1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2022 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/kthread.h> 12 #include <linux/iommu.h> 13 #include <linux/fsl/mc.h> 14 #include <linux/bpf.h> 15 #include <linux/bpf_trace.h> 16 #include <linux/fsl/ptp_qoriq.h> 17 #include <linux/ptp_classify.h> 18 #include <net/pkt_cls.h> 19 #include <net/sock.h> 20 #include <net/tso.h> 21 #include <net/xdp_sock_drv.h> 22 23 #include "dpaa2-eth.h" 24 25 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 26 * using trace events only need to #include <trace/events/sched.h> 27 */ 28 #define CREATE_TRACE_POINTS 29 #include "dpaa2-eth-trace.h" 30 31 MODULE_LICENSE("Dual BSD/GPL"); 32 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 33 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 34 35 struct ptp_qoriq *dpaa2_ptp; 36 EXPORT_SYMBOL(dpaa2_ptp); 37 38 static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv) 39 { 40 priv->features = 0; 41 42 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR, 43 DPNI_PTP_ONESTEP_VER_MINOR) >= 0) 44 priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT; 45 } 46 47 static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv, 48 u32 offset, u8 udp) 49 { 50 struct dpni_single_step_cfg cfg; 51 52 cfg.en = 1; 53 cfg.ch_update = udp; 54 cfg.offset = offset; 55 cfg.peer_delay = 0; 56 57 if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg)) 58 WARN_ONCE(1, "Failed to set single step register"); 59 } 60 61 static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv, 62 u32 offset, u8 udp) 63 { 64 u32 val = 0; 65 66 val = DPAA2_PTP_SINGLE_STEP_ENABLE | 67 DPAA2_PTP_SINGLE_CORRECTION_OFF(offset); 68 69 if (udp) 70 val |= DPAA2_PTP_SINGLE_STEP_CH; 71 72 if (priv->onestep_reg_base) 73 writel(val, priv->onestep_reg_base); 74 } 75 76 static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv) 77 { 78 struct device *dev = priv->net_dev->dev.parent; 79 struct dpni_single_step_cfg ptp_cfg; 80 81 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect; 82 83 if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT)) 84 return; 85 86 if (dpni_get_single_step_cfg(priv->mc_io, 0, 87 priv->mc_token, &ptp_cfg)) { 88 dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n"); 89 return; 90 } 91 92 if (!ptp_cfg.ptp_onestep_reg_base) { 93 dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n"); 94 return; 95 } 96 97 priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base, 98 sizeof(u32)); 99 if (!priv->onestep_reg_base) { 100 dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n"); 101 return; 102 } 103 104 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct; 105 } 106 107 void *dpaa2_iova_to_virt(struct iommu_domain *domain, 108 dma_addr_t iova_addr) 109 { 110 phys_addr_t phys_addr; 111 112 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 113 114 return phys_to_virt(phys_addr); 115 } 116 117 static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, 118 u32 fd_status, 119 struct sk_buff *skb) 120 { 121 skb_checksum_none_assert(skb); 122 123 /* HW checksum validation is disabled, nothing to do here */ 124 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 125 return; 126 127 /* Read checksum validation bits */ 128 if (!((fd_status & DPAA2_FAS_L3CV) && 129 (fd_status & DPAA2_FAS_L4CV))) 130 return; 131 132 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 133 skb->ip_summed = CHECKSUM_UNNECESSARY; 134 } 135 136 /* Free a received FD. 137 * Not to be used for Tx conf FDs or on any other paths. 138 */ 139 static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, 140 const struct dpaa2_fd *fd, 141 void *vaddr) 142 { 143 struct device *dev = priv->net_dev->dev.parent; 144 dma_addr_t addr = dpaa2_fd_get_addr(fd); 145 u8 fd_format = dpaa2_fd_get_format(fd); 146 struct dpaa2_sg_entry *sgt; 147 void *sg_vaddr; 148 int i; 149 150 /* If single buffer frame, just free the data buffer */ 151 if (fd_format == dpaa2_fd_single) 152 goto free_buf; 153 else if (fd_format != dpaa2_fd_sg) 154 /* We don't support any other format */ 155 return; 156 157 /* For S/G frames, we first need to free all SG entries 158 * except the first one, which was taken care of already 159 */ 160 sgt = vaddr + dpaa2_fd_get_offset(fd); 161 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 162 addr = dpaa2_sg_get_addr(&sgt[i]); 163 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 164 dma_unmap_page(dev, addr, priv->rx_buf_size, 165 DMA_BIDIRECTIONAL); 166 167 free_pages((unsigned long)sg_vaddr, 0); 168 if (dpaa2_sg_is_final(&sgt[i])) 169 break; 170 } 171 172 free_buf: 173 free_pages((unsigned long)vaddr, 0); 174 } 175 176 /* Build a linear skb based on a single-buffer frame descriptor */ 177 static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, 178 const struct dpaa2_fd *fd, 179 void *fd_vaddr) 180 { 181 struct sk_buff *skb = NULL; 182 u16 fd_offset = dpaa2_fd_get_offset(fd); 183 u32 fd_length = dpaa2_fd_get_len(fd); 184 185 ch->buf_count--; 186 187 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 188 if (unlikely(!skb)) 189 return NULL; 190 191 skb_reserve(skb, fd_offset); 192 skb_put(skb, fd_length); 193 194 return skb; 195 } 196 197 /* Build a non linear (fragmented) skb based on a S/G table */ 198 static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, 199 struct dpaa2_eth_channel *ch, 200 struct dpaa2_sg_entry *sgt) 201 { 202 struct sk_buff *skb = NULL; 203 struct device *dev = priv->net_dev->dev.parent; 204 void *sg_vaddr; 205 dma_addr_t sg_addr; 206 u16 sg_offset; 207 u32 sg_length; 208 struct page *page, *head_page; 209 int page_offset; 210 int i; 211 212 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 213 struct dpaa2_sg_entry *sge = &sgt[i]; 214 215 /* NOTE: We only support SG entries in dpaa2_sg_single format, 216 * but this is the only format we may receive from HW anyway 217 */ 218 219 /* Get the address and length from the S/G entry */ 220 sg_addr = dpaa2_sg_get_addr(sge); 221 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 222 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 223 DMA_BIDIRECTIONAL); 224 225 sg_length = dpaa2_sg_get_len(sge); 226 227 if (i == 0) { 228 /* We build the skb around the first data buffer */ 229 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 230 if (unlikely(!skb)) { 231 /* Free the first SG entry now, since we already 232 * unmapped it and obtained the virtual address 233 */ 234 free_pages((unsigned long)sg_vaddr, 0); 235 236 /* We still need to subtract the buffers used 237 * by this FD from our software counter 238 */ 239 while (!dpaa2_sg_is_final(&sgt[i]) && 240 i < DPAA2_ETH_MAX_SG_ENTRIES) 241 i++; 242 break; 243 } 244 245 sg_offset = dpaa2_sg_get_offset(sge); 246 skb_reserve(skb, sg_offset); 247 skb_put(skb, sg_length); 248 } else { 249 /* Rest of the data buffers are stored as skb frags */ 250 page = virt_to_page(sg_vaddr); 251 head_page = virt_to_head_page(sg_vaddr); 252 253 /* Offset in page (which may be compound). 254 * Data in subsequent SG entries is stored from the 255 * beginning of the buffer, so we don't need to add the 256 * sg_offset. 257 */ 258 page_offset = ((unsigned long)sg_vaddr & 259 (PAGE_SIZE - 1)) + 260 (page_address(page) - page_address(head_page)); 261 262 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 263 sg_length, priv->rx_buf_size); 264 } 265 266 if (dpaa2_sg_is_final(sge)) 267 break; 268 } 269 270 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 271 272 /* Count all data buffers + SG table buffer */ 273 ch->buf_count -= i + 2; 274 275 return skb; 276 } 277 278 /* Free buffers acquired from the buffer pool or which were meant to 279 * be released in the pool 280 */ 281 static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, 282 int count, bool xsk_zc) 283 { 284 struct device *dev = priv->net_dev->dev.parent; 285 struct dpaa2_eth_swa *swa; 286 struct xdp_buff *xdp_buff; 287 void *vaddr; 288 int i; 289 290 for (i = 0; i < count; i++) { 291 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 292 293 if (!xsk_zc) { 294 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 295 DMA_BIDIRECTIONAL); 296 free_pages((unsigned long)vaddr, 0); 297 } else { 298 swa = (struct dpaa2_eth_swa *) 299 (vaddr + DPAA2_ETH_RX_HWA_SIZE); 300 xdp_buff = swa->xsk.xdp_buff; 301 xsk_buff_free(xdp_buff); 302 } 303 } 304 } 305 306 void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv, 307 struct dpaa2_eth_channel *ch, 308 dma_addr_t addr) 309 { 310 int retries = 0; 311 int err; 312 313 ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr; 314 if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD) 315 return; 316 317 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 318 ch->recycled_bufs, 319 ch->recycled_bufs_cnt)) == -EBUSY) { 320 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 321 break; 322 cpu_relax(); 323 } 324 325 if (err) { 326 dpaa2_eth_free_bufs(priv, ch->recycled_bufs, 327 ch->recycled_bufs_cnt, ch->xsk_zc); 328 ch->buf_count -= ch->recycled_bufs_cnt; 329 } 330 331 ch->recycled_bufs_cnt = 0; 332 } 333 334 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 335 struct dpaa2_eth_fq *fq, 336 struct dpaa2_eth_xdp_fds *xdp_fds) 337 { 338 int total_enqueued = 0, retries = 0, enqueued; 339 struct dpaa2_eth_drv_stats *percpu_extras; 340 int num_fds, err, max_retries; 341 struct dpaa2_fd *fds; 342 343 percpu_extras = this_cpu_ptr(priv->percpu_extras); 344 345 /* try to enqueue all the FDs until the max number of retries is hit */ 346 fds = xdp_fds->fds; 347 num_fds = xdp_fds->num; 348 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 349 while (total_enqueued < num_fds && retries < max_retries) { 350 err = priv->enqueue(priv, fq, &fds[total_enqueued], 351 0, num_fds - total_enqueued, &enqueued); 352 if (err == -EBUSY) { 353 percpu_extras->tx_portal_busy += ++retries; 354 continue; 355 } 356 total_enqueued += enqueued; 357 } 358 xdp_fds->num = 0; 359 360 return total_enqueued; 361 } 362 363 static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, 364 struct dpaa2_eth_channel *ch, 365 struct dpaa2_eth_fq *fq) 366 { 367 struct rtnl_link_stats64 *percpu_stats; 368 struct dpaa2_fd *fds; 369 int enqueued, i; 370 371 percpu_stats = this_cpu_ptr(priv->percpu_stats); 372 373 // enqueue the array of XDP_TX frames 374 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 375 376 /* update statistics */ 377 percpu_stats->tx_packets += enqueued; 378 fds = fq->xdp_tx_fds.fds; 379 for (i = 0; i < enqueued; i++) { 380 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 381 ch->stats.xdp_tx++; 382 } 383 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 384 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 385 percpu_stats->tx_errors++; 386 ch->stats.xdp_tx_err++; 387 } 388 fq->xdp_tx_fds.num = 0; 389 } 390 391 void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, 392 struct dpaa2_eth_channel *ch, 393 struct dpaa2_fd *fd, 394 void *buf_start, u16 queue_id) 395 { 396 struct dpaa2_faead *faead; 397 struct dpaa2_fd *dest_fd; 398 struct dpaa2_eth_fq *fq; 399 u32 ctrl, frc; 400 401 /* Mark the egress frame hardware annotation area as valid */ 402 frc = dpaa2_fd_get_frc(fd); 403 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 404 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 405 406 /* Instruct hardware to release the FD buffer directly into 407 * the buffer pool once transmission is completed, instead of 408 * sending a Tx confirmation frame to us 409 */ 410 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 411 faead = dpaa2_get_faead(buf_start, false); 412 faead->ctrl = cpu_to_le32(ctrl); 413 faead->conf_fqid = 0; 414 415 fq = &priv->fq[queue_id]; 416 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 417 memcpy(dest_fd, fd, sizeof(*dest_fd)); 418 419 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 420 return; 421 422 dpaa2_eth_xdp_tx_flush(priv, ch, fq); 423 } 424 425 static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, 426 struct dpaa2_eth_channel *ch, 427 struct dpaa2_eth_fq *rx_fq, 428 struct dpaa2_fd *fd, void *vaddr) 429 { 430 dma_addr_t addr = dpaa2_fd_get_addr(fd); 431 struct bpf_prog *xdp_prog; 432 struct xdp_buff xdp; 433 u32 xdp_act = XDP_PASS; 434 int err, offset; 435 436 xdp_prog = READ_ONCE(ch->xdp.prog); 437 if (!xdp_prog) 438 goto out; 439 440 offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM; 441 xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq); 442 xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM, 443 dpaa2_fd_get_len(fd), false); 444 445 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 446 447 /* xdp.data pointer may have changed */ 448 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 449 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 450 451 switch (xdp_act) { 452 case XDP_PASS: 453 break; 454 case XDP_TX: 455 dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 456 break; 457 default: 458 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 459 fallthrough; 460 case XDP_ABORTED: 461 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 462 fallthrough; 463 case XDP_DROP: 464 dpaa2_eth_recycle_buf(priv, ch, addr); 465 ch->stats.xdp_drop++; 466 break; 467 case XDP_REDIRECT: 468 dma_unmap_page(priv->net_dev->dev.parent, addr, 469 priv->rx_buf_size, DMA_BIDIRECTIONAL); 470 ch->buf_count--; 471 472 /* Allow redirect use of full headroom */ 473 xdp.data_hard_start = vaddr; 474 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 475 476 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 477 if (unlikely(err)) { 478 addr = dma_map_page(priv->net_dev->dev.parent, 479 virt_to_page(vaddr), 0, 480 priv->rx_buf_size, DMA_BIDIRECTIONAL); 481 if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) { 482 free_pages((unsigned long)vaddr, 0); 483 } else { 484 ch->buf_count++; 485 dpaa2_eth_recycle_buf(priv, ch, addr); 486 } 487 ch->stats.xdp_drop++; 488 } else { 489 ch->stats.xdp_redirect++; 490 } 491 break; 492 } 493 494 ch->xdp.res |= xdp_act; 495 out: 496 return xdp_act; 497 } 498 499 struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv, 500 struct dpaa2_eth_channel *ch, 501 const struct dpaa2_fd *fd, u32 fd_length, 502 void *fd_vaddr) 503 { 504 u16 fd_offset = dpaa2_fd_get_offset(fd); 505 struct sk_buff *skb = NULL; 506 unsigned int skb_len; 507 508 skb_len = fd_length + dpaa2_eth_needed_headroom(NULL); 509 510 skb = napi_alloc_skb(&ch->napi, skb_len); 511 if (!skb) 512 return NULL; 513 514 skb_reserve(skb, dpaa2_eth_needed_headroom(NULL)); 515 skb_put(skb, fd_length); 516 517 memcpy(skb->data, fd_vaddr + fd_offset, fd_length); 518 519 return skb; 520 } 521 522 static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch, 523 const struct dpaa2_fd *fd, 524 void *fd_vaddr) 525 { 526 struct dpaa2_eth_priv *priv = ch->priv; 527 u32 fd_length = dpaa2_fd_get_len(fd); 528 529 if (fd_length > priv->rx_copybreak) 530 return NULL; 531 532 return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr); 533 } 534 535 void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv, 536 struct dpaa2_eth_channel *ch, 537 const struct dpaa2_fd *fd, void *vaddr, 538 struct dpaa2_eth_fq *fq, 539 struct rtnl_link_stats64 *percpu_stats, 540 struct sk_buff *skb) 541 { 542 struct dpaa2_fas *fas; 543 u32 status = 0; 544 545 fas = dpaa2_get_fas(vaddr, false); 546 prefetch(fas); 547 prefetch(skb->data); 548 549 /* Get the timestamp value */ 550 if (priv->rx_tstamp) { 551 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 552 __le64 *ts = dpaa2_get_ts(vaddr, false); 553 u64 ns; 554 555 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 556 557 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 558 shhwtstamps->hwtstamp = ns_to_ktime(ns); 559 } 560 561 /* Check if we need to validate the L4 csum */ 562 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 563 status = le32_to_cpu(fas->status); 564 dpaa2_eth_validate_rx_csum(priv, status, skb); 565 } 566 567 skb->protocol = eth_type_trans(skb, priv->net_dev); 568 skb_record_rx_queue(skb, fq->flowid); 569 570 percpu_stats->rx_packets++; 571 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 572 ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd); 573 574 list_add_tail(&skb->list, ch->rx_list); 575 } 576 577 /* Main Rx frame processing routine */ 578 void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 579 struct dpaa2_eth_channel *ch, 580 const struct dpaa2_fd *fd, 581 struct dpaa2_eth_fq *fq) 582 { 583 dma_addr_t addr = dpaa2_fd_get_addr(fd); 584 u8 fd_format = dpaa2_fd_get_format(fd); 585 void *vaddr; 586 struct sk_buff *skb; 587 struct rtnl_link_stats64 *percpu_stats; 588 struct dpaa2_eth_drv_stats *percpu_extras; 589 struct device *dev = priv->net_dev->dev.parent; 590 bool recycle_rx_buf = false; 591 void *buf_data; 592 u32 xdp_act; 593 594 /* Tracing point */ 595 trace_dpaa2_rx_fd(priv->net_dev, fd); 596 597 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 598 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 599 DMA_BIDIRECTIONAL); 600 601 buf_data = vaddr + dpaa2_fd_get_offset(fd); 602 prefetch(buf_data); 603 604 percpu_stats = this_cpu_ptr(priv->percpu_stats); 605 percpu_extras = this_cpu_ptr(priv->percpu_extras); 606 607 if (fd_format == dpaa2_fd_single) { 608 xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 609 if (xdp_act != XDP_PASS) { 610 percpu_stats->rx_packets++; 611 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 612 return; 613 } 614 615 skb = dpaa2_eth_copybreak(ch, fd, vaddr); 616 if (!skb) { 617 dma_unmap_page(dev, addr, priv->rx_buf_size, 618 DMA_BIDIRECTIONAL); 619 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 620 } else { 621 recycle_rx_buf = true; 622 } 623 } else if (fd_format == dpaa2_fd_sg) { 624 WARN_ON(priv->xdp_prog); 625 626 dma_unmap_page(dev, addr, priv->rx_buf_size, 627 DMA_BIDIRECTIONAL); 628 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 629 free_pages((unsigned long)vaddr, 0); 630 percpu_extras->rx_sg_frames++; 631 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 632 } else { 633 /* We don't support any other format */ 634 goto err_frame_format; 635 } 636 637 if (unlikely(!skb)) 638 goto err_build_skb; 639 640 dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb); 641 642 if (recycle_rx_buf) 643 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd)); 644 return; 645 646 err_build_skb: 647 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 648 err_frame_format: 649 percpu_stats->rx_dropped++; 650 } 651 652 /* Processing of Rx frames received on the error FQ 653 * We check and print the error bits and then free the frame 654 */ 655 static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv, 656 struct dpaa2_eth_channel *ch, 657 const struct dpaa2_fd *fd, 658 struct dpaa2_eth_fq *fq __always_unused) 659 { 660 struct device *dev = priv->net_dev->dev.parent; 661 dma_addr_t addr = dpaa2_fd_get_addr(fd); 662 u8 fd_format = dpaa2_fd_get_format(fd); 663 struct rtnl_link_stats64 *percpu_stats; 664 struct dpaa2_eth_trap_item *trap_item; 665 struct dpaa2_fapr *fapr; 666 struct sk_buff *skb; 667 void *buf_data; 668 void *vaddr; 669 670 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 671 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 672 DMA_BIDIRECTIONAL); 673 674 buf_data = vaddr + dpaa2_fd_get_offset(fd); 675 676 if (fd_format == dpaa2_fd_single) { 677 dma_unmap_page(dev, addr, priv->rx_buf_size, 678 DMA_BIDIRECTIONAL); 679 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 680 } else if (fd_format == dpaa2_fd_sg) { 681 dma_unmap_page(dev, addr, priv->rx_buf_size, 682 DMA_BIDIRECTIONAL); 683 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 684 free_pages((unsigned long)vaddr, 0); 685 } else { 686 /* We don't support any other format */ 687 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 688 goto err_frame_format; 689 } 690 691 fapr = dpaa2_get_fapr(vaddr, false); 692 trap_item = dpaa2_eth_dl_get_trap(priv, fapr); 693 if (trap_item) 694 devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx, 695 &priv->devlink_port, NULL); 696 consume_skb(skb); 697 698 err_frame_format: 699 percpu_stats = this_cpu_ptr(priv->percpu_stats); 700 percpu_stats->rx_errors++; 701 ch->buf_count--; 702 } 703 704 /* Consume all frames pull-dequeued into the store. This is the simplest way to 705 * make sure we don't accidentally issue another volatile dequeue which would 706 * overwrite (leak) frames already in the store. 