xref: /linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <soc/fsl/bman.h>
35 #include <soc/fsl/qman.h>
36 #include "fman.h"
37 #include "fman_port.h"
38 #include "mac.h"
39 #include "dpaa_eth.h"
40 
41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
42  * using trace events only need to #include <trace/events/sched.h>
43  */
44 #define CREATE_TRACE_POINTS
45 #include "dpaa_eth_trace.h"
46 
47 static int debug = -1;
48 module_param(debug, int, 0444);
49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
50 
51 static u16 tx_timeout = 1000;
52 module_param(tx_timeout, ushort, 0444);
53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
54 
55 #define FM_FD_STAT_RX_ERRORS						\
56 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
57 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
58 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
59 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
60 	 FM_FD_ERR_PRS_HDR_ERR)
61 
62 #define FM_FD_STAT_TX_ERRORS \
63 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
64 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
65 
66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
67 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
68 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
69 
70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
71 /* Ingress congestion threshold on FMan ports
72  * The size in bytes of the ingress tail-drop threshold on FMan ports.
73  * Traffic piling up above this value will be rejected by QMan and discarded
74  * by FMan.
75  */
76 
77 /* Size in bytes of the FQ taildrop threshold */
78 #define DPAA_FQ_TD 0x200000
79 
80 #define DPAA_CS_THRESHOLD_1G 0x06000000
81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
82  * The size in bytes of the egress Congestion State notification threshold on
83  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
84  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
85  * and the larger the frame size, the more acute the problem.
86  * So we have to find a balance between these factors:
87  * - avoiding the device staying congested for a prolonged time (risking
88  *   the netdev watchdog to fire - see also the tx_timeout module param);
89  * - affecting performance of protocols such as TCP, which otherwise
90  *   behave well under the congestion notification mechanism;
91  * - preventing the Tx cores from tightly-looping (as if the congestion
92  *   threshold was too low to be effective);
93  * - running out of memory if the CS threshold is set too high.
94  */
95 
96 #define DPAA_CS_THRESHOLD_10G 0x10000000
97 /* The size in bytes of the egress Congestion State notification threshold on
98  * 10G ports, range 0x1000 .. 0x10000000
99  */
100 
101 /* Largest value that the FQD's OAL field can hold */
102 #define FSL_QMAN_MAX_OAL	127
103 
104 /* Default alignment for start of data in an Rx FD */
105 #ifdef CONFIG_DPAA_ERRATUM_A050385
106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
107  * is crossing a 4k page boundary
108  */
109 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
111  * crossings; also, all SG fragments except the last must have a size multiple
112  * of 256 to avoid DMA transaction splits
113  */
114 #define DPAA_A050385_ALIGN 256
115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
116 				   DPAA_A050385_ALIGN : 16)
117 #else
118 #define DPAA_FD_DATA_ALIGNMENT  16
119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
120 #endif
121 
122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
123 #define DPAA_SGT_SIZE 256
124 
125 /* Values for the L3R field of the FM Parse Results
126  */
127 /* L3 Type field: First IP Present IPv4 */
128 #define FM_L3_PARSE_RESULT_IPV4	0x8000
129 /* L3 Type field: First IP Present IPv6 */
130 #define FM_L3_PARSE_RESULT_IPV6	0x4000
131 /* Values for the L4R field of the FM Parse Results */
132 /* L4 Type field: UDP */
133 #define FM_L4_PARSE_RESULT_UDP	0x40
134 /* L4 Type field: TCP */
135 #define FM_L4_PARSE_RESULT_TCP	0x20
136 
137 /* FD status field indicating whether the FM Parser has attempted to validate
138  * the L4 csum of the frame.
139  * Note that having this bit set doesn't necessarily imply that the checksum
140  * is valid. One would have to check the parse results to find that out.
141  */
142 #define FM_FD_STAT_L4CV         0x00000004
143 
144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
146 
147 #define FSL_DPAA_BPID_INV		0xff
148 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
149 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
150 
151 #define DPAA_TX_PRIV_DATA_SIZE	16
152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
153 #define DPAA_TIME_STAMP_SIZE 8
154 #define DPAA_HASH_RESULTS_SIZE 8
155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
156 		       + DPAA_HASH_RESULTS_SIZE)
157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
158 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
159 #ifdef CONFIG_DPAA_ERRATUM_A050385
160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
162 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
163 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
164 #else
165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
166 #endif
167 
168 #define DPAA_ETH_PCD_RXQ_NUM	128
169 
170 #define DPAA_ENQUEUE_RETRIES	100000
171 
172 enum port_type {RX, TX};
173 
174 struct fm_port_fqs {
175 	struct dpaa_fq *tx_defq;
176 	struct dpaa_fq *tx_errq;
177 	struct dpaa_fq *rx_defq;
178 	struct dpaa_fq *rx_errq;
179 	struct dpaa_fq *rx_pcdq;
180 };
181 
182 /* All the dpa bps in use at any moment */
183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
184 
185 #define DPAA_BP_RAW_SIZE 4096
186 
187 #ifdef CONFIG_DPAA_ERRATUM_A050385
188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
189 				~(DPAA_A050385_ALIGN - 1))
190 #else
191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
192 #endif
193 
194 static int dpaa_max_frm;
195 
196 static int dpaa_rx_extra_headroom;
197 
198 #define dpaa_get_max_mtu()	\
199 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
200 
201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
202 
203 static int dpaa_netdev_init(struct net_device *net_dev,
204 			    const struct net_device_ops *dpaa_ops,
205 			    u16 tx_timeout)
206 {
207 	struct dpaa_priv *priv = netdev_priv(net_dev);
208 	struct device *dev = net_dev->dev.parent;
209 	struct mac_device *mac_dev = priv->mac_dev;
210 	struct dpaa_percpu_priv *percpu_priv;
211 	const u8 *mac_addr;
212 	int i, err;
213 
214 	/* Although we access another CPU's private data here
215 	 * we do it at initialization so it is safe
216 	 */
217 	for_each_possible_cpu(i) {
218 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
219 		percpu_priv->net_dev = net_dev;
220 	}
221 
222 	net_dev->netdev_ops = dpaa_ops;
223 	mac_addr = mac_dev->addr;
224 
225 	net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
226 	net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
227 
228 	net_dev->min_mtu = ETH_MIN_MTU;
229 	net_dev->max_mtu = dpaa_get_max_mtu();
230 
231 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
232 				 NETIF_F_RXHASH);
233 
234 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
235 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
236 	 * For conformity, we'll still declare GSO explicitly.
237 	 */
238 	net_dev->features |= NETIF_F_GSO;
239 	net_dev->features |= NETIF_F_RXCSUM;
240 
241 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
242 	net_dev->lltx = true;
243 	/* we do not want shared skbs on TX */
244 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
245 
246 	net_dev->features |= net_dev->hw_features;
247 	net_dev->vlan_features = net_dev->features;
248 
249 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
250 				NETDEV_XDP_ACT_REDIRECT |
251 				NETDEV_XDP_ACT_NDO_XMIT;
252 
253 	if (is_valid_ether_addr(mac_addr)) {
254 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255 		eth_hw_addr_set(net_dev, mac_addr);
256 	} else {
257 		eth_hw_addr_random(net_dev);
258 		err = mac_dev->change_addr(mac_dev->fman_mac,
259 			(const enet_addr_t *)net_dev->dev_addr);
260 		if (err) {
261 			dev_err(dev, "Failed to set random MAC address\n");
262 			return -EINVAL;
263 		}
264 		dev_info(dev, "Using random MAC address: %pM\n",
265 			 net_dev->dev_addr);
266 	}
267 
268 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
269 
270 	net_dev->needed_headroom = priv->tx_headroom;
271 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
272 
273 	/* The rest of the config is filled in by the mac device already */
274 	mac_dev->phylink_config.dev = &net_dev->dev;
275 	mac_dev->phylink_config.type = PHYLINK_NETDEV;
276 	mac_dev->update_speed = dpaa_eth_cgr_set_speed;
277 	mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
278 					  dev_fwnode(mac_dev->dev),
279 					  mac_dev->phy_if,
280 					  mac_dev->phylink_ops);
281 	if (IS_ERR(mac_dev->phylink)) {
282 		err = PTR_ERR(mac_dev->phylink);
283 		dev_err_probe(dev, err, "Could not create phylink\n");
284 		return err;
285 	}
286 
287 	/* start without the RUNNING flag, phylib controls it later */
288 	netif_carrier_off(net_dev);
289 
290 	err = register_netdev(net_dev);
291 	if (err < 0) {
292 		dev_err(dev, "register_netdev() = %d\n", err);
293 		phylink_destroy(mac_dev->phylink);
294 		return err;
295 	}
296 
297 	return 0;
298 }
299 
300 static int dpaa_stop(struct net_device *net_dev)
301 {
302 	struct mac_device *mac_dev;
303 	struct dpaa_priv *priv;
304 	int i, error;
305 	int err = 0;
306 
307 	priv = netdev_priv(net_dev);
308 	mac_dev = priv->mac_dev;
309 
310 	netif_tx_stop_all_queues(net_dev);
311 	/* Allow the Fman (Tx) port to process in-flight frames before we
312 	 * try switching it off.
313 	 */
314 	msleep(200);
315 
316 	phylink_stop(mac_dev->phylink);
317 	mac_dev->disable(mac_dev->fman_mac);
318 
319 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320 		error = fman_port_disable(mac_dev->port[i]);
321 		if (error)
322 			err = error;
323 	}
324 
325 	phylink_disconnect_phy(mac_dev->phylink);
326 	net_dev->phydev = NULL;
327 
328 	msleep(200);
329 
330 	return err;
331 }
332 
333 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
334 {
335 	struct dpaa_percpu_priv *percpu_priv;
336 	const struct dpaa_priv	*priv;
337 
338 	priv = netdev_priv(net_dev);
339 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
340 
341 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
342 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
343 
344 	percpu_priv->stats.tx_errors++;
345 }
346 
347 /* Calculates the statistics for the given device by adding the statistics
348  * collected by each CPU.
