xref: /linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56 
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61 
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67 
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71 
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75 
76 #define FM_FD_STAT_RX_ERRORS						\
77 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
78 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
80 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 	 FM_FD_ERR_PRS_HDR_ERR)
82 
83 #define FM_FD_STAT_TX_ERRORS \
84 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86 
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 			  NETIF_MSG_IFDOWN)
90 
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97 
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100 
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116 
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121 
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL	127
124 
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127 
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4	0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6	0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP	0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP	0x20
139 
140 /* FD status field indicating whether the FM Parser has attempted to validate
141  * the L4 csum of the frame.
142  * Note that having this bit set doesn't necessarily imply that the checksum
143  * is valid. One would have to check the parse results to find that out.
144  */
145 #define FM_FD_STAT_L4CV         0x00000004
146 
147 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
149 
150 #define FSL_DPAA_BPID_INV		0xff
151 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
152 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
153 
154 #define DPAA_TX_PRIV_DATA_SIZE	16
155 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156 #define DPAA_TIME_STAMP_SIZE 8
157 #define DPAA_HASH_RESULTS_SIZE 8
158 #define DPAA_RX_PRIV_DATA_SIZE	(u16)(DPAA_TX_PRIV_DATA_SIZE + \
159 					dpaa_rx_extra_headroom)
160 
161 #define DPAA_ETH_RX_QUEUES	128
162 
163 #define DPAA_ENQUEUE_RETRIES	100000
164 
165 enum port_type {RX, TX};
166 
167 struct fm_port_fqs {
168 	struct dpaa_fq *tx_defq;
169 	struct dpaa_fq *tx_errq;
170 	struct dpaa_fq *rx_defq;
171 	struct dpaa_fq *rx_errq;
172 };
173 
174 /* All the dpa bps in use at any moment */
175 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
176 
177 /* The raw buffer size must be cacheline aligned */
178 #define DPAA_BP_RAW_SIZE 4096
179 /* When using more than one buffer pool, the raw sizes are as follows:
180  * 1 bp: 4KB
181  * 2 bp: 2KB, 4KB
182  * 3 bp: 1KB, 2KB, 4KB
183  * 4 bp: 1KB, 2KB, 4KB, 8KB
184  */
185 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
186 {
187 	size_t res = DPAA_BP_RAW_SIZE / 4;
188 	u8 i;
189 
190 	for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
191 		res *= 2;
192 	return res;
193 }
194 
195 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
196  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
197  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
198  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
199  * alignment.
200  */
201 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
202 
203 static int dpaa_max_frm;
204 
205 static int dpaa_rx_extra_headroom;
206 
207 #define dpaa_get_max_mtu()	\
208 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
209 
210 static int dpaa_netdev_init(struct net_device *net_dev,
211 			    const struct net_device_ops *dpaa_ops,
212 			    u16 tx_timeout)
213 {
214 	struct dpaa_priv *priv = netdev_priv(net_dev);
215 	struct device *dev = net_dev->dev.parent;
216 	struct dpaa_percpu_priv *percpu_priv;
217 	const u8 *mac_addr;
218 	int i, err;
219 
220 	/* Although we access another CPU's private data here
221 	 * we do it at initialization so it is safe
222 	 */
223 	for_each_possible_cpu(i) {
224 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
225 		percpu_priv->net_dev = net_dev;
226 	}
227 
228 	net_dev->netdev_ops = dpaa_ops;
229 	mac_addr = priv->mac_dev->addr;
230 
231 	net_dev->mem_start = priv->mac_dev->res->start;
232 	net_dev->mem_end = priv->mac_dev->res->end;
233 
234 	net_dev->min_mtu = ETH_MIN_MTU;
235 	net_dev->max_mtu = dpaa_get_max_mtu();
236 
237 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
238 				 NETIF_F_LLTX);
239 
240 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
241 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
242 	 * For conformity, we'll still declare GSO explicitly.
243 	 */
244 	net_dev->features |= NETIF_F_GSO;
245 	net_dev->features |= NETIF_F_RXCSUM;
246 
247 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
248 	/* we do not want shared skbs on TX */
249 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
250 
251 	net_dev->features |= net_dev->hw_features;
252 	net_dev->vlan_features = net_dev->features;
253 
254 	memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255 	memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
256 
257 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
258 
259 	net_dev->needed_headroom = priv->tx_headroom;
260 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
261 
262 	/* start without the RUNNING flag, phylib controls it later */
263 	netif_carrier_off(net_dev);
264 
265 	err = register_netdev(net_dev);
266 	if (err < 0) {
267 		dev_err(dev, "register_netdev() = %d\n", err);
268 		return err;
269 	}
270 
271 	return 0;
272 }
273 
274 static int dpaa_stop(struct net_device *net_dev)
275 {
276 	struct mac_device *mac_dev;
277 	struct dpaa_priv *priv;
278 	int i, err, error;
279 
280 	priv = netdev_priv(net_dev);
281 	mac_dev = priv->mac_dev;
282 
283 	netif_tx_stop_all_queues(net_dev);
284 	/* Allow the Fman (Tx) port to process in-flight frames before we
285 	 * try switching it off.
