1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2022 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/kthread.h> 12 #include <linux/iommu.h> 13 #include <linux/fsl/mc.h> 14 #include <linux/bpf.h> 15 #include <linux/bpf_trace.h> 16 #include <linux/fsl/ptp_qoriq.h> 17 #include <linux/ptp_classify.h> 18 #include <net/pkt_cls.h> 19 #include <net/sock.h> 20 #include <net/tso.h> 21 #include <net/xdp_sock_drv.h> 22 23 #include "dpaa2-eth.h" 24 25 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 26 * using trace events only need to #include <trace/events/sched.h> 27 */ 28 #define CREATE_TRACE_POINTS 29 #include "dpaa2-eth-trace.h" 30 31 MODULE_LICENSE("Dual BSD/GPL"); 32 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 33 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 34 35 struct ptp_qoriq *dpaa2_ptp; 36 EXPORT_SYMBOL(dpaa2_ptp); 37 38 static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv) 39 { 40 priv->features = 0; 41 42 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR, 43 DPNI_PTP_ONESTEP_VER_MINOR) >= 0) 44 priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT; 45 } 46 47 static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv, 48 u32 offset, u8 udp) 49 { 50 struct dpni_single_step_cfg cfg; 51 52 cfg.en = 1; 53 cfg.ch_update = udp; 54 cfg.offset = offset; 55 cfg.peer_delay = 0; 56 57 if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg)) 58 WARN_ONCE(1, "Failed to set single step register"); 59 } 60 61 static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv, 62 u32 offset, u8 udp) 63 { 64 u32 val = 0; 65 66 val = DPAA2_PTP_SINGLE_STEP_ENABLE | 67 DPAA2_PTP_SINGLE_CORRECTION_OFF(offset); 68 69 if (udp) 70 val |= DPAA2_PTP_SINGLE_STEP_CH; 71 72 if (priv->onestep_reg_base) 73 writel(val, priv->onestep_reg_base); 74 } 75 76 static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv) 77 { 78 struct device *dev = priv->net_dev->dev.parent; 79 struct dpni_single_step_cfg ptp_cfg; 80 81 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect; 82 83 if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT)) 84 return; 85 86 if (dpni_get_single_step_cfg(priv->mc_io, 0, 87 priv->mc_token, &ptp_cfg)) { 88 dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n"); 89 return; 90 } 91 92 if (!ptp_cfg.ptp_onestep_reg_base) { 93 dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n"); 94 return; 95 } 96 97 priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base, 98 sizeof(u32)); 99 if (!priv->onestep_reg_base) { 100 dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n"); 101 return; 102 } 103 104 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct; 105 } 106 107 void *dpaa2_iova_to_virt(struct iommu_domain *domain, 108 dma_addr_t iova_addr) 109 { 110 phys_addr_t phys_addr; 111 112 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 113 114 return phys_to_virt(phys_addr); 115 } 116 117 static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, 118 u32 fd_status, 119 struct sk_buff *skb) 120 { 121 skb_checksum_none_assert(skb); 122 123 /* HW checksum validation is disabled, nothing to do here */ 124 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 125 return; 126 127 /* Read checksum validation bits */ 128 if (!((fd_status & DPAA2_FAS_L3CV) && 129 (fd_status & DPAA2_FAS_L4CV))) 130 return; 131 132 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 133 skb->ip_summed = CHECKSUM_UNNECESSARY; 134 } 135 136 /* Free a received FD. 137 * Not to be used for Tx conf FDs or on any other paths. 138 */ 139 static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, 140 const struct dpaa2_fd *fd, 141 void *vaddr) 142 { 143 struct device *dev = priv->net_dev->dev.parent; 144 dma_addr_t addr = dpaa2_fd_get_addr(fd); 145 u8 fd_format = dpaa2_fd_get_format(fd); 146 struct dpaa2_sg_entry *sgt; 147 void *sg_vaddr; 148 int i; 149 150 /* If single buffer frame, just free the data buffer */ 151 if (fd_format == dpaa2_fd_single) 152 goto free_buf; 153 else if (fd_format != dpaa2_fd_sg) 154 /* We don't support any other format */ 155 return; 156 157 /* For S/G frames, we first need to free all SG entries 158 * except the first one, which was taken care of already 159 */ 160 sgt = vaddr + dpaa2_fd_get_offset(fd); 161 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 162 addr = dpaa2_sg_get_addr(&sgt[i]); 163 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 164 dma_unmap_page(dev, addr, priv->rx_buf_size, 165 DMA_BIDIRECTIONAL); 166 167 free_pages((unsigned long)sg_vaddr, 0); 168 if (dpaa2_sg_is_final(&sgt[i])) 169 break; 170 } 171 172 free_buf: 173 free_pages((unsigned long)vaddr, 0); 174 } 175 176 /* Build a linear skb based on a single-buffer frame descriptor */ 177 static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, 178 const struct dpaa2_fd *fd, 179 void *fd_vaddr) 180 { 181 struct sk_buff *skb = NULL; 182 u16 fd_offset = dpaa2_fd_get_offset(fd); 183 u32 fd_length = dpaa2_fd_get_len(fd); 184 185 ch->buf_count--; 186 187 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 188 if (unlikely(!skb)) 189 return NULL; 190 191 skb_reserve(skb, fd_offset); 192 skb_put(skb, fd_length); 193 194 return skb; 195 } 196 197 /* Build a non linear (fragmented) skb based on a S/G table */ 198 static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, 199 struct dpaa2_eth_channel *ch, 200 struct dpaa2_sg_entry *sgt) 201 { 202 struct sk_buff *skb = NULL; 203 struct device *dev = priv->net_dev->dev.parent; 204 void *sg_vaddr; 205 dma_addr_t sg_addr; 206 u16 sg_offset; 207 u32 sg_length; 208 struct page *page, *head_page; 209 int page_offset; 210 int i; 211 212 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 213 struct dpaa2_sg_entry *sge = &sgt[i]; 214 215 /* NOTE: We only support SG entries in dpaa2_sg_single format, 216 * but this is the only format we may receive from HW anyway 217 */ 218 219 /* Get the address and length from the S/G entry */ 220 sg_addr = dpaa2_sg_get_addr(sge); 221 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 222 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 223 DMA_BIDIRECTIONAL); 224 225 sg_length = dpaa2_sg_get_len(sge); 226 227 if (i == 0) { 228 /* We build the skb around the first data buffer */ 229 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 230 if (unlikely(!skb)) { 231 /* Free the first SG entry now, since we already 232 * unmapped it and obtained the virtual address 233 */ 234 free_pages((unsigned long)sg_vaddr, 0); 235 236 /* We still need to subtract the buffers used 237 * by this FD from our software counter 238 */ 239 while (!dpaa2_sg_is_final(&sgt[i]) && 240 i < DPAA2_ETH_MAX_SG_ENTRIES) 241 i++; 242 break; 243 } 244 245 sg_offset = dpaa2_sg_get_offset(sge); 246 skb_reserve(skb, sg_offset); 247 skb_put(skb, sg_length); 248 } else { 249 /* Rest of the data buffers are stored as skb frags */ 250 page = virt_to_page(sg_vaddr); 251 head_page = virt_to_head_page(sg_vaddr); 252 253 /* Offset in page (which may be compound). 254 * Data in subsequent SG entries is stored from the 255 * beginning of the buffer, so we don't need to add the 256 * sg_offset. 257 */ 258 page_offset = ((unsigned long)sg_vaddr & 259 (PAGE_SIZE - 1)) + 260 (page_address(page) - page_address(head_page)); 261 262 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 263 sg_length, priv->rx_buf_size); 264 } 265 266 if (dpaa2_sg_is_final(sge)) 267 break; 268 } 269 270 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 271 272 /* Count all data buffers + SG table buffer */ 273 ch->buf_count -= i + 2; 274 275 return skb; 276 } 277 278 /* Free buffers acquired from the buffer pool or which were meant to 279 * be released in the pool 280 */ 281 static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, 282 int count, bool xsk_zc) 283 { 284 struct device *dev = priv->net_dev->dev.parent; 285 struct dpaa2_eth_swa *swa; 286 struct xdp_buff *xdp_buff; 287 void *vaddr; 288 int i; 289 290 for (i = 0; i < count; i++) { 291 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 292 293 if (!xsk_zc) { 294 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 295 DMA_BIDIRECTIONAL); 296 free_pages((unsigned long)vaddr, 0); 297 } else { 298 swa = (struct dpaa2_eth_swa *) 299 (vaddr + DPAA2_ETH_RX_HWA_SIZE); 300 xdp_buff = swa->xsk.xdp_buff; 301 xsk_buff_free(xdp_buff); 302 } 303 } 304 } 305 306 void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv, 307 struct dpaa2_eth_channel *ch, 308 dma_addr_t addr) 309 { 310 int retries = 0; 311 int err; 312 313 ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr; 314 if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD) 315 return; 316 317 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 318 ch->recycled_bufs, 319 ch->recycled_bufs_cnt)) == -EBUSY) { 320 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 321 break; 322 cpu_relax(); 323 } 324 325 if (err) { 326 dpaa2_eth_free_bufs(priv, ch->recycled_bufs, 327 ch->recycled_bufs_cnt, ch->xsk_zc); 328 ch->buf_count -= ch->recycled_bufs_cnt; 329 } 330 331 ch->recycled_bufs_cnt = 0; 332 } 333 334 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 335 struct dpaa2_eth_fq *fq, 336 struct dpaa2_eth_xdp_fds *xdp_fds) 337 { 338 int total_enqueued = 0, retries = 0, enqueued; 339 struct dpaa2_eth_drv_stats *percpu_extras; 340 int num_fds, err, max_retries; 341 struct dpaa2_fd *fds; 342 343 percpu_extras = this_cpu_ptr(priv->percpu_extras); 344 345 /* try to enqueue all the FDs until the max number of retries is hit */ 346 fds = xdp_fds->fds; 347 num_fds = xdp_fds->num; 348 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 349 while (total_enqueued < num_fds && retries < max_retries) { 350 err = priv->enqueue(priv, fq, &fds[total_enqueued], 351 0, num_fds - total_enqueued, &enqueued); 352 if (err == -EBUSY) { 353 percpu_extras->tx_portal_busy += ++retries; 354 continue; 355 } 356 total_enqueued += enqueued; 357 } 358 xdp_fds->num = 0; 359 360 return total_enqueued; 361 } 362 363 static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, 364 struct dpaa2_eth_channel *ch, 365 struct dpaa2_eth_fq *fq) 366 { 367 struct rtnl_link_stats64 *percpu_stats; 368 struct dpaa2_fd *fds; 369 int enqueued, i; 370 371 percpu_stats = this_cpu_ptr(priv->percpu_stats); 372 373 // enqueue the array of XDP_TX frames 374 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 375 376 /* update statistics */ 377 percpu_stats->tx_packets += enqueued; 378 fds = fq->xdp_tx_fds.fds; 379 for (i = 0; i < enqueued; i++) { 380 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 381 ch->stats.xdp_tx++; 382 } 383 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 384 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 385 percpu_stats->tx_errors++; 386 ch->stats.xdp_tx_err++; 387 } 388 fq->xdp_tx_fds.num = 0; 389 } 390 391 void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, 392 struct dpaa2_eth_channel *ch, 393 struct dpaa2_fd *fd, 394 void *buf_start, u16 queue_id) 395 { 396 struct dpaa2_faead *faead; 397 struct dpaa2_fd *dest_fd; 398 struct dpaa2_eth_fq *fq; 399 u32 ctrl, frc; 400 401 /* Mark the egress frame hardware annotation area as valid */ 402 frc = dpaa2_fd_get_frc(fd); 403 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 404 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 405 406 /* Instruct hardware to release the FD buffer directly into 407 * the buffer pool once transmission is completed, instead of 408 * sending a Tx confirmation frame to us 409 */ 410 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 411 faead = dpaa2_get_faead(buf_start, false); 412 faead->ctrl = cpu_to_le32(ctrl); 413 faead->conf_fqid = 0; 414 415 fq = &priv->fq[queue_id]; 416 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 417 memcpy(dest_fd, fd, sizeof(*dest_fd)); 418 419 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 420 return; 421 422 dpaa2_eth_xdp_tx_flush(priv, ch, fq); 423 } 424 425 static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, 426 struct dpaa2_eth_channel *ch, 427 struct dpaa2_eth_fq *rx_fq, 428 struct dpaa2_fd *fd, void *vaddr) 429 { 430 dma_addr_t addr = dpaa2_fd_get_addr(fd); 431 struct bpf_prog *xdp_prog; 432 struct xdp_buff xdp; 433 u32 xdp_act = XDP_PASS; 434 int err, offset; 435 436 xdp_prog = READ_ONCE(ch->xdp.prog); 437 if (!xdp_prog) 438 goto out; 439 440 offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM; 441 xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq); 442 xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM, 443 dpaa2_fd_get_len(fd), false); 444 445 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 446 447 /* xdp.data pointer may have changed */ 448 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 449 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 450 451 switch (xdp_act) { 452 case XDP_PASS: 453 break; 454 case XDP_TX: 455 dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 456 break; 457 default: 458 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 459 fallthrough; 460 case XDP_ABORTED: 461 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 462 fallthrough; 463 case XDP_DROP: 464 dpaa2_eth_recycle_buf(priv, ch, addr); 465 ch->stats.xdp_drop++; 466 break; 467 case XDP_REDIRECT: 468 dma_unmap_page(priv->net_dev->dev.parent, addr, 469 priv->rx_buf_size, DMA_BIDIRECTIONAL); 470 ch->buf_count--; 471 472 /* Allow redirect use of full headroom */ 473 xdp.data_hard_start = vaddr; 474 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 475 476 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 477 if (unlikely(err)) { 478 addr = dma_map_page(priv->net_dev->dev.parent, 479 virt_to_page(vaddr), 0, 480 priv->rx_buf_size, DMA_BIDIRECTIONAL); 481 if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) { 482 free_pages((unsigned long)vaddr, 0); 483 } else { 484 ch->buf_count++; 485 dpaa2_eth_recycle_buf(priv, ch, addr); 486 } 487 ch->stats.xdp_drop++; 488 } else { 489 ch->stats.xdp_redirect++; 490 } 491 break; 492 } 493 494 ch->xdp.res |= xdp_act; 495 out: 496 return xdp_act; 497 } 498 499 struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv, 500 struct dpaa2_eth_channel *ch, 501 const struct dpaa2_fd *fd, u32 fd_length, 502 void *fd_vaddr) 503 { 504 u16 fd_offset = dpaa2_fd_get_offset(fd); 505 struct sk_buff *skb = NULL; 506 unsigned int skb_len; 507 508 skb_len = fd_length + dpaa2_eth_needed_headroom(NULL); 509 510 skb = napi_alloc_skb(&ch->napi, skb_len); 511 if (!skb) 512 return NULL; 513 514 skb_reserve(skb, dpaa2_eth_needed_headroom(NULL)); 515 skb_put(skb, fd_length); 516 517 memcpy(skb->data, fd_vaddr + fd_offset, fd_length); 518 519 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd)); 520 521 return skb; 522 } 523 524 static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch, 525 const struct dpaa2_fd *fd, 526 void *fd_vaddr) 527 { 528 struct dpaa2_eth_priv *priv = ch->priv; 529 u32 fd_length = dpaa2_fd_get_len(fd); 530 531 if (fd_length > priv->rx_copybreak) 532 return NULL; 533 534 return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr); 535 } 536 537 void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv, 538 struct dpaa2_eth_channel *ch, 539 const struct dpaa2_fd *fd, void *vaddr, 540 struct dpaa2_eth_fq *fq, 541 struct rtnl_link_stats64 *percpu_stats, 542 struct sk_buff *skb) 543 { 544 struct dpaa2_fas *fas; 545 u32 status = 0; 546 547 fas = dpaa2_get_fas(vaddr, false); 548 prefetch(fas); 549 prefetch(skb->data); 550 551 /* Get the timestamp value */ 552 if (priv->rx_tstamp) { 553 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 554 __le64 *ts = dpaa2_get_ts(vaddr, false); 555 u64 ns; 556 557 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 558 559 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 560 shhwtstamps->hwtstamp = ns_to_ktime(ns); 561 } 562 563 /* Check if we need to validate the L4 csum */ 564 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 565 status = le32_to_cpu(fas->status); 566 dpaa2_eth_validate_rx_csum(priv, status, skb); 567 } 568 569 skb->protocol = eth_type_trans(skb, priv->net_dev); 570 skb_record_rx_queue(skb, fq->flowid); 571 572 percpu_stats->rx_packets++; 573 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 574 ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd); 575 576 list_add_tail(&skb->list, ch->rx_list); 577 } 578 579 /* Main Rx frame processing routine */ 580 void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 581 struct dpaa2_eth_channel *ch, 582 const struct dpaa2_fd *fd, 583 struct dpaa2_eth_fq *fq) 584 { 585 dma_addr_t addr = dpaa2_fd_get_addr(fd); 586 u8 fd_format = dpaa2_fd_get_format(fd); 587 void *vaddr; 588 struct sk_buff *skb; 589 struct rtnl_link_stats64 *percpu_stats; 590 struct dpaa2_eth_drv_stats *percpu_extras; 591 struct device *dev = priv->net_dev->dev.parent; 592 void *buf_data; 593 u32 xdp_act; 594 595 /* Tracing point */ 596 trace_dpaa2_rx_fd(priv->net_dev, fd); 597 598 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 599 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 600 DMA_BIDIRECTIONAL); 601 602 buf_data = vaddr + dpaa2_fd_get_offset(fd); 603 prefetch(buf_data); 604 605 percpu_stats = this_cpu_ptr(priv->percpu_stats); 606 percpu_extras = this_cpu_ptr(priv->percpu_extras); 607 608 if (fd_format == dpaa2_fd_single) { 609 xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 610 if (xdp_act != XDP_PASS) { 611 percpu_stats->rx_packets++; 612 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 613 return; 614 } 615 616 skb = dpaa2_eth_copybreak(ch, fd, vaddr); 617 if (!skb) { 618 dma_unmap_page(dev, addr, priv->rx_buf_size, 619 DMA_BIDIRECTIONAL); 620 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 621 } 622 } else if (fd_format == dpaa2_fd_sg) { 623 WARN_ON(priv->xdp_prog); 624 625 dma_unmap_page(dev, addr, priv->rx_buf_size, 626 DMA_BIDIRECTIONAL); 627 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 628 free_pages((unsigned long)vaddr, 0); 629 percpu_extras->rx_sg_frames++; 630 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 631 } else { 632 /* We don't support any other format */ 633 goto err_frame_format; 634 } 635 636 if (unlikely(!skb)) 637 goto err_build_skb; 638 639 dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb); 640 return; 641 642 err_build_skb: 643 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 644 err_frame_format: 645 percpu_stats->rx_dropped++; 646 } 647 648 /* Processing of Rx frames received on the error FQ 649 * We check and print the error bits and then free the frame 650 */ 651 static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv, 652 struct dpaa2_eth_channel *ch, 653 const struct dpaa2_fd *fd, 654 struct dpaa2_eth_fq *fq __always_unused) 655 { 656 struct device *dev = priv->net_dev->dev.parent; 657 dma_addr_t addr = dpaa2_fd_get_addr(fd); 658 u8 fd_format = dpaa2_fd_get_format(fd); 659 struct rtnl_link_stats64 *percpu_stats; 660 struct dpaa2_eth_trap_item *trap_item; 661 struct dpaa2_fapr *fapr; 662 struct sk_buff *skb; 663 void *buf_data; 664 void *vaddr; 665 666 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 667 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 668 DMA_BIDIRECTIONAL); 669 670 buf_data = vaddr + dpaa2_fd_get_offset(fd); 671 672 if (fd_format == dpaa2_fd_single) { 673 dma_unmap_page(dev, addr, priv->rx_buf_size, 674 DMA_BIDIRECTIONAL); 675 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 676 } else if (fd_format == dpaa2_fd_sg) { 677 dma_unmap_page(dev, addr, priv->rx_buf_size, 678 DMA_BIDIRECTIONAL); 679 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 680 free_pages((unsigned long)vaddr, 0); 681 } else { 682 /* We don't support any other format */ 683 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 684 goto err_frame_format; 685 } 686 687 fapr = dpaa2_get_fapr(vaddr, false); 688 trap_item = dpaa2_eth_dl_get_trap(priv, fapr); 689 if (trap_item) 690 devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx, 691 &priv->devlink_port, NULL); 692 consume_skb(skb); 693 694 err_frame_format: 695 percpu_stats = this_cpu_ptr(priv->percpu_stats); 696 percpu_stats->rx_errors++; 697 ch->buf_count--; 698 } 699 700 /* Consume all frames pull-dequeued into the store. This is the simplest way to 701 * make sure we don't accidentally issue another volatile dequeue which would 702 * overwrite (leak) frames already in the store. 