349  */
350 static void dpaa_get_stats64(struct net_device *net_dev,
351 			     struct rtnl_link_stats64 *s)
352 {
353 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
354 	struct dpaa_priv *priv = netdev_priv(net_dev);
355 	struct dpaa_percpu_priv *percpu_priv;
356 	u64 *netstats = (u64 *)s;
357 	u64 *cpustats;
358 	int i, j;
359 
360 	for_each_possible_cpu(i) {
361 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
362 
363 		cpustats = (u64 *)&percpu_priv->stats;
364 
365 		/* add stats from all CPUs */
366 		for (j = 0; j < numstats; j++)
367 			netstats[j] += cpustats[j];
368 	}
369 }
370 
371 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
372 			 void *type_data)
373 {
374 	struct dpaa_priv *priv = netdev_priv(net_dev);
375 	int num_txqs_per_tc = dpaa_num_txqs_per_tc();
376 	struct tc_mqprio_qopt *mqprio = type_data;
377 	u8 num_tc;
378 	int i;
379 
380 	if (type != TC_SETUP_QDISC_MQPRIO)
381 		return -EOPNOTSUPP;
382 
383 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384 	num_tc = mqprio->num_tc;
385 
386 	if (num_tc == priv->num_tc)
387 		return 0;
388 
389 	if (!num_tc) {
390 		netdev_reset_tc(net_dev);
391 		goto out;
392 	}
393 
394 	if (num_tc > DPAA_TC_NUM) {
395 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396 			   DPAA_TC_NUM);
397 		return -EINVAL;
398 	}
399 
400 	netdev_set_num_tc(net_dev, num_tc);
401 
402 	for (i = 0; i < num_tc; i++)
403 		netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
404 				    i * num_txqs_per_tc);
405 
406 out:
407 	priv->num_tc = num_tc ? : 1;
408 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
409 	return 0;
410 }
411 
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413 {
414 	struct dpaa_eth_data *eth_data;
415 	struct device *dpaa_dev;
416 	struct mac_device *mac_dev;
417 
418 	dpaa_dev = &pdev->dev;
419 	eth_data = dpaa_dev->platform_data;
420 	if (!eth_data) {
421 		dev_err(dpaa_dev, "eth_data missing\n");
422 		return ERR_PTR(-ENODEV);
423 	}
424 	mac_dev = eth_data->mac_dev;
425 	if (!mac_dev) {
426 		dev_err(dpaa_dev, "mac_dev missing\n");
427 		return ERR_PTR(-EINVAL);
428 	}
429 
430 	return mac_dev;
431 }
432 
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434 {
435 	const struct dpaa_priv *priv;
436 	struct mac_device *mac_dev;
437 	struct sockaddr old_addr;
438 	int err;
439 
440 	priv = netdev_priv(net_dev);
441 
442 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443 
444 	err = eth_mac_addr(net_dev, addr);
445 	if (err < 0) {
446 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447 		return err;
448 	}
449 
450 	mac_dev = priv->mac_dev;
451 
452 	err = mac_dev->change_addr(mac_dev->fman_mac,
453 				   (const enet_addr_t *)net_dev->dev_addr);
454 	if (err < 0) {
455 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456 			  err);
457 		/* reverting to previous address */
458 		eth_mac_addr(net_dev, &old_addr);
459 
460 		return err;
461 	}
462 
463 	return 0;
464 }
465 
466 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
467 {
468 	const struct dpaa_priv *priv = netdev_priv(net_dev);
469 
470 	return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
471 						(enet_addr_t *)addr);
472 }
473 
474 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
475 {
476 	const struct dpaa_priv *priv = netdev_priv(net_dev);
477 
478 	return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
479 						   (enet_addr_t *)addr);
480 }
481 
482 static void dpaa_set_rx_mode(struct net_device *net_dev)
483 {
484 	const struct dpaa_priv	*priv;
485 	int err;
486 
487 	priv = netdev_priv(net_dev);
488 
489 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
490 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
491 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
492 						 priv->mac_dev->promisc);
493 		if (err < 0)
494 			netif_err(priv, drv, net_dev,
495 				  "mac_dev->set_promisc() = %d\n",
496 				  err);
497 	}
498 
499 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
500 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
501 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
502 						  priv->mac_dev->allmulti);
503 		if (err < 0)
504 			netif_err(priv, drv, net_dev,
505 				  "mac_dev->set_allmulti() = %d\n",
506 				  err);
507 	}
508 
509 	err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
510 	if (err < 0)
511 		netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
512 			  err);
513 }
514 
515 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
516 {
517 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
518 		return NULL;
519 
520 	return dpaa_bp_array[bpid];
521 }
522 
523 /* checks if this bpool is already allocated */
524 static bool dpaa_bpid2pool_use(int bpid)
525 {
526 	if (dpaa_bpid2pool(bpid)) {
527 		refcount_inc(&dpaa_bp_array[bpid]->refs);
528 		return true;
529 	}
530 
531 	return false;
532 }
533 
534 /* called only once per bpid by dpaa_bp_alloc_pool() */
535 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
536 {
537 	dpaa_bp_array[bpid] = dpaa_bp;
538 	refcount_set(&dpaa_bp->refs, 1);
539 }
540 
541 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
542 {
543 	int err;
544 
545 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
546 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
547 		       __func__);
548 		return -EINVAL;
549 	}
550 
551 	/* If the pool is already specified, we only create one per bpid */
552 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
553 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
554 		return 0;
555 
556 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
557 		dpaa_bp->pool = bman_new_pool();
558 		if (!dpaa_bp->pool) {
559 			pr_err("%s: bman_new_pool() failed\n",
560 			       __func__);
561 			return -ENODEV;
562 		}
563 
564 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
565 	}
566 
567 	if (dpaa_bp->seed_cb) {
568 		err = dpaa_bp->seed_cb(dpaa_bp);
569 		if (err)
570 			goto pool_seed_failed;
571 	}
572 
573 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
574 
575 	return 0;
576 
577 pool_seed_failed:
578 	pr_err("%s: pool seeding failed\n", __func__);
579 	bman_free_pool(dpaa_bp->pool);
580 
581 	return err;
582 }
583 
584 /* remove and free all the buffers from the given buffer pool */
585 static void dpaa_bp_drain(struct dpaa_bp *bp)
586 {
587 	u8 num = 8;
588 	int ret;
589 
590 	do {
591 		struct bm_buffer bmb[8];
592 		int i;
593 
594 		ret = bman_acquire(bp->pool, bmb, num);
595 		if (ret < 0) {
596 			if (num == 8) {
597 				/* we have less than 8 buffers left;
598 				 * drain them one by one
599 				 */
600 				num = 1;
601 				ret = 1;
602 				continue;
603 			} else {
604 				/* Pool is fully drained */
605 				break;
606 			}
607 		}
608 
609 		if (bp->free_buf_cb)
610 			for (i = 0; i < num; i++)
611 				bp->free_buf_cb(bp, &bmb[i]);
612 	} while (ret > 0);
613 }
614 
615 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
616 {
617 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
618 
619 	/* the mapping between bpid and dpaa_bp is done very late in the
620 	 * allocation procedure; if something failed before the mapping, the bp
621 	 * was not configured, therefore we don't need the below instructions
622 	 */
623 	if (!bp)
624 		return;
625 
626 	if (!refcount_dec_and_test(&bp->refs))
627 		return;
628 
629 	if (bp->free_buf_cb)
630 		dpaa_bp_drain(bp);
631 
632 	dpaa_bp_array[bp->bpid] = NULL;
633 	bman_free_pool(bp->pool);
634 }
635 
636 static void dpaa_bps_free(struct dpaa_priv *priv)
637 {
638 	dpaa_bp_free(priv->dpaa_bp);
639 }
640 
641 /* Use multiple WQs for FQ assignment:
642  *	- Tx Confirmation queues go to WQ1.
643  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
644  *	  to be scheduled, in case there are many more FQs in WQ6).
645  *	- Rx Default goes to WQ6.
646  *	- Tx queues go to different WQs depending on their priority. Equal
647  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
648  *	  WQ0 (highest priority).
649  * This ensures that Tx-confirmed buffers are timely released. In particular,
650  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
651  * are greatly outnumbered by other FQs in the system, while
652  * dequeue scheduling is round-robin.
653  */
654 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
655 {
656 	switch (fq->fq_type) {
657 	case FQ_TYPE_TX_CONFIRM:
658 	case FQ_TYPE_TX_CONF_MQ:
659 		fq->wq = 1;
660 		break;
661 	case FQ_TYPE_RX_ERROR:
662 	case FQ_TYPE_TX_ERROR:
663 		fq->wq = 5;
664 		break;
665 	case FQ_TYPE_RX_DEFAULT:
666 	case FQ_TYPE_RX_PCD:
667 		fq->wq = 6;
668 		break;
669 	case FQ_TYPE_TX:
670 		switch (idx / dpaa_num_txqs_per_tc()) {
671 		case 0:
672 			/* Low priority (best effort) */
673 			fq->wq = 6;
674 			break;
675 		case 1:
676 			/* Medium priority */
677 			fq->wq = 2;
678 			break;
679 		case 2:
680 			/* High priority */
681 			fq->wq = 1;
682 			break;
683 		case 3:
684 			/* Very high priority */
685 			fq->wq = 0;
686 			break;
687 		default:
688 			WARN(1, "Too many TX FQs: more than %zu!\n",
689 			     dpaa_max_num_txqs());
690 		}
691 		break;
692 	default:
693 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
694 		     fq->fq_type, fq->fqid);
695 	}
696 }
697 
698 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
699 				     u32 start, u32 count,
700 				     struct list_head *list,
701 				     enum dpaa_fq_type fq_type)
702 {
703 	struct dpaa_fq *dpaa_fq;
704 	int i;
705 
706 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
707 			       GFP_KERNEL);
708 	if (!dpaa_fq)
709 		return NULL;
710 
711 	for (i = 0; i < count; i++) {
712 		dpaa_fq[i].fq_type = fq_type;
713 		dpaa_fq[i].fqid = start ? start + i : 0;
714 		list_add_tail(&dpaa_fq[i].list, list);
715 	}
716 
717 	for (i = 0; i < count; i++)
718 		dpaa_assign_wq(dpaa_fq + i, i);
719 
720 	return dpaa_fq;
721 }
722 
723 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
724 			      struct fm_port_fqs *port_fqs)
725 {
726 	struct dpaa_fq *dpaa_fq;
727 	u32 fq_base, fq_base_aligned, i;
728 
729 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
730 	if (!dpaa_fq)
731 		goto fq_alloc_failed;
732 
733 	port_fqs->rx_errq = &dpaa_fq[0];
734 
735 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
736 	if (!dpaa_fq)
737 		goto fq_alloc_failed;
738 
739 	port_fqs->rx_defq = &dpaa_fq[0];
740 
741 	/* the PCD FQIDs range needs to be aligned for correct operation */
742 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
743 		goto fq_alloc_failed;
744 
745 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
746 
747 	for (i = fq_base; i < fq_base_aligned; i++)
748 		qman_release_fqid(i);
749 
750 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
751 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
752 		qman_release_fqid(i);
753 
754 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
755 				list, FQ_TYPE_RX_PCD);
756 	if (!dpaa_fq)
757 		goto fq_alloc_failed;
758 
759 	port_fqs->rx_pcdq = &dpaa_fq[0];
760 
761 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
762 			   FQ_TYPE_TX_CONF_MQ))
763 		goto fq_alloc_failed;
764 
765 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
766 	if (!dpaa_fq)
767 		goto fq_alloc_failed;
768 
769 	port_fqs->tx_errq = &dpaa_fq[0];
770 
771 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
772 	if (!dpaa_fq)
773 		goto fq_alloc_failed;
774 
775 	port_fqs->tx_defq = &dpaa_fq[0];
776 
777 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
778 		goto fq_alloc_failed;
779 
780 	return 0;
781 
782 fq_alloc_failed:
783 	dev_err(dev, "dpaa_fq_alloc() failed\n");
784 	return -ENOMEM;
785 }
786 
787 static u32 rx_pool_channel;
788 static DEFINE_SPINLOCK(rx_pool_channel_init);
789 
790 static int dpaa_get_channel(void)
791 {
792 	spin_lock(&rx_pool_channel_init);
793 	if (!rx_pool_channel) {
794 		u32 pool;
795 		int ret;
796 
797 		ret = qman_alloc_pool(&pool);
798 
799 		if (!ret)
800 			rx_pool_channel = pool;
801 	}
802 	spin_unlock(&rx_pool_channel_init);
803 	if (!rx_pool_channel)
804 		return -ENOMEM;
805 	return rx_pool_channel;
806 }
807 
808 static void dpaa_release_channel(void)
809 {
810 	qman_release_pool(rx_pool_channel);
811 }
812 
813 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
814 {
815 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
816 	const cpumask_t *cpus = qman_affine_cpus();
817 	struct qman_portal *portal;
818 	int cpu;
819 
820 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
821 		portal = qman_get_affine_portal(cpu);
822 		qman_p_static_dequeue_add(portal, pool);
823 		qman_start_using_portal(portal, dev);
824 	}
825 }
826 
827 /* Congestion group state change notification callback.
828  * Stops the device's egress queues while they are congested and
829  * wakes them upon exiting congested state.
830  * Also updates some CGR-related stats.
831  */
832 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
833 			   int congested)
834 {
835 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
836 		struct dpaa_priv, cgr_data.cgr);
837 
838 	if (congested) {
839 		priv->cgr_data.congestion_start_jiffies = jiffies;
840 		netif_tx_stop_all_queues(priv->net_dev);
841 		priv->cgr_data.cgr_congested_count++;
842 	} else {
843 		priv->cgr_data.congested_jiffies +=
844 			(jiffies - priv->cgr_data.congestion_start_jiffies);
845 		netif_tx_wake_all_queues(priv->net_dev);
846 	}
847 }
848 
849 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
850 {
851 	struct qm_mcc_initcgr initcgr;
852 	u32 cs_th;
853 	int err;
854 
855 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
856 	if (err < 0) {
857 		if (netif_msg_drv(priv))
858 			pr_err("%s: Error %d allocating CGR ID\n",
859 			       __func__, err);
860 		goto out_error;
861 	}
862 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
863 
864 	/* Enable Congestion State Change Notifications and CS taildrop */
865 	memset(&initcgr, 0, sizeof(initcgr));
866 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
867 	initcgr.cgr.cscn_en = QM_CGR_EN;
868 
869 	/* Set different thresholds based on the configured MAC speed.
870 	 * This may turn suboptimal if the MAC is reconfigured at another
871 	 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
872 	 * callback.
