1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2022 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/kthread.h> 12 #include <linux/iommu.h> 13 #include <linux/fsl/mc.h> 14 #include <linux/bpf.h> 15 #include <linux/bpf_trace.h> 16 #include <linux/fsl/ptp_qoriq.h> 17 #include <linux/ptp_classify.h> 18 #include <net/pkt_cls.h> 19 #include <net/sock.h> 20 #include <net/tso.h> 21 #include <net/xdp_sock_drv.h> 22 23 #include "dpaa2-eth.h" 24 25 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 26 * using trace events only need to #include <trace/events/sched.h> 27 */ 28 #define CREATE_TRACE_POINTS 29 #include "dpaa2-eth-trace.h" 30 31 MODULE_LICENSE("Dual BSD/GPL"); 32 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 33 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 34 35 struct ptp_qoriq *dpaa2_ptp; 36 EXPORT_SYMBOL(dpaa2_ptp); 37 38 static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv) 39 { 40 priv->features = 0; 41 42 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR, 43 DPNI_PTP_ONESTEP_VER_MINOR) >= 0) 44 priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT; 45 } 46 47 static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv, 48 u32 offset, u8 udp) 49 { 50 struct dpni_single_step_cfg cfg; 51 52 cfg.en = 1; 53 cfg.ch_update = udp; 54 cfg.offset = offset; 55 cfg.peer_delay = 0; 56 57 if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg)) 58 WARN_ONCE(1, "Failed to set single step register"); 59 } 60 61 static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv, 62 u32 offset, u8 udp) 63 { 64 u32 val = 0; 65 66 val = DPAA2_PTP_SINGLE_STEP_ENABLE | 67 DPAA2_PTP_SINGLE_CORRECTION_OFF(offset); 68 69 if (udp) 70 val |= DPAA2_PTP_SINGLE_STEP_CH; 71 72 if (priv->onestep_reg_base) 73 writel(val, priv->onestep_reg_base); 74 } 75 76 static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv) 77 { 78 struct device *dev = priv->net_dev->dev.parent; 79 struct dpni_single_step_cfg ptp_cfg; 80 81 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect; 82 83 if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT)) 84 return; 85 86 if (dpni_get_single_step_cfg(priv->mc_io, 0, 87 priv->mc_token, &ptp_cfg)) { 88 dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n"); 89 return; 90 } 91 92 if (!ptp_cfg.ptp_onestep_reg_base) { 93 dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n"); 94 return; 95 } 96 97 priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base, 98 sizeof(u32)); 99 if (!priv->onestep_reg_base) { 100 dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n"); 101 return; 102 } 103 104 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct; 105 } 106 107 void *dpaa2_iova_to_virt(struct iommu_domain *domain, 108 dma_addr_t iova_addr) 109 { 110 phys_addr_t phys_addr; 111 112 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 113 114 return phys_to_virt(phys_addr); 115 } 116 117 static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, 118 u32 fd_status, 119 struct sk_buff *skb) 120 { 121 skb_checksum_none_assert(skb); 122 123 /* HW checksum validation is disabled, nothing to do here */ 124 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 125 return; 126 127 /* Read checksum validation bits */ 128 if (!((fd_status & DPAA2_FAS_L3CV) && 129 (fd_status & DPAA2_FAS_L4CV))) 130 return; 131 132 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 133 skb->ip_summed = CHECKSUM_UNNECESSARY; 134 } 135 136 /* Free a received FD. 137 * Not to be used for Tx conf FDs or on any other paths. 138 */ 139 static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, 140 const struct dpaa2_fd *fd, 141 void *vaddr) 142 { 143 struct device *dev = priv->net_dev->dev.parent; 144 dma_addr_t addr = dpaa2_fd_get_addr(fd); 145 u8 fd_format = dpaa2_fd_get_format(fd); 146 struct dpaa2_sg_entry *sgt; 147 void *sg_vaddr; 148 int i; 149 150 /* If single buffer frame, just free the data buffer */ 151 if (fd_format == dpaa2_fd_single) 152 goto free_buf; 153 else if (fd_format != dpaa2_fd_sg) 154 /* We don't support any other format */ 155 return; 156 157 /* For S/G frames, we first need to free all SG entries 158 * except the first one, which was taken care of already 159 */ 160 sgt = vaddr + dpaa2_fd_get_offset(fd); 161 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 162 addr = dpaa2_sg_get_addr(&sgt[i]); 163 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 164 dma_unmap_page(dev, addr, priv->rx_buf_size, 165 DMA_BIDIRECTIONAL); 166 167 free_pages((unsigned long)sg_vaddr, 0); 168 if (dpaa2_sg_is_final(&sgt[i])) 169 break; 170 } 171 172 free_buf: 173 free_pages((unsigned long)vaddr, 0); 174 } 175 176 /* Build a linear skb based on a single-buffer frame descriptor */ 177 static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, 178 const struct dpaa2_fd *fd, 179 void *fd_vaddr) 180 { 181 struct sk_buff *skb = NULL; 182 u16 fd_offset = dpaa2_fd_get_offset(fd); 183 u32 fd_length = dpaa2_fd_get_len(fd); 184 185 ch->buf_count--; 186 187 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 188 if (unlikely(!skb)) 189 return NULL; 190 191 skb_reserve(skb, fd_offset); 192 skb_put(skb, fd_length); 193 194 return skb; 195 } 196 197 /* Build a non linear (fragmented) skb based on a S/G table */ 198 static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, 199 struct dpaa2_eth_channel *ch, 200 struct dpaa2_sg_entry *sgt) 201 { 202 struct sk_buff *skb = NULL; 203 struct device *dev = priv->net_dev->dev.parent; 204 void *sg_vaddr; 205 dma_addr_t sg_addr; 206 u16 sg_offset; 207 u32 sg_length; 208 struct page *page, *head_page; 209 int page_offset; 210 int i; 211 212 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 213 struct dpaa2_sg_entry *sge = &sgt[i]; 214 215 /* NOTE: We only support SG entries in dpaa2_sg_single format, 216 * but this is the only format we may receive from HW anyway 217 */ 218 219 /* Get the address and length from the S/G entry */ 220 sg_addr = dpaa2_sg_get_addr(sge); 221 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 222 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 223 DMA_BIDIRECTIONAL); 224 225 sg_length = dpaa2_sg_get_len(sge); 226 227 if (i == 0) { 228 /* We build the skb around the first data buffer */ 229 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 230 if (unlikely(!skb)) { 231 /* Free the first SG entry now, since we already 232 * unmapped it and obtained the virtual address 233 */ 234 free_pages((unsigned long)sg_vaddr, 0); 235 236 /* We still need to subtract the buffers used 237 * by this FD from our software counter 238 */ 239 while (!dpaa2_sg_is_final(&sgt[i]) && 240 i < DPAA2_ETH_MAX_SG_ENTRIES) 241 i++; 242 break; 243 } 244 245 sg_offset = dpaa2_sg_get_offset(sge); 246 skb_reserve(skb, sg_offset); 247 skb_put(skb, sg_length); 248 } else { 249 /* Rest of the data buffers are stored as skb frags */ 250 page = virt_to_page(sg_vaddr); 251 head_page = virt_to_head_page(sg_vaddr); 252 253 /* Offset in page (which may be compound). 254 * Data in subsequent SG entries is stored from the 255 * beginning of the buffer, so we don't need to add the 256 * sg_offset. 257 */ 258 page_offset = ((unsigned long)sg_vaddr & 259 (PAGE_SIZE - 1)) + 260 (page_address(page) - page_address(head_page)); 261 262 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 263 sg_length, priv->rx_buf_size); 264 } 265 266 if (dpaa2_sg_is_final(sge)) 267 break; 268 } 269 270 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 271 272 /* Count all data buffers + SG table buffer */ 273 ch->buf_count -= i + 2; 274 275 return skb; 276 } 277 278 /* Free buffers acquired from the buffer pool or which were meant to 279 * be released in the pool 280 */ 281 static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, 282 int count, bool xsk_zc) 283 { 284 struct device *dev = priv->net_dev->dev.parent; 285 struct dpaa2_eth_swa *swa; 286 struct xdp_buff *xdp_buff; 287 void *vaddr; 288 int i; 289 290 for (i = 0; i < count; i++) { 291 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 292 293 if (!xsk_zc) { 294 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 295 DMA_BIDIRECTIONAL); 296 free_pages((unsigned long)vaddr, 0); 297 } else { 298 swa = (struct dpaa2_eth_swa *) 299 (vaddr + DPAA2_ETH_RX_HWA_SIZE); 300 xdp_buff = swa->xsk.xdp_buff; 301 xsk_buff_free(xdp_buff); 302 } 303 } 304 } 305 306 void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv, 307 struct dpaa2_eth_channel *ch, 308 dma_addr_t addr) 309 { 310 int retries = 0; 311 int err; 312 313 ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr; 314 if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD) 315 return; 316 317 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 318 ch->recycled_bufs, 319 ch->recycled_bufs_cnt)) == -EBUSY) { 320 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 321 break; 322 cpu_relax(); 323 } 324 325 if (err) { 326 dpaa2_eth_free_bufs(priv, ch->recycled_bufs, 327 ch->recycled_bufs_cnt, ch->xsk_zc); 328 ch->buf_count -= ch->recycled_bufs_cnt; 329 } 330 331 ch->recycled_bufs_cnt = 0; 332 } 333 334 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 335 struct dpaa2_eth_fq *fq, 336 struct dpaa2_eth_xdp_fds *xdp_fds) 337 { 338 int total_enqueued = 0, retries = 0, enqueued; 339 struct dpaa2_eth_drv_stats *percpu_extras; 340 int num_fds, err, max_retries; 341 struct dpaa2_fd *fds; 342 343 percpu_extras = this_cpu_ptr(priv->percpu_extras); 344 345 /* try to enqueue all the FDs until the max number of retries is hit */ 346 fds = xdp_fds->fds; 347 num_fds = xdp_fds->num; 348 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 349 while (total_enqueued < num_fds && retries < max_retries) { 350 err = priv->enqueue(priv, fq, &fds[total_enqueued], 351 0, num_fds - total_enqueued, &enqueued); 352 if (err == -EBUSY) { 353 percpu_extras->tx_portal_busy += ++retries; 354 continue; 355 } 356 total_enqueued += enqueued; 357 } 358 xdp_fds->num = 0; 359 360 return total_enqueued; 361 } 362 363 static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, 364 struct dpaa2_eth_channel *ch, 365 struct dpaa2_eth_fq *fq) 366 { 367 struct rtnl_link_stats64 *percpu_stats; 368 struct dpaa2_fd *fds; 369 int enqueued, i; 370 371 percpu_stats = this_cpu_ptr(priv->percpu_stats); 372 373 // enqueue the array of XDP_TX frames 374 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 375 376 /* update statistics */ 377 percpu_stats->tx_packets += enqueued; 378 fds = fq->xdp_tx_fds.fds; 379 for (i = 0; i < enqueued; i++) { 380 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 381 ch->stats.xdp_tx++; 382 } 383 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 384 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 385 percpu_stats->tx_errors++; 386 ch->stats.xdp_tx_err++; 387 } 388 fq->xdp_tx_fds.num = 0; 389 } 390 391 void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, 392 struct dpaa2_eth_channel *ch, 393 struct dpaa2_fd *fd, 394 void *buf_start, u16 queue_id) 395 { 396 struct dpaa2_faead *faead; 397 struct dpaa2_fd *dest_fd; 398 struct dpaa2_eth_fq *fq; 399 u32 ctrl, frc; 400 401 /* Mark the egress frame hardware annotation area as valid */ 402 frc = dpaa2_fd_get_frc(fd); 403 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 404 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 405 406 /* Instruct hardware to release the FD buffer directly into 407 * the buffer pool once transmission is completed, instead of 408 * sending a Tx confirmation frame to us 409 */ 410 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 411 faead = dpaa2_get_faead(buf_start, false); 412 faead->ctrl = cpu_to_le32(ctrl); 413 faead->conf_fqid = 0; 414 415 fq = &priv->fq[queue_id]; 416 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 417 memcpy(dest_fd, fd, sizeof(*dest_fd)); 418 419 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 420 return; 421 422 dpaa2_eth_xdp_tx_flush(priv, ch, fq); 423 } 424 425 static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, 426 struct dpaa2_eth_channel *ch, 427 struct dpaa2_eth_fq *rx_fq, 428 struct dpaa2_fd *fd, void *vaddr) 429 { 430 dma_addr_t addr = dpaa2_fd_get_addr(fd); 431 struct bpf_prog *xdp_prog; 432 struct xdp_buff xdp; 433 u32 xdp_act = XDP_PASS; 434 int err, offset; 435 436 xdp_prog = READ_ONCE(ch->xdp.prog); 437 if (!xdp_prog) 438 goto out; 439 440 offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM; 441 xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq); 442 xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM, 443 dpaa2_fd_get_len(fd), false); 444 445 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 446 447 /* xdp.data pointer may have changed */ 448 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 449 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 450 451 switch (xdp_act) { 452 case XDP_PASS: 453 break; 454 case XDP_TX: 455 dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 456 break; 457 default: 458 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 459 fallthrough; 460 case XDP_ABORTED: 461 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 462 fallthrough; 463 case XDP_DROP: 464 dpaa2_eth_recycle_buf(priv, ch, addr); 465 ch->stats.xdp_drop++; 466 break; 467 case XDP_REDIRECT: 468 dma_unmap_page(priv->net_dev->dev.parent, addr, 469 priv->rx_buf_size, DMA_BIDIRECTIONAL); 470 ch->buf_count--; 471 472 /* Allow redirect use of full headroom */ 473 xdp.data_hard_start = vaddr; 474 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 475 476 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 477 if (unlikely(err)) { 478 addr = dma_map_page(priv->net_dev->dev.parent, 479 virt_to_page(vaddr), 0, 480 priv->rx_buf_size, DMA_BIDIRECTIONAL); 481 if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) { 482 free_pages((unsigned long)vaddr, 0); 483 } else { 484 ch->buf_count++; 485 dpaa2_eth_recycle_buf(priv, ch, addr); 486 } 487 ch->stats.xdp_drop++; 488 } else { 489 ch->stats.xdp_redirect++; 490 } 491 break; 492 } 493 494 ch->xdp.res |= xdp_act; 495 out: 496 return xdp_act; 497 } 498 499 struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv, 500 struct dpaa2_eth_channel *ch, 501 const struct dpaa2_fd *fd, u32 fd_length, 502 void *fd_vaddr) 503 { 504 u16 fd_offset = dpaa2_fd_get_offset(fd); 505 struct sk_buff *skb = NULL; 506 unsigned int skb_len; 507 508 skb_len = fd_length + dpaa2_eth_needed_headroom(NULL); 509 510 skb = napi_alloc_skb(&ch->napi, skb_len); 511 if (!skb) 512 return NULL; 513 514 skb_reserve(skb, dpaa2_eth_needed_headroom(NULL)); 515 skb_put(skb, fd_length); 516 517 memcpy(skb->data, fd_vaddr + fd_offset, fd_length); 518 519 return skb; 520 } 521 522 static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch, 523 const struct dpaa2_fd *fd, 524 void *fd_vaddr) 525 { 526 struct dpaa2_eth_priv *priv = ch->priv; 527 u32 fd_length = dpaa2_fd_get_len(fd); 528 529 if (fd_length > priv->rx_copybreak) 530 return NULL; 531 532 return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr); 533 } 534 535 void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv, 536 struct dpaa2_eth_channel *ch, 537 const struct dpaa2_fd *fd, void *vaddr, 538 struct dpaa2_eth_fq *fq, 539 struct rtnl_link_stats64 *percpu_stats, 540 struct sk_buff *skb) 541 { 542 struct dpaa2_fas *fas; 543 u32 status = 0; 544 545 fas = dpaa2_get_fas(vaddr, false); 546 prefetch(fas); 547 prefetch(skb->data); 548 549 /* Get the timestamp value */ 550 if (priv->rx_tstamp) { 551 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 552 __le64 *ts = dpaa2_get_ts(vaddr, false); 553 u64 ns; 554 555 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 556 557 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 558 shhwtstamps->hwtstamp = ns_to_ktime(ns); 559 } 560 561 /* Check if we need to validate the L4 csum */ 562 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 563 status = le32_to_cpu(fas->status); 564 dpaa2_eth_validate_rx_csum(priv, status, skb); 565 } 566 567 skb->protocol = eth_type_trans(skb, priv->net_dev); 568 skb_record_rx_queue(skb, fq->flowid); 569 570 percpu_stats->rx_packets++; 571 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 572 ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd); 573 574 list_add_tail(&skb->list, ch->rx_list); 575 } 576 577 /* Main Rx frame processing routine */ 578 void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 579 struct dpaa2_eth_channel *ch, 580 const struct dpaa2_fd *fd, 581 struct dpaa2_eth_fq *fq) 582 { 583 dma_addr_t addr = dpaa2_fd_get_addr(fd); 584 u8 fd_format = dpaa2_fd_get_format(fd); 585 void *vaddr; 586 struct sk_buff *skb; 587 struct rtnl_link_stats64 *percpu_stats; 588 struct dpaa2_eth_drv_stats *percpu_extras; 589 struct device *dev = priv->net_dev->dev.parent; 590 bool recycle_rx_buf = false; 591 void *buf_data; 592 u32 xdp_act; 593 594 /* Tracing point */ 595 trace_dpaa2_rx_fd(priv->net_dev, fd); 596 597 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 598 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 599 DMA_BIDIRECTIONAL); 600 601 buf_data = vaddr + dpaa2_fd_get_offset(fd); 602 prefetch(buf_data); 603 604 percpu_stats = this_cpu_ptr(priv->percpu_stats); 605 percpu_extras = this_cpu_ptr(priv->percpu_extras); 606 607 if (fd_format == dpaa2_fd_single) { 608 xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 609 if (xdp_act != XDP_PASS) { 610 percpu_stats->rx_packets++; 611 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 612 return; 613 } 614 615 skb = dpaa2_eth_copybreak(ch, fd, vaddr); 616 if (!skb) { 617 dma_unmap_page(dev, addr, priv->rx_buf_size, 618 DMA_BIDIRECTIONAL); 619 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 620 } else { 621 recycle_rx_buf = true; 622 } 623 } else if (fd_format == dpaa2_fd_sg) { 624 WARN_ON(priv->xdp_prog); 625 626 dma_unmap_page(dev, addr, priv->rx_buf_size, 627 DMA_BIDIRECTIONAL); 628 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 629 free_pages((unsigned long)vaddr, 0); 630 percpu_extras->rx_sg_frames++; 631 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 632 } else { 633 /* We don't support any other format */ 634 goto err_frame_format; 635 } 636 637 if (unlikely(!skb)) 638 goto err_build_skb; 639 640 dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb); 641 642 if (recycle_rx_buf) 643 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd)); 644 return; 645 646 err_build_skb: 647 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 648 err_frame_format: 649 percpu_stats->rx_dropped++; 650 } 651 652 /* Processing of Rx frames received on the error FQ 653 * We check and print the error bits and then free the frame 654 */ 655 static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv, 656 struct dpaa2_eth_channel *ch, 657 const struct dpaa2_fd *fd, 658 struct dpaa2_eth_fq *fq __always_unused) 659 { 660 struct device *dev = priv->net_dev->dev.parent; 661 dma_addr_t addr = dpaa2_fd_get_addr(fd); 662 u8 fd_format = dpaa2_fd_get_format(fd); 663 struct rtnl_link_stats64 *percpu_stats; 664 struct dpaa2_eth_trap_item *trap_item; 665 struct dpaa2_fapr *fapr; 666 struct sk_buff *skb; 667 void *buf_data; 668 void *vaddr; 669 670 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 671 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 672 DMA_BIDIRECTIONAL); 673 674 buf_data = vaddr + dpaa2_fd_get_offset(fd); 675 676 if (fd_format == dpaa2_fd_single) { 677 dma_unmap_page(dev, addr, priv->rx_buf_size, 678 DMA_BIDIRECTIONAL); 679 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 680 } else if (fd_format == dpaa2_fd_sg) { 681 dma_unmap_page(dev, addr, priv->rx_buf_size, 682 DMA_BIDIRECTIONAL); 683 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 684 free_pages((unsigned long)vaddr, 0); 685 } else { 686 /* We don't support any other format */ 687 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 688 goto err_frame_format; 689 } 690 691 fapr = dpaa2_get_fapr(vaddr, false); 692 trap_item = dpaa2_eth_dl_get_trap(priv, fapr); 693 if (trap_item) 694 devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx, 695 &priv->devlink_port, NULL); 696 consume_skb(skb); 697 698 err_frame_format: 699 percpu_stats = this_cpu_ptr(priv->percpu_stats); 700 percpu_stats->rx_errors++; 701 ch->buf_count--; 702 } 703 704 /* Consume all frames pull-dequeued into the store. This is the simplest way to 705 * make sure we don't accidentally issue another volatile dequeue which would 706 * overwrite (leak) frames already in the store. 