 } 1344 1345 static void dpaa2_switch_setup_tc_block_unbind(struct net_device *netdev, 1346 struct flow_block_offload *f) 1347 { 1348 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1349 struct ethsw_core *ethsw = port_priv->ethsw_data; 1350 struct dpaa2_switch_filter_block *filter_block; 1351 struct flow_block_cb *block_cb; 1352 int err; 1353 1354 block_cb = flow_block_cb_lookup(f->block, 1355 dpaa2_switch_port_setup_tc_block_cb_ig, 1356 ethsw); 1357 if (!block_cb) 1358 return; 1359 1360 filter_block = flow_block_cb_priv(block_cb); 1361 err = dpaa2_switch_port_block_unbind(port_priv, filter_block); 1362 if (!err && !flow_block_cb_decref(block_cb)) { 1363 flow_block_cb_remove(block_cb, f); 1364 list_del(&block_cb->driver_list); 1365 } 1366 } 1367 1368 static int dpaa2_switch_setup_tc_block(struct net_device *netdev, 1369 struct flow_block_offload *f) 1370 { 1371 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 1372 return -EOPNOTSUPP; 1373 1374 f->driver_block_list = &dpaa2_switch_block_cb_list; 1375 1376 switch (f->command) { 1377 case FLOW_BLOCK_BIND: 1378 return dpaa2_switch_setup_tc_block_bind(netdev, f); 1379 case FLOW_BLOCK_UNBIND: 1380 dpaa2_switch_setup_tc_block_unbind(netdev, f); 1381 return 0; 1382 default: 1383 return -EOPNOTSUPP; 1384 } 1385 } 1386 1387 static int dpaa2_switch_port_setup_tc(struct net_device *netdev, 1388 enum tc_setup_type type, 1389 void *type_data) 1390 { 1391 switch (type) { 1392 case TC_SETUP_BLOCK: { 1393 return dpaa2_switch_setup_tc_block(netdev, type_data); 1394 } 1395 default: 1396 return -EOPNOTSUPP; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static const struct net_device_ops dpaa2_switch_port_ops = { 1403 .ndo_open = dpaa2_switch_port_open, 1404 .ndo_stop = dpaa2_switch_port_stop, 1405 1406 .ndo_set_mac_address = eth_mac_addr, 1407 .ndo_get_stats64 = dpaa2_switch_port_get_stats, 1408 .ndo_change_mtu = dpaa2_switch_port_change_mtu, 1409 .ndo_has_offload_stats = dpaa2_switch_port_has_offload_stats, 1410 .ndo_get_offload_stats = dpaa2_switch_port_get_offload_stats, 1411 .ndo_fdb_dump = dpaa2_switch_port_fdb_dump, 1412 .ndo_vlan_rx_add_vid = dpaa2_switch_port_vlan_add, 1413 .ndo_vlan_rx_kill_vid = dpaa2_switch_port_vlan_kill, 1414 1415 .ndo_start_xmit = dpaa2_switch_port_tx, 1416 .ndo_get_port_parent_id = dpaa2_switch_port_parent_id, 1417 .ndo_get_phys_port_name = dpaa2_switch_port_get_phys_name, 1418 .ndo_setup_tc = dpaa2_switch_port_setup_tc, 1419 }; 1420 1421 bool dpaa2_switch_port_dev_check(const struct net_device *netdev) 1422 { 1423 return netdev->netdev_ops == &dpaa2_switch_port_ops; 1424 } 1425 1426 static int dpaa2_switch_port_connect_mac(struct ethsw_port_priv *port_priv) 1427 { 1428 struct fsl_mc_device *dpsw_port_dev, *dpmac_dev; 1429 struct dpaa2_mac *mac; 1430 int err; 1431 1432 dpsw_port_dev = to_fsl_mc_device(port_priv->netdev->dev.parent); 1433 dpmac_dev = fsl_mc_get_endpoint(dpsw_port_dev, port_priv->idx); 1434 1435 if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) 1436 return PTR_ERR(dpmac_dev); 1437 1438 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 1439 return 0; 1440 1441 mac = kzalloc(sizeof(*mac), GFP_KERNEL); 1442 if (!mac) 1443 return -ENOMEM; 1444 1445 mac->mc_dev = dpmac_dev; 1446 mac->mc_io = port_priv->ethsw_data->mc_io; 1447 mac->net_dev = port_priv->netdev; 1448 1449 err = dpaa2_mac_open(mac); 1450 if (err) 1451 goto err_free_mac; 1452 port_priv->mac = mac; 1453 1454 if (dpaa2_switch_port_is_type_phy(port_priv)) { 1455 err = dpaa2_mac_connect(mac); 1456 if (err) { 1457 netdev_err(port_priv->netdev, 1458 "Error connecting to the MAC endpoint %pe\n", 1459 ERR_PTR(err)); 1460 goto err_close_mac; 1461 } 1462 } 1463 1464 return 0; 1465 1466 err_close_mac: 1467 dpaa2_mac_close(mac); 1468 port_priv->mac = NULL; 1469 err_free_mac: 1470 kfree(mac); 1471 return err; 1472 } 1473 1474 static void dpaa2_switch_port_disconnect_mac(struct ethsw_port_priv *port_priv) 1475 { 1476 if (dpaa2_switch_port_is_type_phy(port_priv)) 1477 dpaa2_mac_disconnect(port_priv->mac); 1478 1479 if (!dpaa2_switch_port_has_mac(port_priv)) 1480 return; 1481 1482 dpaa2_mac_close(port_priv->mac); 1483 kfree(port_priv->mac); 1484 port_priv->mac = NULL; 1485 } 1486 1487 static irqreturn_t dpaa2_switch_irq0_handler_thread(int irq_num, void *arg) 1488 { 1489 struct device *dev = (struct device *)arg; 1490 struct ethsw_core *ethsw = dev_get_drvdata(dev); 1491 struct ethsw_port_priv *port_priv; 1492 u32 status = ~0; 1493 int err, if_id; 1494 1495 err = dpsw_get_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle, 1496 DPSW_IRQ_INDEX_IF, &status); 1497 if (err) { 1498 dev_err(dev, "Can't get irq status (err %d)\n", err); 1499 goto out; 1500 } 1501 1502 if_id = (status & 0xFFFF0000) >> 16; 1503 port_priv = ethsw->ports[if_id]; 1504 1505 if (status & DPSW_IRQ_EVENT_LINK_CHANGED) { 1506 dpaa2_switch_port_link_state_update(port_priv->netdev); 1507 dpaa2_switch_port_set_mac_addr(port_priv); 1508 } 1509 1510 if (status & DPSW_IRQ_EVENT_ENDPOINT_CHANGED) { 1511 if (dpaa2_switch_port_has_mac(port_priv)) 1512 dpaa2_switch_port_disconnect_mac(port_priv); 1513 else 1514 dpaa2_switch_port_connect_mac(port_priv); 1515 } 1516 1517 out: 1518 err = dpsw_clear_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle, 1519 DPSW_IRQ_INDEX_IF, status); 1520 if (err) 1521 dev_err(dev, "Can't clear irq status (err %d)\n", err); 1522 1523 return IRQ_HANDLED; 1524 } 1525 1526 static int dpaa2_switch_setup_irqs(struct fsl_mc_device *sw_dev) 1527 { 1528 struct device *dev = &sw_dev->dev; 1529 struct ethsw_core *ethsw = dev_get_drvdata(dev); 1530 u32 mask = DPSW_IRQ_EVENT_LINK_CHANGED; 1531 struct fsl_mc_device_irq *irq; 1532 int err; 1533 1534 err = fsl_mc_allocate_irqs(sw_dev); 1535 if (err) { 1536 dev_err(dev, "MC irqs allocation failed\n"); 1537 return err; 1538 } 1539 1540 if (WARN_ON(sw_dev->obj_desc.irq_count != DPSW_IRQ_NUM)) { 1541 err = -EINVAL; 1542 goto free_irq; 1543 } 1544 1545 err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, 1546 DPSW_IRQ_INDEX_IF, 0); 1547 if (err) { 1548 dev_err(dev, "dpsw_set_irq_enable err %d\n", err); 1549 goto free_irq; 1550 } 1551 1552 irq = sw_dev->irqs[DPSW_IRQ_INDEX_IF]; 1553 1554 err = devm_request_threaded_irq(dev, irq->msi_desc->irq, 1555 NULL, 1556 dpaa2_switch_irq0_handler_thread, 1557 IRQF_NO_SUSPEND | IRQF_ONESHOT, 1558 dev_name(dev), dev); 1559 if (err) { 1560 dev_err(dev, "devm_request_threaded_irq(): %d\n", err); 1561 goto free_irq; 1562 } 1563 1564 err = dpsw_set_irq_mask(ethsw->mc_io, 0, ethsw->dpsw_handle, 1565 DPSW_IRQ_INDEX_IF, mask); 1566 if (err) { 1567 dev_err(dev, "dpsw_set_irq_mask(): %d\n", err); 1568 goto free_devm_irq; 1569 } 1570 1571 err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, 1572 DPSW_IRQ_INDEX_IF, 1); 1573 if (err) { 1574 dev_err(dev, "dpsw_set_irq_enable(): %d\n", err); 1575 goto free_devm_irq; 1576 } 1577 1578 return 0; 1579 1580 free_devm_irq: 1581 devm_free_irq(dev, irq->msi_desc->irq, dev); 1582 free_irq: 1583 fsl_mc_free_irqs(sw_dev); 1584 return err; 1585 } 1586 1587 static void dpaa2_switch_teardown_irqs(struct fsl_mc_device *sw_dev) 1588 { 1589 struct device *dev = &sw_dev->dev; 1590 struct ethsw_core *ethsw = dev_get_drvdata(dev); 1591 int err; 1592 1593 err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, 1594 DPSW_IRQ_INDEX_IF, 0); 1595 if (err) 1596 dev_err(dev, "dpsw_set_irq_enable err %d\n", err); 1597 1598 fsl_mc_free_irqs(sw_dev); 1599 } 1600 1601 static int dpaa2_switch_port_set_learning(struct ethsw_port_priv *port_priv, bool enable) 1602 { 1603 struct ethsw_core *ethsw = port_priv->ethsw_data; 1604 enum dpsw_learning_mode learn_mode; 1605 int err; 1606 1607 if (enable) 1608 learn_mode = DPSW_LEARNING_MODE_HW; 1609 else 1610 learn_mode = DPSW_LEARNING_MODE_DIS; 1611 1612 err = dpsw_if_set_learning_mode(ethsw->mc_io, 0, ethsw->dpsw_handle, 1613 port_priv->idx, learn_mode); 1614 if (err) 1615 netdev_err(port_priv->netdev, "dpsw_if_set_learning_mode err %d\n", err); 1616 1617 if (!enable) 1618 dpaa2_switch_port_fast_age(port_priv); 1619 1620 return err; 1621 } 1622 1623 static int dpaa2_switch_port_attr_stp_state_set(struct net_device *netdev, 1624 u8 state) 1625 { 1626 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1627 int err; 1628 1629 err = dpaa2_switch_port_set_stp_state(port_priv, state); 1630 if (err) 1631 return err; 1632 1633 switch (state) { 1634 case BR_STATE_DISABLED: 1635 case BR_STATE_BLOCKING: 1636 case BR_STATE_LISTENING: 1637 err = dpaa2_switch_port_set_learning(port_priv, false); 1638 break; 1639 case BR_STATE_LEARNING: 1640 case BR_STATE_FORWARDING: 1641 err = dpaa2_switch_port_set_learning(port_priv, 1642 port_priv->learn_ena); 1643 break; 1644 } 1645 1646 return err; 1647 } 1648 1649 static int dpaa2_switch_port_flood(struct ethsw_port_priv *port_priv, 1650 struct switchdev_brport_flags flags) 1651 { 1652 struct ethsw_core *ethsw = port_priv->ethsw_data; 1653 1654 if (flags.mask & BR_BCAST_FLOOD) 1655 port_priv->bcast_flood = !!