703 * 704 * Observance of NAPI budget is not our concern, leaving that to the caller. 705 */ 706 static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, 707 struct dpaa2_eth_fq **src) 708 { 709 struct dpaa2_eth_priv *priv = ch->priv; 710 struct dpaa2_eth_fq *fq = NULL; 711 struct dpaa2_dq *dq; 712 const struct dpaa2_fd *fd; 713 int cleaned = 0, retries = 0; 714 int is_last; 715 716 do { 717 dq = dpaa2_io_store_next(ch->store, &is_last); 718 if (unlikely(!dq)) { 719 /* If we're here, we *must* have placed a 720 * volatile dequeue comnmand, so keep reading through 721 * the store until we get some sort of valid response 722 * token (either a valid frame or an "empty dequeue") 723 */ 724 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 725 netdev_err_once(priv->net_dev, 726 "Unable to read a valid dequeue response\n"); 727 return -ETIMEDOUT; 728 } 729 continue; 730 } 731 732 fd = dpaa2_dq_fd(dq); 733 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 734 735 fq->consume(priv, ch, fd, fq); 736 cleaned++; 737 retries = 0; 738 } while (!is_last); 739 740 if (!cleaned) 741 return 0; 742 743 fq->stats.frames += cleaned; 744 ch->stats.frames += cleaned; 745 ch->stats.frames_per_cdan += cleaned; 746 747 /* A dequeue operation only pulls frames from a single queue 748 * into the store. Return the frame queue as an out param. 749 */ 750 if (src) 751 *src = fq; 752 753 return cleaned; 754 } 755 756 static int dpaa2_eth_ptp_parse(struct sk_buff *skb, 757 u8 *msgtype, u8 *twostep, u8 *udp, 758 u16 *correction_offset, 759 u16 *origintimestamp_offset) 760 { 761 unsigned int ptp_class; 762 struct ptp_header *hdr; 763 unsigned int type; 764 u8 *base; 765 766 ptp_class = ptp_classify_raw(skb); 767 if (ptp_class == PTP_CLASS_NONE) 768 return -EINVAL; 769 770 hdr = ptp_parse_header(skb, ptp_class); 771 if (!hdr) 772 return -EINVAL; 773 774 *msgtype = ptp_get_msgtype(hdr, ptp_class); 775 *twostep = hdr->flag_field[0] & 0x2; 776 777 type = ptp_class & PTP_CLASS_PMASK; 778 if (type == PTP_CLASS_IPV4 || 779 type == PTP_CLASS_IPV6) 780 *udp = 1; 781 else 782 *udp = 0; 783 784 base = skb_mac_header(skb); 785 *correction_offset = (u8 *)&hdr->correction - base; 786 *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 787 788 return 0; 789 } 790 791 /* Configure the egress frame annotation for timestamp update */ 792 static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, 793 struct dpaa2_fd *fd, 794 void *buf_start, 795 struct sk_buff *skb) 796 { 797 struct ptp_tstamp origin_timestamp; 798 u8 msgtype, twostep, udp; 799 struct dpaa2_faead *faead; 800 struct dpaa2_fas *fas; 801 struct timespec64 ts; 802 u16 offset1, offset2; 803 u32 ctrl, frc; 804 __le64 *ns; 805 u8 *data; 806 807 /* Mark the egress frame annotation area as valid */ 808 frc = dpaa2_fd_get_frc(fd); 809 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 810 811 /* Set hardware annotation size */ 812 ctrl = dpaa2_fd_get_ctrl(fd); 813 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 814 815 /* enable UPD (update prepanded data) bit in FAEAD field of 816 * hardware frame annotation area 817 */ 818 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 819 faead = dpaa2_get_faead(buf_start, true); 820 faead->ctrl = cpu_to_le32(ctrl); 821 822 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 823 if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 824 &offset1, &offset2) || 825 msgtype != PTP_MSGTYPE_SYNC || twostep) { 826 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 827 return; 828 } 829 830 /* Mark the frame annotation status as valid */ 831 frc = dpaa2_fd_get_frc(fd); 832 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); 833 834 /* Mark the PTP flag for one step timestamping */ 835 fas = dpaa2_get_fas(buf_start, true); 836 fas->status = cpu_to_le32(DPAA2_FAS_PTP); 837 838 dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); 839 ns = dpaa2_get_ts(buf_start, true); 840 *ns = cpu_to_le64(timespec64_to_ns(&ts) / 841 DPAA2_PTP_CLK_PERIOD_NS); 842 843 /* Update current time to PTP message originTimestamp field */ 844 ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); 845 data = skb_mac_header(skb); 846 *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); 847 *(__be32 *)(data + offset2 + 2) = 848 htonl(origin_timestamp.sec_lsb); 849 *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); 850 851 if (priv->ptp_correction_off == offset1) 852 return; 853 854 priv->dpaa2_set_onestep_params_cb(priv, offset1, udp); 855 priv->ptp_correction_off = offset1; 856 857 } 858 } 859 860 void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv) 861 { 862 struct dpaa2_eth_sgt_cache *sgt_cache; 863 void *sgt_buf = NULL; 864 int sgt_buf_size; 865 866 sgt_cache = this_cpu_ptr(priv->sgt_cache); 867 sgt_buf_size = priv->tx_data_offset + 868 DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry); 869 870 if (sgt_cache->count == 0) 871 sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN); 872 else 873 sgt_buf = sgt_cache->buf[--sgt_cache->count]; 874 if (!sgt_buf) 875 return NULL; 876 877 memset(sgt_buf, 0, sgt_buf_size); 878 879 return sgt_buf; 880 } 881 882 void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf) 883 { 884 struct dpaa2_eth_sgt_cache *sgt_cache; 885 886 sgt_cache = this_cpu_ptr(priv->sgt_cache); 887 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 888 skb_free_frag(sgt_buf); 889 else 890 sgt_cache->buf[sgt_cache->count++] = sgt_buf; 891 } 892 893 /* Create a frame descriptor based on a fragmented skb */ 894 static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, 895 struct sk_buff *skb, 896 struct dpaa2_fd *fd, 897 void **swa_addr) 898 { 899 struct device *dev = priv->net_dev->dev.parent; 900 void *sgt_buf = NULL; 901 dma_addr_t addr; 902 int nr_frags = skb_shinfo(skb)->nr_frags; 903 struct dpaa2_sg_entry *sgt; 904 int i, err; 905 int sgt_buf_size; 906 struct scatterlist *scl, *crt_scl; 907 int num_sg; 908 int num_dma_bufs; 909 struct dpaa2_eth_swa *swa; 910 911 /* Create and map scatterlist. 912 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 913 * to go beyond nr_frags+1. 914 * Note: We don't support chained scatterlists 915 */ 916 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 917 return -EINVAL; 918 919 scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 920 if (unlikely(!scl)) 921 return -ENOMEM; 922 923 sg_init_table(scl, nr_frags + 1); 924 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 925 if (unlikely(num_sg < 0)) { 926 err = -ENOMEM; 927 goto dma_map_sg_failed; 928 } 929 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 930 if (unlikely(!num_dma_bufs)) { 931 err = -ENOMEM; 932 goto dma_map_sg_failed; 933 } 934 935 /* Prepare the HW SGT structure */ 936 sgt_buf_size = priv->tx_data_offset + 937 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 938 sgt_buf = dpaa2_eth_sgt_get(priv); 939 if (unlikely(!sgt_buf)) { 940 err = -ENOMEM; 941 goto sgt_buf_alloc_failed; 942 } 943 944 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 945 946 /* Fill in the HW SGT structure. 947 * 948 * sgt_buf is zeroed out, so the following fields are implicit 949 * in all sgt entries: 950 * - offset is 0 951 * - format is 'dpaa2_sg_single' 952 */ 953 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 954 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 955 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 956 } 957 dpaa2_sg_set_final(&sgt[i - 1], true); 958 959 /* Store the skb backpointer in the SGT buffer. 960 * Fit the scatterlist and the number of buffers alongside the 961 * skb backpointer in the software annotation area. We'll need 962 * all of them on Tx Conf. 963 */ 964 *swa_addr = (void *)sgt_buf; 965 swa = (struct dpaa2_eth_swa *)sgt_buf; 966 swa->type = DPAA2_ETH_SWA_SG; 967 swa->sg.skb = skb; 968 swa->sg.scl = scl; 969 swa->sg.num_sg = num_sg; 970 swa->sg.sgt_size = sgt_buf_size; 971 972 /* Separately map the SGT buffer */ 973 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 974 if (unlikely(dma_mapping_error(dev, addr))) { 975 err = -ENOMEM; 976 goto dma_map_single_failed; 977 } 978 memset(fd, 0, sizeof(struct dpaa2_fd)); 979 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 980 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 981 dpaa2_fd_set_addr(fd, addr); 982 dpaa2_fd_set_len(fd, skb->len); 983 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 984 985 return 0; 986 987 dma_map_single_failed: 988 dpaa2_eth_sgt_recycle(priv, sgt_buf); 989 sgt_buf_alloc_failed: 990 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 991 dma_map_sg_failed: 992 kfree(scl); 993 return err; 994 } 995 996 /* Create a SG frame descriptor based on a linear skb. 997 * 998 * This function is used on the Tx path when the skb headroom is not large 999 * enough for the HW requirements, thus instead of realloc-ing the skb we 1000 * create a SG frame descriptor with only one entry. 1001 */ 1002 static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, 1003 struct sk_buff *skb, 1004 struct dpaa2_fd *fd, 1005 void **swa_addr) 1006 { 1007 struct device *dev = priv->net_dev->dev.parent; 1008 struct dpaa2_sg_entry *sgt; 1009 struct dpaa2_eth_swa *swa; 1010 dma_addr_t addr, sgt_addr; 1011 void *sgt_buf = NULL; 1012 int sgt_buf_size; 1013 int err; 1014 1015 /* Prepare the HW SGT structure */ 1016 sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); 1017 sgt_buf = dpaa2_eth_sgt_get(priv); 1018 if (unlikely(!sgt_buf)) 1019 return -ENOMEM; 1020 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1021 1022 addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); 1023 if (unlikely(dma_mapping_error(dev, addr))) { 1024 err = -ENOMEM; 1025 goto data_map_failed; 1026 } 1027 1028 /* Fill in the HW SGT structure */ 1029 dpaa2_sg_set_addr(sgt, addr); 1030 dpaa2_sg_set_len(sgt, skb->len); 1031 dpaa2_sg_set_final(sgt, true); 1032 1033 /* Store the skb backpointer in the SGT buffer */ 1034 *swa_addr = (void *)sgt_buf; 1035 swa = (struct dpaa2_eth_swa *)sgt_buf; 1036 swa->type = DPAA2_ETH_SWA_SINGLE; 1037 swa->single.skb = skb; 1038 swa->single.sgt_size = sgt_buf_size; 1039 1040 /* Separately map the SGT buffer */ 1041 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1042 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1043 err = -ENOMEM; 1044 goto sgt_map_failed; 1045 } 1046 1047 memset(fd, 0, sizeof(struct dpaa2_fd)); 1048 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1049 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1050 dpaa2_fd_set_addr(fd, sgt_addr); 1051 dpaa2_fd_set_len(fd, skb->len); 1052 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1053 1054 return 0; 1055 1056 sgt_map_failed: 1057 dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); 1058 data_map_failed: 1059 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1060 1061 return err; 1062 } 1063 1064 /* Create a frame descriptor based on a linear skb */ 1065 static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, 1066 struct sk_buff *skb, 1067 struct dpaa2_fd *fd, 1068 void **swa_addr) 1069 { 1070 struct device *dev = priv->net_dev->dev.parent; 1071 u8 *buffer_start, *aligned_start; 1072 struct dpaa2_eth_swa *swa; 1073 dma_addr_t addr; 1074 1075 buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); 1076 1077 /* If there's enough room to align the FD address, do it. 1078 * It will help hardware optimize accesses. 1079 */ 1080 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1081 DPAA2_ETH_TX_BUF_ALIGN); 1082 if (aligned_start >= skb->head) 1083 buffer_start = aligned_start; 1084 1085 /* Store a backpointer to the skb at the beginning of the buffer 1086 * (in the private data area) such that we can release it 1087 * on Tx confirm 1088 */ 1089 *swa_addr = (void *)buffer_start; 1090 swa = (struct dpaa2_eth_swa *)buffer_start; 1091 swa->type = DPAA2_ETH_SWA_SINGLE; 1092 swa->single.skb = skb; 1093 1094 addr = dma_map_single(dev, buffer_start, 1095 skb_tail_pointer(skb) - buffer_start, 1096 DMA_BIDIRECTIONAL); 1097 if (unlikely(dma_mapping_error(dev, addr))) 1098 return -ENOMEM; 1099 1100 memset(fd, 0, sizeof(struct dpaa2_fd)); 1101 dpaa2_fd_set_addr(fd, addr); 1102 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 1103 dpaa2_fd_set_len(fd, skb->len); 1104 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1105 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1106 1107 return 0; 1108 } 1109 1110 /* FD freeing routine on the Tx path 1111 * 1112 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 1113 * back-pointed to is also freed. 1114 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 1115 * dpaa2_eth_tx(). 1116 */ 1117 void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, 1118 struct dpaa2_eth_channel *ch, 1119 struct dpaa2_eth_fq *fq, 1120 const struct dpaa2_fd *fd, bool in_napi) 1121 { 1122 struct device *dev = priv->net_dev->dev.parent; 1123 dma_addr_t fd_addr, sg_addr; 1124 struct sk_buff *skb = NULL; 1125 unsigned char *buffer_start; 1126 struct dpaa2_eth_swa *swa; 1127 u8 fd_format = dpaa2_fd_get_format(fd); 1128 u32 fd_len = dpaa2_fd_get_len(fd); 1129 struct dpaa2_sg_entry *sgt; 1130 int should_free_skb = 1; 1131 void *tso_hdr; 1132 int i; 1133 1134 fd_addr = dpaa2_fd_get_addr(fd); 1135 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 1136 swa = (struct dpaa2_eth_swa *)buffer_start; 1137 1138 if (fd_format == dpaa2_fd_single) { 1139 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 1140 skb = swa->single.skb; 1141 /* Accessing the skb buffer is safe before dma unmap, 1142 * because we didn't map the actual skb shell. 1143 */ 1144 dma_unmap_single(dev, fd_addr, 1145 skb_tail_pointer(skb) - buffer_start, 1146 DMA_BIDIRECTIONAL); 1147 } else { 1148 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 1149 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 1150 DMA_BIDIRECTIONAL); 1151 } 1152 } else if (fd_format == dpaa2_fd_sg) { 1153 if (swa->type == DPAA2_ETH_SWA_SG) { 1154 skb = swa->sg.skb; 1155 1156 /* Unmap the scatterlist */ 1157 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 1158 DMA_BIDIRECTIONAL); 1159 kfree(swa->sg.scl); 1160 1161 /* Unmap the SGT buffer */ 1162 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 1163 DMA_BIDIRECTIONAL); 1164 } else if (swa->type == DPAA2_ETH_SWA_SW_TSO) { 1165 skb = swa->tso.skb; 1166 1167 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1168 priv->tx_data_offset); 1169 1170 /* Unmap the SGT buffer */ 1171 dma_unmap_single(dev, fd_addr, swa->tso.sgt_size, 1172 DMA_BIDIRECTIONAL); 1173 1174 /* Unmap and free the header */ 1175 tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt)); 1176 dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE, 1177 DMA_TO_DEVICE); 1178 kfree(tso_hdr); 1179 1180 /* Unmap the other SG entries for the data */ 1181 for (i = 1; i < swa->tso.num_sg; i++) 1182 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1183 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1184 1185 if (!swa->tso.is_last_fd) 1186 should_free_skb = 0; 1187 } else if (swa->type == DPAA2_ETH_SWA_XSK) { 1188 /* Unmap the SGT Buffer */ 1189 dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size, 1190 DMA_BIDIRECTIONAL); 1191 } else { 1192 skb = swa->single.skb; 1193 1194 /* Unmap the SGT Buffer */ 1195 dma_unmap_single(dev, fd_addr, swa->single.sgt_size, 1196 DMA_BIDIRECTIONAL); 1197 1198 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1199 priv->tx_data_offset); 1200 sg_addr = dpaa2_sg_get_addr(sgt); 1201 dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); 1202 } 1203 } else { 1204 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 1205 return; 1206 } 1207 1208 if (swa->type == DPAA2_ETH_SWA_XSK) { 1209 ch->xsk_tx_pkts_sent++; 1210 dpaa2_eth_sgt_recycle(priv, buffer_start); 1211 return; 1212 } 1213 1214 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 1215 fq->dq_frames++; 1216 fq->dq_bytes += fd_len; 1217 } 1218 1219 if (swa->type == DPAA2_ETH_SWA_XDP) { 1220 xdp_return_frame(swa->xdp.xdpf); 1221 return; 1222 } 1223 1224 /* Get the timestamp value */ 1225 if (swa->type != DPAA2_ETH_SWA_SW_TSO) { 1226 if (skb->cb[0] == TX_TSTAMP) { 1227 struct skb_shared_hwtstamps shhwtstamps; 1228 __le64 *ts = dpaa2_get_ts(buffer_start, true); 1229 u64 ns; 1230 1231 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1232 1233 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 1234 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1235 skb_tstamp_tx(skb, &shhwtstamps); 1236 } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1237 mutex_unlock(&priv->onestep_tstamp_lock); 1238 } 1239 } 1240 1241 /* Free SGT buffer allocated on tx */ 1242 if (fd_format != dpaa2_fd_single) 1243 dpaa2_eth_sgt_recycle(priv, buffer_start); 1244 1245 /* Move on with skb release. If we are just confirming multiple FDs 1246 * from the same TSO skb then only the last one will need to free the 1247 * skb. 1248 */ 1249 if (should_free_skb) 1250 napi_consume_skb(skb, in_napi); 1251 } 1252 1253 static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv, 1254 struct sk_buff *skb, struct dpaa2_fd *fd, 1255 int *num_fds, u32 *total_fds_len) 1256 { 1257 struct device *dev = priv->net_dev->dev.parent; 1258 int hdr_len, total_len, data_left, fd_len; 1259 int num_sge, err, i, sgt_buf_size; 1260 struct dpaa2_fd *fd_start = fd; 1261 struct dpaa2_sg_entry *sgt; 1262 struct dpaa2_eth_swa *swa; 1263 dma_addr_t sgt_addr, addr; 1264 dma_addr_t tso_hdr_dma; 1265 unsigned int index = 0; 1266 struct tso_t tso; 1267 char *tso_hdr; 1268 void *sgt_buf; 1269 1270 /* Initialize the TSO handler, and prepare the first payload */ 1271 hdr_len = tso_start(skb, &tso); 1272 *total_fds_len = 0; 1273 1274 total_len = skb->len - hdr_len; 1275 while (total_len > 0) { 1276 /* Prepare the HW SGT structure for this frame */ 1277 sgt_buf = dpaa2_eth_sgt_get(priv); 1278 if (unlikely(!sgt_buf)) { 1279 netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n"); 1280 err = -ENOMEM; 1281 goto err_sgt_get; 1282 } 1283 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1284 1285 /* Determine the data length of this frame */ 1286 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1287 total_len -= data_left; 1288 fd_len = data_left + hdr_len; 1289 1290 /* Prepare packet headers: MAC + IP + TCP */ 1291 tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC); 1292 if (!tso_hdr) { 1293 err = -ENOMEM; 1294 goto err_alloc_tso_hdr; 1295 } 1296 1297 tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0); 1298 tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1299 if (dma_mapping_error(dev, tso_hdr_dma)) { 1300 netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n"); 1301 err = -ENOMEM; 1302 goto err_map_tso_hdr; 1303 } 1304 1305 /* Setup the SG entry for the header */ 1306 dpaa2_sg_set_addr(sgt, tso_hdr_dma); 1307 dpaa2_sg_set_len(sgt, hdr_len); 1308 dpaa2_sg_set_final(sgt, data_left <= 0); 1309 1310 /* Compose the SG entries for each fragment of data */ 1311 num_sge = 1; 1312 while (data_left > 0) { 1313 int size; 1314 1315 /* Move to the next SG entry */ 1316 sgt++; 1317 size = min_t(int, tso.size, data_left); 1318 1319 addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE); 1320 if (dma_mapping_error(dev, addr)) { 1321 netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n"); 1322 err = -ENOMEM; 1323 goto err_map_data; 1324 } 1325 dpaa2_sg_set_addr(sgt, addr); 1326 dpaa2_sg_set_len(sgt, size); 1327 dpaa2_sg_set_final(sgt, size == data_left); 1328 1329 num_sge++; 1330 1331 /* Build the data for the __next__ fragment */ 1332 data_left -= size; 1333 tso_build_data(skb, &tso, size); 1334 } 1335 1336 /* Store the skb backpointer in the SGT buffer */ 1337 sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry); 1338 swa = (struct dpaa2_eth_swa *)sgt_buf; 1339 swa->type = DPAA2_ETH_SWA_SW_TSO; 1340 swa->tso.skb = skb; 1341 swa->tso.num_sg = num_sge; 1342 swa->tso.sgt_size = sgt_buf_size; 1343 swa->tso.is_last_fd = total_len == 0 ? 