707 * 708 * Observance of NAPI budget is not our concern, leaving that to the caller. 709 */ 710 static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, 711 struct dpaa2_eth_fq **src) 712 { 713 struct dpaa2_eth_priv *priv = ch->priv; 714 struct dpaa2_eth_fq *fq = NULL; 715 struct dpaa2_dq *dq; 716 const struct dpaa2_fd *fd; 717 int cleaned = 0, retries = 0; 718 int is_last; 719 720 do { 721 dq = dpaa2_io_store_next(ch->store, &is_last); 722 if (unlikely(!dq)) { 723 /* If we're here, we *must* have placed a 724 * volatile dequeue comnmand, so keep reading through 725 * the store until we get some sort of valid response 726 * token (either a valid frame or an "empty dequeue") 727 */ 728 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 729 netdev_err_once(priv->net_dev, 730 "Unable to read a valid dequeue response\n"); 731 return -ETIMEDOUT; 732 } 733 continue; 734 } 735 736 fd = dpaa2_dq_fd(dq); 737 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 738 739 fq->consume(priv, ch, fd, fq); 740 cleaned++; 741 retries = 0; 742 } while (!is_last); 743 744 if (!cleaned) 745 return 0; 746 747 fq->stats.frames += cleaned; 748 ch->stats.frames += cleaned; 749 ch->stats.frames_per_cdan += cleaned; 750 751 /* A dequeue operation only pulls frames from a single queue 752 * into the store. Return the frame queue as an out param. 753 */ 754 if (src) 755 *src = fq; 756 757 return cleaned; 758 } 759 760 static int dpaa2_eth_ptp_parse(struct sk_buff *skb, 761 u8 *msgtype, u8 *twostep, u8 *udp, 762 u16 *correction_offset, 763 u16 *origintimestamp_offset) 764 { 765 unsigned int ptp_class; 766 struct ptp_header *hdr; 767 unsigned int type; 768 u8 *base; 769 770 ptp_class = ptp_classify_raw(skb); 771 if (ptp_class == PTP_CLASS_NONE) 772 return -EINVAL; 773 774 hdr = ptp_parse_header(skb, ptp_class); 775 if (!hdr) 776 return -EINVAL; 777 778 *msgtype = ptp_get_msgtype(hdr, ptp_class); 779 *twostep = hdr->flag_field[0] & 0x2; 780 781 type = ptp_class & PTP_CLASS_PMASK; 782 if (type == PTP_CLASS_IPV4 || 783 type == PTP_CLASS_IPV6) 784 *udp = 1; 785 else 786 *udp = 0; 787 788 base = skb_mac_header(skb); 789 *correction_offset = (u8 *)&hdr->correction - base; 790 *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 791 792 return 0; 793 } 794 795 /* Configure the egress frame annotation for timestamp update */ 796 static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, 797 struct dpaa2_fd *fd, 798 void *buf_start, 799 struct sk_buff *skb) 800 { 801 struct ptp_tstamp origin_timestamp; 802 u8 msgtype, twostep, udp; 803 struct dpaa2_faead *faead; 804 struct dpaa2_fas *fas; 805 struct timespec64 ts; 806 u16 offset1, offset2; 807 u32 ctrl, frc; 808 __le64 *ns; 809 u8 *data; 810 811 /* Mark the egress frame annotation area as valid */ 812 frc = dpaa2_fd_get_frc(fd); 813 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 814 815 /* Set hardware annotation size */ 816 ctrl = dpaa2_fd_get_ctrl(fd); 817 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 818 819 /* enable UPD (update prepanded data) bit in FAEAD field of 820 * hardware frame annotation area 821 */ 822 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 823 faead = dpaa2_get_faead(buf_start, true); 824 faead->ctrl = cpu_to_le32(ctrl); 825 826 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 827 if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 828 &offset1, &offset2) || 829 msgtype != PTP_MSGTYPE_SYNC || twostep) { 830 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 831 return; 832 } 833 834 /* Mark the frame annotation status as valid */ 835 frc = dpaa2_fd_get_frc(fd); 836 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); 837 838 /* Mark the PTP flag for one step timestamping */ 839 fas = dpaa2_get_fas(buf_start, true); 840 fas->status = cpu_to_le32(DPAA2_FAS_PTP); 841 842 dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); 843 ns = dpaa2_get_ts(buf_start, true); 844 *ns = cpu_to_le64(timespec64_to_ns(&ts) / 845 DPAA2_PTP_CLK_PERIOD_NS); 846 847 /* Update current time to PTP message originTimestamp field */ 848 ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); 849 data = skb_mac_header(skb); 850 *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); 851 *(__be32 *)(data + offset2 + 2) = 852 htonl(origin_timestamp.sec_lsb); 853 *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); 854 855 if (priv->ptp_correction_off == offset1) 856 return; 857 858 priv->dpaa2_set_onestep_params_cb(priv, offset1, udp); 859 priv->ptp_correction_off = offset1; 860 861 } 862 } 863 864 void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv) 865 { 866 struct dpaa2_eth_sgt_cache *sgt_cache; 867 void *sgt_buf = NULL; 868 int sgt_buf_size; 869 870 sgt_cache = this_cpu_ptr(priv->sgt_cache); 871 sgt_buf_size = priv->tx_data_offset + 872 DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry); 873 874 if (sgt_cache->count == 0) 875 sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN); 876 else 877 sgt_buf = sgt_cache->buf[--sgt_cache->count]; 878 if (!sgt_buf) 879 return NULL; 880 881 memset(sgt_buf, 0, sgt_buf_size); 882 883 return sgt_buf; 884 } 885 886 void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf) 887 { 888 struct dpaa2_eth_sgt_cache *sgt_cache; 889 890 sgt_cache = this_cpu_ptr(priv->sgt_cache); 891 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 892 skb_free_frag(sgt_buf); 893 else 894 sgt_cache->buf[sgt_cache->count++] = sgt_buf; 895 } 896 897 /* Create a frame descriptor based on a fragmented skb */ 898 static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, 899 struct sk_buff *skb, 900 struct dpaa2_fd *fd, 901 void **swa_addr) 902 { 903 struct device *dev = priv->net_dev->dev.parent; 904 void *sgt_buf = NULL; 905 dma_addr_t addr; 906 int nr_frags = skb_shinfo(skb)->nr_frags; 907 struct dpaa2_sg_entry *sgt; 908 int i, err; 909 int sgt_buf_size; 910 struct scatterlist *scl, *crt_scl; 911 int num_sg; 912 int num_dma_bufs; 913 struct dpaa2_eth_swa *swa; 914 915 /* Create and map scatterlist. 916 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 917 * to go beyond nr_frags+1. 918 * Note: We don't support chained scatterlists 919 */ 920 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 921 return -EINVAL; 922 923 scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 924 if (unlikely(!scl)) 925 return -ENOMEM; 926 927 sg_init_table(scl, nr_frags + 1); 928 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 929 if (unlikely(num_sg < 0)) { 930 err = -ENOMEM; 931 goto dma_map_sg_failed; 932 } 933 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 934 if (unlikely(!num_dma_bufs)) { 935 err = -ENOMEM; 936 goto dma_map_sg_failed; 937 } 938 939 /* Prepare the HW SGT structure */ 940 sgt_buf_size = priv->tx_data_offset + 941 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 942 sgt_buf = dpaa2_eth_sgt_get(priv); 943 if (unlikely(!sgt_buf)) { 944 err = -ENOMEM; 945 goto sgt_buf_alloc_failed; 946 } 947 948 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 949 950 /* Fill in the HW SGT structure. 951 * 952 * sgt_buf is zeroed out, so the following fields are implicit 953 * in all sgt entries: 954 * - offset is 0 955 * - format is 'dpaa2_sg_single' 956 */ 957 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 958 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 959 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 960 } 961 dpaa2_sg_set_final(&sgt[i - 1], true); 962 963 /* Store the skb backpointer in the SGT buffer. 964 * Fit the scatterlist and the number of buffers alongside the 965 * skb backpointer in the software annotation area. We'll need 966 * all of them on Tx Conf. 967 */ 968 *swa_addr = (void *)sgt_buf; 969 swa = (struct dpaa2_eth_swa *)sgt_buf; 970 swa->type = DPAA2_ETH_SWA_SG; 971 swa->sg.skb = skb; 972 swa->sg.scl = scl; 973 swa->sg.num_sg = num_sg; 974 swa->sg.sgt_size = sgt_buf_size; 975 976 /* Separately map the SGT buffer */ 977 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 978 if (unlikely(dma_mapping_error(dev, addr))) { 979 err = -ENOMEM; 980 goto dma_map_single_failed; 981 } 982 memset(fd, 0, sizeof(struct dpaa2_fd)); 983 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 984 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 985 dpaa2_fd_set_addr(fd, addr); 986 dpaa2_fd_set_len(fd, skb->len); 987 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 988 989 return 0; 990 991 dma_map_single_failed: 992 dpaa2_eth_sgt_recycle(priv, sgt_buf); 993 sgt_buf_alloc_failed: 994 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 995 dma_map_sg_failed: 996 kfree(scl); 997 return err; 998 } 999 1000 /* Create a SG frame descriptor based on a linear skb. 1001 * 1002 * This function is used on the Tx path when the skb headroom is not large 1003 * enough for the HW requirements, thus instead of realloc-ing the skb we 1004 * create a SG frame descriptor with only one entry. 1005 */ 1006 static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, 1007 struct sk_buff *skb, 1008 struct dpaa2_fd *fd, 1009 void **swa_addr) 1010 { 1011 struct device *dev = priv->net_dev->dev.parent; 1012 struct dpaa2_sg_entry *sgt; 1013 struct dpaa2_eth_swa *swa; 1014 dma_addr_t addr, sgt_addr; 1015 void *sgt_buf = NULL; 1016 int sgt_buf_size; 1017 int err; 1018 1019 /* Prepare the HW SGT structure */ 1020 sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); 1021 sgt_buf = dpaa2_eth_sgt_get(priv); 1022 if (unlikely(!sgt_buf)) 1023 return -ENOMEM; 1024 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1025 1026 addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); 1027 if (unlikely(dma_mapping_error(dev, addr))) { 1028 err = -ENOMEM; 1029 goto data_map_failed; 1030 } 1031 1032 /* Fill in the HW SGT structure */ 1033 dpaa2_sg_set_addr(sgt, addr); 1034 dpaa2_sg_set_len(sgt, skb->len); 1035 dpaa2_sg_set_final(sgt, true); 1036 1037 /* Store the skb backpointer in the SGT buffer */ 1038 *swa_addr = (void *)sgt_buf; 1039 swa = (struct dpaa2_eth_swa *)sgt_buf; 1040 swa->type = DPAA2_ETH_SWA_SINGLE; 1041 swa->single.skb = skb; 1042 swa->single.sgt_size = sgt_buf_size; 1043 1044 /* Separately map the SGT buffer */ 1045 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1046 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1047 err = -ENOMEM; 1048 goto sgt_map_failed; 1049 } 1050 1051 memset(fd, 0, sizeof(struct dpaa2_fd)); 1052 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1053 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1054 dpaa2_fd_set_addr(fd, sgt_addr); 1055 dpaa2_fd_set_len(fd, skb->len); 1056 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1057 1058 return 0; 1059 1060 sgt_map_failed: 1061 dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); 1062 data_map_failed: 1063 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1064 1065 return err; 1066 } 1067 1068 /* Create a frame descriptor based on a linear skb */ 1069 static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, 1070 struct sk_buff *skb, 1071 struct dpaa2_fd *fd, 1072 void **swa_addr) 1073 { 1074 struct device *dev = priv->net_dev->dev.parent; 1075 u8 *buffer_start, *aligned_start; 1076 struct dpaa2_eth_swa *swa; 1077 dma_addr_t addr; 1078 1079 buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); 1080 aligned_start = PTR_ALIGN(buffer_start, DPAA2_ETH_TX_BUF_ALIGN); 1081 if (aligned_start >= skb->head) 1082 buffer_start = aligned_start; 1083 else 1084 return -ENOMEM; 1085 1086 /* Store a backpointer to the skb at the beginning of the buffer 1087 * (in the private data area) such that we can release it 1088 * on Tx confirm 1089 */ 1090 *swa_addr = (void *)buffer_start; 1091 swa = (struct dpaa2_eth_swa *)buffer_start; 1092 swa->type = DPAA2_ETH_SWA_SINGLE; 1093 swa->single.skb = skb; 1094 1095 addr = dma_map_single(dev, buffer_start, 1096 skb_tail_pointer(skb) - buffer_start, 1097 DMA_BIDIRECTIONAL); 1098 if (unlikely(dma_mapping_error(dev, addr))) 1099 return -ENOMEM; 1100 1101 memset(fd, 0, sizeof(struct dpaa2_fd)); 1102 dpaa2_fd_set_addr(fd, addr); 1103 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 1104 dpaa2_fd_set_len(fd, skb->len); 1105 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1106 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1107 1108 return 0; 1109 } 1110 1111 /* FD freeing routine on the Tx path 1112 * 1113 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 1114 * back-pointed to is also freed. 1115 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 1116 * dpaa2_eth_tx(). 1117 */ 1118 void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, 1119 struct dpaa2_eth_channel *ch, 1120 struct dpaa2_eth_fq *fq, 1121 const struct dpaa2_fd *fd, bool in_napi) 1122 { 1123 struct device *dev = priv->net_dev->dev.parent; 1124 dma_addr_t fd_addr, sg_addr; 1125 struct sk_buff *skb = NULL; 1126 unsigned char *buffer_start; 1127 struct dpaa2_eth_swa *swa; 1128 u8 fd_format = dpaa2_fd_get_format(fd); 1129 u32 fd_len = dpaa2_fd_get_len(fd); 1130 struct dpaa2_sg_entry *sgt; 1131 int should_free_skb = 1; 1132 void *tso_hdr; 1133 int i; 1134 1135 fd_addr = dpaa2_fd_get_addr(fd); 1136 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 1137 swa = (struct dpaa2_eth_swa *)buffer_start; 1138 1139 if (fd_format == dpaa2_fd_single) { 1140 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 1141 skb = swa->single.skb; 1142 /* Accessing the skb buffer is safe before dma unmap, 1143 * because we didn't map the actual skb shell. 1144 */ 1145 dma_unmap_single(dev, fd_addr, 1146 skb_tail_pointer(skb) - buffer_start, 1147 DMA_BIDIRECTIONAL); 1148 } else { 1149 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 1150 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 1151 DMA_BIDIRECTIONAL); 1152 } 1153 } else if (fd_format == dpaa2_fd_sg) { 1154 if (swa->type == DPAA2_ETH_SWA_SG) { 1155 skb = swa->sg.skb; 1156 1157 /* Unmap the scatterlist */ 1158 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 1159 DMA_BIDIRECTIONAL); 1160 kfree(swa->sg.scl); 1161 1162 /* Unmap the SGT buffer */ 1163 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 1164 DMA_BIDIRECTIONAL); 1165 } else if (swa->type == DPAA2_ETH_SWA_SW_TSO) { 1166 skb = swa->tso.skb; 1167 1168 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1169 priv->tx_data_offset); 1170 1171 /* Unmap the SGT buffer */ 1172 dma_unmap_single(dev, fd_addr, swa->tso.sgt_size, 1173 DMA_BIDIRECTIONAL); 1174 1175 /* Unmap and free the header */ 1176 tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt)); 1177 dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE, 1178 DMA_TO_DEVICE); 1179 kfree(tso_hdr); 1180 1181 /* Unmap the other SG entries for the data */ 1182 for (i = 1; i < swa->tso.num_sg; i++) 1183 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1184 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1185 1186 if (!swa->tso.is_last_fd) 1187 should_free_skb = 0; 1188 } else if (swa->type == DPAA2_ETH_SWA_XSK) { 1189 /* Unmap the SGT Buffer */ 1190 dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size, 1191 DMA_BIDIRECTIONAL); 1192 } else { 1193 skb = swa->single.skb; 1194 1195 /* Unmap the SGT Buffer */ 1196 dma_unmap_single(dev, fd_addr, swa->single.sgt_size, 1197 DMA_BIDIRECTIONAL); 1198 1199 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1200 priv->tx_data_offset); 1201 sg_addr = dpaa2_sg_get_addr(sgt); 1202 dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); 1203 } 1204 } else { 1205 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 1206 return; 1207 } 1208 1209 if (swa->type == DPAA2_ETH_SWA_XSK) { 1210 ch->xsk_tx_pkts_sent++; 1211 dpaa2_eth_sgt_recycle(priv, buffer_start); 1212 return; 1213 } 1214 1215 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 1216 fq->dq_frames++; 1217 fq->dq_bytes += fd_len; 1218 } 1219 1220 if (swa->type == DPAA2_ETH_SWA_XDP) { 1221 xdp_return_frame(swa->xdp.xdpf); 1222 return; 1223 } 1224 1225 /* Get the timestamp value */ 1226 if (swa->type != DPAA2_ETH_SWA_SW_TSO) { 1227 if (skb->cb[0] == TX_TSTAMP) { 1228 struct skb_shared_hwtstamps shhwtstamps; 1229 __le64 *ts = dpaa2_get_ts(buffer_start, true); 1230 u64 ns; 1231 1232 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1233 1234 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 1235 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1236 skb_tstamp_tx(skb, &shhwtstamps); 1237 } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1238 mutex_unlock(&priv->onestep_tstamp_lock); 1239 } 1240 } 1241 1242 /* Free SGT buffer allocated on tx */ 1243 if (fd_format != dpaa2_fd_single) 1244 dpaa2_eth_sgt_recycle(priv, buffer_start); 1245 1246 /* Move on with skb release. If we are just confirming multiple FDs 1247 * from the same TSO skb then only the last one will need to free the 1248 * skb. 1249 */ 1250 if (should_free_skb) 1251 napi_consume_skb(skb, in_napi); 1252 } 1253 1254 static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv, 1255 struct sk_buff *skb, struct dpaa2_fd *fd, 1256 int *num_fds, u32 *total_fds_len) 1257 { 1258 struct device *dev = priv->net_dev->dev.parent; 1259 int hdr_len, total_len, data_left, fd_len; 1260 int num_sge, err, i, sgt_buf_size; 1261 struct dpaa2_fd *fd_start = fd; 1262 struct dpaa2_sg_entry *sgt; 1263 struct dpaa2_eth_swa *swa; 1264 dma_addr_t sgt_addr, addr; 1265 dma_addr_t tso_hdr_dma; 1266 unsigned int index = 0; 1267 struct tso_t tso; 1268 char *tso_hdr; 1269 void *sgt_buf; 1270 1271 /* Initialize the TSO handler, and prepare the first payload */ 1272 hdr_len = tso_start(skb, &tso); 1273 *total_fds_len = 0; 1274 1275 total_len = skb->len - hdr_len; 1276 while (total_len > 0) { 1277 /* Prepare the HW SGT structure for this frame */ 1278 sgt_buf = dpaa2_eth_sgt_get(priv); 1279 if (unlikely(!sgt_buf)) { 1280 netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n"); 1281 err = -ENOMEM; 1282 goto err_sgt_get; 1283 } 1284 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1285 1286 /* Determine the data length of this frame */ 1287 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1288 total_len -= data_left; 1289 fd_len = data_left + hdr_len; 1290 1291 /* Prepare packet headers: MAC + IP + TCP */ 1292 tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC); 1293 if (!tso_hdr) { 1294 err = -ENOMEM; 1295 goto err_alloc_tso_hdr; 1296 } 1297 1298 tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0); 1299 tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1300 if (dma_mapping_error(dev, tso_hdr_dma)) { 1301 netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n"); 1302 err = -ENOMEM; 1303 goto err_map_tso_hdr; 1304 } 1305 1306 /* Setup the SG entry for the header */ 1307 dpaa2_sg_set_addr(sgt, tso_hdr_dma); 1308 dpaa2_sg_set_len(sgt, hdr_len); 1309 dpaa2_sg_set_final(sgt, data_left <= 0); 1310 1311 /* Compose the SG entries for each fragment of data */ 1312 num_sge = 1; 1313 while (data_left > 0) { 1314 int size; 1315 1316 /* Move to the next SG entry */ 1317 sgt++; 1318 size = min_t(int, tso.size, data_left); 1319 1320 addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE); 1321 if (dma_mapping_error(dev, addr)) { 1322 netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n"); 1323 err = -ENOMEM; 1324 goto err_map_data; 1325 } 1326 dpaa2_sg_set_addr(sgt, addr); 1327 dpaa2_sg_set_len(sgt, size); 1328 dpaa2_sg_set_final(sgt, size == data_left); 1329 1330 num_sge++; 1331 1332 /* Build the data for the __next__ fragment */ 1333 data_left -= size; 1334 tso_build_data(skb, &tso, size); 1335 } 1336 1337 /* Store the skb backpointer in the SGT buffer */ 1338 sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry); 1339 swa = (struct dpaa2_eth_swa *)sgt_buf; 1340 swa->type = DPAA2_ETH_SWA_SW_TSO; 1341 swa->tso.skb = skb; 1342 swa->tso.num_sg = num_sge; 1343 swa->tso.sgt_size = sgt_buf_size; 1344 swa->tso.is_last_fd = total_len == 0 ? 