(flags.val & BR_BCAST_FLOOD); 1656 1657 if (flags.mask & BR_FLOOD) 1658 port_priv->ucast_flood = !!(flags.val & BR_FLOOD); 1659 1660 return dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); 1661 } 1662 1663 static int dpaa2_switch_port_pre_bridge_flags(struct net_device *netdev, 1664 struct switchdev_brport_flags flags, 1665 struct netlink_ext_ack *extack) 1666 { 1667 if (flags.mask & ~(BR_LEARNING | BR_BCAST_FLOOD | BR_FLOOD | 1668 BR_MCAST_FLOOD)) 1669 return -EINVAL; 1670 1671 if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD)) { 1672 bool multicast = !!(flags.val & BR_MCAST_FLOOD); 1673 bool unicast = !!(flags.val & BR_FLOOD); 1674 1675 if (unicast != multicast) { 1676 NL_SET_ERR_MSG_MOD(extack, 1677 "Cannot configure multicast flooding independently of unicast"); 1678 return -EINVAL; 1679 } 1680 } 1681 1682 return 0; 1683 } 1684 1685 static int dpaa2_switch_port_bridge_flags(struct net_device *netdev, 1686 struct switchdev_brport_flags flags, 1687 struct netlink_ext_ack *extack) 1688 { 1689 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1690 int err; 1691 1692 if (flags.mask & BR_LEARNING) { 1693 bool learn_ena = !!(flags.val & BR_LEARNING); 1694 1695 err = dpaa2_switch_port_set_learning(port_priv, learn_ena); 1696 if (err) 1697 return err; 1698 port_priv->learn_ena = learn_ena; 1699 } 1700 1701 if (flags.mask & (BR_BCAST_FLOOD | BR_FLOOD | BR_MCAST_FLOOD)) { 1702 err = dpaa2_switch_port_flood(port_priv, flags); 1703 if (err) 1704 return err; 1705 } 1706 1707 return 0; 1708 } 1709 1710 static int dpaa2_switch_port_attr_set(struct net_device *netdev, const void *ctx, 1711 const struct switchdev_attr *attr, 1712 struct netlink_ext_ack *extack) 1713 { 1714 int err = 0; 1715 1716 switch (attr->id) { 1717 case SWITCHDEV_ATTR_ID_PORT_STP_STATE: 1718 err = dpaa2_switch_port_attr_stp_state_set(netdev, 1719 attr->u.stp_state); 1720 break; 1721 case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING: 1722 if (!attr->u.vlan_filtering) { 1723 NL_SET_ERR_MSG_MOD(extack, 1724 "The DPAA2 switch does not support VLAN-unaware operation"); 1725 return -EOPNOTSUPP; 1726 } 1727 break; 1728 case SWITCHDEV_ATTR_ID_PORT_PRE_BRIDGE_FLAGS: 1729 err = dpaa2_switch_port_pre_bridge_flags(netdev, attr->u.brport_flags, extack); 1730 break; 1731 case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS: 1732 err = dpaa2_switch_port_bridge_flags(netdev, attr->u.brport_flags, extack); 1733 break; 1734 default: 1735 err = -EOPNOTSUPP; 1736 break; 1737 } 1738 1739 return err; 1740 } 1741 1742 int dpaa2_switch_port_vlans_add(struct net_device *netdev, 1743 const struct switchdev_obj_port_vlan *vlan) 1744 { 1745 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1746 struct ethsw_core *ethsw = port_priv->ethsw_data; 1747 struct dpsw_attr *attr = ðsw->sw_attr; 1748 int err = 0; 1749 1750 /* Make sure that the VLAN is not already configured 1751 * on the switch port 1752 */ 1753 if (port_priv->vlans[vlan->vid] & ETHSW_VLAN_MEMBER) 1754 return -EEXIST; 1755 1756 /* Check if there is space for a new VLAN */ 1757 err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, 1758 ðsw->sw_attr); 1759 if (err) { 1760 netdev_err(netdev, "dpsw_get_attributes err %d\n", err); 1761 return err; 1762 } 1763 if (attr->max_vlans - attr->num_vlans < 1) 1764 return -ENOSPC; 1765 1766 /* Check if there is space for a new VLAN */ 1767 err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, 1768 ðsw->sw_attr); 1769 if (err) { 1770 netdev_err(netdev, "dpsw_get_attributes err %d\n", err); 1771 return err; 1772 } 1773 if (attr->max_vlans - attr->num_vlans < 1) 1774 return -ENOSPC; 1775 1776 if (!port_priv->ethsw_data->vlans[vlan->vid]) { 1777 /* this is a new VLAN */ 1778 err = dpaa2_switch_add_vlan(port_priv, vlan->vid); 1779 if (err) 1780 return err; 1781 1782 port_priv->ethsw_data->vlans[vlan->vid] |= ETHSW_VLAN_GLOBAL; 1783 } 1784 1785 return dpaa2_switch_port_add_vlan(port_priv, vlan->vid, vlan->flags); 1786 } 1787 1788 static int dpaa2_switch_port_lookup_address(struct net_device *netdev, int is_uc, 1789 const unsigned char *addr) 1790 { 1791 struct netdev_hw_addr_list *list = (is_uc) ? &netdev->uc : &netdev->mc; 1792 struct netdev_hw_addr *ha; 1793 1794 netif_addr_lock_bh(netdev); 1795 list_for_each_entry(ha, &list->list, list) { 1796 if (ether_addr_equal(ha->addr, addr)) { 1797 netif_addr_unlock_bh(netdev); 1798 return 1; 1799 } 1800 } 1801 netif_addr_unlock_bh(netdev); 1802 return 0; 1803 } 1804 1805 static int dpaa2_switch_port_mdb_add(struct net_device *netdev, 1806 const struct switchdev_obj_port_mdb *mdb) 1807 { 1808 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1809 int err; 1810 1811 /* Check if address is already set on this port */ 1812 if (dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr)) 1813 return -EEXIST; 1814 1815 err = dpaa2_switch_port_fdb_add_mc(port_priv, mdb->addr); 1816 if (err) 1817 return err; 1818 1819 err = dev_mc_add(netdev, mdb->addr); 1820 if (err) { 1821 netdev_err(netdev, "dev_mc_add err %d\n", err); 1822 dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr); 1823 } 1824 1825 return err; 1826 } 1827 1828 static int dpaa2_switch_port_obj_add(struct net_device *netdev, 1829 const struct switchdev_obj *obj) 1830 { 1831 int err; 1832 1833 switch (obj->id) { 1834 case SWITCHDEV_OBJ_ID_PORT_VLAN: 1835 err = dpaa2_switch_port_vlans_add(netdev, 1836 SWITCHDEV_OBJ_PORT_VLAN(obj)); 1837 break; 1838 case SWITCHDEV_OBJ_ID_PORT_MDB: 1839 err = dpaa2_switch_port_mdb_add(netdev, 1840 SWITCHDEV_OBJ_PORT_MDB(obj)); 1841 break; 1842 default: 1843 err = -EOPNOTSUPP; 1844 break; 1845 } 1846 1847 return err; 1848 } 1849 1850 static int dpaa2_switch_port_del_vlan(struct ethsw_port_priv *port_priv, u16 vid) 1851 { 1852 struct ethsw_core *ethsw = port_priv->ethsw_data; 1853 struct net_device *netdev = port_priv->netdev; 1854 struct dpsw_vlan_if_cfg vcfg; 1855 int i, err; 1856 1857 if (!port_priv->vlans[vid]) 1858 return -ENOENT; 1859 1860 if (port_priv->vlans[vid] & ETHSW_VLAN_PVID) { 1861 /* If we are deleting the PVID of a port, use VLAN 4095 instead 1862 * as we are sure that neither the bridge nor the 8021q module 1863 * will use it 1864 */ 1865 err = dpaa2_switch_port_set_pvid(port_priv, 4095); 1866 if (err) 1867 return err; 1868 } 1869 1870 vcfg.num_ifs = 1; 1871 vcfg.if_id[0] = port_priv->idx; 1872 if (port_priv->vlans[vid] & ETHSW_VLAN_UNTAGGED) { 1873 err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0, 1874 ethsw->dpsw_handle, 1875 vid, &vcfg); 1876 if (err) { 1877 netdev_err(netdev, 1878 "dpsw_vlan_remove_if_untagged err %d\n", 1879 err); 1880 } 1881 port_priv->vlans[vid] &= ~ETHSW_VLAN_UNTAGGED; 1882 } 1883 1884 if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) { 1885 err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, 1886 vid, &vcfg); 1887 if (err) { 1888 netdev_err(netdev, 1889 "dpsw_vlan_remove_if err %d\n", err); 1890 return err; 1891 } 1892 port_priv->vlans[vid] &= ~ETHSW_VLAN_MEMBER; 1893 1894 /* Delete VLAN from switch if it is no longer configured on 1895 * any port 1896 */ 1897 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) 1898 if (ethsw->ports[i]->vlans[vid] & ETHSW_VLAN_MEMBER) 1899 return 0; /* Found a port member in VID */ 1900 1901 ethsw->vlans[vid] &= ~ETHSW_VLAN_GLOBAL; 1902 1903 err = dpaa2_switch_dellink(ethsw, vid); 1904 if (err) 1905 return err; 1906 } 1907 1908 return 0; 1909 } 1910 1911 int dpaa2_switch_port_vlans_del(struct net_device *netdev, 1912 const struct switchdev_obj_port_vlan *vlan) 1913 { 1914 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1915 1916 if (netif_is_bridge_master(vlan->obj.orig_dev)) 1917 return -EOPNOTSUPP; 1918 1919 return dpaa2_switch_port_del_vlan(port_priv, vlan->vid); 1920 } 1921 1922 static int dpaa2_switch_port_mdb_del(struct net_device *netdev, 1923 const struct switchdev_obj_port_mdb *mdb) 1924 { 1925 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1926 int err; 1927 1928 if (!dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr)) 1929 return -ENOENT; 1930 1931 err = dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr); 1932 if (err) 1933 return err; 1934 1935 err = dev_mc_del(netdev, mdb->addr); 1936 if (err) { 1937 netdev_err(netdev, "dev_mc_del err %d\n", err); 1938 return err; 1939 } 1940 1941 return err; 1942 } 1943 1944 static int dpaa2_switch_port_obj_del(struct net_device *netdev, 1945 const struct switchdev_obj *obj) 1946 { 1947 int err; 1948 1949 switch (obj->id) { 1950 case SWITCHDEV_OBJ_ID_PORT_VLAN: 1951 err = dpaa2_switch_port_vlans_del(netdev, SWITCHDEV_OBJ_PORT_VLAN(obj)); 1952 break; 1953 case SWITCHDEV_OBJ_ID_PORT_MDB: 1954 err = dpaa2_switch_port_mdb_del(netdev, SWITCHDEV_OBJ_PORT_MDB(obj)); 1955 break; 1956 default: 1957 err = -EOPNOTSUPP; 1958 break; 1959 } 1960 return err; 1961 } 1962 1963 static int dpaa2_switch_port_attr_set_event(struct net_device *netdev, 1964 struct switchdev_notifier_port_attr_info *ptr) 1965 { 1966 int err; 1967 1968 err = switchdev_handle_port_attr_set(netdev, ptr, 1969 dpaa2_switch_port_dev_check, 1970 dpaa2_switch_port_attr_set); 1971 return notifier_from_errno(err); 1972 } 1973 1974 static struct notifier_block dpaa2_switch_port_switchdev_nb; 1975 static struct notifier_block dpaa2_switch_port_switchdev_blocking_nb; 1976 1977 static int dpaa2_switch_port_bridge_join(struct net_device *netdev, 1978 struct net_device *upper_dev, 1979 struct netlink_ext_ack *extack) 1980 { 1981 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 1982 struct ethsw_core *ethsw = port_priv->ethsw_data; 1983 struct ethsw_port_priv *other_port_priv; 1984 struct net_device *other_dev; 1985 struct list_head *iter; 1986 bool learn_ena; 1987 int err; 1988 1989 netdev_for_each_lower_dev(upper_dev, other_dev, iter) { 1990 if (!dpaa2_switch_port_dev_check(other_dev)) 1991 continue; 1992 1993 other_port_priv = netdev_priv(other_dev); 1994 if (other_port_priv->ethsw_data != port_priv->ethsw_data) { 1995 NL_SET_ERR_MSG_MOD(extack, 1996 "Interface from a different DPSW is in the bridge already"); 1997 return -EINVAL; 1998 } 1999 } 2000 2001 /* Delete the previously manually installed VLAN 1 */ 2002 err = dpaa2_switch_port_del_vlan(port_priv, 1); 2003 if (err) 2004 return err; 2005 2006 dpaa2_switch_port_set_fdb(port_priv, upper_dev); 2007 2008 /* Inherit the initial bridge port learning state */ 2009 learn_ena = br_port_flag_is_set(netdev, BR_LEARNING); 2010 err = dpaa2_switch_port_set_learning(port_priv, learn_ena); 2011 port_priv->learn_ena = learn_ena; 2012 2013 /* Setup the egress flood policy (broadcast, unknown unicast) */ 2014 err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); 2015 if (err) 2016 goto err_egress_flood; 2017 2018 err = switchdev_bridge_port_offload(netdev, netdev, NULL, 2019 &dpaa2_switch_port_switchdev_nb, 2020 &dpaa2_switch_port_switchdev_blocking_nb, 2021 false, extack); 2022 if (err) 2023 goto err_switchdev_offload; 2024 2025 return 0; 2026 2027 err_switchdev_offload: 2028 err_egress_flood: 2029 dpaa2_switch_port_set_fdb(port_priv, NULL); 2030 return err; 2031 } 2032 2033 static int dpaa2_switch_port_clear_rxvlan(struct net_device *vdev, int vid, void *arg) 2034 { 2035 __be16 vlan_proto = htons(ETH_P_8021Q); 2036 2037 if (vdev) 2038 vlan_proto = vlan_dev_vlan_proto(vdev); 2039 2040 return dpaa2_switch_port_vlan_kill(arg, vlan_proto, vid); 2041 } 2042 2043 static int dpaa2_switch_port_restore_rxvlan(struct net_device *vdev, int vid, void *arg) 2044 { 2045 __be16 vlan_proto = htons(ETH_P_8021Q); 2046 2047 if (vdev) 2048 vlan_proto = vlan_dev_vlan_proto(vdev); 2049 2050 return dpaa2_switch_port_vlan_add(arg, vlan_proto, vid); 2051 } 2052 2053 static void dpaa2_switch_port_pre_bridge_leave(struct net_device *netdev) 2054 { 2055 switchdev_bridge_port_unoffload(netdev, NULL, 2056 &dpaa2_switch_port_switchdev_nb, 2057 &dpaa2_switch_port_switchdev_blocking_nb); 2058 } 2059 2060 static int dpaa2_switch_port_bridge_leave(struct net_device *netdev) 2061 { 2062 struct ethsw_port_priv *port_priv = netdev_priv(netdev); 2063 struct dpaa2_switch_fdb *old_fdb = port_priv->fdb; 2064 struct ethsw_core *ethsw = port_priv->ethsw_data; 2065 int err; 2066 2067 /* First of all, fast age any learn FDB addresses on this switch port */ 2068 dpaa2_switch_port_fast_age(port_priv); 2069 2070 /* Clear all RX VLANs installed through vlan_vid_add() either as VLAN 2071 * upper devices or otherwise from the FDB table that we are about to 2072 * leave 2073 */ 2074 err = vlan_for_each(netdev, dpaa2_switch_port_clear_rxvlan, netdev); 2075 if (err) 2076 netdev_err(netdev, "Unable to clear RX VLANs from old FDB table, err (%d)\n", err); 2077 2078 dpaa2_switch_port_set_fdb(port_priv, NULL); 2079 2080 /* Restore all RX VLANs into the new FDB table that we just joined */ 2081 err = vlan_for_each(netdev, dpaa2_switch_port_restore_rxvlan, netdev); 2082 if (err) 2083 netdev_err(netdev, "Unable to restore RX VLANs to the new FDB, err (%d)\n", err); 2084 2085 /* Reset the flooding state to denote that this port can send any 2086 * packet in standalone mode. With this, we are also ensuring that any 2087 * later bridge join will have the flooding flag on. 2088 */ 2089 port_priv->bcast_flood = true; 2090 port_priv->ucast_flood = true; 2091 2092 /* Setup the egress flood policy (broadcast, unknown unicast). 2093 * When the port is not under a bridge, only the CTRL interface is part 2094 * of the flooding domain besides the actual port 2095 */ 2096 err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); 2097 if (err) 2098 return err; 2099 2100 /* Recreate the egress flood domain of the FDB that we just left */ 2101 err = dpaa2_switch_fdb_set_egress_flood(ethsw, old_fdb->fdb_id); 2102 if (err) 2103 return err; 2104 2105 /* No HW learning when not under a bridge */ 2106 err = dpaa2_switch_port_set_learning(port_priv, false); 2107 if (err) 2108 return err; 2109 port_priv->learn_ena = false; 2110 2111 /* Add the VLAN 1 as PVID when not under a bridge. We need this since 2112 * the dpaa2 switch interfaces are not capable to be VLAN unaware 2113 */ 2114 return dpaa2_switch_port_add_vlan(port_priv, DEFAULT_VLAN_ID, 2115 BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID); 2116 } 2117 2118 static int dpaa2_switch_prevent_bridging_with_8021q_upper(struct net_device *netdev) 2119 { 2120 struct net_device *upper_dev; 2121 struct list_head *iter; 2122 2123 /* RCU read lock not necessary because we have write-side protection 2124 * (rtnl_mutex), however a non-rcu iterator does not exist. 