1 : 0; 1344 1345 /* Separately map the SGT buffer */ 1346 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1347 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1348 netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n"); 1349 err = -ENOMEM; 1350 goto err_map_sgt; 1351 } 1352 1353 /* Setup the frame descriptor */ 1354 memset(fd, 0, sizeof(struct dpaa2_fd)); 1355 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1356 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1357 dpaa2_fd_set_addr(fd, sgt_addr); 1358 dpaa2_fd_set_len(fd, fd_len); 1359 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1360 1361 *total_fds_len += fd_len; 1362 /* Advance to the next frame descriptor */ 1363 fd++; 1364 index++; 1365 } 1366 1367 *num_fds = index; 1368 1369 return 0; 1370 1371 err_map_sgt: 1372 err_map_data: 1373 /* Unmap all the data S/G entries for the current FD */ 1374 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1375 for (i = 1; i < num_sge; i++) 1376 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1377 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1378 1379 /* Unmap the header entry */ 1380 dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1381 err_map_tso_hdr: 1382 kfree(tso_hdr); 1383 err_alloc_tso_hdr: 1384 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1385 err_sgt_get: 1386 /* Free all the other FDs that were already fully created */ 1387 for (i = 0; i < index; i++) 1388 dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false); 1389 1390 return err; 1391 } 1392 1393 static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, 1394 struct net_device *net_dev) 1395 { 1396 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1397 int total_enqueued = 0, retries = 0, enqueued; 1398 struct dpaa2_eth_drv_stats *percpu_extras; 1399 struct rtnl_link_stats64 *percpu_stats; 1400 unsigned int needed_headroom; 1401 int num_fds = 1, max_retries; 1402 struct dpaa2_eth_fq *fq; 1403 struct netdev_queue *nq; 1404 struct dpaa2_fd *fd; 1405 u16 queue_mapping; 1406 void *swa = NULL; 1407 u8 prio = 0; 1408 int err, i; 1409 u32 fd_len; 1410 1411 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1412 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1413 fd = (this_cpu_ptr(priv->fd))->array; 1414 1415 needed_headroom = dpaa2_eth_needed_headroom(skb); 1416 1417 /* We'll be holding a back-reference to the skb until Tx Confirmation; 1418 * we don't want that overwritten by a concurrent Tx with a cloned skb. 1419 */ 1420 skb = skb_unshare(skb, GFP_ATOMIC); 1421 if (unlikely(!skb)) { 1422 /* skb_unshare() has already freed the skb */ 1423 percpu_stats->tx_dropped++; 1424 return NETDEV_TX_OK; 1425 } 1426 1427 /* Setup the FD fields */ 1428 1429 if (skb_is_gso(skb)) { 1430 err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len); 1431 percpu_extras->tx_sg_frames += num_fds; 1432 percpu_extras->tx_sg_bytes += fd_len; 1433 percpu_extras->tx_tso_frames += num_fds; 1434 percpu_extras->tx_tso_bytes += fd_len; 1435 } else if (skb_is_nonlinear(skb)) { 1436 err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa); 1437 percpu_extras->tx_sg_frames++; 1438 percpu_extras->tx_sg_bytes += skb->len; 1439 fd_len = dpaa2_fd_get_len(fd); 1440 } else if (skb_headroom(skb) < needed_headroom) { 1441 err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa); 1442 percpu_extras->tx_sg_frames++; 1443 percpu_extras->tx_sg_bytes += skb->len; 1444 percpu_extras->tx_converted_sg_frames++; 1445 percpu_extras->tx_converted_sg_bytes += skb->len; 1446 fd_len = dpaa2_fd_get_len(fd); 1447 } else { 1448 err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa); 1449 fd_len = dpaa2_fd_get_len(fd); 1450 } 1451 1452 if (unlikely(err)) { 1453 percpu_stats->tx_dropped++; 1454 goto err_build_fd; 1455 } 1456 1457 if (swa && skb->cb[0]) 1458 dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb); 1459 1460 /* Tracing point */ 1461 for (i = 0; i < num_fds; i++) 1462 trace_dpaa2_tx_fd(net_dev, &fd[i]); 1463 1464 /* TxConf FQ selection relies on queue id from the stack. 1465 * In case of a forwarded frame from another DPNI interface, we choose 1466 * a queue affined to the same core that processed the Rx frame 1467 */ 1468 queue_mapping = skb_get_queue_mapping(skb); 1469 1470 if (net_dev->num_tc) { 1471 prio = netdev_txq_to_tc(net_dev, queue_mapping); 1472 /* Hardware interprets priority level 0 as being the highest, 1473 * so we need to do a reverse mapping to the netdev tc index 1474 */ 1475 prio = net_dev->num_tc - prio - 1; 1476 /* We have only one FQ array entry for all Tx hardware queues 1477 * with the same flow id (but different priority levels) 1478 */ 1479 queue_mapping %= dpaa2_eth_queue_count(priv); 1480 } 1481 fq = &priv->fq[queue_mapping]; 1482 nq = netdev_get_tx_queue(net_dev, queue_mapping); 1483 netdev_tx_sent_queue(nq, fd_len); 1484 1485 /* Everything that happens after this enqueues might race with 1486 * the Tx confirmation callback for this frame 1487 */ 1488 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 1489 while (total_enqueued < num_fds && retries < max_retries) { 1490 err = priv->enqueue(priv, fq, &fd[total_enqueued], 1491 prio, num_fds - total_enqueued, &enqueued); 1492 if (err == -EBUSY) { 1493 retries++; 1494 continue; 1495 } 1496 1497 total_enqueued += enqueued; 1498 } 1499 percpu_extras->tx_portal_busy += retries; 1500 1501 if (unlikely(err < 0)) { 1502 percpu_stats->tx_errors++; 1503 /* Clean up everything, including freeing the skb */ 1504 dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false); 1505 netdev_tx_completed_queue(nq, 1, fd_len); 1506 } else { 1507 percpu_stats->tx_packets += total_enqueued; 1508 percpu_stats->tx_bytes += fd_len; 1509 } 1510 1511 return NETDEV_TX_OK; 1512 1513 err_build_fd: 1514 dev_kfree_skb(skb); 1515 1516 return NETDEV_TX_OK; 1517 } 1518 1519 static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) 1520 { 1521 struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, 1522 tx_onestep_tstamp); 1523 struct sk_buff *skb; 1524 1525 while (true) { 1526 skb = skb_dequeue(&priv->tx_skbs); 1527 if (!skb) 1528 return; 1529 1530 /* Lock just before TX one-step timestamping packet, 1531 * and release the lock in dpaa2_eth_free_tx_fd when 1532 * confirm the packet has been sent on hardware, or 1533 * when clean up during transmit failure. 1534 */ 1535 mutex_lock(&priv->onestep_tstamp_lock); 1536 __dpaa2_eth_tx(skb, priv->net_dev); 1537 } 1538 } 1539 1540 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 1541 { 1542 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1543 u8 msgtype, twostep, udp; 1544 u16 offset1, offset2; 1545 1546 /* Utilize skb->cb[0] for timestamping request per skb */ 1547 skb->cb[0] = 0; 1548 1549 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { 1550 if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) 1551 skb->cb[0] = TX_TSTAMP; 1552 else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 1553 skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; 1554 } 1555 1556 /* TX for one-step timestamping PTP Sync packet */ 1557 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1558 if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 1559 &offset1, &offset2)) 1560 if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) { 1561 skb_queue_tail(&priv->tx_skbs, skb); 1562 queue_work(priv->dpaa2_ptp_wq, 1563 &priv->tx_onestep_tstamp); 1564 return NETDEV_TX_OK; 1565 } 1566 /* Use two-step timestamping if not one-step timestamping 1567 * PTP Sync packet 1568 */ 1569 skb->cb[0] = TX_TSTAMP; 1570 } 1571 1572 /* TX for other packets */ 1573 return __dpaa2_eth_tx(skb, net_dev); 1574 } 1575 1576 /* Tx confirmation frame processing routine */ 1577 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 1578 struct dpaa2_eth_channel *ch, 1579 const struct dpaa2_fd *fd, 1580 struct dpaa2_eth_fq *fq) 1581 { 1582 struct rtnl_link_stats64 *percpu_stats; 1583 struct dpaa2_eth_drv_stats *percpu_extras; 1584 u32 fd_len = dpaa2_fd_get_len(fd); 1585 u32 fd_errors; 1586 1587 /* Tracing point */ 1588 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 1589 1590 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1591 percpu_extras->tx_conf_frames++; 1592 percpu_extras->tx_conf_bytes += fd_len; 1593 ch->stats.bytes_per_cdan += fd_len; 1594 1595 /* Check frame errors in the FD field */ 1596 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 1597 dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true); 1598 1599 if (likely(!fd_errors)) 1600 return; 1601 1602 if (net_ratelimit()) 1603 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 1604 fd_errors); 1605 1606 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1607 /* Tx-conf logically pertains to the egress path. */ 1608 percpu_stats->tx_errors++; 1609 } 1610 1611 static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv, 1612 bool enable) 1613 { 1614 int err; 1615 1616 err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable); 1617 1618 if (err) { 1619 netdev_err(priv->net_dev, 1620 "dpni_enable_vlan_filter failed\n"); 1621 return err; 1622 } 1623 1624 return 0; 1625 } 1626 1627 static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 1628 { 1629 int err; 1630 1631 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1632 DPNI_OFF_RX_L3_CSUM, enable); 1633 if (err) { 1634 netdev_err(priv->net_dev, 1635 "dpni_set_offload(RX_L3_CSUM) failed\n"); 1636 return err; 1637 } 1638 1639 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1640 DPNI_OFF_RX_L4_CSUM, enable); 1641 if (err) { 1642 netdev_err(priv->net_dev, 1643 "dpni_set_offload(RX_L4_CSUM) failed\n"); 1644 return err; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 1651 { 1652 int err; 1653 1654 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1655 DPNI_OFF_TX_L3_CSUM, enable); 1656 if (err) { 1657 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 1658 return err; 1659 } 1660 1661 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1662 DPNI_OFF_TX_L4_CSUM, enable); 1663 if (err) { 1664 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1665 return err; 1666 } 1667 1668 return 0; 1669 } 1670 1671 /* Perform a single release command to add buffers 1672 * to the specified buffer pool 1673 */ 1674 static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, 1675 struct dpaa2_eth_channel *ch) 1676 { 1677 struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD]; 1678 struct device *dev = priv->net_dev->dev.parent; 1679 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1680 struct dpaa2_eth_swa *swa; 1681 struct page *page; 1682 dma_addr_t addr; 1683 int retries = 0; 1684 int i = 0, err; 1685 u32 batch; 1686 1687 /* Allocate buffers visible to WRIOP */ 1688 if (!ch->xsk_zc) { 1689 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1690 /* Also allocate skb shared info and alignment padding. 1691 * There is one page for each Rx buffer. WRIOP sees 1692 * the entire page except for a tailroom reserved for 1693 * skb shared info 1694 */ 1695 page = dev_alloc_pages(0); 1696 if (!page) 1697 goto err_alloc; 1698 1699 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1700 DMA_BIDIRECTIONAL); 1701 if (unlikely(dma_mapping_error(dev, addr))) 1702 goto err_map; 1703 1704 buf_array[i] = addr; 1705 1706 /* tracing point */ 1707 trace_dpaa2_eth_buf_seed(priv->net_dev, 1708 page_address(page), 1709 DPAA2_ETH_RX_BUF_RAW_SIZE, 1710 addr, priv->rx_buf_size, 1711 ch->bp->bpid); 1712 } 1713 } else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) { 1714 /* Allocate XSK buffers for AF_XDP fast path in batches 1715 * of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot 1716 * provide enough buffers at the moment 1717 */ 1718 batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs, 1719 DPAA2_ETH_BUFS_PER_CMD); 1720 if (!batch) 1721 goto err_alloc; 1722 1723 for (i = 0; i < batch; i++) { 1724 swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start + 1725 DPAA2_ETH_RX_HWA_SIZE); 1726 swa->xsk.xdp_buff = xdp_buffs[i]; 1727 1728 addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]); 1729 if (unlikely(dma_mapping_error(dev, addr))) 1730 goto err_map; 1731 1732 buf_array[i] = addr; 1733 1734 trace_dpaa2_xsk_buf_seed(priv->net_dev, 1735 xdp_buffs[i]->data_hard_start, 1736 DPAA2_ETH_RX_BUF_RAW_SIZE, 1737 addr, priv->rx_buf_size, 1738 ch->bp->bpid); 1739 } 1740 } 1741 1742 release_bufs: 1743 /* In case the portal is busy, retry until successful */ 1744 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 1745 buf_array, i)) == -EBUSY) { 1746 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1747 break; 1748 cpu_relax(); 1749 } 1750 1751 /* If release command failed, clean up and bail out; 1752 * not much else we can do about it 1753 */ 1754 if (err) { 1755 dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc); 1756 return 0; 1757 } 1758 1759 return i; 1760 1761 err_map: 1762 if (!ch->xsk_zc) { 1763 __free_pages(page, 0); 1764 } else { 1765 for (; i < batch; i++) 1766 xsk_buff_free(xdp_buffs[i]); 1767 } 1768 err_alloc: 1769 /* If we managed to allocate at least some buffers, 1770 * release them to hardware 1771 */ 1772 if (i) 1773 goto release_bufs; 1774 1775 return 0; 1776 } 1777 1778 static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, 1779 struct dpaa2_eth_channel *ch) 1780 { 1781 int i; 1782 int new_count; 1783 1784 for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { 1785 new_count = dpaa2_eth_add_bufs(priv, ch); 1786 ch->buf_count += new_count; 1787 1788 if (new_count < DPAA2_ETH_BUFS_PER_CMD) 1789 return -ENOMEM; 1790 } 1791 1792 return 0; 1793 } 1794 1795 static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv) 1796 { 1797 struct net_device *net_dev = priv->net_dev; 1798 struct dpaa2_eth_channel *channel; 1799 int i, err = 0; 1800 1801 for (i = 0; i < priv->num_channels; i++) { 1802 channel = priv->channel[i]; 1803 1804 err = dpaa2_eth_seed_pool(priv, channel); 1805 1806 /* Not much to do; the buffer pool, though not filled up, 1807 * may still contain some buffers which would enable us 1808 * to limp on. 1809 */ 1810 if (err) 1811 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1812 channel->bp->dev->obj_desc.id, 1813 channel->bp->bpid); 1814 } 1815 } 1816 1817 /* 1818 * Drain the specified number of buffers from one of the DPNI's private buffer 1819 * pools. 1820 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1821 */ 1822 static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid, 1823 int count) 1824 { 1825 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1826 bool xsk_zc = false; 1827 int retries = 0; 1828 int i, ret; 1829 1830 for (i = 0; i < priv->num_channels; i++) 1831 if (priv->channel[i]->bp->bpid == bpid) 1832 xsk_zc = priv->channel[i]->xsk_zc; 1833 1834 do { 1835 ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count); 1836 if (ret < 0) { 1837 if (ret == -EBUSY && 1838 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1839 continue; 1840 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1841 return; 1842 } 1843 dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc); 1844 retries = 0; 1845 } while (ret); 1846 } 1847 1848 static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid) 1849 { 1850 int i; 1851 1852 /* Drain the buffer pool */ 1853 dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD); 1854 dpaa2_eth_drain_bufs(priv, bpid, 1); 1855 1856 /* Setup to zero the buffer count of all channels which were 1857 * using this buffer pool. 1858 */ 1859 for (i = 0; i < priv->num_channels; i++) 1860 if (priv->channel[i]->bp->bpid == bpid) 1861 priv->channel[i]->buf_count = 0; 1862 } 1863 1864 static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv) 1865 { 1866 int i; 1867 1868 for (i = 0; i < priv->num_bps; i++) 1869 dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid); 1870 } 1871 1872 /* Function is called from softirq context only, so we don't need to guard 1873 * the access to percpu count 1874 */ 1875 static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, 1876 struct dpaa2_eth_channel *ch) 1877 { 1878 int new_count; 1879 1880 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1881 return 0; 1882 1883 do { 1884 new_count = dpaa2_eth_add_bufs(priv, ch); 1885 if (unlikely(!new_count)) { 1886 /* Out of memory; abort for now, we'll try later on */ 1887 break; 1888 } 1889 ch->buf_count += new_count; 1890 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1891 1892 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1893 return -ENOMEM; 1894 1895 return 0; 1896 } 1897 1898 static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) 1899 { 1900 struct dpaa2_eth_sgt_cache *sgt_cache; 1901 u16 count; 1902 int k, i; 1903 1904 for_each_possible_cpu(k) { 1905 sgt_cache = per_cpu_ptr(priv->sgt_cache, k); 1906 count = sgt_cache->count; 1907 1908 for (i = 0; i < count; i++) 1909 skb_free_frag(sgt_cache->buf[i]); 1910 sgt_cache->count = 0; 1911 } 1912 } 1913 1914 static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) 1915 { 1916 int err; 1917 int dequeues = -1; 1918 1919 /* Retry while portal is busy */ 1920 do { 1921 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1922 ch->store); 1923 dequeues++; 1924 cpu_relax(); 1925 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1926 1927 ch->stats.dequeue_portal_busy += dequeues; 1928 if (unlikely(err)) 1929 ch->stats.pull_err++; 1930 1931 return err; 1932 } 1933 1934 /* NAPI poll routine 1935 * 1936 * Frames are dequeued from the QMan channel associated with this NAPI context. 