1 : 0; 1345 1346 /* Separately map the SGT buffer */ 1347 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1348 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1349 netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n"); 1350 err = -ENOMEM; 1351 goto err_map_sgt; 1352 } 1353 1354 /* Setup the frame descriptor */ 1355 memset(fd, 0, sizeof(struct dpaa2_fd)); 1356 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1357 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1358 dpaa2_fd_set_addr(fd, sgt_addr); 1359 dpaa2_fd_set_len(fd, fd_len); 1360 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1361 1362 *total_fds_len += fd_len; 1363 /* Advance to the next frame descriptor */ 1364 fd++; 1365 index++; 1366 } 1367 1368 *num_fds = index; 1369 1370 return 0; 1371 1372 err_map_sgt: 1373 err_map_data: 1374 /* Unmap all the data S/G entries for the current FD */ 1375 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1376 for (i = 1; i < num_sge; i++) 1377 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1378 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1379 1380 /* Unmap the header entry */ 1381 dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1382 err_map_tso_hdr: 1383 kfree(tso_hdr); 1384 err_alloc_tso_hdr: 1385 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1386 err_sgt_get: 1387 /* Free all the other FDs that were already fully created */ 1388 for (i = 0; i < index; i++) 1389 dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false); 1390 1391 return err; 1392 } 1393 1394 static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, 1395 struct net_device *net_dev) 1396 { 1397 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1398 int total_enqueued = 0, retries = 0, enqueued; 1399 struct dpaa2_eth_drv_stats *percpu_extras; 1400 struct rtnl_link_stats64 *percpu_stats; 1401 unsigned int needed_headroom; 1402 int num_fds = 1, max_retries; 1403 struct dpaa2_eth_fq *fq; 1404 struct netdev_queue *nq; 1405 struct dpaa2_fd *fd; 1406 u16 queue_mapping; 1407 void *swa = NULL; 1408 u8 prio = 0; 1409 int err, i; 1410 u32 fd_len; 1411 1412 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1413 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1414 fd = (this_cpu_ptr(priv->fd))->array; 1415 1416 needed_headroom = dpaa2_eth_needed_headroom(skb); 1417 1418 /* We'll be holding a back-reference to the skb until Tx Confirmation; 1419 * we don't want that overwritten by a concurrent Tx with a cloned skb. 1420 */ 1421 skb = skb_unshare(skb, GFP_ATOMIC); 1422 if (unlikely(!skb)) { 1423 /* skb_unshare() has already freed the skb */ 1424 percpu_stats->tx_dropped++; 1425 return NETDEV_TX_OK; 1426 } 1427 1428 /* Setup the FD fields */ 1429 1430 if (skb_is_gso(skb)) { 1431 err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len); 1432 percpu_extras->tx_sg_frames += num_fds; 1433 percpu_extras->tx_sg_bytes += fd_len; 1434 percpu_extras->tx_tso_frames += num_fds; 1435 percpu_extras->tx_tso_bytes += fd_len; 1436 } else if (skb_is_nonlinear(skb)) { 1437 err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa); 1438 percpu_extras->tx_sg_frames++; 1439 percpu_extras->tx_sg_bytes += skb->len; 1440 fd_len = dpaa2_fd_get_len(fd); 1441 } else if (skb_headroom(skb) < needed_headroom) { 1442 err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa); 1443 percpu_extras->tx_sg_frames++; 1444 percpu_extras->tx_sg_bytes += skb->len; 1445 percpu_extras->tx_converted_sg_frames++; 1446 percpu_extras->tx_converted_sg_bytes += skb->len; 1447 fd_len = dpaa2_fd_get_len(fd); 1448 } else { 1449 err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa); 1450 fd_len = dpaa2_fd_get_len(fd); 1451 } 1452 1453 if (unlikely(err)) { 1454 percpu_stats->tx_dropped++; 1455 goto err_build_fd; 1456 } 1457 1458 if (swa && skb->cb[0]) 1459 dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb); 1460 1461 /* Tracing point */ 1462 for (i = 0; i < num_fds; i++) 1463 trace_dpaa2_tx_fd(net_dev, &fd[i]); 1464 1465 /* TxConf FQ selection relies on queue id from the stack. 1466 * In case of a forwarded frame from another DPNI interface, we choose 1467 * a queue affined to the same core that processed the Rx frame 1468 */ 1469 queue_mapping = skb_get_queue_mapping(skb); 1470 1471 if (net_dev->num_tc) { 1472 prio = netdev_txq_to_tc(net_dev, queue_mapping); 1473 /* Hardware interprets priority level 0 as being the highest, 1474 * so we need to do a reverse mapping to the netdev tc index 1475 */ 1476 prio = net_dev->num_tc - prio - 1; 1477 /* We have only one FQ array entry for all Tx hardware queues 1478 * with the same flow id (but different priority levels) 1479 */ 1480 queue_mapping %= dpaa2_eth_queue_count(priv); 1481 } 1482 fq = &priv->fq[queue_mapping]; 1483 nq = netdev_get_tx_queue(net_dev, queue_mapping); 1484 netdev_tx_sent_queue(nq, fd_len); 1485 1486 /* Everything that happens after this enqueues might race with 1487 * the Tx confirmation callback for this frame 1488 */ 1489 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 1490 while (total_enqueued < num_fds && retries < max_retries) { 1491 err = priv->enqueue(priv, fq, &fd[total_enqueued], 1492 prio, num_fds - total_enqueued, &enqueued); 1493 if (err == -EBUSY) { 1494 retries++; 1495 continue; 1496 } 1497 1498 total_enqueued += enqueued; 1499 } 1500 percpu_extras->tx_portal_busy += retries; 1501 1502 if (unlikely(err < 0)) { 1503 percpu_stats->tx_errors++; 1504 /* Clean up everything, including freeing the skb */ 1505 dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false); 1506 netdev_tx_completed_queue(nq, 1, fd_len); 1507 } else { 1508 percpu_stats->tx_packets += total_enqueued; 1509 percpu_stats->tx_bytes += fd_len; 1510 } 1511 1512 return NETDEV_TX_OK; 1513 1514 err_build_fd: 1515 dev_kfree_skb(skb); 1516 1517 return NETDEV_TX_OK; 1518 } 1519 1520 static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) 1521 { 1522 struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, 1523 tx_onestep_tstamp); 1524 struct sk_buff *skb; 1525 1526 while (true) { 1527 skb = skb_dequeue(&priv->tx_skbs); 1528 if (!skb) 1529 return; 1530 1531 /* Lock just before TX one-step timestamping packet, 1532 * and release the lock in dpaa2_eth_free_tx_fd when 1533 * confirm the packet has been sent on hardware, or 1534 * when clean up during transmit failure. 1535 */ 1536 mutex_lock(&priv->onestep_tstamp_lock); 1537 __dpaa2_eth_tx(skb, priv->net_dev); 1538 } 1539 } 1540 1541 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 1542 { 1543 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1544 u8 msgtype, twostep, udp; 1545 u16 offset1, offset2; 1546 1547 /* Utilize skb->cb[0] for timestamping request per skb */ 1548 skb->cb[0] = 0; 1549 1550 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { 1551 if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) 1552 skb->cb[0] = TX_TSTAMP; 1553 else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 1554 skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; 1555 } 1556 1557 /* TX for one-step timestamping PTP Sync packet */ 1558 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1559 if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 1560 &offset1, &offset2)) 1561 if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) { 1562 skb_queue_tail(&priv->tx_skbs, skb); 1563 queue_work(priv->dpaa2_ptp_wq, 1564 &priv->tx_onestep_tstamp); 1565 return NETDEV_TX_OK; 1566 } 1567 /* Use two-step timestamping if not one-step timestamping 1568 * PTP Sync packet 1569 */ 1570 skb->cb[0] = TX_TSTAMP; 1571 } 1572 1573 /* TX for other packets */ 1574 return __dpaa2_eth_tx(skb, net_dev); 1575 } 1576 1577 /* Tx confirmation frame processing routine */ 1578 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 1579 struct dpaa2_eth_channel *ch, 1580 const struct dpaa2_fd *fd, 1581 struct dpaa2_eth_fq *fq) 1582 { 1583 struct rtnl_link_stats64 *percpu_stats; 1584 struct dpaa2_eth_drv_stats *percpu_extras; 1585 u32 fd_len = dpaa2_fd_get_len(fd); 1586 u32 fd_errors; 1587 1588 /* Tracing point */ 1589 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 1590 1591 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1592 percpu_extras->tx_conf_frames++; 1593 percpu_extras->tx_conf_bytes += fd_len; 1594 ch->stats.bytes_per_cdan += fd_len; 1595 1596 /* Check frame errors in the FD field */ 1597 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 1598 dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true); 1599 1600 if (likely(!fd_errors)) 1601 return; 1602 1603 if (net_ratelimit()) 1604 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 1605 fd_errors); 1606 1607 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1608 /* Tx-conf logically pertains to the egress path. */ 1609 percpu_stats->tx_errors++; 1610 } 1611 1612 static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv, 1613 bool enable) 1614 { 1615 int err; 1616 1617 err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable); 1618 1619 if (err) { 1620 netdev_err(priv->net_dev, 1621 "dpni_enable_vlan_filter failed\n"); 1622 return err; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 1629 { 1630 int err; 1631 1632 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1633 DPNI_OFF_RX_L3_CSUM, enable); 1634 if (err) { 1635 netdev_err(priv->net_dev, 1636 "dpni_set_offload(RX_L3_CSUM) failed\n"); 1637 return err; 1638 } 1639 1640 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1641 DPNI_OFF_RX_L4_CSUM, enable); 1642 if (err) { 1643 netdev_err(priv->net_dev, 1644 "dpni_set_offload(RX_L4_CSUM) failed\n"); 1645 return err; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 1652 { 1653 int err; 1654 1655 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1656 DPNI_OFF_TX_L3_CSUM, enable); 1657 if (err) { 1658 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 1659 return err; 1660 } 1661 1662 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1663 DPNI_OFF_TX_L4_CSUM, enable); 1664 if (err) { 1665 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1666 return err; 1667 } 1668 1669 return 0; 1670 } 1671 1672 /* Perform a single release command to add buffers 1673 * to the specified buffer pool 1674 */ 1675 static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, 1676 struct dpaa2_eth_channel *ch) 1677 { 1678 struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD]; 1679 struct device *dev = priv->net_dev->dev.parent; 1680 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1681 struct dpaa2_eth_swa *swa; 1682 struct page *page; 1683 dma_addr_t addr; 1684 int retries = 0; 1685 int i = 0, err; 1686 u32 batch; 1687 1688 /* Allocate buffers visible to WRIOP */ 1689 if (!ch->xsk_zc) { 1690 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1691 /* Also allocate skb shared info and alignment padding. 1692 * There is one page for each Rx buffer. WRIOP sees 1693 * the entire page except for a tailroom reserved for 1694 * skb shared info 1695 */ 1696 page = dev_alloc_pages(0); 1697 if (!page) 1698 goto err_alloc; 1699 1700 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1701 DMA_BIDIRECTIONAL); 1702 if (unlikely(dma_mapping_error(dev, addr))) 1703 goto err_map; 1704 1705 buf_array[i] = addr; 1706 1707 /* tracing point */ 1708 trace_dpaa2_eth_buf_seed(priv->net_dev, 1709 page_address(page), 1710 DPAA2_ETH_RX_BUF_RAW_SIZE, 1711 addr, priv->rx_buf_size, 1712 ch->bp->bpid); 1713 } 1714 } else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) { 1715 /* Allocate XSK buffers for AF_XDP fast path in batches 1716 * of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot 1717 * provide enough buffers at the moment 1718 */ 1719 batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs, 1720 DPAA2_ETH_BUFS_PER_CMD); 1721 if (!batch) 1722 goto err_alloc; 1723 1724 for (i = 0; i < batch; i++) { 1725 swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start + 1726 DPAA2_ETH_RX_HWA_SIZE); 1727 swa->xsk.xdp_buff = xdp_buffs[i]; 1728 1729 addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]); 1730 if (unlikely(dma_mapping_error(dev, addr))) 1731 goto err_map; 1732 1733 buf_array[i] = addr; 1734 1735 trace_dpaa2_xsk_buf_seed(priv->net_dev, 1736 xdp_buffs[i]->data_hard_start, 1737 DPAA2_ETH_RX_BUF_RAW_SIZE, 1738 addr, priv->rx_buf_size, 1739 ch->bp->bpid); 1740 } 1741 } 1742 1743 release_bufs: 1744 /* In case the portal is busy, retry until successful */ 1745 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 1746 buf_array, i)) == -EBUSY) { 1747 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1748 break; 1749 cpu_relax(); 1750 } 1751 1752 /* If release command failed, clean up and bail out; 1753 * not much else we can do about it 1754 */ 1755 if (err) { 1756 dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc); 1757 return 0; 1758 } 1759 1760 return i; 1761 1762 err_map: 1763 if (!ch->xsk_zc) { 1764 __free_pages(page, 0); 1765 } else { 1766 for (; i < batch; i++) 1767 xsk_buff_free(xdp_buffs[i]); 1768 } 1769 err_alloc: 1770 /* If we managed to allocate at least some buffers, 1771 * release them to hardware 1772 */ 1773 if (i) 1774 goto release_bufs; 1775 1776 return 0; 1777 } 1778 1779 static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, 1780 struct dpaa2_eth_channel *ch) 1781 { 1782 int i; 1783 int new_count; 1784 1785 for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { 1786 new_count = dpaa2_eth_add_bufs(priv, ch); 1787 ch->buf_count += new_count; 1788 1789 if (new_count < DPAA2_ETH_BUFS_PER_CMD) 1790 return -ENOMEM; 1791 } 1792 1793 return 0; 1794 } 1795 1796 static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv) 1797 { 1798 struct net_device *net_dev = priv->net_dev; 1799 struct dpaa2_eth_channel *channel; 1800 int i, err = 0; 1801 1802 for (i = 0; i < priv->num_channels; i++) { 1803 channel = priv->channel[i]; 1804 1805 err = dpaa2_eth_seed_pool(priv, channel); 1806 1807 /* Not much to do; the buffer pool, though not filled up, 1808 * may still contain some buffers which would enable us 1809 * to limp on. 1810 */ 1811 if (err) 1812 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1813 channel->bp->dev->obj_desc.id, 1814 channel->bp->bpid); 1815 } 1816 } 1817 1818 /* 1819 * Drain the specified number of buffers from one of the DPNI's private buffer 1820 * pools. 1821 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1822 */ 1823 static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid, 1824 int count) 1825 { 1826 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1827 bool xsk_zc = false; 1828 int retries = 0; 1829 int i, ret; 1830 1831 for (i = 0; i < priv->num_channels; i++) 1832 if (priv->channel[i]->bp->bpid == bpid) 1833 xsk_zc = priv->channel[i]->xsk_zc; 1834 1835 do { 1836 ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count); 1837 if (ret < 0) { 1838 if (ret == -EBUSY && 1839 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1840 continue; 1841 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1842 return; 1843 } 1844 dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc); 1845 retries = 0; 1846 } while (ret); 1847 } 1848 1849 static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid) 1850 { 1851 int i; 1852 1853 /* Drain the buffer pool */ 1854 dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD); 1855 dpaa2_eth_drain_bufs(priv, bpid, 1); 1856 1857 /* Setup to zero the buffer count of all channels which were 1858 * using this buffer pool. 1859 */ 1860 for (i = 0; i < priv->num_channels; i++) 1861 if (priv->channel[i]->bp->bpid == bpid) 1862 priv->channel[i]->buf_count = 0; 1863 } 1864 1865 static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv) 1866 { 1867 int i; 1868 1869 for (i = 0; i < priv->num_bps; i++) 1870 dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid); 1871 } 1872 1873 /* Function is called from softirq context only, so we don't need to guard 1874 * the access to percpu count 1875 */ 1876 static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, 1877 struct dpaa2_eth_channel *ch) 1878 { 1879 int new_count; 1880 1881 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1882 return 0; 1883 1884 do { 1885 new_count = dpaa2_eth_add_bufs(priv, ch); 1886 if (unlikely(!new_count)) { 1887 /* Out of memory; abort for now, we'll try later on */ 1888 break; 1889 } 1890 ch->buf_count += new_count; 1891 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1892 1893 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1894 return -ENOMEM; 1895 1896 return 0; 1897 } 1898 1899 static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) 1900 { 1901 struct dpaa2_eth_sgt_cache *sgt_cache; 1902 u16 count; 1903 int k, i; 1904 1905 for_each_possible_cpu(k) { 1906 sgt_cache = per_cpu_ptr(priv->sgt_cache, k); 1907 count = sgt_cache->count; 1908 1909 for (i = 0; i < count; i++) 1910 skb_free_frag(sgt_cache->buf[i]); 1911 sgt_cache->count = 0; 1912 } 1913 } 1914 1915 static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) 1916 { 1917 int err; 1918 int dequeues = -1; 1919 1920 /* Retry while portal is busy */ 1921 do { 1922 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1923 ch->store); 1924 dequeues++; 1925 cpu_relax(); 1926 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1927 1928 ch->stats.dequeue_portal_busy += dequeues; 1929 if (unlikely(err)) 1930 ch->stats.pull_err++; 1931 1932 return err; 1933 } 1934 1935 /* NAPI poll routine 1936 * 1937 * Frames are dequeued from the QMan channel associated with this NAPI context. 