2125 */ 2126 netdev_for_each_upper_dev_rcu(netdev, upper_dev, iter) 2127 if (is_vlan_dev(upper_dev)) 2128 return -EOPNOTSUPP; 2129 2130 return 0; 2131 } 2132 2133 static int 2134 dpaa2_switch_prechangeupper_sanity_checks(struct net_device *netdev, 2135 struct net_device *upper_dev, 2136 struct netlink_ext_ack *extack) 2137 { 2138 int err; 2139 2140 if (!br_vlan_enabled(upper_dev)) { 2141 NL_SET_ERR_MSG_MOD(extack, "Cannot join a VLAN-unaware bridge"); 2142 return -EOPNOTSUPP; 2143 } 2144 2145 err = dpaa2_switch_prevent_bridging_with_8021q_upper(netdev); 2146 if (err) { 2147 NL_SET_ERR_MSG_MOD(extack, 2148 "Cannot join a bridge while VLAN uppers are present"); 2149 return 0; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static int dpaa2_switch_port_netdevice_event(struct notifier_block *nb, 2156 unsigned long event, void *ptr) 2157 { 2158 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 2159 struct netdev_notifier_changeupper_info *info = ptr; 2160 struct netlink_ext_ack *extack; 2161 struct net_device *upper_dev; 2162 int err = 0; 2163 2164 if (!dpaa2_switch_port_dev_check(netdev)) 2165 return NOTIFY_DONE; 2166 2167 extack = netdev_notifier_info_to_extack(&info->info); 2168 2169 switch (event) { 2170 case NETDEV_PRECHANGEUPPER: 2171 upper_dev = info->upper_dev; 2172 if (!netif_is_bridge_master(upper_dev)) 2173 break; 2174 2175 err = dpaa2_switch_prechangeupper_sanity_checks(netdev, 2176 upper_dev, 2177 extack); 2178 if (err) 2179 goto out; 2180 2181 if (!info->linking) 2182 dpaa2_switch_port_pre_bridge_leave(netdev); 2183 2184 break; 2185 case NETDEV_CHANGEUPPER: 2186 upper_dev = info->upper_dev; 2187 if (netif_is_bridge_master(upper_dev)) { 2188 if (info->linking) 2189 err = dpaa2_switch_port_bridge_join(netdev, 2190 upper_dev, 2191 extack); 2192 else 2193 err = dpaa2_switch_port_bridge_leave(netdev); 2194 } 2195 break; 2196 } 2197 2198 out: 2199 return notifier_from_errno(err); 2200 } 2201 2202 struct ethsw_switchdev_event_work { 2203 struct work_struct work; 2204 struct switchdev_notifier_fdb_info fdb_info; 2205 struct net_device *dev; 2206 unsigned long event; 2207 }; 2208 2209 static void dpaa2_switch_event_work(struct work_struct *work) 2210 { 2211 struct ethsw_switchdev_event_work *switchdev_work = 2212 container_of(work, struct ethsw_switchdev_event_work, work); 2213 struct net_device *dev = switchdev_work->dev; 2214 struct switchdev_notifier_fdb_info *fdb_info; 2215 int err; 2216 2217 rtnl_lock(); 2218 fdb_info = &switchdev_work->fdb_info; 2219 2220 switch (switchdev_work->event) { 2221 case SWITCHDEV_FDB_ADD_TO_DEVICE: 2222 if (!fdb_info->added_by_user || fdb_info->is_local) 2223 break; 2224 if (is_unicast_ether_addr(fdb_info->addr)) 2225 err = dpaa2_switch_port_fdb_add_uc(netdev_priv(dev), 2226 fdb_info->addr); 2227 else 2228 err = dpaa2_switch_port_fdb_add_mc(netdev_priv(dev), 2229 fdb_info->addr); 2230 if (err) 2231 break; 2232 fdb_info->offloaded = true; 2233 call_switchdev_notifiers(SWITCHDEV_FDB_OFFLOADED, dev, 2234 &fdb_info->info, NULL); 2235 break; 2236 case SWITCHDEV_FDB_DEL_TO_DEVICE: 2237 if (!fdb_info->added_by_user || fdb_info->is_local) 2238 break; 2239 if (is_unicast_ether_addr(fdb_info->addr)) 2240 dpaa2_switch_port_fdb_del_uc(netdev_priv(dev), fdb_info->addr); 2241 else 2242 dpaa2_switch_port_fdb_del_mc(netdev_priv(dev), fdb_info->addr); 2243 break; 2244 } 2245 2246 rtnl_unlock(); 2247 kfree(switchdev_work->fdb_info.addr); 2248 kfree(switchdev_work); 2249 dev_put(dev); 2250 } 2251 2252 /* Called under rcu_read_lock() */ 2253 static int dpaa2_switch_port_event(struct notifier_block *nb, 2254 unsigned long event, void *ptr) 2255 { 2256 struct net_device *dev = switchdev_notifier_info_to_dev(ptr); 2257 struct ethsw_port_priv *port_priv = netdev_priv(dev); 2258 struct ethsw_switchdev_event_work *switchdev_work; 2259 struct switchdev_notifier_fdb_info *fdb_info = ptr; 2260 struct ethsw_core *ethsw = port_priv->ethsw_data; 2261 2262 if (event == SWITCHDEV_PORT_ATTR_SET) 2263 return dpaa2_switch_port_attr_set_event(dev, ptr); 2264 2265 if (!dpaa2_switch_port_dev_check(dev)) 2266 return NOTIFY_DONE; 2267 2268 switchdev_work = kzalloc(sizeof(*switchdev_work), GFP_ATOMIC); 2269 if (!switchdev_work) 2270 return NOTIFY_BAD; 2271 2272 INIT_WORK(&switchdev_work->work, dpaa2_switch_event_work); 2273 switchdev_work->dev = dev; 2274 switchdev_work->event = event; 2275 2276 switch (event) { 2277 case SWITCHDEV_FDB_ADD_TO_DEVICE: 2278 case SWITCHDEV_FDB_DEL_TO_DEVICE: 2279 memcpy(&switchdev_work->fdb_info, ptr, 2280 sizeof(switchdev_work->fdb_info)); 2281 switchdev_work->fdb_info.addr = kzalloc(ETH_ALEN, GFP_ATOMIC); 2282 if (!switchdev_work->fdb_info.addr) 2283 goto err_addr_alloc; 2284 2285 ether_addr_copy((u8 *)switchdev_work->fdb_info.addr, 2286 fdb_info->addr); 2287 2288 /* Take a reference on the device to avoid being freed. */ 2289 dev_hold(dev); 2290 break; 2291 default: 2292 kfree(switchdev_work); 2293 return NOTIFY_DONE; 2294 } 2295 2296 queue_work(ethsw->workqueue, &switchdev_work->work); 2297 2298 return NOTIFY_DONE; 2299 2300 err_addr_alloc: 2301 kfree(switchdev_work); 2302 return NOTIFY_BAD; 2303 } 2304 2305 static int dpaa2_switch_port_obj_event(unsigned long event, 2306 struct net_device *netdev, 2307 struct switchdev_notifier_port_obj_info *port_obj_info) 2308 { 2309 int err = -EOPNOTSUPP; 2310 2311 if (!dpaa2_switch_port_dev_check(netdev)) 2312 return NOTIFY_DONE; 2313 2314 switch (event) { 2315 case SWITCHDEV_PORT_OBJ_ADD: 2316 err = dpaa2_switch_port_obj_add(netdev, port_obj_info->obj); 2317 break; 2318 case SWITCHDEV_PORT_OBJ_DEL: 2319 err = dpaa2_switch_port_obj_del(netdev, port_obj_info->obj); 2320 break; 2321 } 2322 2323 port_obj_info->handled = true; 2324 return notifier_from_errno(err); 2325 } 2326 2327 static int dpaa2_switch_port_blocking_event(struct notifier_block *nb, 2328 unsigned long event, void *ptr) 2329 { 2330 struct net_device *dev = switchdev_notifier_info_to_dev(ptr); 2331 2332 switch (event) { 2333 case SWITCHDEV_PORT_OBJ_ADD: 2334 case SWITCHDEV_PORT_OBJ_DEL: 2335 return dpaa2_switch_port_obj_event(event, dev, ptr); 2336 case SWITCHDEV_PORT_ATTR_SET: 2337 return dpaa2_switch_port_attr_set_event(dev, ptr); 2338 } 2339 2340 return NOTIFY_DONE; 2341 } 2342 2343 /* Build a linear skb based on a single-buffer frame descriptor */ 2344 static struct sk_buff *dpaa2_switch_build_linear_skb(struct ethsw_core *ethsw, 2345 const struct dpaa2_fd *fd) 2346 { 2347 u16 fd_offset = dpaa2_fd_get_offset(fd); 2348 dma_addr_t addr = dpaa2_fd_get_addr(fd); 2349 u32 fd_length = dpaa2_fd_get_len(fd); 2350 struct device *dev = ethsw->dev; 2351 struct sk_buff *skb = NULL; 2352 void *fd_vaddr; 2353 2354 fd_vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, addr); 2355 dma_unmap_page(dev, addr, DPAA2_SWITCH_RX_BUF_SIZE, 2356 DMA_FROM_DEVICE); 2357 2358 skb = build_skb(fd_vaddr, DPAA2_SWITCH_RX_BUF_SIZE + 2359 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 2360 if (unlikely(!skb)) { 2361 dev_err(dev, "build_skb() failed\n"); 2362 return NULL; 2363 } 2364 2365 skb_reserve(skb, fd_offset); 2366 skb_put(skb, fd_length); 2367 2368 ethsw->buf_count--; 2369 2370 return skb; 2371 } 2372 2373 static void dpaa2_switch_tx_conf(struct dpaa2_switch_fq *fq, 2374 const struct dpaa2_fd *fd) 2375 { 2376 dpaa2_switch_free_fd(fq->ethsw, fd); 2377 } 2378 2379 static void dpaa2_switch_rx(struct dpaa2_switch_fq *fq, 2380 const struct dpaa2_fd *fd) 2381 { 2382 struct ethsw_core *ethsw = fq->ethsw; 2383 struct ethsw_port_priv *port_priv; 2384 struct net_device *netdev; 2385 struct vlan_ethhdr *hdr; 2386 struct sk_buff *skb; 2387 u16 vlan_tci, vid; 2388 int if_id, err; 2389 2390 /* get switch ingress interface ID */ 2391 if_id = upper_32_bits(dpaa2_fd_get_flc(fd)) & 0x0000FFFF; 2392 2393 if (if_id >= ethsw->sw_attr.num_ifs) { 2394 dev_err(ethsw->dev, "Frame received from unknown interface!