1937 * Rx, Tx confirmation and (if configured) Rx error frames all count 1938 * towards the NAPI budget. 1939 */ 1940 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1941 { 1942 struct dpaa2_eth_channel *ch; 1943 struct dpaa2_eth_priv *priv; 1944 int rx_cleaned = 0, txconf_cleaned = 0; 1945 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1946 struct netdev_queue *nq; 1947 int store_cleaned, work_done; 1948 bool work_done_zc = false; 1949 struct list_head rx_list; 1950 int retries = 0; 1951 u16 flowid; 1952 int err; 1953 1954 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1955 ch->xdp.res = 0; 1956 priv = ch->priv; 1957 1958 INIT_LIST_HEAD(&rx_list); 1959 ch->rx_list = &rx_list; 1960 1961 if (ch->xsk_zc) { 1962 work_done_zc = dpaa2_xsk_tx(priv, ch); 1963 /* If we reached the XSK Tx per NAPI threshold, we're done */ 1964 if (work_done_zc) { 1965 work_done = budget; 1966 goto out; 1967 } 1968 } 1969 1970 do { 1971 err = dpaa2_eth_pull_channel(ch); 1972 if (unlikely(err)) 1973 break; 1974 1975 /* Refill pool if appropriate */ 1976 dpaa2_eth_refill_pool(priv, ch); 1977 1978 store_cleaned = dpaa2_eth_consume_frames(ch, &fq); 1979 if (store_cleaned <= 0) 1980 break; 1981 if (fq->type == DPAA2_RX_FQ) { 1982 rx_cleaned += store_cleaned; 1983 flowid = fq->flowid; 1984 } else { 1985 txconf_cleaned += store_cleaned; 1986 /* We have a single Tx conf FQ on this channel */ 1987 txc_fq = fq; 1988 } 1989 1990 /* If we either consumed the whole NAPI budget with Rx frames 1991 * or we reached the Tx confirmations threshold, we're done. 1992 */ 1993 if (rx_cleaned >= budget || 1994 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1995 work_done = budget; 1996 if (ch->xdp.res & XDP_REDIRECT) 1997 xdp_do_flush(); 1998 goto out; 1999 } 2000 } while (store_cleaned); 2001 2002 if (ch->xdp.res & XDP_REDIRECT) 2003 xdp_do_flush(); 2004 2005 /* Update NET DIM with the values for this CDAN */ 2006 dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan, 2007 ch->stats.bytes_per_cdan); 2008 ch->stats.frames_per_cdan = 0; 2009 ch->stats.bytes_per_cdan = 0; 2010 2011 /* We didn't consume the entire budget, so finish napi and 2012 * re-enable data availability notifications 2013 */ 2014 napi_complete_done(napi, rx_cleaned); 2015 do { 2016 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 2017 cpu_relax(); 2018 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 2019 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 2020 ch->nctx.desired_cpu); 2021 2022 work_done = max(rx_cleaned, 1); 2023 2024 out: 2025 netif_receive_skb_list(ch->rx_list); 2026 2027 if (ch->xsk_tx_pkts_sent) { 2028 xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent); 2029 ch->xsk_tx_pkts_sent = 0; 2030 } 2031 2032 if (txc_fq && txc_fq->dq_frames) { 2033 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 2034 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 2035 txc_fq->dq_bytes); 2036 txc_fq->dq_frames = 0; 2037 txc_fq->dq_bytes = 0; 2038 } 2039 2040 if (rx_cleaned && ch->xdp.res & XDP_TX) 2041 dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); 2042 2043 return work_done; 2044 } 2045 2046 static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) 2047 { 2048 struct dpaa2_eth_channel *ch; 2049 int i; 2050 2051 for (i = 0; i < priv->num_channels; i++) { 2052 ch = priv->channel[i]; 2053 napi_enable(&ch->napi); 2054 } 2055 } 2056 2057 static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) 2058 { 2059 struct dpaa2_eth_channel *ch; 2060 int i; 2061 2062 for (i = 0; i < priv->num_channels; i++) { 2063 ch = priv->channel[i]; 2064 napi_disable(&ch->napi); 2065 } 2066 } 2067 2068 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 2069 bool tx_pause, bool pfc) 2070 { 2071 struct dpni_taildrop td = {0}; 2072 struct dpaa2_eth_fq *fq; 2073 int i, err; 2074 2075 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 2076 * flow control is disabled (as it might interfere with either the 2077 * buffer pool depletion trigger for pause frames or with the group 2078 * congestion trigger for PFC frames) 2079 */ 2080 td.enable = !tx_pause; 2081 if (priv->rx_fqtd_enabled == td.enable) 2082 goto set_cgtd; 2083 2084 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 2085 td.units = DPNI_CONGESTION_UNIT_BYTES; 2086 2087 for (i = 0; i < priv->num_fqs; i++) { 2088 fq = &priv->fq[i]; 2089 if (fq->type != DPAA2_RX_FQ) 2090 continue; 2091 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2092 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 2093 fq->tc, fq->flowid, &td); 2094 if (err) { 2095 netdev_err(priv->net_dev, 2096 "dpni_set_taildrop(FQ) failed\n"); 2097 return; 2098 } 2099 } 2100 2101 priv->rx_fqtd_enabled = td.enable; 2102 2103 set_cgtd: 2104 /* Congestion group taildrop: threshold is in frames, per group 2105 * of FQs belonging to the same traffic class 2106 * Enabled if general Tx pause disabled or if PFCs are enabled 2107 * (congestion group threhsold for PFC generation is lower than the 2108 * CG taildrop threshold, so it won't interfere with it; we also 2109 * want frames in non-PFC enabled traffic classes to be kept in check) 2110 */ 2111 td.enable = !tx_pause || pfc; 2112 if (priv->rx_cgtd_enabled == td.enable) 2113 return; 2114 2115 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 2116 td.units = DPNI_CONGESTION_UNIT_FRAMES; 2117 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2118 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2119 DPNI_CP_GROUP, DPNI_QUEUE_RX, 2120 i, 0, &td); 2121 if (err) { 2122 netdev_err(priv->net_dev, 2123 "dpni_set_taildrop(CG) failed\n"); 2124 return; 2125 } 2126 } 2127 2128 priv->rx_cgtd_enabled = td.enable; 2129 } 2130 2131 static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) 2132 { 2133 struct dpni_link_state state = {0}; 2134 bool tx_pause; 2135 int err; 2136 2137 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 2138 if (unlikely(err)) { 2139 netdev_err(priv->net_dev, 2140 "dpni_get_link_state() failed\n"); 2141 return err; 2142 } 2143 2144 /* If Tx pause frame settings have changed, we need to update 2145 * Rx FQ taildrop configuration as well. We configure taildrop 2146 * only when pause frame generation is disabled. 2147 */ 2148 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 2149 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 2150 2151 /* When we manage the MAC/PHY using phylink there is no need 2152 * to manually update the netif_carrier. 2153 * We can avoid locking because we are called from the "link changed" 2154 * IRQ handler, which is the same as the "endpoint changed" IRQ handler 2155 * (the writer to priv->mac), so we cannot race with it. 2156 */ 2157 if (dpaa2_mac_is_type_phy(priv->mac)) 2158 goto out; 2159 2160 /* Chech link state; speed / duplex changes are not treated yet */ 2161 if (priv->link_state.up == state.up) 2162 goto out; 2163 2164 if (state.up) { 2165 netif_carrier_on(priv->net_dev); 2166 netif_tx_start_all_queues(priv->net_dev); 2167 } else { 2168 netif_tx_stop_all_queues(priv->net_dev); 2169 netif_carrier_off(priv->net_dev); 2170 } 2171 2172 netdev_info(priv->net_dev, "Link Event: state %s\n", 2173 state.up ? "up" : "down"); 2174 2175 out: 2176 priv->link_state = state; 2177 2178 return 0; 2179 } 2180 2181 static int dpaa2_eth_open(struct net_device *net_dev) 2182 { 2183 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2184 int err; 2185 2186 dpaa2_eth_seed_pools(priv); 2187 2188 mutex_lock(&priv->mac_lock); 2189 2190 if (!dpaa2_eth_is_type_phy(priv)) { 2191 /* We'll only start the txqs when the link is actually ready; 2192 * make sure we don't race against the link up notification, 2193 * which may come immediately after dpni_enable(); 2194 */ 2195 netif_tx_stop_all_queues(net_dev); 2196 2197 /* Also, explicitly set carrier off, otherwise 2198 * netif_carrier_ok() will return true and cause 'ip link show' 2199 * to report the LOWER_UP flag, even though the link 2200 * notification wasn't even received. 2201 */ 2202 netif_carrier_off(net_dev); 2203 } 2204 dpaa2_eth_enable_ch_napi(priv); 2205 2206 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 2207 if (err < 0) { 2208 mutex_unlock(&priv->mac_lock); 2209 netdev_err(net_dev, "dpni_enable() failed\n"); 2210 goto enable_err; 2211 } 2212 2213 if (dpaa2_eth_is_type_phy(priv)) 2214 dpaa2_mac_start(priv->mac); 2215 2216 mutex_unlock(&priv->mac_lock); 2217 2218 return 0; 2219 2220 enable_err: 2221 dpaa2_eth_disable_ch_napi(priv); 2222 dpaa2_eth_drain_pools(priv); 2223 return err; 2224 } 2225 2226 /* Total number of in-flight frames on ingress queues */ 2227 static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) 2228 { 2229 struct dpaa2_eth_fq *fq; 2230 u32 fcnt = 0, bcnt = 0, total = 0; 2231 int i, err; 2232 2233 for (i = 0; i < priv->num_fqs; i++) { 2234 fq = &priv->fq[i]; 2235 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 2236 if (err) { 2237 netdev_warn(priv->net_dev, "query_fq_count failed"); 2238 break; 2239 } 2240 total += fcnt; 2241 } 2242 2243 return total; 2244 } 2245 2246 static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 2247 { 2248 int retries = 10; 2249 u32 pending; 2250 2251 do { 2252 pending = dpaa2_eth_ingress_fq_count(priv); 2253 if (pending) 2254 msleep(100); 2255 } while (pending && --retries); 2256 } 2257 2258 #define DPNI_TX_PENDING_VER_MAJOR 7 2259 #define DPNI_TX_PENDING_VER_MINOR 13 2260 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 2261 { 2262 union dpni_statistics stats; 2263 int retries = 10; 2264 int err; 2265 2266 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 2267 DPNI_TX_PENDING_VER_MINOR) < 0) 2268 goto out; 2269 2270 do { 2271 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 2272 &stats); 2273 if (err) 2274 goto out; 2275 if (stats.page_6.tx_pending_frames == 0) 2276 return; 2277 } while (--retries); 2278 2279 out: 2280 msleep(500); 2281 } 2282 2283 static int dpaa2_eth_stop(struct net_device *net_dev) 2284 { 2285 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2286 int dpni_enabled = 0; 2287 int retries = 10; 2288 2289 mutex_lock(&priv->mac_lock); 2290 2291 if (dpaa2_eth_is_type_phy(priv)) { 2292 dpaa2_mac_stop(priv->mac); 2293 } else { 2294 netif_tx_stop_all_queues(net_dev); 2295 netif_carrier_off(net_dev); 2296 } 2297 2298 mutex_unlock(&priv->mac_lock); 2299 2300 /* On dpni_disable(), the MC firmware will: 2301 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 2302 * - cut off WRIOP dequeues from egress FQs and wait until transmission 2303 * of all in flight Tx frames is finished (and corresponding Tx conf 2304 * frames are enqueued back to software) 2305 * 2306 * Before calling dpni_disable(), we wait for all Tx frames to arrive 2307 * on WRIOP. After it finishes, wait until all remaining frames on Rx 2308 * and Tx conf queues are consumed on NAPI poll. 2309 */ 2310 dpaa2_eth_wait_for_egress_fq_empty(priv); 2311 2312 do { 2313 dpni_disable(priv->mc_io, 0, priv->mc_token); 2314 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 2315 if (dpni_enabled) 2316 /* Allow the hardware some slack */ 2317 msleep(100); 2318 } while (dpni_enabled && --retries); 2319 if (!retries) { 2320 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 2321 /* Must go on and disable NAPI nonetheless, so we don't crash at 2322 * the next "ifconfig up" 2323 */ 2324 } 2325 2326 dpaa2_eth_wait_for_ingress_fq_empty(priv); 2327 dpaa2_eth_disable_ch_napi(priv); 2328 2329 /* Empty the buffer pool */ 2330 dpaa2_eth_drain_pools(priv); 2331 2332 /* Empty the Scatter-Gather Buffer cache */ 2333 dpaa2_eth_sgt_cache_drain(priv); 2334 2335 return 0; 2336 } 2337 2338 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 2339 { 2340 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2341 struct device *dev = net_dev->dev.parent; 2342 int err; 2343 2344 err = eth_mac_addr(net_dev, addr); 2345 if (err < 0) { 2346 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 2347 return err; 2348 } 2349 2350 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2351 net_dev->dev_addr); 2352 if (err) { 2353 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 2354 return err; 2355 } 2356 2357 return 0; 2358 } 2359 2360 /** Fill in counters maintained by the GPP driver. These may be different from 2361 * the hardware counters obtained by ethtool. 2362 */ 2363 static void dpaa2_eth_get_stats(struct net_device *net_dev, 2364 struct rtnl_link_stats64 *stats) 2365 { 2366 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2367 struct rtnl_link_stats64 *percpu_stats; 2368 u64 *cpustats; 2369 u64 *netstats = (u64 *)stats; 2370 int i, j; 2371 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 2372 2373 for_each_possible_cpu(i) { 2374 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 2375 cpustats = (u64 *)percpu_stats; 2376 for (j = 0; j < num; j++) 2377 netstats[j] += cpustats[j]; 2378 } 2379 } 2380 2381 /* Copy mac unicast addresses from @net_dev to @priv. 2382 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2383 */ 2384 static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, 2385 struct dpaa2_eth_priv *priv) 2386 { 2387 struct netdev_hw_addr *ha; 2388 int err; 2389 2390 netdev_for_each_uc_addr(ha, net_dev) { 2391 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2392 ha->addr); 2393 if (err) 2394 netdev_warn(priv->net_dev, 2395 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 2396 ha->addr, err); 2397 } 2398 } 2399 2400 /* Copy mac multicast addresses from @net_dev to @priv 2401 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2402 */ 2403 static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, 2404 struct dpaa2_eth_priv *priv) 2405 { 2406 struct netdev_hw_addr *ha; 2407 int err; 2408 2409 netdev_for_each_mc_addr(ha, net_dev) { 2410 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2411 ha->addr); 2412 if (err) 2413 netdev_warn(priv->net_dev, 2414 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 2415 ha->addr, err); 2416 } 2417 } 2418 2419 static int dpaa2_eth_rx_add_vid(struct net_device *net_dev, 2420 __be16 vlan_proto, u16 vid) 2421 { 2422 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2423 int err; 2424 2425 err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token, 2426 vid, 0, 0, 0); 2427 2428 if (err) { 2429 netdev_warn(priv->net_dev, 2430 "Could not add the vlan id %u\n", 2431 vid); 2432 return err; 2433 } 2434 2435 return 0; 2436 } 2437 2438 static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev, 2439 __be16 vlan_proto, u16 vid) 2440 { 2441 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2442 int err; 2443 2444 err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid); 2445 2446 if (err) { 2447 netdev_warn(priv->net_dev, 2448 "Could not remove the vlan id %u\n", 2449 vid); 2450 return err; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 2457 { 2458 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2459 int uc_count = netdev_uc_count(net_dev); 2460 int mc_count = netdev_mc_count(net_dev); 2461 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 2462 u32 options = priv->dpni_attrs.options; 2463 u16 mc_token = priv->mc_token; 2464 struct fsl_mc_io *mc_io = priv->mc_io; 2465 int err; 2466 2467 /* Basic sanity checks; these probably indicate a misconfiguration */ 2468 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 2469 netdev_info(net_dev, 2470 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 2471 max_mac); 2472 2473 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 2474 if (uc_count > max_mac) { 2475 netdev_info(net_dev, 2476 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 2477 uc_count, max_mac); 2478 goto force_promisc; 2479 } 2480 if (mc_count + uc_count > max_mac) { 2481 netdev_info(net_dev, 2482 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 2483 uc_count + mc_count, max_mac); 2484 goto force_mc_promisc; 2485 } 2486 2487 /* Adjust promisc settings due to flag combinations */ 2488 if (net_dev->flags & IFF_PROMISC) 2489 goto force_promisc; 2490 if (net_dev->flags & IFF_ALLMULTI) { 2491 /* First, rebuild unicast filtering table. This should be done 2492 * in promisc mode, in order to avoid frame loss while we 2493 * progressively add entries to the table. 2494 * We don't know whether we had been in promisc already, and 2495 * making an MC call to find out is expensive; so set uc promisc 2496 * nonetheless. 2497 */ 2498 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2499 if (err) 2500 netdev_warn(net_dev, "Can't set uc promisc\n"); 2501 2502 /* Actual uc table reconstruction. */ 2503 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 2504 if (err) 2505 netdev_warn(net_dev, "Can't clear uc filters\n"); 2506 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2507 2508 /* Finally, clear uc promisc and set mc promisc as requested. */ 2509 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2510 if (err) 2511 netdev_warn(net_dev, "Can't clear uc promisc\n"); 2512 goto force_mc_promisc; 2513 } 2514 2515 /* Neither unicast, nor multicast promisc will be on... eventually. 