1938 * Rx, Tx confirmation and (if configured) Rx error frames all count 1939 * towards the NAPI budget. 1940 */ 1941 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1942 { 1943 struct dpaa2_eth_channel *ch; 1944 struct dpaa2_eth_priv *priv; 1945 int rx_cleaned = 0, txconf_cleaned = 0; 1946 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1947 struct netdev_queue *nq; 1948 int store_cleaned, work_done; 1949 bool work_done_zc = false; 1950 struct list_head rx_list; 1951 int retries = 0; 1952 u16 flowid; 1953 int err; 1954 1955 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1956 ch->xdp.res = 0; 1957 priv = ch->priv; 1958 1959 INIT_LIST_HEAD(&rx_list); 1960 ch->rx_list = &rx_list; 1961 1962 if (ch->xsk_zc) { 1963 work_done_zc = dpaa2_xsk_tx(priv, ch); 1964 /* If we reached the XSK Tx per NAPI threshold, we're done */ 1965 if (work_done_zc) { 1966 work_done = budget; 1967 goto out; 1968 } 1969 } 1970 1971 do { 1972 err = dpaa2_eth_pull_channel(ch); 1973 if (unlikely(err)) 1974 break; 1975 1976 /* Refill pool if appropriate */ 1977 dpaa2_eth_refill_pool(priv, ch); 1978 1979 store_cleaned = dpaa2_eth_consume_frames(ch, &fq); 1980 if (store_cleaned <= 0) 1981 break; 1982 if (fq->type == DPAA2_RX_FQ) { 1983 rx_cleaned += store_cleaned; 1984 flowid = fq->flowid; 1985 } else { 1986 txconf_cleaned += store_cleaned; 1987 /* We have a single Tx conf FQ on this channel */ 1988 txc_fq = fq; 1989 } 1990 1991 /* If we either consumed the whole NAPI budget with Rx frames 1992 * or we reached the Tx confirmations threshold, we're done. 1993 */ 1994 if (rx_cleaned >= budget || 1995 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1996 work_done = budget; 1997 if (ch->xdp.res & XDP_REDIRECT) 1998 xdp_do_flush(); 1999 goto out; 2000 } 2001 } while (store_cleaned); 2002 2003 if (ch->xdp.res & XDP_REDIRECT) 2004 xdp_do_flush(); 2005 2006 /* Update NET DIM with the values for this CDAN */ 2007 dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan, 2008 ch->stats.bytes_per_cdan); 2009 ch->stats.frames_per_cdan = 0; 2010 ch->stats.bytes_per_cdan = 0; 2011 2012 /* We didn't consume the entire budget, so finish napi and 2013 * re-enable data availability notifications 2014 */ 2015 napi_complete_done(napi, rx_cleaned); 2016 do { 2017 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 2018 cpu_relax(); 2019 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 2020 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 2021 ch->nctx.desired_cpu); 2022 2023 work_done = max(rx_cleaned, 1); 2024 2025 out: 2026 netif_receive_skb_list(ch->rx_list); 2027 2028 if (ch->xsk_tx_pkts_sent) { 2029 xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent); 2030 ch->xsk_tx_pkts_sent = 0; 2031 } 2032 2033 if (txc_fq && txc_fq->dq_frames) { 2034 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 2035 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 2036 txc_fq->dq_bytes); 2037 txc_fq->dq_frames = 0; 2038 txc_fq->dq_bytes = 0; 2039 } 2040 2041 if (rx_cleaned && ch->xdp.res & XDP_TX) 2042 dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); 2043 2044 return work_done; 2045 } 2046 2047 static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) 2048 { 2049 struct dpaa2_eth_channel *ch; 2050 int i; 2051 2052 for (i = 0; i < priv->num_channels; i++) { 2053 ch = priv->channel[i]; 2054 napi_enable(&ch->napi); 2055 } 2056 } 2057 2058 static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) 2059 { 2060 struct dpaa2_eth_channel *ch; 2061 int i; 2062 2063 for (i = 0; i < priv->num_channels; i++) { 2064 ch = priv->channel[i]; 2065 napi_disable(&ch->napi); 2066 } 2067 } 2068 2069 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 2070 bool tx_pause, bool pfc) 2071 { 2072 struct dpni_taildrop td = {0}; 2073 struct dpaa2_eth_fq *fq; 2074 int i, err; 2075 2076 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 2077 * flow control is disabled (as it might interfere with either the 2078 * buffer pool depletion trigger for pause frames or with the group 2079 * congestion trigger for PFC frames) 2080 */ 2081 td.enable = !tx_pause; 2082 if (priv->rx_fqtd_enabled == td.enable) 2083 goto set_cgtd; 2084 2085 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 2086 td.units = DPNI_CONGESTION_UNIT_BYTES; 2087 2088 for (i = 0; i < priv->num_fqs; i++) { 2089 fq = &priv->fq[i]; 2090 if (fq->type != DPAA2_RX_FQ) 2091 continue; 2092 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2093 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 2094 fq->tc, fq->flowid, &td); 2095 if (err) { 2096 netdev_err(priv->net_dev, 2097 "dpni_set_taildrop(FQ) failed\n"); 2098 return; 2099 } 2100 } 2101 2102 priv->rx_fqtd_enabled = td.enable; 2103 2104 set_cgtd: 2105 /* Congestion group taildrop: threshold is in frames, per group 2106 * of FQs belonging to the same traffic class 2107 * Enabled if general Tx pause disabled or if PFCs are enabled 2108 * (congestion group threhsold for PFC generation is lower than the 2109 * CG taildrop threshold, so it won't interfere with it; we also 2110 * want frames in non-PFC enabled traffic classes to be kept in check) 2111 */ 2112 td.enable = !tx_pause || pfc; 2113 if (priv->rx_cgtd_enabled == td.enable) 2114 return; 2115 2116 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 2117 td.units = DPNI_CONGESTION_UNIT_FRAMES; 2118 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2119 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2120 DPNI_CP_GROUP, DPNI_QUEUE_RX, 2121 i, 0, &td); 2122 if (err) { 2123 netdev_err(priv->net_dev, 2124 "dpni_set_taildrop(CG) failed\n"); 2125 return; 2126 } 2127 } 2128 2129 priv->rx_cgtd_enabled = td.enable; 2130 } 2131 2132 static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) 2133 { 2134 struct dpni_link_state state = {0}; 2135 bool tx_pause; 2136 int err; 2137 2138 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 2139 if (unlikely(err)) { 2140 netdev_err(priv->net_dev, 2141 "dpni_get_link_state() failed\n"); 2142 return err; 2143 } 2144 2145 /* If Tx pause frame settings have changed, we need to update 2146 * Rx FQ taildrop configuration as well. We configure taildrop 2147 * only when pause frame generation is disabled. 2148 */ 2149 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 2150 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 2151 2152 /* When we manage the MAC/PHY using phylink there is no need 2153 * to manually update the netif_carrier. 2154 * We can avoid locking because we are called from the "link changed" 2155 * IRQ handler, which is the same as the "endpoint changed" IRQ handler 2156 * (the writer to priv->mac), so we cannot race with it. 2157 */ 2158 if (dpaa2_mac_is_type_phy(priv->mac)) 2159 goto out; 2160 2161 /* Chech link state; speed / duplex changes are not treated yet */ 2162 if (priv->link_state.up == state.up) 2163 goto out; 2164 2165 if (state.up) { 2166 netif_carrier_on(priv->net_dev); 2167 netif_tx_start_all_queues(priv->net_dev); 2168 } else { 2169 netif_tx_stop_all_queues(priv->net_dev); 2170 netif_carrier_off(priv->net_dev); 2171 } 2172 2173 netdev_info(priv->net_dev, "Link Event: state %s\n", 2174 state.up ? "up" : "down"); 2175 2176 out: 2177 priv->link_state = state; 2178 2179 return 0; 2180 } 2181 2182 static int dpaa2_eth_open(struct net_device *net_dev) 2183 { 2184 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2185 int err; 2186 2187 dpaa2_eth_seed_pools(priv); 2188 2189 mutex_lock(&priv->mac_lock); 2190 2191 if (!dpaa2_eth_is_type_phy(priv)) { 2192 /* We'll only start the txqs when the link is actually ready; 2193 * make sure we don't race against the link up notification, 2194 * which may come immediately after dpni_enable(); 2195 */ 2196 netif_tx_stop_all_queues(net_dev); 2197 2198 /* Also, explicitly set carrier off, otherwise 2199 * netif_carrier_ok() will return true and cause 'ip link show' 2200 * to report the LOWER_UP flag, even though the link 2201 * notification wasn't even received. 2202 */ 2203 netif_carrier_off(net_dev); 2204 } 2205 dpaa2_eth_enable_ch_napi(priv); 2206 2207 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 2208 if (err < 0) { 2209 mutex_unlock(&priv->mac_lock); 2210 netdev_err(net_dev, "dpni_enable() failed\n"); 2211 goto enable_err; 2212 } 2213 2214 if (dpaa2_eth_is_type_phy(priv)) 2215 dpaa2_mac_start(priv->mac); 2216 2217 mutex_unlock(&priv->mac_lock); 2218 2219 return 0; 2220 2221 enable_err: 2222 dpaa2_eth_disable_ch_napi(priv); 2223 dpaa2_eth_drain_pools(priv); 2224 return err; 2225 } 2226 2227 /* Total number of in-flight frames on ingress queues */ 2228 static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) 2229 { 2230 struct dpaa2_eth_fq *fq; 2231 u32 fcnt = 0, bcnt = 0, total = 0; 2232 int i, err; 2233 2234 for (i = 0; i < priv->num_fqs; i++) { 2235 fq = &priv->fq[i]; 2236 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 2237 if (err) { 2238 netdev_warn(priv->net_dev, "query_fq_count failed"); 2239 break; 2240 } 2241 total += fcnt; 2242 } 2243 2244 return total; 2245 } 2246 2247 static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 2248 { 2249 int retries = 10; 2250 u32 pending; 2251 2252 do { 2253 pending = dpaa2_eth_ingress_fq_count(priv); 2254 if (pending) 2255 msleep(100); 2256 } while (pending && --retries); 2257 } 2258 2259 #define DPNI_TX_PENDING_VER_MAJOR 7 2260 #define DPNI_TX_PENDING_VER_MINOR 13 2261 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 2262 { 2263 union dpni_statistics stats; 2264 int retries = 10; 2265 int err; 2266 2267 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 2268 DPNI_TX_PENDING_VER_MINOR) < 0) 2269 goto out; 2270 2271 do { 2272 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 2273 &stats); 2274 if (err) 2275 goto out; 2276 if (stats.page_6.tx_pending_frames == 0) 2277 return; 2278 } while (--retries); 2279 2280 out: 2281 msleep(500); 2282 } 2283 2284 static int dpaa2_eth_stop(struct net_device *net_dev) 2285 { 2286 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2287 int dpni_enabled = 0; 2288 int retries = 10; 2289 2290 mutex_lock(&priv->mac_lock); 2291 2292 if (dpaa2_eth_is_type_phy(priv)) { 2293 dpaa2_mac_stop(priv->mac); 2294 } else { 2295 netif_tx_stop_all_queues(net_dev); 2296 netif_carrier_off(net_dev); 2297 } 2298 2299 mutex_unlock(&priv->mac_lock); 2300 2301 /* On dpni_disable(), the MC firmware will: 2302 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 2303 * - cut off WRIOP dequeues from egress FQs and wait until transmission 2304 * of all in flight Tx frames is finished (and corresponding Tx conf 2305 * frames are enqueued back to software) 2306 * 2307 * Before calling dpni_disable(), we wait for all Tx frames to arrive 2308 * on WRIOP. After it finishes, wait until all remaining frames on Rx 2309 * and Tx conf queues are consumed on NAPI poll. 2310 */ 2311 dpaa2_eth_wait_for_egress_fq_empty(priv); 2312 2313 do { 2314 dpni_disable(priv->mc_io, 0, priv->mc_token); 2315 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 2316 if (dpni_enabled) 2317 /* Allow the hardware some slack */ 2318 msleep(100); 2319 } while (dpni_enabled && --retries); 2320 if (!retries) { 2321 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 2322 /* Must go on and disable NAPI nonetheless, so we don't crash at 2323 * the next "ifconfig up" 2324 */ 2325 } 2326 2327 dpaa2_eth_wait_for_ingress_fq_empty(priv); 2328 dpaa2_eth_disable_ch_napi(priv); 2329 2330 /* Empty the buffer pool */ 2331 dpaa2_eth_drain_pools(priv); 2332 2333 /* Empty the Scatter-Gather Buffer cache */ 2334 dpaa2_eth_sgt_cache_drain(priv); 2335 2336 return 0; 2337 } 2338 2339 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 2340 { 2341 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2342 struct device *dev = net_dev->dev.parent; 2343 int err; 2344 2345 err = eth_mac_addr(net_dev, addr); 2346 if (err < 0) { 2347 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 2348 return err; 2349 } 2350 2351 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2352 net_dev->dev_addr); 2353 if (err) { 2354 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 2355 return err; 2356 } 2357 2358 return 0; 2359 } 2360 2361 /** Fill in counters maintained by the GPP driver. These may be different from 2362 * the hardware counters obtained by ethtool. 2363 */ 2364 static void dpaa2_eth_get_stats(struct net_device *net_dev, 2365 struct rtnl_link_stats64 *stats) 2366 { 2367 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2368 struct rtnl_link_stats64 *percpu_stats; 2369 u64 *cpustats; 2370 u64 *netstats = (u64 *)stats; 2371 int i, j; 2372 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 2373 2374 for_each_possible_cpu(i) { 2375 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 2376 cpustats = (u64 *)percpu_stats; 2377 for (j = 0; j < num; j++) 2378 netstats[j] += cpustats[j]; 2379 } 2380 } 2381 2382 /* Copy mac unicast addresses from @net_dev to @priv. 2383 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2384 */ 2385 static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, 2386 struct dpaa2_eth_priv *priv) 2387 { 2388 struct netdev_hw_addr *ha; 2389 int err; 2390 2391 netdev_for_each_uc_addr(ha, net_dev) { 2392 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2393 ha->addr); 2394 if (err) 2395 netdev_warn(priv->net_dev, 2396 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 2397 ha->addr, err); 2398 } 2399 } 2400 2401 /* Copy mac multicast addresses from @net_dev to @priv 2402 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2403 */ 2404 static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, 2405 struct dpaa2_eth_priv *priv) 2406 { 2407 struct netdev_hw_addr *ha; 2408 int err; 2409 2410 netdev_for_each_mc_addr(ha, net_dev) { 2411 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2412 ha->addr); 2413 if (err) 2414 netdev_warn(priv->net_dev, 2415 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 2416 ha->addr, err); 2417 } 2418 } 2419 2420 static int dpaa2_eth_rx_add_vid(struct net_device *net_dev, 2421 __be16 vlan_proto, u16 vid) 2422 { 2423 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2424 int err; 2425 2426 err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token, 2427 vid, 0, 0, 0); 2428 2429 if (err) { 2430 netdev_warn(priv->net_dev, 2431 "Could not add the vlan id %u\n", 2432 vid); 2433 return err; 2434 } 2435 2436 return 0; 2437 } 2438 2439 static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev, 2440 __be16 vlan_proto, u16 vid) 2441 { 2442 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2443 int err; 2444 2445 err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid); 2446 2447 if (err) { 2448 netdev_warn(priv->net_dev, 2449 "Could not remove the vlan id %u\n", 2450 vid); 2451 return err; 2452 } 2453 2454 return 0; 2455 } 2456 2457 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 2458 { 2459 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2460 int uc_count = netdev_uc_count(net_dev); 2461 int mc_count = netdev_mc_count(net_dev); 2462 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 2463 u32 options = priv->dpni_attrs.options; 2464 u16 mc_token = priv->mc_token; 2465 struct fsl_mc_io *mc_io = priv->mc_io; 2466 int err; 2467 2468 /* Basic sanity checks; these probably indicate a misconfiguration */ 2469 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 2470 netdev_info(net_dev, 2471 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 2472 max_mac); 2473 2474 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 2475 if (uc_count > max_mac) { 2476 netdev_info(net_dev, 2477 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 2478 uc_count, max_mac); 2479 goto force_promisc; 2480 } 2481 if (mc_count + uc_count > max_mac) { 2482 netdev_info(net_dev, 2483 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 2484 uc_count + mc_count, max_mac); 2485 goto force_mc_promisc; 2486 } 2487 2488 /* Adjust promisc settings due to flag combinations */ 2489 if (net_dev->flags & IFF_PROMISC) 2490 goto force_promisc; 2491 if (net_dev->flags & IFF_ALLMULTI) { 2492 /* First, rebuild unicast filtering table. This should be done 2493 * in promisc mode, in order to avoid frame loss while we 2494 * progressively add entries to the table. 2495 * We don't know whether we had been in promisc already, and 2496 * making an MC call to find out is expensive; so set uc promisc 2497 * nonetheless. 2498 */ 2499 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2500 if (err) 2501 netdev_warn(net_dev, "Can't set uc promisc\n"); 2502 2503 /* Actual uc table reconstruction. */ 2504 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 2505 if (err) 2506 netdev_warn(net_dev, "Can't clear uc filters\n"); 2507 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2508 2509 /* Finally, clear uc promisc and set mc promisc as requested. */ 2510 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2511 if (err) 2512 netdev_warn(net_dev, "Can't clear uc promisc\n"); 2513 goto force_mc_promisc; 2514 } 2515 2516 /* Neither unicast, nor multicast promisc will be on... eventually. 2517 * For now, rebuild mac filtering tables while forcing both of them on. 2518 */ 2519 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2520 if (err) 2521 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 2522 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2523 if (err) 2524 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 2525 2526 /* Actual mac filtering tables reconstruction */ 2527 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 2528 if (err) 2529 netdev_warn(net_dev, "Can't clear mac filters\n"); 2530 dpaa2_eth_add_mc_hw_addr(net_dev, priv); 2531 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2532 2533 /* Now we can clear both ucast and mcast promisc, without risking 2534 * to drop legitimate frames anymore. 