\n"); 2395 goto err_free_fd; 2396 } 2397 port_priv = ethsw->ports[if_id]; 2398 netdev = port_priv->netdev; 2399 2400 /* build the SKB based on the FD received */ 2401 if (dpaa2_fd_get_format(fd) != dpaa2_fd_single) { 2402 if (net_ratelimit()) { 2403 netdev_err(netdev, "Received invalid frame format\n"); 2404 goto err_free_fd; 2405 } 2406 } 2407 2408 skb = dpaa2_switch_build_linear_skb(ethsw, fd); 2409 if (unlikely(!skb)) 2410 goto err_free_fd; 2411 2412 skb_reset_mac_header(skb); 2413 2414 /* Remove the VLAN header if the packet that we just received has a vid 2415 * equal to the port PVIDs. Since the dpaa2-switch can operate only in 2416 * VLAN-aware mode and no alterations are made on the packet when it's 2417 * redirected/mirrored to the control interface, we are sure that there 2418 * will always be a VLAN header present. 2419 */ 2420 hdr = vlan_eth_hdr(skb); 2421 vid = ntohs(hdr->h_vlan_TCI) & VLAN_VID_MASK; 2422 if (vid == port_priv->pvid) { 2423 err = __skb_vlan_pop(skb, &vlan_tci); 2424 if (err) { 2425 dev_info(ethsw->dev, "__skb_vlan_pop() returned %d", err); 2426 goto err_free_fd; 2427 } 2428 } 2429 2430 skb->dev = netdev; 2431 skb->protocol = eth_type_trans(skb, skb->dev); 2432 2433 /* Setup the offload_fwd_mark only if the port is under a bridge */ 2434 skb->offload_fwd_mark = !!(port_priv->fdb->bridge_dev); 2435 2436 netif_receive_skb(skb); 2437 2438 return; 2439 2440 err_free_fd: 2441 dpaa2_switch_free_fd(ethsw, fd); 2442 } 2443 2444 static void dpaa2_switch_detect_features(struct ethsw_core *ethsw) 2445 { 2446 ethsw->features = 0; 2447 2448 if (ethsw->major > 8 || (ethsw->major == 8 && ethsw->minor >= 6)) 2449 ethsw->features |= ETHSW_FEATURE_MAC_ADDR; 2450 } 2451 2452 static int dpaa2_switch_setup_fqs(struct ethsw_core *ethsw) 2453 { 2454 struct dpsw_ctrl_if_attr ctrl_if_attr; 2455 struct device *dev = ethsw->dev; 2456 int i = 0; 2457 int err; 2458 2459 err = dpsw_ctrl_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, 2460 &ctrl_if_attr); 2461 if (err) { 2462 dev_err(dev, "dpsw_ctrl_if_get_attributes() = %d\n", err); 2463 return err; 2464 } 2465 2466 ethsw->fq[i].fqid = ctrl_if_attr.rx_fqid; 2467 ethsw->fq[i].ethsw = ethsw; 2468 ethsw->fq[i++].type = DPSW_QUEUE_RX; 2469 2470 ethsw->fq[i].fqid = ctrl_if_attr.tx_err_conf_fqid; 2471 ethsw->fq[i].ethsw = ethsw; 2472 ethsw->fq[i++].type = DPSW_QUEUE_TX_ERR_CONF; 2473 2474 return 0; 2475 } 2476 2477 /* Free buffers acquired from the buffer pool or which were meant to 2478 * be released in the pool 2479 */ 2480 static void dpaa2_switch_free_bufs(struct ethsw_core *ethsw, u64 *buf_array, int count) 2481 { 2482 struct device *dev = ethsw->dev; 2483 void *vaddr; 2484 int i; 2485 2486 for (i = 0; i < count; i++) { 2487 vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, buf_array[i]); 2488 dma_unmap_page(dev, buf_array[i], DPAA2_SWITCH_RX_BUF_SIZE, 2489 DMA_FROM_DEVICE); 2490 free_pages((unsigned long)vaddr, 0); 2491 } 2492 } 2493 2494 /* Perform a single release command to add buffers 2495 * to the specified buffer pool 2496 */ 2497 static int dpaa2_switch_add_bufs(struct ethsw_core *ethsw, u16 bpid) 2498 { 2499 struct device *dev = ethsw->dev; 2500 u64 buf_array[BUFS_PER_CMD]; 2501 struct page *page; 2502 int retries = 0; 2503 dma_addr_t addr; 2504 int err; 2505 int i; 2506 2507 for (i = 0; i < BUFS_PER_CMD; i++) { 2508 /* Allocate one page for each Rx buffer. WRIOP sees 2509 * the entire page except for a tailroom reserved for 2510 * skb shared info 2511 */ 2512 page = dev_alloc_pages(0); 2513 if (!page) { 2514 dev_err(dev, "buffer allocation failed\n"); 2515 goto err_alloc; 2516 } 2517 2518 addr = dma_map_page(dev, page, 0, DPAA2_SWITCH_RX_BUF_SIZE, 2519 DMA_FROM_DEVICE); 2520 if (dma_mapping_error(dev, addr)) { 2521 dev_err(dev, "dma_map_single() failed\n"); 2522 goto err_map; 2523 } 2524 buf_array[i] = addr; 2525 } 2526 2527 release_bufs: 2528 /* In case the portal is busy, retry until successful or 2529 * max retries hit. 2530 */ 2531 while ((err = dpaa2_io_service_release(NULL, bpid, 2532 buf_array, i)) == -EBUSY) { 2533 if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES) 2534 break; 2535 2536 cpu_relax(); 2537 } 2538 2539 /* If release command failed, clean up and bail out. */ 2540 if (err) { 2541 dpaa2_switch_free_bufs(ethsw, buf_array, i); 2542 return 0; 2543 } 2544 2545 return i; 2546 2547 err_map: 2548 __free_pages(page, 0); 2549 err_alloc: 2550 /* If we managed to allocate at least some buffers, 2551 * release them to hardware 2552 */ 2553 if (i) 2554 goto release_bufs; 2555 2556 return 0; 2557 } 2558 2559 static int dpaa2_switch_refill_bp(struct ethsw_core *ethsw) 2560 { 2561 int *count = ðsw->buf_count; 2562 int new_count; 2563 int err = 0; 2564 2565 if (unlikely(*count < DPAA2_ETHSW_REFILL_THRESH)) { 2566 do { 2567 new_count = dpaa2_switch_add_bufs(ethsw, ethsw->bpid); 2568 if (unlikely(!new_count)) { 2569 /* Out of memory; abort for now, we'll 2570 * try later on 2571 */ 2572 break; 2573 } 2574 *count += new_count; 2575 } while (*count < DPAA2_ETHSW_NUM_BUFS); 2576 2577 if (unlikely(*count < DPAA2_ETHSW_NUM_BUFS)) 2578 err = -ENOMEM; 2579 } 2580 2581 return err; 2582 } 2583 2584 static int dpaa2_switch_seed_bp(struct ethsw_core *ethsw) 2585 { 2586 int *count, i; 2587 2588 for (i = 0; i < DPAA2_ETHSW_NUM_BUFS; i += BUFS_PER_CMD) { 2589 count = ðsw->buf_count; 2590 *count += dpaa2_switch_add_bufs(ethsw, ethsw->bpid); 2591 2592 if (unlikely(*count < BUFS_PER_CMD)) 2593 return -ENOMEM; 2594 } 2595 2596 return 0; 2597 } 2598 2599 static void dpaa2_switch_drain_bp(struct ethsw_core *ethsw) 2600 { 2601 u64 buf_array[BUFS_PER_CMD]; 2602 int ret; 2603 2604 do { 2605 ret = dpaa2_io_service_acquire(NULL, ethsw->bpid, 2606 buf_array, BUFS_PER_CMD); 2607 if (ret < 0) { 2608 dev_err(ethsw->dev, 2609 "dpaa2_io_service_acquire() = %d\n", ret); 2610 return; 2611 } 2612 dpaa2_switch_free_bufs(ethsw, buf_array, ret); 2613 2614 } while (ret); 2615 } 2616 2617 static int dpaa2_switch_setup_dpbp(struct ethsw_core *ethsw) 2618 { 2619 struct dpsw_ctrl_if_pools_cfg dpsw_ctrl_if_pools_cfg = { 0 }; 2620 struct device *dev = ethsw->dev; 2621 struct fsl_mc_device *dpbp_dev; 2622 struct dpbp_attr dpbp_attrs; 2623 int err; 2624 2625 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2626 &dpbp_dev); 2627 if (err) { 2628 if (err == -ENXIO) 2629 err = -EPROBE_DEFER; 2630 else 2631 dev_err(dev, "DPBP device allocation failed\n"); 2632 return err; 2633 } 2634 ethsw->dpbp_dev = dpbp_dev; 2635 2636 err = dpbp_open(ethsw->mc_io, 0, dpbp_dev->obj_desc.id, 2637 &dpbp_dev->mc_handle); 2638 if (err) { 2639 dev_err(dev, "dpbp_open() failed\n"); 2640 goto err_open; 2641 } 2642 2643 err = dpbp_reset(ethsw->mc_io, 0, dpbp_dev->mc_handle); 2644 if (err) { 2645 dev_err(dev, "dpbp_reset() failed\n"); 2646 goto err_reset; 2647 } 2648 2649 err = dpbp_enable(ethsw->mc_io, 0, dpbp_dev->mc_handle); 2650 if (err) { 2651 dev_err(dev, "dpbp_enable() failed\n"); 2652 goto err_enable; 2653 } 2654 2655 err = dpbp_get_attributes(ethsw->mc_io, 0, dpbp_dev->mc_handle, 2656 &dpbp_attrs); 2657 if (err) { 2658 dev_err(dev, "dpbp_get_attributes() failed\n"); 2659 goto err_get_attr; 2660 } 2661 2662 dpsw_ctrl_if_pools_cfg.num_dpbp = 1; 2663 dpsw_ctrl_if_pools_cfg.pools[0].dpbp_id = dpbp_attrs.id; 2664 dpsw_ctrl_if_pools_cfg.pools[0].buffer_size = DPAA2_SWITCH_RX_BUF_SIZE; 2665 dpsw_ctrl_if_pools_cfg.pools[0].backup_pool = 0; 2666 2667 err = dpsw_ctrl_if_set_pools(ethsw->mc_io, 0, ethsw->dpsw_handle, 2668 &dpsw_ctrl_if_pools_cfg); 2669 if (err) { 2670 dev_err(dev, "dpsw_ctrl_if_set_pools() failed\n"); 2671 goto err_get_attr; 2672 } 2673 ethsw->bpid = dpbp_attrs.id; 2674 2675 return 0; 2676 2677 err_get_attr: 2678 dpbp_disable(ethsw->mc_io, 0, dpbp_dev->mc_handle); 2679 err_enable: 2680 err_reset: 2681 dpbp_close(ethsw->mc_io, 0, dpbp_dev->mc_handle); 2682 err_open: 2683 fsl_mc_object_free(dpbp_dev); 2684 return err; 2685 } 2686 2687 static void dpaa2_switch_free_dpbp(struct ethsw_core *ethsw) 2688 { 2689 dpbp_disable(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle); 2690 dpbp_close(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle); 2691 