1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2020 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, priv->rx_buf_size, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, priv->rx_buf_size); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int retries = 0; 225 int err; 226 227 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 228 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 229 return; 230 231 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 232 ch->xdp.drop_bufs, 233 ch->xdp.drop_cnt)) == -EBUSY) { 234 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 235 break; 236 cpu_relax(); 237 } 238 239 if (err) { 240 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 241 ch->buf_count -= ch->xdp.drop_cnt; 242 } 243 244 ch->xdp.drop_cnt = 0; 245 } 246 247 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 248 struct dpaa2_eth_fq *fq, 249 struct dpaa2_eth_xdp_fds *xdp_fds) 250 { 251 int total_enqueued = 0, retries = 0, enqueued; 252 struct dpaa2_eth_drv_stats *percpu_extras; 253 int num_fds, err, max_retries; 254 struct dpaa2_fd *fds; 255 256 percpu_extras = this_cpu_ptr(priv->percpu_extras); 257 258 /* try to enqueue all the FDs until the max number of retries is hit */ 259 fds = xdp_fds->fds; 260 num_fds = xdp_fds->num; 261 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 262 while (total_enqueued < num_fds && retries < max_retries) { 263 err = priv->enqueue(priv, fq, &fds[total_enqueued], 264 0, num_fds - total_enqueued, &enqueued); 265 if (err == -EBUSY) { 266 percpu_extras->tx_portal_busy += ++retries; 267 continue; 268 } 269 total_enqueued += enqueued; 270 } 271 xdp_fds->num = 0; 272 273 return total_enqueued; 274 } 275 276 static void xdp_tx_flush(struct dpaa2_eth_priv *priv, 277 struct dpaa2_eth_channel *ch, 278 struct dpaa2_eth_fq *fq) 279 { 280 struct rtnl_link_stats64 *percpu_stats; 281 struct dpaa2_fd *fds; 282 int enqueued, i; 283 284 percpu_stats = this_cpu_ptr(priv->percpu_stats); 285 286 // enqueue the array of XDP_TX frames 287 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 288 289 /* update statistics */ 290 percpu_stats->tx_packets += enqueued; 291 fds = fq->xdp_tx_fds.fds; 292 for (i = 0; i < enqueued; i++) { 293 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 294 ch->stats.xdp_tx++; 295 } 296 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 297 xdp_release_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 298 percpu_stats->tx_errors++; 299 ch->stats.xdp_tx_err++; 300 } 301 fq->xdp_tx_fds.num = 0; 302 } 303 304 static void xdp_enqueue(struct dpaa2_eth_priv *priv, 305 struct dpaa2_eth_channel *ch, 306 struct dpaa2_fd *fd, 307 void *buf_start, u16 queue_id) 308 { 309 struct dpaa2_faead *faead; 310 struct dpaa2_fd *dest_fd; 311 struct dpaa2_eth_fq *fq; 312 u32 ctrl, frc; 313 314 /* Mark the egress frame hardware annotation area as valid */ 315 frc = dpaa2_fd_get_frc(fd); 316 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 317 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 318 319 /* Instruct hardware to release the FD buffer directly into 320 * the buffer pool once transmission is completed, instead of 321 * sending a Tx confirmation frame to us 322 */ 323 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 324 faead = dpaa2_get_faead(buf_start, false); 325 faead->ctrl = cpu_to_le32(ctrl); 326 faead->conf_fqid = 0; 327 328 fq = &priv->fq[queue_id]; 329 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 330 memcpy(dest_fd, fd, sizeof(*dest_fd)); 331 332 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 333 return; 334 335 xdp_tx_flush(priv, ch, fq); 336 } 337 338 static u32 run_xdp(struct dpaa2_eth_priv *priv, 339 struct dpaa2_eth_channel *ch, 340 struct dpaa2_eth_fq *rx_fq, 341 struct dpaa2_fd *fd, void *vaddr) 342 { 343 dma_addr_t addr = dpaa2_fd_get_addr(fd); 344 struct bpf_prog *xdp_prog; 345 struct xdp_buff xdp; 346 u32 xdp_act = XDP_PASS; 347 int err; 348 349 rcu_read_lock(); 350 351 xdp_prog = READ_ONCE(ch->xdp.prog); 352 if (!xdp_prog) 353 goto out; 354 355 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 356 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 357 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 358 xdp_set_data_meta_invalid(&xdp); 359 xdp.rxq = &ch->xdp_rxq; 360 361 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE - 362 (dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM); 363 364 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 365 366 /* xdp.data pointer may have changed */ 367 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 368 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 369 370 switch (xdp_act) { 371 case XDP_PASS: 372 break; 373 case XDP_TX: 374 xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 375 break; 376 default: 377 bpf_warn_invalid_xdp_action(xdp_act); 378 /* fall through */ 379 case XDP_ABORTED: 380 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 381 /* fall through */ 382 case XDP_DROP: 383 xdp_release_buf(priv, ch, addr); 384 ch->stats.xdp_drop++; 385 break; 386 case XDP_REDIRECT: 387 dma_unmap_page(priv->net_dev->dev.parent, addr, 388 priv->rx_buf_size, DMA_BIDIRECTIONAL); 389 ch->buf_count--; 390 391 /* Allow redirect use of full headroom */ 392 xdp.data_hard_start = vaddr; 393 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 394 395 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 396 if (unlikely(err)) 397 ch->stats.xdp_drop++; 398 else 399 ch->stats.xdp_redirect++; 400 break; 401 } 402 403 ch->xdp.res |= xdp_act; 404 out: 405 rcu_read_unlock(); 406 return xdp_act; 407 } 408 409 /* Main Rx frame processing routine */ 410 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 411 struct dpaa2_eth_channel *ch, 412 const struct dpaa2_fd *fd, 413 struct dpaa2_eth_fq *fq) 414 { 415 dma_addr_t addr = dpaa2_fd_get_addr(fd); 416 u8 fd_format = dpaa2_fd_get_format(fd); 417 void *vaddr; 418 struct sk_buff *skb; 419 struct rtnl_link_stats64 *percpu_stats; 420 struct dpaa2_eth_drv_stats *percpu_extras; 421 struct device *dev = priv->net_dev->dev.parent; 422 struct dpaa2_fas *fas; 423 void *buf_data; 424 u32 status = 0; 425 u32 xdp_act; 426 427 /* Tracing point */ 428 trace_dpaa2_rx_fd(priv->net_dev, fd); 429 430 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 431 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 432 DMA_BIDIRECTIONAL); 433 434 fas = dpaa2_get_fas(vaddr, false); 435 prefetch(fas); 436 buf_data = vaddr + dpaa2_fd_get_offset(fd); 437 prefetch(buf_data); 438 439 percpu_stats = this_cpu_ptr(priv->percpu_stats); 440 percpu_extras = this_cpu_ptr(priv->percpu_extras); 441 442 if (fd_format == dpaa2_fd_single) { 443 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 444 if (xdp_act != XDP_PASS) { 445 percpu_stats->rx_packets++; 446 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 447 return; 448 } 449 450 dma_unmap_page(dev, addr, priv->rx_buf_size, 451 DMA_BIDIRECTIONAL); 452 skb = build_linear_skb(ch, fd, vaddr); 453 } else if (fd_format == dpaa2_fd_sg) { 454 WARN_ON(priv->xdp_prog); 455 456 dma_unmap_page(dev, addr, priv->rx_buf_size, 457 DMA_BIDIRECTIONAL); 458 skb = build_frag_skb(priv, ch, buf_data); 459 free_pages((unsigned long)vaddr, 0); 460 percpu_extras->rx_sg_frames++; 461 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 462 } else { 463 /* We don't support any other format */ 464 goto err_frame_format; 465 } 466 467 if (unlikely(!skb)) 468 goto err_build_skb; 469 470 prefetch(skb->data); 471 472 /* Get the timestamp value */ 473 if (priv->rx_tstamp) { 474 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 475 __le64 *ts = dpaa2_get_ts(vaddr, false); 476 u64 ns; 477 478 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 479 480 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 481 shhwtstamps->hwtstamp = ns_to_ktime(ns); 482 } 483 484 /* Check if we need to validate the L4 csum */ 485 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 486 status = le32_to_cpu(fas->status); 487 validate_rx_csum(priv, status, skb); 488 } 489 490 skb->protocol = eth_type_trans(skb, priv->net_dev); 491 skb_record_rx_queue(skb, fq->flowid); 492 493 percpu_stats->rx_packets++; 494 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 495 496 list_add_tail(&skb->list, ch->rx_list); 497 498 return; 499 500 err_build_skb: 501 free_rx_fd(priv, fd, vaddr); 502 err_frame_format: 503 percpu_stats->rx_dropped++; 504 } 505 506 /* Consume all frames pull-dequeued into the store. This is the simplest way to 507 * make sure we don't accidentally issue another volatile dequeue which would 508 * overwrite (leak) frames already in the store. 509 * 510 * Observance of NAPI budget is not our concern, leaving that to the caller. 511 */ 512 static int consume_frames(struct dpaa2_eth_channel *ch, 513 struct dpaa2_eth_fq **src) 514 { 515 struct dpaa2_eth_priv *priv = ch->priv; 516 struct dpaa2_eth_fq *fq = NULL; 517 struct dpaa2_dq *dq; 518 const struct dpaa2_fd *fd; 519 int cleaned = 0, retries = 0; 520 int is_last; 521 522 do { 523 dq = dpaa2_io_store_next(ch->store, &is_last); 524 if (unlikely(!dq)) { 525 /* If we're here, we *must* have placed a 526 * volatile dequeue comnmand, so keep reading through 527 * the store until we get some sort of valid response 528 * token (either a valid frame or an "empty dequeue") 529 */ 530 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 531 netdev_err_once(priv->net_dev, 532 "Unable to read a valid dequeue response\n"); 533 return -ETIMEDOUT; 534 } 535 continue; 536 } 537 538 fd = dpaa2_dq_fd(dq); 539 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 540 541 fq->consume(priv, ch, fd, fq); 542 cleaned++; 543 retries = 0; 544 } while (!is_last); 545 546 if (!cleaned) 547 return 0; 548 549 fq->stats.frames += cleaned; 550 ch->stats.frames += cleaned; 551 552 /* A dequeue operation only pulls frames from a single queue 553 * into the store. Return the frame queue as an out param. 554 */ 555 if (src) 556 *src = fq; 557 558 return cleaned; 559 } 560 561 /* Configure the egress frame annotation for timestamp update */ 562 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 563 { 564 struct dpaa2_faead *faead; 565 u32 ctrl, frc; 566 567 /* Mark the egress frame annotation area as valid */ 568 frc = dpaa2_fd_get_frc(fd); 569 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 570 571 /* Set hardware annotation size */ 572 ctrl = dpaa2_fd_get_ctrl(fd); 573 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 574 575 /* enable UPD (update prepanded data) bit in FAEAD field of 576 * hardware frame annotation area 577 */ 578 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 579 faead = dpaa2_get_faead(buf_start, true); 580 faead->ctrl = cpu_to_le32(ctrl); 581 } 582 583 /* Create a frame descriptor based on a fragmented skb */ 584 static int build_sg_fd(struct dpaa2_eth_priv *priv, 585 struct sk_buff *skb, 586 struct dpaa2_fd *fd) 587 { 588 struct device *dev = priv->net_dev->dev.parent; 589 void *sgt_buf = NULL; 590 dma_addr_t addr; 591 int nr_frags = skb_shinfo(skb)->nr_frags; 592 struct dpaa2_sg_entry *sgt; 593 int i, err; 594 int sgt_buf_size; 595 struct scatterlist *scl, *crt_scl; 596 int num_sg; 597 int num_dma_bufs; 598 struct dpaa2_eth_swa *swa; 599 600 /* Create and map scatterlist. 601 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 602 * to go beyond nr_frags+1. 603 * Note: We don't support chained scatterlists 604 */ 605 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 606 return -EINVAL; 607 608 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 609 if (unlikely(!scl)) 610 return -ENOMEM; 611 612 sg_init_table(scl, nr_frags + 1); 613 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 614 if (unlikely(num_sg < 0)) { 615 err = -ENOMEM; 616 goto dma_map_sg_failed; 617 } 618 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 619 if (unlikely(!num_dma_bufs)) { 620 err = -ENOMEM; 621 goto dma_map_sg_failed; 622 } 623 624 /* Prepare the HW SGT structure */ 625 sgt_buf_size = priv->tx_data_offset + 626 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 627 sgt_buf = napi_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 628 if (unlikely(!sgt_buf)) { 629 err = -ENOMEM; 630 goto sgt_buf_alloc_failed; 631 } 632 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 633 memset(sgt_buf, 0, sgt_buf_size); 634 635 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 636 637 /* Fill in the HW SGT structure. 638 * 639 * sgt_buf is zeroed out, so the following fields are implicit 640 * in all sgt entries: 641 * - offset is 0 642 * - format is 'dpaa2_sg_single' 643 */ 644 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 645 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 646 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 647 } 648 dpaa2_sg_set_final(&sgt[i - 1], true); 649 650 /* Store the skb backpointer in the SGT buffer. 