707 * 708 * Observance of NAPI budget is not our concern, leaving that to the caller. 709 */ 710 static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, 711 struct dpaa2_eth_fq **src) 712 { 713 struct dpaa2_eth_priv *priv = ch->priv; 714 struct dpaa2_eth_fq *fq = NULL; 715 struct dpaa2_dq *dq; 716 const struct dpaa2_fd *fd; 717 int cleaned = 0, retries = 0; 718 int is_last; 719 720 do { 721 dq = dpaa2_io_store_next(ch->store, &is_last); 722 if (unlikely(!dq)) { 723 /* If we're here, we *must* have placed a 724 * volatile dequeue comnmand, so keep reading through 725 * the store until we get some sort of valid response 726 * token (either a valid frame or an "empty dequeue") 727 */ 728 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 729 netdev_err_once(priv->net_dev, 730 "Unable to read a valid dequeue response\n"); 731 return -ETIMEDOUT; 732 } 733 continue; 734 } 735 736 fd = dpaa2_dq_fd(dq); 737 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 738 739 fq->consume(priv, ch, fd, fq); 740 cleaned++; 741 retries = 0; 742 } while (!is_last); 743 744 if (!cleaned) 745 return 0; 746 747 fq->stats.frames += cleaned; 748 ch->stats.frames += cleaned; 749 ch->stats.frames_per_cdan += cleaned; 750 751 /* A dequeue operation only pulls frames from a single queue 752 * into the store. Return the frame queue as an out param. 753 */ 754 if (src) 755 *src = fq; 756 757 return cleaned; 758 } 759 760 static int dpaa2_eth_ptp_parse(struct sk_buff *skb, 761 u8 *msgtype, u8 *twostep, u8 *udp, 762 u16 *correction_offset, 763 u16 *origintimestamp_offset) 764 { 765 unsigned int ptp_class; 766 struct ptp_header *hdr; 767 unsigned int type; 768 u8 *base; 769 770 ptp_class = ptp_classify_raw(skb); 771 if (ptp_class == PTP_CLASS_NONE) 772 return -EINVAL; 773 774 hdr = ptp_parse_header(skb, ptp_class); 775 if (!hdr) 776 return -EINVAL; 777 778 *msgtype = ptp_get_msgtype(hdr, ptp_class); 779 *twostep = hdr->flag_field[0] & 0x2; 780 781 type = ptp_class & PTP_CLASS_PMASK; 782 if (type == PTP_CLASS_IPV4 || 783 type == PTP_CLASS_IPV6) 784 *udp = 1; 785 else 786 *udp = 0; 787 788 base = skb_mac_header(skb); 789 *correction_offset = (u8 *)&hdr->correction - base; 790 *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 791 792 return 0; 793 } 794 795 /* Configure the egress frame annotation for timestamp update */ 796 static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, 797 struct dpaa2_fd *fd, 798 void *buf_start, 799 struct sk_buff *skb) 800 { 801 struct ptp_tstamp origin_timestamp; 802 u8 msgtype, twostep, udp; 803 struct dpaa2_faead *faead; 804 struct dpaa2_fas *fas; 805 struct timespec64 ts; 806 u16 offset1, offset2; 807 u32 ctrl, frc; 808 __le64 *ns; 809 u8 *data; 810 811 /* Mark the egress frame annotation area as valid */ 812 frc = dpaa2_fd_get_frc(fd); 813 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 814 815 /* Set hardware annotation size */ 816 ctrl = dpaa2_fd_get_ctrl(fd); 817 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 818 819 /* enable UPD (update prepanded data) bit in FAEAD field of 820 * hardware frame annotation area 821 */ 822 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 823 faead = dpaa2_get_faead(buf_start, true); 824 faead->ctrl = cpu_to_le32(ctrl); 825 826 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 827 if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 828 &offset1, &offset2) || 829 msgtype != PTP_MSGTYPE_SYNC || twostep) { 830 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 831 return; 832 } 833 834 /* Mark the frame annotation status as valid */ 835 frc = dpaa2_fd_get_frc(fd); 836 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); 837 838 /* Mark the PTP flag for one step timestamping */ 839 fas = dpaa2_get_fas(buf_start, true); 840 fas->status = cpu_to_le32(DPAA2_FAS_PTP); 841 842 dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); 843 ns = dpaa2_get_ts(buf_start, true); 844 *ns = cpu_to_le64(timespec64_to_ns(&ts) / 845 DPAA2_PTP_CLK_PERIOD_NS); 846 847 /* Update current time to PTP message originTimestamp field */ 848 ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); 849 data = skb_mac_header(skb); 850 *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); 851 *(__be32 *)(data + offset2 + 2) = 852 htonl(origin_timestamp.sec_lsb); 853 *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); 854 855 if (priv->ptp_correction_off == offset1) 856 return; 857 858 priv->dpaa2_set_onestep_params_cb(priv, offset1, udp); 859 priv->ptp_correction_off = offset1; 860 861 } 862 } 863 864 void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv) 865 { 866 struct dpaa2_eth_sgt_cache *sgt_cache; 867 void *sgt_buf = NULL; 868 int sgt_buf_size; 869 870 sgt_cache = this_cpu_ptr(priv->sgt_cache); 871 sgt_buf_size = priv->tx_data_offset + 872 DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry); 873 874 if (sgt_cache->count == 0) 875 sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN); 876 else 877 sgt_buf = sgt_cache->buf[--sgt_cache->count]; 878 if (!sgt_buf) 879 return NULL; 880 881 memset(sgt_buf, 0, sgt_buf_size); 882 883 return sgt_buf; 884 } 885 886 void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf) 887 { 888 struct dpaa2_eth_sgt_cache *sgt_cache; 889 890 sgt_cache = this_cpu_ptr(priv->sgt_cache); 891 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 892 skb_free_frag(sgt_buf); 893 else 894 sgt_cache->buf[sgt_cache->count++] = sgt_buf; 895 } 896 897 /* Create a frame descriptor based on a fragmented skb */ 898 static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, 899 struct sk_buff *skb, 900 struct dpaa2_fd *fd, 901 void **swa_addr) 902 { 903 struct device *dev = priv->net_dev->dev.parent; 904 void *sgt_buf = NULL; 905 dma_addr_t addr; 906 int nr_frags = skb_shinfo(skb)->nr_frags; 907 struct dpaa2_sg_entry *sgt; 908 int i, err; 909 int sgt_buf_size; 910 struct scatterlist *scl, *crt_scl; 911 int num_sg; 912 int num_dma_bufs; 913 struct dpaa2_eth_swa *swa; 914 915 /* Create and map scatterlist. 916 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 917 * to go beyond nr_frags+1. 918 * Note: We don't support chained scatterlists 919 */ 920 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 921 return -EINVAL; 922 923 scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 924 if (unlikely(!scl)) 925 return -ENOMEM; 926 927 sg_init_table(scl, nr_frags + 1); 928 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 929 if (unlikely(num_sg < 0)) { 930 err = -ENOMEM; 931 goto dma_map_sg_failed; 932 } 933 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 934 if (unlikely(!num_dma_bufs)) { 935 err = -ENOMEM; 936 goto dma_map_sg_failed; 937 } 938 939 /* Prepare the HW SGT structure */ 940 sgt_buf_size = priv->tx_data_offset + 941 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 942 sgt_buf = dpaa2_eth_sgt_get(priv); 943 if (unlikely(!sgt_buf)) { 944 err = -ENOMEM; 945 goto sgt_buf_alloc_failed; 946 } 947 948 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 949 950 /* Fill in the HW SGT structure. 951 * 952 * sgt_buf is zeroed out, so the following fields are implicit 953 * in all sgt entries: 954 * - offset is 0 955 * - format is 'dpaa2_sg_single' 956 */ 957 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 958 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 959 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 960 } 961 dpaa2_sg_set_final(&sgt[i - 1], true); 962 963 /* Store the skb backpointer in the SGT buffer. 964 * Fit the scatterlist and the number of buffers alongside the 965 * skb backpointer in the software annotation area. We'll need 966 * all of them on Tx Conf. 967 */ 968 *swa_addr = (void *)sgt_buf; 969 swa = (struct dpaa2_eth_swa *)sgt_buf; 970 swa->type = DPAA2_ETH_SWA_SG; 971 swa->sg.skb = skb; 972 swa->sg.scl = scl; 973 swa->sg.num_sg = num_sg; 974 swa->sg.sgt_size = sgt_buf_size; 975 976 /* Separately map the SGT buffer */ 977 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 978 if (unlikely(dma_mapping_error(dev, addr))) { 979 err = -ENOMEM; 980 goto dma_map_single_failed; 981 } 982 memset(fd, 0, sizeof(struct dpaa2_fd)); 983 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 984 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 985 dpaa2_fd_set_addr(fd, addr); 986 dpaa2_fd_set_len(fd, skb->len); 987 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 988 989 return 0; 990 991 dma_map_single_failed: 992 dpaa2_eth_sgt_recycle(priv, sgt_buf); 993 sgt_buf_alloc_failed: 994 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 995 dma_map_sg_failed: 996 kfree(scl); 997 return err; 998 } 999 1000 /* Create a SG frame descriptor based on a linear skb. 1001 * 1002 * This function is used on the Tx path when the skb headroom is not large 1003 * enough for the HW requirements, thus instead of realloc-ing the skb we 1004 * create a SG frame descriptor with only one entry. 1005 */ 1006 static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, 1007 struct sk_buff *skb, 1008 struct dpaa2_fd *fd, 1009 void **swa_addr) 1010 { 1011 struct device *dev = priv->net_dev->dev.parent; 1012 struct dpaa2_sg_entry *sgt; 1013 struct dpaa2_eth_swa *swa; 1014 dma_addr_t addr, sgt_addr; 1015 void *sgt_buf = NULL; 1016 int sgt_buf_size; 1017 int err; 1018 1019 /* Prepare the HW SGT structure */ 1020 sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); 1021 sgt_buf = dpaa2_eth_sgt_get(priv); 1022 if (unlikely(!sgt_buf)) 1023 return -ENOMEM; 1024 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1025 1026 addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); 1027 if (unlikely(dma_mapping_error(dev, addr))) { 1028 err = -ENOMEM; 1029 goto data_map_failed; 1030 } 1031 1032 /* Fill in the HW SGT structure */ 1033 dpaa2_sg_set_addr(sgt, addr); 1034 dpaa2_sg_set_len(sgt, skb->len); 1035 dpaa2_sg_set_final(sgt, true); 1036 1037 /* Store the skb backpointer in the SGT buffer */ 1038 *swa_addr = (void *)sgt_buf; 1039 swa = (struct dpaa2_eth_swa *)sgt_buf; 1040 swa->type = DPAA2_ETH_SWA_SINGLE; 1041 swa->single.skb = skb; 1042 swa->single.sgt_size = sgt_buf_size; 1043 1044 /* Separately map the SGT buffer */ 1045 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1046 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1047 err = -ENOMEM; 1048 goto sgt_map_failed; 1049 } 1050 1051 memset(fd, 0, sizeof(struct dpaa2_fd)); 1052 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1053 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1054 dpaa2_fd_set_addr(fd, sgt_addr); 1055 dpaa2_fd_set_len(fd, skb->len); 1056 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1057 1058 return 0; 1059 1060 sgt_map_failed: 1061 dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); 1062 data_map_failed: 1063 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1064 1065 return err; 1066 } 1067 1068 /* Create a frame descriptor based on a linear skb */ 1069 static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, 1070 struct sk_buff *skb, 1071 struct dpaa2_fd *fd, 1072 void **swa_addr) 1073 { 1074 struct device *dev = priv->net_dev->dev.parent; 1075 u8 *buffer_start, *aligned_start; 1076 struct dpaa2_eth_swa *swa; 1077 dma_addr_t addr; 1078 1079 buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); 1080 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1081 DPAA2_ETH_TX_BUF_ALIGN); 1082 if (aligned_start >= skb->head) 1083 buffer_start = aligned_start; 1084 else 1085 return -ENOMEM; 1086 1087 /* Store a backpointer to the skb at the beginning of the buffer 1088 * (in the private data area) such that we can release it 1089 * on Tx confirm 1090 */ 1091 *swa_addr = (void *)buffer_start; 1092 swa = (struct dpaa2_eth_swa *)buffer_start; 1093 swa->type = DPAA2_ETH_SWA_SINGLE; 1094 swa->single.skb = skb; 1095 1096 addr = dma_map_single(dev, buffer_start, 1097 skb_tail_pointer(skb) - buffer_start, 1098 DMA_BIDIRECTIONAL); 1099 if (unlikely(dma_mapping_error(dev, addr))) 1100 return -ENOMEM; 1101 1102 memset(fd, 0, sizeof(struct dpaa2_fd)); 1103 dpaa2_fd_set_addr(fd, addr); 1104 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 1105 dpaa2_fd_set_len(fd, skb->len); 1106 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1107 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1108 1109 return 0; 1110 } 1111 1112 /* FD freeing routine on the Tx path 1113 * 1114 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 1115 * back-pointed to is also freed. 1116 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 1117 * dpaa2_eth_tx(). 1118 */ 1119 void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, 1120 struct dpaa2_eth_channel *ch, 1121 struct dpaa2_eth_fq *fq, 1122 const struct dpaa2_fd *fd, bool in_napi) 1123 { 1124 struct device *dev = priv->net_dev->dev.parent; 1125 dma_addr_t fd_addr, sg_addr; 1126 struct sk_buff *skb = NULL; 1127 unsigned char *buffer_start; 1128 struct dpaa2_eth_swa *swa; 1129 u8 fd_format = dpaa2_fd_get_format(fd); 1130 u32 fd_len = dpaa2_fd_get_len(fd); 1131 struct dpaa2_sg_entry *sgt; 1132 int should_free_skb = 1; 1133 void *tso_hdr; 1134 int i; 1135 1136 fd_addr = dpaa2_fd_get_addr(fd); 1137 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 1138 swa = (struct dpaa2_eth_swa *)buffer_start; 1139 1140 if (fd_format == dpaa2_fd_single) { 1141 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 1142 skb = swa->single.skb; 1143 /* Accessing the skb buffer is safe before dma unmap, 1144 * because we didn't map the actual skb shell. 1145 */ 1146 dma_unmap_single(dev, fd_addr, 1147 skb_tail_pointer(skb) - buffer_start, 1148 DMA_BIDIRECTIONAL); 1149 } else { 1150 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 1151 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 1152 DMA_BIDIRECTIONAL); 1153 } 1154 } else if (fd_format == dpaa2_fd_sg) { 1155 if (swa->type == DPAA2_ETH_SWA_SG) { 1156 skb = swa->sg.skb; 1157 1158 /* Unmap the scatterlist */ 1159 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 1160 DMA_BIDIRECTIONAL); 1161 kfree(swa->sg.scl); 1162 1163 /* Unmap the SGT buffer */ 1164 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 1165 DMA_BIDIRECTIONAL); 1166 } else if (swa->type == DPAA2_ETH_SWA_SW_TSO) { 1167 skb = swa->tso.skb; 1168 1169 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1170 priv->tx_data_offset); 1171 1172 /* Unmap the SGT buffer */ 1173 dma_unmap_single(dev, fd_addr, swa->tso.sgt_size, 1174 DMA_BIDIRECTIONAL); 1175 1176 /* Unmap and free the header */ 1177 tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt)); 1178 dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE, 1179 DMA_TO_DEVICE); 1180 kfree(tso_hdr); 1181 1182 /* Unmap the other SG entries for the data */ 1183 for (i = 1; i < swa->tso.num_sg; i++) 1184 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1185 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1186 1187 if (!swa->tso.is_last_fd) 1188 should_free_skb = 0; 1189 } else if (swa->type == DPAA2_ETH_SWA_XSK) { 1190 /* Unmap the SGT Buffer */ 1191 dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size, 1192 DMA_BIDIRECTIONAL); 1193 } else { 1194 skb = swa->single.skb; 1195 1196 /* Unmap the SGT Buffer */ 1197 dma_unmap_single(dev, fd_addr, swa->single.sgt_size, 1198 DMA_BIDIRECTIONAL); 1199 1200 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1201 priv->tx_data_offset); 1202 sg_addr = dpaa2_sg_get_addr(sgt); 1203 dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); 1204 } 1205 } else { 1206 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 1207 return; 1208 } 1209 1210 if (swa->type == DPAA2_ETH_SWA_XSK) { 1211 ch->xsk_tx_pkts_sent++; 1212 dpaa2_eth_sgt_recycle(priv, buffer_start); 1213 return; 1214 } 1215 1216 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 1217 fq->dq_frames++; 1218 fq->dq_bytes += fd_len; 1219 } 1220 1221 if (swa->type == DPAA2_ETH_SWA_XDP) { 1222 xdp_return_frame(swa->xdp.xdpf); 1223 return; 1224 } 1225 1226 /* Get the timestamp value */ 1227 if (swa->type != DPAA2_ETH_SWA_SW_TSO) { 1228 if (skb->cb[0] == TX_TSTAMP) { 1229 struct skb_shared_hwtstamps shhwtstamps; 1230 __le64 *ts = dpaa2_get_ts(buffer_start, true); 1231 u64 ns; 1232 1233 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1234 1235 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 1236 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1237 skb_tstamp_tx(skb, &shhwtstamps); 1238 } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1239 mutex_unlock(&priv->onestep_tstamp_lock); 1240 } 1241 } 1242 1243 /* Free SGT buffer allocated on tx */ 1244 if (fd_format != dpaa2_fd_single) 1245 dpaa2_eth_sgt_recycle(priv, buffer_start); 1246 1247 /* Move on with skb release. If we are just confirming multiple FDs 1248 * from the same TSO skb then only the last one will need to free the 1249 * skb. 1250 */ 1251 if (should_free_skb) 1252 napi_consume_skb(skb, in_napi); 1253 } 1254 1255 static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv, 1256 struct sk_buff *skb, struct dpaa2_fd *fd, 1257 int *num_fds, u32 *total_fds_len) 1258 { 1259 struct device *dev = priv->net_dev->dev.parent; 1260 int hdr_len, total_len, data_left, fd_len; 1261 int num_sge, err, i, sgt_buf_size; 1262 struct dpaa2_fd *fd_start = fd; 1263 struct dpaa2_sg_entry *sgt; 1264 struct dpaa2_eth_swa *swa; 1265 dma_addr_t sgt_addr, addr; 1266 dma_addr_t tso_hdr_dma; 1267 unsigned int index = 0; 1268 struct tso_t tso; 1269 char *tso_hdr; 1270 void *sgt_buf; 1271 1272 /* Initialize the TSO handler, and prepare the first payload */ 1273 hdr_len = tso_start(skb, &tso); 1274 *total_fds_len = 0; 1275 1276 total_len = skb->len - hdr_len; 1277 while (total_len > 0) { 1278 /* Prepare the HW SGT structure for this frame */ 1279 sgt_buf = dpaa2_eth_sgt_get(priv); 1280 if (unlikely(!sgt_buf)) { 1281 netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n"); 1282 err = -ENOMEM; 1283 goto err_sgt_get; 1284 } 1285 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1286 1287 /* Determine the data length of this frame */ 1288 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1289 total_len -= data_left; 1290 fd_len = data_left + hdr_len; 1291 1292 /* Prepare packet headers: MAC + IP + TCP */ 1293 tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC); 1294 if (!tso_hdr) { 1295 err = -ENOMEM; 1296 goto err_alloc_tso_hdr; 1297 } 1298 1299 tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0); 1300 tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1301 if (dma_mapping_error(dev, tso_hdr_dma)) { 1302 netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n"); 1303 err = -ENOMEM; 1304 goto err_map_tso_hdr; 1305 } 1306 1307 /* Setup the SG entry for the header */ 1308 dpaa2_sg_set_addr(sgt, tso_hdr_dma); 1309 dpaa2_sg_set_len(sgt, hdr_len); 1310 dpaa2_sg_set_final(sgt, data_left <= 0); 1311 1312 /* Compose the SG entries for each fragment of data */ 1313 num_sge = 1; 1314 while (data_left > 0) { 1315 int size; 1316 1317 /* Move to the next SG entry */ 1318 sgt++; 1319 size = min_t(int, tso.size, data_left); 1320 1321 addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE); 1322 if (dma_mapping_error(dev, addr)) { 1323 netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n"); 1324 err = -ENOMEM; 1325 goto err_map_data; 1326 } 1327 dpaa2_sg_set_addr(sgt, addr); 1328 dpaa2_sg_set_len(sgt, size); 1329 dpaa2_sg_set_final(sgt, size == data_left); 1330 1331 num_sge++; 1332 1333 /* Build the data for the __next__ fragment */ 1334 data_left -= size; 1335 tso_build_data(skb, &tso, size); 1336 } 1337 1338 /* Store the skb backpointer in the SGT buffer */ 1339 sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry); 1340 swa = (struct dpaa2_eth_swa *)sgt_buf; 1341 swa->type = DPAA2_ETH_SWA_SW_TSO; 1342 swa->tso.skb = skb; 1343 swa->tso.num_sg = num_sge; 1344 swa->tso.sgt_size = sgt_buf_size; 1345 swa->tso.is_last_fd = total_len == 0 ? 