fsl_mc_object_free(ethsw->dpbp_dev); 2692 } 2693 2694 static int dpaa2_switch_alloc_rings(struct ethsw_core *ethsw) 2695 { 2696 int i; 2697 2698 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) { 2699 ethsw->fq[i].store = 2700 dpaa2_io_store_create(DPAA2_SWITCH_STORE_SIZE, 2701 ethsw->dev); 2702 if (!ethsw->fq[i].store) { 2703 dev_err(ethsw->dev, "dpaa2_io_store_create failed\n"); 2704 while (--i >= 0) 2705 dpaa2_io_store_destroy(ethsw->fq[i].store); 2706 return -ENOMEM; 2707 } 2708 } 2709 2710 return 0; 2711 } 2712 2713 static void dpaa2_switch_destroy_rings(struct ethsw_core *ethsw) 2714 { 2715 int i; 2716 2717 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) 2718 dpaa2_io_store_destroy(ethsw->fq[i].store); 2719 } 2720 2721 static int dpaa2_switch_pull_fq(struct dpaa2_switch_fq *fq) 2722 { 2723 int err, retries = 0; 2724 2725 /* Try to pull from the FQ while the portal is busy and we didn't hit 2726 * the maximum number fo retries 2727 */ 2728 do { 2729 err = dpaa2_io_service_pull_fq(NULL, fq->fqid, fq->store); 2730 cpu_relax(); 2731 } while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES); 2732 2733 if (unlikely(err)) 2734 dev_err(fq->ethsw->dev, "dpaa2_io_service_pull err %d", err); 2735 2736 return err; 2737 } 2738 2739 /* Consume all frames pull-dequeued into the store */ 2740 static int dpaa2_switch_store_consume(struct dpaa2_switch_fq *fq) 2741 { 2742 struct ethsw_core *ethsw = fq->ethsw; 2743 int cleaned = 0, is_last; 2744 struct dpaa2_dq *dq; 2745 int retries = 0; 2746 2747 do { 2748 /* Get the next available FD from the store */ 2749 dq = dpaa2_io_store_next(fq->store, &is_last); 2750 if (unlikely(!dq)) { 2751 if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES) { 2752 dev_err_once(ethsw->dev, 2753 "No valid dequeue response\n"); 2754 return -ETIMEDOUT; 2755 } 2756 continue; 2757 } 2758 2759 if (fq->type == DPSW_QUEUE_RX) 2760 dpaa2_switch_rx(fq, dpaa2_dq_fd(dq)); 2761 else 2762 dpaa2_switch_tx_conf(fq, dpaa2_dq_fd(dq)); 2763 cleaned++; 2764 2765 } while (!is_last); 2766 2767 return cleaned; 2768 } 2769 2770 /* NAPI poll routine */ 2771 static int dpaa2_switch_poll(struct napi_struct *napi, int budget) 2772 { 2773 int err, cleaned = 0, store_cleaned, work_done; 2774 struct dpaa2_switch_fq *fq; 2775 int retries = 0; 2776 2777 fq = container_of(napi, struct dpaa2_switch_fq, napi); 2778 2779 do { 2780 err = dpaa2_switch_pull_fq(fq); 2781 if (unlikely(err)) 2782 break; 2783 2784 /* Refill pool if appropriate */ 2785 dpaa2_switch_refill_bp(fq->ethsw); 2786 2787 store_cleaned = dpaa2_switch_store_consume(fq); 2788 cleaned += store_cleaned; 2789 2790 if (cleaned >= budget) { 2791 work_done = budget; 2792 goto out; 2793 } 2794 2795 } while (store_cleaned); 2796 2797 /* We didn't consume the entire budget, so finish napi and re-enable 2798 * data availability notifications 2799 */ 2800 napi_complete_done(napi, cleaned); 2801 do { 2802 err = dpaa2_io_service_rearm(NULL, &fq->nctx); 2803 cpu_relax(); 2804 } while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES); 2805 2806 work_done = max(cleaned, 1); 2807 out: 2808 2809 return work_done; 2810 } 2811 2812 static void dpaa2_switch_fqdan_cb(struct dpaa2_io_notification_ctx *nctx) 2813 { 2814 struct dpaa2_switch_fq *fq; 2815 2816 fq = container_of(nctx, struct dpaa2_switch_fq, nctx); 2817 2818 napi_schedule(&fq->napi); 2819 } 2820 2821 static int dpaa2_switch_setup_dpio(struct ethsw_core *ethsw) 2822 { 2823 struct dpsw_ctrl_if_queue_cfg queue_cfg; 2824 struct dpaa2_io_notification_ctx *nctx; 2825 int err, i, j; 2826 2827 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) { 2828 nctx = ðsw->fq[i].nctx; 2829 2830 /* Register a new software context for the FQID. 2831 * By using NULL as the first parameter, we specify that we do 2832 * not care on which cpu are interrupts received for this queue 2833 */ 2834 nctx->is_cdan = 0; 2835 nctx->id = ethsw->fq[i].fqid; 2836 nctx->desired_cpu = DPAA2_IO_ANY_CPU; 2837 nctx->cb = dpaa2_switch_fqdan_cb; 2838 err = dpaa2_io_service_register(NULL, nctx, ethsw->dev); 2839 if (err) { 2840 err = -EPROBE_DEFER; 2841 goto err_register; 2842 } 2843 2844 queue_cfg.options = DPSW_CTRL_IF_QUEUE_OPT_DEST | 2845 DPSW_CTRL_IF_QUEUE_OPT_USER_CTX; 2846 queue_cfg.dest_cfg.dest_type = DPSW_CTRL_IF_DEST_DPIO; 2847 queue_cfg.dest_cfg.dest_id = nctx->dpio_id; 2848 queue_cfg.dest_cfg.priority = 0; 2849 queue_cfg.user_ctx = nctx->qman64; 2850 2851 err = dpsw_ctrl_if_set_queue(ethsw->mc_io, 0, 2852 ethsw->dpsw_handle, 2853 ethsw->fq[i].type, 2854 &queue_cfg); 2855 if (err) 2856 goto err_set_queue; 2857 } 2858 2859 return 0; 2860 2861 err_set_queue: 2862 dpaa2_io_service_deregister(NULL, nctx, ethsw->dev); 2863 err_register: 2864 for (j = 0; j < i; j++) 2865 dpaa2_io_service_deregister(NULL, ðsw->fq[j].nctx, 2866 ethsw->dev); 2867 2868 return err; 2869 } 2870 2871 static void dpaa2_switch_free_dpio(struct ethsw_core *ethsw) 2872 { 2873 int i; 2874 2875 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) 2876 dpaa2_io_service_deregister(NULL, ðsw->fq[i].nctx, 2877 ethsw->dev); 2878 } 2879 2880 static int dpaa2_switch_ctrl_if_setup(struct ethsw_core *ethsw) 2881 { 2882 int err; 2883 2884 /* setup FQs for Rx and Tx Conf */ 2885 err = dpaa2_switch_setup_fqs(ethsw); 2886 if (err) 2887 return err; 2888 2889 /* setup the buffer pool needed on the Rx path */ 2890 err = dpaa2_switch_setup_dpbp(ethsw); 2891 if (err) 2892 return err; 2893 2894 err = dpaa2_switch_alloc_rings(ethsw); 2895 if (err) 2896 goto err_free_dpbp; 2897 2898 err = dpaa2_switch_setup_dpio(ethsw); 2899 if (err) 2900 goto err_destroy_rings; 2901 2902 err = dpaa2_switch_seed_bp(ethsw); 2903 if (err) 2904 goto err_deregister_dpio; 2905 2906 err = dpsw_ctrl_if_enable(ethsw->mc_io, 0, ethsw->dpsw_handle); 2907 if (err) { 2908 dev_err(ethsw->dev, "dpsw_ctrl_if_enable err %d\n", err); 2909 goto err_drain_dpbp; 2910 } 2911 2912 return 0; 2913 2914 err_drain_dpbp: 2915 dpaa2_switch_drain_bp(ethsw); 2916 err_deregister_dpio: 2917 dpaa2_switch_free_dpio(ethsw); 2918 err_destroy_rings: 2919 dpaa2_switch_destroy_rings(ethsw); 2920 err_free_dpbp: 2921 dpaa2_switch_free_dpbp(ethsw); 2922 2923 return err; 2924 } 2925 2926 static int dpaa2_switch_init(struct fsl_mc_device *sw_dev) 2927 { 2928 struct device *dev = &sw_dev->dev; 2929 struct ethsw_core *ethsw = dev_get_drvdata(dev); 2930 struct dpsw_vlan_if_cfg vcfg = {0}; 2931 struct dpsw_tci_cfg tci_cfg = {0}; 2932 struct dpsw_stp_cfg stp_cfg; 2933 int err; 2934 u16 i; 2935 2936 ethsw->dev_id = sw_dev->obj_desc.id; 2937 2938 err = dpsw_open(ethsw->mc_io, 0, ethsw->dev_id, ðsw->dpsw_handle); 2939 if (err) { 2940 dev_err(dev, "dpsw_open err %d\n", err); 2941 return err; 2942 } 2943 2944 err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, 2945 ðsw->sw_attr); 2946 if (err) { 2947 dev_err(dev, "dpsw_get_attributes err %d\n", err); 2948 goto err_close; 2949 } 2950 2951 err = dpsw_get_api_version(ethsw->mc_io, 0, 2952 ðsw->major, 2953 ðsw->minor); 2954 if (err) { 2955 dev_err(dev, "dpsw_get_api_version err %d\n", err); 2956 goto err_close; 2957 } 2958 2959 /* Minimum supported DPSW version check */ 2960 if (ethsw->major < DPSW_MIN_VER_MAJOR || 2961 (ethsw->major == DPSW_MIN_VER_MAJOR && 2962 ethsw->minor < DPSW_MIN_VER_MINOR)) { 2963 dev_err(dev, "DPSW version %d:%d not supported. Use firmware 10.28.0 or greater.