873 	 */
874 	if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
875 		cs_th = DPAA_CS_THRESHOLD_10G;
876 	else
877 		cs_th = DPAA_CS_THRESHOLD_1G;
878 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
879 
880 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
881 	initcgr.cgr.cstd_en = QM_CGR_EN;
882 
883 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
884 			      &initcgr);
885 	if (err < 0) {
886 		if (netif_msg_drv(priv))
887 			pr_err("%s: Error %d creating CGR with ID %d\n",
888 			       __func__, err, priv->cgr_data.cgr.cgrid);
889 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
890 		goto out_error;
891 	}
892 	if (netif_msg_drv(priv))
893 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
894 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
895 			 priv->cgr_data.cgr.chan);
896 
897 out_error:
898 	return err;
899 }
900 
901 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
902 {
903 	struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
904 	struct dpaa_priv *priv = netdev_priv(net_dev);
905 	struct qm_mcc_initcgr opts = { };
906 	u32 cs_th;
907 	int err;
908 
909 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
910 	switch (speed) {
911 	case SPEED_10000:
912 		cs_th = DPAA_CS_THRESHOLD_10G;
913 		break;
914 	case SPEED_1000:
915 	default:
916 		cs_th = DPAA_CS_THRESHOLD_1G;
917 		break;
918 	}
919 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
920 
921 	err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
922 	if (err)
923 		netdev_err(net_dev, "could not update speed: %d\n", err);
924 }
925 
926 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
927 				      struct dpaa_fq *fq,
928 				      const struct qman_fq *template)
929 {
930 	fq->fq_base = *template;
931 	fq->net_dev = priv->net_dev;
932 
933 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
934 	fq->channel = priv->channel;
935 }
936 
937 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
938 				     struct dpaa_fq *fq,
939 				     struct fman_port *port,
940 				     const struct qman_fq *template)
941 {
942 	fq->fq_base = *template;
943 	fq->net_dev = priv->net_dev;
944 
945 	if (port) {
946 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
947 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
948 	} else {
949 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
950 	}
951 }
952 
953 static int dpaa_fq_setup(struct dpaa_priv *priv,
954 			 const struct dpaa_fq_cbs *fq_cbs,
955 			 struct fman_port *tx_port)
956 {
957 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
958 	const cpumask_t *affine_cpus = qman_affine_cpus();
959 	struct dpaa_fq *fq;
960 	u16 *channels;
961 
962 	channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
963 	if (!channels)
964 		return -ENOMEM;
965 
966 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
967 		channels[num_portals++] = qman_affine_channel(cpu);
968 
969 	if (num_portals == 0)
970 		dev_err(priv->net_dev->dev.parent,
971 			"No Qman software (affine) channels found\n");
972 
973 	/* Initialize each FQ in the list */
974 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
975 		switch (fq->fq_type) {
976 		case FQ_TYPE_RX_DEFAULT:
977 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
978 			break;
979 		case FQ_TYPE_RX_ERROR:
980 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
981 			break;
982 		case FQ_TYPE_RX_PCD:
983 			if (!num_portals)
984 				continue;
985 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
986 			fq->channel = channels[portal_cnt++ % num_portals];
987 			break;
988 		case FQ_TYPE_TX:
989 			dpaa_setup_egress(priv, fq, tx_port,
990 					  &fq_cbs->egress_ern);
991 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
992 			break;
993 		case FQ_TYPE_TX_CONF_MQ:
994 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
995 			fallthrough;
996 		case FQ_TYPE_TX_CONFIRM:
997 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
998 			break;
999 		case FQ_TYPE_TX_ERROR:
1000 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1001 			break;
1002 		default:
1003 			dev_warn(priv->net_dev->dev.parent,
1004 				 "Unknown FQ type detected!\n");
1005 			break;
1006 		}
1007 	}
1008 
1009 	kfree(channels);
1010 
1011 	return 0;
1012 }
1013 
1014 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1015 				   struct qman_fq *tx_fq)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < dpaa_max_num_txqs(); i++)
1020 		if (priv->egress_fqs[i] == tx_fq)
1021 			return i;
1022 
1023 	return -EINVAL;
1024 }
1025 
1026 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1027 {
1028 	const struct dpaa_priv	*priv;
1029 	struct qman_fq *confq = NULL;
1030 	struct qm_mcc_initfq initfq;
1031 	struct device *dev;
1032 	struct qman_fq *fq;
1033 	int queue_id;
1034 	int err;
1035 
1036 	priv = netdev_priv(dpaa_fq->net_dev);
1037 	dev = dpaa_fq->net_dev->dev.parent;
1038 
1039 	if (dpaa_fq->fqid == 0)
1040 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1041 
1042 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1043 
1044 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1045 	if (err) {
1046 		dev_err(dev, "qman_create_fq() failed\n");
1047 		return err;
1048 	}
1049 	fq = &dpaa_fq->fq_base;
1050 
1051 	if (dpaa_fq->init) {
1052 		memset(&initfq, 0, sizeof(initfq));
1053 
1054 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1055 		/* Note: we may get to keep an empty FQ in cache */
1056 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1057 
1058 		/* Try to reduce the number of portal interrupts for
1059 		 * Tx Confirmation FQs.
1060 		 */
1061 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1062 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1063 
1064 		/* FQ placement */
1065 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1066 
1067 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1068 
1069 		/* Put all egress queues in a congestion group of their own.
1070 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1071 		 * rather than Tx - but they nonetheless account for the
1072 		 * memory footprint on behalf of egress traffic. We therefore
1073 		 * place them in the netdev's CGR, along with the Tx FQs.
1074 		 */
1075 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1076 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1077 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1078 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1079 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1080 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1081 			/* Set a fixed overhead accounting, in an attempt to
1082 			 * reduce the impact of fixed-size skb shells and the
1083 			 * driver's needed headroom on system memory. This is
1084 			 * especially the case when the egress traffic is
1085 			 * composed of small datagrams.
1086 			 * Unfortunately, QMan's OAL value is capped to an
1087 			 * insufficient value, but even that is better than
1088 			 * no overhead accounting at all.
1089 			 */
1090 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1091 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1092 			qm_fqd_set_oal(&initfq.fqd,
1093 				       min(sizeof(struct sk_buff) +
1094 				       priv->tx_headroom,
1095 				       (size_t)FSL_QMAN_MAX_OAL));
1096 		}
1097 
1098 		if (td_enable) {
1099 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1100 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1101 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1102 		}
1103 
1104 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1105 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1106 			if (queue_id >= 0)
1107 				confq = priv->conf_fqs[queue_id];
1108 			if (confq) {
1109 				initfq.we_mask |=
1110 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1111 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1112 			 *	     A2V=1 (contextA A2 field is valid)
1113 			 *	     A0V=1 (contextA A0 field is valid)
1114 			 *	     B0V=1 (contextB field is valid)
1115 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1116 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1117 			 */
1118 				qm_fqd_context_a_set64(&initfq.fqd,
1119 						       0x1e00000080000000ULL);
1120 			}
1121 		}
1122 
1123 		/* Put all the ingress queues in our "ingress CGR". */
1124 		if (priv->use_ingress_cgr &&
1125 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1126 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1127 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1128 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1129 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1130 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1131 			/* Set a fixed overhead accounting, just like for the
1132 			 * egress CGR.
1133 			 */
1134 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1135 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1136 			qm_fqd_set_oal(&initfq.fqd,
1137 				       min(sizeof(struct sk_buff) +
1138 				       priv->tx_headroom,
1139 				       (size_t)FSL_QMAN_MAX_OAL));
1140 		}
1141 
1142 		/* Initialization common to all ingress queues */
1143 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1144 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1145 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1146 						QM_FQCTRL_CTXASTASHING);
1147 			initfq.fqd.context_a.stashing.exclusive =
1148 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1149 				QM_STASHING_EXCL_ANNOTATION;
1150 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1151 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1152 							 64));
1153 		}
1154 
1155 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1156 		if (err < 0) {
1157 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1158 				qman_fq_fqid(fq), err);
1159 			qman_destroy_fq(fq);
1160 			return err;
1161 		}
1162 	}
1163 
1164 	dpaa_fq->fqid = qman_fq_fqid(fq);
1165 
1166 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1167 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1168 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1169 				       dpaa_fq->fqid, 0);
1170 		if (err) {
1171 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1172 			return err;
1173 		}
1174 
1175 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1176 						 MEM_TYPE_PAGE_ORDER0, NULL);
1177 		if (err) {
1178 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1179 				err);
1180 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1181 			return err;
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1189 {
1190 	const struct dpaa_priv  *priv;
1191 	struct dpaa_fq *dpaa_fq;
1192 	int err, error;
1193 
1194 	err = 0;
1195 
1196 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1197 	priv = netdev_priv(dpaa_fq->net_dev);
1198 
1199 	if (dpaa_fq->init) {
1200 		err = qman_retire_fq(fq, NULL);
1201 		if (err < 0 && netif_msg_drv(priv))
1202 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1203 				qman_fq_fqid(fq), err);
1204 
1205 		error = qman_oos_fq(fq);
1206 		if (error < 0 && netif_msg_drv(priv)) {
1207 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1208 				qman_fq_fqid(fq), error);
1209 			if (err >= 0)
1210 				err = error;
1211 		}
1212 	}
1213 
1214 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1215 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1216 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1217 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1218 
1219 	qman_destroy_fq(fq);
1220 	list_del(&dpaa_fq->list);
1221 
1222 	return err;
1223 }
1224 
1225 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1226 {
1227 	struct dpaa_fq *dpaa_fq, *tmp;
1228 	int err, error;
1229 
1230 	err = 0;
1231 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1232 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1233 		if (error < 0 && err >= 0)
1234 			err = error;
1235 	}
1236 
1237 	return err;
1238 }
1239 
1240 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1241 				 struct dpaa_fq *defq,
1242 				 struct dpaa_buffer_layout *buf_layout)
1243 {
1244 	struct fman_buffer_prefix_content buf_prefix_content;
1245 	struct fman_port_params params;
1246 	int err;
1247 
1248 	memset(&params, 0, sizeof(params));
1249 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1250 
1251 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1252 	buf_prefix_content.pass_prs_result = true;
1253 	buf_prefix_content.pass_hash_result = true;
1254 	buf_prefix_content.pass_time_stamp = true;
1255 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1256 
1257 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1258 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1259 
1260 	err = fman_port_config(port, &params);
1261 	if (err) {
1262 		pr_err("%s: fman_port_config failed\n", __func__);
1263 		return err;
1264 	}
1265 
1266 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1267 	if (err) {
1268 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1269 		       __func__);
1270 		return err;
1271 	}
1272 
1273 	err = fman_port_init(port);
1274 	if (err)
1275 		pr_err("%s: fm_port_init failed\n", __func__);
1276 
1277 	return err;
1278 }
1279 
1280 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1281 				 struct dpaa_fq *errq,
1282 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1283 				 struct dpaa_buffer_layout *buf_layout)
1284 {
1285 	struct fman_buffer_prefix_content buf_prefix_content;
1286 	struct fman_port_rx_params *rx_p;
1287 	struct fman_port_params params;
1288 	int err;
1289 
1290 	memset(&params, 0, sizeof(params));
1291 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1292 
1293 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1294 	buf_prefix_content.pass_prs_result = true;
1295 	buf_prefix_content.pass_hash_result = true;
1296 	buf_prefix_content.pass_time_stamp = true;
1297 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1298 
1299 	rx_p = &params.specific_params.rx_params;
1300 	rx_p->err_fqid = errq->fqid;
1301 	rx_p->dflt_fqid = defq->fqid;
1302 	if (pcdq) {
1303 		rx_p->pcd_base_fqid = pcdq->fqid;
1304 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1305 	}
1306 
1307 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1308 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1309 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1310 
1311 	err = fman_port_config(port, &params);
1312 	if (err) {
1313 		pr_err("%s: fman_port_config failed\n", __func__);
1314 		return err;
1315 	}
1316 
1317 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1318 	if (err) {
1319 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1320 		       __func__);
1321 		return err;
1322 	}
1323 
1324 	err = fman_port_init(port);
1325 	if (err)
1326 		pr_err("%s: fm_port_init failed\n", __func__);
1327 
1328 	return err;
1329 }
1330 
1331 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1332 			       struct dpaa_bp *bp,
1333 			       struct fm_port_fqs *port_fqs,
1334 			       struct dpaa_buffer_layout *buf_layout,
1335 			       struct device *dev)
1336 {
1337 	struct fman_port *rxport = mac_dev->port[RX];
1338 	struct fman_port *txport = mac_dev->port[TX];
1339 	int err;
1340 
1341 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1342 				    port_fqs->tx_defq, &buf_layout[TX]);
1343 	if (err)
1344 		return err;
1345 
1346 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1347 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1348 				    &buf_layout[RX]);
1349 
1350 	return err;
1351 }
1352 
1353 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1354 			     struct bm_buffer *bmb, int cnt)
1355 {
1356 	int err;
1357 
1358 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1359 	/* Should never occur, address anyway to avoid leaking the buffers */
1360 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1361 		while (cnt-- > 0)
1362 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1363 
1364 	return cnt;
1365 }
1366 
1367 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1368 {
1369 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1370 	struct dpaa_bp *dpaa_bp;
1371 	int i = 0, j;
1372 
1373 	memset(bmb, 0, sizeof(bmb));
1374 
1375 	do {
1376 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1377 		if (!dpaa_bp)
1378 			return;
1379 
1380 		j = 0;
1381 		do {
1382 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1383 
1384 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1385 
1386 			j++; i++;
1387 		} while (j < ARRAY_SIZE(bmb) &&
1388 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1389 				sgt[i - 1].bpid == sgt[i].bpid);
1390 
1391 		dpaa_bman_release(dpaa_bp, bmb, j);
1392 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1393 }
1394 
1395 static void dpaa_fd_release(const struct net_device *net_dev,
1396 			    const struct qm_fd *fd)
1397 {
1398 	struct qm_sg_entry *sgt;
1399 	struct dpaa_bp *dpaa_bp;
1400 	struct bm_buffer bmb;
1401 	dma_addr_t addr;
1402 	void *vaddr;
1403 
1404 	bmb.data = 0;
1405 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1406 
1407 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1408 	if (!dpaa_bp)
1409 		return;
1410 
1411 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1412 		vaddr = phys_to_virt(qm_fd_addr(fd));
1413 		sgt = vaddr + qm_fd_get_offset(fd);
1414 
1415 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1416 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1417 
1418 		dpaa_release_sgt_members(sgt);
1419 
1420 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1421 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1422 				    DMA_FROM_DEVICE);
1423 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1424 			netdev_err(net_dev, "DMA mapping failed\n");
1425 			return;
1426 		}
1427 		bm_buffer_set64(&bmb, addr);
1428 	}
1429 
1430 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1431 }
1432 
1433 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1434 		      const union qm_mr_entry *msg)
1435 {
1436 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1437 	case QM_MR_RC_CGR_TAILDROP:
1438 		percpu_priv->ern_cnt.cg_tdrop++;
1439 		break;
1440 	case QM_MR_RC_WRED:
1441 		percpu_priv->ern_cnt.wred++;
1442 		break;
1443 	case QM_MR_RC_ERROR:
1444 		percpu_priv->ern_cnt.err_cond++;
1445 		break;
1446 	case QM_MR_RC_ORPWINDOW_EARLY:
1447 		percpu_priv->ern_cnt.early_window++;
1448 		break;
1449 	case QM_MR_RC_ORPWINDOW_LATE:
1450 		percpu_priv->ern_cnt.late_window++;
1451 		break;
1452 	case QM_MR_RC_FQ_TAILDROP:
1453 		percpu_priv->ern_cnt.fq_tdrop++;
1454 		break;
1455 	case QM_MR_RC_ORPWINDOW_RETIRED:
1456 		percpu_priv->ern_cnt.fq_retired++;
1457 		break;
1458 	case QM_MR_RC_ORP_ZERO:
1459 		percpu_priv->ern_cnt.orp_zero++;
1460 		break;
1461 	}
1462 }
1463 
1464 /* Turn on HW checksum computation for this outgoing frame.