286 	 */
287 	usleep_range(5000, 10000);
288 
289 	err = mac_dev->stop(mac_dev);
290 	if (err < 0)
291 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
292 			  err);
293 
294 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
295 		error = fman_port_disable(mac_dev->port[i]);
296 		if (error)
297 			err = error;
298 	}
299 
300 	if (net_dev->phydev)
301 		phy_disconnect(net_dev->phydev);
302 	net_dev->phydev = NULL;
303 
304 	return err;
305 }
306 
307 static void dpaa_tx_timeout(struct net_device *net_dev)
308 {
309 	struct dpaa_percpu_priv *percpu_priv;
310 	const struct dpaa_priv	*priv;
311 
312 	priv = netdev_priv(net_dev);
313 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
314 
315 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
316 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
317 
318 	percpu_priv->stats.tx_errors++;
319 }
320 
321 /* Calculates the statistics for the given device by adding the statistics
322  * collected by each CPU.
323  */
324 static void dpaa_get_stats64(struct net_device *net_dev,
325 			     struct rtnl_link_stats64 *s)
326 {
327 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
328 	struct dpaa_priv *priv = netdev_priv(net_dev);
329 	struct dpaa_percpu_priv *percpu_priv;
330 	u64 *netstats = (u64 *)s;
331 	u64 *cpustats;
332 	int i, j;
333 
334 	for_each_possible_cpu(i) {
335 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
336 
337 		cpustats = (u64 *)&percpu_priv->stats;
338 
339 		/* add stats from all CPUs */
340 		for (j = 0; j < numstats; j++)
341 			netstats[j] += cpustats[j];
342 	}
343 }
344 
345 static int dpaa_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
346 			 struct tc_to_netdev *tc)
347 {
348 	struct dpaa_priv *priv = netdev_priv(net_dev);
349 	u8 num_tc;
350 	int i;
351 
352 	if (tc->type != TC_SETUP_MQPRIO)
353 		return -EINVAL;
354 
355 	tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
356 	num_tc = tc->mqprio->num_tc;
357 
358 	if (num_tc == priv->num_tc)
359 		return 0;
360 
361 	if (!num_tc) {
362 		netdev_reset_tc(net_dev);
363 		goto out;
364 	}
365 
366 	if (num_tc > DPAA_TC_NUM) {
367 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
368 			   DPAA_TC_NUM);
369 		return -EINVAL;
370 	}
371 
372 	netdev_set_num_tc(net_dev, num_tc);
373 
374 	for (i = 0; i < num_tc; i++)
375 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
376 				    i * DPAA_TC_TXQ_NUM);
377 
378 out:
379 	priv->num_tc = num_tc ? : 1;
380 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
381 	return 0;
382 }
383 
384 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
385 {
386 	struct platform_device *of_dev;
387 	struct dpaa_eth_data *eth_data;
388 	struct device *dpaa_dev, *dev;
389 	struct device_node *mac_node;
390 	struct mac_device *mac_dev;
391 
392 	dpaa_dev = &pdev->dev;
393 	eth_data = dpaa_dev->platform_data;
394 	if (!eth_data)
395 		return ERR_PTR(-ENODEV);
396 
397 	mac_node = eth_data->mac_node;
398 
399 	of_dev = of_find_device_by_node(mac_node);
400 	if (!of_dev) {
401 		dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
402 			mac_node->full_name);
403 		of_node_put(mac_node);
404 		return ERR_PTR(-EINVAL);
405 	}
406 	of_node_put(mac_node);
407 
408 	dev = &of_dev->dev;
409 
410 	mac_dev = dev_get_drvdata(dev);
411 	if (!mac_dev) {
412 		dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
413 			dev_name(dev));
414 		return ERR_PTR(-EINVAL);
415 	}
416 
417 	return mac_dev;
418 }
419 
420 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
421 {
422 	const struct dpaa_priv *priv;
423 	struct mac_device *mac_dev;
424 	struct sockaddr old_addr;
425 	int err;
426 
427 	priv = netdev_priv(net_dev);
428 
429 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
430 
431 	err = eth_mac_addr(net_dev, addr);
432 	if (err < 0) {
433 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
434 		return err;
435 	}
436 
437 	mac_dev = priv->mac_dev;
438 
439 	err = mac_dev->change_addr(mac_dev->fman_mac,
440 				   (enet_addr_t *)net_dev->dev_addr);
441 	if (err < 0) {
442 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
443 			  err);
444 		/* reverting to previous address */
445 		eth_mac_addr(net_dev, &old_addr);
446 