1 : 0; 1346 1347 /* Separately map the SGT buffer */ 1348 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1349 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1350 netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n"); 1351 err = -ENOMEM; 1352 goto err_map_sgt; 1353 } 1354 1355 /* Setup the frame descriptor */ 1356 memset(fd, 0, sizeof(struct dpaa2_fd)); 1357 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1358 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1359 dpaa2_fd_set_addr(fd, sgt_addr); 1360 dpaa2_fd_set_len(fd, fd_len); 1361 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1362 1363 *total_fds_len += fd_len; 1364 /* Advance to the next frame descriptor */ 1365 fd++; 1366 index++; 1367 } 1368 1369 *num_fds = index; 1370 1371 return 0; 1372 1373 err_map_sgt: 1374 err_map_data: 1375 /* Unmap all the data S/G entries for the current FD */ 1376 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1377 for (i = 1; i < num_sge; i++) 1378 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1379 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1380 1381 /* Unmap the header entry */ 1382 dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1383 err_map_tso_hdr: 1384 kfree(tso_hdr); 1385 err_alloc_tso_hdr: 1386 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1387 err_sgt_get: 1388 /* Free all the other FDs that were already fully created */ 1389 for (i = 0; i < index; i++) 1390 dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false); 1391 1392 return err; 1393 } 1394 1395 static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, 1396 struct net_device *net_dev) 1397 { 1398 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1399 int total_enqueued = 0, retries = 0, enqueued; 1400 struct dpaa2_eth_drv_stats *percpu_extras; 1401 struct rtnl_link_stats64 *percpu_stats; 1402 unsigned int needed_headroom; 1403 int num_fds = 1, max_retries; 1404 struct dpaa2_eth_fq *fq; 1405 struct netdev_queue *nq; 1406 struct dpaa2_fd *fd; 1407 u16 queue_mapping; 1408 void *swa = NULL; 1409 u8 prio = 0; 1410 int err, i; 1411 u32 fd_len; 1412 1413 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1414 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1415 fd = (this_cpu_ptr(priv->fd))->array; 1416 1417 needed_headroom = dpaa2_eth_needed_headroom(skb); 1418 1419 /* We'll be holding a back-reference to the skb until Tx Confirmation; 1420 * we don't want that overwritten by a concurrent Tx with a cloned skb. 1421 */ 1422 skb = skb_unshare(skb, GFP_ATOMIC); 1423 if (unlikely(!skb)) { 1424 /* skb_unshare() has already freed the skb */ 1425 percpu_stats->tx_dropped++; 1426 return NETDEV_TX_OK; 1427 } 1428 1429 /* Setup the FD fields */ 1430 1431 if (skb_is_gso(skb)) { 1432 err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len); 1433 percpu_extras->tx_sg_frames += num_fds; 1434 percpu_extras->tx_sg_bytes += fd_len; 1435 percpu_extras->tx_tso_frames += num_fds; 1436 percpu_extras->tx_tso_bytes += fd_len; 1437 } else if (skb_is_nonlinear(skb)) { 1438 err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa); 1439 percpu_extras->tx_sg_frames++; 1440 percpu_extras->tx_sg_bytes += skb->len; 1441 fd_len = dpaa2_fd_get_len(fd); 1442 } else if (skb_headroom(skb) < needed_headroom) { 1443 err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa); 1444 percpu_extras->tx_sg_frames++; 1445 percpu_extras->tx_sg_bytes += skb->len; 1446 percpu_extras->tx_converted_sg_frames++; 1447 percpu_extras->tx_converted_sg_bytes += skb->len; 1448 fd_len = dpaa2_fd_get_len(fd); 1449 } else { 1450 err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa); 1451 fd_len = dpaa2_fd_get_len(fd); 1452 } 1453 1454 if (unlikely(err)) { 1455 percpu_stats->tx_dropped++; 1456 goto err_build_fd; 1457 } 1458 1459 if (swa && skb->cb[0]) 1460 dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb); 1461 1462 /* Tracing point */ 1463 for (i = 0; i < num_fds; i++) 1464 trace_dpaa2_tx_fd(net_dev, &fd[i]); 1465 1466 /* TxConf FQ selection relies on queue id from the stack. 1467 * In case of a forwarded frame from another DPNI interface, we choose 1468 * a queue affined to the same core that processed the Rx frame 1469 */ 1470 queue_mapping = skb_get_queue_mapping(skb); 1471 1472 if (net_dev->num_tc) { 1473 prio = netdev_txq_to_tc(net_dev, queue_mapping); 1474 /* Hardware interprets priority level 0 as being the highest, 1475 * so we need to do a reverse mapping to the netdev tc index 1476 */ 1477 prio = net_dev->num_tc - prio - 1; 1478 /* We have only one FQ array entry for all Tx hardware queues 1479 * with the same flow id (but different priority levels) 1480 */ 1481 queue_mapping %= dpaa2_eth_queue_count(priv); 1482 } 1483 fq = &priv->fq[queue_mapping]; 1484 nq = netdev_get_tx_queue(net_dev, queue_mapping); 1485 netdev_tx_sent_queue(nq, fd_len); 1486 1487 /* Everything that happens after this enqueues might race with 1488 * the Tx confirmation callback for this frame 1489 */ 1490 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 1491 while (total_enqueued < num_fds && retries < max_retries) { 1492 err = priv->enqueue(priv, fq, &fd[total_enqueued], 1493 prio, num_fds - total_enqueued, &enqueued); 1494 if (err == -EBUSY) { 1495 retries++; 1496 continue; 1497 } 1498 1499 total_enqueued += enqueued; 1500 } 1501 percpu_extras->tx_portal_busy += retries; 1502 1503 if (unlikely(err < 0)) { 1504 percpu_stats->tx_errors++; 1505 /* Clean up everything, including freeing the skb */ 1506 dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false); 1507 netdev_tx_completed_queue(nq, 1, fd_len); 1508 } else { 1509 percpu_stats->tx_packets += total_enqueued; 1510 percpu_stats->tx_bytes += fd_len; 1511 } 1512 1513 return NETDEV_TX_OK; 1514 1515 err_build_fd: 1516 dev_kfree_skb(skb); 1517 1518 return NETDEV_TX_OK; 1519 } 1520 1521 static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) 1522 { 1523 struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, 1524 tx_onestep_tstamp); 1525 struct sk_buff *skb; 1526 1527 while (true) { 1528 skb = skb_dequeue(&priv->tx_skbs); 1529 if (!skb) 1530 return; 1531 1532 /* Lock just before TX one-step timestamping packet, 1533 * and release the lock in dpaa2_eth_free_tx_fd when 1534 * confirm the packet has been sent on hardware, or 1535 * when clean up during transmit failure. 1536 */ 1537 mutex_lock(&priv->onestep_tstamp_lock); 1538 __dpaa2_eth_tx(skb, priv->net_dev); 1539 } 1540 } 1541 1542 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 1543 { 1544 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1545 u8 msgtype, twostep, udp; 1546 u16 offset1, offset2; 1547 1548 /* Utilize skb->cb[0] for timestamping request per skb */ 1549 skb->cb[0] = 0; 1550 1551 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { 1552 if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) 1553 skb->cb[0] = TX_TSTAMP; 1554 else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 1555 skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; 1556 } 1557 1558 /* TX for one-step timestamping PTP Sync packet */ 1559 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1560 if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 1561 &offset1, &offset2)) 1562 if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) { 1563 skb_queue_tail(&priv->tx_skbs, skb); 1564 queue_work(priv->dpaa2_ptp_wq, 1565 &priv->tx_onestep_tstamp); 1566 return NETDEV_TX_OK; 1567 } 1568 /* Use two-step timestamping if not one-step timestamping 1569 * PTP Sync packet 1570 */ 1571 skb->cb[0] = TX_TSTAMP; 1572 } 1573 1574 /* TX for other packets */ 1575 return __dpaa2_eth_tx(skb, net_dev); 1576 } 1577 1578 /* Tx confirmation frame processing routine */ 1579 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 1580 struct dpaa2_eth_channel *ch, 1581 const struct dpaa2_fd *fd, 1582 struct dpaa2_eth_fq *fq) 1583 { 1584 struct rtnl_link_stats64 *percpu_stats; 1585 struct dpaa2_eth_drv_stats *percpu_extras; 1586 u32 fd_len = dpaa2_fd_get_len(fd); 1587 u32 fd_errors; 1588 1589 /* Tracing point */ 1590 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 1591 1592 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1593 percpu_extras->tx_conf_frames++; 1594 percpu_extras->tx_conf_bytes += fd_len; 1595 ch->stats.bytes_per_cdan += fd_len; 1596 1597 /* Check frame errors in the FD field */ 1598 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 1599 dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true); 1600 1601 if (likely(!fd_errors)) 1602 return; 1603 1604 if (net_ratelimit()) 1605 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 1606 fd_errors); 1607 1608 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1609 /* Tx-conf logically pertains to the egress path. */ 1610 percpu_stats->tx_errors++; 1611 } 1612 1613 static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv, 1614 bool enable) 1615 { 1616 int err; 1617 1618 err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable); 1619 1620 if (err) { 1621 netdev_err(priv->net_dev, 1622 "dpni_enable_vlan_filter failed\n"); 1623 return err; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 1630 { 1631 int err; 1632 1633 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1634 DPNI_OFF_RX_L3_CSUM, enable); 1635 if (err) { 1636 netdev_err(priv->net_dev, 1637 "dpni_set_offload(RX_L3_CSUM) failed\n"); 1638 return err; 1639 } 1640 1641 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1642 DPNI_OFF_RX_L4_CSUM, enable); 1643 if (err) { 1644 netdev_err(priv->net_dev, 1645 "dpni_set_offload(RX_L4_CSUM) failed\n"); 1646 return err; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 1653 { 1654 int err; 1655 1656 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1657 DPNI_OFF_TX_L3_CSUM, enable); 1658 if (err) { 1659 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 1660 return err; 1661 } 1662 1663 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1664 DPNI_OFF_TX_L4_CSUM, enable); 1665 if (err) { 1666 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1667 return err; 1668 } 1669 1670 return 0; 1671 } 1672 1673 /* Perform a single release command to add buffers 1674 * to the specified buffer pool 1675 */ 1676 static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, 1677 struct dpaa2_eth_channel *ch) 1678 { 1679 struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD]; 1680 struct device *dev = priv->net_dev->dev.parent; 1681 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1682 struct dpaa2_eth_swa *swa; 1683 struct page *page; 1684 dma_addr_t addr; 1685 int retries = 0; 1686 int i = 0, err; 1687 u32 batch; 1688 1689 /* Allocate buffers visible to WRIOP */ 1690 if (!ch->xsk_zc) { 1691 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1692 /* Also allocate skb shared info and alignment padding. 1693 * There is one page for each Rx buffer. WRIOP sees 1694 * the entire page except for a tailroom reserved for 1695 * skb shared info 1696 */ 1697 page = dev_alloc_pages(0); 1698 if (!page) 1699 goto err_alloc; 1700 1701 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1702 DMA_BIDIRECTIONAL); 1703 if (unlikely(dma_mapping_error(dev, addr))) 1704 goto err_map; 1705 1706 buf_array[i] = addr; 1707 1708 /* tracing point */ 1709 trace_dpaa2_eth_buf_seed(priv->net_dev, 1710 page_address(page), 1711 DPAA2_ETH_RX_BUF_RAW_SIZE, 1712 addr, priv->rx_buf_size, 1713 ch->bp->bpid); 1714 } 1715 } else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) { 1716 /* Allocate XSK buffers for AF_XDP fast path in batches 1717 * of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot 1718 * provide enough buffers at the moment 1719 */ 1720 batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs, 1721 DPAA2_ETH_BUFS_PER_CMD); 1722 if (!batch) 1723 goto err_alloc; 1724 1725 for (i = 0; i < batch; i++) { 1726 swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start + 1727 DPAA2_ETH_RX_HWA_SIZE); 1728 swa->xsk.xdp_buff = xdp_buffs[i]; 1729 1730 addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]); 1731 if (unlikely(dma_mapping_error(dev, addr))) 1732 goto err_map; 1733 1734 buf_array[i] = addr; 1735 1736 trace_dpaa2_xsk_buf_seed(priv->net_dev, 1737 xdp_buffs[i]->data_hard_start, 1738 DPAA2_ETH_RX_BUF_RAW_SIZE, 1739 addr, priv->rx_buf_size, 1740 ch->bp->bpid); 1741 } 1742 } 1743 1744 release_bufs: 1745 /* In case the portal is busy, retry until successful */ 1746 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 1747 buf_array, i)) == -EBUSY) { 1748 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1749 break; 1750 cpu_relax(); 1751 } 1752 1753 /* If release command failed, clean up and bail out; 1754 * not much else we can do about it 1755 */ 1756 if (err) { 1757 dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc); 1758 return 0; 1759 } 1760 1761 return i; 1762 1763 err_map: 1764 if (!ch->xsk_zc) { 1765 __free_pages(page, 0); 1766 } else { 1767 for (; i < batch; i++) 1768 xsk_buff_free(xdp_buffs[i]); 1769 } 1770 err_alloc: 1771 /* If we managed to allocate at least some buffers, 1772 * release them to hardware 1773 */ 1774 if (i) 1775 goto release_bufs; 1776 1777 return 0; 1778 } 1779 1780 static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, 1781 struct dpaa2_eth_channel *ch) 1782 { 1783 int i; 1784 int new_count; 1785 1786 for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { 1787 new_count = dpaa2_eth_add_bufs(priv, ch); 1788 ch->buf_count += new_count; 1789 1790 if (new_count < DPAA2_ETH_BUFS_PER_CMD) 1791 return -ENOMEM; 1792 } 1793 1794 return 0; 1795 } 1796 1797 static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv) 1798 { 1799 struct net_device *net_dev = priv->net_dev; 1800 struct dpaa2_eth_channel *channel; 1801 int i, err = 0; 1802 1803 for (i = 0; i < priv->num_channels; i++) { 1804 channel = priv->channel[i]; 1805 1806 err = dpaa2_eth_seed_pool(priv, channel); 1807 1808 /* Not much to do; the buffer pool, though not filled up, 1809 * may still contain some buffers which would enable us 1810 * to limp on. 1811 */ 1812 if (err) 1813 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1814 channel->bp->dev->obj_desc.id, 1815 channel->bp->bpid); 1816 } 1817 } 1818 1819 /* 1820 * Drain the specified number of buffers from one of the DPNI's private buffer 1821 * pools. 1822 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1823 */ 1824 static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid, 1825 int count) 1826 { 1827 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1828 bool xsk_zc = false; 1829 int retries = 0; 1830 int i, ret; 1831 1832 for (i = 0; i < priv->num_channels; i++) 1833 if (priv->channel[i]->bp->bpid == bpid) 1834 xsk_zc = priv->channel[i]->xsk_zc; 1835 1836 do { 1837 ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count); 1838 if (ret < 0) { 1839 if (ret == -EBUSY && 1840 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1841 continue; 1842 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1843 return; 1844 } 1845 dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc); 1846 retries = 0; 1847 } while (ret); 1848 } 1849 1850 static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid) 1851 { 1852 int i; 1853 1854 /* Drain the buffer pool */ 1855 dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD); 1856 dpaa2_eth_drain_bufs(priv, bpid, 1); 1857 1858 /* Setup to zero the buffer count of all channels which were 1859 * using this buffer pool. 1860 */ 1861 for (i = 0; i < priv->num_channels; i++) 1862 if (priv->channel[i]->bp->bpid == bpid) 1863 priv->channel[i]->buf_count = 0; 1864 } 1865 1866 static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv) 1867 { 1868 int i; 1869 1870 for (i = 0; i < priv->num_bps; i++) 1871 dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid); 1872 } 1873 1874 /* Function is called from softirq context only, so we don't need to guard 1875 * the access to percpu count 1876 */ 1877 static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, 1878 struct dpaa2_eth_channel *ch) 1879 { 1880 int new_count; 1881 1882 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1883 return 0; 1884 1885 do { 1886 new_count = dpaa2_eth_add_bufs(priv, ch); 1887 if (unlikely(!new_count)) { 1888 /* Out of memory; abort for now, we'll try later on */ 1889 break; 1890 } 1891 ch->buf_count += new_count; 1892 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1893 1894 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1895 return -ENOMEM; 1896 1897 return 0; 1898 } 1899 1900 static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) 1901 { 1902 struct dpaa2_eth_sgt_cache *sgt_cache; 1903 u16 count; 1904 int k, i; 1905 1906 for_each_possible_cpu(k) { 1907 sgt_cache = per_cpu_ptr(priv->sgt_cache, k); 1908 count = sgt_cache->count; 1909 1910 for (i = 0; i < count; i++) 1911 skb_free_frag(sgt_cache->buf[i]); 1912 sgt_cache->count = 0; 1913 } 1914 } 1915 1916 static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) 1917 { 1918 int err; 1919 int dequeues = -1; 1920 1921 /* Retry while portal is busy */ 1922 do { 1923 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1924 ch->store); 1925 dequeues++; 1926 cpu_relax(); 1927 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1928 1929 ch->stats.dequeue_portal_busy += dequeues; 1930 if (unlikely(err)) 1931 ch->stats.pull_err++; 1932 1933 return err; 1934 } 1935 1936 /* NAPI poll routine 1937 * 1938 * Frames are dequeued from the QMan channel associated with this NAPI context. 