1465  * If the current protocol is not something we support in this regard
1466  * (or if the stack has already computed the SW checksum), we do nothing.
1467  *
1468  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1469  * otherwise.
1470  *
1471  * Note that this function may modify the fd->cmd field and the skb data buffer
1472  * (the Parse Results area).
1473  */
1474 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1475 			       struct sk_buff *skb,
1476 			       struct qm_fd *fd,
1477 			       void *parse_results)
1478 {
1479 	struct fman_prs_result *parse_result;
1480 	u16 ethertype = ntohs(skb->protocol);
1481 	struct ipv6hdr *ipv6h = NULL;
1482 	struct iphdr *iph;
1483 	int retval = 0;
1484 	u8 l4_proto;
1485 
1486 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1487 		return 0;
1488 
1489 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1490 	 * L4 alone from the FM configuration anyway.
1491 	 */
1492 
1493 	/* Fill in some fields of the Parse Results array, so the FMan
1494 	 * can find them as if they came from the FMan Parser.
1495 	 */
1496 	parse_result = (struct fman_prs_result *)parse_results;
1497 
1498 	/* If we're dealing with VLAN, get the real Ethernet type */
1499 	if (ethertype == ETH_P_8021Q)
1500 		ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1501 
1502 	/* Fill in the relevant L3 parse result fields
1503 	 * and read the L4 protocol type
1504 	 */
1505 	switch (ethertype) {
1506 	case ETH_P_IP:
1507 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1508 		iph = ip_hdr(skb);
1509 		WARN_ON(!iph);
1510 		l4_proto = iph->protocol;
1511 		break;
1512 	case ETH_P_IPV6:
1513 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1514 		ipv6h = ipv6_hdr(skb);
1515 		WARN_ON(!ipv6h);
1516 		l4_proto = ipv6h->nexthdr;
1517 		break;
1518 	default:
1519 		/* We shouldn't even be here */
1520 		if (net_ratelimit())
1521 			netif_alert(priv, tx_err, priv->net_dev,
1522 				    "Can't compute HW csum for L3 proto 0x%x\n",
1523 				    ntohs(skb->protocol));
1524 		retval = -EIO;
1525 		goto return_error;
1526 	}
1527 
1528 	/* Fill in the relevant L4 parse result fields */
1529 	switch (l4_proto) {
1530 	case IPPROTO_UDP:
1531 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1532 		break;
1533 	case IPPROTO_TCP:
1534 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1535 		break;
1536 	default:
1537 		if (net_ratelimit())
1538 			netif_alert(priv, tx_err, priv->net_dev,
1539 				    "Can't compute HW csum for L4 proto 0x%x\n",
1540 				    l4_proto);
1541 		retval = -EIO;
1542 		goto return_error;
1543 	}
1544 
1545 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1546 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1547 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1548 
1549 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1550 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1551 
1552 	/* On P1023 and similar platforms fd->cmd interpretation could
1553 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1554 	 * is not set so we do not need to check; in the future, if/when
1555 	 * using context_a we need to check this bit
1556 	 */
1557 
1558 return_error:
1559 	return retval;
1560 }
1561 
1562 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1563 {
1564 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1565 	struct bm_buffer bmb[8];
1566 	dma_addr_t addr;
1567 	struct page *p;
1568 	u8 i;
1569 
1570 	for (i = 0; i < 8; i++) {
1571 		p = dev_alloc_pages(0);
1572 		if (unlikely(!p)) {
1573 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1574 			goto release_previous_buffs;
1575 		}
1576 
1577 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1578 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1579 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1580 					       addr))) {
1581 			netdev_err(net_dev, "DMA map failed\n");
1582 			goto release_previous_buffs;
1583 		}
1584 
1585 		bmb[i].data = 0;
1586 		bm_buffer_set64(&bmb[i], addr);
1587 	}
1588 
1589 release_bufs:
1590 	return dpaa_bman_release(dpaa_bp, bmb, i);
1591 
1592 release_previous_buffs:
1593 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1594 
1595 	bm_buffer_set64(&bmb[i], 0);
1596 	/* Avoid releasing a completely null buffer; bman_release() requires
1597 	 * at least one buffer.
1598 	 */
1599 	if (likely(i))
1600 		goto release_bufs;
1601 
1602 	return 0;
1603 }
1604 
1605 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1606 {
1607 	int i;
1608 
1609 	/* Give each CPU an allotment of "config_count" buffers */
1610 	for_each_possible_cpu(i) {
1611 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1612 		int j;
1613 
1614 		/* Although we access another CPU's counters here
1615 		 * we do it at boot time so it is safe
1616 		 */
1617 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1618 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1619 	}
1620 	return 0;
1621 }
1622 
1623 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1624  * REFILL_THRESHOLD.
1625  */
1626 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1627 {
1628 	int count = *countptr;
1629 	int new_bufs;
1630 
1631 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1632 		do {
1633 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1634 			if (unlikely(!new_bufs)) {
1635 				/* Avoid looping forever if we've temporarily
1636 				 * run out of memory. We'll try again at the
1637 				 * next NAPI cycle.
1638 				 */
1639 				break;
1640 			}
1641 			count += new_bufs;
1642 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1643 
1644 		*countptr = count;
1645 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1646 			return -ENOMEM;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1653 {
1654 	struct dpaa_bp *dpaa_bp;
1655 	int *countptr;
1656 
1657 	dpaa_bp = priv->dpaa_bp;
1658 	if (!dpaa_bp)
1659 		return -EINVAL;
1660 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1661 
1662 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1663 }
1664 
1665 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1666  * either contiguous frames or scatter/gather ones.
1667  * Skb freeing is not handled here.
1668  *
1669  * This function may be called on error paths in the Tx function, so guard
1670  * against cases when not all fd relevant fields were filled in. To avoid
1671  * reading the invalid transmission timestamp for the error paths set ts to
1672  * false.
1673  *
1674  * Return the skb backpointer, since for S/G frames the buffer containing it
1675  * gets freed here.
1676  *
1677  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1678  * and return NULL in this case.
1679  */
1680 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1681 					  const struct qm_fd *fd, bool ts)
1682 {
1683 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1684 	struct device *dev = priv->net_dev->dev.parent;
1685 	struct skb_shared_hwtstamps shhwtstamps;
1686 	dma_addr_t addr = qm_fd_addr(fd);
1687 	void *vaddr = phys_to_virt(addr);
1688 	const struct qm_sg_entry *sgt;
1689 	struct dpaa_eth_swbp *swbp;
1690 	struct sk_buff *skb;
1691 	u64 ns;
1692 	int i;
1693 
1694 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1695 		dma_unmap_page(priv->tx_dma_dev, addr,
1696 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1697 			       dma_dir);
1698 
1699 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1700 		 * it's from lowmem.
1701 		 */
1702 		sgt = vaddr + qm_fd_get_offset(fd);
1703 
1704 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1705 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1706 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1707 
1708 		/* remaining pages were mapped with skb_frag_dma_map() */
1709 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1710 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1711 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1712 
1713 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1714 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1715 		}
1716 	} else {
1717 		dma_unmap_single(priv->tx_dma_dev, addr,
1718 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1719 				 dma_dir);
1720 	}
1721 
1722 	swbp = (struct dpaa_eth_swbp *)vaddr;
1723 	skb = swbp->skb;
1724 
1725 	/* No skb backpointer is set when running XDP. An xdp_frame
1726 	 * backpointer is saved instead.
1727 	 */
1728 	if (!skb) {
1729 		xdp_return_frame(swbp->xdpf);
1730 		return NULL;
1731 	}
1732 
1733 	/* DMA unmapping is required before accessing the HW provided info */
1734 	if (ts && priv->tx_tstamp &&
1735 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1736 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1737 
1738 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1739 					  &ns)) {
1740 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1741 			skb_tstamp_tx(skb, &shhwtstamps);
1742 		} else {
1743 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1744 		}
1745 	}
1746 
1747 	if (qm_fd_get_format(fd) == qm_fd_sg)
1748 		/* Free the page that we allocated on Tx for the SGT */
1749 		free_pages((unsigned long)vaddr, 0);
1750 
1751 	return skb;
1752 }
1753 
1754 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1755 {
1756 	/* The parser has run and performed L4 checksum validation.
1757 	 * We know there were no parser errors (and implicitly no
1758 	 * L4 csum error), otherwise we wouldn't be here.
1759 	 */
1760 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1761 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1762 		return CHECKSUM_UNNECESSARY;
1763 
1764 	/* We're here because either the parser didn't run or the L4 checksum
1765 	 * was not verified. This may include the case of a UDP frame with
1766 	 * checksum zero or an L4 proto other than TCP/UDP
1767 	 */
1768 	return CHECKSUM_NONE;
1769 }
1770 
1771 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1772 
1773 /* Build a linear skb around the received buffer.
1774  * We are guaranteed there is enough room at the end of the data buffer to
1775  * accommodate the shared info area of the skb.
1776  */
1777 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1778 					const struct qm_fd *fd)
1779 {
1780 	ssize_t fd_off = qm_fd_get_offset(fd);
1781 	dma_addr_t addr = qm_fd_addr(fd);
1782 	struct dpaa_bp *dpaa_bp;
1783 	struct sk_buff *skb;
1784 	void *vaddr;
1785 
1786 	vaddr = phys_to_virt(addr);
1787 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1788 
1789 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1790 	if (!dpaa_bp)
1791 		goto free_buffer;
1792 
1793 	skb = build_skb(vaddr, dpaa_bp->size +
1794 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1795 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1796 		goto free_buffer;
1797 	skb_reserve(skb, fd_off);
1798 	skb_put(skb, qm_fd_get_length(fd));
1799 
1800 	skb->ip_summed = rx_csum_offload(priv, fd);
1801 
1802 	return skb;
1803 
1804 free_buffer:
1805 	free_pages((unsigned long)vaddr, 0);
1806 	return NULL;
1807 }
1808 
1809 /* Build an skb with the data of the first S/G entry in the linear portion and
1810  * the rest of the frame as skb fragments.
1811  *
1812  * The page fragment holding the S/G Table is recycled here.
1813  */
1814 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1815 				    const struct qm_fd *fd)
1816 {
1817 	ssize_t fd_off = qm_fd_get_offset(fd);
1818 	dma_addr_t addr = qm_fd_addr(fd);
1819 	const struct qm_sg_entry *sgt;
1820 	struct page *page, *head_page;
1821 	struct dpaa_bp *dpaa_bp;
1822 	void *vaddr, *sg_vaddr;
1823 	struct sk_buff *skb;
1824 	dma_addr_t sg_addr;
1825 	int page_offset;
1826 	unsigned int sz;
1827 	int *count_ptr;
1828 	int i, j;
1829 
1830 	vaddr = phys_to_virt(addr);
1831 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1832 
1833 	/* Iterate through the SGT entries and add data buffers to the skb */
1834 	sgt = vaddr + fd_off;
1835 	skb = NULL;
1836 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1837 		/* Extension bit is not supported */
1838 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1839 
1840 		sg_addr = qm_sg_addr(&sgt[i]);
1841 		sg_vaddr = phys_to_virt(sg_addr);
1842 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1843 
1844 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1845 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1846 
1847 		/* We may use multiple Rx pools */
1848 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1849 		if (!dpaa_bp)
1850 			goto free_buffers;
1851 
1852 		if (!skb) {
1853 			sz = dpaa_bp->size +
1854 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1855 			skb = build_skb(sg_vaddr, sz);
1856 			if (WARN_ON(!skb))
1857 				goto free_buffers;
1858 
1859 			skb->ip_summed = rx_csum_offload(priv, fd);
1860 
1861 			/* Make sure forwarded skbs will have enough space
1862 			 * on Tx, if extra headers are added.
1863 			 */
1864 			WARN_ON(fd_off != priv->rx_headroom);
1865 			/* The offset to data start within the buffer holding
1866 			 * the SGT should always be equal to the offset to data
1867 			 * start within the first buffer holding the frame.
1868 			 */
1869 			WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1870 			skb_reserve(skb, fd_off);
1871 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1872 		} else {
1873 			/* Not the first S/G entry; all data from buffer will
1874 			 * be added in an skb fragment; fragment index is offset
1875 			 * by one since first S/G entry was incorporated in the
1876 			 * linear part of the skb.
1877 			 *
1878 			 * Caution: 'page' may be a tail page.
1879 			 */
1880 			page = virt_to_page(sg_vaddr);
1881 			head_page = virt_to_head_page(sg_vaddr);
1882 
1883 			/* Compute offset of sg_vaddr in (possibly tail) page */
1884 			page_offset = ((unsigned long)sg_vaddr &
1885 					(PAGE_SIZE - 1)) +
1886 				(page_address(page) - page_address(head_page));
1887 
1888 			/* Non-initial SGT entries should not have a buffer
1889 			 * offset.