447 		return err;
448 	}
449 
450 	return 0;
451 }
452 
453 static void dpaa_set_rx_mode(struct net_device *net_dev)
454 {
455 	const struct dpaa_priv	*priv;
456 	int err;
457 
458 	priv = netdev_priv(net_dev);
459 
460 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
461 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
462 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
463 						 priv->mac_dev->promisc);
464 		if (err < 0)
465 			netif_err(priv, drv, net_dev,
466 				  "mac_dev->set_promisc() = %d\n",
467 				  err);
468 	}
469 
470 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471 	if (err < 0)
472 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473 			  err);
474 }
475 
476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479 		return NULL;
480 
481 	return dpaa_bp_array[bpid];
482 }
483 
484 /* checks if this bpool is already allocated */
485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487 	if (dpaa_bpid2pool(bpid)) {
488 		atomic_inc(&dpaa_bp_array[bpid]->refs);
489 		return true;
490 	}
491 
492 	return false;
493 }
494 
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498 	dpaa_bp_array[bpid] = dpaa_bp;
499 	atomic_set(&dpaa_bp->refs, 1);
500 }
501 
502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504 	int err;
505 
506 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508 		       __func__);
509 		return -EINVAL;
510 	}
511 
512 	/* If the pool is already specified, we only create one per bpid */
513 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
515 		return 0;
516 
517 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518 		dpaa_bp->pool = bman_new_pool();
519 		if (!dpaa_bp->pool) {
520 			pr_err("%s: bman_new_pool() failed\n",
521 			       __func__);
522 			return -ENODEV;
523 		}
524 
525 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526 	}
527 
528 	if (dpaa_bp->seed_cb) {
529 		err = dpaa_bp->seed_cb(dpaa_bp);
530 		if (err)
531 			goto pool_seed_failed;
532 	}
533 
534 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535 
536 	return 0;
537 
538 pool_seed_failed:
539 	pr_err("%s: pool seeding failed\n", __func__);
540 	bman_free_pool(dpaa_bp->pool);
541 
542 	return err;
543 }
544 
545 /* remove and free all the buffers from the given buffer pool */
546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548 	u8 num = 8;
549 	int ret;
550 
551 	do {
552 		struct bm_buffer bmb[8];
553 		int i;
554 
555 		ret = bman_acquire(bp->pool, bmb, num);
556 		if (ret < 0) {
557 			if (num == 8) {
558 				/* we have less than 8 buffers left;
559 				 * drain them one by one
560 				 */
561 				num = 1;
562 				ret = 1;
563 				continue;
564 			} else {
565 				/* Pool is fully drained */
566 				break;
567 			}
568 		}
569 
570 		if (bp->free_buf_cb)
571 			for (i = 0; i < num; i++)
572 				bp->free_buf_cb(bp, &bmb[i]);
573 	} while (ret > 0);
574 }
575 
576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579 
580 	/* the mapping between bpid and dpaa_bp is done very late in the
581 	 * allocation procedure; if something failed before the mapping, the bp
582 	 * was not configured, therefore we don't need the below instructions
583 	 */
584 	if (!bp)
585 		return;
586 
587 	if (!atomic_dec_and_test(&bp->refs))
588 		return;
589 
590 	if (bp->free_buf_cb)
591 		dpaa_bp_drain(bp);
592 
593 	dpaa_bp_array[bp->bpid] = NULL;
594 	bman_free_pool(bp->pool);
595 }
596 
597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599 	int i;
600 
601 	for (i = 0; i < DPAA_BPS_NUM; i++)
602 		dpaa_bp_free(priv->dpaa_bps[i]);
603 }
604 
605 /* Use multiple WQs for FQ assignment:
606  *	- Tx Confirmation queues go to WQ1.
607  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608  *	  to be scheduled, in case there are many more FQs in WQ6).
609  *	- Rx Default goes to WQ6.
610  *	- Tx queues go to different WQs depending on their priority. Equal
611  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612  *	  WQ0 (highest priority).
613  * This ensures that Tx-confirmed buffers are timely released. In particular,
614  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615  * are greatly outnumbered by other FQs in the system, while
616  * dequeue scheduling is round-robin.