1939 * Rx, Tx confirmation and (if configured) Rx error frames all count 1940 * towards the NAPI budget. 1941 */ 1942 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1943 { 1944 struct dpaa2_eth_channel *ch; 1945 struct dpaa2_eth_priv *priv; 1946 int rx_cleaned = 0, txconf_cleaned = 0; 1947 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1948 struct netdev_queue *nq; 1949 int store_cleaned, work_done; 1950 bool work_done_zc = false; 1951 struct list_head rx_list; 1952 int retries = 0; 1953 u16 flowid; 1954 int err; 1955 1956 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1957 ch->xdp.res = 0; 1958 priv = ch->priv; 1959 1960 INIT_LIST_HEAD(&rx_list); 1961 ch->rx_list = &rx_list; 1962 1963 if (ch->xsk_zc) { 1964 work_done_zc = dpaa2_xsk_tx(priv, ch); 1965 /* If we reached the XSK Tx per NAPI threshold, we're done */ 1966 if (work_done_zc) { 1967 work_done = budget; 1968 goto out; 1969 } 1970 } 1971 1972 do { 1973 err = dpaa2_eth_pull_channel(ch); 1974 if (unlikely(err)) 1975 break; 1976 1977 /* Refill pool if appropriate */ 1978 dpaa2_eth_refill_pool(priv, ch); 1979 1980 store_cleaned = dpaa2_eth_consume_frames(ch, &fq); 1981 if (store_cleaned <= 0) 1982 break; 1983 if (fq->type == DPAA2_RX_FQ) { 1984 rx_cleaned += store_cleaned; 1985 flowid = fq->flowid; 1986 } else { 1987 txconf_cleaned += store_cleaned; 1988 /* We have a single Tx conf FQ on this channel */ 1989 txc_fq = fq; 1990 } 1991 1992 /* If we either consumed the whole NAPI budget with Rx frames 1993 * or we reached the Tx confirmations threshold, we're done. 1994 */ 1995 if (rx_cleaned >= budget || 1996 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1997 work_done = budget; 1998 if (ch->xdp.res & XDP_REDIRECT) 1999 xdp_do_flush(); 2000 goto out; 2001 } 2002 } while (store_cleaned); 2003 2004 if (ch->xdp.res & XDP_REDIRECT) 2005 xdp_do_flush(); 2006 2007 /* Update NET DIM with the values for this CDAN */ 2008 dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan, 2009 ch->stats.bytes_per_cdan); 2010 ch->stats.frames_per_cdan = 0; 2011 ch->stats.bytes_per_cdan = 0; 2012 2013 /* We didn't consume the entire budget, so finish napi and 2014 * re-enable data availability notifications 2015 */ 2016 napi_complete_done(napi, rx_cleaned); 2017 do { 2018 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 2019 cpu_relax(); 2020 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 2021 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 2022 ch->nctx.desired_cpu); 2023 2024 work_done = max(rx_cleaned, 1); 2025 2026 out: 2027 netif_receive_skb_list(ch->rx_list); 2028 2029 if (ch->xsk_tx_pkts_sent) { 2030 xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent); 2031 ch->xsk_tx_pkts_sent = 0; 2032 } 2033 2034 if (txc_fq && txc_fq->dq_frames) { 2035 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 2036 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 2037 txc_fq->dq_bytes); 2038 txc_fq->dq_frames = 0; 2039 txc_fq->dq_bytes = 0; 2040 } 2041 2042 if (rx_cleaned && ch->xdp.res & XDP_TX) 2043 dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); 2044 2045 return work_done; 2046 } 2047 2048 static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) 2049 { 2050 struct dpaa2_eth_channel *ch; 2051 int i; 2052 2053 for (i = 0; i < priv->num_channels; i++) { 2054 ch = priv->channel[i]; 2055 napi_enable(&ch->napi); 2056 } 2057 } 2058 2059 static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) 2060 { 2061 struct dpaa2_eth_channel *ch; 2062 int i; 2063 2064 for (i = 0; i < priv->num_channels; i++) { 2065 ch = priv->channel[i]; 2066 napi_disable(&ch->napi); 2067 } 2068 } 2069 2070 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 2071 bool tx_pause, bool pfc) 2072 { 2073 struct dpni_taildrop td = {0}; 2074 struct dpaa2_eth_fq *fq; 2075 int i, err; 2076 2077 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 2078 * flow control is disabled (as it might interfere with either the 2079 * buffer pool depletion trigger for pause frames or with the group 2080 * congestion trigger for PFC frames) 2081 */ 2082 td.enable = !tx_pause; 2083 if (priv->rx_fqtd_enabled == td.enable) 2084 goto set_cgtd; 2085 2086 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 2087 td.units = DPNI_CONGESTION_UNIT_BYTES; 2088 2089 for (i = 0; i < priv->num_fqs; i++) { 2090 fq = &priv->fq[i]; 2091 if (fq->type != DPAA2_RX_FQ) 2092 continue; 2093 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2094 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 2095 fq->tc, fq->flowid, &td); 2096 if (err) { 2097 netdev_err(priv->net_dev, 2098 "dpni_set_taildrop(FQ) failed\n"); 2099 return; 2100 } 2101 } 2102 2103 priv->rx_fqtd_enabled = td.enable; 2104 2105 set_cgtd: 2106 /* Congestion group taildrop: threshold is in frames, per group 2107 * of FQs belonging to the same traffic class 2108 * Enabled if general Tx pause disabled or if PFCs are enabled 2109 * (congestion group threhsold for PFC generation is lower than the 2110 * CG taildrop threshold, so it won't interfere with it; we also 2111 * want frames in non-PFC enabled traffic classes to be kept in check) 2112 */ 2113 td.enable = !tx_pause || pfc; 2114 if (priv->rx_cgtd_enabled == td.enable) 2115 return; 2116 2117 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 2118 td.units = DPNI_CONGESTION_UNIT_FRAMES; 2119 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2120 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2121 DPNI_CP_GROUP, DPNI_QUEUE_RX, 2122 i, 0, &td); 2123 if (err) { 2124 netdev_err(priv->net_dev, 2125 "dpni_set_taildrop(CG) failed\n"); 2126 return; 2127 } 2128 } 2129 2130 priv->rx_cgtd_enabled = td.enable; 2131 } 2132 2133 static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) 2134 { 2135 struct dpni_link_state state = {0}; 2136 bool tx_pause; 2137 int err; 2138 2139 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 2140 if (unlikely(err)) { 2141 netdev_err(priv->net_dev, 2142 "dpni_get_link_state() failed\n"); 2143 return err; 2144 } 2145 2146 /* If Tx pause frame settings have changed, we need to update 2147 * Rx FQ taildrop configuration as well. We configure taildrop 2148 * only when pause frame generation is disabled. 2149 */ 2150 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 2151 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 2152 2153 /* When we manage the MAC/PHY using phylink there is no need 2154 * to manually update the netif_carrier. 2155 * We can avoid locking because we are called from the "link changed" 2156 * IRQ handler, which is the same as the "endpoint changed" IRQ handler 2157 * (the writer to priv->mac), so we cannot race with it. 2158 */ 2159 if (dpaa2_mac_is_type_phy(priv->mac)) 2160 goto out; 2161 2162 /* Chech link state; speed / duplex changes are not treated yet */ 2163 if (priv->link_state.up == state.up) 2164 goto out; 2165 2166 if (state.up) { 2167 netif_carrier_on(priv->net_dev); 2168 netif_tx_start_all_queues(priv->net_dev); 2169 } else { 2170 netif_tx_stop_all_queues(priv->net_dev); 2171 netif_carrier_off(priv->net_dev); 2172 } 2173 2174 netdev_info(priv->net_dev, "Link Event: state %s\n", 2175 state.up ? "up" : "down"); 2176 2177 out: 2178 priv->link_state = state; 2179 2180 return 0; 2181 } 2182 2183 static int dpaa2_eth_open(struct net_device *net_dev) 2184 { 2185 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2186 int err; 2187 2188 dpaa2_eth_seed_pools(priv); 2189 2190 mutex_lock(&priv->mac_lock); 2191 2192 if (!dpaa2_eth_is_type_phy(priv)) { 2193 /* We'll only start the txqs when the link is actually ready; 2194 * make sure we don't race against the link up notification, 2195 * which may come immediately after dpni_enable(); 2196 */ 2197 netif_tx_stop_all_queues(net_dev); 2198 2199 /* Also, explicitly set carrier off, otherwise 2200 * netif_carrier_ok() will return true and cause 'ip link show' 2201 * to report the LOWER_UP flag, even though the link 2202 * notification wasn't even received. 2203 */ 2204 netif_carrier_off(net_dev); 2205 } 2206 dpaa2_eth_enable_ch_napi(priv); 2207 2208 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 2209 if (err < 0) { 2210 mutex_unlock(&priv->mac_lock); 2211 netdev_err(net_dev, "dpni_enable() failed\n"); 2212 goto enable_err; 2213 } 2214 2215 if (dpaa2_eth_is_type_phy(priv)) 2216 dpaa2_mac_start(priv->mac); 2217 2218 mutex_unlock(&priv->mac_lock); 2219 2220 return 0; 2221 2222 enable_err: 2223 dpaa2_eth_disable_ch_napi(priv); 2224 dpaa2_eth_drain_pools(priv); 2225 return err; 2226 } 2227 2228 /* Total number of in-flight frames on ingress queues */ 2229 static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) 2230 { 2231 struct dpaa2_eth_fq *fq; 2232 u32 fcnt = 0, bcnt = 0, total = 0; 2233 int i, err; 2234 2235 for (i = 0; i < priv->num_fqs; i++) { 2236 fq = &priv->fq[i]; 2237 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 2238 if (err) { 2239 netdev_warn(priv->net_dev, "query_fq_count failed"); 2240 break; 2241 } 2242 total += fcnt; 2243 } 2244 2245 return total; 2246 } 2247 2248 static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 2249 { 2250 int retries = 10; 2251 u32 pending; 2252 2253 do { 2254 pending = dpaa2_eth_ingress_fq_count(priv); 2255 if (pending) 2256 msleep(100); 2257 } while (pending && --retries); 2258 } 2259 2260 #define DPNI_TX_PENDING_VER_MAJOR 7 2261 #define DPNI_TX_PENDING_VER_MINOR 13 2262 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 2263 { 2264 union dpni_statistics stats; 2265 int retries = 10; 2266 int err; 2267 2268 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 2269 DPNI_TX_PENDING_VER_MINOR) < 0) 2270 goto out; 2271 2272 do { 2273 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 2274 &stats); 2275 if (err) 2276 goto out; 2277 if (stats.page_6.tx_pending_frames == 0) 2278 return; 2279 } while (--retries); 2280 2281 out: 2282 msleep(500); 2283 } 2284 2285 static int dpaa2_eth_stop(struct net_device *net_dev) 2286 { 2287 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2288 int dpni_enabled = 0; 2289 int retries = 10; 2290 2291 mutex_lock(&priv->mac_lock); 2292 2293 if (dpaa2_eth_is_type_phy(priv)) { 2294 dpaa2_mac_stop(priv->mac); 2295 } else { 2296 netif_tx_stop_all_queues(net_dev); 2297 netif_carrier_off(net_dev); 2298 } 2299 2300 mutex_unlock(&priv->mac_lock); 2301 2302 /* On dpni_disable(), the MC firmware will: 2303 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 2304 * - cut off WRIOP dequeues from egress FQs and wait until transmission 2305 * of all in flight Tx frames is finished (and corresponding Tx conf 2306 * frames are enqueued back to software) 2307 * 2308 * Before calling dpni_disable(), we wait for all Tx frames to arrive 2309 * on WRIOP. After it finishes, wait until all remaining frames on Rx 2310 * and Tx conf queues are consumed on NAPI poll. 2311 */ 2312 dpaa2_eth_wait_for_egress_fq_empty(priv); 2313 2314 do { 2315 dpni_disable(priv->mc_io, 0, priv->mc_token); 2316 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 2317 if (dpni_enabled) 2318 /* Allow the hardware some slack */ 2319 msleep(100); 2320 } while (dpni_enabled && --retries); 2321 if (!retries) { 2322 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 2323 /* Must go on and disable NAPI nonetheless, so we don't crash at 2324 * the next "ifconfig up" 2325 */ 2326 } 2327 2328 dpaa2_eth_wait_for_ingress_fq_empty(priv); 2329 dpaa2_eth_disable_ch_napi(priv); 2330 2331 /* Empty the buffer pool */ 2332 dpaa2_eth_drain_pools(priv); 2333 2334 /* Empty the Scatter-Gather Buffer cache */ 2335 dpaa2_eth_sgt_cache_drain(priv); 2336 2337 return 0; 2338 } 2339 2340 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 2341 { 2342 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2343 struct device *dev = net_dev->dev.parent; 2344 int err; 2345 2346 err = eth_mac_addr(net_dev, addr); 2347 if (err < 0) { 2348 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 2349 return err; 2350 } 2351 2352 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2353 net_dev->dev_addr); 2354 if (err) { 2355 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 2356 return err; 2357 } 2358 2359 return 0; 2360 } 2361 2362 /** Fill in counters maintained by the GPP driver. These may be different from 2363 * the hardware counters obtained by ethtool. 2364 */ 2365 static void dpaa2_eth_get_stats(struct net_device *net_dev, 2366 struct rtnl_link_stats64 *stats) 2367 { 2368 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2369 struct rtnl_link_stats64 *percpu_stats; 2370 u64 *cpustats; 2371 u64 *netstats = (u64 *)stats; 2372 int i, j; 2373 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 2374 2375 for_each_possible_cpu(i) { 2376 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 2377 cpustats = (u64 *)percpu_stats; 2378 for (j = 0; j < num; j++) 2379 netstats[j] += cpustats[j]; 2380 } 2381 } 2382 2383 /* Copy mac unicast addresses from @net_dev to @priv. 2384 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2385 */ 2386 static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, 2387 struct dpaa2_eth_priv *priv) 2388 { 2389 struct netdev_hw_addr *ha; 2390 int err; 2391 2392 netdev_for_each_uc_addr(ha, net_dev) { 2393 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2394 ha->addr); 2395 if (err) 2396 netdev_warn(priv->net_dev, 2397 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 2398 ha->addr, err); 2399 } 2400 } 2401 2402 /* Copy mac multicast addresses from @net_dev to @priv 2403 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2404 */ 2405 static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, 2406 struct dpaa2_eth_priv *priv) 2407 { 2408 struct netdev_hw_addr *ha; 2409 int err; 2410 2411 netdev_for_each_mc_addr(ha, net_dev) { 2412 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2413 ha->addr); 2414 if (err) 2415 netdev_warn(priv->net_dev, 2416 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 2417 ha->addr, err); 2418 } 2419 } 2420 2421 static int dpaa2_eth_rx_add_vid(struct net_device *net_dev, 2422 __be16 vlan_proto, u16 vid) 2423 { 2424 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2425 int err; 2426 2427 err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token, 2428 vid, 0, 0, 0); 2429 2430 if (err) { 2431 netdev_warn(priv->net_dev, 2432 "Could not add the vlan id %u\n", 2433 vid); 2434 return err; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev, 2441 __be16 vlan_proto, u16 vid) 2442 { 2443 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2444 int err; 2445 2446 err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid); 2447 2448 if (err) { 2449 netdev_warn(priv->net_dev, 2450 "Could not remove the vlan id %u\n", 2451 vid); 2452 return err; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 2459 { 2460 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2461 int uc_count = netdev_uc_count(net_dev); 2462 int mc_count = netdev_mc_count(net_dev); 2463 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 2464 u32 options = priv->dpni_attrs.options; 2465 u16 mc_token = priv->mc_token; 2466 struct fsl_mc_io *mc_io = priv->mc_io; 2467 int err; 2468 2469 /* Basic sanity checks; these probably indicate a misconfiguration */ 2470 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 2471 netdev_info(net_dev, 2472 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 2473 max_mac); 2474 2475 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 2476 if (uc_count > max_mac) { 2477 netdev_info(net_dev, 2478 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 2479 uc_count, max_mac); 2480 goto force_promisc; 2481 } 2482 if (mc_count + uc_count > max_mac) { 2483 netdev_info(net_dev, 2484 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 2485 uc_count + mc_count, max_mac); 2486 goto force_mc_promisc; 2487 } 2488 2489 /* Adjust promisc settings due to flag combinations */ 2490 if (net_dev->flags & IFF_PROMISC) 2491 goto force_promisc; 2492 if (net_dev->flags & IFF_ALLMULTI) { 2493 /* First, rebuild unicast filtering table. This should be done 2494 * in promisc mode, in order to avoid frame loss while we 2495 * progressively add entries to the table. 2496 * We don't know whether we had been in promisc already, and 2497 * making an MC call to find out is expensive; so set uc promisc 2498 * nonetheless. 2499 */ 2500 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2501 if (err) 2502 netdev_warn(net_dev, "Can't set uc promisc\n"); 2503 2504 /* Actual uc table reconstruction. */ 2505 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 2506 if (err) 2507 netdev_warn(net_dev, "Can't clear uc filters\n"); 2508 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2509 2510 /* Finally, clear uc promisc and set mc promisc as requested. */ 2511 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2512 if (err) 2513 netdev_warn(net_dev, "Can't clear uc promisc\n"); 2514 goto force_mc_promisc; 2515 } 2516 2517 /* Neither unicast, nor multicast promisc will be on... eventually. 