\n", 2964 ethsw->major, ethsw->minor); 2965 err = -EOPNOTSUPP; 2966 goto err_close; 2967 } 2968 2969 if (!dpaa2_switch_supports_cpu_traffic(ethsw)) { 2970 err = -EOPNOTSUPP; 2971 goto err_close; 2972 } 2973 2974 dpaa2_switch_detect_features(ethsw); 2975 2976 err = dpsw_reset(ethsw->mc_io, 0, ethsw->dpsw_handle); 2977 if (err) { 2978 dev_err(dev, "dpsw_reset err %d\n", err); 2979 goto err_close; 2980 } 2981 2982 stp_cfg.vlan_id = DEFAULT_VLAN_ID; 2983 stp_cfg.state = DPSW_STP_STATE_FORWARDING; 2984 2985 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { 2986 err = dpsw_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle, i); 2987 if (err) { 2988 dev_err(dev, "dpsw_if_disable err %d\n", err); 2989 goto err_close; 2990 } 2991 2992 err = dpsw_if_set_stp(ethsw->mc_io, 0, ethsw->dpsw_handle, i, 2993 &stp_cfg); 2994 if (err) { 2995 dev_err(dev, "dpsw_if_set_stp err %d for port %d\n", 2996 err, i); 2997 goto err_close; 2998 } 2999 3000 /* Switch starts with all ports configured to VLAN 1. Need to 3001 * remove this setting to allow configuration at bridge join 3002 */ 3003 vcfg.num_ifs = 1; 3004 vcfg.if_id[0] = i; 3005 err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0, ethsw->dpsw_handle, 3006 DEFAULT_VLAN_ID, &vcfg); 3007 if (err) { 3008 dev_err(dev, "dpsw_vlan_remove_if_untagged err %d\n", 3009 err); 3010 goto err_close; 3011 } 3012 3013 tci_cfg.vlan_id = 4095; 3014 err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, i, &tci_cfg); 3015 if (err) { 3016 dev_err(dev, "dpsw_if_set_tci err %d\n", err); 3017 goto err_close; 3018 } 3019 3020 err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, 3021 DEFAULT_VLAN_ID, &vcfg); 3022 if (err) { 3023 dev_err(dev, "dpsw_vlan_remove_if err %d\n", err); 3024 goto err_close; 3025 } 3026 } 3027 3028 err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, DEFAULT_VLAN_ID); 3029 if (err) { 3030 dev_err(dev, "dpsw_vlan_remove err %d\n", err); 3031 goto err_close; 3032 } 3033 3034 ethsw->workqueue = alloc_ordered_workqueue("%s_%d_ordered", 3035 WQ_MEM_RECLAIM, "ethsw", 3036 ethsw->sw_attr.id); 3037 if (!ethsw->workqueue) { 3038 err = -ENOMEM; 3039 goto err_close; 3040 } 3041 3042 err = dpsw_fdb_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, 0); 3043 if (err) 3044 goto err_destroy_ordered_workqueue; 3045 3046 err = dpaa2_switch_ctrl_if_setup(ethsw); 3047 if (err) 3048 goto err_destroy_ordered_workqueue; 3049 3050 return 0; 3051 3052 err_destroy_ordered_workqueue: 3053 destroy_workqueue(ethsw->workqueue); 3054 3055 err_close: 3056 dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle); 3057 return err; 3058 } 3059 3060 /* Add an ACL to redirect frames with specific destination MAC address to 3061 * control interface 3062 */ 3063 static int dpaa2_switch_port_trap_mac_addr(struct ethsw_port_priv *port_priv, 3064 const char *mac) 3065 { 3066 struct dpaa2_switch_acl_entry acl_entry = {0}; 3067 3068 /* Match on the destination MAC address */ 3069 ether_addr_copy(acl_entry.key.match.l2_dest_mac, mac); 3070 eth_broadcast_addr(acl_entry.key.mask.l2_dest_mac); 3071 3072 /* Trap to CPU */ 3073 acl_entry.cfg.precedence = 0; 3074 acl_entry.cfg.result.action = DPSW_ACL_ACTION_REDIRECT_TO_CTRL_IF; 3075 3076 return dpaa2_switch_acl_entry_add(port_priv->filter_block, &acl_entry); 3077 } 3078 3079 static int dpaa2_switch_port_init(struct ethsw_port_priv *port_priv, u16 port) 3080 { 3081 const char stpa[ETH_ALEN] = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x00}; 3082 struct switchdev_obj_port_vlan vlan = { 3083 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, 3084 .vid = DEFAULT_VLAN_ID, 3085 .flags = BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID, 3086 }; 3087 struct net_device *netdev = port_priv->netdev; 3088 struct ethsw_core *ethsw = port_priv->ethsw_data; 3089 struct dpaa2_switch_filter_block *filter_block; 3090 struct dpsw_fdb_cfg fdb_cfg = {0}; 3091 struct dpsw_if_attr dpsw_if_attr; 3092 struct dpaa2_switch_fdb *fdb; 3093 struct dpsw_acl_cfg acl_cfg; 3094 u16 fdb_id, acl_tbl_id; 3095 int err; 3096 3097 /* Get the Tx queue for this specific port */ 3098 err = dpsw_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, 3099 port_priv->idx, &dpsw_if_attr); 3100 if (err) { 3101 netdev_err(netdev, "dpsw_if_get_attributes err %d\n", err); 3102 return err; 3103 } 3104 port_priv->tx_qdid = dpsw_if_attr.qdid; 3105 3106 /* Create a FDB table for this particular switch port */ 3107 fdb_cfg.num_fdb_entries = ethsw->sw_attr.max_fdb_entries / ethsw->sw_attr.num_ifs; 3108 err = dpsw_fdb_add(ethsw->mc_io, 0, ethsw->dpsw_handle, 3109 &fdb_id, &fdb_cfg); 3110 if (err) { 3111 netdev_err(netdev, "dpsw_fdb_add err %d\n", err); 3112 return err; 3113 } 3114 3115 /* Find an unused dpaa2_switch_fdb structure and use it */ 3116 fdb = dpaa2_switch_fdb_get_unused(ethsw); 3117 fdb->fdb_id = fdb_id; 3118 fdb->in_use = true; 3119 fdb->bridge_dev = NULL; 3120 port_priv->fdb = fdb; 3121 3122 /* We need to add VLAN 1 as the PVID on this port until it is under a 3123 * bridge since the DPAA2 switch is not able to handle the traffic in a 3124 * VLAN unaware fashion 3125 */ 3126 err = dpaa2_switch_port_vlans_add(netdev, &vlan); 3127 if (err) 3128 return err; 3129 3130 /* Setup the egress flooding domains (broadcast, unknown unicast */ 3131 err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); 3132 if (err) 3133 return err; 3134 3135 /* Create an ACL table to be used by this switch port */ 3136 acl_cfg.max_entries = DPAA2_ETHSW_PORT_MAX_ACL_ENTRIES; 3137 err = dpsw_acl_add(ethsw->mc_io, 0, ethsw->dpsw_handle, 3138 &acl_tbl_id, &acl_cfg); 3139 if (err) { 3140 netdev_err(netdev, "dpsw_acl_add err %d\n", err); 3141 return err; 3142 } 3143 3144 filter_block = dpaa2_switch_filter_block_get_unused(ethsw); 3145 filter_block->ethsw = ethsw; 3146 filter_block->acl_id = acl_tbl_id; 3147 filter_block->in_use = true; 3148 filter_block->num_acl_rules = 0; 3149 INIT_LIST_HEAD(&filter_block->acl_entries); 3150 INIT_LIST_HEAD(&filter_block->mirror_entries); 3151 3152 err = dpaa2_switch_port_acl_tbl_bind(port_priv, filter_block); 3153 if (err) 3154 return err; 3155 3156 err = dpaa2_switch_port_trap_mac_addr(port_priv, stpa); 3157 if (err) 3158 return err; 3159 3160 return err; 3161 } 3162 3163 static void dpaa2_switch_takedown(struct fsl_mc_device *sw_dev) 3164 { 3165 struct device *dev = &sw_dev->dev; 3166 struct ethsw_core *ethsw = dev_get_drvdata(dev); 3167 int err; 3168 3169 err = dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle); 3170 if (err) 3171 dev_warn(dev, "dpsw_close err %d\n", err); 3172 } 3173 3174 static void dpaa2_switch_ctrl_if_teardown(struct ethsw_core *ethsw) 3175 { 3176 dpsw_ctrl_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); 3177 dpaa2_switch_free_dpio(ethsw); 3178 dpaa2_switch_destroy_rings(ethsw); 3179 dpaa2_switch_drain_bp(ethsw); 3180 dpaa2_switch_free_dpbp(ethsw); 3181 } 3182 3183 static int dpaa2_switch_remove(struct fsl_mc_device *sw_dev) 3184 { 3185 struct ethsw_port_priv *port_priv; 3186 struct ethsw_core *ethsw; 3187 struct device *dev; 3188 int i; 3189 3190 dev = &sw_dev->dev; 3191 ethsw = dev_get_drvdata(dev); 3192 3193 dpaa2_switch_ctrl_if_teardown(ethsw); 3194 3195 dpaa2_switch_teardown_irqs(sw_dev); 3196 3197 dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); 3198 3199 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { 3200 port_priv = ethsw->ports[i]; 3201 unregister_netdev(port_priv->netdev); 3202 dpaa2_switch_port_disconnect_mac(port_priv); 3203 free_netdev(port_priv->netdev); 3204 } 3205 3206 kfree(ethsw->fdbs); 3207 kfree(ethsw->filter_blocks); 3208 kfree(ethsw->ports); 3209 3210 dpaa2_switch_takedown(sw_dev); 3211 3212 destroy_workqueue(ethsw->workqueue); 3213 3214 fsl_mc_portal_free(ethsw->mc_io); 3215 3216 kfree(ethsw); 3217 3218 dev_set_drvdata(dev, NULL); 3219 3220 return 0; 3221 } 3222 3223 static int dpaa2_switch_probe_port(struct ethsw_core *ethsw, 3224 u16 port_idx) 3225 { 3226 struct ethsw_port_priv *port_priv; 3227 struct device *dev = ethsw->dev; 3228 struct net_device *port_netdev; 3229 int err; 3230 3231 port_netdev = alloc_etherdev(sizeof(struct ethsw_port_priv)); 3232 if (!port_netdev) { 3233 dev_err(dev, "alloc_etherdev error\n"); 3234 return -ENOMEM; 3235 } 3236 3237 port_priv = netdev_priv(port_netdev); 3238 port_priv->netdev = port_netdev; 3239 port_priv->ethsw_data = ethsw; 3240 3241 port_priv->idx = port_idx; 3242 port_priv->stp_state = BR_STATE_FORWARDING; 3243 3244 SET_NETDEV_DEV(port_netdev, dev); 3245 port_netdev->netdev_ops = &dpaa2_switch_port_ops; 3246 port_netdev->ethtool_ops = &dpaa2_switch_port_ethtool_ops; 3247 3248 port_netdev->needed_headroom = DPAA2_SWITCH_NEEDED_HEADROOM; 3249 3250 port_priv->bcast_flood = true; 3251 port_priv->ucast_flood = true; 3252 3253 /* Set MTU limits */ 3254 port_netdev->min_mtu = ETH_MIN_MTU; 3255 port_netdev->max_mtu = ETHSW_MAX_FRAME_LENGTH; 3256 3257 /* Populate the private port structure so that later calls to 3258 * dpaa2_switch_port_init() can use it. 3259 */ 3260 ethsw->ports[port_idx] = port_priv; 3261 3262 /* The DPAA2 switch's ingress path depends on the VLAN table, 3263 * thus we are not able to disable VLAN filtering. 