617  */
618 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619 {
620 	switch (fq->fq_type) {
621 	case FQ_TYPE_TX_CONFIRM:
622 	case FQ_TYPE_TX_CONF_MQ:
623 		fq->wq = 1;
624 		break;
625 	case FQ_TYPE_RX_ERROR:
626 	case FQ_TYPE_TX_ERROR:
627 		fq->wq = 5;
628 		break;
629 	case FQ_TYPE_RX_DEFAULT:
630 		fq->wq = 6;
631 		break;
632 	case FQ_TYPE_TX:
633 		switch (idx / DPAA_TC_TXQ_NUM) {
634 		case 0:
635 			/* Low priority (best effort) */
636 			fq->wq = 6;
637 			break;
638 		case 1:
639 			/* Medium priority */
640 			fq->wq = 2;
641 			break;
642 		case 2:
643 			/* High priority */
644 			fq->wq = 1;
645 			break;
646 		case 3:
647 			/* Very high priority */
648 			fq->wq = 0;
649 			break;
650 		default:
651 			WARN(1, "Too many TX FQs: more than %d!\n",
652 			     DPAA_ETH_TXQ_NUM);
653 		}
654 		break;
655 	default:
656 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
657 		     fq->fq_type, fq->fqid);
658 	}
659 }
660 
661 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
662 				     u32 start, u32 count,
663 				     struct list_head *list,
664 				     enum dpaa_fq_type fq_type)
665 {
666 	struct dpaa_fq *dpaa_fq;
667 	int i;
668 
669 	dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
670 			       GFP_KERNEL);
671 	if (!dpaa_fq)
672 		return NULL;
673 
674 	for (i = 0; i < count; i++) {
675 		dpaa_fq[i].fq_type = fq_type;
676 		dpaa_fq[i].fqid = start ? start + i : 0;
677 		list_add_tail(&dpaa_fq[i].list, list);
678 	}
679 
680 	for (i = 0; i < count; i++)
681 		dpaa_assign_wq(dpaa_fq + i, i);
682 
683 	return dpaa_fq;
684 }
685 
686 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
687 			      struct fm_port_fqs *port_fqs)
688 {
689 	struct dpaa_fq *dpaa_fq;
690 
691 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
692 	if (!dpaa_fq)
693 		goto fq_alloc_failed;
694 
695 	port_fqs->rx_errq = &dpaa_fq[0];
696 
697 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
698 	if (!dpaa_fq)
699 		goto fq_alloc_failed;
700 
701 	port_fqs->rx_defq = &dpaa_fq[0];
702 
703 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
704 		goto fq_alloc_failed;
705 
706 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
707 	if (!dpaa_fq)
708 		goto fq_alloc_failed;
709 
710 	port_fqs->tx_errq = &dpaa_fq[0];
711 
712 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
713 	if (!dpaa_fq)
714 		goto fq_alloc_failed;
715 
716 	port_fqs->tx_defq = &dpaa_fq[0];
717 
718 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
719 		goto fq_alloc_failed;
720 
721 	return 0;
722 
723 fq_alloc_failed:
724 	dev_err(dev, "dpaa_fq_alloc() failed\n");
725 	return -ENOMEM;
726 }
727 
728 static u32 rx_pool_channel;
729 static DEFINE_SPINLOCK(rx_pool_channel_init);
730 
731 static int dpaa_get_channel(void)
732 {
733 	spin_lock(&rx_pool_channel_init);
734 	if (!rx_pool_channel) {
735 		u32 pool;
736 		int ret;
737 
738 		ret = qman_alloc_pool(&pool);
739 
740 		if (!ret)
741 			rx_pool_channel = pool;
742 	}
743 	spin_unlock(&rx_pool_channel_init);
744 	if (!rx_pool_channel)
745 		return -ENOMEM;
746 	return rx_pool_channel;
747 }
748 
749 static void dpaa_release_channel(void)
750 {
751 	qman_release_pool(rx_pool_channel);
752 }
753 
754 static void dpaa_eth_add_channel(u16 channel)
755 {
756 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
757 	const cpumask_t *cpus = qman_affine_cpus();
758 	struct qman_portal *portal;
759 	int cpu;
760 
761 	for_each_cpu(cpu, cpus) {
762 		portal = qman_get_affine_portal(cpu);
763 		qman_p_static_dequeue_add(portal, pool);
764 	}
765 }
766 
767 /* Congestion group state change notification callback.
768  * Stops the device's egress queues while they are congested and
769  * wakes them upon exiting congested state.
770  * Also updates some CGR-related stats.
771  */
772 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
773 			   int congested)
774 {
775 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
776 		struct dpaa_priv, cgr_data.cgr);
777 
778 	if (congested) {
779 		priv->cgr_data.congestion_start_jiffies = jiffies;
780 		netif_tx_stop_all_queues(priv->net_dev);
781 		priv->cgr_data.cgr_congested_count++;
782 	} else {
783 		priv->cgr_data.congested_jiffies +=
784 			(jiffies - priv->cgr_data.congestion_start_jiffies);
785 		netif_tx_wake_all_queues(priv->net_dev);
786 	}
787 }
788 
789 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
790 {
791 	struct qm_mcc_initcgr initcgr;
792 	u32 cs_th;
793 	int err;
794 
795 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
796 	if (err < 0) {
797 		if (netif_msg_drv(priv))
798 			pr_err("%s: Error %d allocating CGR ID\n",
799 			       __func__, err);
800 		goto out_error;
801 	}
802 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
803 
804 	/* Enable Congestion State Change Notifications and CS taildrop */
805 	memset(&initcgr, 0, sizeof(initcgr));
806 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
807 	initcgr.cgr.cscn_en = QM_CGR_EN;
808 
809 	/* Set different thresholds based on the MAC speed.
810 	 * This may turn suboptimal if the MAC is reconfigured at a speed
811 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
812 	 * In such cases, we ought to reconfigure the threshold, too.