2516 * For now, rebuild mac filtering tables while forcing both of them on. 2517 */ 2518 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2519 if (err) 2520 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 2521 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2522 if (err) 2523 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 2524 2525 /* Actual mac filtering tables reconstruction */ 2526 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 2527 if (err) 2528 netdev_warn(net_dev, "Can't clear mac filters\n"); 2529 dpaa2_eth_add_mc_hw_addr(net_dev, priv); 2530 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2531 2532 /* Now we can clear both ucast and mcast promisc, without risking 2533 * to drop legitimate frames anymore. 2534 */ 2535 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2536 if (err) 2537 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 2538 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 2539 if (err) 2540 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 2541 2542 return; 2543 2544 force_promisc: 2545 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2546 if (err) 2547 netdev_warn(net_dev, "Can't set ucast promisc\n"); 2548 force_mc_promisc: 2549 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2550 if (err) 2551 netdev_warn(net_dev, "Can't set mcast promisc\n"); 2552 } 2553 2554 static int dpaa2_eth_set_features(struct net_device *net_dev, 2555 netdev_features_t features) 2556 { 2557 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2558 netdev_features_t changed = features ^ net_dev->features; 2559 bool enable; 2560 int err; 2561 2562 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 2563 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2564 err = dpaa2_eth_set_rx_vlan_filtering(priv, enable); 2565 if (err) 2566 return err; 2567 } 2568 2569 if (changed & NETIF_F_RXCSUM) { 2570 enable = !!(features & NETIF_F_RXCSUM); 2571 err = dpaa2_eth_set_rx_csum(priv, enable); 2572 if (err) 2573 return err; 2574 } 2575 2576 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2577 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 2578 err = dpaa2_eth_set_tx_csum(priv, enable); 2579 if (err) 2580 return err; 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2587 { 2588 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2589 struct hwtstamp_config config; 2590 2591 if (!dpaa2_ptp) 2592 return -EINVAL; 2593 2594 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 2595 return -EFAULT; 2596 2597 switch (config.tx_type) { 2598 case HWTSTAMP_TX_OFF: 2599 case HWTSTAMP_TX_ON: 2600 case HWTSTAMP_TX_ONESTEP_SYNC: 2601 priv->tx_tstamp_type = config.tx_type; 2602 break; 2603 default: 2604 return -ERANGE; 2605 } 2606 2607 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 2608 priv->rx_tstamp = false; 2609 } else { 2610 priv->rx_tstamp = true; 2611 /* TS is set for all frame types, not only those requested */ 2612 config.rx_filter = HWTSTAMP_FILTER_ALL; 2613 } 2614 2615 if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 2616 dpaa2_ptp_onestep_reg_update_method(priv); 2617 2618 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 2619 -EFAULT : 0; 2620 } 2621 2622 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2623 { 2624 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2625 int err; 2626 2627 if (cmd == SIOCSHWTSTAMP) 2628 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 2629 2630 mutex_lock(&priv->mac_lock); 2631 2632 if (dpaa2_eth_is_type_phy(priv)) { 2633 err = phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 2634 mutex_unlock(&priv->mac_lock); 2635 return err; 2636 } 2637 2638 mutex_unlock(&priv->mac_lock); 2639 2640 return -EOPNOTSUPP; 2641 } 2642 2643 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 2644 { 2645 int mfl, linear_mfl; 2646 2647 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2648 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 2649 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 2650 2651 if (mfl > linear_mfl) { 2652 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 2653 linear_mfl - VLAN_ETH_HLEN); 2654 return false; 2655 } 2656 2657 return true; 2658 } 2659 2660 static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 2661 { 2662 int mfl, err; 2663 2664 /* We enforce a maximum Rx frame length based on MTU only if we have 2665 * an XDP program attached (in order to avoid Rx S/G frames). 2666 * Otherwise, we accept all incoming frames as long as they are not 2667 * larger than maximum size supported in hardware 2668 */ 2669 if (has_xdp) 2670 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2671 else 2672 mfl = DPAA2_ETH_MFL; 2673 2674 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 2675 if (err) { 2676 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 2677 return err; 2678 } 2679 2680 return 0; 2681 } 2682 2683 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 2684 { 2685 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2686 int err; 2687 2688 if (!priv->xdp_prog) 2689 goto out; 2690 2691 if (!xdp_mtu_valid(priv, new_mtu)) 2692 return -EINVAL; 2693 2694 err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); 2695 if (err) 2696 return err; 2697 2698 out: 2699 dev->mtu = new_mtu; 2700 return 0; 2701 } 2702 2703 static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 2704 { 2705 struct dpni_buffer_layout buf_layout = {0}; 2706 int err; 2707 2708 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 2709 DPNI_QUEUE_RX, &buf_layout); 2710 if (err) { 2711 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 2712 return err; 2713 } 2714 2715 /* Reserve extra headroom for XDP header size changes */ 2716 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 2717 (has_xdp ? XDP_PACKET_HEADROOM : 0); 2718 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 2719 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2720 DPNI_QUEUE_RX, &buf_layout); 2721 if (err) { 2722 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 2723 return err; 2724 } 2725 2726 return 0; 2727 } 2728 2729 static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) 2730 { 2731 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2732 struct dpaa2_eth_channel *ch; 2733 struct bpf_prog *old; 2734 bool up, need_update; 2735 int i, err; 2736 2737 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 2738 return -EINVAL; 2739 2740 if (prog) 2741 bpf_prog_add(prog, priv->num_channels); 2742 2743 up = netif_running(dev); 2744 need_update = (!!priv->xdp_prog != !!prog); 2745 2746 if (up) 2747 dev_close(dev); 2748 2749 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 2750 * Also, when switching between xdp/non-xdp modes we need to reconfigure 2751 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 2752 * so we are sure no old format buffers will be used from now on. 2753 */ 2754 if (need_update) { 2755 err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); 2756 if (err) 2757 goto out_err; 2758 err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); 2759 if (err) 2760 goto out_err; 2761 } 2762 2763 old = xchg(&priv->xdp_prog, prog); 2764 if (old) 2765 bpf_prog_put(old); 2766 2767 for (i = 0; i < priv->num_channels; i++) { 2768 ch = priv->channel[i]; 2769 old = xchg(&ch->xdp.prog, prog); 2770 if (old) 2771 bpf_prog_put(old); 2772 } 2773 2774 if (up) { 2775 err = dev_open(dev, NULL); 2776 if (err) 2777 return err; 2778 } 2779 2780 return 0; 2781 2782 out_err: 2783 if (prog) 2784 bpf_prog_sub(prog, priv->num_channels); 2785 if (up) 2786 dev_open(dev, NULL); 2787 2788 return err; 2789 } 2790 2791 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2792 { 2793 switch (xdp->command) { 2794 case XDP_SETUP_PROG: 2795 return dpaa2_eth_setup_xdp(dev, xdp->prog); 2796 case XDP_SETUP_XSK_POOL: 2797 return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id); 2798 default: 2799 return -EINVAL; 2800 } 2801 2802 return 0; 2803 } 2804 2805 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 2806 struct xdp_frame *xdpf, 2807 struct dpaa2_fd *fd) 2808 { 2809 struct device *dev = net_dev->dev.parent; 2810 unsigned int needed_headroom; 2811 struct dpaa2_eth_swa *swa; 2812 void *buffer_start, *aligned_start; 2813 dma_addr_t addr; 2814 2815 /* We require a minimum headroom to be able to transmit the frame. 2816 * Otherwise return an error and let the original net_device handle it 2817 */ 2818 needed_headroom = dpaa2_eth_needed_headroom(NULL); 2819 if (xdpf->headroom < needed_headroom) 2820 return -EINVAL; 2821 2822 /* Setup the FD fields */ 2823 memset(fd, 0, sizeof(*fd)); 2824 2825 /* Align FD address, if possible */ 2826 buffer_start = xdpf->data - needed_headroom; 2827 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2828 DPAA2_ETH_TX_BUF_ALIGN); 2829 if (aligned_start >= xdpf->data - xdpf->headroom) 2830 buffer_start = aligned_start; 2831 2832 swa = (struct dpaa2_eth_swa *)buffer_start; 2833 /* fill in necessary fields here */ 2834 swa->type = DPAA2_ETH_SWA_XDP; 2835 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2836 swa->xdp.xdpf = xdpf; 2837 2838 addr = dma_map_single(dev, buffer_start, 2839 swa->xdp.dma_size, 2840 DMA_BIDIRECTIONAL); 2841 if (unlikely(dma_mapping_error(dev, addr))) 2842 return -ENOMEM; 2843 2844 dpaa2_fd_set_addr(fd, addr); 2845 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2846 dpaa2_fd_set_len(fd, xdpf->len); 2847 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2848 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2849 2850 return 0; 2851 } 2852 2853 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2854 struct xdp_frame **frames, u32 flags) 2855 { 2856 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2857 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2858 struct rtnl_link_stats64 *percpu_stats; 2859 struct dpaa2_eth_fq *fq; 2860 struct dpaa2_fd *fds; 2861 int enqueued, i, err; 2862 2863 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2864 return -EINVAL; 2865 2866 if (!netif_running(net_dev)) 2867 return -ENETDOWN; 2868 2869 fq = &priv->fq[smp_processor_id()]; 2870 xdp_redirect_fds = &fq->xdp_redirect_fds; 2871 fds = xdp_redirect_fds->fds; 2872 2873 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2874 2875 /* create a FD for each xdp_frame in the list received */ 2876 for (i = 0; i < n; i++) { 2877 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2878 if (err) 2879 break; 2880 } 2881 xdp_redirect_fds->num = i; 2882 2883 /* enqueue all the frame descriptors */ 2884 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2885 2886 /* update statistics */ 2887 percpu_stats->tx_packets += enqueued; 2888 for (i = 0; i < enqueued; i++) 2889 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2890 2891 return enqueued; 2892 } 2893 2894 static int update_xps(struct dpaa2_eth_priv *priv) 2895 { 2896 struct net_device *net_dev = priv->net_dev; 2897 struct cpumask xps_mask; 2898 struct dpaa2_eth_fq *fq; 2899 int i, num_queues, netdev_queues; 2900 int err = 0; 2901 2902 num_queues = dpaa2_eth_queue_count(priv); 2903 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2904 2905 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2906 * queues, so only process those 2907 */ 2908 for (i = 0; i < netdev_queues; i++) { 2909 fq = &priv->fq[i % num_queues]; 2910 2911 cpumask_clear(&xps_mask); 2912 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2913 2914 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2915 if (err) { 2916 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2917 break; 2918 } 2919 } 2920 2921 return err; 2922 } 2923 2924 static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, 2925 struct tc_mqprio_qopt *mqprio) 2926 { 2927 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2928 u8 num_tc, num_queues; 2929 int i; 2930 2931 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2932 num_queues = dpaa2_eth_queue_count(priv); 2933 num_tc = mqprio->num_tc; 2934 2935 if (num_tc == net_dev->num_tc) 2936 return 0; 2937 2938 if (num_tc > dpaa2_eth_tc_count(priv)) { 2939 netdev_err(net_dev, "Max %d traffic classes supported\n", 2940 dpaa2_eth_tc_count(priv)); 2941 return -EOPNOTSUPP; 2942 } 2943 2944 if (!num_tc) { 2945 netdev_reset_tc(net_dev); 2946 netif_set_real_num_tx_queues(net_dev, num_queues); 2947 goto out; 2948 } 2949 2950 netdev_set_num_tc(net_dev, num_tc); 2951 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2952 2953 for (i = 0; i < num_tc; i++) 2954 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2955 2956 out: 2957 update_xps(priv); 2958 2959 return 0; 2960 } 2961 2962 #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) 2963 2964 static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) 2965 { 2966 struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; 2967 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2968 struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; 2969 struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; 2970 int err; 2971 2972 if (p->command == TC_TBF_STATS) 2973 return -EOPNOTSUPP; 2974 2975 /* Only per port Tx shaping */ 2976 if (p->parent != TC_H_ROOT) 2977 return -EOPNOTSUPP; 2978 2979 if (p->command == TC_TBF_REPLACE) { 2980 if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { 2981 netdev_err(net_dev, "burst size cannot be greater than %d\n", 2982 DPAA2_ETH_MAX_BURST_SIZE); 2983 return -EINVAL; 2984 } 2985 2986 tx_cr_shaper.max_burst_size = cfg->max_size; 2987 /* The TBF interface is in bytes/s, whereas DPAA2 expects the 2988 * rate in Mbits/s 2989 */ 2990 tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); 2991 } 2992 2993 err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, 2994 &tx_er_shaper, 0); 2995 if (err) { 2996 netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); 2997 return err; 2998 } 2999 3000 return 0; 3001 } 3002 3003 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 3004 enum tc_setup_type type, void *type_data) 3005 { 3006 switch (type) { 3007 case TC_SETUP_QDISC_MQPRIO: 3008 return dpaa2_eth_setup_mqprio(net_dev, type_data); 3009 case TC_SETUP_QDISC_TBF: 3010 return dpaa2_eth_setup_tbf(net_dev, type_data); 3011 default: 3012 return -EOPNOTSUPP; 3013 } 3014 } 3015 3016 static const struct net_device_ops dpaa2_eth_ops = { 3017 .ndo_open = dpaa2_eth_open, 3018 .ndo_start_xmit = dpaa2_eth_tx, 3019 .ndo_stop = dpaa2_eth_stop, 3020 .ndo_set_mac_address = dpaa2_eth_set_addr, 3021 .ndo_get_stats64 = dpaa2_eth_get_stats, 3022 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 3023 .ndo_set_features = dpaa2_eth_set_features, 3024 .ndo_eth_ioctl = dpaa2_eth_ioctl, 3025 .ndo_change_mtu = dpaa2_eth_change_mtu, 3026 .ndo_bpf = dpaa2_eth_xdp, 3027 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 3028 .ndo_xsk_wakeup = dpaa2_xsk_wakeup, 3029 .ndo_setup_tc = dpaa2_eth_setup_tc, 3030 .ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid, 3031 .ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid 3032 }; 3033 3034 static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) 3035 { 3036 struct dpaa2_eth_channel *ch; 3037 3038 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 3039 3040 /* Update NAPI statistics */ 3041 ch->stats.cdan++; 3042 3043 /* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed 3044 * so that it can be rescheduled again. 3045 */ 3046 if (!napi_if_scheduled_mark_missed(&ch->napi)) 3047 napi_schedule(&ch->napi); 3048 } 3049 3050 /* Allocate and configure a DPCON object */ 3051 static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) 3052 { 3053 struct fsl_mc_device *dpcon; 3054 struct device *dev = priv->net_dev->dev.parent; 3055 int err; 3056 3057 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 3058 FSL_MC_POOL_DPCON, &dpcon); 3059 if (err) { 3060 if (err == -ENXIO) { 3061 dev_dbg(dev, "Waiting for DPCON\n"); 3062 err = -EPROBE_DEFER; 3063 } else { 3064 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 3065 } 3066 return ERR_PTR(err); 3067 } 3068 3069 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 3070 if (err) { 3071 dev_err(dev, "dpcon_open() failed\n"); 3072 goto free; 3073 } 3074 3075 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 3076 if (err) { 3077 dev_err(dev, "dpcon_reset() failed\n"); 3078 goto close; 3079 } 3080 3081 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 3082 if (err) { 3083 dev_err(dev, "dpcon_enable() failed\n"); 3084 goto close; 3085 } 3086 3087 return dpcon; 3088 3089 close: 3090 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3091 free: 3092 fsl_mc_object_free(dpcon); 3093 3094 return ERR_PTR(err); 3095 } 3096 3097 static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, 3098 struct fsl_mc_device *dpcon) 3099 { 3100 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 3101 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3102 fsl_mc_object_free(dpcon); 3103 } 3104 3105 static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) 3106 { 3107 struct dpaa2_eth_channel *channel; 3108 struct dpcon_attr attr; 3109 struct device *dev = priv->net_dev->dev.parent; 3110 int err; 3111 3112 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 3113 if (!channel) 3114 return NULL; 3115 3116 channel->dpcon = dpaa2_eth_setup_dpcon(priv); 3117 if (IS_ERR(channel->dpcon)) { 3118 err = PTR_ERR(channel->dpcon); 3119 goto err_setup; 3120 } 3121 3122 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 3123 &attr); 3124 if (err) { 3125 dev_err(dev, "dpcon_get_attributes() failed\n"); 3126 goto err_get_attr; 3127 } 3128 3129 channel->dpcon_id = attr.id; 3130 channel->ch_id = attr.qbman_ch_id; 3131 channel->priv = priv; 3132 3133 return channel; 3134 3135 err_get_attr: 3136 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3137 err_setup: 3138 kfree(channel); 3139 return ERR_PTR(err); 3140 } 3141 3142 static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, 3143 struct dpaa2_eth_channel *channel) 3144 { 3145 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3146 kfree(channel); 3147 } 3148 3149 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 3150 * and register data availability notifications 3151 */ 3152 static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) 3153 { 3154 struct dpaa2_io_notification_ctx *nctx; 3155 struct dpaa2_eth_channel *channel; 3156 struct dpcon_notification_cfg dpcon_notif_cfg; 3157 struct device *dev = priv->net_dev->dev.parent; 3158 int i, err; 3159 3160 /* We want the ability to spread ingress traffic (RX, TX conf) to as 3161 * many cores as possible, so we need one channel for each core 3162 * (unless there's fewer queues than cores, in which case the extra 3163 * channels would be wasted). 3164 * Allocate one channel per core and register it to the core's 3165 * affine DPIO. If not enough channels are available for all cores 3166 * or if some cores don't have an affine DPIO, there will be no 3167 * ingress frame processing on those cores. 