651 * Fit the scatterlist and the number of buffers alongside the 652 * skb backpointer in the software annotation area. We'll need 653 * all of them on Tx Conf. 654 */ 655 swa = (struct dpaa2_eth_swa *)sgt_buf; 656 swa->type = DPAA2_ETH_SWA_SG; 657 swa->sg.skb = skb; 658 swa->sg.scl = scl; 659 swa->sg.num_sg = num_sg; 660 swa->sg.sgt_size = sgt_buf_size; 661 662 /* Separately map the SGT buffer */ 663 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 664 if (unlikely(dma_mapping_error(dev, addr))) { 665 err = -ENOMEM; 666 goto dma_map_single_failed; 667 } 668 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 669 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 670 dpaa2_fd_set_addr(fd, addr); 671 dpaa2_fd_set_len(fd, skb->len); 672 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 673 674 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 675 enable_tx_tstamp(fd, sgt_buf); 676 677 return 0; 678 679 dma_map_single_failed: 680 skb_free_frag(sgt_buf); 681 sgt_buf_alloc_failed: 682 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 683 dma_map_sg_failed: 684 kfree(scl); 685 return err; 686 } 687 688 /* Create a frame descriptor based on a linear skb */ 689 static int build_single_fd(struct dpaa2_eth_priv *priv, 690 struct sk_buff *skb, 691 struct dpaa2_fd *fd) 692 { 693 struct device *dev = priv->net_dev->dev.parent; 694 u8 *buffer_start, *aligned_start; 695 struct dpaa2_eth_swa *swa; 696 dma_addr_t addr; 697 698 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 699 700 /* If there's enough room to align the FD address, do it. 701 * It will help hardware optimize accesses. 702 */ 703 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 704 DPAA2_ETH_TX_BUF_ALIGN); 705 if (aligned_start >= skb->head) 706 buffer_start = aligned_start; 707 708 /* Store a backpointer to the skb at the beginning of the buffer 709 * (in the private data area) such that we can release it 710 * on Tx confirm 711 */ 712 swa = (struct dpaa2_eth_swa *)buffer_start; 713 swa->type = DPAA2_ETH_SWA_SINGLE; 714 swa->single.skb = skb; 715 716 addr = dma_map_single(dev, buffer_start, 717 skb_tail_pointer(skb) - buffer_start, 718 DMA_BIDIRECTIONAL); 719 if (unlikely(dma_mapping_error(dev, addr))) 720 return -ENOMEM; 721 722 dpaa2_fd_set_addr(fd, addr); 723 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 724 dpaa2_fd_set_len(fd, skb->len); 725 dpaa2_fd_set_format(fd, dpaa2_fd_single); 726 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 727 728 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 729 enable_tx_tstamp(fd, buffer_start); 730 731 return 0; 732 } 733 734 /* FD freeing routine on the Tx path 735 * 736 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 737 * back-pointed to is also freed. 738 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 739 * dpaa2_eth_tx(). 740 */ 741 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 742 struct dpaa2_eth_fq *fq, 743 const struct dpaa2_fd *fd, bool in_napi) 744 { 745 struct device *dev = priv->net_dev->dev.parent; 746 dma_addr_t fd_addr; 747 struct sk_buff *skb = NULL; 748 unsigned char *buffer_start; 749 struct dpaa2_eth_swa *swa; 750 u8 fd_format = dpaa2_fd_get_format(fd); 751 u32 fd_len = dpaa2_fd_get_len(fd); 752 753 fd_addr = dpaa2_fd_get_addr(fd); 754 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 755 swa = (struct dpaa2_eth_swa *)buffer_start; 756 757 if (fd_format == dpaa2_fd_single) { 758 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 759 skb = swa->single.skb; 760 /* Accessing the skb buffer is safe before dma unmap, 761 * because we didn't map the actual skb shell. 762 */ 763 dma_unmap_single(dev, fd_addr, 764 skb_tail_pointer(skb) - buffer_start, 765 DMA_BIDIRECTIONAL); 766 } else { 767 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 768 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 769 DMA_BIDIRECTIONAL); 770 } 771 } else if (fd_format == dpaa2_fd_sg) { 772 skb = swa->sg.skb; 773 774 /* Unmap the scatterlist */ 775 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 776 DMA_BIDIRECTIONAL); 777 kfree(swa->sg.scl); 778 779 /* Unmap the SGT buffer */ 780 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 781 DMA_BIDIRECTIONAL); 782 } else { 783 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 784 return; 785 } 786 787 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 788 fq->dq_frames++; 789 fq->dq_bytes += fd_len; 790 } 791 792 if (swa->type == DPAA2_ETH_SWA_XDP) { 793 xdp_return_frame(swa->xdp.xdpf); 794 return; 795 } 796 797 /* Get the timestamp value */ 798 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 799 struct skb_shared_hwtstamps shhwtstamps; 800 __le64 *ts = dpaa2_get_ts(buffer_start, true); 801 u64 ns; 802 803 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 804 805 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 806 shhwtstamps.hwtstamp = ns_to_ktime(ns); 807 skb_tstamp_tx(skb, &shhwtstamps); 808 } 809 810 /* Free SGT buffer allocated on tx */ 811 if (fd_format != dpaa2_fd_single) 812 skb_free_frag(buffer_start); 813 814 /* Move on with skb release */ 815 napi_consume_skb(skb, in_napi); 816 } 817 818 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 819 { 820 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 821 struct dpaa2_fd fd; 822 struct rtnl_link_stats64 *percpu_stats; 823 struct dpaa2_eth_drv_stats *percpu_extras; 824 struct dpaa2_eth_fq *fq; 825 struct netdev_queue *nq; 826 u16 queue_mapping; 827 unsigned int needed_headroom; 828 u32 fd_len; 829 u8 prio = 0; 830 int err, i; 831 832 percpu_stats = this_cpu_ptr(priv->percpu_stats); 833 percpu_extras = this_cpu_ptr(priv->percpu_extras); 834 835 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 836 if (skb_headroom(skb) < needed_headroom) { 837 struct sk_buff *ns; 838 839 ns = skb_realloc_headroom(skb, needed_headroom); 840 if (unlikely(!ns)) { 841 percpu_stats->tx_dropped++; 842 goto err_alloc_headroom; 843 } 844 percpu_extras->tx_reallocs++; 845 846 if (skb->sk) 847 skb_set_owner_w(ns, skb->sk); 848 849 dev_kfree_skb(skb); 850 skb = ns; 851 } 852 853 /* We'll be holding a back-reference to the skb until Tx Confirmation; 854 * we don't want that overwritten by a concurrent Tx with a cloned skb. 855 */ 856 skb = skb_unshare(skb, GFP_ATOMIC); 857 if (unlikely(!skb)) { 858 /* skb_unshare() has already freed the skb */ 859 percpu_stats->tx_dropped++; 860 return NETDEV_TX_OK; 861 } 862 863 /* Setup the FD fields */ 864 memset(&fd, 0, sizeof(fd)); 865 866 if (skb_is_nonlinear(skb)) { 867 err = build_sg_fd(priv, skb, &fd); 868 percpu_extras->tx_sg_frames++; 869 percpu_extras->tx_sg_bytes += skb->len; 870 } else { 871 err = build_single_fd(priv, skb, &fd); 872 } 873 874 if (unlikely(err)) { 875 percpu_stats->tx_dropped++; 876 goto err_build_fd; 877 } 878 879 /* Tracing point */ 880 trace_dpaa2_tx_fd(net_dev, &fd); 881 882 /* TxConf FQ selection relies on queue id from the stack. 883 * In case of a forwarded frame from another DPNI interface, we choose 884 * a queue affined to the same core that processed the Rx frame 885 */ 886 queue_mapping = skb_get_queue_mapping(skb); 887 888 if (net_dev->num_tc) { 889 prio = netdev_txq_to_tc(net_dev, queue_mapping); 890 /* Hardware interprets priority level 0 as being the highest, 891 * so we need to do a reverse mapping to the netdev tc index 892 */ 893 prio = net_dev->num_tc - prio - 1; 894 /* We have only one FQ array entry for all Tx hardware queues 895 * with the same flow id (but different priority levels) 896 */ 897 queue_mapping %= dpaa2_eth_queue_count(priv); 898 } 899 fq = &priv->fq[queue_mapping]; 900 901 fd_len = dpaa2_fd_get_len(&fd); 902 nq = netdev_get_tx_queue(net_dev, queue_mapping); 903 netdev_tx_sent_queue(nq, fd_len); 904 905 /* Everything that happens after this enqueues might race with 906 * the Tx confirmation callback for this frame 907 */ 908 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 909 err = priv->enqueue(priv, fq, &fd, prio, 1, NULL); 910 if (err != -EBUSY) 911 break; 912 } 913 percpu_extras->tx_portal_busy += i; 914 if (unlikely(err < 0)) { 915 percpu_stats->tx_errors++; 916 /* Clean up everything, including freeing the skb */ 917 free_tx_fd(priv, fq, &fd, false); 918 netdev_tx_completed_queue(nq, 1, fd_len); 919 } else { 920 percpu_stats->tx_packets++; 921 percpu_stats->tx_bytes += fd_len; 922 } 923 924 return NETDEV_TX_OK; 925 926 err_build_fd: 927 err_alloc_headroom: 928 dev_kfree_skb(skb); 929 930 return NETDEV_TX_OK; 931 } 932 933 /* Tx confirmation frame processing routine */ 934 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 935 struct dpaa2_eth_channel *ch __always_unused, 936 const struct dpaa2_fd *fd, 937 struct dpaa2_eth_fq *fq) 938 { 939 struct rtnl_link_stats64 *percpu_stats; 940 struct dpaa2_eth_drv_stats *percpu_extras; 941 u32 fd_len = dpaa2_fd_get_len(fd); 942 u32 fd_errors; 943 944 /* Tracing point */ 945 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 946 947 percpu_extras = this_cpu_ptr(priv->percpu_extras); 948 percpu_extras->tx_conf_frames++; 949 percpu_extras->tx_conf_bytes += fd_len; 950 951 /* Check frame errors in the FD field */ 952 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 953 free_tx_fd(priv, fq, fd, true); 954 955 if (likely(!fd_errors)) 956 return; 957 958 if (net_ratelimit()) 959 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 960 fd_errors); 961 962 percpu_stats = this_cpu_ptr(priv->percpu_stats); 963 /* Tx-conf logically pertains to the egress path. */ 964 percpu_stats->tx_errors++; 965 } 966 967 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 968 { 969 int err; 970 971 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 972 DPNI_OFF_RX_L3_CSUM, enable); 973 if (err) { 974 netdev_err(priv->net_dev, 975 "dpni_set_offload(RX_L3_CSUM) failed\n"); 976 return err; 977 } 978 979 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 980 DPNI_OFF_RX_L4_CSUM, enable); 981 if (err) { 982 netdev_err(priv->net_dev, 983 "dpni_set_offload(RX_L4_CSUM) failed\n"); 984 return err; 985 } 986 987 return 0; 988 } 989 990 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 991 { 992 int err; 993 994 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 995 DPNI_OFF_TX_L3_CSUM, enable); 996 if (err) { 997 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 998 return err; 999 } 1000 1001 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1002 DPNI_OFF_TX_L4_CSUM, enable); 1003 if (err) { 1004 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1005 return err; 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* Perform a single release command to add buffers 1012 * to the specified buffer pool 1013 */ 1014 static int add_bufs(struct dpaa2_eth_priv *priv, 1015 struct dpaa2_eth_channel *ch, u16 bpid) 1016 { 1017 struct device *dev = priv->net_dev->dev.parent; 1018 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1019 struct page *page; 1020 dma_addr_t addr; 1021 int retries = 0; 1022 int i, err; 1023 1024 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1025 /* Allocate buffer visible to WRIOP + skb shared info + 1026 * alignment padding 1027 */ 1028 /* allocate one page for each Rx buffer. WRIOP sees 1029 * the entire page except for a tailroom reserved for 1030 * skb shared info 1031 */ 1032 page = dev_alloc_pages(0); 1033 if (!page) 1034 goto err_alloc; 1035 1036 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1037 DMA_BIDIRECTIONAL); 1038 if (unlikely(dma_mapping_error(dev, addr))) 1039 goto err_map; 1040 1041 buf_array[i] = addr; 1042 1043 /* tracing point */ 1044 trace_dpaa2_eth_buf_seed(priv->net_dev, 1045 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 1046 addr, priv->rx_buf_size, 1047 bpid); 1048 } 1049 1050 release_bufs: 1051 /* In case the portal is busy, retry until successful */ 1052 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 1053 buf_array, i)) == -EBUSY) { 1054 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1055 break; 1056 cpu_relax(); 1057 } 1058 1059 /* If release command failed, clean up and bail out; 1060 * not much else we can do about it 1061 */ 1062 if (err) { 1063 free_bufs(priv, buf_array, i); 1064 return 0; 1065 } 1066 1067 return i; 1068 1069 err_map: 1070 __free_pages(page, 0); 1071 err_alloc: 1072 /* If we managed to allocate at least some buffers, 1073 * release them to hardware 1074 */ 1075 if (i) 1076 goto release_bufs; 1077 1078 return 0; 1079 } 1080 1081 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 1082 { 1083 int i, j; 1084 int new_count; 1085 1086 for (j = 0; j < priv->num_channels; j++) { 1087 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1088 i += DPAA2_ETH_BUFS_PER_CMD) { 1089 new_count = add_bufs(priv, priv->channel[j], bpid); 1090 priv->channel[j]->buf_count += new_count; 1091 1092 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1093 return -ENOMEM; 1094 } 1095 } 1096 } 1097 1098 return 0; 1099 } 1100 1101 /** 1102 * Drain the specified number of buffers from the DPNI's private buffer pool. 1103 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1104 */ 1105 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1106 { 1107 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1108 int retries = 0; 1109 int ret; 1110 1111 do { 1112 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1113 buf_array, count); 1114 if (ret < 0) { 1115 if (ret == -EBUSY && 1116 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1117 continue; 1118 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1119 return; 1120 } 1121 free_bufs(priv, buf_array, ret); 1122 retries = 0; 1123 } while (ret); 1124 } 1125 1126 static void drain_pool(struct dpaa2_eth_priv *priv) 1127 { 1128 int i; 1129 1130 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1131 drain_bufs(priv, 1); 1132 1133 for (i = 0; i < priv->num_channels; i++) 1134 priv->channel[i]->buf_count = 0; 1135 } 1136 1137 /* Function is called from softirq context only, so we don't need to guard 1138 * the access to percpu count 1139 */ 1140 static int refill_pool(struct dpaa2_eth_priv *priv, 1141 struct dpaa2_eth_channel *ch, 1142 u16 bpid) 1143 { 1144 int new_count; 1145 1146 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1147 return 0; 1148 1149 do { 1150 new_count = add_bufs(priv, ch, bpid); 1151 if (unlikely(!new_count)) { 1152 /* Out of memory; abort for now, we'll try later on */ 1153 break; 1154 } 1155 ch->buf_count += new_count; 1156 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1157 1158 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1159 return -ENOMEM; 1160 1161 return 0; 1162 } 1163 1164 static int pull_channel(struct dpaa2_eth_channel *ch) 1165 { 1166 int err; 1167 int dequeues = -1; 1168 1169 /* Retry while portal is busy */ 1170 do { 1171 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1172 ch->store); 1173 dequeues++; 1174 cpu_relax(); 1175 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1176 1177 ch->stats.dequeue_portal_busy += dequeues; 1178 if (unlikely(err)) 1179 ch->stats.pull_err++; 1180 1181 return err; 1182 } 1183 1184 /* NAPI poll routine 1185 * 1186 * Frames are dequeued from the QMan channel associated with this NAPI context. 