813 	 */
814 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
815 		cs_th = DPAA_CS_THRESHOLD_10G;
816 	else
817 		cs_th = DPAA_CS_THRESHOLD_1G;
818 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
819 
820 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
821 	initcgr.cgr.cstd_en = QM_CGR_EN;
822 
823 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
824 			      &initcgr);
825 	if (err < 0) {
826 		if (netif_msg_drv(priv))
827 			pr_err("%s: Error %d creating CGR with ID %d\n",
828 			       __func__, err, priv->cgr_data.cgr.cgrid);
829 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
830 		goto out_error;
831 	}
832 	if (netif_msg_drv(priv))
833 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
834 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
835 			 priv->cgr_data.cgr.chan);
836 
837 out_error:
838 	return err;
839 }
840 
841 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
842 				      struct dpaa_fq *fq,
843 				      const struct qman_fq *template)
844 {
845 	fq->fq_base = *template;
846 	fq->net_dev = priv->net_dev;
847 
848 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
849 	fq->channel = priv->channel;
850 }
851 
852 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
853 				     struct dpaa_fq *fq,
854 				     struct fman_port *port,
855 				     const struct qman_fq *template)
856 {
857 	fq->fq_base = *template;
858 	fq->net_dev = priv->net_dev;
859 
860 	if (port) {
861 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
862 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
863 	} else {
864 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
865 	}
866 }
867 
868 static void dpaa_fq_setup(struct dpaa_priv *priv,
869 			  const struct dpaa_fq_cbs *fq_cbs,
870 			  struct fman_port *tx_port)
871 {
872 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
873 	const cpumask_t *affine_cpus = qman_affine_cpus();
874 	u16 portals[NR_CPUS];
875 	struct dpaa_fq *fq;
876 
877 	for_each_cpu(cpu, affine_cpus)
878 		portals[num_portals++] = qman_affine_channel(cpu);
879 	if (num_portals == 0)
880 		dev_err(priv->net_dev->dev.parent,
881 			"No Qman software (affine) channels found");
882 
883 	/* Initialize each FQ in the list */
884 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
885 		switch (fq->fq_type) {
886 		case FQ_TYPE_RX_DEFAULT:
887 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
888 			break;
889 		case FQ_TYPE_RX_ERROR:
890 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
891 			break;
892 		case FQ_TYPE_TX:
893 			dpaa_setup_egress(priv, fq, tx_port,
894 					  &fq_cbs->egress_ern);
895 			/* If we have more Tx queues than the number of cores,
896 			 * just ignore the extra ones.
897 			 */
898 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
899 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
900 			break;
901 		case FQ_TYPE_TX_CONF_MQ:
902 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
903 			/* fall through */
904 		case FQ_TYPE_TX_CONFIRM:
905 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
906 			break;
907 		case FQ_TYPE_TX_ERROR:
908 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
909 			break;
910 		default:
911 			dev_warn(priv->net_dev->dev.parent,
912 				 "Unknown FQ type detected!\n");
913 			break;
914 		}
915 	}
916 
917 	 /* Make sure all CPUs receive a corresponding Tx queue. */
918 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
919 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
920 			if (fq->fq_type != FQ_TYPE_TX)
921 				continue;
922 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
923 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
924 				break;
925 		}
926 	}
927 }
928 
929 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
930 				   struct qman_fq *tx_fq)
931 {
932 	int i;
933 
934 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
935 		if (priv->egress_fqs[i] == tx_fq)
936 			return i;
937 
938 	return -EINVAL;
939 }
940 
941 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
942 {
943 	const struct dpaa_priv	*priv;
944 	struct qman_fq *confq = NULL;
945 	struct qm_mcc_initfq initfq;
946 	struct device *dev;
947 	struct qman_fq *fq;
948 	int queue_id;
949 	int err;
950 
951 	priv = netdev_priv(dpaa_fq->net_dev);
952 	dev = dpaa_fq->net_dev->dev.parent;
953 
954 	if (dpaa_fq->fqid == 0)
955 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
956 
957 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
958 
959 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
960 	if (err) {
961 		dev_err(dev, "qman_create_fq() failed\n");
962 		return err;
963 	}
964 	fq = &dpaa_fq->fq_base;
965 
966 	if (dpaa_fq->init) {
967 		memset(&initfq, 0, sizeof(initfq));
968 
969 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
970 		/* Note: we may get to keep an empty FQ in cache */
971 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
972 
973 		/* Try to reduce the number of portal interrupts for
974 		 * Tx Confirmation FQs.
975 		 */
976 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
977 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
978 
979 		/* FQ placement */
980 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
981 
982 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
983 
984 		/* Put all egress queues in a congestion group of their own.
985 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
986 		 * rather than Tx - but they nonetheless account for the
987 		 * memory footprint on behalf of egress traffic. We therefore
988 		 * place them in the netdev's CGR, along with the Tx FQs.