3168 */ 3169 cpumask_clear(&priv->dpio_cpumask); 3170 for_each_online_cpu(i) { 3171 /* Try to allocate a channel */ 3172 channel = dpaa2_eth_alloc_channel(priv); 3173 if (IS_ERR_OR_NULL(channel)) { 3174 err = PTR_ERR_OR_ZERO(channel); 3175 if (err == -EPROBE_DEFER) 3176 dev_dbg(dev, "waiting for affine channel\n"); 3177 else 3178 dev_info(dev, 3179 "No affine channel for cpu %d and above\n", i); 3180 goto err_alloc_ch; 3181 } 3182 3183 priv->channel[priv->num_channels] = channel; 3184 3185 nctx = &channel->nctx; 3186 nctx->is_cdan = 1; 3187 nctx->cb = dpaa2_eth_cdan_cb; 3188 nctx->id = channel->ch_id; 3189 nctx->desired_cpu = i; 3190 3191 /* Register the new context */ 3192 channel->dpio = dpaa2_io_service_select(i); 3193 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 3194 if (err) { 3195 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 3196 /* If no affine DPIO for this core, there's probably 3197 * none available for next cores either. Signal we want 3198 * to retry later, in case the DPIO devices weren't 3199 * probed yet. 3200 */ 3201 err = -EPROBE_DEFER; 3202 goto err_service_reg; 3203 } 3204 3205 /* Register DPCON notification with MC */ 3206 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 3207 dpcon_notif_cfg.priority = 0; 3208 dpcon_notif_cfg.user_ctx = nctx->qman64; 3209 err = dpcon_set_notification(priv->mc_io, 0, 3210 channel->dpcon->mc_handle, 3211 &dpcon_notif_cfg); 3212 if (err) { 3213 dev_err(dev, "dpcon_set_notification failed()\n"); 3214 goto err_set_cdan; 3215 } 3216 3217 /* If we managed to allocate a channel and also found an affine 3218 * DPIO for this core, add it to the final mask 3219 */ 3220 cpumask_set_cpu(i, &priv->dpio_cpumask); 3221 priv->num_channels++; 3222 3223 /* Stop if we already have enough channels to accommodate all 3224 * RX and TX conf queues 3225 */ 3226 if (priv->num_channels == priv->dpni_attrs.num_queues) 3227 break; 3228 } 3229 3230 return 0; 3231 3232 err_set_cdan: 3233 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3234 err_service_reg: 3235 dpaa2_eth_free_channel(priv, channel); 3236 err_alloc_ch: 3237 if (err == -EPROBE_DEFER) { 3238 for (i = 0; i < priv->num_channels; i++) { 3239 channel = priv->channel[i]; 3240 nctx = &channel->nctx; 3241 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3242 dpaa2_eth_free_channel(priv, channel); 3243 } 3244 priv->num_channels = 0; 3245 return err; 3246 } 3247 3248 if (cpumask_empty(&priv->dpio_cpumask)) { 3249 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 3250 return -ENODEV; 3251 } 3252 3253 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 3254 cpumask_pr_args(&priv->dpio_cpumask)); 3255 3256 return 0; 3257 } 3258 3259 static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) 3260 { 3261 struct device *dev = priv->net_dev->dev.parent; 3262 struct dpaa2_eth_channel *ch; 3263 int i; 3264 3265 /* deregister CDAN notifications and free channels */ 3266 for (i = 0; i < priv->num_channels; i++) { 3267 ch = priv->channel[i]; 3268 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 3269 dpaa2_eth_free_channel(priv, ch); 3270 } 3271 } 3272 3273 static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, 3274 int cpu) 3275 { 3276 struct device *dev = priv->net_dev->dev.parent; 3277 int i; 3278 3279 for (i = 0; i < priv->num_channels; i++) 3280 if (priv->channel[i]->nctx.desired_cpu == cpu) 3281 return priv->channel[i]; 3282 3283 /* We should never get here. Issue a warning and return 3284 * the first channel, because it's still better than nothing 3285 */ 3286 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 3287 3288 return priv->channel[0]; 3289 } 3290 3291 static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) 3292 { 3293 struct device *dev = priv->net_dev->dev.parent; 3294 struct dpaa2_eth_fq *fq; 3295 int rx_cpu, txc_cpu; 3296 int i; 3297 3298 /* For each FQ, pick one channel/CPU to deliver frames to. 3299 * This may well change at runtime, either through irqbalance or 3300 * through direct user intervention. 3301 */ 3302 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 3303 3304 for (i = 0; i < priv->num_fqs; i++) { 3305 fq = &priv->fq[i]; 3306 switch (fq->type) { 3307 case DPAA2_RX_FQ: 3308 case DPAA2_RX_ERR_FQ: 3309 fq->target_cpu = rx_cpu; 3310 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 3311 if (rx_cpu >= nr_cpu_ids) 3312 rx_cpu = cpumask_first(&priv->dpio_cpumask); 3313 break; 3314 case DPAA2_TX_CONF_FQ: 3315 fq->target_cpu = txc_cpu; 3316 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 3317 if (txc_cpu >= nr_cpu_ids) 3318 txc_cpu = cpumask_first(&priv->dpio_cpumask); 3319 break; 3320 default: 3321 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 3322 } 3323 fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); 3324 } 3325 3326 update_xps(priv); 3327 } 3328 3329 static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) 3330 { 3331 int i, j; 3332 3333 /* We have one TxConf FQ per Tx flow. 3334 * The number of Tx and Rx queues is the same. 3335 * Tx queues come first in the fq array. 3336 */ 3337 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3338 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 3339 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 3340 priv->fq[priv->num_fqs++].flowid = (u16)i; 3341 } 3342 3343 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3344 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3345 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 3346 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 3347 priv->fq[priv->num_fqs].tc = (u8)j; 3348 priv->fq[priv->num_fqs++].flowid = (u16)i; 3349 } 3350 } 3351 3352 /* We have exactly one Rx error queue per DPNI */ 3353 priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ; 3354 priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err; 3355 3356 /* For each FQ, decide on which core to process incoming frames */ 3357 dpaa2_eth_set_fq_affinity(priv); 3358 } 3359 3360 /* Allocate and configure a buffer pool */ 3361 struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv) 3362 { 3363 struct device *dev = priv->net_dev->dev.parent; 3364 struct fsl_mc_device *dpbp_dev; 3365 struct dpbp_attr dpbp_attrs; 3366 struct dpaa2_eth_bp *bp; 3367 int err; 3368 3369 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 3370 &dpbp_dev); 3371 if (err) { 3372 if (err == -ENXIO) 3373 err = -EPROBE_DEFER; 3374 else 3375 dev_err(dev, "DPBP device allocation failed\n"); 3376 return ERR_PTR(err); 3377 } 3378 3379 bp = kzalloc(sizeof(*bp), GFP_KERNEL); 3380 if (!bp) { 3381 err = -ENOMEM; 3382 goto err_alloc; 3383 } 3384 3385 err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id, 3386 &dpbp_dev->mc_handle); 3387 if (err) { 3388 dev_err(dev, "dpbp_open() failed\n"); 3389 goto err_open; 3390 } 3391 3392 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 3393 if (err) { 3394 dev_err(dev, "dpbp_reset() failed\n"); 3395 goto err_reset; 3396 } 3397 3398 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 3399 if (err) { 3400 dev_err(dev, "dpbp_enable() failed\n"); 3401 goto err_enable; 3402 } 3403 3404 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 3405 &dpbp_attrs); 3406 if (err) { 3407 dev_err(dev, "dpbp_get_attributes() failed\n"); 3408 goto err_get_attr; 3409 } 3410 3411 bp->dev = dpbp_dev; 3412 bp->bpid = dpbp_attrs.bpid; 3413 3414 return bp; 3415 3416 err_get_attr: 3417 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 3418 err_enable: 3419 err_reset: 3420 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 3421 err_open: 3422 kfree(bp); 3423 err_alloc: 3424 fsl_mc_object_free(dpbp_dev); 3425 3426 return ERR_PTR(err); 3427 } 3428 3429 static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv) 3430 { 3431 struct dpaa2_eth_bp *bp; 3432 int i; 3433 3434 bp = dpaa2_eth_allocate_dpbp(priv); 3435 if (IS_ERR(bp)) 3436 return PTR_ERR(bp); 3437 3438 priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp; 3439 priv->num_bps++; 3440 3441 for (i = 0; i < priv->num_channels; i++) 3442 priv->channel[i]->bp = bp; 3443 3444 return 0; 3445 } 3446 3447 void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp) 3448 { 3449 int idx_bp; 3450 3451 /* Find the index at which this BP is stored */ 3452 for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++) 3453 if (priv->bp[idx_bp] == bp) 3454 break; 3455 3456 /* Drain the pool and disable the associated MC object */ 3457 dpaa2_eth_drain_pool(priv, bp->bpid); 3458 dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle); 3459 dpbp_close(priv->mc_io, 0, bp->dev->mc_handle); 3460 fsl_mc_object_free(bp->dev); 3461 kfree(bp); 3462 3463 /* Move the last in use DPBP over in this position */ 3464 priv->bp[idx_bp] = priv->bp[priv->num_bps - 1]; 3465 priv->num_bps--; 3466 } 3467 3468 static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv) 3469 { 3470 int i; 3471 3472 for (i = 0; i < priv->num_bps; i++) 3473 dpaa2_eth_free_dpbp(priv, priv->bp[i]); 3474 } 3475 3476 static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) 3477 { 3478 struct device *dev = priv->net_dev->dev.parent; 3479 struct dpni_buffer_layout buf_layout = {0}; 3480 u16 rx_buf_align; 3481 int err; 3482 3483 /* We need to check for WRIOP version 1.0.0, but depending on the MC 3484 * version, this number is not always provided correctly on rev1. 3485 * We need to check for both alternatives in this situation. 3486 */ 3487 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 3488 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 3489 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 3490 else 3491 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 3492 3493 /* We need to ensure that the buffer size seen by WRIOP is a multiple 3494 * of 64 or 256 bytes depending on the WRIOP version. 3495 */ 3496 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 3497 3498 /* tx buffer */ 3499 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 3500 buf_layout.pass_timestamp = true; 3501 buf_layout.pass_frame_status = true; 3502 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 3503 DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3504 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3505 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3506 DPNI_QUEUE_TX, &buf_layout); 3507 if (err) { 3508 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 3509 return err; 3510 } 3511 3512 /* tx-confirm buffer */ 3513 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3514 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3515 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3516 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 3517 if (err) { 3518 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 3519 return err; 3520 } 3521 3522 /* Now that we've set our tx buffer layout, retrieve the minimum 3523 * required tx data offset. 3524 */ 3525 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 3526 &priv->tx_data_offset); 3527 if (err) { 3528 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 3529 return err; 3530 } 3531 3532 if ((priv->tx_data_offset % 64) != 0) 3533 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 3534 priv->tx_data_offset); 3535 3536 /* rx buffer */ 3537 buf_layout.pass_frame_status = true; 3538 buf_layout.pass_parser_result = true; 3539 buf_layout.data_align = rx_buf_align; 3540 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 3541 buf_layout.private_data_size = 0; 3542 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 3543 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 3544 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 3545 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 3546 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 3547 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3548 DPNI_QUEUE_RX, &buf_layout); 3549 if (err) { 3550 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 3551 return err; 3552 } 3553 3554 return 0; 3555 } 3556 3557 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 3558 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 3559 3560 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 3561 struct dpaa2_eth_fq *fq, 3562 struct dpaa2_fd *fd, u8 prio, 3563 u32 num_frames __always_unused, 3564 int *frames_enqueued) 3565 { 3566 int err; 3567 3568 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 3569 priv->tx_qdid, prio, 3570 fq->tx_qdbin, fd); 3571 if (!err && frames_enqueued) 3572 *frames_enqueued = 1; 3573 return err; 3574 } 3575 3576 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 3577 struct dpaa2_eth_fq *fq, 3578 struct dpaa2_fd *fd, 3579 u8 prio, u32 num_frames, 3580 int *frames_enqueued) 3581 { 3582 int err; 3583 3584 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 3585 fq->tx_fqid[prio], 3586 fd, num_frames); 3587 3588 if (err == 0) 3589 return -EBUSY; 3590 3591 if (frames_enqueued) 3592 *frames_enqueued = err; 3593 return 0; 3594 } 3595 3596 static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) 3597 { 3598 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3599 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3600 priv->enqueue = dpaa2_eth_enqueue_qd; 3601 else 3602 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3603 } 3604 3605 static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) 3606 { 3607 struct device *dev = priv->net_dev->dev.parent; 3608 struct dpni_link_cfg link_cfg = {0}; 3609 int err; 3610 3611 /* Get the default link options so we don't override other flags */ 3612 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3613 if (err) { 3614 dev_err(dev, "dpni_get_link_cfg() failed\n"); 3615 return err; 3616 } 3617 3618 /* By default, enable both Rx and Tx pause frames */ 3619 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 3620 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 3621 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3622 if (err) { 3623 dev_err(dev, "dpni_set_link_cfg() failed\n"); 3624 return err; 3625 } 3626 3627 priv->link_state.options = link_cfg.options; 3628 3629 return 0; 3630 } 3631 3632 static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) 3633 { 3634 struct dpni_queue_id qid = {0}; 3635 struct dpaa2_eth_fq *fq; 3636 struct dpni_queue queue; 3637 int i, j, err; 3638 3639 /* We only use Tx FQIDs for FQID-based enqueue, so check 3640 * if DPNI version supports it before updating FQIDs 3641 */ 3642 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3643 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3644 return; 3645 3646 for (i = 0; i < priv->num_fqs; i++) { 3647 fq = &priv->fq[i]; 3648 if (fq->type != DPAA2_TX_CONF_FQ) 3649 continue; 3650 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3651 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3652 DPNI_QUEUE_TX, j, fq->flowid, 3653 &queue, &qid); 3654 if (err) 3655 goto out_err; 3656 3657 fq->tx_fqid[j] = qid.fqid; 3658 if (fq->tx_fqid[j] == 0) 3659 goto out_err; 3660 } 3661 } 3662 3663 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3664 3665 return; 3666 3667 out_err: 3668 netdev_info(priv->net_dev, 3669 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 3670 priv->enqueue = dpaa2_eth_enqueue_qd; 3671 } 3672 3673 /* Configure ingress classification based on VLAN PCP */ 3674 static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) 3675 { 3676 struct device *dev = priv->net_dev->dev.parent; 3677 struct dpkg_profile_cfg kg_cfg = {0}; 3678 struct dpni_qos_tbl_cfg qos_cfg = {0}; 3679 struct dpni_rule_cfg key_params; 3680 void *dma_mem, *key, *mask; 3681 u8 key_size = 2; /* VLAN TCI field */ 3682 int i, pcp, err; 3683 3684 /* VLAN-based classification only makes sense if we have multiple 3685 * traffic classes. 3686 * Also, we need to extract just the 3-bit PCP field from the VLAN 3687 * header and we can only do that by using a mask 3688 */ 3689 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 3690 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 3691 return -EOPNOTSUPP; 3692 } 3693 3694 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3695 if (!dma_mem) 3696 return -ENOMEM; 3697 3698 kg_cfg.num_extracts = 1; 3699 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 3700 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 3701 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 3702 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 3703 3704 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 3705 if (err) { 3706 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 3707 goto out_free_tbl; 3708 } 3709 3710 /* set QoS table */ 3711 qos_cfg.default_tc = 0; 3712 qos_cfg.discard_on_miss = 0; 3713 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 3714 DPAA2_CLASSIFIER_DMA_SIZE, 3715 DMA_TO_DEVICE); 3716 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 3717 dev_err(dev, "QoS table DMA mapping failed\n"); 3718 err = -ENOMEM; 3719 goto out_free_tbl; 3720 } 3721 3722 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 3723 if (err) { 3724 dev_err(dev, "dpni_set_qos_table failed\n"); 3725 goto out_unmap_tbl; 3726 } 3727 3728 /* Add QoS table entries */ 3729 key = kzalloc(key_size * 2, GFP_KERNEL); 3730 if (!key) { 3731 err = -ENOMEM; 3732 goto out_unmap_tbl; 3733 } 3734 mask = key + key_size; 3735 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 3736 3737 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 3738 DMA_TO_DEVICE); 3739 if (dma_mapping_error(dev, key_params.key_iova)) { 3740 dev_err(dev, "Qos table entry DMA mapping failed\n"); 3741 err = -ENOMEM; 3742 goto out_free_key; 3743 } 3744 3745 key_params.mask_iova = key_params.key_iova + key_size; 3746 key_params.key_size = key_size; 3747 3748 /* We add rules for PCP-based distribution starting with highest 3749 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 3750 * classes to accommodate all priority levels, the lowest ones end up 3751 * on TC 0 which was configured as default 3752 */ 3753 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 3754 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 3755 dma_sync_single_for_device(dev, key_params.key_iova, 3756 key_size * 2, DMA_TO_DEVICE); 3757 3758 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 3759 &key_params, i, i); 3760 if (err) { 3761 dev_err(dev, "dpni_add_qos_entry failed\n"); 3762 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 3763 goto out_unmap_key; 3764 } 3765 } 3766 3767 priv->vlan_cls_enabled = true; 3768 3769 /* Table and key memory is not persistent, clean everything up after 3770 * configuration is finished 3771 */ 3772 out_unmap_key: 3773 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 3774 out_free_key: 3775 kfree(key); 3776 out_unmap_tbl: 3777 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3778 DMA_TO_DEVICE); 3779 out_free_tbl: 3780 kfree(dma_mem); 3781 3782 return err; 3783 } 