2535 */ 2536 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2537 if (err) 2538 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 2539 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 2540 if (err) 2541 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 2542 2543 return; 2544 2545 force_promisc: 2546 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2547 if (err) 2548 netdev_warn(net_dev, "Can't set ucast promisc\n"); 2549 force_mc_promisc: 2550 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2551 if (err) 2552 netdev_warn(net_dev, "Can't set mcast promisc\n"); 2553 } 2554 2555 static int dpaa2_eth_set_features(struct net_device *net_dev, 2556 netdev_features_t features) 2557 { 2558 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2559 netdev_features_t changed = features ^ net_dev->features; 2560 bool enable; 2561 int err; 2562 2563 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 2564 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2565 err = dpaa2_eth_set_rx_vlan_filtering(priv, enable); 2566 if (err) 2567 return err; 2568 } 2569 2570 if (changed & NETIF_F_RXCSUM) { 2571 enable = !!(features & NETIF_F_RXCSUM); 2572 err = dpaa2_eth_set_rx_csum(priv, enable); 2573 if (err) 2574 return err; 2575 } 2576 2577 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2578 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 2579 err = dpaa2_eth_set_tx_csum(priv, enable); 2580 if (err) 2581 return err; 2582 } 2583 2584 return 0; 2585 } 2586 2587 static int dpaa2_eth_hwtstamp_set(struct net_device *dev, 2588 struct kernel_hwtstamp_config *config, 2589 struct netlink_ext_ack *extack) 2590 { 2591 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2592 2593 if (!dpaa2_ptp) 2594 return -EINVAL; 2595 2596 switch (config->tx_type) { 2597 case HWTSTAMP_TX_OFF: 2598 case HWTSTAMP_TX_ON: 2599 case HWTSTAMP_TX_ONESTEP_SYNC: 2600 priv->tx_tstamp_type = config->tx_type; 2601 break; 2602 default: 2603 return -ERANGE; 2604 } 2605 2606 if (config->rx_filter == HWTSTAMP_FILTER_NONE) { 2607 priv->rx_tstamp = false; 2608 } else { 2609 priv->rx_tstamp = true; 2610 /* TS is set for all frame types, not only those requested */ 2611 config->rx_filter = HWTSTAMP_FILTER_ALL; 2612 } 2613 2614 if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 2615 dpaa2_ptp_onestep_reg_update_method(priv); 2616 2617 return 0; 2618 } 2619 2620 static int dpaa2_eth_hwtstamp_get(struct net_device *dev, 2621 struct kernel_hwtstamp_config *config) 2622 { 2623 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2624 2625 if (!dpaa2_ptp) 2626 return -EINVAL; 2627 2628 config->tx_type = priv->tx_tstamp_type; 2629 config->rx_filter = priv->rx_tstamp ? HWTSTAMP_FILTER_ALL : 2630 HWTSTAMP_FILTER_NONE; 2631 2632 return 0; 2633 } 2634 2635 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2636 { 2637 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2638 int err; 2639 2640 mutex_lock(&priv->mac_lock); 2641 2642 if (dpaa2_eth_is_type_phy(priv)) { 2643 err = phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 2644 mutex_unlock(&priv->mac_lock); 2645 return err; 2646 } 2647 2648 mutex_unlock(&priv->mac_lock); 2649 2650 return -EOPNOTSUPP; 2651 } 2652 2653 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 2654 { 2655 int mfl, linear_mfl; 2656 2657 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2658 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 2659 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 2660 2661 if (mfl > linear_mfl) { 2662 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 2663 linear_mfl - VLAN_ETH_HLEN); 2664 return false; 2665 } 2666 2667 return true; 2668 } 2669 2670 static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 2671 { 2672 int mfl, err; 2673 2674 /* We enforce a maximum Rx frame length based on MTU only if we have 2675 * an XDP program attached (in order to avoid Rx S/G frames). 2676 * Otherwise, we accept all incoming frames as long as they are not 2677 * larger than maximum size supported in hardware 2678 */ 2679 if (has_xdp) 2680 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2681 else 2682 mfl = DPAA2_ETH_MFL; 2683 2684 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 2685 if (err) { 2686 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 2687 return err; 2688 } 2689 2690 return 0; 2691 } 2692 2693 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 2694 { 2695 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2696 int err; 2697 2698 if (!priv->xdp_prog) 2699 goto out; 2700 2701 if (!xdp_mtu_valid(priv, new_mtu)) 2702 return -EINVAL; 2703 2704 err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); 2705 if (err) 2706 return err; 2707 2708 out: 2709 WRITE_ONCE(dev->mtu, new_mtu); 2710 return 0; 2711 } 2712 2713 static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 2714 { 2715 struct dpni_buffer_layout buf_layout = {0}; 2716 int err; 2717 2718 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 2719 DPNI_QUEUE_RX, &buf_layout); 2720 if (err) { 2721 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 2722 return err; 2723 } 2724 2725 /* Reserve extra headroom for XDP header size changes */ 2726 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 2727 (has_xdp ? XDP_PACKET_HEADROOM : 0); 2728 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 2729 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2730 DPNI_QUEUE_RX, &buf_layout); 2731 if (err) { 2732 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 2733 return err; 2734 } 2735 2736 return 0; 2737 } 2738 2739 static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) 2740 { 2741 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2742 struct dpaa2_eth_channel *ch; 2743 struct bpf_prog *old; 2744 bool up, need_update; 2745 int i, err; 2746 2747 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 2748 return -EINVAL; 2749 2750 if (prog) 2751 bpf_prog_add(prog, priv->num_channels); 2752 2753 up = netif_running(dev); 2754 need_update = (!!priv->xdp_prog != !!prog); 2755 2756 if (up) 2757 dev_close(dev); 2758 2759 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 2760 * Also, when switching between xdp/non-xdp modes we need to reconfigure 2761 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 2762 * so we are sure no old format buffers will be used from now on. 2763 */ 2764 if (need_update) { 2765 err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); 2766 if (err) 2767 goto out_err; 2768 err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); 2769 if (err) 2770 goto out_err; 2771 } 2772 2773 old = xchg(&priv->xdp_prog, prog); 2774 if (old) 2775 bpf_prog_put(old); 2776 2777 for (i = 0; i < priv->num_channels; i++) { 2778 ch = priv->channel[i]; 2779 old = xchg(&ch->xdp.prog, prog); 2780 if (old) 2781 bpf_prog_put(old); 2782 } 2783 2784 if (up) { 2785 err = dev_open(dev, NULL); 2786 if (err) 2787 return err; 2788 } 2789 2790 return 0; 2791 2792 out_err: 2793 if (prog) 2794 bpf_prog_sub(prog, priv->num_channels); 2795 if (up) 2796 dev_open(dev, NULL); 2797 2798 return err; 2799 } 2800 2801 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2802 { 2803 switch (xdp->command) { 2804 case XDP_SETUP_PROG: 2805 return dpaa2_eth_setup_xdp(dev, xdp->prog); 2806 case XDP_SETUP_XSK_POOL: 2807 return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id); 2808 default: 2809 return -EINVAL; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 2816 struct xdp_frame *xdpf, 2817 struct dpaa2_fd *fd) 2818 { 2819 struct device *dev = net_dev->dev.parent; 2820 unsigned int needed_headroom; 2821 struct dpaa2_eth_swa *swa; 2822 void *buffer_start, *aligned_start; 2823 dma_addr_t addr; 2824 2825 /* We require a minimum headroom to be able to transmit the frame. 2826 * Otherwise return an error and let the original net_device handle it 2827 */ 2828 needed_headroom = dpaa2_eth_needed_headroom(NULL); 2829 if (xdpf->headroom < needed_headroom) 2830 return -EINVAL; 2831 2832 /* Setup the FD fields */ 2833 memset(fd, 0, sizeof(*fd)); 2834 2835 /* Align FD address, if possible */ 2836 buffer_start = xdpf->data - needed_headroom; 2837 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2838 DPAA2_ETH_TX_BUF_ALIGN); 2839 if (aligned_start >= xdpf->data - xdpf->headroom) 2840 buffer_start = aligned_start; 2841 2842 swa = (struct dpaa2_eth_swa *)buffer_start; 2843 /* fill in necessary fields here */ 2844 swa->type = DPAA2_ETH_SWA_XDP; 2845 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2846 swa->xdp.xdpf = xdpf; 2847 2848 addr = dma_map_single(dev, buffer_start, 2849 swa->xdp.dma_size, 2850 DMA_BIDIRECTIONAL); 2851 if (unlikely(dma_mapping_error(dev, addr))) 2852 return -ENOMEM; 2853 2854 dpaa2_fd_set_addr(fd, addr); 2855 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2856 dpaa2_fd_set_len(fd, xdpf->len); 2857 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2858 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2859 2860 return 0; 2861 } 2862 2863 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2864 struct xdp_frame **frames, u32 flags) 2865 { 2866 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2867 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2868 struct rtnl_link_stats64 *percpu_stats; 2869 struct dpaa2_eth_fq *fq; 2870 struct dpaa2_fd *fds; 2871 int enqueued, i, err; 2872 2873 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2874 return -EINVAL; 2875 2876 if (!netif_running(net_dev)) 2877 return -ENETDOWN; 2878 2879 fq = &priv->fq[smp_processor_id()]; 2880 xdp_redirect_fds = &fq->xdp_redirect_fds; 2881 fds = xdp_redirect_fds->fds; 2882 2883 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2884 2885 /* create a FD for each xdp_frame in the list received */ 2886 for (i = 0; i < n; i++) { 2887 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2888 if (err) 2889 break; 2890 } 2891 xdp_redirect_fds->num = i; 2892 2893 /* enqueue all the frame descriptors */ 2894 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2895 2896 /* update statistics */ 2897 percpu_stats->tx_packets += enqueued; 2898 for (i = 0; i < enqueued; i++) 2899 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2900 2901 return enqueued; 2902 } 2903 2904 static int update_xps(struct dpaa2_eth_priv *priv) 2905 { 2906 struct net_device *net_dev = priv->net_dev; 2907 int i, num_queues, netdev_queues; 2908 struct dpaa2_eth_fq *fq; 2909 cpumask_var_t xps_mask; 2910 int err = 0; 2911 2912 if (!alloc_cpumask_var(&xps_mask, GFP_KERNEL)) 2913 return -ENOMEM; 2914 2915 num_queues = dpaa2_eth_queue_count(priv); 2916 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2917 2918 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2919 * queues, so only process those 2920 */ 2921 for (i = 0; i < netdev_queues; i++) { 2922 fq = &priv->fq[i % num_queues]; 2923 2924 cpumask_clear(xps_mask); 2925 cpumask_set_cpu(fq->target_cpu, xps_mask); 2926 2927 err = netif_set_xps_queue(net_dev, xps_mask, i); 2928 if (err) { 2929 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2930 break; 2931 } 2932 } 2933 2934 free_cpumask_var(xps_mask); 2935 return err; 2936 } 2937 2938 static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, 2939 struct tc_mqprio_qopt *mqprio) 2940 { 2941 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2942 u8 num_tc, num_queues; 2943 int i; 2944 2945 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2946 num_queues = dpaa2_eth_queue_count(priv); 2947 num_tc = mqprio->num_tc; 2948 2949 if (num_tc == net_dev->num_tc) 2950 return 0; 2951 2952 if (num_tc > dpaa2_eth_tc_count(priv)) { 2953 netdev_err(net_dev, "Max %d traffic classes supported\n", 2954 dpaa2_eth_tc_count(priv)); 2955 return -EOPNOTSUPP; 2956 } 2957 2958 if (!num_tc) { 2959 netdev_reset_tc(net_dev); 2960 netif_set_real_num_tx_queues(net_dev, num_queues); 2961 goto out; 2962 } 2963 2964 netdev_set_num_tc(net_dev, num_tc); 2965 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2966 2967 for (i = 0; i < num_tc; i++) 2968 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2969 2970 out: 2971 update_xps(priv); 2972 2973 return 0; 2974 } 2975 2976 #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) 2977 2978 static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) 2979 { 2980 struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; 2981 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2982 struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; 2983 struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; 2984 int err; 2985 2986 if (p->command == TC_TBF_STATS) 2987 return -EOPNOTSUPP; 2988 2989 /* Only per port Tx shaping */ 2990 if (p->parent != TC_H_ROOT) 2991 return -EOPNOTSUPP; 2992 2993 if (p->command == TC_TBF_REPLACE) { 2994 if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { 2995 netdev_err(net_dev, "burst size cannot be greater than %d\n", 2996 DPAA2_ETH_MAX_BURST_SIZE); 2997 return -EINVAL; 2998 } 2999 3000 tx_cr_shaper.max_burst_size = cfg->max_size; 3001 /* The TBF interface is in bytes/s, whereas DPAA2 expects the 3002 * rate in Mbits/s 3003 */ 3004 tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); 3005 } 3006 3007 err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, 3008 &tx_er_shaper, 0); 3009 if (err) { 3010 netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); 3011 return err; 3012 } 3013 3014 return 0; 3015 } 3016 3017 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 3018 enum tc_setup_type type, void *type_data) 3019 { 3020 switch (type) { 3021 case TC_SETUP_QDISC_MQPRIO: 3022 return dpaa2_eth_setup_mqprio(net_dev, type_data); 3023 case TC_SETUP_QDISC_TBF: 3024 return dpaa2_eth_setup_tbf(net_dev, type_data); 3025 default: 3026 return -EOPNOTSUPP; 3027 } 3028 } 3029 3030 static const struct net_device_ops dpaa2_eth_ops = { 3031 .ndo_open = dpaa2_eth_open, 3032 .ndo_start_xmit = dpaa2_eth_tx, 3033 .ndo_stop = dpaa2_eth_stop, 3034 .ndo_set_mac_address = dpaa2_eth_set_addr, 3035 .ndo_get_stats64 = dpaa2_eth_get_stats, 3036 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 3037 .ndo_set_features = dpaa2_eth_set_features, 3038 .ndo_eth_ioctl = dpaa2_eth_ioctl, 3039 .ndo_change_mtu = dpaa2_eth_change_mtu, 3040 .ndo_bpf = dpaa2_eth_xdp, 3041 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 3042 .ndo_xsk_wakeup = dpaa2_xsk_wakeup, 3043 .ndo_setup_tc = dpaa2_eth_setup_tc, 3044 .ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid, 3045 .ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid, 3046 .ndo_hwtstamp_get = dpaa2_eth_hwtstamp_get, 3047 .ndo_hwtstamp_set = dpaa2_eth_hwtstamp_set, 3048 }; 3049 3050 static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) 3051 { 3052 struct dpaa2_eth_channel *ch; 3053 3054 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 3055 3056 /* Update NAPI statistics */ 3057 ch->stats.cdan++; 3058 3059 /* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed 3060 * so that it can be rescheduled again. 3061 */ 3062 if (!napi_if_scheduled_mark_missed(&ch->napi)) 3063 napi_schedule(&ch->napi); 3064 } 3065 3066 /* Allocate and configure a DPCON object */ 3067 static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) 3068 { 3069 struct fsl_mc_device *dpcon; 3070 struct device *dev = priv->net_dev->dev.parent; 3071 int err; 3072 3073 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 3074 FSL_MC_POOL_DPCON, &dpcon); 3075 if (err) { 3076 if (err == -ENXIO) { 3077 dev_dbg(dev, "Waiting for DPCON\n"); 3078 err = -EPROBE_DEFER; 3079 } else { 3080 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 3081 } 3082 return ERR_PTR(err); 3083 } 3084 3085 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 3086 if (err) { 3087 dev_err(dev, "dpcon_open() failed\n"); 3088 goto free; 3089 } 3090 3091 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 3092 if (err) { 3093 dev_err(dev, "dpcon_reset() failed\n"); 3094 goto close; 3095 } 3096 3097 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 3098 if (err) { 3099 dev_err(dev, "dpcon_enable() failed\n"); 3100 goto close; 3101 } 3102 3103 return dpcon; 3104 3105 close: 3106 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3107 free: 3108 fsl_mc_object_free(dpcon); 3109 3110 return ERR_PTR(err); 3111 } 3112 3113 static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, 3114 struct fsl_mc_device *dpcon) 3115 { 3116 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 3117 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3118 fsl_mc_object_free(dpcon); 3119 } 3120 3121 static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) 3122 { 3123 struct dpaa2_eth_channel *channel; 3124 struct dpcon_attr attr; 3125 struct device *dev = priv->net_dev->dev.parent; 3126 int err; 3127 3128 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 3129 if (!channel) 3130 return NULL; 3131 3132 channel->dpcon = dpaa2_eth_setup_dpcon(priv); 3133 if (IS_ERR(channel->dpcon)) { 3134 err = PTR_ERR(channel->dpcon); 3135 goto err_setup; 3136 } 3137 3138 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 3139 &attr); 3140 if (err) { 3141 dev_err(dev, "dpcon_get_attributes() failed\n"); 3142 goto err_get_attr; 3143 } 3144 3145 channel->dpcon_id = attr.id; 3146 channel->ch_id = attr.qbman_ch_id; 3147 channel->priv = priv; 3148 3149 return channel; 3150 3151 err_get_attr: 3152 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3153 err_setup: 3154 kfree(channel); 3155 return ERR_PTR(err); 3156 } 3157 3158 static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, 3159 struct dpaa2_eth_channel *channel) 3160 { 3161 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3162 kfree(channel); 3163 } 3164 3165 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 3166 * and register data availability notifications 3167 */ 3168 static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) 3169 { 3170 struct dpaa2_io_notification_ctx *nctx; 3171 struct dpaa2_eth_channel *channel; 3172 struct dpcon_notification_cfg dpcon_notif_cfg; 3173 struct device *dev = priv->net_dev->dev.parent; 3174 int i, err; 3175 3176 /* We want the ability to spread ingress traffic (RX, TX conf) to as 3177 * many cores as possible, so we need one channel for each core 3178 * (unless there's fewer queues than cores, in which case the extra 3179 * channels would be wasted). 3180 * Allocate one channel per core and register it to the core's 3181 * affine DPIO. If not enough channels are available for all cores 3182 * or if some cores don't have an affine DPIO, there will be no 3183 * ingress frame processing on those cores. 