989 		 */
990 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
991 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
992 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
993 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
994 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
995 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
996 			/* Set a fixed overhead accounting, in an attempt to
997 			 * reduce the impact of fixed-size skb shells and the
998 			 * driver's needed headroom on system memory. This is
999 			 * especially the case when the egress traffic is
1000 			 * composed of small datagrams.
1001 			 * Unfortunately, QMan's OAL value is capped to an
1002 			 * insufficient value, but even that is better than
1003 			 * no overhead accounting at all.
1004 			 */
1005 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1006 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1007 			qm_fqd_set_oal(&initfq.fqd,
1008 				       min(sizeof(struct sk_buff) +
1009 				       priv->tx_headroom,
1010 				       (size_t)FSL_QMAN_MAX_OAL));
1011 		}
1012 
1013 		if (td_enable) {
1014 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1015 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1016 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1017 		}
1018 
1019 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1020 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1021 			if (queue_id >= 0)
1022 				confq = priv->conf_fqs[queue_id];
1023 			if (confq) {
1024 				initfq.we_mask |=
1025 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1026 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1027 			 *	     A2V=1 (contextA A2 field is valid)
1028 			 *	     A0V=1 (contextA A0 field is valid)
1029 			 *	     B0V=1 (contextB field is valid)
1030 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1031 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1032 			 */
1033 				qm_fqd_context_a_set64(&initfq.fqd,
1034 						       0x1e00000080000000ULL);
1035 			}
1036 		}
1037 
1038 		/* Put all the ingress queues in our "ingress CGR". */
1039 		if (priv->use_ingress_cgr &&
1040 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1041 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
1042 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1043 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1044 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1045 			/* Set a fixed overhead accounting, just like for the
1046 			 * egress CGR.
1047 			 */
1048 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1049 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1050 			qm_fqd_set_oal(&initfq.fqd,
1051 				       min(sizeof(struct sk_buff) +
1052 				       priv->tx_headroom,
1053 				       (size_t)FSL_QMAN_MAX_OAL));
1054 		}
1055 
1056 		/* Initialization common to all ingress queues */
1057 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1058 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1059 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1060 						QM_FQCTRL_CTXASTASHING);
1061 			initfq.fqd.context_a.stashing.exclusive =
1062 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1063 				QM_STASHING_EXCL_ANNOTATION;
1064 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1065 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1066 							 64));
1067 		}
1068 
1069 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1070 		if (err < 0) {
1071 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1072 				qman_fq_fqid(fq), err);
1073 			qman_destroy_fq(fq);
1074 			return err;
1075 		}
1076 	}
1077 
1078 	dpaa_fq->fqid = qman_fq_fqid(fq);
1079 
1080 	return 0;
1081 }
1082 
1083 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1084 {
1085 	const struct dpaa_priv  *priv;
1086 	struct dpaa_fq *dpaa_fq;
1087 	int err, error;
1088 
1089 	err = 0;
1090 
1091 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1092 	priv = netdev_priv(dpaa_fq->net_dev);
1093 
1094 	if (dpaa_fq->init) {
1095 		err = qman_retire_fq(fq, NULL);
1096 		if (err < 0 && netif_msg_drv(priv))
1097 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1098 				qman_fq_fqid(fq), err);
1099 
1100 		error = qman_oos_fq(fq);
1101 		if (error < 0 && netif_msg_drv(priv)) {
1102 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1103 				qman_fq_fqid(fq), error);
1104 			if (err >= 0)
1105 				err = error;
1106 		}
1107 	}
1108 
1109 	qman_destroy_fq(fq);
1110 	list_del(&dpaa_fq->list);
1111 
1112 	return err;
1113 }
1114 
1115 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1116 {
1117 	struct dpaa_fq *dpaa_fq, *tmp;
1118 	int err, error;
1119 
1120 	err = 0;
1121 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1122 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1123 		if (error < 0 && err >= 0)
1124 			err = error;
1125 	}
1126 
1127 	return err;
1128 }
1129 
1130 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1131 				 struct dpaa_fq *defq,
1132 				 struct dpaa_buffer_layout *buf_layout)
1133 {
1134 	struct fman_buffer_prefix_content buf_prefix_content;
1135 	struct fman_port_params params;
1136 	int err;
1137 
1138 	memset(&params, 0, sizeof(params));
1139 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1140 
1141 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1142 	buf_prefix_content.pass_prs_result = true;
1143 	buf_prefix_content.pass_hash_result = true;
1144 	buf_prefix_content.pass_time_stamp = false;
1145 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1146 
1147 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1148 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1149 
1150 	err = fman_port_config(port, &params);
1151 	if (err) {
1152 		pr_err("%s: fman_port_config failed\n", __func__);
1153 		return err;
1154 	}
1155 