1187 * Rx, Tx confirmation and (if configured) Rx error frames all count 1188 * towards the NAPI budget. 1189 */ 1190 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1191 { 1192 struct dpaa2_eth_channel *ch; 1193 struct dpaa2_eth_priv *priv; 1194 int rx_cleaned = 0, txconf_cleaned = 0; 1195 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1196 struct netdev_queue *nq; 1197 int store_cleaned, work_done; 1198 struct list_head rx_list; 1199 int retries = 0; 1200 u16 flowid; 1201 int err; 1202 1203 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1204 ch->xdp.res = 0; 1205 priv = ch->priv; 1206 1207 INIT_LIST_HEAD(&rx_list); 1208 ch->rx_list = &rx_list; 1209 1210 do { 1211 err = pull_channel(ch); 1212 if (unlikely(err)) 1213 break; 1214 1215 /* Refill pool if appropriate */ 1216 refill_pool(priv, ch, priv->bpid); 1217 1218 store_cleaned = consume_frames(ch, &fq); 1219 if (store_cleaned <= 0) 1220 break; 1221 if (fq->type == DPAA2_RX_FQ) { 1222 rx_cleaned += store_cleaned; 1223 flowid = fq->flowid; 1224 } else { 1225 txconf_cleaned += store_cleaned; 1226 /* We have a single Tx conf FQ on this channel */ 1227 txc_fq = fq; 1228 } 1229 1230 /* If we either consumed the whole NAPI budget with Rx frames 1231 * or we reached the Tx confirmations threshold, we're done. 1232 */ 1233 if (rx_cleaned >= budget || 1234 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1235 work_done = budget; 1236 goto out; 1237 } 1238 } while (store_cleaned); 1239 1240 /* We didn't consume the entire budget, so finish napi and 1241 * re-enable data availability notifications 1242 */ 1243 napi_complete_done(napi, rx_cleaned); 1244 do { 1245 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1246 cpu_relax(); 1247 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 1248 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1249 ch->nctx.desired_cpu); 1250 1251 work_done = max(rx_cleaned, 1); 1252 1253 out: 1254 netif_receive_skb_list(ch->rx_list); 1255 1256 if (txc_fq && txc_fq->dq_frames) { 1257 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1258 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1259 txc_fq->dq_bytes); 1260 txc_fq->dq_frames = 0; 1261 txc_fq->dq_bytes = 0; 1262 } 1263 1264 if (ch->xdp.res & XDP_REDIRECT) 1265 xdp_do_flush_map(); 1266 else if (rx_cleaned && ch->xdp.res & XDP_TX) 1267 xdp_tx_flush(priv, ch, &priv->fq[flowid]); 1268 1269 return work_done; 1270 } 1271 1272 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1273 { 1274 struct dpaa2_eth_channel *ch; 1275 int i; 1276 1277 for (i = 0; i < priv->num_channels; i++) { 1278 ch = priv->channel[i]; 1279 napi_enable(&ch->napi); 1280 } 1281 } 1282 1283 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1284 { 1285 struct dpaa2_eth_channel *ch; 1286 int i; 1287 1288 for (i = 0; i < priv->num_channels; i++) { 1289 ch = priv->channel[i]; 1290 napi_disable(&ch->napi); 1291 } 1292 } 1293 1294 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 1295 bool tx_pause, bool pfc) 1296 { 1297 struct dpni_taildrop td = {0}; 1298 struct dpaa2_eth_fq *fq; 1299 int i, err; 1300 1301 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 1302 * flow control is disabled (as it might interfere with either the 1303 * buffer pool depletion trigger for pause frames or with the group 1304 * congestion trigger for PFC frames) 1305 */ 1306 td.enable = !tx_pause; 1307 if (priv->rx_fqtd_enabled == td.enable) 1308 goto set_cgtd; 1309 1310 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 1311 td.units = DPNI_CONGESTION_UNIT_BYTES; 1312 1313 for (i = 0; i < priv->num_fqs; i++) { 1314 fq = &priv->fq[i]; 1315 if (fq->type != DPAA2_RX_FQ) 1316 continue; 1317 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1318 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 1319 fq->tc, fq->flowid, &td); 1320 if (err) { 1321 netdev_err(priv->net_dev, 1322 "dpni_set_taildrop(FQ) failed\n"); 1323 return; 1324 } 1325 } 1326 1327 priv->rx_fqtd_enabled = td.enable; 1328 1329 set_cgtd: 1330 /* Congestion group taildrop: threshold is in frames, per group 1331 * of FQs belonging to the same traffic class 1332 * Enabled if general Tx pause disabled or if PFCs are enabled 1333 * (congestion group threhsold for PFC generation is lower than the 1334 * CG taildrop threshold, so it won't interfere with it; we also 1335 * want frames in non-PFC enabled traffic classes to be kept in check) 1336 */ 1337 td.enable = !tx_pause || (tx_pause && pfc); 1338 if (priv->rx_cgtd_enabled == td.enable) 1339 return; 1340 1341 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 1342 td.units = DPNI_CONGESTION_UNIT_FRAMES; 1343 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 1344 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1345 DPNI_CP_GROUP, DPNI_QUEUE_RX, 1346 i, 0, &td); 1347 if (err) { 1348 netdev_err(priv->net_dev, 1349 "dpni_set_taildrop(CG) failed\n"); 1350 return; 1351 } 1352 } 1353 1354 priv->rx_cgtd_enabled = td.enable; 1355 } 1356 1357 static int link_state_update(struct dpaa2_eth_priv *priv) 1358 { 1359 struct dpni_link_state state = {0}; 1360 bool tx_pause; 1361 int err; 1362 1363 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1364 if (unlikely(err)) { 1365 netdev_err(priv->net_dev, 1366 "dpni_get_link_state() failed\n"); 1367 return err; 1368 } 1369 1370 /* If Tx pause frame settings have changed, we need to update 1371 * Rx FQ taildrop configuration as well. We configure taildrop 1372 * only when pause frame generation is disabled. 1373 */ 1374 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 1375 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 1376 1377 /* When we manage the MAC/PHY using phylink there is no need 1378 * to manually update the netif_carrier. 1379 */ 1380 if (priv->mac) 1381 goto out; 1382 1383 /* Chech link state; speed / duplex changes are not treated yet */ 1384 if (priv->link_state.up == state.up) 1385 goto out; 1386 1387 if (state.up) { 1388 netif_carrier_on(priv->net_dev); 1389 netif_tx_start_all_queues(priv->net_dev); 1390 } else { 1391 netif_tx_stop_all_queues(priv->net_dev); 1392 netif_carrier_off(priv->net_dev); 1393 } 1394 1395 netdev_info(priv->net_dev, "Link Event: state %s\n", 1396 state.up ? "up" : "down"); 1397 1398 out: 1399 priv->link_state = state; 1400 1401 return 0; 1402 } 1403 1404 static int dpaa2_eth_open(struct net_device *net_dev) 1405 { 1406 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1407 int err; 1408 1409 err = seed_pool(priv, priv->bpid); 1410 if (err) { 1411 /* Not much to do; the buffer pool, though not filled up, 1412 * may still contain some buffers which would enable us 1413 * to limp on. 1414 */ 1415 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1416 priv->dpbp_dev->obj_desc.id, priv->bpid); 1417 } 1418 1419 if (!priv->mac) { 1420 /* We'll only start the txqs when the link is actually ready; 1421 * make sure we don't race against the link up notification, 1422 * which may come immediately after dpni_enable(); 1423 */ 1424 netif_tx_stop_all_queues(net_dev); 1425 1426 /* Also, explicitly set carrier off, otherwise 1427 * netif_carrier_ok() will return true and cause 'ip link show' 1428 * to report the LOWER_UP flag, even though the link 1429 * notification wasn't even received. 1430 */ 1431 netif_carrier_off(net_dev); 1432 } 1433 enable_ch_napi(priv); 1434 1435 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1436 if (err < 0) { 1437 netdev_err(net_dev, "dpni_enable() failed\n"); 1438 goto enable_err; 1439 } 1440 1441 if (!priv->mac) { 1442 /* If the DPMAC object has already processed the link up 1443 * interrupt, we have to learn the link state ourselves. 1444 */ 1445 err = link_state_update(priv); 1446 if (err < 0) { 1447 netdev_err(net_dev, "Can't update link state\n"); 1448 goto link_state_err; 1449 } 1450 } else { 1451 phylink_start(priv->mac->phylink); 1452 } 1453 1454 return 0; 1455 1456 link_state_err: 1457 enable_err: 1458 disable_ch_napi(priv); 1459 drain_pool(priv); 1460 return err; 1461 } 1462 1463 /* Total number of in-flight frames on ingress queues */ 1464 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1465 { 1466 struct dpaa2_eth_fq *fq; 1467 u32 fcnt = 0, bcnt = 0, total = 0; 1468 int i, err; 1469 1470 for (i = 0; i < priv->num_fqs; i++) { 1471 fq = &priv->fq[i]; 1472 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1473 if (err) { 1474 netdev_warn(priv->net_dev, "query_fq_count failed"); 1475 break; 1476 } 1477 total += fcnt; 1478 } 1479 1480 return total; 1481 } 1482 1483 static void wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 1484 { 1485 int retries = 10; 1486 u32 pending; 1487 1488 do { 1489 pending = ingress_fq_count(priv); 1490 if (pending) 1491 msleep(100); 1492 } while (pending && --retries); 1493 } 1494 1495 #define DPNI_TX_PENDING_VER_MAJOR 7 1496 #define DPNI_TX_PENDING_VER_MINOR 13 1497 static void wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 1498 { 1499 union dpni_statistics stats; 1500 int retries = 10; 1501 int err; 1502 1503 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 1504 DPNI_TX_PENDING_VER_MINOR) < 0) 1505 goto out; 1506 1507 do { 1508 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 1509 &stats); 1510 if (err) 1511 goto out; 1512 if (stats.page_6.tx_pending_frames == 0) 1513 return; 1514 } while (--retries); 1515 1516 out: 1517 msleep(500); 1518 } 1519 1520 static int dpaa2_eth_stop(struct net_device *net_dev) 1521 { 1522 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1523 int dpni_enabled = 0; 1524 int retries = 10; 1525 1526 if (!priv->mac) { 1527 netif_tx_stop_all_queues(net_dev); 1528 netif_carrier_off(net_dev); 1529 } else { 1530 phylink_stop(priv->mac->phylink); 1531 } 1532 1533 /* On dpni_disable(), the MC firmware will: 1534 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1535 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1536 * of all in flight Tx frames is finished (and corresponding Tx conf 1537 * frames are enqueued back to software) 1538 * 1539 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1540 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1541 * and Tx conf queues are consumed on NAPI poll. 1542 */ 1543 wait_for_egress_fq_empty(priv); 1544 1545 do { 1546 dpni_disable(priv->mc_io, 0, priv->mc_token); 1547 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1548 if (dpni_enabled) 1549 /* Allow the hardware some slack */ 1550 msleep(100); 1551 } while (dpni_enabled && --retries); 1552 if (!retries) { 1553 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1554 /* Must go on and disable NAPI nonetheless, so we don't crash at 1555 * the next "ifconfig up" 1556 */ 1557 } 1558 1559 wait_for_ingress_fq_empty(priv); 1560 disable_ch_napi(priv); 1561 1562 /* Empty the buffer pool */ 1563 drain_pool(priv); 1564 1565 return 0; 1566 } 1567 1568 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1569 { 1570 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1571 struct device *dev = net_dev->dev.parent; 1572 int err; 1573 1574 err = eth_mac_addr(net_dev, addr); 1575 if (err < 0) { 1576 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1577 return err; 1578 } 1579 1580 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1581 net_dev->dev_addr); 1582 if (err) { 1583 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1584 return err; 1585 } 1586 1587 return 0; 1588 } 1589 1590 /** Fill in counters maintained by the GPP driver. These may be different from 1591 * the hardware counters obtained by ethtool. 