3184 */ 3185 cpumask_clear(&priv->dpio_cpumask); 3186 for_each_online_cpu(i) { 3187 /* Try to allocate a channel */ 3188 channel = dpaa2_eth_alloc_channel(priv); 3189 if (IS_ERR_OR_NULL(channel)) { 3190 err = PTR_ERR_OR_ZERO(channel); 3191 if (err == -EPROBE_DEFER) 3192 dev_dbg(dev, "waiting for affine channel\n"); 3193 else 3194 dev_info(dev, 3195 "No affine channel for cpu %d and above\n", i); 3196 goto err_alloc_ch; 3197 } 3198 3199 priv->channel[priv->num_channels] = channel; 3200 3201 nctx = &channel->nctx; 3202 nctx->is_cdan = 1; 3203 nctx->cb = dpaa2_eth_cdan_cb; 3204 nctx->id = channel->ch_id; 3205 nctx->desired_cpu = i; 3206 3207 /* Register the new context */ 3208 channel->dpio = dpaa2_io_service_select(i); 3209 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 3210 if (err) { 3211 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 3212 /* If no affine DPIO for this core, there's probably 3213 * none available for next cores either. Signal we want 3214 * to retry later, in case the DPIO devices weren't 3215 * probed yet. 3216 */ 3217 err = -EPROBE_DEFER; 3218 goto err_service_reg; 3219 } 3220 3221 /* Register DPCON notification with MC */ 3222 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 3223 dpcon_notif_cfg.priority = 0; 3224 dpcon_notif_cfg.user_ctx = nctx->qman64; 3225 err = dpcon_set_notification(priv->mc_io, 0, 3226 channel->dpcon->mc_handle, 3227 &dpcon_notif_cfg); 3228 if (err) { 3229 dev_err(dev, "dpcon_set_notification failed()\n"); 3230 goto err_set_cdan; 3231 } 3232 3233 /* If we managed to allocate a channel and also found an affine 3234 * DPIO for this core, add it to the final mask 3235 */ 3236 cpumask_set_cpu(i, &priv->dpio_cpumask); 3237 priv->num_channels++; 3238 3239 /* Stop if we already have enough channels to accommodate all 3240 * RX and TX conf queues 3241 */ 3242 if (priv->num_channels == priv->dpni_attrs.num_queues) 3243 break; 3244 } 3245 3246 return 0; 3247 3248 err_set_cdan: 3249 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3250 err_service_reg: 3251 dpaa2_eth_free_channel(priv, channel); 3252 err_alloc_ch: 3253 if (err == -EPROBE_DEFER) { 3254 for (i = 0; i < priv->num_channels; i++) { 3255 channel = priv->channel[i]; 3256 nctx = &channel->nctx; 3257 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3258 dpaa2_eth_free_channel(priv, channel); 3259 } 3260 priv->num_channels = 0; 3261 return err; 3262 } 3263 3264 if (cpumask_empty(&priv->dpio_cpumask)) { 3265 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 3266 return -ENODEV; 3267 } 3268 3269 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 3270 cpumask_pr_args(&priv->dpio_cpumask)); 3271 3272 return 0; 3273 } 3274 3275 static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) 3276 { 3277 struct device *dev = priv->net_dev->dev.parent; 3278 struct dpaa2_eth_channel *ch; 3279 int i; 3280 3281 /* deregister CDAN notifications and free channels */ 3282 for (i = 0; i < priv->num_channels; i++) { 3283 ch = priv->channel[i]; 3284 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 3285 dpaa2_eth_free_channel(priv, ch); 3286 } 3287 } 3288 3289 static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, 3290 int cpu) 3291 { 3292 struct device *dev = priv->net_dev->dev.parent; 3293 int i; 3294 3295 for (i = 0; i < priv->num_channels; i++) 3296 if (priv->channel[i]->nctx.desired_cpu == cpu) 3297 return priv->channel[i]; 3298 3299 /* We should never get here. Issue a warning and return 3300 * the first channel, because it's still better than nothing 3301 */ 3302 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 3303 3304 return priv->channel[0]; 3305 } 3306 3307 static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) 3308 { 3309 struct device *dev = priv->net_dev->dev.parent; 3310 struct dpaa2_eth_fq *fq; 3311 int rx_cpu, txc_cpu; 3312 int i; 3313 3314 /* For each FQ, pick one channel/CPU to deliver frames to. 3315 * This may well change at runtime, either through irqbalance or 3316 * through direct user intervention. 3317 */ 3318 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 3319 3320 for (i = 0; i < priv->num_fqs; i++) { 3321 fq = &priv->fq[i]; 3322 switch (fq->type) { 3323 case DPAA2_RX_FQ: 3324 case DPAA2_RX_ERR_FQ: 3325 fq->target_cpu = rx_cpu; 3326 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 3327 if (rx_cpu >= nr_cpu_ids) 3328 rx_cpu = cpumask_first(&priv->dpio_cpumask); 3329 break; 3330 case DPAA2_TX_CONF_FQ: 3331 fq->target_cpu = txc_cpu; 3332 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 3333 if (txc_cpu >= nr_cpu_ids) 3334 txc_cpu = cpumask_first(&priv->dpio_cpumask); 3335 break; 3336 default: 3337 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 3338 } 3339 fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); 3340 } 3341 3342 update_xps(priv); 3343 } 3344 3345 static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) 3346 { 3347 int i, j; 3348 3349 /* We have one TxConf FQ per Tx flow. 3350 * The number of Tx and Rx queues is the same. 3351 * Tx queues come first in the fq array. 3352 */ 3353 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3354 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 3355 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 3356 priv->fq[priv->num_fqs++].flowid = (u16)i; 3357 } 3358 3359 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3360 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3361 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 3362 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 3363 priv->fq[priv->num_fqs].tc = (u8)j; 3364 priv->fq[priv->num_fqs++].flowid = (u16)i; 3365 } 3366 } 3367 3368 /* We have exactly one Rx error queue per DPNI */ 3369 priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ; 3370 priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err; 3371 3372 /* For each FQ, decide on which core to process incoming frames */ 3373 dpaa2_eth_set_fq_affinity(priv); 3374 } 3375 3376 /* Allocate and configure a buffer pool */ 3377 struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv) 3378 { 3379 struct device *dev = priv->net_dev->dev.parent; 3380 struct fsl_mc_device *dpbp_dev; 3381 struct dpbp_attr dpbp_attrs; 3382 struct dpaa2_eth_bp *bp; 3383 int err; 3384 3385 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 3386 &dpbp_dev); 3387 if (err) { 3388 if (err == -ENXIO) 3389 err = -EPROBE_DEFER; 3390 else 3391 dev_err(dev, "DPBP device allocation failed\n"); 3392 return ERR_PTR(err); 3393 } 3394 3395 bp = kzalloc(sizeof(*bp), GFP_KERNEL); 3396 if (!bp) { 3397 err = -ENOMEM; 3398 goto err_alloc; 3399 } 3400 3401 err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id, 3402 &dpbp_dev->mc_handle); 3403 if (err) { 3404 dev_err(dev, "dpbp_open() failed\n"); 3405 goto err_open; 3406 } 3407 3408 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 3409 if (err) { 3410 dev_err(dev, "dpbp_reset() failed\n"); 3411 goto err_reset; 3412 } 3413 3414 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 3415 if (err) { 3416 dev_err(dev, "dpbp_enable() failed\n"); 3417 goto err_enable; 3418 } 3419 3420 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 3421 &dpbp_attrs); 3422 if (err) { 3423 dev_err(dev, "dpbp_get_attributes() failed\n"); 3424 goto err_get_attr; 3425 } 3426 3427 bp->dev = dpbp_dev; 3428 bp->bpid = dpbp_attrs.bpid; 3429 3430 return bp; 3431 3432 err_get_attr: 3433 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 3434 err_enable: 3435 err_reset: 3436 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 3437 err_open: 3438 kfree(bp); 3439 err_alloc: 3440 fsl_mc_object_free(dpbp_dev); 3441 3442 return ERR_PTR(err); 3443 } 3444 3445 static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv) 3446 { 3447 struct dpaa2_eth_bp *bp; 3448 int i; 3449 3450 bp = dpaa2_eth_allocate_dpbp(priv); 3451 if (IS_ERR(bp)) 3452 return PTR_ERR(bp); 3453 3454 priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp; 3455 priv->num_bps++; 3456 3457 for (i = 0; i < priv->num_channels; i++) 3458 priv->channel[i]->bp = bp; 3459 3460 return 0; 3461 } 3462 3463 void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp) 3464 { 3465 int idx_bp; 3466 3467 /* Find the index at which this BP is stored */ 3468 for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++) 3469 if (priv->bp[idx_bp] == bp) 3470 break; 3471 3472 /* Drain the pool and disable the associated MC object */ 3473 dpaa2_eth_drain_pool(priv, bp->bpid); 3474 dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle); 3475 dpbp_close(priv->mc_io, 0, bp->dev->mc_handle); 3476 fsl_mc_object_free(bp->dev); 3477 kfree(bp); 3478 3479 /* Move the last in use DPBP over in this position */ 3480 priv->bp[idx_bp] = priv->bp[priv->num_bps - 1]; 3481 priv->num_bps--; 3482 } 3483 3484 static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv) 3485 { 3486 int i; 3487 3488 for (i = 0; i < priv->num_bps; i++) 3489 dpaa2_eth_free_dpbp(priv, priv->bp[i]); 3490 } 3491 3492 static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) 3493 { 3494 struct device *dev = priv->net_dev->dev.parent; 3495 struct dpni_buffer_layout buf_layout = {0}; 3496 u16 rx_buf_align; 3497 int err; 3498 3499 /* We need to check for WRIOP version 1.0.0, but depending on the MC 3500 * version, this number is not always provided correctly on rev1. 3501 * We need to check for both alternatives in this situation. 3502 */ 3503 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 3504 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 3505 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 3506 else 3507 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 3508 3509 /* We need to ensure that the buffer size seen by WRIOP is a multiple 3510 * of 64 or 256 bytes depending on the WRIOP version. 3511 */ 3512 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 3513 3514 /* tx buffer */ 3515 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 3516 buf_layout.pass_timestamp = true; 3517 buf_layout.pass_frame_status = true; 3518 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 3519 DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3520 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3521 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3522 DPNI_QUEUE_TX, &buf_layout); 3523 if (err) { 3524 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 3525 return err; 3526 } 3527 3528 /* tx-confirm buffer */ 3529 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3530 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3531 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3532 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 3533 if (err) { 3534 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 3535 return err; 3536 } 3537 3538 /* Now that we've set our tx buffer layout, retrieve the minimum 3539 * required tx data offset. 3540 */ 3541 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 3542 &priv->tx_data_offset); 3543 if (err) { 3544 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 3545 return err; 3546 } 3547 3548 if ((priv->tx_data_offset % 64) != 0) 3549 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 3550 priv->tx_data_offset); 3551 3552 /* rx buffer */ 3553 buf_layout.pass_frame_status = true; 3554 buf_layout.pass_parser_result = true; 3555 buf_layout.data_align = rx_buf_align; 3556 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 3557 buf_layout.private_data_size = 0; 3558 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 3559 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 3560 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 3561 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 3562 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 3563 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3564 DPNI_QUEUE_RX, &buf_layout); 3565 if (err) { 3566 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 3567 return err; 3568 } 3569 3570 return 0; 3571 } 3572 3573 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 3574 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 3575 3576 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 3577 struct dpaa2_eth_fq *fq, 3578 struct dpaa2_fd *fd, u8 prio, 3579 u32 num_frames __always_unused, 3580 int *frames_enqueued) 3581 { 3582 int err; 3583 3584 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 3585 priv->tx_qdid, prio, 3586 fq->tx_qdbin, fd); 3587 if (!err && frames_enqueued) 3588 *frames_enqueued = 1; 3589 return err; 3590 } 3591 3592 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 3593 struct dpaa2_eth_fq *fq, 3594 struct dpaa2_fd *fd, 3595 u8 prio, u32 num_frames, 3596 int *frames_enqueued) 3597 { 3598 int err; 3599 3600 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 3601 fq->tx_fqid[prio], 3602 fd, num_frames); 3603 3604 if (err == 0) 3605 return -EBUSY; 3606 3607 if (frames_enqueued) 3608 *frames_enqueued = err; 3609 return 0; 3610 } 3611 3612 static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) 3613 { 3614 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3615 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3616 priv->enqueue = dpaa2_eth_enqueue_qd; 3617 else 3618 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3619 } 3620 3621 static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) 3622 { 3623 struct device *dev = priv->net_dev->dev.parent; 3624 struct dpni_link_cfg link_cfg = {0}; 3625 int err; 3626 3627 /* Get the default link options so we don't override other flags */ 3628 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3629 if (err) { 3630 dev_err(dev, "dpni_get_link_cfg() failed\n"); 3631 return err; 3632 } 3633 3634 /* By default, enable both Rx and Tx pause frames */ 3635 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 3636 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 3637 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3638 if (err) { 3639 dev_err(dev, "dpni_set_link_cfg() failed\n"); 3640 return err; 3641 } 3642 3643 priv->link_state.options = link_cfg.options; 3644 3645 return 0; 3646 } 3647 3648 static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) 3649 { 3650 struct dpni_queue_id qid = {0}; 3651 struct dpaa2_eth_fq *fq; 3652 struct dpni_queue queue; 3653 int i, j, err; 3654 3655 /* We only use Tx FQIDs for FQID-based enqueue, so check 3656 * if DPNI version supports it before updating FQIDs 3657 */ 3658 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3659 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3660 return; 3661 3662 for (i = 0; i < priv->num_fqs; i++) { 3663 fq = &priv->fq[i]; 3664 if (fq->type != DPAA2_TX_CONF_FQ) 3665 continue; 3666 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3667 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3668 DPNI_QUEUE_TX, j, fq->flowid, 3669 &queue, &qid); 3670 if (err) 3671 goto out_err; 3672 3673 fq->tx_fqid[j] = qid.fqid; 3674 if (fq->tx_fqid[j] == 0) 3675 goto out_err; 3676 } 3677 } 3678 3679 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3680 3681 return; 3682 3683 out_err: 3684 netdev_info(priv->net_dev, 3685 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 3686 priv->enqueue = dpaa2_eth_enqueue_qd; 3687 } 3688 3689 /* Configure ingress classification based on VLAN PCP */ 3690 static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) 3691 { 3692 struct device *dev = priv->net_dev->dev.parent; 3693 struct dpkg_profile_cfg kg_cfg = {0}; 3694 struct dpni_qos_tbl_cfg qos_cfg = {0}; 3695 struct dpni_rule_cfg key_params; 3696 void *dma_mem, *key, *mask; 3697 u8 key_size = 2; /* VLAN TCI field */ 3698 int i, pcp, err; 3699 3700 /* VLAN-based classification only makes sense if we have multiple 3701 * traffic classes. 3702 * Also, we need to extract just the 3-bit PCP field from the VLAN 3703 * header and we can only do that by using a mask 3704 */ 3705 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 3706 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 3707 return -EOPNOTSUPP; 3708 } 3709 3710 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3711 if (!dma_mem) 3712 return -ENOMEM; 3713 3714 kg_cfg.num_extracts = 1; 3715 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 3716 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 3717 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 3718 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 3719 3720 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 3721 if (err) { 3722 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 3723 goto out_free_tbl; 3724 } 3725 3726 /* set QoS table */ 3727 qos_cfg.default_tc = 0; 3728 qos_cfg.discard_on_miss = 0; 3729 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 3730 DPAA2_CLASSIFIER_DMA_SIZE, 3731 DMA_TO_DEVICE); 3732 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 3733 dev_err(dev, "QoS table DMA mapping failed\n"); 3734 err = -ENOMEM; 3735 goto out_free_tbl; 3736 } 3737 3738 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 3739 if (err) { 3740 dev_err(dev, "dpni_set_qos_table failed\n"); 3741 goto out_unmap_tbl; 3742 } 3743 3744 /* Add QoS table entries */ 3745 key = kzalloc(key_size * 2, GFP_KERNEL); 3746 if (!key) { 3747 err = -ENOMEM; 3748 goto out_unmap_tbl; 3749 } 3750 mask = key + key_size; 3751 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 3752 3753 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 3754 DMA_TO_DEVICE); 3755 if (dma_mapping_error(dev, key_params.key_iova)) { 3756 dev_err(dev, "Qos table entry DMA mapping failed\n"); 3757 err = -ENOMEM; 3758 goto out_free_key; 3759 } 3760 3761 key_params.mask_iova = key_params.key_iova + key_size; 3762 key_params.key_size = key_size; 3763 3764 /* We add rules for PCP-based distribution starting with highest 3765 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 3766 * classes to accommodate all priority levels, the lowest ones end up 3767 * on TC 0 which was configured as default 3768 */ 3769 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 3770 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 3771 dma_sync_single_for_device(dev, key_params.key_iova, 3772 key_size * 2, DMA_TO_DEVICE); 3773 3774 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 3775 &key_params, i, i); 3776 if (err) { 3777 dev_err(dev, "dpni_add_qos_entry failed\n"); 3778 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 3779 goto out_unmap_key; 3780 } 3781 } 3782 3783 priv->vlan_cls_enabled = true; 3784 3785 /* Table and key memory is not persistent, clean everything up after 3786 * configuration is finished 3787 */ 3788 out_unmap_key: 3789 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 3790 out_free_key: 3791 kfree(key); 3792 out_unmap_tbl: 3793 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3794 DMA_TO_DEVICE); 3795 out_free_tbl: 3796 kfree(dma_mem); 3797 3798 return err; 3799 } 3800 3801 /* Configure the DPNI object this interface is associated with */ 3802 static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) 3803 { 3804 struct device *dev = &ls_dev->dev; 3805 struct dpaa2_eth_priv *priv; 3806 struct net_device *net_dev; 3807 int err; 3808 3809 net_dev = dev_get_drvdata(dev); 3810 priv = netdev_priv(net_dev); 3811 3812 /* get a handle for the DPNI object */ 3813 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 3814 if (err) { 3815 dev_err(dev, "dpni_open() failed\n"); 3816 return err; 3817 } 3818 3819 /* Check if we can work with this