1156 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1157 	if (err) {
1158 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1159 		       __func__);
1160 		return err;
1161 	}
1162 
1163 	err = fman_port_init(port);
1164 	if (err)
1165 		pr_err("%s: fm_port_init failed\n", __func__);
1166 
1167 	return err;
1168 }
1169 
1170 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1171 				 size_t count, struct dpaa_fq *errq,
1172 				 struct dpaa_fq *defq,
1173 				 struct dpaa_buffer_layout *buf_layout)
1174 {
1175 	struct fman_buffer_prefix_content buf_prefix_content;
1176 	struct fman_port_rx_params *rx_p;
1177 	struct fman_port_params params;
1178 	int i, err;
1179 
1180 	memset(&params, 0, sizeof(params));
1181 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1182 
1183 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1184 	buf_prefix_content.pass_prs_result = true;
1185 	buf_prefix_content.pass_hash_result = true;
1186 	buf_prefix_content.pass_time_stamp = false;
1187 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1188 
1189 	rx_p = &params.specific_params.rx_params;
1190 	rx_p->err_fqid = errq->fqid;
1191 	rx_p->dflt_fqid = defq->fqid;
1192 
1193 	count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1194 	rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1195 	for (i = 0; i < count; i++) {
1196 		rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1197 		rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1198 	}
1199 
1200 	err = fman_port_config(port, &params);
1201 	if (err) {
1202 		pr_err("%s: fman_port_config failed\n", __func__);
1203 		return err;
1204 	}
1205 
1206 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1207 	if (err) {
1208 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1209 		       __func__);
1210 		return err;
1211 	}
1212 
1213 	err = fman_port_init(port);
1214 	if (err)
1215 		pr_err("%s: fm_port_init failed\n", __func__);
1216 
1217 	return err;
1218 }
1219 
1220 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1221 			       struct dpaa_bp **bps, size_t count,
1222 			       struct fm_port_fqs *port_fqs,
1223 			       struct dpaa_buffer_layout *buf_layout,
1224 			       struct device *dev)
1225 {
1226 	struct fman_port *rxport = mac_dev->port[RX];
1227 	struct fman_port *txport = mac_dev->port[TX];
1228 	int err;
1229 
1230 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1231 				    port_fqs->tx_defq, &buf_layout[TX]);
1232 	if (err)
1233 		return err;
1234 
1235 	err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1236 				    port_fqs->rx_defq, &buf_layout[RX]);
1237 
1238 	return err;
1239 }
1240 
1241 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1242 			     struct bm_buffer *bmb, int cnt)
1243 {
1244 	int err;
1245 
1246 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1247 	/* Should never occur, address anyway to avoid leaking the buffers */
1248 	if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1249 		while (cnt-- > 0)
1250 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1251 
1252 	return cnt;
1253 }
1254 
1255 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1256 {
1257 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1258 	struct dpaa_bp *dpaa_bp;
1259 	int i = 0, j;
1260 
1261 	memset(bmb, 0, sizeof(bmb));
1262 
1263 	do {
1264 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1265 		if (!dpaa_bp)
1266 			return;
1267 
1268 		j = 0;
1269 		do {
1270 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1271 
1272 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1273 
1274 			j++; i++;
1275 		} while (j < ARRAY_SIZE(bmb) &&
1276 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1277 				sgt[i - 1].bpid == sgt[i].bpid);
1278 
1279 		dpaa_bman_release(dpaa_bp, bmb, j);
1280 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1281 }
1282 
1283 static void dpaa_fd_release(const struct net_device *net_dev,
1284 			    const struct qm_fd *fd)
1285 {
1286 	struct qm_sg_entry *sgt;
1287 	struct dpaa_bp *dpaa_bp;
1288 	struct bm_buffer bmb;
1289 	dma_addr_t addr;
1290 	void *vaddr;
1291 
1292 	bmb.data = 0;
1293 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1294 
1295 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1296 	if (!dpaa_bp)
1297 		return;
1298 
1299 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1300 		vaddr = phys_to_virt(qm_fd_addr(fd));
1301 		sgt = vaddr + qm_fd_get_offset(fd);
1302 
1303 		dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1304 				 DMA_FROM_DEVICE);
1305 
1306 		dpaa_release_sgt_members(sgt);
1307 
1308 		addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1309 				      DMA_FROM_DEVICE);
1310 		if (dma_mapping_error(dpaa_bp->dev, addr)) {
1311 			dev_err(dpaa_bp->dev, "DMA mapping failed");
1312 			return;
1313 		}
1314 		bm_buffer_set64(&bmb, addr);
1315 	}
1316 
1317 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1318 }
1319 
1320 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1321 		      const union qm_mr_entry *msg)
1322 {
1323 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1324 	case QM_MR_RC_CGR_TAILDROP:
1325 		percpu_priv->ern_cnt.cg_tdrop++;
1326 		break;
1327 	case QM_MR_RC_WRED:
1328 		percpu_priv->ern_cnt.wred++;
1329 		break;
1330 	case QM_MR_RC_ERROR:
1331 		percpu_priv->ern_cnt.err_cond++;
1332 		break;
1333 	case QM_MR_RC_ORPWINDOW_EARLY:
1334 		percpu_priv->ern_cnt.early_window++;
1335 		break;
1336 	case QM_MR_RC_ORPWINDOW_LATE:
1337 		percpu_priv->ern_cnt.late_window++;
1338 		break;
1339 	case QM_MR_RC_FQ_TAILDROP:
1340 		percpu_priv->ern_cnt.fq_tdrop++;
1341 		break;
1342 	case QM_MR_RC_ORPWINDOW_RETIRED:
1343 		percpu_priv->ern_cnt.fq_retired++;
1344 		break;
1345 	case QM_MR_RC_ORP_ZERO:
1346 		percpu_priv->ern_cnt.orp_zero++;
1347 		break;
1348 	}
1349 }
1350 
1351 /* Turn on HW checksum computation for this outgoing frame.