3264 */ 3265 port_netdev->features = NETIF_F_HW_VLAN_CTAG_FILTER | 3266 NETIF_F_HW_VLAN_STAG_FILTER | 3267 NETIF_F_HW_TC; 3268 3269 err = dpaa2_switch_port_init(port_priv, port_idx); 3270 if (err) 3271 goto err_port_probe; 3272 3273 err = dpaa2_switch_port_set_mac_addr(port_priv); 3274 if (err) 3275 goto err_port_probe; 3276 3277 err = dpaa2_switch_port_set_learning(port_priv, false); 3278 if (err) 3279 goto err_port_probe; 3280 port_priv->learn_ena = false; 3281 3282 err = dpaa2_switch_port_connect_mac(port_priv); 3283 if (err) 3284 goto err_port_probe; 3285 3286 return 0; 3287 3288 err_port_probe: 3289 free_netdev(port_netdev); 3290 ethsw->ports[port_idx] = NULL; 3291 3292 return err; 3293 } 3294 3295 static int dpaa2_switch_probe(struct fsl_mc_device *sw_dev) 3296 { 3297 struct device *dev = &sw_dev->dev; 3298 struct ethsw_core *ethsw; 3299 int i, err; 3300 3301 /* Allocate switch core*/ 3302 ethsw = kzalloc(sizeof(*ethsw), GFP_KERNEL); 3303 3304 if (!ethsw) 3305 return -ENOMEM; 3306 3307 ethsw->dev = dev; 3308 ethsw->iommu_domain = iommu_get_domain_for_dev(dev); 3309 dev_set_drvdata(dev, ethsw); 3310 3311 err = fsl_mc_portal_allocate(sw_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3312 ðsw->mc_io); 3313 if (err) { 3314 if (err == -ENXIO) 3315 err = -EPROBE_DEFER; 3316 else 3317 dev_err(dev, "fsl_mc_portal_allocate err %d\n", err); 3318 goto err_free_drvdata; 3319 } 3320 3321 err = dpaa2_switch_init(sw_dev); 3322 if (err) 3323 goto err_free_cmdport; 3324 3325 ethsw->ports = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->ports), 3326 GFP_KERNEL); 3327 if (!(ethsw->ports)) { 3328 err = -ENOMEM; 3329 goto err_takedown; 3330 } 3331 3332 ethsw->fdbs = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->fdbs), 3333 GFP_KERNEL); 3334 if (!ethsw->fdbs) { 3335 err = -ENOMEM; 3336 goto err_free_ports; 3337 } 3338 3339 ethsw->filter_blocks = kcalloc(ethsw->sw_attr.num_ifs, 3340 sizeof(*ethsw->filter_blocks), 3341 GFP_KERNEL); 3342 if (!ethsw->filter_blocks) { 3343 err = -ENOMEM; 3344 goto err_free_fdbs; 3345 } 3346 3347 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { 3348 err = dpaa2_switch_probe_port(ethsw, i); 3349 if (err) 3350 goto err_free_netdev; 3351 } 3352 3353 /* Add a NAPI instance for each of the Rx queues. The first port's 3354 * net_device will be associated with the instances since we do not have 3355 * different queues for each switch ports. 3356 */ 3357 for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) 3358 netif_napi_add(ethsw->ports[0]->netdev, 3359 ðsw->fq[i].napi, dpaa2_switch_poll, 3360 NAPI_POLL_WEIGHT); 3361 3362 /* Setup IRQs */ 3363 err = dpaa2_switch_setup_irqs(sw_dev); 3364 if (err) 3365 goto err_stop; 3366 3367 /* By convention, if the mirror port is equal to the number of switch 3368 * interfaces, then mirroring of any kind is disabled. 3369 */ 3370 ethsw->mirror_port = ethsw->sw_attr.num_ifs; 3371 3372 /* Register the netdev only when the entire setup is done and the 3373 * switch port interfaces are ready to receive traffic 3374 */ 3375 for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { 3376 err = register_netdev(ethsw->ports[i]->netdev); 3377 if (err < 0) { 3378 dev_err(dev, "register_netdev error %d\n", err); 3379 goto err_unregister_ports; 3380 } 3381 } 3382 3383 return 0; 3384 3385 err_unregister_ports: 3386 for (i--; i >= 0; i--) 3387 unregister_netdev(ethsw->ports[i]->netdev); 3388 dpaa2_switch_teardown_irqs(sw_dev); 3389 err_stop: 3390 dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); 3391 err_free_netdev: 3392 for (i--; i >= 0; i--) 3393 free_netdev(ethsw->ports[i]->netdev); 3394 kfree(ethsw->filter_blocks); 3395 err_free_fdbs: 3396 kfree(ethsw->fdbs); 3397 err_free_ports: 3398 kfree(ethsw->ports); 3399 3400 err_takedown: 3401 dpaa2_switch_takedown(sw_dev); 3402 3403 err_free_cmdport: 3404 fsl_mc_portal_free(ethsw->mc_io); 3405 3406 err_free_drvdata: 3407 kfree(ethsw); 3408 dev_set_drvdata(dev, NULL); 3409 3410 return err; 3411 } 3412 3413 static const struct fsl_mc_device_id dpaa2_switch_match_id_table[] = { 3414 { 3415 .vendor = FSL_MC_VENDOR_FREESCALE, 3416 .obj_type = "dpsw", 3417 }, 3418 { .vendor = 0x0 } 3419 }; 3420 MODULE_DEVICE_TABLE(fslmc, dpaa2_switch_match_id_table); 3421 3422 static struct fsl_mc_driver dpaa2_switch_drv = { 3423 .driver = { 3424 .name = KBUILD_MODNAME, 3425 .owner = THIS_MODULE, 3426 }, 3427 .probe = dpaa2_switch_probe, 3428 .remove = dpaa2_switch_remove, 3429 .match_id_table = dpaa2_switch_match_id_table 3430 }; 3431 3432 static struct notifier_block dpaa2_switch_port_nb __read_mostly = { 3433 .notifier_call = dpaa2_switch_port_netdevice_event, 3434 }; 3435 3436 static struct notifier_block dpaa2_switch_port_switchdev_nb = { 3437 .notifier_call = dpaa2_switch_port_event, 3438 }; 3439 3440 static struct notifier_block dpaa2_switch_port_switchdev_blocking_nb = { 3441 .notifier_call = dpaa2_switch_port_blocking_event, 3442 }; 3443 3444 static int dpaa2_switch_register_notifiers(void) 3445 { 3446 int err; 3447 3448 err = register_netdevice_notifier(&dpaa2_switch_port_nb); 3449 if (err) { 3450 pr_err("dpaa2-switch: failed to register net_device notifier (%d)\n", err); 3451 return err; 3452 } 3453 3454 err = register_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); 3455 if (err) { 3456 pr_err("dpaa2-switch: failed to register switchdev notifier (%d)\n", err); 3457 goto err_switchdev_nb; 3458 } 3459 3460 err = register_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb); 3461 if (err) { 3462 pr_err("dpaa2-switch: failed to register switchdev blocking notifier (%d)\n", err); 3463 goto err_switchdev_blocking_nb; 3464 } 3465 3466 return 0; 3467 3468 err_switchdev_blocking_nb: 3469 unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); 3470 err_switchdev_nb: 3471 unregister_netdevice_notifier(&dpaa2_switch_port_nb); 3472 3473 return err; 3474 } 3475 3476 static void dpaa2_switch_unregister_notifiers(void) 3477 { 3478 int err; 3479 3480 err = unregister_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb); 3481 if (err) 3482 pr_err("dpaa2-switch: failed to unregister switchdev blocking notifier (%d)\n", 3483 err); 3484 3485 err = unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); 3486 if (err) 3487 pr_err("dpaa2-switch: failed to unregister switchdev notifier (%d)\n", err); 3488 3489 err = unregister_netdevice_notifier(&dpaa2_switch_port_nb); 3490 if (err) 3491 pr_err("dpaa2-switch: failed to unregister net_device notifier (%d)\n", err); 3492 } 3493 3494 static int __init dpaa2_switch_driver_init(void) 3495 { 3496 int err; 3497 3498 err = fsl_mc_driver_register(&dpaa2_switch_drv); 3499 if (err) 3500 return err; 3501 3502 err = dpaa2_switch_register_notifiers(); 3503 if (err) { 3504 fsl_mc_driver_unregister(&dpaa2_switch_drv); 3505 return err; 3506 } 3507 3508 return 0; 3509 } 3510 3511 static void __exit dpaa2_switch_driver_exit(void) 3512 { 3513 dpaa2_switch_unregister_notifiers(); 3514 fsl_mc_driver_unregister(&dpaa2_switch_drv); 3515 } 3516 3517 module_init(dpaa2_switch_driver_init); 3518 module_exit(dpaa2_switch_driver_exit); 3519 3520 MODULE_LICENSE("GPL v2"); 3521 MODULE_DESCRIPTION("DPAA2 Ethernet Switch Driver"); 3522