2518 * For now, rebuild mac filtering tables while forcing both of them on. 2519 */ 2520 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2521 if (err) 2522 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 2523 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2524 if (err) 2525 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 2526 2527 /* Actual mac filtering tables reconstruction */ 2528 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 2529 if (err) 2530 netdev_warn(net_dev, "Can't clear mac filters\n"); 2531 dpaa2_eth_add_mc_hw_addr(net_dev, priv); 2532 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2533 2534 /* Now we can clear both ucast and mcast promisc, without risking 2535 * to drop legitimate frames anymore. 2536 */ 2537 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2538 if (err) 2539 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 2540 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 2541 if (err) 2542 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 2543 2544 return; 2545 2546 force_promisc: 2547 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2548 if (err) 2549 netdev_warn(net_dev, "Can't set ucast promisc\n"); 2550 force_mc_promisc: 2551 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2552 if (err) 2553 netdev_warn(net_dev, "Can't set mcast promisc\n"); 2554 } 2555 2556 static int dpaa2_eth_set_features(struct net_device *net_dev, 2557 netdev_features_t features) 2558 { 2559 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2560 netdev_features_t changed = features ^ net_dev->features; 2561 bool enable; 2562 int err; 2563 2564 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 2565 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2566 err = dpaa2_eth_set_rx_vlan_filtering(priv, enable); 2567 if (err) 2568 return err; 2569 } 2570 2571 if (changed & NETIF_F_RXCSUM) { 2572 enable = !!(features & NETIF_F_RXCSUM); 2573 err = dpaa2_eth_set_rx_csum(priv, enable); 2574 if (err) 2575 return err; 2576 } 2577 2578 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2579 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 2580 err = dpaa2_eth_set_tx_csum(priv, enable); 2581 if (err) 2582 return err; 2583 } 2584 2585 return 0; 2586 } 2587 2588 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2589 { 2590 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2591 struct hwtstamp_config config; 2592 2593 if (!dpaa2_ptp) 2594 return -EINVAL; 2595 2596 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 2597 return -EFAULT; 2598 2599 switch (config.tx_type) { 2600 case HWTSTAMP_TX_OFF: 2601 case HWTSTAMP_TX_ON: 2602 case HWTSTAMP_TX_ONESTEP_SYNC: 2603 priv->tx_tstamp_type = config.tx_type; 2604 break; 2605 default: 2606 return -ERANGE; 2607 } 2608 2609 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 2610 priv->rx_tstamp = false; 2611 } else { 2612 priv->rx_tstamp = true; 2613 /* TS is set for all frame types, not only those requested */ 2614 config.rx_filter = HWTSTAMP_FILTER_ALL; 2615 } 2616 2617 if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 2618 dpaa2_ptp_onestep_reg_update_method(priv); 2619 2620 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 2621 -EFAULT : 0; 2622 } 2623 2624 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2625 { 2626 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2627 int err; 2628 2629 if (cmd == SIOCSHWTSTAMP) 2630 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 2631 2632 mutex_lock(&priv->mac_lock); 2633 2634 if (dpaa2_eth_is_type_phy(priv)) { 2635 err = phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 2636 mutex_unlock(&priv->mac_lock); 2637 return err; 2638 } 2639 2640 mutex_unlock(&priv->mac_lock); 2641 2642 return -EOPNOTSUPP; 2643 } 2644 2645 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 2646 { 2647 int mfl, linear_mfl; 2648 2649 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2650 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 2651 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 2652 2653 if (mfl > linear_mfl) { 2654 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 2655 linear_mfl - VLAN_ETH_HLEN); 2656 return false; 2657 } 2658 2659 return true; 2660 } 2661 2662 static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 2663 { 2664 int mfl, err; 2665 2666 /* We enforce a maximum Rx frame length based on MTU only if we have 2667 * an XDP program attached (in order to avoid Rx S/G frames). 2668 * Otherwise, we accept all incoming frames as long as they are not 2669 * larger than maximum size supported in hardware 2670 */ 2671 if (has_xdp) 2672 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2673 else 2674 mfl = DPAA2_ETH_MFL; 2675 2676 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 2677 if (err) { 2678 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 2679 return err; 2680 } 2681 2682 return 0; 2683 } 2684 2685 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 2686 { 2687 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2688 int err; 2689 2690 if (!priv->xdp_prog) 2691 goto out; 2692 2693 if (!xdp_mtu_valid(priv, new_mtu)) 2694 return -EINVAL; 2695 2696 err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); 2697 if (err) 2698 return err; 2699 2700 out: 2701 WRITE_ONCE(dev->mtu, new_mtu); 2702 return 0; 2703 } 2704 2705 static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 2706 { 2707 struct dpni_buffer_layout buf_layout = {0}; 2708 int err; 2709 2710 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 2711 DPNI_QUEUE_RX, &buf_layout); 2712 if (err) { 2713 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 2714 return err; 2715 } 2716 2717 /* Reserve extra headroom for XDP header size changes */ 2718 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 2719 (has_xdp ? XDP_PACKET_HEADROOM : 0); 2720 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 2721 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2722 DPNI_QUEUE_RX, &buf_layout); 2723 if (err) { 2724 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 2725 return err; 2726 } 2727 2728 return 0; 2729 } 2730 2731 static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) 2732 { 2733 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2734 struct dpaa2_eth_channel *ch; 2735 struct bpf_prog *old; 2736 bool up, need_update; 2737 int i, err; 2738 2739 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 2740 return -EINVAL; 2741 2742 if (prog) 2743 bpf_prog_add(prog, priv->num_channels); 2744 2745 up = netif_running(dev); 2746 need_update = (!!priv->xdp_prog != !!prog); 2747 2748 if (up) 2749 dev_close(dev); 2750 2751 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 2752 * Also, when switching between xdp/non-xdp modes we need to reconfigure 2753 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 2754 * so we are sure no old format buffers will be used from now on. 2755 */ 2756 if (need_update) { 2757 err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); 2758 if (err) 2759 goto out_err; 2760 err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); 2761 if (err) 2762 goto out_err; 2763 } 2764 2765 old = xchg(&priv->xdp_prog, prog); 2766 if (old) 2767 bpf_prog_put(old); 2768 2769 for (i = 0; i < priv->num_channels; i++) { 2770 ch = priv->channel[i]; 2771 old = xchg(&ch->xdp.prog, prog); 2772 if (old) 2773 bpf_prog_put(old); 2774 } 2775 2776 if (up) { 2777 err = dev_open(dev, NULL); 2778 if (err) 2779 return err; 2780 } 2781 2782 return 0; 2783 2784 out_err: 2785 if (prog) 2786 bpf_prog_sub(prog, priv->num_channels); 2787 if (up) 2788 dev_open(dev, NULL); 2789 2790 return err; 2791 } 2792 2793 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2794 { 2795 switch (xdp->command) { 2796 case XDP_SETUP_PROG: 2797 return dpaa2_eth_setup_xdp(dev, xdp->prog); 2798 case XDP_SETUP_XSK_POOL: 2799 return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id); 2800 default: 2801 return -EINVAL; 2802 } 2803 2804 return 0; 2805 } 2806 2807 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 2808 struct xdp_frame *xdpf, 2809 struct dpaa2_fd *fd) 2810 { 2811 struct device *dev = net_dev->dev.parent; 2812 unsigned int needed_headroom; 2813 struct dpaa2_eth_swa *swa; 2814 void *buffer_start, *aligned_start; 2815 dma_addr_t addr; 2816 2817 /* We require a minimum headroom to be able to transmit the frame. 2818 * Otherwise return an error and let the original net_device handle it 2819 */ 2820 needed_headroom = dpaa2_eth_needed_headroom(NULL); 2821 if (xdpf->headroom < needed_headroom) 2822 return -EINVAL; 2823 2824 /* Setup the FD fields */ 2825 memset(fd, 0, sizeof(*fd)); 2826 2827 /* Align FD address, if possible */ 2828 buffer_start = xdpf->data - needed_headroom; 2829 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2830 DPAA2_ETH_TX_BUF_ALIGN); 2831 if (aligned_start >= xdpf->data - xdpf->headroom) 2832 buffer_start = aligned_start; 2833 2834 swa = (struct dpaa2_eth_swa *)buffer_start; 2835 /* fill in necessary fields here */ 2836 swa->type = DPAA2_ETH_SWA_XDP; 2837 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2838 swa->xdp.xdpf = xdpf; 2839 2840 addr = dma_map_single(dev, buffer_start, 2841 swa->xdp.dma_size, 2842 DMA_BIDIRECTIONAL); 2843 if (unlikely(dma_mapping_error(dev, addr))) 2844 return -ENOMEM; 2845 2846 dpaa2_fd_set_addr(fd, addr); 2847 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2848 dpaa2_fd_set_len(fd, xdpf->len); 2849 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2850 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2851 2852 return 0; 2853 } 2854 2855 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2856 struct xdp_frame **frames, u32 flags) 2857 { 2858 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2859 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2860 struct rtnl_link_stats64 *percpu_stats; 2861 struct dpaa2_eth_fq *fq; 2862 struct dpaa2_fd *fds; 2863 int enqueued, i, err; 2864 2865 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2866 return -EINVAL; 2867 2868 if (!netif_running(net_dev)) 2869 return -ENETDOWN; 2870 2871 fq = &priv->fq[smp_processor_id()]; 2872 xdp_redirect_fds = &fq->xdp_redirect_fds; 2873 fds = xdp_redirect_fds->fds; 2874 2875 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2876 2877 /* create a FD for each xdp_frame in the list received */ 2878 for (i = 0; i < n; i++) { 2879 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2880 if (err) 2881 break; 2882 } 2883 xdp_redirect_fds->num = i; 2884 2885 /* enqueue all the frame descriptors */ 2886 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2887 2888 /* update statistics */ 2889 percpu_stats->tx_packets += enqueued; 2890 for (i = 0; i < enqueued; i++) 2891 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2892 2893 return enqueued; 2894 } 2895 2896 static int update_xps(struct dpaa2_eth_priv *priv) 2897 { 2898 struct net_device *net_dev = priv->net_dev; 2899 int i, num_queues, netdev_queues; 2900 struct dpaa2_eth_fq *fq; 2901 cpumask_var_t xps_mask; 2902 int err = 0; 2903 2904 if (!alloc_cpumask_var(&xps_mask, GFP_KERNEL)) 2905 return -ENOMEM; 2906 2907 num_queues = dpaa2_eth_queue_count(priv); 2908 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2909 2910 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2911 * queues, so only process those 2912 */ 2913 for (i = 0; i < netdev_queues; i++) { 2914 fq = &priv->fq[i % num_queues]; 2915 2916 cpumask_clear(xps_mask); 2917 cpumask_set_cpu(fq->target_cpu, xps_mask); 2918 2919 err = netif_set_xps_queue(net_dev, xps_mask, i); 2920 if (err) { 2921 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2922 break; 2923 } 2924 } 2925 2926 free_cpumask_var(xps_mask); 2927 return err; 2928 } 2929 2930 static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, 2931 struct tc_mqprio_qopt *mqprio) 2932 { 2933 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2934 u8 num_tc, num_queues; 2935 int i; 2936 2937 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2938 num_queues = dpaa2_eth_queue_count(priv); 2939 num_tc = mqprio->num_tc; 2940 2941 if (num_tc == net_dev->num_tc) 2942 return 0; 2943 2944 if (num_tc > dpaa2_eth_tc_count(priv)) { 2945 netdev_err(net_dev, "Max %d traffic classes supported\n", 2946 dpaa2_eth_tc_count(priv)); 2947 return -EOPNOTSUPP; 2948 } 2949 2950 if (!num_tc) { 2951 netdev_reset_tc(net_dev); 2952 netif_set_real_num_tx_queues(net_dev, num_queues); 2953 goto out; 2954 } 2955 2956 netdev_set_num_tc(net_dev, num_tc); 2957 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2958 2959 for (i = 0; i < num_tc; i++) 2960 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2961 2962 out: 2963 update_xps(priv); 2964 2965 return 0; 2966 } 2967 2968 #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) 2969 2970 static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) 2971 { 2972 struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; 2973 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2974 struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; 2975 struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; 2976 int err; 2977 2978 if (p->command == TC_TBF_STATS) 2979 return -EOPNOTSUPP; 2980 2981 /* Only per port Tx shaping */ 2982 if (p->parent != TC_H_ROOT) 2983 return -EOPNOTSUPP; 2984 2985 if (p->command == TC_TBF_REPLACE) { 2986 if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { 2987 netdev_err(net_dev, "burst size cannot be greater than %d\n", 2988 DPAA2_ETH_MAX_BURST_SIZE); 2989 return -EINVAL; 2990 } 2991 2992 tx_cr_shaper.max_burst_size = cfg->max_size; 2993 /* The TBF interface is in bytes/s, whereas DPAA2 expects the 2994 * rate in Mbits/s 2995 */ 2996 tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); 2997 } 2998 2999 err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, 3000 &tx_er_shaper, 0); 3001 if (err) { 3002 netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); 3003 return err; 3004 } 3005 3006 return 0; 3007 } 3008 3009 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 3010 enum tc_setup_type type, void *type_data) 3011 { 3012 switch (type) { 3013 case TC_SETUP_QDISC_MQPRIO: 3014 return dpaa2_eth_setup_mqprio(net_dev, type_data); 3015 case TC_SETUP_QDISC_TBF: 3016 return dpaa2_eth_setup_tbf(net_dev, type_data); 3017 default: 3018 return -EOPNOTSUPP; 3019 } 3020 } 3021 3022 static const struct net_device_ops dpaa2_eth_ops = { 3023 .ndo_open = dpaa2_eth_open, 3024 .ndo_start_xmit = dpaa2_eth_tx, 3025 .ndo_stop = dpaa2_eth_stop, 3026 .ndo_set_mac_address = dpaa2_eth_set_addr, 3027 .ndo_get_stats64 = dpaa2_eth_get_stats, 3028 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 3029 .ndo_set_features = dpaa2_eth_set_features, 3030 .ndo_eth_ioctl = dpaa2_eth_ioctl, 3031 .ndo_change_mtu = dpaa2_eth_change_mtu, 3032 .ndo_bpf = dpaa2_eth_xdp, 3033 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 3034 .ndo_xsk_wakeup = dpaa2_xsk_wakeup, 3035 .ndo_setup_tc = dpaa2_eth_setup_tc, 3036 .ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid, 3037 .ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid 3038 }; 3039 3040 static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) 3041 { 3042 struct dpaa2_eth_channel *ch; 3043 3044 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 3045 3046 /* Update NAPI statistics */ 3047 ch->stats.cdan++; 3048 3049 /* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed 3050 * so that it can be rescheduled again. 3051 */ 3052 if (!napi_if_scheduled_mark_missed(&ch->napi)) 3053 napi_schedule(&ch->napi); 3054 } 3055 3056 /* Allocate and configure a DPCON object */ 3057 static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) 3058 { 3059 struct fsl_mc_device *dpcon; 3060 struct device *dev = priv->net_dev->dev.parent; 3061 int err; 3062 3063 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 3064 FSL_MC_POOL_DPCON, &dpcon); 3065 if (err) { 3066 if (err == -ENXIO) { 3067 dev_dbg(dev, "Waiting for DPCON\n"); 3068 err = -EPROBE_DEFER; 3069 } else { 3070 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 3071 } 3072 return ERR_PTR(err); 3073 } 3074 3075 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 3076 if (err) { 3077 dev_err(dev, "dpcon_open() failed\n"); 3078 goto free; 3079 } 3080 3081 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 3082 if (err) { 3083 dev_err(dev, "dpcon_reset() failed\n"); 3084 goto close; 3085 } 3086 3087 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 3088 if (err) { 3089 dev_err(dev, "dpcon_enable() failed\n"); 3090 goto close; 3091 } 3092 3093 return dpcon; 3094 3095 close: 3096 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3097 free: 3098 fsl_mc_object_free(dpcon); 3099 3100 return ERR_PTR(err); 3101 } 3102 3103 static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, 3104 struct fsl_mc_device *dpcon) 3105 { 3106 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 3107 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3108 fsl_mc_object_free(dpcon); 3109 } 3110 3111 static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) 3112 { 3113 struct dpaa2_eth_channel *channel; 3114 struct dpcon_attr attr; 3115 struct device *dev = priv->net_dev->dev.parent; 3116 int err; 3117 3118 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 3119 if (!channel) 3120 return NULL; 3121 3122 channel->dpcon = dpaa2_eth_setup_dpcon(priv); 3123 if (IS_ERR(channel->dpcon)) { 3124 err = PTR_ERR(channel->dpcon); 3125 goto err_setup; 3126 } 3127 3128 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 3129 &attr); 3130 if (err) { 3131 dev_err(dev, "dpcon_get_attributes() failed\n"); 3132 goto err_get_attr; 3133 } 3134 3135 channel->dpcon_id = attr.id; 3136 channel->ch_id = attr.qbman_ch_id; 3137 channel->priv = priv; 3138 3139 return channel; 3140 3141 err_get_attr: 3142 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3143 err_setup: 3144 kfree(channel); 3145 return ERR_PTR(err); 3146 } 3147 3148 static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, 3149 struct dpaa2_eth_channel *channel) 3150 { 3151 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3152 kfree(channel); 3153 } 3154 3155 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 3156 * and register data availability notifications 3157 */ 3158 static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) 3159 { 3160 struct dpaa2_io_notification_ctx *nctx; 3161 struct dpaa2_eth_channel *channel; 3162 struct dpcon_notification_cfg dpcon_notif_cfg; 3163 struct device *dev = priv->net_dev->dev.parent; 3164 int i, err; 3165 3166 /* We want the ability to spread ingress traffic (RX, TX conf) to as 3167 * many cores as possible, so we need one channel for each core 3168 * (unless there's fewer queues than cores, in which case the extra 3169 * channels would be wasted). 3170 * Allocate one channel per core and register it to the core's 3171 * affine DPIO. If not enough channels are available for all cores 3172 * or if some cores don't have an affine DPIO, there will be no 3173 * ingress frame processing on those cores. 