1592 */ 1593 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1594 struct rtnl_link_stats64 *stats) 1595 { 1596 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1597 struct rtnl_link_stats64 *percpu_stats; 1598 u64 *cpustats; 1599 u64 *netstats = (u64 *)stats; 1600 int i, j; 1601 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1602 1603 for_each_possible_cpu(i) { 1604 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1605 cpustats = (u64 *)percpu_stats; 1606 for (j = 0; j < num; j++) 1607 netstats[j] += cpustats[j]; 1608 } 1609 } 1610 1611 /* Copy mac unicast addresses from @net_dev to @priv. 1612 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1613 */ 1614 static void add_uc_hw_addr(const struct net_device *net_dev, 1615 struct dpaa2_eth_priv *priv) 1616 { 1617 struct netdev_hw_addr *ha; 1618 int err; 1619 1620 netdev_for_each_uc_addr(ha, net_dev) { 1621 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1622 ha->addr); 1623 if (err) 1624 netdev_warn(priv->net_dev, 1625 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1626 ha->addr, err); 1627 } 1628 } 1629 1630 /* Copy mac multicast addresses from @net_dev to @priv 1631 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1632 */ 1633 static void add_mc_hw_addr(const struct net_device *net_dev, 1634 struct dpaa2_eth_priv *priv) 1635 { 1636 struct netdev_hw_addr *ha; 1637 int err; 1638 1639 netdev_for_each_mc_addr(ha, net_dev) { 1640 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1641 ha->addr); 1642 if (err) 1643 netdev_warn(priv->net_dev, 1644 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1645 ha->addr, err); 1646 } 1647 } 1648 1649 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1650 { 1651 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1652 int uc_count = netdev_uc_count(net_dev); 1653 int mc_count = netdev_mc_count(net_dev); 1654 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1655 u32 options = priv->dpni_attrs.options; 1656 u16 mc_token = priv->mc_token; 1657 struct fsl_mc_io *mc_io = priv->mc_io; 1658 int err; 1659 1660 /* Basic sanity checks; these probably indicate a misconfiguration */ 1661 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1662 netdev_info(net_dev, 1663 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1664 max_mac); 1665 1666 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1667 if (uc_count > max_mac) { 1668 netdev_info(net_dev, 1669 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1670 uc_count, max_mac); 1671 goto force_promisc; 1672 } 1673 if (mc_count + uc_count > max_mac) { 1674 netdev_info(net_dev, 1675 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1676 uc_count + mc_count, max_mac); 1677 goto force_mc_promisc; 1678 } 1679 1680 /* Adjust promisc settings due to flag combinations */ 1681 if (net_dev->flags & IFF_PROMISC) 1682 goto force_promisc; 1683 if (net_dev->flags & IFF_ALLMULTI) { 1684 /* First, rebuild unicast filtering table. This should be done 1685 * in promisc mode, in order to avoid frame loss while we 1686 * progressively add entries to the table. 1687 * We don't know whether we had been in promisc already, and 1688 * making an MC call to find out is expensive; so set uc promisc 1689 * nonetheless. 1690 */ 1691 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1692 if (err) 1693 netdev_warn(net_dev, "Can't set uc promisc\n"); 1694 1695 /* Actual uc table reconstruction. */ 1696 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1697 if (err) 1698 netdev_warn(net_dev, "Can't clear uc filters\n"); 1699 add_uc_hw_addr(net_dev, priv); 1700 1701 /* Finally, clear uc promisc and set mc promisc as requested. */ 1702 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1703 if (err) 1704 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1705 goto force_mc_promisc; 1706 } 1707 1708 /* Neither unicast, nor multicast promisc will be on... eventually. 1709 * For now, rebuild mac filtering tables while forcing both of them on. 1710 */ 1711 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1712 if (err) 1713 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1714 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1715 if (err) 1716 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1717 1718 /* Actual mac filtering tables reconstruction */ 1719 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1720 if (err) 1721 netdev_warn(net_dev, "Can't clear mac filters\n"); 1722 add_mc_hw_addr(net_dev, priv); 1723 add_uc_hw_addr(net_dev, priv); 1724 1725 /* Now we can clear both ucast and mcast promisc, without risking 1726 * to drop legitimate frames anymore. 1727 */ 1728 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1729 if (err) 1730 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1731 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1732 if (err) 1733 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1734 1735 return; 1736 1737 force_promisc: 1738 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1739 if (err) 1740 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1741 force_mc_promisc: 1742 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1743 if (err) 1744 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1745 } 1746 1747 static int dpaa2_eth_set_features(struct net_device *net_dev, 1748 netdev_features_t features) 1749 { 1750 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1751 netdev_features_t changed = features ^ net_dev->features; 1752 bool enable; 1753 int err; 1754 1755 if (changed & NETIF_F_RXCSUM) { 1756 enable = !!(features & NETIF_F_RXCSUM); 1757 err = set_rx_csum(priv, enable); 1758 if (err) 1759 return err; 1760 } 1761 1762 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1763 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1764 err = set_tx_csum(priv, enable); 1765 if (err) 1766 return err; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1773 { 1774 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1775 struct hwtstamp_config config; 1776 1777 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1778 return -EFAULT; 1779 1780 switch (config.tx_type) { 1781 case HWTSTAMP_TX_OFF: 1782 priv->tx_tstamp = false; 1783 break; 1784 case HWTSTAMP_TX_ON: 1785 priv->tx_tstamp = true; 1786 break; 1787 default: 1788 return -ERANGE; 1789 } 1790 1791 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1792 priv->rx_tstamp = false; 1793 } else { 1794 priv->rx_tstamp = true; 1795 /* TS is set for all frame types, not only those requested */ 1796 config.rx_filter = HWTSTAMP_FILTER_ALL; 1797 } 1798 1799 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1800 -EFAULT : 0; 1801 } 1802 1803 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1804 { 1805 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1806 1807 if (cmd == SIOCSHWTSTAMP) 1808 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1809 1810 if (priv->mac) 1811 return phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 1812 1813 return -EOPNOTSUPP; 1814 } 1815 1816 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1817 { 1818 int mfl, linear_mfl; 1819 1820 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1821 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 1822 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1823 1824 if (mfl > linear_mfl) { 1825 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1826 linear_mfl - VLAN_ETH_HLEN); 1827 return false; 1828 } 1829 1830 return true; 1831 } 1832 1833 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1834 { 1835 int mfl, err; 1836 1837 /* We enforce a maximum Rx frame length based on MTU only if we have 1838 * an XDP program attached (in order to avoid Rx S/G frames). 1839 * Otherwise, we accept all incoming frames as long as they are not 1840 * larger than maximum size supported in hardware 1841 */ 1842 if (has_xdp) 1843 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1844 else 1845 mfl = DPAA2_ETH_MFL; 1846 1847 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1848 if (err) { 1849 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1850 return err; 1851 } 1852 1853 return 0; 1854 } 1855 1856 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1857 { 1858 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1859 int err; 1860 1861 if (!priv->xdp_prog) 1862 goto out; 1863 1864 if (!xdp_mtu_valid(priv, new_mtu)) 1865 return -EINVAL; 1866 1867 err = set_rx_mfl(priv, new_mtu, true); 1868 if (err) 1869 return err; 1870 1871 out: 1872 dev->mtu = new_mtu; 1873 return 0; 1874 } 1875 1876 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1877 { 1878 struct dpni_buffer_layout buf_layout = {0}; 1879 int err; 1880 1881 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1882 DPNI_QUEUE_RX, &buf_layout); 1883 if (err) { 1884 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1885 return err; 1886 } 1887 1888 /* Reserve extra headroom for XDP header size changes */ 1889 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1890 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1891 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1892 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1893 DPNI_QUEUE_RX, &buf_layout); 1894 if (err) { 1895 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1896 return err; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1903 { 1904 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1905 struct dpaa2_eth_channel *ch; 1906 struct bpf_prog *old; 1907 bool up, need_update; 1908 int i, err; 1909 1910 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1911 return -EINVAL; 1912 1913 if (prog) 1914 bpf_prog_add(prog, priv->num_channels); 1915 1916 up = netif_running(dev); 1917 need_update = (!!priv->xdp_prog != !!prog); 1918 1919 if (up) 1920 dpaa2_eth_stop(dev); 1921 1922 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1923 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1924 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1925 * so we are sure no old format buffers will be used from now on. 1926 */ 1927 if (need_update) { 1928 err = set_rx_mfl(priv, dev->mtu, !!prog); 1929 if (err) 1930 goto out_err; 1931 err = update_rx_buffer_headroom(priv, !!prog); 1932 if (err) 1933 goto out_err; 1934 } 1935 1936 old = xchg(&priv->xdp_prog, prog); 1937 if (old) 1938 bpf_prog_put(old); 1939 1940 for (i = 0; i < priv->num_channels; i++) { 1941 ch = priv->channel[i]; 1942 old = xchg(&ch->xdp.prog, prog); 1943 if (old) 1944 bpf_prog_put(old); 1945 } 1946 1947 if (up) { 1948 err = dpaa2_eth_open(dev); 1949 if (err) 1950 return err; 1951 } 1952 1953 return 0; 1954 1955 out_err: 1956 if (prog) 1957 bpf_prog_sub(prog, priv->num_channels); 1958 if (up) 1959 dpaa2_eth_open(dev); 1960 1961 return err; 1962 } 1963 1964 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1965 { 1966 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1967 1968 switch (xdp->command) { 1969 case XDP_SETUP_PROG: 1970 return setup_xdp(dev, xdp->prog); 1971 case XDP_QUERY_PROG: 1972 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1973 break; 1974 default: 1975 return -EINVAL; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 1982 struct xdp_frame *xdpf, 1983 struct dpaa2_fd *fd) 1984 { 1985 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1986 struct device *dev = net_dev->dev.parent; 1987 unsigned int needed_headroom; 1988 struct dpaa2_eth_swa *swa; 1989 void *buffer_start, *aligned_start; 1990 dma_addr_t addr; 1991 1992 /* We require a minimum headroom to be able to transmit the frame. 1993 * Otherwise return an error and let the original net_device handle it 1994 */ 1995 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1996 if (xdpf->headroom < needed_headroom) 1997 return -EINVAL; 1998 1999 /* Setup the FD fields */ 2000 memset(fd, 0, sizeof(*fd)); 2001 2002 /* Align FD address, if possible */ 2003 buffer_start = xdpf->data - needed_headroom; 2004 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2005 DPAA2_ETH_TX_BUF_ALIGN); 2006 if (aligned_start >= xdpf->data - xdpf->headroom) 2007 buffer_start = aligned_start; 2008 2009 swa = (struct dpaa2_eth_swa *)buffer_start; 2010 /* fill in necessary fields here */ 2011 swa->type = DPAA2_ETH_SWA_XDP; 2012 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2013 swa->xdp.xdpf = xdpf; 2014 2015 addr = dma_map_single(dev, buffer_start, 2016 swa->xdp.dma_size, 2017 DMA_BIDIRECTIONAL); 2018 if (unlikely(dma_mapping_error(dev, addr))) 2019 return -ENOMEM; 2020 2021 dpaa2_fd_set_addr(fd, addr); 2022 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2023 dpaa2_fd_set_len(fd, xdpf->len); 2024 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2025 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2026 2027 return 0; 2028 } 2029 2030 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2031 struct xdp_frame **frames, u32 flags) 2032 { 2033 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2034 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2035 struct rtnl_link_stats64 *percpu_stats; 2036 struct dpaa2_eth_fq *fq; 2037 struct dpaa2_fd *fds; 2038 int enqueued, i, err; 2039 2040 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2041 return -EINVAL; 2042 2043 if (!netif_running(net_dev)) 2044 return -ENETDOWN; 2045 2046 fq = &priv->fq[smp_processor_id()]; 2047 xdp_redirect_fds = &fq->xdp_redirect_fds; 2048 fds = xdp_redirect_fds->fds; 2049 2050 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2051 2052 /* create a FD for each xdp_frame in the list received */ 2053 for (i = 0; i < n; i++) { 2054 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2055 if (err) 2056 break; 2057 } 2058 xdp_redirect_fds->num = i; 2059 2060 /* enqueue all the frame descriptors */ 2061 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2062 2063 /* update statistics */ 2064 percpu_stats->tx_packets += enqueued; 2065 for (i = 0; i < enqueued; i++) 2066 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2067 for (i = enqueued; i < n; i++) 2068 xdp_return_frame_rx_napi(frames[i]); 2069 2070 return enqueued; 2071 } 2072 2073 static int update_xps(struct dpaa2_eth_priv *priv) 2074 { 2075 struct net_device *net_dev = priv->net_dev; 2076 struct cpumask xps_mask; 2077 struct dpaa2_eth_fq *fq; 2078 int i, num_queues, netdev_queues; 2079 int err = 0; 2080 2081 num_queues = dpaa2_eth_queue_count(priv); 2082 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2083 2084 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2085 * queues, so only process those 2086 */ 2087 for (i = 0; i < netdev_queues; i++) { 2088 fq = &priv->fq[i % num_queues]; 2089 2090 cpumask_clear(&xps_mask); 2091 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2092 2093 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2094 if (err) { 2095 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2096 break; 2097 } 2098 } 2099 2100 return err; 2101 } 2102 2103 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 