1890 			 */
1891 			WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1892 
1893 			/* skb_add_rx_frag() does no checking on the page; if
1894 			 * we pass it a tail page, we'll end up with
1895 			 * bad page accounting and eventually with segfaults.
1896 			 */
1897 			skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1898 					qm_sg_entry_get_len(&sgt[i]),
1899 					dpaa_bp->size);
1900 		}
1901 
1902 		/* Update the pool count for the current {cpu x bpool} */
1903 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1904 		(*count_ptr)--;
1905 
1906 		if (qm_sg_entry_is_final(&sgt[i]))
1907 			break;
1908 	}
1909 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1910 
1911 	/* free the SG table buffer */
1912 	free_pages((unsigned long)vaddr, 0);
1913 
1914 	return skb;
1915 
1916 free_buffers:
1917 	/* free all the SG entries */
1918 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1919 		sg_addr = qm_sg_addr(&sgt[j]);
1920 		sg_vaddr = phys_to_virt(sg_addr);
1921 		/* all pages 0..i were unmaped */
1922 		if (j > i)
1923 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1924 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1925 		free_pages((unsigned long)sg_vaddr, 0);
1926 		/* counters 0..i-1 were decremented */
1927 		if (j >= i) {
1928 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1929 			if (dpaa_bp) {
1930 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1931 				(*count_ptr)--;
1932 			}
1933 		}
1934 
1935 		if (qm_sg_entry_is_final(&sgt[j]))
1936 			break;
1937 	}
1938 	/* free the SGT fragment */
1939 	free_pages((unsigned long)vaddr, 0);
1940 
1941 	return NULL;
1942 }
1943 
1944 static int skb_to_contig_fd(struct dpaa_priv *priv,
1945 			    struct sk_buff *skb, struct qm_fd *fd,
1946 			    int *offset)
1947 {
1948 	struct net_device *net_dev = priv->net_dev;
1949 	enum dma_data_direction dma_dir;
1950 	struct dpaa_eth_swbp *swbp;
1951 	unsigned char *buff_start;
1952 	dma_addr_t addr;
1953 	int err;
1954 
1955 	/* We are guaranteed to have at least tx_headroom bytes
1956 	 * available, so just use that for offset.
1957 	 */
1958 	fd->bpid = FSL_DPAA_BPID_INV;
1959 	buff_start = skb->data - priv->tx_headroom;
1960 	dma_dir = DMA_TO_DEVICE;
1961 
1962 	swbp = (struct dpaa_eth_swbp *)buff_start;
1963 	swbp->skb = skb;
1964 
1965 	/* Enable L3/L4 hardware checksum computation.
1966 	 *
1967 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1968 	 * need to write into the skb.
1969 	 */
1970 	err = dpaa_enable_tx_csum(priv, skb, fd,
1971 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1972 	if (unlikely(err < 0)) {
1973 		if (net_ratelimit())
1974 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1975 				  err);
1976 		return err;
1977 	}
1978 
1979 	/* Fill in the rest of the FD fields */
1980 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1981 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1982 
1983 	/* Map the entire buffer size that may be seen by FMan, but no more */
1984 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1985 			      priv->tx_headroom + skb->len, dma_dir);
1986 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1987 		if (net_ratelimit())
1988 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1989 		return -EINVAL;
1990 	}
1991 	qm_fd_addr_set64(fd, addr);
1992 
1993 	return 0;
1994 }
1995 
1996 static int skb_to_sg_fd(struct dpaa_priv *priv,
1997 			struct sk_buff *skb, struct qm_fd *fd)
1998 {
1999 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
2000 	const int nr_frags = skb_shinfo(skb)->nr_frags;
2001 	struct net_device *net_dev = priv->net_dev;
2002 	struct dpaa_eth_swbp *swbp;
2003 	struct qm_sg_entry *sgt;
2004 	void *buff_start;
2005 	skb_frag_t *frag;
2006 	dma_addr_t addr;
2007 	size_t frag_len;
2008 	struct page *p;
2009 	int i, j, err;
2010 
2011 	/* get a page to store the SGTable */
2012 	p = dev_alloc_pages(0);
2013 	if (unlikely(!p)) {
2014 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
2015 		return -ENOMEM;
2016 	}
2017 	buff_start = page_address(p);
2018 
2019 	/* Enable L3/L4 hardware checksum computation.
2020 	 *
2021 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2022 	 * need to write into the skb.
2023 	 */
2024 	err = dpaa_enable_tx_csum(priv, skb, fd,
2025 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
2026 	if (unlikely(err < 0)) {
2027 		if (net_ratelimit())
2028 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2029 				  err);
2030 		goto csum_failed;
2031 	}
2032 
2033 	/* SGT[0] is used by the linear part */
2034 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2035 	frag_len = skb_headlen(skb);
2036 	qm_sg_entry_set_len(&sgt[0], frag_len);
2037 	sgt[0].bpid = FSL_DPAA_BPID_INV;
2038 	sgt[0].offset = 0;
2039 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2040 			      skb_headlen(skb), dma_dir);
2041 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2042 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2043 		err = -EINVAL;
2044 		goto sg0_map_failed;
2045 	}
2046 	qm_sg_entry_set64(&sgt[0], addr);
2047 
2048 	/* populate the rest of SGT entries */
2049 	for (i = 0; i < nr_frags; i++) {
2050 		frag = &skb_shinfo(skb)->frags[i];
2051 		frag_len = skb_frag_size(frag);
2052 		WARN_ON(!skb_frag_page(frag));
2053 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2054 					frag_len, dma_dir);
2055 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2056 			netdev_err(priv->net_dev, "DMA mapping failed\n");
2057 			err = -EINVAL;
2058 			goto sg_map_failed;
2059 		}
2060 
2061 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2062 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2063 		sgt[i + 1].offset = 0;
2064 
2065 		/* keep the offset in the address */
2066 		qm_sg_entry_set64(&sgt[i + 1], addr);
2067 	}
2068 
2069 	/* Set the final bit in the last used entry of the SGT */
2070 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2071 
2072 	/* set fd offset to priv->tx_headroom */
2073 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2074 
2075 	/* DMA map the SGT page */
2076 	swbp = (struct dpaa_eth_swbp *)buff_start;
2077 	swbp->skb = skb;
2078 
2079 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2080 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2081 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2082 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2083 		err = -EINVAL;
2084 		goto sgt_map_failed;
2085 	}
2086 
2087 	fd->bpid = FSL_DPAA_BPID_INV;
2088 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2089 	qm_fd_addr_set64(fd, addr);
2090 
2091 	return 0;
2092 
2093 sgt_map_failed:
2094 sg_map_failed:
2095 	for (j = 0; j < i; j++)
2096 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2097 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2098 sg0_map_failed:
2099 csum_failed:
2100 	free_pages((unsigned long)buff_start, 0);
2101 
2102 	return err;
2103 }
2104 
2105 static inline int dpaa_xmit(struct dpaa_priv *priv,
2106 			    struct rtnl_link_stats64 *percpu_stats,
2107 			    int queue,
2108 			    struct qm_fd *fd)
2109 {
2110 	struct qman_fq *egress_fq;
2111 	int err, i;
2112 
2113 	egress_fq = priv->egress_fqs[queue];
2114 	if (fd->bpid == FSL_DPAA_BPID_INV)
2115 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2116 
2117 	/* Trace this Tx fd */
2118 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2119 
2120 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2121 		err = qman_enqueue(egress_fq, fd);
2122 		if (err != -EBUSY)
2123 			break;
2124 	}
2125 
2126 	if (unlikely(err < 0)) {
2127 		percpu_stats->tx_fifo_errors++;
2128 		return err;
2129 	}
2130 
2131 	percpu_stats->tx_packets++;
2132 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2133 
2134 	return 0;
2135 }
2136 
2137 #ifdef CONFIG_DPAA_ERRATUM_A050385
2138 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2139 {
2140 	struct dpaa_priv *priv = netdev_priv(net_dev);
2141 	struct sk_buff *new_skb, *skb = *s;
2142 	unsigned char *start, i;
2143 
2144 	/* check linear buffer alignment */
2145 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2146 		goto workaround;
2147 
2148 	/* linear buffers just need to have an aligned start */
2149 	if (!skb_is_nonlinear(skb))
2150 		return 0;
2151 
2152 	/* linear data size for nonlinear skbs needs to be aligned */
2153 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2154 		goto workaround;
2155 
2156 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2158 
2159 		/* all fragments need to have aligned start addresses */
2160 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2161 			goto workaround;
2162 
2163 		/* all but last fragment need to have aligned sizes */
2164 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2165 		    (i < skb_shinfo(skb)->nr_frags - 1))
2166 			goto workaround;
2167 	}
2168 
2169 	return 0;
2170 
2171 workaround:
2172 	/* copy all the skb content into a new linear buffer */
2173 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2174 						priv->tx_headroom);
2175 	if (!new_skb)
2176 		return -ENOMEM;
2177 
2178 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2179 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2180 
2181 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2182 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2183 	if (start - new_skb->data)
2184 		skb_reserve(new_skb, start - new_skb->data);
2185 
2186 	skb_put(new_skb, skb->len);
2187 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2188 	skb_copy_header(new_skb, skb);
2189 	new_skb->dev = skb->dev;
2190 
2191 	/* Copy relevant timestamp info from the old skb to the new */
2192 	if (priv->tx_tstamp) {
2193 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2194 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2195 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2196 		if (skb->sk)
2197 			skb_set_owner_w(new_skb, skb->sk);
2198 	}
2199 
2200 	/* We move the headroom when we align it so we have to reset the
2201 	 * network and transport header offsets relative to the new data
2202 	 * pointer. The checksum offload relies on these offsets.
2203 	 */
2204 	skb_set_network_header(new_skb, skb_network_offset(skb));
2205 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2206 
2207 	dev_kfree_skb(skb);
2208 	*s = new_skb;
2209 
2210 	return 0;
2211 }
2212 
2213 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2214 				struct xdp_frame **init_xdpf)
2215 {
2216 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2217 	void *new_buff, *aligned_data;
2218 	struct page *p;
2219 	u32 data_shift;
2220 	int headroom;
2221 
2222 	/* Check the data alignment and make sure the headroom is large
2223 	 * enough to store the xdpf backpointer. Use an aligned headroom
2224 	 * value.
2225 	 *
2226 	 * Due to alignment constraints, we give XDP access to the full 256
2227 	 * byte frame headroom. If the XDP program uses all of it, copy the
2228 	 * data to a new buffer and make room for storing the backpointer.
2229 	 */
2230 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2231 	    xdpf->headroom >= priv->tx_headroom) {
2232 		xdpf->headroom = priv->tx_headroom;
2233 		return 0;
2234 	}
2235 
2236 	/* Try to move the data inside the buffer just enough to align it and
2237 	 * store the xdpf backpointer. If the available headroom isn't large
2238 	 * enough, resort to allocating a new buffer and copying the data.
2239 	 */
2240 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2241 	data_shift = xdpf->data - aligned_data;
2242 
2243 	/* The XDP frame's headroom needs to be large enough to accommodate
2244 	 * shifting the data as well as storing the xdpf backpointer.
2245 	 */
2246 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2247 		memmove(aligned_data, xdpf->data, xdpf->len);
2248 		xdpf->data = aligned_data;
2249 		xdpf->headroom = priv->tx_headroom;
2250 		return 0;
2251 	}
2252 
2253 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2254 	 * in the headroom for storing it along with the driver's private
2255 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2256 	 * guarantee the data's alignment in the buffer.
2257 	 */
2258 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2259 			 DPAA_FD_DATA_ALIGNMENT);
2260 
2261 	/* Assure the extended headroom and data don't overflow the buffer,
2262 	 * while maintaining the mandatory tailroom.
2263 	 */
2264 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2265 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2266 		return -ENOMEM;
2267 
2268 	p = dev_alloc_pages(0);
2269 	if (unlikely(!p))
2270 		return -ENOMEM;
2271 
2272 	/* Copy the data to the new buffer at a properly aligned offset */
2273 	new_buff = page_address(p);
2274 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2275 
2276 	/* Create an XDP frame around the new buffer in a similar fashion
2277 	 * to xdp_convert_buff_to_frame.