3174 */ 3175 cpumask_clear(&priv->dpio_cpumask); 3176 for_each_online_cpu(i) { 3177 /* Try to allocate a channel */ 3178 channel = dpaa2_eth_alloc_channel(priv); 3179 if (IS_ERR_OR_NULL(channel)) { 3180 err = PTR_ERR_OR_ZERO(channel); 3181 if (err == -EPROBE_DEFER) 3182 dev_dbg(dev, "waiting for affine channel\n"); 3183 else 3184 dev_info(dev, 3185 "No affine channel for cpu %d and above\n", i); 3186 goto err_alloc_ch; 3187 } 3188 3189 priv->channel[priv->num_channels] = channel; 3190 3191 nctx = &channel->nctx; 3192 nctx->is_cdan = 1; 3193 nctx->cb = dpaa2_eth_cdan_cb; 3194 nctx->id = channel->ch_id; 3195 nctx->desired_cpu = i; 3196 3197 /* Register the new context */ 3198 channel->dpio = dpaa2_io_service_select(i); 3199 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 3200 if (err) { 3201 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 3202 /* If no affine DPIO for this core, there's probably 3203 * none available for next cores either. Signal we want 3204 * to retry later, in case the DPIO devices weren't 3205 * probed yet. 3206 */ 3207 err = -EPROBE_DEFER; 3208 goto err_service_reg; 3209 } 3210 3211 /* Register DPCON notification with MC */ 3212 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 3213 dpcon_notif_cfg.priority = 0; 3214 dpcon_notif_cfg.user_ctx = nctx->qman64; 3215 err = dpcon_set_notification(priv->mc_io, 0, 3216 channel->dpcon->mc_handle, 3217 &dpcon_notif_cfg); 3218 if (err) { 3219 dev_err(dev, "dpcon_set_notification failed()\n"); 3220 goto err_set_cdan; 3221 } 3222 3223 /* If we managed to allocate a channel and also found an affine 3224 * DPIO for this core, add it to the final mask 3225 */ 3226 cpumask_set_cpu(i, &priv->dpio_cpumask); 3227 priv->num_channels++; 3228 3229 /* Stop if we already have enough channels to accommodate all 3230 * RX and TX conf queues 3231 */ 3232 if (priv->num_channels == priv->dpni_attrs.num_queues) 3233 break; 3234 } 3235 3236 return 0; 3237 3238 err_set_cdan: 3239 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3240 err_service_reg: 3241 dpaa2_eth_free_channel(priv, channel); 3242 err_alloc_ch: 3243 if (err == -EPROBE_DEFER) { 3244 for (i = 0; i < priv->num_channels; i++) { 3245 channel = priv->channel[i]; 3246 nctx = &channel->nctx; 3247 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3248 dpaa2_eth_free_channel(priv, channel); 3249 } 3250 priv->num_channels = 0; 3251 return err; 3252 } 3253 3254 if (cpumask_empty(&priv->dpio_cpumask)) { 3255 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 3256 return -ENODEV; 3257 } 3258 3259 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 3260 cpumask_pr_args(&priv->dpio_cpumask)); 3261 3262 return 0; 3263 } 3264 3265 static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) 3266 { 3267 struct device *dev = priv->net_dev->dev.parent; 3268 struct dpaa2_eth_channel *ch; 3269 int i; 3270 3271 /* deregister CDAN notifications and free channels */ 3272 for (i = 0; i < priv->num_channels; i++) { 3273 ch = priv->channel[i]; 3274 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 3275 dpaa2_eth_free_channel(priv, ch); 3276 } 3277 } 3278 3279 static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, 3280 int cpu) 3281 { 3282 struct device *dev = priv->net_dev->dev.parent; 3283 int i; 3284 3285 for (i = 0; i < priv->num_channels; i++) 3286 if (priv->channel[i]->nctx.desired_cpu == cpu) 3287 return priv->channel[i]; 3288 3289 /* We should never get here. Issue a warning and return 3290 * the first channel, because it's still better than nothing 3291 */ 3292 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 3293 3294 return priv->channel[0]; 3295 } 3296 3297 static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) 3298 { 3299 struct device *dev = priv->net_dev->dev.parent; 3300 struct dpaa2_eth_fq *fq; 3301 int rx_cpu, txc_cpu; 3302 int i; 3303 3304 /* For each FQ, pick one channel/CPU to deliver frames to. 3305 * This may well change at runtime, either through irqbalance or 3306 * through direct user intervention. 3307 */ 3308 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 3309 3310 for (i = 0; i < priv->num_fqs; i++) { 3311 fq = &priv->fq[i]; 3312 switch (fq->type) { 3313 case DPAA2_RX_FQ: 3314 case DPAA2_RX_ERR_FQ: 3315 fq->target_cpu = rx_cpu; 3316 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 3317 if (rx_cpu >= nr_cpu_ids) 3318 rx_cpu = cpumask_first(&priv->dpio_cpumask); 3319 break; 3320 case DPAA2_TX_CONF_FQ: 3321 fq->target_cpu = txc_cpu; 3322 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 3323 if (txc_cpu >= nr_cpu_ids) 3324 txc_cpu = cpumask_first(&priv->dpio_cpumask); 3325 break; 3326 default: 3327 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 3328 } 3329 fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); 3330 } 3331 3332 update_xps(priv); 3333 } 3334 3335 static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) 3336 { 3337 int i, j; 3338 3339 /* We have one TxConf FQ per Tx flow. 3340 * The number of Tx and Rx queues is the same. 3341 * Tx queues come first in the fq array. 3342 */ 3343 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3344 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 3345 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 3346 priv->fq[priv->num_fqs++].flowid = (u16)i; 3347 } 3348 3349 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3350 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3351 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 3352 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 3353 priv->fq[priv->num_fqs].tc = (u8)j; 3354 priv->fq[priv->num_fqs++].flowid = (u16)i; 3355 } 3356 } 3357 3358 /* We have exactly one Rx error queue per DPNI */ 3359 priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ; 3360 priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err; 3361 3362 /* For each FQ, decide on which core to process incoming frames */ 3363 dpaa2_eth_set_fq_affinity(priv); 3364 } 3365 3366 /* Allocate and configure a buffer pool */ 3367 struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv) 3368 { 3369 struct device *dev = priv->net_dev->dev.parent; 3370 struct fsl_mc_device *dpbp_dev; 3371 struct dpbp_attr dpbp_attrs; 3372 struct dpaa2_eth_bp *bp; 3373 int err; 3374 3375 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 3376 &dpbp_dev); 3377 if (err) { 3378 if (err == -ENXIO) 3379 err = -EPROBE_DEFER; 3380 else 3381 dev_err(dev, "DPBP device allocation failed\n"); 3382 return ERR_PTR(err); 3383 } 3384 3385 bp = kzalloc(sizeof(*bp), GFP_KERNEL); 3386 if (!bp) { 3387 err = -ENOMEM; 3388 goto err_alloc; 3389 } 3390 3391 err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id, 3392 &dpbp_dev->mc_handle); 3393 if (err) { 3394 dev_err(dev, "dpbp_open() failed\n"); 3395 goto err_open; 3396 } 3397 3398 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 3399 if (err) { 3400 dev_err(dev, "dpbp_reset() failed\n"); 3401 goto err_reset; 3402 } 3403 3404 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 3405 if (err) { 3406 dev_err(dev, "dpbp_enable() failed\n"); 3407 goto err_enable; 3408 } 3409 3410 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 3411 &dpbp_attrs); 3412 if (err) { 3413 dev_err(dev, "dpbp_get_attributes() failed\n"); 3414 goto err_get_attr; 3415 } 3416 3417 bp->dev = dpbp_dev; 3418 bp->bpid = dpbp_attrs.bpid; 3419 3420 return bp; 3421 3422 err_get_attr: 3423 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 3424 err_enable: 3425 err_reset: 3426 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 3427 err_open: 3428 kfree(bp); 3429 err_alloc: 3430 fsl_mc_object_free(dpbp_dev); 3431 3432 return ERR_PTR(err); 3433 } 3434 3435 static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv) 3436 { 3437 struct dpaa2_eth_bp *bp; 3438 int i; 3439 3440 bp = dpaa2_eth_allocate_dpbp(priv); 3441 if (IS_ERR(bp)) 3442 return PTR_ERR(bp); 3443 3444 priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp; 3445 priv->num_bps++; 3446 3447 for (i = 0; i < priv->num_channels; i++) 3448 priv->channel[i]->bp = bp; 3449 3450 return 0; 3451 } 3452 3453 void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp) 3454 { 3455 int idx_bp; 3456 3457 /* Find the index at which this BP is stored */ 3458 for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++) 3459 if (priv->bp[idx_bp] == bp) 3460 break; 3461 3462 /* Drain the pool and disable the associated MC object */ 3463 dpaa2_eth_drain_pool(priv, bp->bpid); 3464 dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle); 3465 dpbp_close(priv->mc_io, 0, bp->dev->mc_handle); 3466 fsl_mc_object_free(bp->dev); 3467 kfree(bp); 3468 3469 /* Move the last in use DPBP over in this position */ 3470 priv->bp[idx_bp] = priv->bp[priv->num_bps - 1]; 3471 priv->num_bps--; 3472 } 3473 3474 static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv) 3475 { 3476 int i; 3477 3478 for (i = 0; i < priv->num_bps; i++) 3479 dpaa2_eth_free_dpbp(priv, priv->bp[i]); 3480 } 3481 3482 static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) 3483 { 3484 struct device *dev = priv->net_dev->dev.parent; 3485 struct dpni_buffer_layout buf_layout = {0}; 3486 u16 rx_buf_align; 3487 int err; 3488 3489 /* We need to check for WRIOP version 1.0.0, but depending on the MC 3490 * version, this number is not always provided correctly on rev1. 3491 * We need to check for both alternatives in this situation. 3492 */ 3493 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 3494 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 3495 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 3496 else 3497 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 3498 3499 /* We need to ensure that the buffer size seen by WRIOP is a multiple 3500 * of 64 or 256 bytes depending on the WRIOP version. 3501 */ 3502 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 3503 3504 /* tx buffer */ 3505 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 3506 buf_layout.pass_timestamp = true; 3507 buf_layout.pass_frame_status = true; 3508 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 3509 DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3510 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3511 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3512 DPNI_QUEUE_TX, &buf_layout); 3513 if (err) { 3514 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 3515 return err; 3516 } 3517 3518 /* tx-confirm buffer */ 3519 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3520 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3521 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3522 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 3523 if (err) { 3524 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 3525 return err; 3526 } 3527 3528 /* Now that we've set our tx buffer layout, retrieve the minimum 3529 * required tx data offset. 3530 */ 3531 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 3532 &priv->tx_data_offset); 3533 if (err) { 3534 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 3535 return err; 3536 } 3537 3538 if ((priv->tx_data_offset % 64) != 0) 3539 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 3540 priv->tx_data_offset); 3541 3542 /* rx buffer */ 3543 buf_layout.pass_frame_status = true; 3544 buf_layout.pass_parser_result = true; 3545 buf_layout.data_align = rx_buf_align; 3546 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 3547 buf_layout.private_data_size = 0; 3548 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 3549 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 3550 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 3551 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 3552 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 3553 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3554 DPNI_QUEUE_RX, &buf_layout); 3555 if (err) { 3556 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 3557 return err; 3558 } 3559 3560 return 0; 3561 } 3562 3563 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 3564 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 3565 3566 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 3567 struct dpaa2_eth_fq *fq, 3568 struct dpaa2_fd *fd, u8 prio, 3569 u32 num_frames __always_unused, 3570 int *frames_enqueued) 3571 { 3572 int err; 3573 3574 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 3575 priv->tx_qdid, prio, 3576 fq->tx_qdbin, fd); 3577 if (!err && frames_enqueued) 3578 *frames_enqueued = 1; 3579 return err; 3580 } 3581 3582 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 3583 struct dpaa2_eth_fq *fq, 3584 struct dpaa2_fd *fd, 3585 u8 prio, u32 num_frames, 3586 int *frames_enqueued) 3587 { 3588 int err; 3589 3590 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 3591 fq->tx_fqid[prio], 3592 fd, num_frames); 3593 3594 if (err == 0) 3595 return -EBUSY; 3596 3597 if (frames_enqueued) 3598 *frames_enqueued = err; 3599 return 0; 3600 } 3601 3602 static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) 3603 { 3604 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3605 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3606 priv->enqueue = dpaa2_eth_enqueue_qd; 3607 else 3608 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3609 } 3610 3611 static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) 3612 { 3613 struct device *dev = priv->net_dev->dev.parent; 3614 struct dpni_link_cfg link_cfg = {0}; 3615 int err; 3616 3617 /* Get the default link options so we don't override other flags */ 3618 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3619 if (err) { 3620 dev_err(dev, "dpni_get_link_cfg() failed\n"); 3621 return err; 3622 } 3623 3624 /* By default, enable both Rx and Tx pause frames */ 3625 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 3626 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 3627 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3628 if (err) { 3629 dev_err(dev, "dpni_set_link_cfg() failed\n"); 3630 return err; 3631 } 3632 3633 priv->link_state.options = link_cfg.options; 3634 3635 return 0; 3636 } 3637 3638 static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) 3639 { 3640 struct dpni_queue_id qid = {0}; 3641 struct dpaa2_eth_fq *fq; 3642 struct dpni_queue queue; 3643 int i, j, err; 3644 3645 /* We only use Tx FQIDs for FQID-based enqueue, so check 3646 * if DPNI version supports it before updating FQIDs 3647 */ 3648 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3649 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3650 return; 3651 3652 for (i = 0; i < priv->num_fqs; i++) { 3653 fq = &priv->fq[i]; 3654 if (fq->type != DPAA2_TX_CONF_FQ) 3655 continue; 3656 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3657 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3658 DPNI_QUEUE_TX, j, fq->flowid, 3659 &queue, &qid); 3660 if (err) 3661 goto out_err; 3662 3663 fq->tx_fqid[j] = qid.fqid; 3664 if (fq->tx_fqid[j] == 0) 3665 goto out_err; 3666 } 3667 } 3668 3669 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3670 3671 return; 3672 3673 out_err: 3674 netdev_info(priv->net_dev, 3675 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 3676 priv->enqueue = dpaa2_eth_enqueue_qd; 3677 } 3678 3679 /* Configure ingress classification based on VLAN PCP */ 3680 static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) 3681 { 3682 struct device *dev = priv->net_dev->dev.parent; 3683 struct dpkg_profile_cfg kg_cfg = {0}; 3684 struct dpni_qos_tbl_cfg qos_cfg = {0}; 3685 struct dpni_rule_cfg key_params; 3686 void *dma_mem, *key, *mask; 3687 u8 key_size = 2; /* VLAN TCI field */ 3688 int i, pcp, err; 3689 3690 /* VLAN-based classification only makes sense if we have multiple 3691 * traffic classes. 3692 * Also, we need to extract just the 3-bit PCP field from the VLAN 3693 * header and we can only do that by using a mask 3694 */ 3695 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 3696 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 3697 return -EOPNOTSUPP; 3698 } 3699 3700 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3701 if (!dma_mem) 3702 return -ENOMEM; 3703 3704 kg_cfg.num_extracts = 1; 3705 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 3706 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 3707 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 3708 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 3709 3710 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 3711 if (err) { 3712 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 3713 goto out_free_tbl; 3714 } 3715 3716 /* set QoS table */ 3717 qos_cfg.default_tc = 0; 3718 qos_cfg.discard_on_miss = 0; 3719 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 3720 DPAA2_CLASSIFIER_DMA_SIZE, 3721 DMA_TO_DEVICE); 3722 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 3723 dev_err(dev, "QoS table DMA mapping failed\n"); 3724 err = -ENOMEM; 3725 goto out_free_tbl; 3726 } 3727 3728 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 3729 if (err) { 3730 dev_err(dev, "dpni_set_qos_table failed\n"); 3731 goto out_unmap_tbl; 3732 } 3733 3734 /* Add QoS table entries */ 3735 key = kzalloc(key_size * 2, GFP_KERNEL); 3736 if (!key) { 3737 err = -ENOMEM; 3738 goto out_unmap_tbl; 3739 } 3740 mask = key + key_size; 3741 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 3742 3743 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 3744 DMA_TO_DEVICE); 3745 if (dma_mapping_error(dev, key_params.key_iova)) { 3746 dev_err(dev, "Qos table entry DMA mapping failed\n"); 3747 err = -ENOMEM; 3748 goto out_free_key; 3749 } 3750 3751 key_params.mask_iova = key_params.key_iova + key_size; 3752 key_params.key_size = key_size; 3753 3754 /* We add rules for PCP-based distribution starting with highest 3755 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 3756 * classes to accommodate all priority levels, the lowest ones end up 3757 * on TC 0 which was configured as default 3758 */ 3759 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 3760 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 3761 dma_sync_single_for_device(dev, key_params.key_iova, 3762 key_size * 2, DMA_TO_DEVICE); 3763 3764 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 3765 &key_params, i, i); 3766 if (err) { 3767 dev_err(dev, "dpni_add_qos_entry failed\n"); 3768 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 3769 goto out_unmap_key; 3770 } 3771 } 3772 3773 priv->vlan_cls_enabled = true; 3774 3775 /* Table and key memory is not persistent, clean everything up after 3776 * configuration is finished 3777 */ 3778 out_unmap_key: 3779 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 3780 out_free_key: 3781 kfree(key); 3782 out_unmap_tbl: 3783 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3784 DMA_TO_DEVICE); 3785 out_free_tbl: 3786 kfree(dma_mem); 3787 3788 return err; 3789 } 3790 3791 /* Configure