3784 3785 /* Configure the DPNI object this interface is associated with */ 3786 static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) 3787 { 3788 struct device *dev = &ls_dev->dev; 3789 struct dpaa2_eth_priv *priv; 3790 struct net_device *net_dev; 3791 int err; 3792 3793 net_dev = dev_get_drvdata(dev); 3794 priv = netdev_priv(net_dev); 3795 3796 /* get a handle for the DPNI object */ 3797 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 3798 if (err) { 3799 dev_err(dev, "dpni_open() failed\n"); 3800 return err; 3801 } 3802 3803 /* Check if we can work with this DPNI object */ 3804 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 3805 &priv->dpni_ver_minor); 3806 if (err) { 3807 dev_err(dev, "dpni_get_api_version() failed\n"); 3808 goto close; 3809 } 3810 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 3811 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 3812 priv->dpni_ver_major, priv->dpni_ver_minor, 3813 DPNI_VER_MAJOR, DPNI_VER_MINOR); 3814 err = -EOPNOTSUPP; 3815 goto close; 3816 } 3817 3818 ls_dev->mc_io = priv->mc_io; 3819 ls_dev->mc_handle = priv->mc_token; 3820 3821 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3822 if (err) { 3823 dev_err(dev, "dpni_reset() failed\n"); 3824 goto close; 3825 } 3826 3827 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 3828 &priv->dpni_attrs); 3829 if (err) { 3830 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 3831 goto close; 3832 } 3833 3834 err = dpaa2_eth_set_buffer_layout(priv); 3835 if (err) 3836 goto close; 3837 3838 dpaa2_eth_set_enqueue_mode(priv); 3839 3840 /* Enable pause frame support */ 3841 if (dpaa2_eth_has_pause_support(priv)) { 3842 err = dpaa2_eth_set_pause(priv); 3843 if (err) 3844 goto close; 3845 } 3846 3847 err = dpaa2_eth_set_vlan_qos(priv); 3848 if (err && err != -EOPNOTSUPP) 3849 goto close; 3850 3851 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 3852 sizeof(struct dpaa2_eth_cls_rule), 3853 GFP_KERNEL); 3854 if (!priv->cls_rules) { 3855 err = -ENOMEM; 3856 goto close; 3857 } 3858 3859 return 0; 3860 3861 close: 3862 dpni_close(priv->mc_io, 0, priv->mc_token); 3863 3864 return err; 3865 } 3866 3867 static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) 3868 { 3869 int err; 3870 3871 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3872 if (err) 3873 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 3874 err); 3875 3876 dpni_close(priv->mc_io, 0, priv->mc_token); 3877 } 3878 3879 static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, 3880 struct dpaa2_eth_fq *fq) 3881 { 3882 struct device *dev = priv->net_dev->dev.parent; 3883 struct dpni_queue queue; 3884 struct dpni_queue_id qid; 3885 int err; 3886 3887 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3888 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 3889 if (err) { 3890 dev_err(dev, "dpni_get_queue(RX) failed\n"); 3891 return err; 3892 } 3893 3894 fq->fqid = qid.fqid; 3895 3896 queue.destination.id = fq->channel->dpcon_id; 3897 queue.destination.type = DPNI_DEST_DPCON; 3898 queue.destination.priority = 1; 3899 queue.user_context = (u64)(uintptr_t)fq; 3900 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3901 DPNI_QUEUE_RX, fq->tc, fq->flowid, 3902 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3903 &queue); 3904 if (err) { 3905 dev_err(dev, "dpni_set_queue(RX) failed\n"); 3906 return err; 3907 } 3908 3909 /* xdp_rxq setup */ 3910 /* only once for each channel */ 3911 if (fq->tc > 0) 3912 return 0; 3913 3914 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 3915 fq->flowid, 0); 3916 if (err) { 3917 dev_err(dev, "xdp_rxq_info_reg failed\n"); 3918 return err; 3919 } 3920 3921 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 3922 MEM_TYPE_PAGE_ORDER0, NULL); 3923 if (err) { 3924 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 3925 return err; 3926 } 3927 3928 return 0; 3929 } 3930 3931 static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, 3932 struct dpaa2_eth_fq *fq) 3933 { 3934 struct device *dev = priv->net_dev->dev.parent; 3935 struct dpni_queue queue; 3936 struct dpni_queue_id qid; 3937 int i, err; 3938 3939 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3940 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3941 DPNI_QUEUE_TX, i, fq->flowid, 3942 &queue, &qid); 3943 if (err) { 3944 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3945 return err; 3946 } 3947 fq->tx_fqid[i] = qid.fqid; 3948 } 3949 3950 /* All Tx queues belonging to the same flowid have the same qdbin */ 3951 fq->tx_qdbin = qid.qdbin; 3952 3953 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3954 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3955 &queue, &qid); 3956 if (err) { 3957 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3958 return err; 3959 } 3960 3961 fq->fqid = qid.fqid; 3962 3963 queue.destination.id = fq->channel->dpcon_id; 3964 queue.destination.type = DPNI_DEST_DPCON; 3965 queue.destination.priority = 0; 3966 queue.user_context = (u64)(uintptr_t)fq; 3967 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3968 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3969 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3970 &queue); 3971 if (err) { 3972 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3973 return err; 3974 } 3975 3976 return 0; 3977 } 3978 3979 static int setup_rx_err_flow(struct dpaa2_eth_priv *priv, 3980 struct dpaa2_eth_fq *fq) 3981 { 3982 struct device *dev = priv->net_dev->dev.parent; 3983 struct dpni_queue q = { { 0 } }; 3984 struct dpni_queue_id qid; 3985 u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST; 3986 int err; 3987 3988 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3989 DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid); 3990 if (err) { 3991 dev_err(dev, "dpni_get_queue() failed (%d)\n", err); 3992 return err; 3993 } 3994 3995 fq->fqid = qid.fqid; 3996 3997 q.destination.id = fq->channel->dpcon_id; 3998 q.destination.type = DPNI_DEST_DPCON; 3999 q.destination.priority = 1; 4000 q.user_context = (u64)(uintptr_t)fq; 4001 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 4002 DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q); 4003 if (err) { 4004 dev_err(dev, "dpni_set_queue() failed (%d)\n", err); 4005 return err; 4006 } 4007 4008 return 0; 4009 } 4010 4011 /* Supported header fields for Rx hash distribution key */ 4012 static const struct dpaa2_eth_dist_fields dist_fields[] = { 4013 { 4014 /* L2 header */ 4015 .rxnfc_field = RXH_L2DA, 4016 .cls_prot = NET_PROT_ETH, 4017 .cls_field = NH_FLD_ETH_DA, 4018 .id = DPAA2_ETH_DIST_ETHDST, 4019 .size = 6, 4020 }, { 4021 .cls_prot = NET_PROT_ETH, 4022 .cls_field = NH_FLD_ETH_SA, 4023 .id = DPAA2_ETH_DIST_ETHSRC, 4024 .size = 6, 4025 }, { 4026 /* This is the last ethertype field parsed: 4027 * depending on frame format, it can be the MAC ethertype 4028 * or the VLAN etype. 4029 */ 4030 .cls_prot = NET_PROT_ETH, 4031 .cls_field = NH_FLD_ETH_TYPE, 4032 .id = DPAA2_ETH_DIST_ETHTYPE, 4033 .size = 2, 4034 }, { 4035 /* VLAN header */ 4036 .rxnfc_field = RXH_VLAN, 4037 .cls_prot = NET_PROT_VLAN, 4038 .cls_field = NH_FLD_VLAN_TCI, 4039 .id = DPAA2_ETH_DIST_VLAN, 4040 .size = 2, 4041 }, { 4042 /* IP header */ 4043 .rxnfc_field = RXH_IP_SRC, 4044 .cls_prot = NET_PROT_IP, 4045 .cls_field = NH_FLD_IP_SRC, 4046 .id = DPAA2_ETH_DIST_IPSRC, 4047 .size = 4, 4048 }, { 4049 .rxnfc_field = RXH_IP_DST, 4050 .cls_prot = NET_PROT_IP, 4051 .cls_field = NH_FLD_IP_DST, 4052 .id = DPAA2_ETH_DIST_IPDST, 4053 .size = 4, 4054 }, { 4055 .rxnfc_field = RXH_L3_PROTO, 4056 .cls_prot = NET_PROT_IP, 4057 .cls_field = NH_FLD_IP_PROTO, 4058 .id = DPAA2_ETH_DIST_IPPROTO, 4059 .size = 1, 4060 }, { 4061 /* Using UDP ports, this is functionally equivalent to raw 4062 * byte pairs from L4 header. 4063 */ 4064 .rxnfc_field = RXH_L4_B_0_1, 4065 .cls_prot = NET_PROT_UDP, 4066 .cls_field = NH_FLD_UDP_PORT_SRC, 4067 .id = DPAA2_ETH_DIST_L4SRC, 4068 .size = 2, 4069 }, { 4070 .rxnfc_field = RXH_L4_B_2_3, 4071 .cls_prot = NET_PROT_UDP, 4072 .cls_field = NH_FLD_UDP_PORT_DST, 4073 .id = DPAA2_ETH_DIST_L4DST, 4074 .size = 2, 4075 }, 4076 }; 4077 4078 /* Configure the Rx hash key using the legacy API */ 4079 static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4080 { 4081 struct device *dev = priv->net_dev->dev.parent; 4082 struct dpni_rx_tc_dist_cfg dist_cfg; 4083 int i, err = 0; 4084 4085 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4086 4087 dist_cfg.key_cfg_iova = key; 4088 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4089 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 4090 4091 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4092 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 4093 i, &dist_cfg); 4094 if (err) { 4095 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 4096 break; 4097 } 4098 } 4099 4100 return err; 4101 } 4102 4103 /* Configure the Rx hash key using the new API */ 4104 static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4105 { 4106 struct device *dev = priv->net_dev->dev.parent; 4107 struct dpni_rx_dist_cfg dist_cfg; 4108 int i, err = 0; 4109 4110 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4111 4112 dist_cfg.key_cfg_iova = key; 4113 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4114 dist_cfg.enable = 1; 4115 4116 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4117 dist_cfg.tc = i; 4118 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 4119 &dist_cfg); 4120 if (err) { 4121 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 4122 break; 4123 } 4124 4125 /* If the flow steering / hashing key is shared between all 4126 * traffic classes, install it just once 4127 */ 4128 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4129 break; 4130 } 4131 4132 return err; 4133 } 4134 4135 /* Configure the Rx flow classification key */ 4136 static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4137 { 4138 struct device *dev = priv->net_dev->dev.parent; 4139 struct dpni_rx_dist_cfg dist_cfg; 4140 int i, err = 0; 4141 4142 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4143 4144 dist_cfg.key_cfg_iova = key; 4145 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4146 dist_cfg.enable = 1; 4147 4148 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4149 dist_cfg.tc = i; 4150 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 4151 &dist_cfg); 4152 if (err) { 4153 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 4154 break; 4155 } 4156 4157 /* If the flow steering / hashing key is shared between all 4158 * traffic classes, install it just once 4159 */ 4160 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4161 break; 4162 } 4163 4164 return err; 4165 } 4166 4167 /* Size of the Rx flow classification key */ 4168 int dpaa2_eth_cls_key_size(u64 fields) 4169 { 4170 int i, size = 0; 4171 4172 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4173 if (!(fields & dist_fields[i].id)) 4174 continue; 4175 size += dist_fields[i].size; 4176 } 4177 4178 return size; 4179 } 4180 4181 /* Offset of header field in Rx classification key */ 4182 int dpaa2_eth_cls_fld_off(int prot, int field) 4183 { 4184 int i, off = 0; 4185 4186 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4187 if (dist_fields[i].cls_prot == prot && 4188 dist_fields[i].cls_field == field) 4189 return off; 4190 off += dist_fields[i].size; 4191 } 4192 4193 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 4194 return 0; 4195 } 4196 4197 /* Prune unused fields from the classification rule. 4198 * Used when masking is not supported 4199 */ 4200 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 4201 { 4202 int off = 0, new_off = 0; 4203 int i, size; 4204 4205 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4206 size = dist_fields[i].size; 4207 if (dist_fields[i].id & fields) { 4208 memcpy(key_mem + new_off, key_mem + off, size); 4209 new_off += size; 4210 } 4211 off += size; 4212 } 4213 } 4214 4215 /* Set Rx distribution (hash or flow classification) key 4216 * flags is a combination of RXH_ bits 4217 */ 4218 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 4219 enum dpaa2_eth_rx_dist type, u64 flags) 4220 { 4221 struct device *dev = net_dev->dev.parent; 4222 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4223 struct dpkg_profile_cfg cls_cfg; 4224 u32 rx_hash_fields = 0; 4225 dma_addr_t key_iova; 4226 u8 *dma_mem; 4227 int i; 4228 int err = 0; 4229 4230 memset(&cls_cfg, 0, sizeof(cls_cfg)); 4231 4232 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4233 struct dpkg_extract *key = 4234 &cls_cfg.extracts[cls_cfg.num_extracts]; 4235 4236 /* For both Rx hashing and classification keys 4237 * we set only the selected fields. 4238 */ 4239 if (!(flags & dist_fields[i].id)) 4240 continue; 4241 if (type == DPAA2_ETH_RX_DIST_HASH) 4242 rx_hash_fields |= dist_fields[i].rxnfc_field; 4243 4244 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 4245 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 4246 return -E2BIG; 4247 } 4248 4249 key->type = DPKG_EXTRACT_FROM_HDR; 4250 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 4251 key->extract.from_hdr.type = DPKG_FULL_FIELD; 4252 key->extract.from_hdr.field = dist_fields[i].cls_field; 4253 cls_cfg.num_extracts++; 4254 } 4255 4256 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 4257 if (!dma_mem) 4258 return -ENOMEM; 4259 4260 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 4261 if (err) { 4262 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 4263 goto free_key; 4264 } 4265 4266 /* Prepare for setting the rx dist */ 4267 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 4268 DMA_TO_DEVICE); 4269 if (dma_mapping_error(dev, key_iova)) { 4270 dev_err(dev, "DMA mapping failed\n"); 4271 err = -ENOMEM; 4272 goto free_key; 4273 } 4274 4275 if (type == DPAA2_ETH_RX_DIST_HASH) { 4276 if (dpaa2_eth_has_legacy_dist(priv)) 4277 err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); 4278 else 4279 err = dpaa2_eth_config_hash_key(priv, key_iova); 4280 } else { 4281 err = dpaa2_eth_config_cls_key(priv, key_iova); 4282 } 4283 4284 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 4285 DMA_TO_DEVICE); 4286 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 4287 priv->rx_hash_fields = rx_hash_fields; 4288 4289 free_key: 4290 kfree(dma_mem); 4291 return err; 4292 } 4293 4294 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 4295 { 4296 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4297 u64 key = 0; 4298 int i; 4299 4300 if (!dpaa2_eth_hash_enabled(priv)) 4301 return -EOPNOTSUPP; 4302 4303 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 4304 if (dist_fields[i].rxnfc_field & flags) 4305 key |= dist_fields[i].id; 4306 4307 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 4308 } 4309 4310 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 4311 { 4312 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 4313 } 4314 4315 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 4316 { 4317 struct device *dev = priv->net_dev->dev.parent; 4318 int err; 4319 4320 /* Check if we actually support Rx flow classification */ 4321 if (dpaa2_eth_has_legacy_dist(priv)) { 4322 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 4323 return -EOPNOTSUPP; 4324 } 4325 4326 if (!dpaa2_eth_fs_enabled(priv)) { 4327 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 4328 return -EOPNOTSUPP; 4329 } 4330 4331 if (!dpaa2_eth_hash_enabled(priv)) { 4332 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 4333 return -EOPNOTSUPP; 4334 } 4335 4336 /* If there is no support for masking in the classification table, 4337 * we don't set a default key, as it will depend on the rules 4338 * added by the user at runtime. 4339 */ 4340 if (!dpaa2_eth_fs_mask_enabled(priv)) 4341 goto out; 4342 4343 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 4344 if (err) 4345 return err; 4346 4347 out: 4348 priv->rx_cls_enabled = 1; 4349 4350 return 0; 4351 } 4352 4353 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 4354 * frame queues and channels 4355 */ 4356 static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) 4357 { 4358 struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX]; 4359 struct net_device *net_dev = priv->net_dev; 4360 struct dpni_pools_cfg pools_params = { 0 }; 4361 struct device *dev = net_dev->dev.parent; 4362 struct dpni_error_cfg err_cfg; 4363 int err = 0; 4364 int i; 4365 4366 pools_params.num_dpbp = 1; 4367 pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id; 4368 pools_params.pools[0].backup_pool = 0; 4369 pools_params.pools[0].buffer_size = priv->rx_buf_size; 4370 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 4371 if (err) { 4372 dev_err(dev, "dpni_set_pools() failed\n"); 4373 return err; 4374 } 4375 4376 /* have the interface implicitly distribute traffic based on 4377 * the default hash key 4378 */ 4379 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 4380 if (err && err != -EOPNOTSUPP) 4381 dev_err(dev, "Failed to configure hashing\n"); 4382 4383 /* Configure the flow classification key; it includes all 4384 * supported header fields and cannot be modified at runtime 4385 */ 4386 err = dpaa2_eth_set_default_cls(priv); 4387 if (err && err != -EOPNOTSUPP) 4388 dev_err(dev, "Failed to configure Rx classification key\n"); 4389 4390 /* Configure handling of error frames */ 4391 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 4392 err_cfg.set_frame_annotation = 1; 4393 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 4394 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 4395 &err_cfg); 4396 if (err) { 4397 dev_err(dev, "dpni_set_errors_behavior failed\n"); 4398 return err; 4399 } 4400 4401 /* Configure Rx and Tx conf queues to generate CDANs */ 4402 for (i = 0; i < priv->num_fqs; i++) { 4403 switch (priv->fq[i].type) { 4404 case DPAA2_RX_FQ: 4405 err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); 4406 break; 4407 case DPAA2_TX_CONF_FQ: 4408 err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); 4409 break; 4410 case DPAA2_RX_ERR_FQ: 4411 err = setup_rx_err_flow(priv, &priv->fq[i]); 4412 break; 4413 default: 4414 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 4415 return -EINVAL; 4416 } 4417 if (err) 4418 return err; 4419 } 4420 4421 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 4422 DPNI_QUEUE_TX, &priv->tx_qdid); 4423 if (err) { 4424 dev_err(dev, "dpni_get_qdid() failed\n"); 4425 return err; 4426 } 4427 4428 return 0; 4429 } 4430 4431 /* Allocate rings for storing incoming frame descriptors */ 4432 static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) 4433 { 4434 struct net_device *net_dev = priv->net_dev; 4435 struct device *dev = net_dev->dev.parent; 4436 int i; 4437 4438 for (i = 0; i < priv->num_channels; i++) { 4439 