2278 	 */
2279 	new_xdpf = new_buff;
2280 	new_xdpf->data = new_buff + headroom;
2281 	new_xdpf->len = xdpf->len;
2282 	new_xdpf->headroom = priv->tx_headroom;
2283 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2284 	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2285 
2286 	/* Release the initial buffer */
2287 	xdp_return_frame_rx_napi(xdpf);
2288 
2289 	*init_xdpf = new_xdpf;
2290 	return 0;
2291 }
2292 #endif
2293 
2294 static netdev_tx_t
2295 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2296 {
2297 	const int queue_mapping = skb_get_queue_mapping(skb);
2298 	struct rtnl_link_stats64 *percpu_stats;
2299 	struct dpaa_percpu_priv *percpu_priv;
2300 	struct netdev_queue *txq;
2301 	struct dpaa_priv *priv;
2302 	struct qm_fd fd;
2303 	bool nonlinear;
2304 	int offset = 0;
2305 	int err = 0;
2306 
2307 	priv = netdev_priv(net_dev);
2308 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2309 	percpu_stats = &percpu_priv->stats;
2310 
2311 	qm_fd_clear_fd(&fd);
2312 
2313 	/* Packet data is always read as 32-bit words, so zero out any part of
2314 	 * the skb which might be sent if we have to pad the packet
2315 	 */
2316 	if (__skb_put_padto(skb, ETH_ZLEN, false))
2317 		goto enomem;
2318 
2319 	nonlinear = skb_is_nonlinear(skb);
2320 	if (!nonlinear) {
2321 		/* We're going to store the skb backpointer at the beginning
2322 		 * of the data buffer, so we need a privately owned skb
2323 		 *
2324 		 * We've made sure skb is not shared in dev->priv_flags,
2325 		 * we need to verify the skb head is not cloned
2326 		 */
2327 		if (skb_cow_head(skb, priv->tx_headroom))
2328 			goto enomem;
2329 
2330 		WARN_ON(skb_is_nonlinear(skb));
2331 	}
2332 
2333 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2334 	 * make sure we don't feed FMan with more fragments than it supports.
2335 	 */
2336 	if (unlikely(nonlinear &&
2337 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2338 		/* If the egress skb contains more fragments than we support
2339 		 * we have no choice but to linearize it ourselves.
2340 		 */
2341 		if (__skb_linearize(skb))
2342 			goto enomem;
2343 
2344 		nonlinear = skb_is_nonlinear(skb);
2345 	}
2346 
2347 #ifdef CONFIG_DPAA_ERRATUM_A050385
2348 	if (unlikely(fman_has_errata_a050385())) {
2349 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2350 			goto enomem;
2351 		nonlinear = skb_is_nonlinear(skb);
2352 	}
2353 #endif
2354 
2355 	if (nonlinear) {
2356 		/* Just create a S/G fd based on the skb */
2357 		err = skb_to_sg_fd(priv, skb, &fd);
2358 		percpu_priv->tx_frag_skbuffs++;
2359 	} else {
2360 		/* Create a contig FD from this skb */
2361 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2362 	}
2363 	if (unlikely(err < 0))
2364 		goto skb_to_fd_failed;
2365 
2366 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2367 
2368 	/* LLTX requires to do our own update of trans_start */
2369 	txq_trans_cond_update(txq);
2370 
2371 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2372 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2373 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2374 	}
2375 
2376 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2377 		return NETDEV_TX_OK;
2378 
2379 	dpaa_cleanup_tx_fd(priv, &fd, false);
2380 skb_to_fd_failed:
2381 enomem:
2382 	percpu_stats->tx_errors++;
2383 	dev_kfree_skb(skb);
2384 	return NETDEV_TX_OK;
2385 }
2386 
2387 static void dpaa_rx_error(struct net_device *net_dev,
2388 			  const struct dpaa_priv *priv,
2389 			  struct dpaa_percpu_priv *percpu_priv,
2390 			  const struct qm_fd *fd,
2391 			  u32 fqid)
2392 {
2393 	if (net_ratelimit())
2394 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2395 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2396 
2397 	percpu_priv->stats.rx_errors++;
2398 
2399 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2400 		percpu_priv->rx_errors.dme++;
2401 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2402 		percpu_priv->rx_errors.fpe++;
2403 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2404 		percpu_priv->rx_errors.fse++;
2405 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2406 		percpu_priv->rx_errors.phe++;
2407 
2408 	dpaa_fd_release(net_dev, fd);
2409 }
2410 
2411 static void dpaa_tx_error(struct net_device *net_dev,
2412 			  const struct dpaa_priv *priv,
2413 			  struct dpaa_percpu_priv *percpu_priv,
2414 			  const struct qm_fd *fd,
2415 			  u32 fqid)
2416 {
2417 	struct sk_buff *skb;
2418 
2419 	if (net_ratelimit())
2420 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2421 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2422 
2423 	percpu_priv->stats.tx_errors++;
2424 
2425 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2426 	dev_kfree_skb(skb);
2427 }
2428 
2429 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2430 {
2431 	struct dpaa_napi_portal *np =
2432 			container_of(napi, struct dpaa_napi_portal, napi);
2433 	int cleaned;
2434 
2435 	np->xdp_act = 0;
2436 
2437 	cleaned = qman_p_poll_dqrr(np->p, budget);
2438 
2439 	if (np->xdp_act & XDP_REDIRECT)
2440 		xdp_do_flush();
2441 
2442 	if (cleaned < budget) {
2443 		napi_complete_done(napi, cleaned);
2444 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2445 	} else if (np->down) {
2446 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2447 	}
2448 
2449 	return cleaned;
2450 }
2451 
2452 static void dpaa_tx_conf(struct net_device *net_dev,
2453 			 const struct dpaa_priv *priv,
2454 			 struct dpaa_percpu_priv *percpu_priv,
2455 			 const struct qm_fd *fd,
2456 			 u32 fqid)
2457 {
2458 	struct sk_buff	*skb;
2459 
2460 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2461 		if (net_ratelimit())
2462 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2463 				   be32_to_cpu(fd->status) &
2464 				   FM_FD_STAT_TX_ERRORS);
2465 
2466 		percpu_priv->stats.tx_errors++;
2467 	}
2468 
2469 	percpu_priv->tx_confirm++;
2470 
2471 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2472 
2473 	consume_skb(skb);
2474 }
2475 
2476 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2477 					 struct qman_portal *portal, bool sched_napi)
2478 {
2479 	if (sched_napi) {
2480 		/* Disable QMan IRQ and invoke NAPI */
2481 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2482 
2483 		percpu_priv->np.p = portal;
2484 		napi_schedule(&percpu_priv->np.napi);
2485 		percpu_priv->in_interrupt++;
2486 		return 1;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2492 					      struct qman_fq *fq,
2493 					      const struct qm_dqrr_entry *dq,
2494 					      bool sched_napi)
2495 {
2496 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2497 	struct dpaa_percpu_priv *percpu_priv;
2498 	struct net_device *net_dev;
2499 	struct dpaa_bp *dpaa_bp;
2500 	struct dpaa_priv *priv;
2501 
2502 	net_dev = dpaa_fq->net_dev;
2503 	priv = netdev_priv(net_dev);
2504 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2505 	if (!dpaa_bp)
2506 		return qman_cb_dqrr_consume;
2507 
2508 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2509 
2510 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2511 		return qman_cb_dqrr_stop;
2512 
2513 	dpaa_eth_refill_bpools(priv);
2514 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2515 
2516 	return qman_cb_dqrr_consume;
2517 }
2518 
2519 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2520 			       struct xdp_frame *xdpf)
2521 {
2522 	struct dpaa_priv *priv = netdev_priv(net_dev);
2523 	struct rtnl_link_stats64 *percpu_stats;
2524 	struct dpaa_percpu_priv *percpu_priv;
2525 	struct dpaa_eth_swbp *swbp;
2526 	struct netdev_queue *txq;
2527 	void *buff_start;
2528 	struct qm_fd fd;
2529 	dma_addr_t addr;
2530 	int err;
2531 
2532 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2533 	percpu_stats = &percpu_priv->stats;
2534 
2535 #ifdef CONFIG_DPAA_ERRATUM_A050385
2536 	if (unlikely(fman_has_errata_a050385())) {
2537 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2538 			err = -ENOMEM;
2539 			goto out_error;
2540 		}
2541 	}
2542 #endif
2543 
2544 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2545 		err = -EINVAL;
2546 		goto out_error;
2547 	}
2548 
2549 	buff_start = xdpf->data - xdpf->headroom;
2550 
2551 	/* Leave empty the skb backpointer at the start of the buffer.
2552 	 * Save the XDP frame for easy cleanup on confirmation.
2553 	 */
2554 	swbp = (struct dpaa_eth_swbp *)buff_start;
2555 	swbp->skb = NULL;
2556 	swbp->xdpf = xdpf;
2557 
2558 	qm_fd_clear_fd(&fd);
2559 	fd.bpid = FSL_DPAA_BPID_INV;
2560 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2561 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2562 
2563 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2564 			      xdpf->headroom + xdpf->len,
2565 			      DMA_TO_DEVICE);
2566 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2567 		err = -EINVAL;
2568 		goto out_error;
2569 	}
2570 
2571 	qm_fd_addr_set64(&fd, addr);
2572 
2573 	/* Bump the trans_start */
2574 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2575 	txq_trans_cond_update(txq);
2576 
2577 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2578 	if (err) {
2579 		dma_unmap_single(priv->tx_dma_dev, addr,
2580 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2581 				 DMA_TO_DEVICE);
2582 		goto out_error;
2583 	}
2584 
2585 	return 0;
2586 
2587 out_error:
2588 	percpu_stats->tx_errors++;
2589 	return err;
2590 }
2591 
2592 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2593 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2594 {
2595 	ssize_t fd_off = qm_fd_get_offset(fd);
2596 	struct bpf_prog *xdp_prog;
2597 	struct xdp_frame *xdpf;
2598 	struct xdp_buff xdp;
2599 	u32 xdp_act;
2600 	int err;
2601 
2602 	xdp_prog = READ_ONCE(priv->xdp_prog);
2603 	if (!xdp_prog)
2604 		return XDP_PASS;
2605 
2606 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2607 		      &dpaa_fq->xdp_rxq);
2608 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2609 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2610 
2611 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2612 	 * offer it all to XDP programs to use. If no room is left for the
2613 	 * xdpf backpointer on TX, we will need to copy the data.
2614 	 * Disable metadata support since data realignments might be required
2615 	 * and the information can be lost.
2616 	 */
2617 #ifdef CONFIG_DPAA_ERRATUM_A050385
2618 	if (unlikely(fman_has_errata_a050385())) {
2619 		xdp_set_data_meta_invalid(&xdp);
2620 		xdp.data_hard_start = vaddr;
2621 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2622 	}
2623 #endif
2624 
2625 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2626 
2627 	/* Update the length and the offset of the FD */
2628 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2629 
2630 	switch (xdp_act) {
2631 	case XDP_PASS:
2632 #ifdef CONFIG_DPAA_ERRATUM_A050385
2633 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2634 				xdp.data - xdp.data_meta;
2635 #else
2636 		*xdp_meta_len = xdp.data - xdp.data_meta;
2637 #endif
2638 		break;
2639 	case XDP_TX:
2640 		/* We can access the full headroom when sending the frame
2641 		 * back out
2642 		 */
2643 		xdp.data_hard_start = vaddr;
2644 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2645 		xdpf = xdp_convert_buff_to_frame(&xdp);
2646 		if (unlikely(!xdpf)) {
2647 			free_pages((unsigned long)vaddr, 0);
2648 			break;
2649 		}
2650 
2651 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2652 			xdp_return_frame_rx_napi(xdpf);
2653 
2654 		break;
2655 	case XDP_REDIRECT:
2656 		/* Allow redirect to use the full headroom */
2657 		xdp.data_hard_start = vaddr;
2658 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2659 
2660 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2661 		if (err) {
2662 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2663 			free_pages((unsigned long)vaddr, 0);
2664 		}
2665 		break;
2666 	default:
2667 		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2668 		fallthrough;
2669 	case XDP_ABORTED:
2670 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2671 		fallthrough;
2672 	case XDP_DROP:
2673 		/* Free the buffer */
2674 		free_pages((unsigned long)vaddr, 0);
2675 		break;
2676 	}
2677 
2678 	return xdp_act;
2679 }
2680 
2681 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2682 						struct qman_fq *fq,
2683 						const struct qm_dqrr_entry *dq,
2684 						bool sched_napi)
2685 {
2686 	bool ts_valid = false, hash_valid = false;
2687 	struct skb_shared_hwtstamps *shhwtstamps;
2688 	unsigned int skb_len, xdp_meta_len = 0;
2689 	struct rtnl_link_stats64 *percpu_stats;
2690 	struct dpaa_percpu_priv *percpu_priv;
2691 	const struct qm_fd *fd = &dq->fd;
2692 	dma_addr_t addr = qm_fd_addr(fd);
2693 	struct dpaa_napi_portal *np;
2694 	enum qm_fd_format fd_format;
2695 	struct net_device *net_dev;
2696 	u32 fd_status, hash_offset;
2697 	struct qm_sg_entry *sgt;
2698 	struct dpaa_bp *dpaa_bp;
2699 	struct dpaa_fq *dpaa_fq;
2700 	struct dpaa_priv *priv;
2701 	struct sk_buff *skb;
2702 	int *count_ptr;
2703 	u32 xdp_act;
2704 	void *vaddr;
2705 	u32 hash;
2706 	u64 ns;
2707 
2708 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2709 	fd_status = be32_to_cpu(fd->status);
2710 	fd_format = qm_fd_get_format(fd);
2711 	net_dev = dpaa_fq->net_dev;
2712 	priv = netdev_priv(net_dev);
2713 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2714 	if (!dpaa_bp)
2715 		return qman_cb_dqrr_consume;
2716 
2717 	/* Trace the Rx fd */
2718 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2719 
2720 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2721 	percpu_stats = &percpu_priv->stats;
2722 	np = &percpu_priv->np;
2723 
2724 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2725 		return qman_cb_dqrr_stop;
2726 
2727 	/* Make sure we didn't run out of buffers */
2728 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2729 		/* Unable to refill the buffer pool due to insufficient
2730 		 * system memory. Just release the frame back into the pool,
2731 		 * otherwise we'll soon end up with an empty buffer pool.