2104 enum tc_setup_type type, void *type_data) 2105 { 2106 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2107 struct tc_mqprio_qopt *mqprio = type_data; 2108 u8 num_tc, num_queues; 2109 int i; 2110 2111 if (type != TC_SETUP_QDISC_MQPRIO) 2112 return -EOPNOTSUPP; 2113 2114 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2115 num_queues = dpaa2_eth_queue_count(priv); 2116 num_tc = mqprio->num_tc; 2117 2118 if (num_tc == net_dev->num_tc) 2119 return 0; 2120 2121 if (num_tc > dpaa2_eth_tc_count(priv)) { 2122 netdev_err(net_dev, "Max %d traffic classes supported\n", 2123 dpaa2_eth_tc_count(priv)); 2124 return -EOPNOTSUPP; 2125 } 2126 2127 if (!num_tc) { 2128 netdev_reset_tc(net_dev); 2129 netif_set_real_num_tx_queues(net_dev, num_queues); 2130 goto out; 2131 } 2132 2133 netdev_set_num_tc(net_dev, num_tc); 2134 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2135 2136 for (i = 0; i < num_tc; i++) 2137 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2138 2139 out: 2140 update_xps(priv); 2141 2142 return 0; 2143 } 2144 2145 static const struct net_device_ops dpaa2_eth_ops = { 2146 .ndo_open = dpaa2_eth_open, 2147 .ndo_start_xmit = dpaa2_eth_tx, 2148 .ndo_stop = dpaa2_eth_stop, 2149 .ndo_set_mac_address = dpaa2_eth_set_addr, 2150 .ndo_get_stats64 = dpaa2_eth_get_stats, 2151 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 2152 .ndo_set_features = dpaa2_eth_set_features, 2153 .ndo_do_ioctl = dpaa2_eth_ioctl, 2154 .ndo_change_mtu = dpaa2_eth_change_mtu, 2155 .ndo_bpf = dpaa2_eth_xdp, 2156 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 2157 .ndo_setup_tc = dpaa2_eth_setup_tc, 2158 }; 2159 2160 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 2161 { 2162 struct dpaa2_eth_channel *ch; 2163 2164 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 2165 2166 /* Update NAPI statistics */ 2167 ch->stats.cdan++; 2168 2169 napi_schedule_irqoff(&ch->napi); 2170 } 2171 2172 /* Allocate and configure a DPCON object */ 2173 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 2174 { 2175 struct fsl_mc_device *dpcon; 2176 struct device *dev = priv->net_dev->dev.parent; 2177 int err; 2178 2179 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 2180 FSL_MC_POOL_DPCON, &dpcon); 2181 if (err) { 2182 if (err == -ENXIO) 2183 err = -EPROBE_DEFER; 2184 else 2185 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 2186 return ERR_PTR(err); 2187 } 2188 2189 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 2190 if (err) { 2191 dev_err(dev, "dpcon_open() failed\n"); 2192 goto free; 2193 } 2194 2195 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 2196 if (err) { 2197 dev_err(dev, "dpcon_reset() failed\n"); 2198 goto close; 2199 } 2200 2201 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 2202 if (err) { 2203 dev_err(dev, "dpcon_enable() failed\n"); 2204 goto close; 2205 } 2206 2207 return dpcon; 2208 2209 close: 2210 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2211 free: 2212 fsl_mc_object_free(dpcon); 2213 2214 return NULL; 2215 } 2216 2217 static void free_dpcon(struct dpaa2_eth_priv *priv, 2218 struct fsl_mc_device *dpcon) 2219 { 2220 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 2221 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2222 fsl_mc_object_free(dpcon); 2223 } 2224 2225 static struct dpaa2_eth_channel * 2226 alloc_channel(struct dpaa2_eth_priv *priv) 2227 { 2228 struct dpaa2_eth_channel *channel; 2229 struct dpcon_attr attr; 2230 struct device *dev = priv->net_dev->dev.parent; 2231 int err; 2232 2233 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 2234 if (!channel) 2235 return NULL; 2236 2237 channel->dpcon = setup_dpcon(priv); 2238 if (IS_ERR_OR_NULL(channel->dpcon)) { 2239 err = PTR_ERR_OR_ZERO(channel->dpcon); 2240 goto err_setup; 2241 } 2242 2243 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 2244 &attr); 2245 if (err) { 2246 dev_err(dev, "dpcon_get_attributes() failed\n"); 2247 goto err_get_attr; 2248 } 2249 2250 channel->dpcon_id = attr.id; 2251 channel->ch_id = attr.qbman_ch_id; 2252 channel->priv = priv; 2253 2254 return channel; 2255 2256 err_get_attr: 2257 free_dpcon(priv, channel->dpcon); 2258 err_setup: 2259 kfree(channel); 2260 return ERR_PTR(err); 2261 } 2262 2263 static void free_channel(struct dpaa2_eth_priv *priv, 2264 struct dpaa2_eth_channel *channel) 2265 { 2266 free_dpcon(priv, channel->dpcon); 2267 kfree(channel); 2268 } 2269 2270 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2271 * and register data availability notifications 2272 */ 2273 static int setup_dpio(struct dpaa2_eth_priv *priv) 2274 { 2275 struct dpaa2_io_notification_ctx *nctx; 2276 struct dpaa2_eth_channel *channel; 2277 struct dpcon_notification_cfg dpcon_notif_cfg; 2278 struct device *dev = priv->net_dev->dev.parent; 2279 int i, err; 2280 2281 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2282 * many cores as possible, so we need one channel for each core 2283 * (unless there's fewer queues than cores, in which case the extra 2284 * channels would be wasted). 2285 * Allocate one channel per core and register it to the core's 2286 * affine DPIO. If not enough channels are available for all cores 2287 * or if some cores don't have an affine DPIO, there will be no 2288 * ingress frame processing on those cores. 2289 */ 2290 cpumask_clear(&priv->dpio_cpumask); 2291 for_each_online_cpu(i) { 2292 /* Try to allocate a channel */ 2293 channel = alloc_channel(priv); 2294 if (IS_ERR_OR_NULL(channel)) { 2295 err = PTR_ERR_OR_ZERO(channel); 2296 if (err != -EPROBE_DEFER) 2297 dev_info(dev, 2298 "No affine channel for cpu %d and above\n", i); 2299 goto err_alloc_ch; 2300 } 2301 2302 priv->channel[priv->num_channels] = channel; 2303 2304 nctx = &channel->nctx; 2305 nctx->is_cdan = 1; 2306 nctx->cb = cdan_cb; 2307 nctx->id = channel->ch_id; 2308 nctx->desired_cpu = i; 2309 2310 /* Register the new context */ 2311 channel->dpio = dpaa2_io_service_select(i); 2312 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2313 if (err) { 2314 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2315 /* If no affine DPIO for this core, there's probably 2316 * none available for next cores either. Signal we want 2317 * to retry later, in case the DPIO devices weren't 2318 * probed yet. 2319 */ 2320 err = -EPROBE_DEFER; 2321 goto err_service_reg; 2322 } 2323 2324 /* Register DPCON notification with MC */ 2325 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2326 dpcon_notif_cfg.priority = 0; 2327 dpcon_notif_cfg.user_ctx = nctx->qman64; 2328 err = dpcon_set_notification(priv->mc_io, 0, 2329 channel->dpcon->mc_handle, 2330 &dpcon_notif_cfg); 2331 if (err) { 2332 dev_err(dev, "dpcon_set_notification failed()\n"); 2333 goto err_set_cdan; 2334 } 2335 2336 /* If we managed to allocate a channel and also found an affine 2337 * DPIO for this core, add it to the final mask 2338 */ 2339 cpumask_set_cpu(i, &priv->dpio_cpumask); 2340 priv->num_channels++; 2341 2342 /* Stop if we already have enough channels to accommodate all 2343 * RX and TX conf queues 2344 */ 2345 if (priv->num_channels == priv->dpni_attrs.num_queues) 2346 break; 2347 } 2348 2349 return 0; 2350 2351 err_set_cdan: 2352 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2353 err_service_reg: 2354 free_channel(priv, channel); 2355 err_alloc_ch: 2356 if (err == -EPROBE_DEFER) { 2357 for (i = 0; i < priv->num_channels; i++) { 2358 channel = priv->channel[i]; 2359 nctx = &channel->nctx; 2360 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2361 free_channel(priv, channel); 2362 } 2363 priv->num_channels = 0; 2364 return err; 2365 } 2366 2367 if (cpumask_empty(&priv->dpio_cpumask)) { 2368 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2369 return -ENODEV; 2370 } 2371 2372 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2373 cpumask_pr_args(&priv->dpio_cpumask)); 2374 2375 return 0; 2376 } 2377 2378 static void free_dpio(struct dpaa2_eth_priv *priv) 2379 { 2380 struct device *dev = priv->net_dev->dev.parent; 2381 struct dpaa2_eth_channel *ch; 2382 int i; 2383 2384 /* deregister CDAN notifications and free channels */ 2385 for (i = 0; i < priv->num_channels; i++) { 2386 ch = priv->channel[i]; 2387 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2388 free_channel(priv, ch); 2389 } 2390 } 2391 2392 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2393 int cpu) 2394 { 2395 struct device *dev = priv->net_dev->dev.parent; 2396 int i; 2397 2398 for (i = 0; i < priv->num_channels; i++) 2399 if (priv->channel[i]->nctx.desired_cpu == cpu) 2400 return priv->channel[i]; 2401 2402 /* We should never get here. Issue a warning and return 2403 * the first channel, because it's still better than nothing 2404 */ 2405 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2406 2407 return priv->channel[0]; 2408 } 2409 2410 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2411 { 2412 struct device *dev = priv->net_dev->dev.parent; 2413 struct dpaa2_eth_fq *fq; 2414 int rx_cpu, txc_cpu; 2415 int i; 2416 2417 /* For each FQ, pick one channel/CPU to deliver frames to. 2418 * This may well change at runtime, either through irqbalance or 2419 * through direct user intervention. 2420 */ 2421 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2422 2423 for (i = 0; i < priv->num_fqs; i++) { 2424 fq = &priv->fq[i]; 2425 switch (fq->type) { 2426 case DPAA2_RX_FQ: 2427 fq->target_cpu = rx_cpu; 2428 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2429 if (rx_cpu >= nr_cpu_ids) 2430 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2431 break; 2432 case DPAA2_TX_CONF_FQ: 2433 fq->target_cpu = txc_cpu; 2434 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2435 if (txc_cpu >= nr_cpu_ids) 2436 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2437 break; 2438 default: 2439 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2440 } 2441 fq->channel = get_affine_channel(priv, fq->target_cpu); 2442 } 2443 2444 update_xps(priv); 2445 } 2446 2447 static void setup_fqs(struct dpaa2_eth_priv *priv) 2448 { 2449 int i, j; 2450 2451 /* We have one TxConf FQ per Tx flow. 2452 * The number of Tx and Rx queues is the same. 2453 * Tx queues come first in the fq array. 2454 */ 2455 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2456 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2457 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2458 priv->fq[priv->num_fqs++].flowid = (u16)i; 2459 } 2460 2461 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 2462 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2463 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2464 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2465 priv->fq[priv->num_fqs].tc = (u8)j; 2466 priv->fq[priv->num_fqs++].flowid = (u16)i; 2467 } 2468 } 2469 2470 /* For each FQ, decide on which core to process incoming frames */ 2471 set_fq_affinity(priv); 2472 } 2473 2474 /* Allocate and configure one buffer pool for each interface */ 2475 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2476 { 2477 int err; 2478 struct fsl_mc_device *dpbp_dev; 2479 struct device *dev = priv->net_dev->dev.parent; 2480 struct dpbp_attr dpbp_attrs; 2481 2482 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2483 &dpbp_dev); 2484 if (err) { 2485 if (err == -ENXIO) 2486 err = -EPROBE_DEFER; 2487 else 2488 dev_err(dev, "DPBP device allocation failed\n"); 2489 return err; 2490 } 2491 2492 priv->dpbp_dev = dpbp_dev; 2493 2494 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2495 &dpbp_dev->mc_handle); 2496 if (err) { 2497 dev_err(dev, "dpbp_open() failed\n"); 2498 goto err_open; 2499 } 2500 2501 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2502 if (err) { 2503 dev_err(dev, "dpbp_reset() failed\n"); 2504 goto err_reset; 2505 } 2506 2507 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2508 if (err) { 2509 dev_err(dev, "dpbp_enable() failed\n"); 2510 goto err_enable; 2511 } 2512 2513 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2514 &dpbp_attrs); 2515 if (err) { 2516 dev_err(dev, "dpbp_get_attributes() failed\n"); 2517 goto err_get_attr; 2518 } 2519 priv->bpid = dpbp_attrs.bpid; 2520 2521 return 0; 2522 2523 err_get_attr: 2524 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2525 err_enable: 2526 err_reset: 2527 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2528 err_open: 2529 fsl_mc_object_free(dpbp_dev); 2530 2531 return err; 2532 } 2533 2534 static void free_dpbp(struct dpaa2_eth_priv *priv) 2535 { 2536 drain_pool(priv); 2537 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2538 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2539 fsl_mc_object_free(priv->dpbp_dev); 2540 } 2541 2542 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2543 { 2544 struct device *dev = priv->net_dev->dev.parent; 2545 struct dpni_buffer_layout buf_layout = {0}; 2546 u16 rx_buf_align; 2547 int err; 2548 2549 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2550 * version, this number is not always provided correctly on rev1. 2551 * We need to check for both alternatives in this situation. 2552 */ 2553 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2554 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2555 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2556 else 2557 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2558 2559 /* We need to ensure that the buffer size seen by WRIOP is a multiple 2560 * of 64 or 256 bytes depending on the WRIOP version. 