priv->channel[i]->store = 4440 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 4441 if (!priv->channel[i]->store) { 4442 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 4443 goto err_ring; 4444 } 4445 } 4446 4447 return 0; 4448 4449 err_ring: 4450 for (i = 0; i < priv->num_channels; i++) { 4451 if (!priv->channel[i]->store) 4452 break; 4453 dpaa2_io_store_destroy(priv->channel[i]->store); 4454 } 4455 4456 return -ENOMEM; 4457 } 4458 4459 static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) 4460 { 4461 int i; 4462 4463 for (i = 0; i < priv->num_channels; i++) 4464 dpaa2_io_store_destroy(priv->channel[i]->store); 4465 } 4466 4467 static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) 4468 { 4469 struct net_device *net_dev = priv->net_dev; 4470 struct device *dev = net_dev->dev.parent; 4471 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 4472 int err; 4473 4474 /* Get firmware address, if any */ 4475 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 4476 if (err) { 4477 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 4478 return err; 4479 } 4480 4481 /* Get DPNI attributes address, if any */ 4482 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4483 dpni_mac_addr); 4484 if (err) { 4485 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 4486 return err; 4487 } 4488 4489 /* First check if firmware has any address configured by bootloader */ 4490 if (!is_zero_ether_addr(mac_addr)) { 4491 /* If the DPMAC addr != DPNI addr, update it */ 4492 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 4493 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 4494 priv->mc_token, 4495 mac_addr); 4496 if (err) { 4497 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4498 return err; 4499 } 4500 } 4501 eth_hw_addr_set(net_dev, mac_addr); 4502 } else if (is_zero_ether_addr(dpni_mac_addr)) { 4503 /* No MAC address configured, fill in net_dev->dev_addr 4504 * with a random one 4505 */ 4506 eth_hw_addr_random(net_dev); 4507 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 4508 4509 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4510 net_dev->dev_addr); 4511 if (err) { 4512 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4513 return err; 4514 } 4515 4516 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 4517 * practical purposes, this will be our "permanent" mac address, 4518 * at least until the next reboot. This move will also permit 4519 * register_netdevice() to properly fill up net_dev->perm_addr. 4520 */ 4521 net_dev->addr_assign_type = NET_ADDR_PERM; 4522 } else { 4523 /* NET_ADDR_PERM is default, all we have to do is 4524 * fill in the device addr. 4525 */ 4526 eth_hw_addr_set(net_dev, dpni_mac_addr); 4527 } 4528 4529 return 0; 4530 } 4531 4532 static int dpaa2_eth_netdev_init(struct net_device *net_dev) 4533 { 4534 struct device *dev = net_dev->dev.parent; 4535 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4536 u32 options = priv->dpni_attrs.options; 4537 u64 supported = 0, not_supported = 0; 4538 u8 bcast_addr[ETH_ALEN]; 4539 u8 num_queues; 4540 int err; 4541 4542 net_dev->netdev_ops = &dpaa2_eth_ops; 4543 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 4544 4545 err = dpaa2_eth_set_mac_addr(priv); 4546 if (err) 4547 return err; 4548 4549 /* Explicitly add the broadcast address to the MAC filtering table */ 4550 eth_broadcast_addr(bcast_addr); 4551 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 4552 if (err) { 4553 dev_err(dev, "dpni_add_mac_addr() failed\n"); 4554 return err; 4555 } 4556 4557 /* Set MTU upper limit; lower limit is 68B (default value) */ 4558 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 4559 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 4560 DPAA2_ETH_MFL); 4561 if (err) { 4562 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 4563 return err; 4564 } 4565 4566 /* Set actual number of queues in the net device */ 4567 num_queues = dpaa2_eth_queue_count(priv); 4568 err = netif_set_real_num_tx_queues(net_dev, num_queues); 4569 if (err) { 4570 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 4571 return err; 4572 } 4573 err = netif_set_real_num_rx_queues(net_dev, num_queues); 4574 if (err) { 4575 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 4576 return err; 4577 } 4578 4579 dpaa2_eth_detect_features(priv); 4580 4581 /* Capabilities listing */ 4582 supported |= IFF_LIVE_ADDR_CHANGE; 4583 4584 if (options & DPNI_OPT_NO_MAC_FILTER) 4585 not_supported |= IFF_UNICAST_FLT; 4586 else 4587 supported |= IFF_UNICAST_FLT; 4588 4589 net_dev->priv_flags |= supported; 4590 net_dev->priv_flags &= ~not_supported; 4591 4592 /* Features */ 4593 net_dev->features = NETIF_F_RXCSUM | 4594 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4595 NETIF_F_SG | NETIF_F_HIGHDMA | 4596 NETIF_F_LLTX | NETIF_F_HW_TC | NETIF_F_TSO; 4597 net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS; 4598 net_dev->hw_features = net_dev->features; 4599 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 4600 NETDEV_XDP_ACT_REDIRECT | 4601 NETDEV_XDP_ACT_NDO_XMIT; 4602 if (priv->dpni_attrs.wriop_version >= DPAA2_WRIOP_VERSION(3, 0, 0) && 4603 priv->dpni_attrs.num_queues <= 8) 4604 net_dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; 4605 4606 if (priv->dpni_attrs.vlan_filter_entries) 4607 net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4608 4609 return 0; 4610 } 4611 4612 static int dpaa2_eth_poll_link_state(void *arg) 4613 { 4614 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 4615 int err; 4616 4617 while (!kthread_should_stop()) { 4618 err = dpaa2_eth_link_state_update(priv); 4619 if (unlikely(err)) 4620 return err; 4621 4622 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 4623 } 4624 4625 return 0; 4626 } 4627 4628 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 4629 { 4630 struct fsl_mc_device *dpni_dev, *dpmac_dev; 4631 struct dpaa2_mac *mac; 4632 int err; 4633 4634 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 4635 dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0); 4636 4637 if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) { 4638 netdev_dbg(priv->net_dev, "waiting for mac\n"); 4639 return PTR_ERR(dpmac_dev); 4640 } 4641 4642 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 4643 return 0; 4644 4645 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 4646 if (!mac) 4647 return -ENOMEM; 4648 4649 mac->mc_dev = dpmac_dev; 4650 mac->mc_io = priv->mc_io; 4651 mac->net_dev = priv->net_dev; 4652 4653 err = dpaa2_mac_open(mac); 4654 if (err) 4655 goto err_free_mac; 4656 4657 if (dpaa2_mac_is_type_phy(mac)) { 4658 err = dpaa2_mac_connect(mac); 4659 if (err) { 4660 if (err == -EPROBE_DEFER) 4661 netdev_dbg(priv->net_dev, 4662 "could not connect to MAC\n"); 4663 else 4664 netdev_err(priv->net_dev, 4665 "Error connecting to the MAC endpoint: %pe", 4666 ERR_PTR(err)); 4667 goto err_close_mac; 4668 } 4669 } 4670 4671 mutex_lock(&priv->mac_lock); 4672 priv->mac = mac; 4673 mutex_unlock(&priv->mac_lock); 4674 4675 return 0; 4676 4677 err_close_mac: 4678 dpaa2_mac_close(mac); 4679 err_free_mac: 4680 kfree(mac); 4681 return err; 4682 } 4683 4684 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 4685 { 4686 struct dpaa2_mac *mac; 4687 4688 mutex_lock(&priv->mac_lock); 4689 mac = priv->mac; 4690 priv->mac = NULL; 4691 mutex_unlock(&priv->mac_lock); 4692 4693 if (!mac) 4694 return; 4695 4696 if (dpaa2_mac_is_type_phy(mac)) 4697 dpaa2_mac_disconnect(mac); 4698 4699 dpaa2_mac_close(mac); 4700 kfree(mac); 4701 } 4702 4703 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 4704 { 4705 u32 status = ~0; 4706 struct device *dev = (struct device *)arg; 4707 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 4708 struct net_device *net_dev = dev_get_drvdata(dev); 4709 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4710 bool had_mac; 4711 int err; 4712 4713 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 4714 DPNI_IRQ_INDEX, &status); 4715 if (unlikely(err)) { 4716 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 4717 return IRQ_HANDLED; 4718 } 4719 4720 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 4721 dpaa2_eth_link_state_update(netdev_priv(net_dev)); 4722 4723 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 4724 dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); 4725 dpaa2_eth_update_tx_fqids(priv); 4726 4727 /* We can avoid locking because the "endpoint changed" IRQ 4728 * handler is the only one who changes priv->mac at runtime, 4729 * so we are not racing with anyone. 4730 */ 4731 had_mac = !!priv->mac; 4732 if (had_mac) 4733 dpaa2_eth_disconnect_mac(priv); 4734 else 4735 dpaa2_eth_connect_mac(priv); 4736 } 4737 4738 return IRQ_HANDLED; 4739 } 4740 4741 static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) 4742 { 4743 int err = 0; 4744 struct fsl_mc_device_irq *irq; 4745 4746 err = fsl_mc_allocate_irqs(ls_dev); 4747 if (err) { 4748 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 4749 return err; 4750 } 4751 4752 irq = ls_dev->irqs[0]; 4753 err = devm_request_threaded_irq(&ls_dev->dev, irq->virq, 4754 NULL, dpni_irq0_handler_thread, 4755 IRQF_NO_SUSPEND | IRQF_ONESHOT, 4756 dev_name(&ls_dev->dev), &ls_dev->dev); 4757 if (err < 0) { 4758 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 4759 goto free_mc_irq; 4760 } 4761 4762 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 4763 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 4764 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 4765 if (err < 0) { 4766 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 4767 goto free_irq; 4768 } 4769 4770 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 4771 DPNI_IRQ_INDEX, 1); 4772 if (err < 0) { 4773 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 4774 goto free_irq; 4775 } 4776 4777 return 0; 4778 4779 free_irq: 4780 devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev); 4781 free_mc_irq: 4782 fsl_mc_free_irqs(ls_dev); 4783 4784 return err; 4785 } 4786 4787 static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) 4788 { 4789 int i; 4790 struct dpaa2_eth_channel *ch; 4791 4792 for (i = 0; i < priv->num_channels; i++) { 4793 ch = priv->channel[i]; 4794 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 4795 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll); 4796 } 4797 } 4798 4799 static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) 4800 { 4801 int i; 4802 struct dpaa2_eth_channel *ch; 4803 4804 for (i = 0; i < priv->num_channels; i++) { 4805 ch = priv->channel[i]; 4806 netif_napi_del(&ch->napi); 4807 } 4808 } 4809 4810 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 4811 { 4812 struct device *dev; 4813 struct net_device *net_dev = NULL; 4814 struct dpaa2_eth_priv *priv = NULL; 4815 int err = 0; 4816 4817 dev = &dpni_dev->dev; 4818 4819 /* Net device */ 4820 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 4821 if (!net_dev) { 4822 dev_err(dev, "alloc_etherdev_mq() failed\n"); 4823 return -ENOMEM; 4824 } 4825 4826 SET_NETDEV_DEV(net_dev, dev); 4827 dev_set_drvdata(dev, net_dev); 4828 4829 priv = netdev_priv(net_dev); 4830 priv->net_dev = net_dev; 4831 SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port); 4832 4833 mutex_init(&priv->mac_lock); 4834 4835 priv->iommu_domain = iommu_get_domain_for_dev(dev); 4836 4837 priv->tx_tstamp_type = HWTSTAMP_TX_OFF; 4838 priv->rx_tstamp = false; 4839 4840 priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0); 4841 if (!priv->dpaa2_ptp_wq) { 4842 err = -ENOMEM; 4843 goto err_wq_alloc; 4844 } 4845 4846 INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); 4847 mutex_init(&priv->onestep_tstamp_lock); 4848 skb_queue_head_init(&priv->tx_skbs); 4849 4850 priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK; 4851 4852 /* Obtain a MC portal */ 4853 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 4854 &priv->mc_io); 4855 if (err) { 4856 if (err == -ENXIO) { 4857 dev_dbg(dev, "waiting for MC portal\n"); 4858 err = -EPROBE_DEFER; 4859 } else { 4860 dev_err(dev, "MC portal allocation failed\n"); 4861 } 4862 goto err_portal_alloc; 4863 } 4864 4865 /* MC objects initialization and configuration */ 4866 err = dpaa2_eth_setup_dpni(dpni_dev); 4867 if (err) 4868 goto err_dpni_setup; 4869 4870 err = dpaa2_eth_setup_dpio(priv); 4871 if (err) 4872 goto err_dpio_setup; 4873 4874 dpaa2_eth_setup_fqs(priv); 4875 4876 err = dpaa2_eth_setup_default_dpbp(priv); 4877 if (err) 4878 goto err_dpbp_setup; 4879 4880 err = dpaa2_eth_bind_dpni(priv); 4881 if (err) 4882 goto err_bind; 4883 4884 /* Add a NAPI context for each channel */ 4885 dpaa2_eth_add_ch_napi(priv); 4886 4887 /* Percpu statistics */ 4888 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 4889 if (!priv->percpu_stats) { 4890 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 4891 err = -ENOMEM; 4892 goto err_alloc_percpu_stats; 4893 } 4894 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 4895 if (!priv->percpu_extras) { 4896 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 4897 err = -ENOMEM; 4898 goto err_alloc_percpu_extras; 4899 } 4900 4901 priv->sgt_cache = alloc_percpu(*priv->sgt_cache); 4902 if (!priv->sgt_cache) { 4903 dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); 4904 err = -ENOMEM; 4905 goto err_alloc_sgt_cache; 4906 } 4907 4908 priv->fd = alloc_percpu(*priv->fd); 4909 if (!priv->fd) { 4910 dev_err(dev, "alloc_percpu(fds) failed\n"); 4911 err = -ENOMEM; 4912 goto err_alloc_fds; 4913 } 4914 4915 err = dpaa2_eth_netdev_init(net_dev); 4916 if (err) 4917 goto err_netdev_init; 4918 4919 /* Configure checksum offload based on current interface flags */ 4920 err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 4921 if (err) 4922 goto err_csum; 4923 4924 err = dpaa2_eth_set_tx_csum(priv, 4925 !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 4926 if (err) 4927 goto err_csum; 4928 4929 err = dpaa2_eth_alloc_rings(priv); 4930 if (err) 4931 goto err_alloc_rings; 4932 4933 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 4934 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 4935 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 4936 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 4937 } else { 4938 dev_dbg(dev, "PFC not supported\n"); 4939 } 4940 #endif 4941 4942 err = dpaa2_eth_connect_mac(priv); 4943 if (err) 4944 goto err_connect_mac; 4945 4946 err = dpaa2_eth_setup_irqs(dpni_dev); 4947 if (err) { 4948 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 4949 priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, 4950 "%s_poll_link", net_dev->name); 4951 if (IS_ERR(priv->poll_thread)) { 4952 dev_err(dev, "Error starting polling thread\n"); 4953 goto err_poll_thread; 4954 } 4955 priv->do_link_poll = true; 4956 } 4957 4958 err = dpaa2_eth_dl_alloc(priv); 4959 if (err) 4960 goto err_dl_register; 4961 4962 err = dpaa2_eth_dl_traps_register(priv); 4963 if (err) 4964 goto err_dl_trap_register; 4965 4966 err = dpaa2_eth_dl_port_add(priv); 4967 if (err) 4968 goto err_dl_port_add; 4969 4970 err = register_netdev(net_dev); 4971 if (err < 0) { 4972 dev_err(dev, "register_netdev() failed\n"); 4973 goto err_netdev_reg; 4974 } 4975 4976 #ifdef CONFIG_DEBUG_FS 4977 dpaa2_dbg_add(priv); 4978 #endif 4979 4980 dpaa2_eth_dl_register(priv); 4981 dev_info(dev, "Probed interface %s\n", net_dev->name); 4982 return 0; 4983 4984 err_netdev_reg: 4985 dpaa2_eth_dl_port_del(priv); 4986 err_dl_port_add: 4987 dpaa2_eth_dl_traps_unregister(priv); 4988 err_dl_trap_register: 4989 dpaa2_eth_dl_free(priv); 4990 err_dl_register: 4991 if (priv->do_link_poll) 4992 kthread_stop(priv->poll_thread); 4993 else 4994 fsl_mc_free_irqs(dpni_dev); 4995 err_poll_thread: 4996 dpaa2_eth_disconnect_mac(priv); 4997 err_connect_mac: 4998 dpaa2_eth_free_rings(priv); 4999 err_alloc_rings: 5000 err_csum: 5001 err_netdev_init: 5002 free_percpu(priv->fd); 5003 err_alloc_fds: 5004 free_percpu(priv->sgt_cache); 5005 err_alloc_sgt_cache: 5006 free_percpu(priv->percpu_extras); 5007 err_alloc_percpu_extras: 5008 free_percpu(priv->percpu_stats); 5009 err_alloc_percpu_stats: 5010 dpaa2_eth_del_ch_napi(priv); 5011 err_bind: 5012 dpaa2_eth_free_dpbps(priv); 5013 err_dpbp_setup: 5014 dpaa2_eth_free_dpio(priv); 5015 err_dpio_setup: 5016 dpaa2_eth_free_dpni(priv); 5017 err_dpni_setup: 5018 fsl_mc_portal_free(priv->mc_io); 5019 err_portal_alloc: 5020 destroy_workqueue(priv->dpaa2_ptp_wq); 5021 err_wq_alloc: 5022 dev_set_drvdata(dev, NULL); 5023 free_netdev(net_dev); 5024 5025 return err; 5026 } 5027 5028 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 5029 { 5030 struct device *dev; 5031 struct net_device *net_dev; 5032 struct dpaa2_eth_priv *priv; 5033 5034 dev = &ls_dev->dev; 5035 net_dev = dev_get_drvdata(dev); 5036 priv = netdev_priv(net_dev); 5037 5038 dpaa2_eth_dl_unregister(priv); 5039 5040 #ifdef CONFIG_DEBUG_FS 5041 dpaa2_dbg_remove(priv); 5042 #endif 5043 5044 unregister_netdev(net_dev); 5045 5046 dpaa2_eth_dl_port_del(priv); 5047 dpaa2_eth_dl_traps_unregister(priv); 5048 dpaa2_eth_dl_free(priv); 5049 5050 if (priv->do_link_poll) 5051 kthread_stop(priv->poll_thread); 5052 else 5053 fsl_mc_free_irqs(ls_dev); 5054 5055 dpaa2_eth_disconnect_mac(priv); 5056 dpaa2_eth_free_rings(priv); 5057 free_percpu(priv->fd); 5058 free_percpu(priv->sgt_cache); 5059 free_percpu(priv->percpu_stats); 5060 free_percpu(priv->percpu_extras); 5061 5062 dpaa2_eth_del_ch_napi(priv); 5063 dpaa2_eth_free_dpbps(priv); 5064 dpaa2_eth_free_dpio(priv); 5065 dpaa2_eth_free_dpni(priv); 5066 if (priv->onestep_reg_base) 5067 iounmap(priv->onestep_reg_base); 5068 5069 fsl_mc_portal_free(priv->mc_io); 5070 5071 destroy_workqueue(priv->dpaa2_ptp_wq); 5072 5073 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 5074 5075 free_netdev(net_dev); 5076 5077 return 0; 5078 } 5079 5080 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 5081 { 5082 .vendor = FSL_MC_VENDOR_FREESCALE, 5083 .obj_type = "dpni", 5084 }, 5085 { .vendor = 0x0 } 5086 }; 5087 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 5088 5089 static struct fsl_mc_driver dpaa2_eth_driver = { 5090 .driver = { 5091 .name = KBUILD_MODNAME, 5092 .owner = THIS_MODULE, 5093 }, 5094 .probe = dpaa2_eth_probe, 5095 .remove = dpaa2_eth_remove, 5096 .match_id_table = dpaa2_eth_match_id_table 5097 }; 5098 5099 static int __init dpaa2_eth_driver_init(void) 5100 { 5101 int err; 5102 5103 dpaa2_eth_dbg_init(); 5104 err = fsl_mc_driver_register(&dpaa2_eth_driver); 5105 if (err) { 5106 dpaa2_eth_dbg_exit(); 5107 return err; 5108 } 5109 5110 return 0; 5111 } 5112 5113 static void __exit dpaa2_eth_driver_exit(void) 5114 { 5115 dpaa2_eth_dbg_exit(); 5116 fsl_mc_driver_unregister(&dpaa2_eth_driver); 5117 } 5118 5119 module_init(dpaa2_eth_driver_init); 5120 module_exit(dpaa2_eth_driver_exit); 5121