the DPNI object this interface is associated with */ 3792 static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) 3793 { 3794 struct device *dev = &ls_dev->dev; 3795 struct dpaa2_eth_priv *priv; 3796 struct net_device *net_dev; 3797 int err; 3798 3799 net_dev = dev_get_drvdata(dev); 3800 priv = netdev_priv(net_dev); 3801 3802 /* get a handle for the DPNI object */ 3803 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 3804 if (err) { 3805 dev_err(dev, "dpni_open() failed\n"); 3806 return err; 3807 } 3808 3809 /* Check if we can work with this DPNI object */ 3810 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 3811 &priv->dpni_ver_minor); 3812 if (err) { 3813 dev_err(dev, "dpni_get_api_version() failed\n"); 3814 goto close; 3815 } 3816 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 3817 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 3818 priv->dpni_ver_major, priv->dpni_ver_minor, 3819 DPNI_VER_MAJOR, DPNI_VER_MINOR); 3820 err = -EOPNOTSUPP; 3821 goto close; 3822 } 3823 3824 ls_dev->mc_io = priv->mc_io; 3825 ls_dev->mc_handle = priv->mc_token; 3826 3827 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3828 if (err) { 3829 dev_err(dev, "dpni_reset() failed\n"); 3830 goto close; 3831 } 3832 3833 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 3834 &priv->dpni_attrs); 3835 if (err) { 3836 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 3837 goto close; 3838 } 3839 3840 err = dpaa2_eth_set_buffer_layout(priv); 3841 if (err) 3842 goto close; 3843 3844 dpaa2_eth_set_enqueue_mode(priv); 3845 3846 /* Enable pause frame support */ 3847 if (dpaa2_eth_has_pause_support(priv)) { 3848 err = dpaa2_eth_set_pause(priv); 3849 if (err) 3850 goto close; 3851 } 3852 3853 err = dpaa2_eth_set_vlan_qos(priv); 3854 if (err && err != -EOPNOTSUPP) 3855 goto close; 3856 3857 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 3858 sizeof(struct dpaa2_eth_cls_rule), 3859 GFP_KERNEL); 3860 if (!priv->cls_rules) { 3861 err = -ENOMEM; 3862 goto close; 3863 } 3864 3865 return 0; 3866 3867 close: 3868 dpni_close(priv->mc_io, 0, priv->mc_token); 3869 3870 return err; 3871 } 3872 3873 static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) 3874 { 3875 int err; 3876 3877 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3878 if (err) 3879 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 3880 err); 3881 3882 dpni_close(priv->mc_io, 0, priv->mc_token); 3883 } 3884 3885 static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, 3886 struct dpaa2_eth_fq *fq) 3887 { 3888 struct device *dev = priv->net_dev->dev.parent; 3889 struct dpni_queue queue; 3890 struct dpni_queue_id qid; 3891 int err; 3892 3893 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3894 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 3895 if (err) { 3896 dev_err(dev, "dpni_get_queue(RX) failed\n"); 3897 return err; 3898 } 3899 3900 fq->fqid = qid.fqid; 3901 3902 queue.destination.id = fq->channel->dpcon_id; 3903 queue.destination.type = DPNI_DEST_DPCON; 3904 queue.destination.priority = 1; 3905 queue.user_context = (u64)(uintptr_t)fq; 3906 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3907 DPNI_QUEUE_RX, fq->tc, fq->flowid, 3908 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3909 &queue); 3910 if (err) { 3911 dev_err(dev, "dpni_set_queue(RX) failed\n"); 3912 return err; 3913 } 3914 3915 /* xdp_rxq setup */ 3916 /* only once for each channel */ 3917 if (fq->tc > 0) 3918 return 0; 3919 3920 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 3921 fq->flowid, 0); 3922 if (err) { 3923 dev_err(dev, "xdp_rxq_info_reg failed\n"); 3924 return err; 3925 } 3926 3927 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 3928 MEM_TYPE_PAGE_ORDER0, NULL); 3929 if (err) { 3930 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 3931 return err; 3932 } 3933 3934 return 0; 3935 } 3936 3937 static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, 3938 struct dpaa2_eth_fq *fq) 3939 { 3940 struct device *dev = priv->net_dev->dev.parent; 3941 struct dpni_queue queue; 3942 struct dpni_queue_id qid; 3943 int i, err; 3944 3945 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3946 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3947 DPNI_QUEUE_TX, i, fq->flowid, 3948 &queue, &qid); 3949 if (err) { 3950 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3951 return err; 3952 } 3953 fq->tx_fqid[i] = qid.fqid; 3954 } 3955 3956 /* All Tx queues belonging to the same flowid have the same qdbin */ 3957 fq->tx_qdbin = qid.qdbin; 3958 3959 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3960 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3961 &queue, &qid); 3962 if (err) { 3963 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3964 return err; 3965 } 3966 3967 fq->fqid = qid.fqid; 3968 3969 queue.destination.id = fq->channel->dpcon_id; 3970 queue.destination.type = DPNI_DEST_DPCON; 3971 queue.destination.priority = 0; 3972 queue.user_context = (u64)(uintptr_t)fq; 3973 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3974 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3975 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3976 &queue); 3977 if (err) { 3978 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3979 return err; 3980 } 3981 3982 return 0; 3983 } 3984 3985 static int setup_rx_err_flow(struct dpaa2_eth_priv *priv, 3986 struct dpaa2_eth_fq *fq) 3987 { 3988 struct device *dev = priv->net_dev->dev.parent; 3989 struct dpni_queue q = { { 0 } }; 3990 struct dpni_queue_id qid; 3991 u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST; 3992 int err; 3993 3994 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3995 DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid); 3996 if (err) { 3997 dev_err(dev, "dpni_get_queue() failed (%d)\n", err); 3998 return err; 3999 } 4000 4001 fq->fqid = qid.fqid; 4002 4003 q.destination.id = fq->channel->dpcon_id; 4004 q.destination.type = DPNI_DEST_DPCON; 4005 q.destination.priority = 1; 4006 q.user_context = (u64)(uintptr_t)fq; 4007 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 4008 DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q); 4009 if (err) { 4010 dev_err(dev, "dpni_set_queue() failed (%d)\n", err); 4011 return err; 4012 } 4013 4014 return 0; 4015 } 4016 4017 /* Supported header fields for Rx hash distribution key */ 4018 static const struct dpaa2_eth_dist_fields dist_fields[] = { 4019 { 4020 /* L2 header */ 4021 .rxnfc_field = RXH_L2DA, 4022 .cls_prot = NET_PROT_ETH, 4023 .cls_field = NH_FLD_ETH_DA, 4024 .id = DPAA2_ETH_DIST_ETHDST, 4025 .size = 6, 4026 }, { 4027 .cls_prot = NET_PROT_ETH, 4028 .cls_field = NH_FLD_ETH_SA, 4029 .id = DPAA2_ETH_DIST_ETHSRC, 4030 .size = 6, 4031 }, { 4032 /* This is the last ethertype field parsed: 4033 * depending on frame format, it can be the MAC ethertype 4034 * or the VLAN etype. 4035 */ 4036 .cls_prot = NET_PROT_ETH, 4037 .cls_field = NH_FLD_ETH_TYPE, 4038 .id = DPAA2_ETH_DIST_ETHTYPE, 4039 .size = 2, 4040 }, { 4041 /* VLAN header */ 4042 .rxnfc_field = RXH_VLAN, 4043 .cls_prot = NET_PROT_VLAN, 4044 .cls_field = NH_FLD_VLAN_TCI, 4045 .id = DPAA2_ETH_DIST_VLAN, 4046 .size = 2, 4047 }, { 4048 /* IP header */ 4049 .rxnfc_field = RXH_IP_SRC, 4050 .cls_prot = NET_PROT_IP, 4051 .cls_field = NH_FLD_IP_SRC, 4052 .id = DPAA2_ETH_DIST_IPSRC, 4053 .size = 4, 4054 }, { 4055 .rxnfc_field = RXH_IP_DST, 4056 .cls_prot = NET_PROT_IP, 4057 .cls_field = NH_FLD_IP_DST, 4058 .id = DPAA2_ETH_DIST_IPDST, 4059 .size = 4, 4060 }, { 4061 .rxnfc_field = RXH_L3_PROTO, 4062 .cls_prot = NET_PROT_IP, 4063 .cls_field = NH_FLD_IP_PROTO, 4064 .id = DPAA2_ETH_DIST_IPPROTO, 4065 .size = 1, 4066 }, { 4067 /* Using UDP ports, this is functionally equivalent to raw 4068 * byte pairs from L4 header. 4069 */ 4070 .rxnfc_field = RXH_L4_B_0_1, 4071 .cls_prot = NET_PROT_UDP, 4072 .cls_field = NH_FLD_UDP_PORT_SRC, 4073 .id = DPAA2_ETH_DIST_L4SRC, 4074 .size = 2, 4075 }, { 4076 .rxnfc_field = RXH_L4_B_2_3, 4077 .cls_prot = NET_PROT_UDP, 4078 .cls_field = NH_FLD_UDP_PORT_DST, 4079 .id = DPAA2_ETH_DIST_L4DST, 4080 .size = 2, 4081 }, 4082 }; 4083 4084 /* Configure the Rx hash key using the legacy API */ 4085 static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4086 { 4087 struct device *dev = priv->net_dev->dev.parent; 4088 struct dpni_rx_tc_dist_cfg dist_cfg; 4089 int i, err = 0; 4090 4091 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4092 4093 dist_cfg.key_cfg_iova = key; 4094 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4095 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 4096 4097 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4098 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 4099 i, &dist_cfg); 4100 if (err) { 4101 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 4102 break; 4103 } 4104 } 4105 4106 return err; 4107 } 4108 4109 /* Configure the Rx hash key using the new API */ 4110 static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4111 { 4112 struct device *dev = priv->net_dev->dev.parent; 4113 struct dpni_rx_dist_cfg dist_cfg; 4114 int i, err = 0; 4115 4116 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4117 4118 dist_cfg.key_cfg_iova = key; 4119 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4120 dist_cfg.enable = 1; 4121 4122 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4123 dist_cfg.tc = i; 4124 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 4125 &dist_cfg); 4126 if (err) { 4127 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 4128 break; 4129 } 4130 4131 /* If the flow steering / hashing key is shared between all 4132 * traffic classes, install it just once 4133 */ 4134 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4135 break; 4136 } 4137 4138 return err; 4139 } 4140 4141 /* Configure the Rx flow classification key */ 4142 static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4143 { 4144 struct device *dev = priv->net_dev->dev.parent; 4145 struct dpni_rx_dist_cfg dist_cfg; 4146 int i, err = 0; 4147 4148 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4149 4150 dist_cfg.key_cfg_iova = key; 4151 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4152 dist_cfg.enable = 1; 4153 4154 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4155 dist_cfg.tc = i; 4156 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 4157 &dist_cfg); 4158 if (err) { 4159 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 4160 break; 4161 } 4162 4163 /* If the flow steering / hashing key is shared between all 4164 * traffic classes, install it just once 4165 */ 4166 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4167 break; 4168 } 4169 4170 return err; 4171 } 4172 4173 /* Size of the Rx flow classification key */ 4174 int dpaa2_eth_cls_key_size(u64 fields) 4175 { 4176 int i, size = 0; 4177 4178 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4179 if (!(fields & dist_fields[i].id)) 4180 continue; 4181 size += dist_fields[i].size; 4182 } 4183 4184 return size; 4185 } 4186 4187 /* Offset of header field in Rx classification key */ 4188 int dpaa2_eth_cls_fld_off(int prot, int field) 4189 { 4190 int i, off = 0; 4191 4192 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4193 if (dist_fields[i].cls_prot == prot && 4194 dist_fields[i].cls_field == field) 4195 return off; 4196 off += dist_fields[i].size; 4197 } 4198 4199 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 4200 return 0; 4201 } 4202 4203 /* Prune unused fields from the classification rule. 4204 * Used when masking is not supported 4205 */ 4206 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 4207 { 4208 int off = 0, new_off = 0; 4209 int i, size; 4210 4211 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4212 size = dist_fields[i].size; 4213 if (dist_fields[i].id & fields) { 4214 memcpy(key_mem + new_off, key_mem + off, size); 4215 new_off += size; 4216 } 4217 off += size; 4218 } 4219 } 4220 4221 /* Set Rx distribution (hash or flow classification) key 4222 * flags is a combination of RXH_ bits 4223 */ 4224 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 4225 enum dpaa2_eth_rx_dist type, u64 flags) 4226 { 4227 struct device *dev = net_dev->dev.parent; 4228 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4229 struct dpkg_profile_cfg cls_cfg; 4230 u32 rx_hash_fields = 0; 4231 dma_addr_t key_iova; 4232 u8 *dma_mem; 4233 int i; 4234 int err = 0; 4235 4236 memset(&cls_cfg, 0, sizeof(cls_cfg)); 4237 4238 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4239 struct dpkg_extract *key = 4240 &cls_cfg.extracts[cls_cfg.num_extracts]; 4241 4242 /* For both Rx hashing and classification keys 4243 * we set only the selected fields. 4244 */ 4245 if (!(flags & dist_fields[i].id)) 4246 continue; 4247 if (type == DPAA2_ETH_RX_DIST_HASH) 4248 rx_hash_fields |= dist_fields[i].rxnfc_field; 4249 4250 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 4251 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 4252 return -E2BIG; 4253 } 4254 4255 key->type = DPKG_EXTRACT_FROM_HDR; 4256 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 4257 key->extract.from_hdr.type = DPKG_FULL_FIELD; 4258 key->extract.from_hdr.field = dist_fields[i].cls_field; 4259 cls_cfg.num_extracts++; 4260 } 4261 4262 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 4263 if (!dma_mem) 4264 return -ENOMEM; 4265 4266 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 4267 if (err) { 4268 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 4269 goto free_key; 4270 } 4271 4272 /* Prepare for setting the rx dist */ 4273 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 4274 DMA_TO_DEVICE); 4275 if (dma_mapping_error(dev, key_iova)) { 4276 dev_err(dev, "DMA mapping failed\n"); 4277 err = -ENOMEM; 4278 goto free_key; 4279 } 4280 4281 if (type == DPAA2_ETH_RX_DIST_HASH) { 4282 if (dpaa2_eth_has_legacy_dist(priv)) 4283 err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); 4284 else 4285 err = dpaa2_eth_config_hash_key(priv, key_iova); 4286 } else { 4287 err = dpaa2_eth_config_cls_key(priv, key_iova); 4288 } 4289 4290 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 4291 DMA_TO_DEVICE); 4292 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 4293 priv->rx_hash_fields = rx_hash_fields; 4294 4295 free_key: 4296 kfree(dma_mem); 4297 return err; 4298 } 4299 4300 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 4301 { 4302 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4303 u64 key = 0; 4304 int i; 4305 4306 if (!dpaa2_eth_hash_enabled(priv)) 4307 return -EOPNOTSUPP; 4308 4309 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 4310 if (dist_fields[i].rxnfc_field & flags) 4311 key |= dist_fields[i].id; 4312 4313 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 4314 } 4315 4316 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 4317 { 4318 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 4319 } 4320 4321 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 4322 { 4323 struct device *dev = priv->net_dev->dev.parent; 4324 int err; 4325 4326 /* Check if we actually support Rx flow classification */ 4327 if (dpaa2_eth_has_legacy_dist(priv)) { 4328 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 4329 return -EOPNOTSUPP; 4330 } 4331 4332 if (!dpaa2_eth_fs_enabled(priv)) { 4333 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 4334 return -EOPNOTSUPP; 4335 } 4336 4337 if (!dpaa2_eth_hash_enabled(priv)) { 4338 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 4339 return -EOPNOTSUPP; 4340 } 4341 4342 /* If there is no support for masking in the classification table, 4343 * we don't set a default key, as it will depend on the rules 4344 * added by the user at runtime. 4345 */ 4346 if (!dpaa2_eth_fs_mask_enabled(priv)) 4347 goto out; 4348 4349 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 4350 if (err) 4351 return err; 4352 4353 out: 4354 priv->rx_cls_enabled = 1; 4355 4356 return 0; 4357 } 4358 4359 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 4360 * frame queues and channels 4361 */ 4362 static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) 4363 { 4364 struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX]; 4365 struct net_device *net_dev = priv->net_dev; 4366 struct dpni_pools_cfg pools_params = { 0 }; 4367 struct device *dev = net_dev->dev.parent; 4368 struct dpni_error_cfg err_cfg; 4369 int err = 0; 4370 int i; 4371 4372 pools_params.num_dpbp = 1; 4373 pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id; 4374 pools_params.pools[0].backup_pool = 0; 4375 pools_params.pools[0].buffer_size = priv->rx_buf_size; 4376 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 4377 if (err) { 4378 dev_err(dev, "dpni_set_pools() failed\n"); 4379 return err; 4380 } 4381 4382 /* have the interface implicitly distribute traffic based on 4383 * the default hash key 4384 */ 4385 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 4386 if (err && err != -EOPNOTSUPP) 4387 dev_err(dev, "Failed to configure hashing\n"); 4388 4389 /* Configure the flow classification key; it includes all 4390 * supported header fields and cannot be modified at runtime 4391 */ 4392 err = dpaa2_eth_set_default_cls(priv); 4393 if (err && err != -EOPNOTSUPP) 4394 dev_err(dev, "Failed to configure Rx classification key\n"); 4395 4396 /* Configure handling of error frames */ 4397 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 4398 err_cfg.set_frame_annotation = 1; 4399 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 4400 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 4401 &err_cfg); 4402 if (err) { 4403 dev_err(dev, "dpni_set_errors_behavior failed\n"); 4404 return err; 4405 } 4406 4407 /* Configure Rx and Tx conf queues to generate CDANs */ 4408 for (i = 0; i < priv->num_fqs; i++) { 4409 switch (priv->fq[i].type) { 4410 case DPAA2_RX_FQ: 4411 err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); 4412 break; 4413 case DPAA2_TX_CONF_FQ: 4414 err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); 4415 break; 4416 case DPAA2_RX_ERR_FQ: 4417 err = setup_rx_err_flow(priv, &priv->fq[i]); 4418 break; 4419 default: 4420 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 4421 return -EINVAL; 4422 } 4423 if (err) 4424 return err; 4425 } 4426 4427 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 4428 DPNI_QUEUE_TX, &priv->tx_qdid); 4429 if (err) { 4430 dev_err(dev, "dpni_get_qdid() failed\n"); 4431 return err; 4432 } 4433 4434 return 0; 4435 } 4436 4437 /* Allocate rings for storing incoming frame descriptors */ 4438 static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) 4439 { 4440 struct net_device *net_dev = priv->net_dev; 4441 struct device *dev = net_dev->dev.parent; 4442 int i; 4443 4444 for (i = 0; i < priv->num_channels; i++) { 4445 priv->channel[i]->store = 4446 