2561 */ 2562 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 2563 2564 /* tx buffer */ 2565 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2566 buf_layout.pass_timestamp = true; 2567 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2568 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2569 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2570 DPNI_QUEUE_TX, &buf_layout); 2571 if (err) { 2572 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2573 return err; 2574 } 2575 2576 /* tx-confirm buffer */ 2577 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2578 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2579 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2580 if (err) { 2581 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2582 return err; 2583 } 2584 2585 /* Now that we've set our tx buffer layout, retrieve the minimum 2586 * required tx data offset. 2587 */ 2588 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2589 &priv->tx_data_offset); 2590 if (err) { 2591 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2592 return err; 2593 } 2594 2595 if ((priv->tx_data_offset % 64) != 0) 2596 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2597 priv->tx_data_offset); 2598 2599 /* rx buffer */ 2600 buf_layout.pass_frame_status = true; 2601 buf_layout.pass_parser_result = true; 2602 buf_layout.data_align = rx_buf_align; 2603 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2604 buf_layout.private_data_size = 0; 2605 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2606 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2607 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2608 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2609 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2610 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2611 DPNI_QUEUE_RX, &buf_layout); 2612 if (err) { 2613 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2614 return err; 2615 } 2616 2617 return 0; 2618 } 2619 2620 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2621 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2622 2623 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2624 struct dpaa2_eth_fq *fq, 2625 struct dpaa2_fd *fd, u8 prio, 2626 u32 num_frames __always_unused, 2627 int *frames_enqueued) 2628 { 2629 int err; 2630 2631 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2632 priv->tx_qdid, prio, 2633 fq->tx_qdbin, fd); 2634 if (!err && frames_enqueued) 2635 *frames_enqueued = 1; 2636 return err; 2637 } 2638 2639 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 2640 struct dpaa2_eth_fq *fq, 2641 struct dpaa2_fd *fd, 2642 u8 prio, u32 num_frames, 2643 int *frames_enqueued) 2644 { 2645 int err; 2646 2647 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 2648 fq->tx_fqid[prio], 2649 fd, num_frames); 2650 2651 if (err == 0) 2652 return -EBUSY; 2653 2654 if (frames_enqueued) 2655 *frames_enqueued = err; 2656 return 0; 2657 } 2658 2659 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2660 { 2661 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2662 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2663 priv->enqueue = dpaa2_eth_enqueue_qd; 2664 else 2665 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 2666 } 2667 2668 static int set_pause(struct dpaa2_eth_priv *priv) 2669 { 2670 struct device *dev = priv->net_dev->dev.parent; 2671 struct dpni_link_cfg link_cfg = {0}; 2672 int err; 2673 2674 /* Get the default link options so we don't override other flags */ 2675 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2676 if (err) { 2677 dev_err(dev, "dpni_get_link_cfg() failed\n"); 2678 return err; 2679 } 2680 2681 /* By default, enable both Rx and Tx pause frames */ 2682 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 2683 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 2684 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2685 if (err) { 2686 dev_err(dev, "dpni_set_link_cfg() failed\n"); 2687 return err; 2688 } 2689 2690 priv->link_state.options = link_cfg.options; 2691 2692 return 0; 2693 } 2694 2695 static void update_tx_fqids(struct dpaa2_eth_priv *priv) 2696 { 2697 struct dpni_queue_id qid = {0}; 2698 struct dpaa2_eth_fq *fq; 2699 struct dpni_queue queue; 2700 int i, j, err; 2701 2702 /* We only use Tx FQIDs for FQID-based enqueue, so check 2703 * if DPNI version supports it before updating FQIDs 2704 */ 2705 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2706 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2707 return; 2708 2709 for (i = 0; i < priv->num_fqs; i++) { 2710 fq = &priv->fq[i]; 2711 if (fq->type != DPAA2_TX_CONF_FQ) 2712 continue; 2713 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 2714 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2715 DPNI_QUEUE_TX, j, fq->flowid, 2716 &queue, &qid); 2717 if (err) 2718 goto out_err; 2719 2720 fq->tx_fqid[j] = qid.fqid; 2721 if (fq->tx_fqid[j] == 0) 2722 goto out_err; 2723 } 2724 } 2725 2726 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 2727 2728 return; 2729 2730 out_err: 2731 netdev_info(priv->net_dev, 2732 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 2733 priv->enqueue = dpaa2_eth_enqueue_qd; 2734 } 2735 2736 /* Configure ingress classification based on VLAN PCP */ 2737 static int set_vlan_qos(struct dpaa2_eth_priv *priv) 2738 { 2739 struct device *dev = priv->net_dev->dev.parent; 2740 struct dpkg_profile_cfg kg_cfg = {0}; 2741 struct dpni_qos_tbl_cfg qos_cfg = {0}; 2742 struct dpni_rule_cfg key_params; 2743 void *dma_mem, *key, *mask; 2744 u8 key_size = 2; /* VLAN TCI field */ 2745 int i, pcp, err; 2746 2747 /* VLAN-based classification only makes sense if we have multiple 2748 * traffic classes. 2749 * Also, we need to extract just the 3-bit PCP field from the VLAN 2750 * header and we can only do that by using a mask 2751 */ 2752 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 2753 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 2754 return -EOPNOTSUPP; 2755 } 2756 2757 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2758 if (!dma_mem) 2759 return -ENOMEM; 2760 2761 kg_cfg.num_extracts = 1; 2762 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 2763 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 2764 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 2765 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 2766 2767 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 2768 if (err) { 2769 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 2770 goto out_free_tbl; 2771 } 2772 2773 /* set QoS table */ 2774 qos_cfg.default_tc = 0; 2775 qos_cfg.discard_on_miss = 0; 2776 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 2777 DPAA2_CLASSIFIER_DMA_SIZE, 2778 DMA_TO_DEVICE); 2779 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 2780 dev_err(dev, "QoS table DMA mapping failed\n"); 2781 err = -ENOMEM; 2782 goto out_free_tbl; 2783 } 2784 2785 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 2786 if (err) { 2787 dev_err(dev, "dpni_set_qos_table failed\n"); 2788 goto out_unmap_tbl; 2789 } 2790 2791 /* Add QoS table entries */ 2792 key = kzalloc(key_size * 2, GFP_KERNEL); 2793 if (!key) { 2794 err = -ENOMEM; 2795 goto out_unmap_tbl; 2796 } 2797 mask = key + key_size; 2798 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 2799 2800 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 2801 DMA_TO_DEVICE); 2802 if (dma_mapping_error(dev, key_params.key_iova)) { 2803 dev_err(dev, "Qos table entry DMA mapping failed\n"); 2804 err = -ENOMEM; 2805 goto out_free_key; 2806 } 2807 2808 key_params.mask_iova = key_params.key_iova + key_size; 2809 key_params.key_size = key_size; 2810 2811 /* We add rules for PCP-based distribution starting with highest 2812 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 2813 * classes to accommodate all priority levels, the lowest ones end up 2814 * on TC 0 which was configured as default 2815 */ 2816 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 2817 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 2818 dma_sync_single_for_device(dev, key_params.key_iova, 2819 key_size * 2, DMA_TO_DEVICE); 2820 2821 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 2822 &key_params, i, i); 2823 if (err) { 2824 dev_err(dev, "dpni_add_qos_entry failed\n"); 2825 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 2826 goto out_unmap_key; 2827 } 2828 } 2829 2830 priv->vlan_cls_enabled = true; 2831 2832 /* Table and key memory is not persistent, clean everything up after 2833 * configuration is finished 2834 */ 2835 out_unmap_key: 2836 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 2837 out_free_key: 2838 kfree(key); 2839 out_unmap_tbl: 2840 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2841 DMA_TO_DEVICE); 2842 out_free_tbl: 2843 kfree(dma_mem); 2844 2845 return err; 2846 } 2847 2848 /* Configure the DPNI object this interface is associated with */ 2849 static int setup_dpni(struct fsl_mc_device *ls_dev) 2850 { 2851 struct device *dev = &ls_dev->dev; 2852 struct dpaa2_eth_priv *priv; 2853 struct net_device *net_dev; 2854 int err; 2855 2856 net_dev = dev_get_drvdata(dev); 2857 priv = netdev_priv(net_dev); 2858 2859 /* get a handle for the DPNI object */ 2860 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2861 if (err) { 2862 dev_err(dev, "dpni_open() failed\n"); 2863 return err; 2864 } 2865 2866 /* Check if we can work with this DPNI object */ 2867 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2868 &priv->dpni_ver_minor); 2869 if (err) { 2870 dev_err(dev, "dpni_get_api_version() failed\n"); 2871 goto close; 2872 } 2873 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2874 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2875 priv->dpni_ver_major, priv->dpni_ver_minor, 2876 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2877 err = -ENOTSUPP; 2878 goto close; 2879 } 2880 2881 ls_dev->mc_io = priv->mc_io; 2882 ls_dev->mc_handle = priv->mc_token; 2883 2884 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2885 if (err) { 2886 dev_err(dev, "dpni_reset() failed\n"); 2887 goto close; 2888 } 2889 2890 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2891 &priv->dpni_attrs); 2892 if (err) { 2893 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2894 goto close; 2895 } 2896 2897 err = set_buffer_layout(priv); 2898 if (err) 2899 goto close; 2900 2901 set_enqueue_mode(priv); 2902 2903 /* Enable pause frame support */ 2904 if (dpaa2_eth_has_pause_support(priv)) { 2905 err = set_pause(priv); 2906 if (err) 2907 goto close; 2908 } 2909 2910 err = set_vlan_qos(priv); 2911 if (err && err != -EOPNOTSUPP) 2912 goto close; 2913 2914 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 2915 sizeof(struct dpaa2_eth_cls_rule), 2916 GFP_KERNEL); 2917 if (!priv->cls_rules) { 2918 err = -ENOMEM; 2919 goto close; 2920 } 2921 2922 return 0; 2923 2924 close: 2925 dpni_close(priv->mc_io, 0, priv->mc_token); 2926 2927 return err; 2928 } 2929 2930 static void free_dpni(struct dpaa2_eth_priv *priv) 2931 { 2932 int err; 2933 2934 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2935 if (err) 2936 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2937 err); 2938 2939 dpni_close(priv->mc_io, 0, priv->mc_token); 2940 } 2941 2942 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2943 struct dpaa2_eth_fq *fq) 2944 { 2945 struct device *dev = priv->net_dev->dev.parent; 2946 struct dpni_queue queue; 2947 struct dpni_queue_id qid; 2948 int err; 2949 2950 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2951 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 2952 if (err) { 2953 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2954 return err; 2955 } 2956 2957 fq->fqid = qid.fqid; 2958 2959 queue.destination.id = fq->channel->dpcon_id; 2960 queue.destination.type = DPNI_DEST_DPCON; 2961 queue.destination.priority = 1; 2962 queue.user_context = (u64)(uintptr_t)fq; 2963 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2964 DPNI_QUEUE_RX, fq->tc, fq->flowid, 2965 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2966 &queue); 2967 if (err) { 2968 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2969 return err; 2970 } 2971 2972 /* xdp_rxq setup */ 2973 /* only once for each channel */ 2974 if (fq->tc > 0) 2975 return 0; 2976 2977 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2978 fq->flowid); 2979 if (err) { 2980 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2981 return err; 2982 } 2983 2984 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2985 MEM_TYPE_PAGE_ORDER0, NULL); 2986 if (err) { 2987 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2988 return err; 2989 } 2990 2991 return 0; 2992 } 2993 2994 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2995 struct dpaa2_eth_fq *fq) 2996 { 2997 struct device *dev = priv->net_dev->dev.parent; 2998 struct dpni_queue queue; 2999 struct dpni_queue_id qid; 3000 int i, err; 3001 3002 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3003 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3004 DPNI_QUEUE_TX, i, fq->flowid, 3005 &queue, &qid); 3006 if (err) { 3007 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3008 return err; 3009 } 3010 fq->tx_fqid[i] = qid.fqid; 3011 } 3012 3013 /* All Tx queues belonging to the same flowid have the same qdbin */ 3014 fq->tx_qdbin = qid.qdbin; 3015 3016 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3017 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3018 &queue, &qid); 3019 if (err) { 3020 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3021 return err; 3022 } 3023 3024 fq->fqid = qid.fqid; 3025 3026 queue.destination.id = fq->channel->dpcon_id; 3027 queue.destination.type = DPNI_DEST_DPCON; 3028 queue.destination.priority = 0; 3029 queue.user_context = (u64)(uintptr_t)fq; 3030 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3031 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3032 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3033 &queue); 3034 if (err) { 3035 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3036 return err; 3037 } 3038 3039 return 0; 3040 } 3041 3042 /* Supported header fields for Rx hash distribution key */ 3043 static const struct dpaa2_eth_dist_fields dist_fields[] = { 3044 { 3045 /* L2 header */ 3046 .rxnfc_field = RXH_L2DA, 3047 .cls_prot = NET_PROT_ETH, 3048 .cls_field = NH_FLD_ETH_DA, 3049 .id = DPAA2_ETH_DIST_ETHDST, 3050 .size = 6, 3051 }, { 3052 .cls_prot = NET_PROT_ETH, 3053 .cls_field = NH_FLD_ETH_SA, 3054 .id = DPAA2_ETH_DIST_ETHSRC, 3055 .size = 6, 3056 }, { 3057 /* This is the last ethertype field parsed: 3058 * depending on frame format, it can be the MAC ethertype 3059 * or the VLAN etype. 