2732 		 */
2733 		dpaa_fd_release(net_dev, &dq->fd);
2734 		return qman_cb_dqrr_consume;
2735 	}
2736 
2737 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2738 		if (net_ratelimit())
2739 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2740 				   fd_status & FM_FD_STAT_RX_ERRORS);
2741 
2742 		percpu_stats->rx_errors++;
2743 		dpaa_fd_release(net_dev, fd);
2744 		return qman_cb_dqrr_consume;
2745 	}
2746 
2747 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2748 		       DMA_FROM_DEVICE);
2749 
2750 	/* prefetch the first 64 bytes of the frame or the SGT start */
2751 	vaddr = phys_to_virt(addr);
2752 	prefetch(vaddr + qm_fd_get_offset(fd));
2753 
2754 	/* The only FD types that we may receive are contig and S/G */
2755 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2756 
2757 	/* Account for either the contig buffer or the SGT buffer (depending on
2758 	 * which case we were in) having been removed from the pool.
2759 	 */
2760 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2761 	(*count_ptr)--;
2762 
2763 	/* Extract the timestamp stored in the headroom before running XDP */
2764 	if (priv->rx_tstamp) {
2765 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2766 			ts_valid = true;
2767 		else
2768 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2769 	}
2770 
2771 	/* Extract the hash stored in the headroom before running XDP */
2772 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2773 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2774 					      &hash_offset)) {
2775 		hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2776 		hash_valid = true;
2777 	}
2778 
2779 	if (likely(fd_format == qm_fd_contig)) {
2780 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2781 				       dpaa_fq, &xdp_meta_len);
2782 		np->xdp_act |= xdp_act;
2783 		if (xdp_act != XDP_PASS) {
2784 			percpu_stats->rx_packets++;
2785 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2786 			return qman_cb_dqrr_consume;
2787 		}
2788 		skb = contig_fd_to_skb(priv, fd);
2789 	} else {
2790 		/* XDP doesn't support S/G frames. Return the fragments to the
2791 		 * buffer pool and release the SGT.
2792 		 */
2793 		if (READ_ONCE(priv->xdp_prog)) {
2794 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2795 			sgt = vaddr + qm_fd_get_offset(fd);
2796 			dpaa_release_sgt_members(sgt);
2797 			free_pages((unsigned long)vaddr, 0);
2798 			return qman_cb_dqrr_consume;
2799 		}
2800 		skb = sg_fd_to_skb(priv, fd);
2801 	}
2802 	if (!skb)
2803 		return qman_cb_dqrr_consume;
2804 
2805 	if (xdp_meta_len)
2806 		skb_metadata_set(skb, xdp_meta_len);
2807 
2808 	/* Set the previously extracted timestamp */
2809 	if (ts_valid) {
2810 		shhwtstamps = skb_hwtstamps(skb);
2811 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2812 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2813 	}
2814 
2815 	skb->protocol = eth_type_trans(skb, net_dev);
2816 
2817 	/* Set the previously extracted hash */
2818 	if (hash_valid) {
2819 		enum pkt_hash_types type;
2820 
2821 		/* if L4 exists, it was used in the hash generation */
2822 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2823 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2824 		skb_set_hash(skb, hash, type);
2825 	}
2826 
2827 	skb_len = skb->len;
2828 
2829 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2830 		percpu_stats->rx_dropped++;
2831 		return qman_cb_dqrr_consume;
2832 	}
2833 
2834 	percpu_stats->rx_packets++;
2835 	percpu_stats->rx_bytes += skb_len;
2836 
2837 	return qman_cb_dqrr_consume;
2838 }
2839 
2840 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2841 						struct qman_fq *fq,
2842 						const struct qm_dqrr_entry *dq,
2843 						bool sched_napi)
2844 {
2845 	struct dpaa_percpu_priv *percpu_priv;
2846 	struct net_device *net_dev;
2847 	struct dpaa_priv *priv;
2848 
2849 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850 	priv = netdev_priv(net_dev);
2851 
2852 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2853 
2854 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2855 		return qman_cb_dqrr_stop;
2856 
2857 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2858 
2859 	return qman_cb_dqrr_consume;
2860 }
2861 
2862 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2863 					       struct qman_fq *fq,
2864 					       const struct qm_dqrr_entry *dq,
2865 					       bool sched_napi)
2866 {
2867 	struct dpaa_percpu_priv *percpu_priv;
2868 	struct net_device *net_dev;
2869 	struct dpaa_priv *priv;
2870 
2871 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2872 	priv = netdev_priv(net_dev);
2873 
2874 	/* Trace the fd */
2875 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2876 
2877 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2878 
2879 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2880 		return qman_cb_dqrr_stop;
2881 
2882 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2883 
2884 	return qman_cb_dqrr_consume;
2885 }
2886 
2887 static void egress_ern(struct qman_portal *portal,
2888 		       struct qman_fq *fq,
2889 		       const union qm_mr_entry *msg)
2890 {
2891 	const struct qm_fd *fd = &msg->ern.fd;
2892 	struct dpaa_percpu_priv *percpu_priv;
2893 	const struct dpaa_priv *priv;
2894 	struct net_device *net_dev;
2895 	struct sk_buff *skb;
2896 
2897 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2898 	priv = netdev_priv(net_dev);
2899 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2900 
2901 	percpu_priv->stats.tx_dropped++;
2902 	percpu_priv->stats.tx_fifo_errors++;
2903 	count_ern(percpu_priv, msg);
2904 
2905 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2906 	dev_kfree_skb_any(skb);
2907 }
2908 
2909 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2910 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2911 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2912 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2913 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2914 	.egress_ern = { .cb = { .ern = egress_ern } }
2915 };
2916 
2917 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2918 {
2919 	struct dpaa_percpu_priv *percpu_priv;
2920 	int i;
2921 
2922 	for_each_online_cpu(i) {
2923 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2924 
2925 		percpu_priv->np.down = false;
2926 		napi_enable(&percpu_priv->np.napi);
2927 	}
2928 }
2929 
2930 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2931 {
2932 	struct dpaa_percpu_priv *percpu_priv;
2933 	int i;
2934 
2935 	for_each_online_cpu(i) {
2936 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2937 
2938 		percpu_priv->np.down = true;
2939 		napi_disable(&percpu_priv->np.napi);
2940 	}
2941 }
2942 
2943 static int dpaa_open(struct net_device *net_dev)
2944 {
2945 	struct mac_device *mac_dev;
2946 	struct dpaa_priv *priv;
2947 	int err, i;
2948 
2949 	priv = netdev_priv(net_dev);
2950 	mac_dev = priv->mac_dev;
2951 	dpaa_eth_napi_enable(priv);
2952 
2953 	err = phylink_of_phy_connect(mac_dev->phylink,
2954 				     mac_dev->dev->of_node, 0);
2955 	if (err)
2956 		goto phy_init_failed;
2957 
2958 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2959 		err = fman_port_enable(mac_dev->port[i]);
2960 		if (err)
2961 			goto mac_start_failed;
2962 	}
2963 
2964 	err = priv->mac_dev->enable(mac_dev->fman_mac);
2965 	if (err < 0) {
2966 		netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2967 		goto mac_start_failed;
2968 	}
2969 	phylink_start(mac_dev->phylink);
2970 
2971 	netif_tx_start_all_queues(net_dev);
2972 
2973 	return 0;
2974 
2975 mac_start_failed:
2976 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2977 		fman_port_disable(mac_dev->port[i]);
2978 	phylink_disconnect_phy(mac_dev->phylink);
2979 
2980 phy_init_failed:
2981 	dpaa_eth_napi_disable(priv);
2982 
2983 	return err;
2984 }
2985 
2986 static int dpaa_eth_stop(struct net_device *net_dev)
2987 {
2988 	struct dpaa_priv *priv;
2989 	int err;
2990 
2991 	err = dpaa_stop(net_dev);
2992 
2993 	priv = netdev_priv(net_dev);
2994 	dpaa_eth_napi_disable(priv);
2995 
2996 	return err;
2997 }
2998 
2999 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
3000 {
3001 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3002 
3003 	/* We do not support S/G fragments when XDP is enabled.
3004 	 * Limit the MTU in relation to the buffer size.
3005 	 */
3006 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3007 		dev_warn(priv->net_dev->dev.parent,
3008 			 "The maximum MTU for XDP is %d\n",
3009 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3010 		return false;
3011 	}
3012 
3013 	return true;
3014 }
3015 
3016 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3017 {
3018 	struct dpaa_priv *priv = netdev_priv(net_dev);
3019 
3020 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3021 		return -EINVAL;
3022 
3023 	WRITE_ONCE(net_dev->mtu, new_mtu);
3024 	return 0;
3025 }
3026 
3027 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3028 {
3029 	struct dpaa_priv *priv = netdev_priv(net_dev);
3030 	struct bpf_prog *old_prog;
3031 	int err;
3032 	bool up;
3033 
3034 	/* S/G fragments are not supported in XDP-mode */
3035 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3036 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3037 		return -EINVAL;
3038 	}
3039 
3040 	up = netif_running(net_dev);
3041 
3042 	if (up)
3043 		dpaa_eth_stop(net_dev);
3044 
3045 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3046 	if (old_prog)
3047 		bpf_prog_put(old_prog);
3048 
3049 	if (up) {
3050 		err = dpaa_open(net_dev);
3051 		if (err) {
3052 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3053 			return err;
3054 		}
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3061 {
3062 	switch (xdp->command) {
3063 	case XDP_SETUP_PROG:
3064 		return dpaa_setup_xdp(net_dev, xdp);
3065 	default:
3066 		return -EINVAL;
3067 	}
3068 }
3069 
3070 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3071 			 struct xdp_frame **frames, u32 flags)
3072 {
3073 	struct xdp_frame *xdpf;
3074 	int i, nxmit = 0;
3075 
3076 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3077 		return -EINVAL;
3078 
3079 	if (!netif_running(net_dev))
3080 		return -ENETDOWN;
3081 
3082 	for (i = 0; i < n; i++) {
3083 		xdpf = frames[i];
3084 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3085 			break;
3086 		nxmit++;
3087 	}
3088 
3089 	return nxmit;
3090 }
3091 
3092 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3093 {
3094 	struct dpaa_priv *priv = netdev_priv(dev);
3095 	struct hwtstamp_config config;
3096 
3097 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3098 		return -EFAULT;
3099 
3100 	switch (config.tx_type) {
3101 	case HWTSTAMP_TX_OFF:
3102 		/* Couldn't disable rx/tx timestamping separately.
3103 		 * Do nothing here.
3104 		 */
3105 		priv->tx_tstamp = false;
3106 		break;
3107 	case HWTSTAMP_TX_ON:
3108 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3109 		priv->tx_tstamp = true;
3110 		break;
3111 	default:
3112 		return -ERANGE;
3113 	}
3114 
3115 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3116 		/* Couldn't disable rx/tx timestamping separately.
3117 		 * Do nothing here.
3118 		 */
3119 		priv->rx_tstamp = false;
3120 	} else {
3121 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3122 		priv->rx_tstamp = true;
3123 		/* TS is set for all frame types, not only those requested */
3124 		config.rx_filter = HWTSTAMP_FILTER_ALL;
3125 	}
3126 
3127 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3128 			-EFAULT : 0;
3129 }
3130 
3131 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3132 {
3133 	int ret = -EINVAL;
3134 	struct dpaa_priv *priv = netdev_priv(net_dev);
3135 
3136 	if (cmd == SIOCGMIIREG) {
3137 		if (net_dev->phydev)
3138 			return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3139 						 cmd);
3140 	}
3141 
3142 	if (cmd == SIOCSHWTSTAMP)
3143 		return dpaa_ts_ioctl(net_dev, rq, cmd);
3144 
3145 	return ret;
3146 }
3147 
3148 static const struct net_device_ops dpaa_ops = {
3149 	.ndo_open = dpaa_open,
3150 	.ndo_start_xmit = dpaa_start_xmit,
3151 	.ndo_stop = dpaa_eth_stop,
3152 	.ndo_tx_timeout = dpaa_tx_timeout,
3153 	.ndo_get_stats64 = dpaa_get_stats64,
3154 	.ndo_change_carrier = fixed_phy_change_carrier,
3155 	.ndo_set_mac_address = dpaa_set_mac_address,
3156 	.ndo_validate_addr = eth_validate_addr,
3157 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3158 	.ndo_eth_ioctl = dpaa_ioctl,
3159 	.ndo_setup_tc = dpaa_setup_tc,
3160 	.ndo_change_mtu = dpaa_change_mtu,
3161 	.ndo_bpf = dpaa_xdp,
3162 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3163 };
3164 
3165 static int dpaa_napi_add(struct net_device *net_dev)
3166 {
3167 	struct dpaa_priv *priv = netdev_priv(net_dev);
3168 	struct dpaa_percpu_priv *percpu_priv;
3169 	int cpu;
3170 
3171 	for_each_possible_cpu(cpu) {
3172 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3173 
3174 		netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 static void dpaa_napi_del(struct net_device *net_dev)
3181 {
3182 	struct dpaa_priv *priv = netdev_priv(net_dev);
3183 	struct dpaa_percpu_priv *percpu_priv;
3184 	int cpu;
3185 
3186 	for_each_possible_cpu(cpu) {
3187 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3188 
3189 		__netif_napi_del(&percpu_priv->np.napi);
3190 	}
3191 	synchronize_net();
3192 }
3193 
3194 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3195 				   struct bm_buffer *bmb)
3196 {
3197 	dma_addr_t addr = bm_buf_addr(bmb);
3198 
3199 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3200 		       DMA_FROM_DEVICE);
3201 
3202 	skb_free_frag(phys_to_virt(addr));
3203 }
3204 
3205 /* Alloc the dpaa_bp struct and configure default values */
3206 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3207 {
3208 	struct dpaa_bp *dpaa_bp;
3209 
3210 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3211 	if (!dpaa_bp)
3212 		return ERR_PTR(-ENOMEM);
3213 
3214 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3215 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3216 	if (!dpaa_bp->percpu_count)
3217 		return ERR_PTR(-ENOMEM);
3218 
3219 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3220 
3221 	dpaa_bp->seed_cb = dpaa_bp_seed;
3222 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3223 
3224 	return dpaa_bp;
3225 }
3226 
3227 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3228  * We won't be sending congestion notifications to FMan; for now, we just use
3229  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3230  * before they reach our ingress queues and eat up memory.