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 4447 if (!priv->channel[i]->store) { 4448 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 4449 goto err_ring; 4450 } 4451 } 4452 4453 return 0; 4454 4455 err_ring: 4456 for (i = 0; i < priv->num_channels; i++) { 4457 if (!priv->channel[i]->store) 4458 break; 4459 dpaa2_io_store_destroy(priv->channel[i]->store); 4460 } 4461 4462 return -ENOMEM; 4463 } 4464 4465 static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) 4466 { 4467 int i; 4468 4469 for (i = 0; i < priv->num_channels; i++) 4470 dpaa2_io_store_destroy(priv->channel[i]->store); 4471 } 4472 4473 static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) 4474 { 4475 struct net_device *net_dev = priv->net_dev; 4476 struct device *dev = net_dev->dev.parent; 4477 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 4478 int err; 4479 4480 /* Get firmware address, if any */ 4481 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 4482 if (err) { 4483 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 4484 return err; 4485 } 4486 4487 /* Get DPNI attributes address, if any */ 4488 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4489 dpni_mac_addr); 4490 if (err) { 4491 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 4492 return err; 4493 } 4494 4495 /* First check if firmware has any address configured by bootloader */ 4496 if (!is_zero_ether_addr(mac_addr)) { 4497 /* If the DPMAC addr != DPNI addr, update it */ 4498 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 4499 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 4500 priv->mc_token, 4501 mac_addr); 4502 if (err) { 4503 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4504 return err; 4505 } 4506 } 4507 eth_hw_addr_set(net_dev, mac_addr); 4508 } else if (is_zero_ether_addr(dpni_mac_addr)) { 4509 /* No MAC address configured, fill in net_dev->dev_addr 4510 * with a random one 4511 */ 4512 eth_hw_addr_random(net_dev); 4513 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 4514 4515 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4516 net_dev->dev_addr); 4517 if (err) { 4518 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4519 return err; 4520 } 4521 4522 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 4523 * practical purposes, this will be our "permanent" mac address, 4524 * at least until the next reboot. This move will also permit 4525 * register_netdevice() to properly fill up net_dev->perm_addr. 4526 */ 4527 net_dev->addr_assign_type = NET_ADDR_PERM; 4528 } else { 4529 /* NET_ADDR_PERM is default, all we have to do is 4530 * fill in the device addr. 4531 */ 4532 eth_hw_addr_set(net_dev, dpni_mac_addr); 4533 } 4534 4535 return 0; 4536 } 4537 4538 static int dpaa2_eth_netdev_init(struct net_device *net_dev) 4539 { 4540 struct device *dev = net_dev->dev.parent; 4541 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4542 u32 options = priv->dpni_attrs.options; 4543 u64 supported = 0, not_supported = 0; 4544 u8 bcast_addr[ETH_ALEN]; 4545 u8 num_queues; 4546 int err; 4547 4548 net_dev->netdev_ops = &dpaa2_eth_ops; 4549 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 4550 4551 err = dpaa2_eth_set_mac_addr(priv); 4552 if (err) 4553 return err; 4554 4555 /* Explicitly add the broadcast address to the MAC filtering table */ 4556 eth_broadcast_addr(bcast_addr); 4557 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 4558 if (err) { 4559 dev_err(dev, "dpni_add_mac_addr() failed\n"); 4560 return err; 4561 } 4562 4563 /* Set MTU upper limit; lower limit is 68B (default value) */ 4564 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 4565 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 4566 DPAA2_ETH_MFL); 4567 if (err) { 4568 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 4569 return err; 4570 } 4571 4572 /* Set actual number of queues in the net device */ 4573 num_queues = dpaa2_eth_queue_count(priv); 4574 err = netif_set_real_num_tx_queues(net_dev, num_queues); 4575 if (err) { 4576 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 4577 return err; 4578 } 4579 err = netif_set_real_num_rx_queues(net_dev, num_queues); 4580 if (err) { 4581 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 4582 return err; 4583 } 4584 4585 dpaa2_eth_detect_features(priv); 4586 4587 /* Capabilities listing */ 4588 supported |= IFF_LIVE_ADDR_CHANGE; 4589 4590 if (options & DPNI_OPT_NO_MAC_FILTER) 4591 not_supported |= IFF_UNICAST_FLT; 4592 else 4593 supported |= IFF_UNICAST_FLT; 4594 4595 net_dev->priv_flags |= supported; 4596 net_dev->priv_flags &= ~not_supported; 4597 4598 /* Features */ 4599 net_dev->features = NETIF_F_RXCSUM | 4600 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4601 NETIF_F_SG | NETIF_F_HIGHDMA | 4602 NETIF_F_LLTX | NETIF_F_HW_TC | NETIF_F_TSO; 4603 net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS; 4604 net_dev->hw_features = net_dev->features; 4605 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 4606 NETDEV_XDP_ACT_REDIRECT | 4607 NETDEV_XDP_ACT_NDO_XMIT; 4608 if (priv->dpni_attrs.wriop_version >= DPAA2_WRIOP_VERSION(3, 0, 0) && 4609 priv->dpni_attrs.num_queues <= 8) 4610 net_dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; 4611 4612 if (priv->dpni_attrs.vlan_filter_entries) 4613 net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4614 4615 return 0; 4616 } 4617 4618 static int dpaa2_eth_poll_link_state(void *arg) 4619 { 4620 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 4621 int err; 4622 4623 while (!kthread_should_stop()) { 4624 err = dpaa2_eth_link_state_update(priv); 4625 if (unlikely(err)) 4626 return err; 4627 4628 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 4629 } 4630 4631 return 0; 4632 } 4633 4634 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 4635 { 4636 struct fsl_mc_device *dpni_dev, *dpmac_dev; 4637 struct dpaa2_mac *mac; 4638 int err; 4639 4640 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 4641 dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0); 4642 4643 if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) { 4644 netdev_dbg(priv->net_dev, "waiting for mac\n"); 4645 return PTR_ERR(dpmac_dev); 4646 } 4647 4648 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 4649 return 0; 4650 4651 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 4652 if (!mac) 4653 return -ENOMEM; 4654 4655 mac->mc_dev = dpmac_dev; 4656 mac->mc_io = priv->mc_io; 4657 mac->net_dev = priv->net_dev; 4658 4659 err = dpaa2_mac_open(mac); 4660 if (err) 4661 goto err_free_mac; 4662 4663 if (dpaa2_mac_is_type_phy(mac)) { 4664 err = dpaa2_mac_connect(mac); 4665 if (err) { 4666 if (err == -EPROBE_DEFER) 4667 netdev_dbg(priv->net_dev, 4668 "could not connect to MAC\n"); 4669 else 4670 netdev_err(priv->net_dev, 4671 "Error connecting to the MAC endpoint: %pe", 4672 ERR_PTR(err)); 4673 goto err_close_mac; 4674 } 4675 } 4676 4677 mutex_lock(&priv->mac_lock); 4678 priv->mac = mac; 4679 mutex_unlock(&priv->mac_lock); 4680 4681 return 0; 4682 4683 err_close_mac: 4684 dpaa2_mac_close(mac); 4685 err_free_mac: 4686 kfree(mac); 4687 return err; 4688 } 4689 4690 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 4691 { 4692 struct dpaa2_mac *mac; 4693 4694 mutex_lock(&priv->mac_lock); 4695 mac = priv->mac; 4696 priv->mac = NULL; 4697 mutex_unlock(&priv->mac_lock); 4698 4699 if (!mac) 4700 return; 4701 4702 if (dpaa2_mac_is_type_phy(mac)) 4703 dpaa2_mac_disconnect(mac); 4704 4705 dpaa2_mac_close(mac); 4706 kfree(mac); 4707 } 4708 4709 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 4710 { 4711 u32 status = ~0; 4712 struct device *dev = (struct device *)arg; 4713 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 4714 struct net_device *net_dev = dev_get_drvdata(dev); 4715 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4716 bool had_mac; 4717 int err; 4718 4719 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 4720 DPNI_IRQ_INDEX, &status); 4721 if (unlikely(err)) { 4722 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 4723 return IRQ_HANDLED; 4724 } 4725 4726 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 4727 dpaa2_eth_link_state_update(netdev_priv(net_dev)); 4728 4729 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 4730 dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); 4731 dpaa2_eth_update_tx_fqids(priv); 4732 4733 /* We can avoid locking because the "endpoint changed" IRQ 4734 * handler is the only one who changes priv->mac at runtime, 4735 * so we are not racing with anyone. 4736 */ 4737 had_mac = !!priv->mac; 4738 if (had_mac) 4739 dpaa2_eth_disconnect_mac(priv); 4740 else 4741 dpaa2_eth_connect_mac(priv); 4742 } 4743 4744 return IRQ_HANDLED; 4745 } 4746 4747 static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) 4748 { 4749 int err = 0; 4750 struct fsl_mc_device_irq *irq; 4751 4752 err = fsl_mc_allocate_irqs(ls_dev); 4753 if (err) { 4754 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 4755 return err; 4756 } 4757 4758 irq = ls_dev->irqs[0]; 4759 err = devm_request_threaded_irq(&ls_dev->dev, irq->virq, 4760 NULL, dpni_irq0_handler_thread, 4761 IRQF_NO_SUSPEND | IRQF_ONESHOT, 4762 dev_name(&ls_dev->dev), &ls_dev->dev); 4763 if (err < 0) { 4764 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 4765 goto free_mc_irq; 4766 } 4767 4768 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 4769 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 4770 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 4771 if (err < 0) { 4772 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 4773 goto free_irq; 4774 } 4775 4776 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 4777 DPNI_IRQ_INDEX, 1); 4778 if (err < 0) { 4779 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 4780 goto free_irq; 4781 } 4782 4783 return 0; 4784 4785 free_irq: 4786 devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev); 4787 free_mc_irq: 4788 fsl_mc_free_irqs(ls_dev); 4789 4790 return err; 4791 } 4792 4793 static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) 4794 { 4795 int i; 4796 struct dpaa2_eth_channel *ch; 4797 4798 for (i = 0; i < priv->num_channels; i++) { 4799 ch = priv->channel[i]; 4800 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 4801 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll); 4802 } 4803 } 4804 4805 static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) 4806 { 4807 int i; 4808 struct dpaa2_eth_channel *ch; 4809 4810 for (i = 0; i < priv->num_channels; i++) { 4811 ch = priv->channel[i]; 4812 netif_napi_del(&ch->napi); 4813 } 4814 } 4815 4816 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 4817 { 4818 struct device *dev; 4819 struct net_device *net_dev = NULL; 4820 struct dpaa2_eth_priv *priv = NULL; 4821 int err = 0; 4822 4823 dev = &dpni_dev->dev; 4824 4825 /* Net device */ 4826 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 4827 if (!net_dev) { 4828 dev_err(dev, "alloc_etherdev_mq() failed\n"); 4829 return -ENOMEM; 4830 } 4831 4832 SET_NETDEV_DEV(net_dev, dev); 4833 dev_set_drvdata(dev, net_dev); 4834 4835 priv = netdev_priv(net_dev); 4836 priv->net_dev = net_dev; 4837 SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port); 4838 4839 mutex_init(&priv->mac_lock); 4840 4841 priv->iommu_domain = iommu_get_domain_for_dev(dev); 4842 4843 priv->tx_tstamp_type = HWTSTAMP_TX_OFF; 4844 priv->rx_tstamp = false; 4845 4846 priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0); 4847 if (!priv->dpaa2_ptp_wq) { 4848 err = -ENOMEM; 4849 goto err_wq_alloc; 4850 } 4851 4852 INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); 4853 mutex_init(&priv->onestep_tstamp_lock); 4854 skb_queue_head_init(&priv->tx_skbs); 4855 4856 priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK; 4857 4858 /* Obtain a MC portal */ 4859 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 4860 &priv->mc_io); 4861 if (err) { 4862 if (err == -ENXIO) { 4863 dev_dbg(dev, "waiting for MC portal\n"); 4864 err = -EPROBE_DEFER; 4865 } else { 4866 dev_err(dev, "MC portal allocation failed\n"); 4867 } 4868 goto err_portal_alloc; 4869 } 4870 4871 /* MC objects initialization and configuration */ 4872 err = dpaa2_eth_setup_dpni(dpni_dev); 4873 if (err) 4874 goto err_dpni_setup; 4875 4876 err = dpaa2_eth_setup_dpio(priv); 4877 if (err) 4878 goto err_dpio_setup; 4879 4880 dpaa2_eth_setup_fqs(priv); 4881 4882 err = dpaa2_eth_setup_default_dpbp(priv); 4883 if (err) 4884 goto err_dpbp_setup; 4885 4886 err = dpaa2_eth_bind_dpni(priv); 4887 if (err) 4888 goto err_bind; 4889 4890 /* Add a NAPI context for each channel */ 4891 dpaa2_eth_add_ch_napi(priv); 4892 4893 /* Percpu statistics */ 4894 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 4895 if (!priv->percpu_stats) { 4896 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 4897 err = -ENOMEM; 4898 goto err_alloc_percpu_stats; 4899 } 4900 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 4901 if (!priv->percpu_extras) { 4902 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 4903 err = -ENOMEM; 4904 goto err_alloc_percpu_extras; 4905 } 4906 4907 priv->sgt_cache = alloc_percpu(*priv->sgt_cache); 4908 if (!priv->sgt_cache) { 4909 dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); 4910 err = -ENOMEM; 4911 goto err_alloc_sgt_cache; 4912 } 4913 4914 priv->fd = alloc_percpu(*priv->fd); 4915 if (!priv->fd) { 4916 dev_err(dev, "alloc_percpu(fds) failed\n"); 4917 err = -ENOMEM; 4918 goto err_alloc_fds; 4919 } 4920 4921 err = dpaa2_eth_netdev_init(net_dev); 4922 if (err) 4923 goto err_netdev_init; 4924 4925 /* Configure checksum offload based on current interface flags */ 4926 err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 4927 if (err) 4928 goto err_csum; 4929 4930 err = dpaa2_eth_set_tx_csum(priv, 4931 !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 4932 if (err) 4933 goto err_csum; 4934 4935 err = dpaa2_eth_alloc_rings(priv); 4936 if (err) 4937 goto err_alloc_rings; 4938 4939 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 4940 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 4941 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 4942 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 4943 } else { 4944 dev_dbg(dev, "PFC not supported\n"); 4945 } 4946 #endif 4947 4948 err = dpaa2_eth_connect_mac(priv); 4949 if (err) 4950 goto err_connect_mac; 4951 4952 err = dpaa2_eth_setup_irqs(dpni_dev); 4953 if (err) { 4954 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 4955 priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, 4956 "%s_poll_link", net_dev->name); 4957 if (IS_ERR(priv->poll_thread)) { 4958 dev_err(dev, "Error starting polling thread\n"); 4959 goto err_poll_thread; 4960 } 4961 priv->do_link_poll = true; 4962 } 4963 4964 err = dpaa2_eth_dl_alloc(priv); 4965 if (err) 4966 goto err_dl_register; 4967 4968 err = dpaa2_eth_dl_traps_register(priv); 4969 if (err) 4970 goto err_dl_trap_register; 4971 4972 err = dpaa2_eth_dl_port_add(priv); 4973 if (err) 4974 goto err_dl_port_add; 4975 4976 net_dev->needed_headroom = DPAA2_ETH_SWA_SIZE + DPAA2_ETH_TX_BUF_ALIGN; 4977 4978 err = register_netdev(net_dev); 4979 if (err < 0) { 4980 dev_err(dev, "register_netdev() failed\n"); 4981 goto err_netdev_reg; 4982 } 4983 4984 #ifdef CONFIG_DEBUG_FS 4985 dpaa2_dbg_add(priv); 4986 #endif 4987 4988 dpaa2_eth_dl_register(priv); 4989 dev_info(dev, "Probed interface %s\n", net_dev->name); 4990 return 0; 4991 4992 err_netdev_reg: 4993 dpaa2_eth_dl_port_del(priv); 4994 err_dl_port_add: 4995 dpaa2_eth_dl_traps_unregister(priv); 4996 err_dl_trap_register: 4997 dpaa2_eth_dl_free(priv); 4998 err_dl_register: 4999 if (priv->do_link_poll) 5000 kthread_stop(priv->poll_thread); 5001 else 5002 fsl_mc_free_irqs(dpni_dev); 5003 err_poll_thread: 5004 dpaa2_eth_disconnect_mac(priv); 5005 err_connect_mac: 5006 dpaa2_eth_free_rings(priv); 5007 err_alloc_rings: 5008 err_csum: 5009 err_netdev_init: 5010 free_percpu(priv->fd); 5011 err_alloc_fds: 5012 free_percpu(priv->sgt_cache); 5013 err_alloc_sgt_cache: 5014 free_percpu(priv->percpu_extras); 5015 err_alloc_percpu_extras: 5016 free_percpu(priv->percpu_stats); 5017 err_alloc_percpu_stats: 5018 dpaa2_eth_del_ch_napi(priv); 5019 err_bind: 5020 dpaa2_eth_free_dpbps(priv); 5021 err_dpbp_setup: 5022 dpaa2_eth_free_dpio(priv); 5023 err_dpio_setup: 5024 dpaa2_eth_free_dpni(priv); 5025 err_dpni_setup: 5026 fsl_mc_portal_free(priv->mc_io); 5027 err_portal_alloc: 5028 destroy_workqueue(priv->dpaa2_ptp_wq); 5029 err_wq_alloc: 5030 dev_set_drvdata(dev, NULL); 5031 free_netdev(net_dev); 5032 5033 return err; 5034 } 5035 5036 static void dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 5037 { 5038 struct device *dev; 5039 struct net_device *net_dev; 5040 struct dpaa2_eth_priv *priv; 5041 5042 dev = &ls_dev->dev; 5043 net_dev = dev_get_drvdata(dev); 5044 priv = netdev_priv(net_dev); 5045 5046 dpaa2_eth_dl_unregister(priv); 5047 5048 #ifdef CONFIG_DEBUG_FS 5049 dpaa2_dbg_remove(priv); 5050 #endif 5051 5052 unregister_netdev(net_dev); 5053 5054 dpaa2_eth_dl_port_del(priv); 5055 dpaa2_eth_dl_traps_unregister(priv); 5056 dpaa2_eth_dl_free(priv); 5057 5058 if (priv->do_link_poll) 5059 kthread_stop(priv->poll_thread); 5060 else 5061 fsl_mc_free_irqs(ls_dev); 5062 5063 dpaa2_eth_disconnect_mac(priv); 5064 dpaa2_eth_free_rings(priv); 5065 free_percpu(priv->fd); 5066 free_percpu(priv->sgt_cache); 5067 free_percpu(priv->percpu_stats); 5068 free_percpu(priv->percpu_extras); 5069 5070 dpaa2_eth_del_ch_napi(priv); 5071 dpaa2_eth_free_dpbps(priv); 5072 dpaa2_eth_free_dpio(priv); 5073 dpaa2_eth_free_dpni(priv); 5074 if (priv->onestep_reg_base) 5075 iounmap(priv->onestep_reg_base); 5076 5077 fsl_mc_portal_free(priv->mc_io); 5078 5079 destroy_workqueue(priv->dpaa2_ptp_wq); 5080 5081 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 5082 5083 free_netdev(net_dev); 5084 } 5085 5086 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 5087 { 5088 .vendor = FSL_MC_VENDOR_FREESCALE, 5089 .obj_type = "dpni", 5090 }, 5091 { .vendor = 0x0 } 5092 }; 5093 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 5094 5095 static struct fsl_mc_driver dpaa2_eth_driver = { 5096 .driver = { 5097 .name = KBUILD_MODNAME, 5098 }, 5099 .probe = dpaa2_eth_probe, 5100 .remove = dpaa2_eth_remove, 5101 .match_id_table = dpaa2_eth_match_id_table 5102 }; 5103 5104 static int __init dpaa2_eth_driver_init(void) 5105 { 5106 int err; 5107 5108 dpaa2_eth_dbg_init(); 5109 err = fsl_mc_driver_register(&dpaa2_eth_driver); 5110 if (err) { 5111 dpaa2_eth_dbg_exit(); 5112 return err; 5113 } 5114 5115 return 0; 5116 } 5117 5118 static void __exit dpaa2_eth_driver_exit(void) 5119 { 5120 dpaa2_eth_dbg_exit(); 5121 fsl_mc_driver_unregister(&dpaa2_eth_driver); 5122 } 5123 5124 module_init(dpaa2_eth_driver_init); 5125 module_exit(dpaa2_eth_driver_exit); 5126