3060 */ 3061 .cls_prot = NET_PROT_ETH, 3062 .cls_field = NH_FLD_ETH_TYPE, 3063 .id = DPAA2_ETH_DIST_ETHTYPE, 3064 .size = 2, 3065 }, { 3066 /* VLAN header */ 3067 .rxnfc_field = RXH_VLAN, 3068 .cls_prot = NET_PROT_VLAN, 3069 .cls_field = NH_FLD_VLAN_TCI, 3070 .id = DPAA2_ETH_DIST_VLAN, 3071 .size = 2, 3072 }, { 3073 /* IP header */ 3074 .rxnfc_field = RXH_IP_SRC, 3075 .cls_prot = NET_PROT_IP, 3076 .cls_field = NH_FLD_IP_SRC, 3077 .id = DPAA2_ETH_DIST_IPSRC, 3078 .size = 4, 3079 }, { 3080 .rxnfc_field = RXH_IP_DST, 3081 .cls_prot = NET_PROT_IP, 3082 .cls_field = NH_FLD_IP_DST, 3083 .id = DPAA2_ETH_DIST_IPDST, 3084 .size = 4, 3085 }, { 3086 .rxnfc_field = RXH_L3_PROTO, 3087 .cls_prot = NET_PROT_IP, 3088 .cls_field = NH_FLD_IP_PROTO, 3089 .id = DPAA2_ETH_DIST_IPPROTO, 3090 .size = 1, 3091 }, { 3092 /* Using UDP ports, this is functionally equivalent to raw 3093 * byte pairs from L4 header. 3094 */ 3095 .rxnfc_field = RXH_L4_B_0_1, 3096 .cls_prot = NET_PROT_UDP, 3097 .cls_field = NH_FLD_UDP_PORT_SRC, 3098 .id = DPAA2_ETH_DIST_L4SRC, 3099 .size = 2, 3100 }, { 3101 .rxnfc_field = RXH_L4_B_2_3, 3102 .cls_prot = NET_PROT_UDP, 3103 .cls_field = NH_FLD_UDP_PORT_DST, 3104 .id = DPAA2_ETH_DIST_L4DST, 3105 .size = 2, 3106 }, 3107 }; 3108 3109 /* Configure the Rx hash key using the legacy API */ 3110 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3111 { 3112 struct device *dev = priv->net_dev->dev.parent; 3113 struct dpni_rx_tc_dist_cfg dist_cfg; 3114 int i, err = 0; 3115 3116 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3117 3118 dist_cfg.key_cfg_iova = key; 3119 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3120 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 3121 3122 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3123 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 3124 i, &dist_cfg); 3125 if (err) { 3126 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 3127 break; 3128 } 3129 } 3130 3131 return err; 3132 } 3133 3134 /* Configure the Rx hash key using the new API */ 3135 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3136 { 3137 struct device *dev = priv->net_dev->dev.parent; 3138 struct dpni_rx_dist_cfg dist_cfg; 3139 int i, err = 0; 3140 3141 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3142 3143 dist_cfg.key_cfg_iova = key; 3144 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3145 dist_cfg.enable = 1; 3146 3147 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3148 dist_cfg.tc = i; 3149 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 3150 &dist_cfg); 3151 if (err) { 3152 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 3153 break; 3154 } 3155 } 3156 3157 return err; 3158 } 3159 3160 /* Configure the Rx flow classification key */ 3161 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3162 { 3163 struct device *dev = priv->net_dev->dev.parent; 3164 struct dpni_rx_dist_cfg dist_cfg; 3165 int i, err = 0; 3166 3167 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3168 3169 dist_cfg.key_cfg_iova = key; 3170 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3171 dist_cfg.enable = 1; 3172 3173 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3174 dist_cfg.tc = i; 3175 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 3176 &dist_cfg); 3177 if (err) { 3178 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 3179 break; 3180 } 3181 } 3182 3183 return err; 3184 } 3185 3186 /* Size of the Rx flow classification key */ 3187 int dpaa2_eth_cls_key_size(u64 fields) 3188 { 3189 int i, size = 0; 3190 3191 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3192 if (!(fields & dist_fields[i].id)) 3193 continue; 3194 size += dist_fields[i].size; 3195 } 3196 3197 return size; 3198 } 3199 3200 /* Offset of header field in Rx classification key */ 3201 int dpaa2_eth_cls_fld_off(int prot, int field) 3202 { 3203 int i, off = 0; 3204 3205 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3206 if (dist_fields[i].cls_prot == prot && 3207 dist_fields[i].cls_field == field) 3208 return off; 3209 off += dist_fields[i].size; 3210 } 3211 3212 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 3213 return 0; 3214 } 3215 3216 /* Prune unused fields from the classification rule. 3217 * Used when masking is not supported 3218 */ 3219 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 3220 { 3221 int off = 0, new_off = 0; 3222 int i, size; 3223 3224 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3225 size = dist_fields[i].size; 3226 if (dist_fields[i].id & fields) { 3227 memcpy(key_mem + new_off, key_mem + off, size); 3228 new_off += size; 3229 } 3230 off += size; 3231 } 3232 } 3233 3234 /* Set Rx distribution (hash or flow classification) key 3235 * flags is a combination of RXH_ bits 3236 */ 3237 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 3238 enum dpaa2_eth_rx_dist type, u64 flags) 3239 { 3240 struct device *dev = net_dev->dev.parent; 3241 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3242 struct dpkg_profile_cfg cls_cfg; 3243 u32 rx_hash_fields = 0; 3244 dma_addr_t key_iova; 3245 u8 *dma_mem; 3246 int i; 3247 int err = 0; 3248 3249 memset(&cls_cfg, 0, sizeof(cls_cfg)); 3250 3251 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3252 struct dpkg_extract *key = 3253 &cls_cfg.extracts[cls_cfg.num_extracts]; 3254 3255 /* For both Rx hashing and classification keys 3256 * we set only the selected fields. 3257 */ 3258 if (!(flags & dist_fields[i].id)) 3259 continue; 3260 if (type == DPAA2_ETH_RX_DIST_HASH) 3261 rx_hash_fields |= dist_fields[i].rxnfc_field; 3262 3263 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 3264 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 3265 return -E2BIG; 3266 } 3267 3268 key->type = DPKG_EXTRACT_FROM_HDR; 3269 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 3270 key->extract.from_hdr.type = DPKG_FULL_FIELD; 3271 key->extract.from_hdr.field = dist_fields[i].cls_field; 3272 cls_cfg.num_extracts++; 3273 } 3274 3275 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3276 if (!dma_mem) 3277 return -ENOMEM; 3278 3279 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 3280 if (err) { 3281 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 3282 goto free_key; 3283 } 3284 3285 /* Prepare for setting the rx dist */ 3286 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 3287 DMA_TO_DEVICE); 3288 if (dma_mapping_error(dev, key_iova)) { 3289 dev_err(dev, "DMA mapping failed\n"); 3290 err = -ENOMEM; 3291 goto free_key; 3292 } 3293 3294 if (type == DPAA2_ETH_RX_DIST_HASH) { 3295 if (dpaa2_eth_has_legacy_dist(priv)) 3296 err = config_legacy_hash_key(priv, key_iova); 3297 else 3298 err = config_hash_key(priv, key_iova); 3299 } else { 3300 err = config_cls_key(priv, key_iova); 3301 } 3302 3303 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3304 DMA_TO_DEVICE); 3305 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 3306 priv->rx_hash_fields = rx_hash_fields; 3307 3308 free_key: 3309 kfree(dma_mem); 3310 return err; 3311 } 3312 3313 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 3314 { 3315 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3316 u64 key = 0; 3317 int i; 3318 3319 if (!dpaa2_eth_hash_enabled(priv)) 3320 return -EOPNOTSUPP; 3321 3322 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 3323 if (dist_fields[i].rxnfc_field & flags) 3324 key |= dist_fields[i].id; 3325 3326 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 3327 } 3328 3329 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 3330 { 3331 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 3332 } 3333 3334 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 3335 { 3336 struct device *dev = priv->net_dev->dev.parent; 3337 int err; 3338 3339 /* Check if we actually support Rx flow classification */ 3340 if (dpaa2_eth_has_legacy_dist(priv)) { 3341 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 3342 return -EOPNOTSUPP; 3343 } 3344 3345 if (!dpaa2_eth_fs_enabled(priv)) { 3346 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 3347 return -EOPNOTSUPP; 3348 } 3349 3350 if (!dpaa2_eth_hash_enabled(priv)) { 3351 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 3352 return -EOPNOTSUPP; 3353 } 3354 3355 /* If there is no support for masking in the classification table, 3356 * we don't set a default key, as it will depend on the rules 3357 * added by the user at runtime. 3358 */ 3359 if (!dpaa2_eth_fs_mask_enabled(priv)) 3360 goto out; 3361 3362 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 3363 if (err) 3364 return err; 3365 3366 out: 3367 priv->rx_cls_enabled = 1; 3368 3369 return 0; 3370 } 3371 3372 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 3373 * frame queues and channels 3374 */ 3375 static int bind_dpni(struct dpaa2_eth_priv *priv) 3376 { 3377 struct net_device *net_dev = priv->net_dev; 3378 struct device *dev = net_dev->dev.parent; 3379 struct dpni_pools_cfg pools_params; 3380 struct dpni_error_cfg err_cfg; 3381 int err = 0; 3382 int i; 3383 3384 pools_params.num_dpbp = 1; 3385 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 3386 pools_params.pools[0].backup_pool = 0; 3387 pools_params.pools[0].buffer_size = priv->rx_buf_size; 3388 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 3389 if (err) { 3390 dev_err(dev, "dpni_set_pools() failed\n"); 3391 return err; 3392 } 3393 3394 /* have the interface implicitly distribute traffic based on 3395 * the default hash key 3396 */ 3397 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 3398 if (err && err != -EOPNOTSUPP) 3399 dev_err(dev, "Failed to configure hashing\n"); 3400 3401 /* Configure the flow classification key; it includes all 3402 * supported header fields and cannot be modified at runtime 3403 */ 3404 err = dpaa2_eth_set_default_cls(priv); 3405 if (err && err != -EOPNOTSUPP) 3406 dev_err(dev, "Failed to configure Rx classification key\n"); 3407 3408 /* Configure handling of error frames */ 3409 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 3410 err_cfg.set_frame_annotation = 1; 3411 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 3412 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 3413 &err_cfg); 3414 if (err) { 3415 dev_err(dev, "dpni_set_errors_behavior failed\n"); 3416 return err; 3417 } 3418 3419 /* Configure Rx and Tx conf queues to generate CDANs */ 3420 for (i = 0; i < priv->num_fqs; i++) { 3421 switch (priv->fq[i].type) { 3422 case DPAA2_RX_FQ: 3423 err = setup_rx_flow(priv, &priv->fq[i]); 3424 break; 3425 case DPAA2_TX_CONF_FQ: 3426 err = setup_tx_flow(priv, &priv->fq[i]); 3427 break; 3428 default: 3429 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 3430 return -EINVAL; 3431 } 3432 if (err) 3433 return err; 3434 } 3435 3436 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 3437 DPNI_QUEUE_TX, &priv->tx_qdid); 3438 if (err) { 3439 dev_err(dev, "dpni_get_qdid() failed\n"); 3440 return err; 3441 } 3442 3443 return 0; 3444 } 3445 3446 /* Allocate rings for storing incoming frame descriptors */ 3447 static int alloc_rings(struct dpaa2_eth_priv *priv) 3448 { 3449 struct net_device *net_dev = priv->net_dev; 3450 struct device *dev = net_dev->dev.parent; 3451 int i; 3452 3453 for (i = 0; i < priv->num_channels; i++) { 3454 priv->channel[i]->store = 3455 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 3456 if (!priv->channel[i]->store) { 3457 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 3458 goto err_ring; 3459 } 3460 } 3461 3462 return 0; 3463 3464 err_ring: 3465 for (i = 0; i < priv->num_channels; i++) { 3466 if (!priv->channel[i]->store) 3467 break; 3468 dpaa2_io_store_destroy(priv->channel[i]->store); 3469 } 3470 3471 return -ENOMEM; 3472 } 3473 3474 static void free_rings(struct dpaa2_eth_priv *priv) 3475 { 3476 int i; 3477 3478 for (i = 0; i < priv->num_channels; i++) 3479 dpaa2_io_store_destroy(priv->channel[i]->store); 3480 } 3481 3482 static int set_mac_addr(struct dpaa2_eth_priv *priv) 3483 { 3484 struct net_device *net_dev = priv->net_dev; 3485 struct device *dev = net_dev->dev.parent; 3486 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 3487 int err; 3488 3489 /* Get firmware address, if any */ 3490 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 3491 if (err) { 3492 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3493 return err; 3494 } 3495 3496 /* Get DPNI attributes address, if any */ 3497 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3498 dpni_mac_addr); 3499 if (err) { 3500 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3501 return err; 3502 } 3503 3504 /* First check if firmware has any address configured by bootloader */ 3505 if (!is_zero_ether_addr(mac_addr)) { 3506 /* If the DPMAC