3231  */
3232 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3233 {
3234 	struct qm_mcc_initcgr initcgr;
3235 	u32 cs_th;
3236 	int err;
3237 
3238 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3239 	if (err < 0) {
3240 		if (netif_msg_drv(priv))
3241 			pr_err("Error %d allocating CGR ID\n", err);
3242 		goto out_error;
3243 	}
3244 
3245 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3246 	memset(&initcgr, 0, sizeof(initcgr));
3247 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3248 	initcgr.cgr.cscn_en = QM_CGR_EN;
3249 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3250 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3251 
3252 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3253 	initcgr.cgr.cstd_en = QM_CGR_EN;
3254 
3255 	/* This CGR will be associated with the SWP affined to the current CPU.
3256 	 * However, we'll place all our ingress FQs in it.
3257 	 */
3258 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3259 			      &initcgr);
3260 	if (err < 0) {
3261 		if (netif_msg_drv(priv))
3262 			pr_err("Error %d creating ingress CGR with ID %d\n",
3263 			       err, priv->ingress_cgr.cgrid);
3264 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3265 		goto out_error;
3266 	}
3267 	if (netif_msg_drv(priv))
3268 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3269 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3270 
3271 	priv->use_ingress_cgr = true;
3272 
3273 out_error:
3274 	return err;
3275 }
3276 
3277 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3278 			     enum port_type port)
3279 {
3280 	u16 headroom;
3281 
3282 	/* The frame headroom must accommodate:
3283 	 * - the driver private data area
3284 	 * - parse results, hash results, timestamp if selected
3285 	 * If either hash results or time stamp are selected, both will
3286 	 * be copied to/from the frame headroom, as TS is located between PR and
3287 	 * HR in the IC and IC copy size has a granularity of 16bytes
3288 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3289 	 *
3290 	 * Also make sure the headroom is a multiple of data_align bytes
3291 	 */
3292 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3293 
3294 	if (port == RX) {
3295 #ifdef CONFIG_DPAA_ERRATUM_A050385
3296 		if (unlikely(fman_has_errata_a050385()))
3297 			headroom = XDP_PACKET_HEADROOM;
3298 #endif
3299 
3300 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3301 	} else {
3302 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3303 	}
3304 }
3305 
3306 static int dpaa_eth_probe(struct platform_device *pdev)
3307 {
3308 	struct net_device *net_dev = NULL;
3309 	struct dpaa_bp *dpaa_bp = NULL;
3310 	struct dpaa_fq *dpaa_fq, *tmp;
3311 	struct dpaa_priv *priv = NULL;
3312 	struct fm_port_fqs port_fqs;
3313 	struct mac_device *mac_dev;
3314 	int err = 0, channel;
3315 	struct device *dev;
3316 
3317 	dev = &pdev->dev;
3318 
3319 	err = bman_is_probed();
3320 	if (!err)
3321 		return -EPROBE_DEFER;
3322 	if (err < 0) {
3323 		dev_err(dev, "failing probe due to bman probe error\n");
3324 		return -ENODEV;
3325 	}
3326 	err = qman_is_probed();
3327 	if (!err)
3328 		return -EPROBE_DEFER;
3329 	if (err < 0) {
3330 		dev_err(dev, "failing probe due to qman probe error\n");
3331 		return -ENODEV;
3332 	}
3333 	err = bman_portals_probed();
3334 	if (!err)
3335 		return -EPROBE_DEFER;
3336 	if (err < 0) {
3337 		dev_err(dev,
3338 			"failing probe due to bman portals probe error\n");
3339 		return -ENODEV;
3340 	}
3341 	err = qman_portals_probed();
3342 	if (!err)
3343 		return -EPROBE_DEFER;
3344 	if (err < 0) {
3345 		dev_err(dev,
3346 			"failing probe due to qman portals probe error\n");
3347 		return -ENODEV;
3348 	}
3349 
3350 	/* Allocate this early, so we can store relevant information in
3351 	 * the private area
3352 	 */
3353 	net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3354 	if (!net_dev) {
3355 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3356 		return -ENOMEM;
3357 	}
3358 
3359 	/* Do this here, so we can be verbose early */
3360 	SET_NETDEV_DEV(net_dev, dev->parent);
3361 	dev_set_drvdata(dev, net_dev);
3362 
3363 	priv = netdev_priv(net_dev);
3364 	priv->net_dev = net_dev;
3365 
3366 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3367 
3368 	priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3369 					sizeof(*priv->egress_fqs),
3370 					GFP_KERNEL);
3371 	if (!priv->egress_fqs) {
3372 		err = -ENOMEM;
3373 		goto free_netdev;
3374 	}
3375 
3376 	priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3377 				      sizeof(*priv->conf_fqs),
3378 				      GFP_KERNEL);
3379 	if (!priv->conf_fqs) {
3380 		err = -ENOMEM;
3381 		goto free_netdev;
3382 	}
3383 
3384 	mac_dev = dpaa_mac_dev_get(pdev);
3385 	if (IS_ERR(mac_dev)) {
3386 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3387 		err = PTR_ERR(mac_dev);
3388 		goto free_netdev;
3389 	}
3390 
3391 	/* Devices used for DMA mapping */
3392 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3393 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3394 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3395 	if (!err)
3396 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3397 						   DMA_BIT_MASK(40));
3398 	if (err) {
3399 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3400 		goto free_netdev;
3401 	}
3402 
3403 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3404 	 * we choose conservatively and let the user explicitly set a higher
3405 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3406 	 * in the same LAN.
3407 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3408 	 * start with the maximum allowed.
3409 	 */
3410 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3411 
3412 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3413 		   net_dev->mtu);
3414 
3415 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3416 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3417 
3418 	/* bp init */
3419 	dpaa_bp = dpaa_bp_alloc(dev);
3420 	if (IS_ERR(dpaa_bp)) {
3421 		err = PTR_ERR(dpaa_bp);
3422 		goto free_dpaa_bps;
3423 	}
3424 	/* the raw size of the buffers used for reception */
3425 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3426 	/* avoid runtime computations by keeping the usable size here */
3427 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3428 	dpaa_bp->priv = priv;
3429 
3430 	err = dpaa_bp_alloc_pool(dpaa_bp);
3431 	if (err < 0)
3432 		goto free_dpaa_bps;
3433 	priv->dpaa_bp = dpaa_bp;
3434 
3435 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3436 
3437 	memset(&port_fqs, 0, sizeof(port_fqs));
3438 
3439 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3440 	if (err < 0) {
3441 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3442 		goto free_dpaa_bps;
3443 	}
3444 
3445 	priv->mac_dev = mac_dev;
3446 
3447 	channel = dpaa_get_channel();
3448 	if (channel < 0) {
3449 		dev_err(dev, "dpaa_get_channel() failed\n");
3450 		err = channel;
3451 		goto free_dpaa_bps;
3452 	}
3453 
3454 	priv->channel = (u16)channel;
3455 
3456 	/* Walk the CPUs with affine portals
3457 	 * and add this pool channel to each's dequeue mask.
3458 	 */
3459 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3460 
3461 	err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3462 	if (err)
3463 		goto free_dpaa_bps;
3464 
3465 	/* Create a congestion group for this netdev, with
3466 	 * dynamically-allocated CGR ID.
3467 	 * Must be executed after probing the MAC, but before
3468 	 * assigning the egress FQs to the CGRs.
3469 	 */
3470 	err = dpaa_eth_cgr_init(priv);
3471 	if (err < 0) {
3472 		dev_err(dev, "Error initializing CGR\n");
3473 		goto free_dpaa_bps;
3474 	}
3475 
3476 	err = dpaa_ingress_cgr_init(priv);
3477 	if (err < 0) {
3478 		dev_err(dev, "Error initializing ingress CGR\n");
3479 		goto delete_egress_cgr;
3480 	}
3481 
3482 	/* Add the FQs to the interface, and make them active */
3483 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3484 		err = dpaa_fq_init(dpaa_fq, false);
3485 		if (err < 0)
3486 			goto free_dpaa_fqs;
3487 	}
3488 
3489 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3490 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3491 
3492 	/* All real interfaces need their ports initialized */
3493 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3494 				  &priv->buf_layout[0], dev);
3495 	if (err)
3496 		goto free_dpaa_fqs;
3497 
3498 	/* Rx traffic distribution based on keygen hashing defaults to on */
3499 	priv->keygen_in_use = true;
3500 
3501 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3502 	if (!priv->percpu_priv) {
3503 		dev_err(dev, "devm_alloc_percpu() failed\n");
3504 		err = -ENOMEM;
3505 		goto free_dpaa_fqs;
3506 	}
3507 
3508 	priv->num_tc = 1;
3509 	netif_set_real_num_tx_queues(net_dev,
3510 				     priv->num_tc * dpaa_num_txqs_per_tc());
3511 
3512 	/* Initialize NAPI */
3513 	err = dpaa_napi_add(net_dev);
3514 	if (err < 0)
3515 		goto delete_dpaa_napi;
3516 
3517 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3518 	if (err < 0)
3519 		goto delete_dpaa_napi;
3520 
3521 	dpaa_eth_sysfs_init(&net_dev->dev);
3522 
3523 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3524 		   net_dev->name);
3525 
3526 	return 0;
3527 
3528 delete_dpaa_napi:
3529 	dpaa_napi_del(net_dev);
3530 free_dpaa_fqs:
3531 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3532 	qman_delete_cgr_safe(&priv->ingress_cgr);
3533 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3534 delete_egress_cgr:
3535 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3536 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3537 free_dpaa_bps:
3538 	dpaa_bps_free(priv);
3539 free_netdev:
3540 	dev_set_drvdata(dev, NULL);
3541 	free_netdev(net_dev);
3542 
3543 	return err;
3544 }
3545 
3546 static void dpaa_remove(struct platform_device *pdev)
3547 {
3548 	struct net_device *net_dev;
3549 	struct dpaa_priv *priv;
3550 	struct device *dev;
3551 	int err;
3552 
3553 	dev = &pdev->dev;
3554 	net_dev = dev_get_drvdata(dev);
3555 
3556 	priv = netdev_priv(net_dev);
3557 
3558 	dpaa_eth_sysfs_remove(dev);
3559 
3560 	dev_set_drvdata(dev, NULL);
3561 	unregister_netdev(net_dev);
3562 	phylink_destroy(priv->mac_dev->phylink);
3563 
3564 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3565 	if (err)
3566 		dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3567 			ERR_PTR(err));
3568 
3569 	qman_delete_cgr_safe(&priv->ingress_cgr);
3570 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3571 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3572 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3573 
3574 	dpaa_napi_del(net_dev);
3575 
3576 	dpaa_bps_free(priv);
3577 
3578 	free_netdev(net_dev);
3579 }
3580 
3581 static const struct platform_device_id dpaa_devtype[] = {
3582 	{
3583 		.name = "dpaa-ethernet",
3584 		.driver_data = 0,
3585 	}, {
3586 	}
3587 };
3588 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3589 
3590 static struct platform_driver dpaa_driver = {
3591 	.driver = {
3592 		.name = KBUILD_MODNAME,
3593 	},
3594 	.id_table = dpaa_devtype,
3595 	.probe = dpaa_eth_probe,
3596 	.remove = dpaa_remove
3597 };
3598 
3599 static int __init dpaa_load(void)
3600 {
3601 	int err;
3602 
3603 	pr_debug("FSL DPAA Ethernet driver\n");
3604 
3605 	/* initialize dpaa_eth mirror values */
3606 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3607 	dpaa_max_frm = fman_get_max_frm();
3608 
3609 	err = platform_driver_register(&dpaa_driver);
3610 	if (err < 0)
3611 		pr_err("Error, platform_driver_register() = %d\n", err);
3612 
3613 	return err;
3614 }
3615 module_init(dpaa_load);
3616 
3617 static void __exit dpaa_unload(void)
3618 {
3619 	platform_driver_unregister(&dpaa_driver);
3620 
3621 	/* Only one channel is used and needs to be released after all
3622 	 * interfaces are removed
3623 	 */
3624 	dpaa_release_channel();
3625 }
3626 module_exit(dpaa_unload);
3627 
3628 MODULE_LICENSE("Dual BSD/GPL");
3629 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3630