DPNI object */ 3820 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 3821 &priv->dpni_ver_minor); 3822 if (err) { 3823 dev_err(dev, "dpni_get_api_version() failed\n"); 3824 goto close; 3825 } 3826 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 3827 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 3828 priv->dpni_ver_major, priv->dpni_ver_minor, 3829 DPNI_VER_MAJOR, DPNI_VER_MINOR); 3830 err = -EOPNOTSUPP; 3831 goto close; 3832 } 3833 3834 ls_dev->mc_io = priv->mc_io; 3835 ls_dev->mc_handle = priv->mc_token; 3836 3837 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3838 if (err) { 3839 dev_err(dev, "dpni_reset() failed\n"); 3840 goto close; 3841 } 3842 3843 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 3844 &priv->dpni_attrs); 3845 if (err) { 3846 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 3847 goto close; 3848 } 3849 3850 err = dpaa2_eth_set_buffer_layout(priv); 3851 if (err) 3852 goto close; 3853 3854 dpaa2_eth_set_enqueue_mode(priv); 3855 3856 /* Enable pause frame support */ 3857 if (dpaa2_eth_has_pause_support(priv)) { 3858 err = dpaa2_eth_set_pause(priv); 3859 if (err) 3860 goto close; 3861 } 3862 3863 err = dpaa2_eth_set_vlan_qos(priv); 3864 if (err && err != -EOPNOTSUPP) 3865 goto close; 3866 3867 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 3868 sizeof(struct dpaa2_eth_cls_rule), 3869 GFP_KERNEL); 3870 if (!priv->cls_rules) { 3871 err = -ENOMEM; 3872 goto close; 3873 } 3874 3875 return 0; 3876 3877 close: 3878 dpni_close(priv->mc_io, 0, priv->mc_token); 3879 3880 return err; 3881 } 3882 3883 static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) 3884 { 3885 int err; 3886 3887 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3888 if (err) 3889 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 3890 err); 3891 3892 dpni_close(priv->mc_io, 0, priv->mc_token); 3893 } 3894 3895 static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, 3896 struct dpaa2_eth_fq *fq) 3897 { 3898 struct device *dev = priv->net_dev->dev.parent; 3899 struct dpni_queue queue; 3900 struct dpni_queue_id qid; 3901 int err; 3902 3903 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3904 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 3905 if (err) { 3906 dev_err(dev, "dpni_get_queue(RX) failed\n"); 3907 return err; 3908 } 3909 3910 fq->fqid = qid.fqid; 3911 3912 queue.destination.id = fq->channel->dpcon_id; 3913 queue.destination.type = DPNI_DEST_DPCON; 3914 queue.destination.priority = 1; 3915 queue.user_context = (u64)(uintptr_t)fq; 3916 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3917 DPNI_QUEUE_RX, fq->tc, fq->flowid, 3918 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3919 &queue); 3920 if (err) { 3921 dev_err(dev, "dpni_set_queue(RX) failed\n"); 3922 return err; 3923 } 3924 3925 /* xdp_rxq setup */ 3926 /* only once for each channel */ 3927 if (fq->tc > 0) 3928 return 0; 3929 3930 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 3931 fq->flowid, 0); 3932 if (err) { 3933 dev_err(dev, "xdp_rxq_info_reg failed\n"); 3934 return err; 3935 } 3936 3937 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 3938 MEM_TYPE_PAGE_ORDER0, NULL); 3939 if (err) { 3940 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 3941 xdp_rxq_info_unreg(&fq->channel->xdp_rxq); 3942 return err; 3943 } 3944 3945 return 0; 3946 } 3947 3948 static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, 3949 struct dpaa2_eth_fq *fq) 3950 { 3951 struct device *dev = priv->net_dev->dev.parent; 3952 struct dpni_queue queue; 3953 struct dpni_queue_id qid; 3954 int i, err; 3955 3956 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3957 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3958 DPNI_QUEUE_TX, i, fq->flowid, 3959 &queue, &qid); 3960 if (err) { 3961 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3962 return err; 3963 } 3964 fq->tx_fqid[i] = qid.fqid; 3965 } 3966 3967 /* All Tx queues belonging to the same flowid have the same qdbin */ 3968 fq->tx_qdbin = qid.qdbin; 3969 3970 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3971 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3972 &queue, &qid); 3973 if (err) { 3974 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3975 return err; 3976 } 3977 3978 fq->fqid = qid.fqid; 3979 3980 queue.destination.id = fq->channel->dpcon_id; 3981 queue.destination.type = DPNI_DEST_DPCON; 3982 queue.destination.priority = 0; 3983 queue.user_context = (u64)(uintptr_t)fq; 3984 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3985 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3986 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3987 &queue); 3988 if (err) { 3989 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3990 return err; 3991 } 3992 3993 return 0; 3994 } 3995 3996 static int setup_rx_err_flow(struct dpaa2_eth_priv *priv, 3997 struct dpaa2_eth_fq *fq) 3998 { 3999 struct device *dev = priv->net_dev->dev.parent; 4000 struct dpni_queue q = { { 0 } }; 4001 struct dpni_queue_id qid; 4002 u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST; 4003 int err; 4004 4005 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 4006 DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid); 4007 if (err) { 4008 dev_err(dev, "dpni_get_queue() failed (%d)\n", err); 4009 return err; 4010 } 4011 4012 fq->fqid = qid.fqid; 4013 4014 q.destination.id = fq->channel->dpcon_id; 4015 q.destination.type = DPNI_DEST_DPCON; 4016 q.destination.priority = 1; 4017 q.user_context = (u64)(uintptr_t)fq; 4018 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 4019 DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q); 4020 if (err) { 4021 dev_err(dev, "dpni_set_queue() failed (%d)\n", err); 4022 return err; 4023 } 4024 4025 return 0; 4026 } 4027 4028 /* Supported header fields for Rx hash distribution key */ 4029 static const struct dpaa2_eth_dist_fields dist_fields[] = { 4030 { 4031 /* L2 header */ 4032 .rxnfc_field = RXH_L2DA, 4033 .cls_prot = NET_PROT_ETH, 4034 .cls_field = NH_FLD_ETH_DA, 4035 .id = DPAA2_ETH_DIST_ETHDST, 4036 .size = 6, 4037 }, { 4038 .cls_prot = NET_PROT_ETH, 4039 .cls_field = NH_FLD_ETH_SA, 4040 .id = DPAA2_ETH_DIST_ETHSRC, 4041 .size = 6, 4042 }, { 4043 /* This is the last ethertype field parsed: 4044 * depending on frame format, it can be the MAC ethertype 4045 * or the VLAN etype. 4046 */ 4047 .cls_prot = NET_PROT_ETH, 4048 .cls_field = NH_FLD_ETH_TYPE, 4049 .id = DPAA2_ETH_DIST_ETHTYPE, 4050 .size = 2, 4051 }, { 4052 /* VLAN header */ 4053 .rxnfc_field = RXH_VLAN, 4054 .cls_prot = NET_PROT_VLAN, 4055 .cls_field = NH_FLD_VLAN_TCI, 4056 .id = DPAA2_ETH_DIST_VLAN, 4057 .size = 2, 4058 }, { 4059 /* IP header */ 4060 .rxnfc_field = RXH_IP_SRC, 4061 .cls_prot = NET_PROT_IP, 4062 .cls_field = NH_FLD_IP_SRC, 4063 .id = DPAA2_ETH_DIST_IPSRC, 4064 .size = 4, 4065 }, { 4066 .rxnfc_field = RXH_IP_DST, 4067 .cls_prot = NET_PROT_IP, 4068 .cls_field = NH_FLD_IP_DST, 4069 .id = DPAA2_ETH_DIST_IPDST, 4070 .size = 4, 4071 }, { 4072 .rxnfc_field = RXH_L3_PROTO, 4073 .cls_prot = NET_PROT_IP, 4074 .cls_field = NH_FLD_IP_PROTO, 4075 .id = DPAA2_ETH_DIST_IPPROTO, 4076 .size = 1, 4077 }, { 4078 /* Using UDP ports, this is functionally equivalent to raw 4079 * byte pairs from L4 header. 4080 */ 4081 .rxnfc_field = RXH_L4_B_0_1, 4082 .cls_prot = NET_PROT_UDP, 4083 .cls_field = NH_FLD_UDP_PORT_SRC, 4084 .id = DPAA2_ETH_DIST_L4SRC, 4085 .size = 2, 4086 }, { 4087 .rxnfc_field = RXH_L4_B_2_3, 4088 .cls_prot = NET_PROT_UDP, 4089 .cls_field = NH_FLD_UDP_PORT_DST, 4090 .id = DPAA2_ETH_DIST_L4DST, 4091 .size = 2, 4092 }, 4093 }; 4094 4095 /* Configure the Rx hash key using the legacy API */ 4096 static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4097 { 4098 struct device *dev = priv->net_dev->dev.parent; 4099 struct dpni_rx_tc_dist_cfg dist_cfg; 4100 int i, err = 0; 4101 4102 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4103 4104 dist_cfg.key_cfg_iova = key; 4105 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4106 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 4107 4108 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4109 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 4110 i, &dist_cfg); 4111 if (err) { 4112 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 4113 break; 4114 } 4115 } 4116 4117 return err; 4118 } 4119 4120 /* Configure the Rx hash key using the new API */ 4121 static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4122 { 4123 struct device *dev = priv->net_dev->dev.parent; 4124 struct dpni_rx_dist_cfg dist_cfg; 4125 int i, err = 0; 4126 4127 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4128 4129 dist_cfg.key_cfg_iova = key; 4130 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4131 dist_cfg.enable = 1; 4132 4133 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4134 dist_cfg.tc = i; 4135 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 4136 &dist_cfg); 4137 if (err) { 4138 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 4139 break; 4140 } 4141 4142 /* If the flow steering / hashing key is shared between all 4143 * traffic classes, install it just once 4144 */ 4145 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4146 break; 4147 } 4148 4149 return err; 4150 } 4151 4152 /* Configure the Rx flow classification key */ 4153 static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4154 { 4155 struct device *dev = priv->net_dev->dev.parent; 4156 struct dpni_rx_dist_cfg dist_cfg; 4157 int i, err = 0; 4158 4159 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4160 4161 dist_cfg.key_cfg_iova = key; 4162 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4163 dist_cfg.enable = 1; 4164 4165 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4166 dist_cfg.tc = i; 4167 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 4168 &dist_cfg); 4169 if (err) { 4170 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 4171 break; 4172 } 4173 4174 /* If the flow steering / hashing key is shared between all 4175 * traffic classes, install it just once 4176 */ 4177 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4178 break; 4179 } 4180 4181 return err; 4182 } 4183 4184 /* Size of the Rx flow classification key */ 4185 int dpaa2_eth_cls_key_size(u64 fields) 4186 { 4187 int i, size = 0; 4188 4189 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4190 if (!(fields & dist_fields[i].id)) 4191 continue; 4192 size += dist_fields[i].size; 4193 } 4194 4195 return size; 4196 } 4197 4198 /* Offset of header field in Rx classification key */ 4199 int dpaa2_eth_cls_fld_off(int prot, int field) 4200 { 4201 int i, off = 0; 4202 4203 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4204 if (dist_fields[i].cls_prot == prot && 4205 dist_fields[i].cls_field == field) 4206 return off; 4207 off += dist_fields[i].size; 4208 } 4209 4210 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 4211 return 0; 4212 } 4213 4214 /* Prune unused fields from the classification rule. 4215 * Used when masking is not supported 4216 */ 4217 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 4218 { 4219 int off = 0, new_off = 0; 4220 int i, size; 4221 4222 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4223 size = dist_fields[i].size; 4224 if (dist_fields[i].id & fields) { 4225 memcpy(key_mem + new_off, key_mem + off, size); 4226 new_off += size; 4227 } 4228 off += size; 4229 } 4230 } 4231 4232 /* Set Rx distribution (hash or flow classification) key 4233 * flags is a combination of RXH_ bits 4234 */ 4235 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 4236 enum dpaa2_eth_rx_dist type, u64 flags) 4237 { 4238 struct device *dev = net_dev->dev.parent; 4239 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4240 struct dpkg_profile_cfg cls_cfg; 4241 u32 rx_hash_fields = 0; 4242 dma_addr_t key_iova; 4243 u8 *dma_mem; 4244 int i; 4245 int err = 0; 4246 4247 memset(&cls_cfg, 0, sizeof(cls_cfg)); 4248 4249 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4250 struct dpkg_extract *key = 4251 &cls_cfg.extracts[cls_cfg.num_extracts]; 4252 4253 /* For both Rx hashing and classification keys 4254 * we set only the selected fields. 4255 */ 4256 if (!(flags & dist_fields[i].id)) 4257 continue; 4258 if (type == DPAA2_ETH_RX_DIST_HASH) 4259 rx_hash_fields |= dist_fields[i].rxnfc_field; 4260 4261 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 4262 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 4263 return -E2BIG; 4264 } 4265 4266 key->type = DPKG_EXTRACT_FROM_HDR; 4267 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 4268 key->extract.from_hdr.type = DPKG_FULL_FIELD; 4269 key->extract.from_hdr.field = dist_fields[i].cls_field; 4270 cls_cfg.num_extracts++; 4271 } 4272 4273 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 4274 if (!dma_mem) 4275 return -ENOMEM; 4276 4277 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 4278 if (err) { 4279 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 4280 goto free_key; 4281 } 4282 4283 /* Prepare for setting the rx dist */ 4284 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 4285 DMA_TO_DEVICE); 4286 if (dma_mapping_error(dev, key_iova)) { 4287 dev_err(dev, "DMA mapping failed\n"); 4288 err = -ENOMEM; 4289 goto free_key; 4290 } 4291 4292 if (type == DPAA2_ETH_RX_DIST_HASH) { 4293 if (dpaa2_eth_has_legacy_dist(priv)) 4294 err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); 4295 else 4296 err = dpaa2_eth_config_hash_key(priv, key_iova); 4297 } else { 4298 err = dpaa2_eth_config_cls_key(priv, key_iova); 4299 } 4300 4301 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 4302 DMA_TO_DEVICE); 4303 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 4304 priv->rx_hash_fields = rx_hash_fields; 4305 4306 free_key: 4307 kfree(dma_mem); 4308 return err; 4309 } 4310 4311 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 4312 { 4313 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4314 u64 key = 0; 4315 int i; 4316 4317 if (!dpaa2_eth_hash_enabled(priv)) 4318 return -EOPNOTSUPP; 4319 4320 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 4321 if (dist_fields[i].rxnfc_field & flags) 4322 key |= dist_fields[i].id; 4323 4324 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 4325 } 4326 4327 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 4328 { 4329 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 4330 } 4331 4332 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 4333 { 4334 struct device *dev = priv->net_dev->dev.parent; 4335 int err; 4336 4337 /* Check if we actually support Rx flow classification */ 4338 if (dpaa2_eth_has_legacy_dist(priv)) { 4339 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 4340 return -EOPNOTSUPP; 4341 } 4342 4343 if (!dpaa2_eth_fs_enabled(priv)) { 4344 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 4345 return -EOPNOTSUPP; 4346 } 4347 4348 if (!dpaa2_eth_hash_enabled(priv)) { 4349 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 4350 return -EOPNOTSUPP; 4351 } 4352 4353 /* If there is no support for masking in the classification table, 4354 * we don't set a default key, as it will depend on the rules 4355 * added by the user at runtime. 4356 */ 4357 if (!dpaa2_eth_fs_mask_enabled(priv)) 4358 goto out; 4359 4360 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 4361 if (err) 4362 return err; 4363 4364 out: 4365 priv->rx_cls_enabled = 1; 4366 4367 return 0; 4368 } 4369 4370 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 4371 * frame queues and channels 4372 */ 4373 static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) 4374 { 4375 struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX]; 4376 struct net_device *net_dev = priv->net_dev; 4377 struct dpni_pools_cfg pools_params = { 0 }; 4378 struct device *dev = net_dev->dev.parent; 4379 struct dpni_error_cfg err_cfg; 4380 int err = 0; 4381 int i; 4382 4383 pools_params.num_dpbp = 1; 4384 pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id; 4385 pools_params.pools[0].backup_pool = 0; 4386 pools_params.pools[0].buffer_size = priv->rx_buf_size; 4387 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 4388 if (err) { 4389 dev_err(dev, "dpni_set_pools() failed\n"); 4390 return err; 4391 } 4392 4393 /* have the interface implicitly distribute traffic based on 4394 * the default hash key 4395 */ 4396 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 4397 if (err && err != -EOPNOTSUPP) 4398 dev_err(dev, "Failed to configure hashing\n"); 4399 4400 /* Configure the flow classification key; it includes all 4401 * supported header fields and cannot be modified at runtime 4402 */ 4403 err = dpaa2_eth_set_default_cls(priv); 4404 if (err && err != -EOPNOTSUPP) 4405 dev_err(dev, "Failed to configure Rx classification key\n"); 4406 4407 /* Configure handling of error frames */ 4408 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 4409 err_cfg.set_frame_annotation = 1; 4410 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 4411 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 4412 &err_cfg); 4413 if (err) { 4414 dev_err(dev, "dpni_set_errors_behavior failed\n"); 4415 return err; 4416 } 4417 4418 /* Configure Rx and Tx conf queues to generate CDANs */ 4419 for (i = 0; i < priv->num_fqs; i++) { 4420 switch (priv->fq[i].type) { 4421 case DPAA2_RX_FQ: 4422 err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); 4423 break; 4424 case DPAA2_TX_CONF_FQ: 4425 err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); 4426 break; 4427 case DPAA2_RX_ERR_FQ: 4428 err = setup_rx_err_flow(priv, &priv->fq[i]); 4429 break; 4430 default: 4431 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 4432 return -EINVAL; 4433 } 4434 if (err) 4435 goto out; 4436 } 4437 4438 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 4439 DPNI_QUEUE_TX, &priv->tx_qdid); 4440 if (err) { 4441 dev_err(dev, "dpni_get_qdid() failed\n"); 4442 goto out; 4443 } 4444 4445 return 0; 4446 4447 out: 4448 while (i--) { 4449 if (priv->fq[i].type == DPAA2_RX_FQ && 4450 xdp_rxq_info_is_reg(&priv->fq[i].channel->xdp_rxq)) 4451 xdp_rxq_info_unreg(&priv->fq[i].channel->xdp_rxq); 4452 } 4453 return err; 4454 } 4455 4456 /* Allocate rings for storing incoming frame descriptors */ 4457 static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) 4458 { 4459 struct net_device *net_dev = priv->net_dev; 4460 struct device *dev = net_dev->dev.parent; 4461 int i; 4462 4463 for (i = 0; i < priv->num_channels; i++) { 4464 priv->channel[i]->store = 4465 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 4466 if (!priv->channel[i]->store) { 4467 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 4468 goto err_ring; 4469 } 4470 } 4471 4472 return 0; 4473 4474 err_ring: 4475 for (i = 0; i < priv->num_channels; i++) { 4476 if (!priv->channel[i]->store) 4477 break; 4478 dpaa2_io_store_destroy(priv->channel[i]->store); 4479 } 4480 4481 return -ENOMEM; 4482 } 4483 4484 