addr != DPNI addr, update it */ 3507 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3508 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3509 priv->mc_token, 3510 mac_addr); 3511 if (err) { 3512 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3513 return err; 3514 } 3515 } 3516 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3517 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3518 /* No MAC address configured, fill in net_dev->dev_addr 3519 * with a random one 3520 */ 3521 eth_hw_addr_random(net_dev); 3522 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3523 3524 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3525 net_dev->dev_addr); 3526 if (err) { 3527 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3528 return err; 3529 } 3530 3531 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3532 * practical purposes, this will be our "permanent" mac address, 3533 * at least until the next reboot. This move will also permit 3534 * register_netdevice() to properly fill up net_dev->perm_addr. 3535 */ 3536 net_dev->addr_assign_type = NET_ADDR_PERM; 3537 } else { 3538 /* NET_ADDR_PERM is default, all we have to do is 3539 * fill in the device addr. 3540 */ 3541 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3542 } 3543 3544 return 0; 3545 } 3546 3547 static int netdev_init(struct net_device *net_dev) 3548 { 3549 struct device *dev = net_dev->dev.parent; 3550 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3551 u32 options = priv->dpni_attrs.options; 3552 u64 supported = 0, not_supported = 0; 3553 u8 bcast_addr[ETH_ALEN]; 3554 u8 num_queues; 3555 int err; 3556 3557 net_dev->netdev_ops = &dpaa2_eth_ops; 3558 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3559 3560 err = set_mac_addr(priv); 3561 if (err) 3562 return err; 3563 3564 /* Explicitly add the broadcast address to the MAC filtering table */ 3565 eth_broadcast_addr(bcast_addr); 3566 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3567 if (err) { 3568 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3569 return err; 3570 } 3571 3572 /* Set MTU upper limit; lower limit is 68B (default value) */ 3573 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3574 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3575 DPAA2_ETH_MFL); 3576 if (err) { 3577 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3578 return err; 3579 } 3580 3581 /* Set actual number of queues in the net device */ 3582 num_queues = dpaa2_eth_queue_count(priv); 3583 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3584 if (err) { 3585 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3586 return err; 3587 } 3588 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3589 if (err) { 3590 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3591 return err; 3592 } 3593 3594 /* Capabilities listing */ 3595 supported |= IFF_LIVE_ADDR_CHANGE; 3596 3597 if (options & DPNI_OPT_NO_MAC_FILTER) 3598 not_supported |= IFF_UNICAST_FLT; 3599 else 3600 supported |= IFF_UNICAST_FLT; 3601 3602 net_dev->priv_flags |= supported; 3603 net_dev->priv_flags &= ~not_supported; 3604 3605 /* Features */ 3606 net_dev->features = NETIF_F_RXCSUM | 3607 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3608 NETIF_F_SG | NETIF_F_HIGHDMA | 3609 NETIF_F_LLTX; 3610 net_dev->hw_features = net_dev->features; 3611 3612 return 0; 3613 } 3614 3615 static int poll_link_state(void *arg) 3616 { 3617 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3618 int err; 3619 3620 while (!kthread_should_stop()) { 3621 err = link_state_update(priv); 3622 if (unlikely(err)) 3623 return err; 3624 3625 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3626 } 3627 3628 return 0; 3629 } 3630 3631 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 3632 { 3633 struct fsl_mc_device *dpni_dev, *dpmac_dev; 3634 struct dpaa2_mac *mac; 3635 int err; 3636 3637 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 3638 dpmac_dev = fsl_mc_get_endpoint(dpni_dev); 3639 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 3640 return 0; 3641 3642 if (dpaa2_mac_is_type_fixed(dpmac_dev, priv->mc_io)) 3643 return 0; 3644 3645 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 3646 if (!mac) 3647 return -ENOMEM; 3648 3649 mac->mc_dev = dpmac_dev; 3650 mac->mc_io = priv->mc_io; 3651 mac->net_dev = priv->net_dev; 3652 3653 err = dpaa2_mac_connect(mac); 3654 if (err) { 3655 netdev_err(priv->net_dev, "Error connecting to the MAC endpoint\n"); 3656 kfree(mac); 3657 return err; 3658 } 3659 priv->mac = mac; 3660 3661 return 0; 3662 } 3663 3664 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 3665 { 3666 if (!priv->mac) 3667 return; 3668 3669 dpaa2_mac_disconnect(priv->mac); 3670 kfree(priv->mac); 3671 priv->mac = NULL; 3672 } 3673 3674 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3675 { 3676 u32 status = ~0; 3677 struct device *dev = (struct device *)arg; 3678 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3679 struct net_device *net_dev = dev_get_drvdata(dev); 3680 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3681 int err; 3682 3683 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3684 DPNI_IRQ_INDEX, &status); 3685 if (unlikely(err)) { 3686 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3687 return IRQ_HANDLED; 3688 } 3689 3690 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3691 link_state_update(netdev_priv(net_dev)); 3692 3693 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 3694 set_mac_addr(netdev_priv(net_dev)); 3695 update_tx_fqids(priv); 3696 3697 rtnl_lock(); 3698 if (priv->mac) 3699 dpaa2_eth_disconnect_mac(priv); 3700 else 3701 dpaa2_eth_connect_mac(priv); 3702 rtnl_unlock(); 3703 } 3704 3705 return IRQ_HANDLED; 3706 } 3707 3708 static int setup_irqs(struct fsl_mc_device *ls_dev) 3709 { 3710 int err = 0; 3711 struct fsl_mc_device_irq *irq; 3712 3713 err = fsl_mc_allocate_irqs(ls_dev); 3714 if (err) { 3715 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3716 return err; 3717 } 3718 3719 irq = ls_dev->irqs[0]; 3720 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3721 NULL, dpni_irq0_handler_thread, 3722 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3723 dev_name(&ls_dev->dev), &ls_dev->dev); 3724 if (err < 0) { 3725 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3726 goto free_mc_irq; 3727 } 3728 3729 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3730 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 3731 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 3732 if (err < 0) { 3733 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3734 goto free_irq; 3735 } 3736 3737 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3738 DPNI_IRQ_INDEX, 1); 3739 if (err < 0) { 3740 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3741 goto free_irq; 3742 } 3743 3744 return 0; 3745 3746 free_irq: 3747 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3748 free_mc_irq: 3749 fsl_mc_free_irqs(ls_dev); 3750 3751 return err; 3752 } 3753 3754 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3755 { 3756 int i; 3757 struct dpaa2_eth_channel *ch; 3758 3759 for (i = 0; i < priv->num_channels; i++) { 3760 ch = priv->channel[i]; 3761 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3762 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3763 NAPI_POLL_WEIGHT); 3764 } 3765 } 3766 3767 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3768 { 3769 int i; 3770 struct dpaa2_eth_channel *ch; 3771 3772 for (i = 0; i < priv->num_channels; i++) { 3773 ch = priv->channel[i]; 3774 netif_napi_del(&ch->napi); 3775 } 3776 } 3777 3778 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3779 { 3780 struct device *dev; 3781 struct net_device *net_dev = NULL; 3782 struct dpaa2_eth_priv *priv = NULL; 3783 int err = 0; 3784 3785 dev = &dpni_dev->dev; 3786 3787 /* Net device */ 3788 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 3789 if (!net_dev) { 3790 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3791 return -ENOMEM; 3792 } 3793 3794 SET_NETDEV_DEV(net_dev, dev); 3795 dev_set_drvdata(dev, net_dev); 3796 3797 priv = netdev_priv(net_dev); 3798 priv->net_dev = net_dev; 3799 3800 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3801 3802 /* Obtain a MC portal */ 3803 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3804 &priv->mc_io); 3805 if (err) { 3806 if (err == -ENXIO) 3807 err = -EPROBE_DEFER; 3808 else 3809 dev_err(dev, "MC portal allocation failed\n"); 3810 goto err_portal_alloc; 3811 } 3812 3813 /* MC objects initialization and configuration */ 3814 err = setup_dpni(dpni_dev); 3815 if (err) 3816 goto err_dpni_setup; 3817 3818 err = setup_dpio(priv); 3819 if (err) 3820 goto err_dpio_setup; 3821 3822 setup_fqs(priv); 3823 3824 err = setup_dpbp(priv); 3825 if (err) 3826 goto err_dpbp_setup; 3827 3828 err = bind_dpni(priv); 3829 if (err) 3830 goto err_bind; 3831 3832 /* Add a NAPI context for each channel */ 3833 add_ch_napi(priv); 3834 3835 /* Percpu statistics */ 3836 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3837 if (!priv->percpu_stats) { 3838 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3839 err = -ENOMEM; 3840 goto err_alloc_percpu_stats; 3841 } 3842 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3843 if (!priv->percpu_extras) { 3844 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3845 err = -ENOMEM; 3846 goto err_alloc_percpu_extras; 3847 } 3848 3849 err = netdev_init(net_dev); 3850 if (err) 3851 goto err_netdev_init; 3852 3853 /* Configure checksum offload based on current interface flags */ 3854 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3855 if (err) 3856 goto err_csum; 3857 3858 err = set_tx_csum(priv, !!(net_dev->features & 3859 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3860 if (err) 3861 goto err_csum; 3862 3863 err = alloc_rings(priv); 3864 if (err) 3865 goto err_alloc_rings; 3866 3867 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 3868 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 3869 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 3870 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 3871 } else { 3872 dev_dbg(dev, "PFC not supported\n"); 3873 } 3874 #endif 3875 3876 err = setup_irqs(dpni_dev); 3877 if (err) { 3878 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3879 priv->poll_thread = kthread_run(poll_link_state, priv, 3880 "%s_poll_link", net_dev->name); 3881 if (IS_ERR(priv->poll_thread)) { 3882 dev_err(dev, "Error starting polling thread\n"); 3883 goto err_poll_thread; 3884 } 3885 priv->do_link_poll = true; 3886 } 3887 3888 err = dpaa2_eth_connect_mac(priv); 3889 if (err) 3890 goto err_connect_mac; 3891 3892 err = register_netdev(net_dev); 3893 if (err < 0) { 3894 dev_err(dev, "register_netdev() failed\n"); 3895 goto err_netdev_reg; 3896 } 3897 3898 #ifdef CONFIG_DEBUG_FS 3899 dpaa2_dbg_add(priv); 3900 #endif 3901 3902 dev_info(dev, "Probed interface %s\n", net_dev->name); 3903 return 0; 3904 3905 err_netdev_reg: 3906 dpaa2_eth_disconnect_mac(priv); 3907 err_connect_mac: 3908 if (priv->do_link_poll) 3909 kthread_stop(priv->poll_thread); 3910 else 3911 fsl_mc_free_irqs(dpni_dev); 3912 err_poll_thread: 3913 free_rings(priv); 3914 err_alloc_rings: 3915 err_csum: 3916 err_netdev_init: 3917 free_percpu(priv->percpu_extras); 3918 err_alloc_percpu_extras: 3919 free_percpu(priv->percpu_stats); 3920 err_alloc_percpu_stats: 3921 del_ch_napi(priv); 3922 err_bind: 3923 free_dpbp(priv); 3924 err_dpbp_setup: 3925 free_dpio(priv); 3926 err_dpio_setup: 3927 free_dpni(priv); 3928 err_dpni_setup: 3929 fsl_mc_portal_free(priv->mc_io); 3930 err_portal_alloc: 3931 dev_set_drvdata(dev, NULL); 3932 free_netdev(net_dev); 3933 3934 return err; 3935 } 3936 3937 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3938 { 3939 struct device *dev; 3940 struct net_device *net_dev; 3941 struct dpaa2_eth_priv *priv; 3942 3943 dev = &ls_dev->dev; 3944 net_dev = dev_get_drvdata(dev); 3945 priv = netdev_priv(net_dev); 3946 3947 #ifdef CONFIG_DEBUG_FS 3948 dpaa2_dbg_remove(priv); 3949 #endif 3950 rtnl_lock(); 3951 dpaa2_eth_disconnect_mac(priv); 3952 rtnl_unlock(); 3953 3954 unregister_netdev(net_dev); 3955 3956 if (priv->do_link_poll) 3957 kthread_stop(priv->poll_thread); 3958 else 3959 fsl_mc_free_irqs(ls_dev); 3960 3961 free_rings(priv); 3962 free_percpu(priv->percpu_stats); 3963 free_percpu(priv->percpu_extras); 3964 3965 del_ch_napi(priv); 3966 free_dpbp(priv); 3967 free_dpio(priv); 3968 free_dpni(priv); 3969 3970 fsl_mc_portal_free(priv->mc_io); 3971 3972 free_netdev(net_dev); 3973 3974 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3975 3976 return 0; 3977 } 3978 3979 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3980 { 3981 .vendor = FSL_MC_VENDOR_FREESCALE, 3982 .obj_type = "dpni", 3983 }, 3984 { .vendor = 0x0 } 3985 }; 3986 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3987 3988 static struct fsl_mc_driver dpaa2_eth_driver = { 3989 .driver = { 3990 .name = KBUILD_MODNAME, 3991 .owner = THIS_MODULE, 3992 }, 3993 .probe = dpaa2_eth_probe, 3994 .remove = dpaa2_eth_remove, 3995 .match_id_table = dpaa2_eth_match_id_table 3996 }; 3997 3998 static int __init dpaa2_eth_driver_init(void) 3999 { 4000 int err; 4001 4002 dpaa2_eth_dbg_init(); 4003 err = fsl_mc_driver_register(&dpaa2_eth_driver); 4004 if (err) { 4005 dpaa2_eth_dbg_exit(); 4006 return err; 4007 } 4008 4009 return 0; 4010 } 4011 4012 static void __exit dpaa2_eth_driver_exit(void) 4013 { 4014 dpaa2_eth_dbg_exit(); 4015 fsl_mc_driver_unregister(&dpaa2_eth_driver); 4016 } 4017 4018 module_init(dpaa2_eth_driver_init); 4019 module_exit(dpaa2_eth_driver_exit); 4020