static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) 4485 { 4486 int i; 4487 4488 for (i = 0; i < priv->num_channels; i++) 4489 dpaa2_io_store_destroy(priv->channel[i]->store); 4490 } 4491 4492 static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) 4493 { 4494 struct net_device *net_dev = priv->net_dev; 4495 struct device *dev = net_dev->dev.parent; 4496 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 4497 int err; 4498 4499 /* Get firmware address, if any */ 4500 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 4501 if (err) { 4502 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 4503 return err; 4504 } 4505 4506 /* Get DPNI attributes address, if any */ 4507 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4508 dpni_mac_addr); 4509 if (err) { 4510 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 4511 return err; 4512 } 4513 4514 /* First check if firmware has any address configured by bootloader */ 4515 if (!is_zero_ether_addr(mac_addr)) { 4516 /* If the DPMAC addr != DPNI addr, update it */ 4517 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 4518 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 4519 priv->mc_token, 4520 mac_addr); 4521 if (err) { 4522 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4523 return err; 4524 } 4525 } 4526 eth_hw_addr_set(net_dev, mac_addr); 4527 } else if (is_zero_ether_addr(dpni_mac_addr)) { 4528 /* No MAC address configured, fill in net_dev->dev_addr 4529 * with a random one 4530 */ 4531 eth_hw_addr_random(net_dev); 4532 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 4533 4534 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4535 net_dev->dev_addr); 4536 if (err) { 4537 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4538 return err; 4539 } 4540 4541 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 4542 * practical purposes, this will be our "permanent" mac address, 4543 * at least until the next reboot. This move will also permit 4544 * register_netdevice() to properly fill up net_dev->perm_addr. 4545 */ 4546 net_dev->addr_assign_type = NET_ADDR_PERM; 4547 } else { 4548 /* NET_ADDR_PERM is default, all we have to do is 4549 * fill in the device addr. 4550 */ 4551 eth_hw_addr_set(net_dev, dpni_mac_addr); 4552 } 4553 4554 return 0; 4555 } 4556 4557 static int dpaa2_eth_netdev_init(struct net_device *net_dev) 4558 { 4559 struct device *dev = net_dev->dev.parent; 4560 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4561 u32 options = priv->dpni_attrs.options; 4562 u64 supported = 0, not_supported = 0; 4563 u8 bcast_addr[ETH_ALEN]; 4564 u8 num_queues; 4565 int err; 4566 4567 net_dev->netdev_ops = &dpaa2_eth_ops; 4568 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 4569 4570 err = dpaa2_eth_set_mac_addr(priv); 4571 if (err) 4572 return err; 4573 4574 /* Explicitly add the broadcast address to the MAC filtering table */ 4575 eth_broadcast_addr(bcast_addr); 4576 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 4577 if (err) { 4578 dev_err(dev, "dpni_add_mac_addr() failed\n"); 4579 return err; 4580 } 4581 4582 /* Set MTU upper limit; lower limit is 68B (default value) */ 4583 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 4584 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 4585 DPAA2_ETH_MFL); 4586 if (err) { 4587 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 4588 return err; 4589 } 4590 4591 /* Set actual number of queues in the net device */ 4592 num_queues = dpaa2_eth_queue_count(priv); 4593 err = netif_set_real_num_tx_queues(net_dev, num_queues); 4594 if (err) { 4595 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 4596 return err; 4597 } 4598 err = netif_set_real_num_rx_queues(net_dev, num_queues); 4599 if (err) { 4600 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 4601 return err; 4602 } 4603 4604 dpaa2_eth_detect_features(priv); 4605 4606 /* Capabilities listing */ 4607 supported |= IFF_LIVE_ADDR_CHANGE; 4608 4609 if (options & DPNI_OPT_NO_MAC_FILTER) 4610 not_supported |= IFF_UNICAST_FLT; 4611 else 4612 supported |= IFF_UNICAST_FLT; 4613 4614 net_dev->priv_flags |= supported; 4615 net_dev->priv_flags &= ~not_supported; 4616 net_dev->lltx = true; 4617 4618 /* Features */ 4619 net_dev->features = NETIF_F_RXCSUM | 4620 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4621 NETIF_F_SG | NETIF_F_HIGHDMA | 4622 NETIF_F_HW_TC | NETIF_F_TSO; 4623 net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS; 4624 net_dev->hw_features = net_dev->features; 4625 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 4626 NETDEV_XDP_ACT_REDIRECT | 4627 NETDEV_XDP_ACT_NDO_XMIT; 4628 if (priv->dpni_attrs.wriop_version >= DPAA2_WRIOP_VERSION(3, 0, 0) && 4629 priv->dpni_attrs.num_queues <= 8) 4630 net_dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; 4631 4632 if (priv->dpni_attrs.vlan_filter_entries) 4633 net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4634 4635 return 0; 4636 } 4637 4638 static int dpaa2_eth_poll_link_state(void *arg) 4639 { 4640 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 4641 int err; 4642 4643 while (!kthread_should_stop()) { 4644 err = dpaa2_eth_link_state_update(priv); 4645 if (unlikely(err)) 4646 return err; 4647 4648 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 4649 } 4650 4651 return 0; 4652 } 4653 4654 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 4655 { 4656 struct fsl_mc_device *dpni_dev, *dpmac_dev; 4657 struct dpaa2_mac *mac; 4658 int err; 4659 4660 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 4661 dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0); 4662 4663 if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) { 4664 netdev_dbg(priv->net_dev, "waiting for mac\n"); 4665 return PTR_ERR(dpmac_dev); 4666 } 4667 4668 if (IS_ERR(dpmac_dev)) 4669 return 0; 4670 4671 if (dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) { 4672 err = 0; 4673 goto out_put_device; 4674 } 4675 4676 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 4677 if (!mac) { 4678 err = -ENOMEM; 4679 goto out_put_device; 4680 } 4681 4682 mac->mc_dev = dpmac_dev; 4683 mac->mc_io = priv->mc_io; 4684 mac->net_dev = priv->net_dev; 4685 4686 err = dpaa2_mac_open(mac); 4687 if (err) 4688 goto err_free_mac; 4689 4690 if (dpaa2_mac_is_type_phy(mac)) { 4691 err = dpaa2_mac_connect(mac); 4692 if (err) { 4693 if (err == -EPROBE_DEFER) 4694 netdev_dbg(priv->net_dev, 4695 "could not connect to MAC\n"); 4696 else 4697 netdev_err(priv->net_dev, 4698 "Error connecting to the MAC endpoint: %pe", 4699 ERR_PTR(err)); 4700 goto err_close_mac; 4701 } 4702 } 4703 4704 mutex_lock(&priv->mac_lock); 4705 priv->mac = mac; 4706 mutex_unlock(&priv->mac_lock); 4707 4708 return 0; 4709 4710 err_close_mac: 4711 dpaa2_mac_close(mac); 4712 err_free_mac: 4713 kfree(mac); 4714 out_put_device: 4715 put_device(&dpmac_dev->dev); 4716 return err; 4717 } 4718 4719 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 4720 { 4721 struct dpaa2_mac *mac; 4722 4723 mutex_lock(&priv->mac_lock); 4724 mac = priv->mac; 4725 priv->mac = NULL; 4726 mutex_unlock(&priv->mac_lock); 4727 4728 if (!mac) 4729 return; 4730 4731 if (dpaa2_mac_is_type_phy(mac)) 4732 dpaa2_mac_disconnect(mac); 4733 4734 dpaa2_mac_close(mac); 4735 kfree(mac); 4736 } 4737 4738 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 4739 { 4740 u32 status = ~0; 4741 struct device *dev = (struct device *)arg; 4742 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 4743 struct net_device *net_dev = dev_get_drvdata(dev); 4744 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4745 bool had_mac; 4746 int err; 4747 4748 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 4749 DPNI_IRQ_INDEX, &status); 4750 if (unlikely(err)) { 4751 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 4752 return IRQ_HANDLED; 4753 } 4754 4755 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 4756 dpaa2_eth_link_state_update(netdev_priv(net_dev)); 4757 4758 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 4759 dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); 4760 dpaa2_eth_update_tx_fqids(priv); 4761 4762 /* We can avoid locking because the "endpoint changed" IRQ 4763 * handler is the only one who changes priv->mac at runtime, 4764 * so we are not racing with anyone. 4765 */ 4766 had_mac = !!priv->mac; 4767 if (had_mac) 4768 dpaa2_eth_disconnect_mac(priv); 4769 else 4770 dpaa2_eth_connect_mac(priv); 4771 } 4772 4773 return IRQ_HANDLED; 4774 } 4775 4776 static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) 4777 { 4778 int err = 0; 4779 struct fsl_mc_device_irq *irq; 4780 4781 err = fsl_mc_allocate_irqs(ls_dev); 4782 if (err) { 4783 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 4784 return err; 4785 } 4786 4787 irq = ls_dev->irqs[0]; 4788 err = devm_request_threaded_irq(&ls_dev->dev, irq->virq, 4789 NULL, dpni_irq0_handler_thread, 4790 IRQF_NO_SUSPEND | IRQF_ONESHOT, 4791 dev_name(&ls_dev->dev), &ls_dev->dev); 4792 if (err < 0) { 4793 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 4794 goto free_mc_irq; 4795 } 4796 4797 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 4798 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 4799 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 4800 if (err < 0) { 4801 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 4802 goto free_irq; 4803 } 4804 4805 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 4806 DPNI_IRQ_INDEX, 1); 4807 if (err < 0) { 4808 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 4809 goto free_irq; 4810 } 4811 4812 return 0; 4813 4814 free_irq: 4815 devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev); 4816 free_mc_irq: 4817 fsl_mc_free_irqs(ls_dev); 4818 4819 return err; 4820 } 4821 4822 static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) 4823 { 4824 int i; 4825 struct dpaa2_eth_channel *ch; 4826 4827 for (i = 0; i < priv->num_channels; i++) { 4828 ch = priv->channel[i]; 4829 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 4830 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll); 4831 } 4832 } 4833 4834 static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) 4835 { 4836 int i; 4837 struct dpaa2_eth_channel *ch; 4838 4839 for (i = 0; i < priv->num_channels; i++) { 4840 ch = priv->channel[i]; 4841 netif_napi_del(&ch->napi); 4842 } 4843 } 4844 4845 static void dpaa2_eth_free_rx_xdp_rxq(struct dpaa2_eth_priv *priv) 4846 { 4847 int i; 4848 4849 for (i = 0; i < priv->num_fqs; i++) { 4850 if (priv->fq[i].type == DPAA2_RX_FQ && 4851 xdp_rxq_info_is_reg(&priv->fq[i].channel->xdp_rxq)) 4852 xdp_rxq_info_unreg(&priv->fq[i].channel->xdp_rxq); 4853 } 4854 } 4855 4856 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 4857 { 4858 struct device *dev; 4859 struct net_device *net_dev = NULL; 4860 struct dpaa2_eth_priv *priv = NULL; 4861 int err = 0; 4862 4863 dev = &dpni_dev->dev; 4864 4865 /* Net device */ 4866 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 4867 if (!net_dev) { 4868 dev_err(dev, "alloc_etherdev_mq() failed\n"); 4869 return -ENOMEM; 4870 } 4871 4872 SET_NETDEV_DEV(net_dev, dev); 4873 dev_set_drvdata(dev, net_dev); 4874 4875 priv = netdev_priv(net_dev); 4876 priv->net_dev = net_dev; 4877 SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port); 4878 4879 mutex_init(&priv->mac_lock); 4880 4881 priv->iommu_domain = iommu_get_domain_for_dev(dev); 4882 4883 priv->tx_tstamp_type = HWTSTAMP_TX_OFF; 4884 priv->rx_tstamp = false; 4885 4886 priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", WQ_PERCPU, 0); 4887 if (!priv->dpaa2_ptp_wq) { 4888 err = -ENOMEM; 4889 goto err_wq_alloc; 4890 } 4891 4892 INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); 4893 mutex_init(&priv->onestep_tstamp_lock); 4894 skb_queue_head_init(&priv->tx_skbs); 4895 4896 priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK; 4897 4898 /* Obtain a MC portal */ 4899 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 4900 &priv->mc_io); 4901 if (err) { 4902 if (err == -ENXIO) { 4903 dev_dbg(dev, "waiting for MC portal\n"); 4904 err = -EPROBE_DEFER; 4905 } else { 4906 dev_err(dev, "MC portal allocation failed\n"); 4907 } 4908 goto err_portal_alloc; 4909 } 4910 4911 /* MC objects initialization and configuration */ 4912 err = dpaa2_eth_setup_dpni(dpni_dev); 4913 if (err) 4914 goto err_dpni_setup; 4915 4916 err = dpaa2_eth_setup_dpio(priv); 4917 if (err) 4918 goto err_dpio_setup; 4919 4920 dpaa2_eth_setup_fqs(priv); 4921 4922 err = dpaa2_eth_setup_default_dpbp(priv); 4923 if (err) 4924 goto err_dpbp_setup; 4925 4926 err = dpaa2_eth_bind_dpni(priv); 4927 if (err) 4928 goto err_bind; 4929 4930 /* Add a NAPI context for each channel */ 4931 dpaa2_eth_add_ch_napi(priv); 4932 4933 /* Percpu statistics */ 4934 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 4935 if (!priv->percpu_stats) { 4936 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 4937 err = -ENOMEM; 4938 goto err_alloc_percpu_stats; 4939 } 4940 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 4941 if (!priv->percpu_extras) { 4942 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 4943 err = -ENOMEM; 4944 goto err_alloc_percpu_extras; 4945 } 4946 4947 priv->sgt_cache = alloc_percpu(*priv->sgt_cache); 4948 if (!priv->sgt_cache) { 4949 dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); 4950 err = -ENOMEM; 4951 goto err_alloc_sgt_cache; 4952 } 4953 4954 priv->fd = alloc_percpu(*priv->fd); 4955 if (!priv->fd) { 4956 dev_err(dev, "alloc_percpu(fds) failed\n"); 4957 err = -ENOMEM; 4958 goto err_alloc_fds; 4959 } 4960 4961 err = dpaa2_eth_netdev_init(net_dev); 4962 if (err) 4963 goto err_netdev_init; 4964 4965 /* Configure checksum offload based on current interface flags */ 4966 err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 4967 if (err) 4968 goto err_csum; 4969 4970 err = dpaa2_eth_set_tx_csum(priv, 4971 !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 4972 if (err) 4973 goto err_csum; 4974 4975 err = dpaa2_eth_alloc_rings(priv); 4976 if (err) 4977 goto err_alloc_rings; 4978 4979 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 4980 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 4981 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 4982 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 4983 } else { 4984 dev_dbg(dev, "PFC not supported\n"); 4985 } 4986 #endif 4987 4988 err = dpaa2_eth_connect_mac(priv); 4989 if (err) 4990 goto err_connect_mac; 4991 4992 err = dpaa2_eth_setup_irqs(dpni_dev); 4993 if (err) { 4994 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 4995 priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, 4996 "%s_poll_link", net_dev->name); 4997 if (IS_ERR(priv->poll_thread)) { 4998 dev_err(dev, "Error starting polling thread\n"); 4999 goto err_poll_thread; 5000 } 5001 priv->do_link_poll = true; 5002 } 5003 5004 err = dpaa2_eth_dl_alloc(priv); 5005 if (err) 5006 goto err_dl_register; 5007 5008 err = dpaa2_eth_dl_traps_register(priv); 5009 if (err) 5010 goto err_dl_trap_register; 5011 5012 err = dpaa2_eth_dl_port_add(priv); 5013 if (err) 5014 goto err_dl_port_add; 5015 5016 net_dev->needed_headroom = DPAA2_ETH_SWA_SIZE + DPAA2_ETH_TX_BUF_ALIGN; 5017 5018 err = register_netdev(net_dev); 5019 if (err < 0) { 5020 dev_err(dev, "register_netdev() failed\n"); 5021 goto err_netdev_reg; 5022 } 5023 5024 #ifdef CONFIG_DEBUG_FS 5025 dpaa2_dbg_add(priv); 5026 #endif 5027 5028 dpaa2_eth_dl_register(priv); 5029 dev_info(dev, "Probed interface %s\n", net_dev->name); 5030 return 0; 5031 5032 err_netdev_reg: 5033 dpaa2_eth_dl_port_del(priv); 5034 err_dl_port_add: 5035 dpaa2_eth_dl_traps_unregister(priv); 5036 err_dl_trap_register: 5037 dpaa2_eth_dl_free(priv); 5038 err_dl_register: 5039 if (priv->do_link_poll) 5040 kthread_stop(priv->poll_thread); 5041 else 5042 fsl_mc_free_irqs(dpni_dev); 5043 err_poll_thread: 5044 dpaa2_eth_disconnect_mac(priv); 5045 err_connect_mac: 5046 dpaa2_eth_free_rings(priv); 5047 err_alloc_rings: 5048 err_csum: 5049 err_netdev_init: 5050 free_percpu(priv->fd); 5051 err_alloc_fds: 5052 free_percpu(priv->sgt_cache); 5053 err_alloc_sgt_cache: 5054 free_percpu(priv->percpu_extras); 5055 err_alloc_percpu_extras: 5056 free_percpu(priv->percpu_stats); 5057 err_alloc_percpu_stats: 5058 dpaa2_eth_del_ch_napi(priv); 5059 dpaa2_eth_free_rx_xdp_rxq(priv); 5060 err_bind: 5061 dpaa2_eth_free_dpbps(priv); 5062 err_dpbp_setup: 5063 dpaa2_eth_free_dpio(priv); 5064 err_dpio_setup: 5065 dpaa2_eth_free_dpni(priv); 5066 err_dpni_setup: 5067 fsl_mc_portal_free(priv->mc_io); 5068 err_portal_alloc: 5069 destroy_workqueue(priv->dpaa2_ptp_wq); 5070 err_wq_alloc: 5071 dev_set_drvdata(dev, NULL); 5072 free_netdev(net_dev); 5073 5074 return err; 5075 } 5076 5077 static void dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 5078 { 5079 struct device *dev; 5080 struct net_device *net_dev; 5081 struct dpaa2_eth_priv *priv; 5082 5083 dev = &ls_dev->dev; 5084 net_dev = dev_get_drvdata(dev); 5085 priv = netdev_priv(net_dev); 5086 5087 dpaa2_eth_dl_unregister(priv); 5088 5089 #ifdef CONFIG_DEBUG_FS 5090 dpaa2_dbg_remove(priv); 5091 #endif 5092 5093 unregister_netdev(net_dev); 5094 5095 dpaa2_eth_dl_port_del(priv); 5096 dpaa2_eth_dl_traps_unregister(priv); 5097 dpaa2_eth_dl_free(priv); 5098 5099 if (priv->do_link_poll) 5100 kthread_stop(priv->poll_thread); 5101 else 5102 fsl_mc_free_irqs(ls_dev); 5103 5104 dpaa2_eth_disconnect_mac(priv); 5105 dpaa2_eth_free_rings(priv); 5106 free_percpu(priv->fd); 5107 free_percpu(priv->sgt_cache); 5108 free_percpu(priv->percpu_stats); 5109 free_percpu(priv->percpu_extras); 5110 5111 dpaa2_eth_del_ch_napi(priv); 5112 dpaa2_eth_free_rx_xdp_rxq(priv); 5113 dpaa2_eth_free_dpbps(priv); 5114 dpaa2_eth_free_dpio(priv); 5115 dpaa2_eth_free_dpni(priv); 5116 if (priv->onestep_reg_base) 5117 iounmap(priv->onestep_reg_base); 5118 5119 fsl_mc_portal_free(priv->mc_io); 5120 5121 destroy_workqueue(priv->dpaa2_ptp_wq); 5122 5123 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 5124 5125 free_netdev(net_dev); 5126 } 5127 5128 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 5129 { 5130 .vendor = FSL_MC_VENDOR_FREESCALE, 5131 .obj_type = "dpni", 5132 }, 5133 { .vendor = 0x0 } 5134 }; 5135 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 5136 5137 static struct fsl_mc_driver dpaa2_eth_driver = { 5138 .driver = { 5139 .name = KBUILD_MODNAME, 5140 }, 5141 .probe = dpaa2_eth_probe, 5142 .remove = dpaa2_eth_remove, 5143 .match_id_table = dpaa2_eth_match_id_table 5144 }; 5145 5146 static int __init dpaa2_eth_driver_init(void) 5147 { 5148 int err; 5149 5150 dpaa2_eth_dbg_init(); 5151 err = fsl_mc_driver_register(&dpaa2_eth_driver); 5152 if (err) { 5153 dpaa2_eth_dbg_exit(); 5154 return err; 5155 } 5156 5157 return 0; 5158 } 5159 5160 static void __exit dpaa2_eth_driver_exit(void) 5161 { 5162 dpaa2_eth_dbg_exit(); 5163 fsl_mc_driver_unregister(&dpaa2_eth_driver); 5164 } 5165 5166 module_init(dpaa2_eth_driver_init); 5167 module_exit(dpaa2_eth_driver_exit); 5168