1352  * If the current protocol is not something we support in this regard
1353  * (or if the stack has already computed the SW checksum), we do nothing.
1354  *
1355  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1356  * otherwise.
1357  *
1358  * Note that this function may modify the fd->cmd field and the skb data buffer
1359  * (the Parse Results area).
1360  */
1361 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1362 			       struct sk_buff *skb,
1363 			       struct qm_fd *fd,
1364 			       char *parse_results)
1365 {
1366 	struct fman_prs_result *parse_result;
1367 	u16 ethertype = ntohs(skb->protocol);
1368 	struct ipv6hdr *ipv6h = NULL;
1369 	struct iphdr *iph;
1370 	int retval = 0;
1371 	u8 l4_proto;
1372 
1373 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1374 		return 0;
1375 
1376 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1377 	 * L4 alone from the FM configuration anyway.
1378 	 */
1379 
1380 	/* Fill in some fields of the Parse Results array, so the FMan
1381 	 * can find them as if they came from the FMan Parser.
1382 	 */
1383 	parse_result = (struct fman_prs_result *)parse_results;
1384 
1385 	/* If we're dealing with VLAN, get the real Ethernet type */
1386 	if (ethertype == ETH_P_8021Q) {
1387 		/* We can't always assume the MAC header is set correctly
1388 		 * by the stack, so reset to beginning of skb->data
1389 		 */
1390 		skb_reset_mac_header(skb);
1391 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1392 	}
1393 
1394 	/* Fill in the relevant L3 parse result fields
1395 	 * and read the L4 protocol type
1396 	 */
1397 	switch (ethertype) {
1398 	case ETH_P_IP:
1399 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1400 		iph = ip_hdr(skb);
1401 		WARN_ON(!iph);
1402 		l4_proto = iph->protocol;
1403 		break;
1404 	case ETH_P_IPV6:
1405 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1406 		ipv6h = ipv6_hdr(skb);
1407 		WARN_ON(!ipv6h);
1408 		l4_proto = ipv6h->nexthdr;
1409 		break;
1410 	default:
1411 		/* We shouldn't even be here */
1412 		if (net_ratelimit())
1413 			netif_alert(priv, tx_err, priv->net_dev,
1414 				    "Can't compute HW csum for L3 proto 0x%x\n",
1415 				    ntohs(skb->protocol));
1416 		retval = -EIO;
1417 		goto return_error;
1418 	}
1419 
1420 	/* Fill in the relevant L4 parse result fields */
1421 	switch (l4_proto) {
1422 	case IPPROTO_UDP:
1423 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1424 		break;
1425 	case IPPROTO_TCP:
1426 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1427 		break;
1428 	default:
1429 		if (net_ratelimit())
1430 			netif_alert(priv, tx_err, priv->net_dev,
1431 				    "Can't compute HW csum for L4 proto 0x%x\n",
1432 				    l4_proto);
1433 		retval = -EIO;
1434 		goto return_error;
1435 	}
1436 
1437 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1438 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1439 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1440 
1441 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1442 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1443 
1444 	/* On P1023 and similar platforms fd->cmd interpretation could
1445 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1446 	 * is not set so we do not need to check; in the future, if/when
1447 	 * using context_a we need to check this bit
1448 	 */
1449 
1450 return_error:
1451 	return retval;
1452 }
1453 
1454 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1455 {
1456 	struct device *dev = dpaa_bp->dev;
1457 	struct bm_buffer bmb[8];
1458 	dma_addr_t addr;
1459 	void *new_buf;
1460 	u8 i;
1461 
1462 	for (i = 0; i < 8; i++) {
1463 		new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1464 		if (unlikely(!new_buf)) {
1465 			dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1466 				dpaa_bp->raw_size);
1467 			goto release_previous_buffs;
1468 		}
1469 		new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1470 
1471 		addr = dma_map_single(dev, new_buf,
1472 				      dpaa_bp->size, DMA_FROM_DEVICE);
1473 		if (unlikely(dma_mapping_error(dev, addr))) {
1474 			dev_err(dpaa_bp->dev, "DMA map failed");
1475 			goto release_previous_buffs;
1476 		}
1477 
1478 		bmb[i].data = 0;
1479 		bm_buffer_set64(&bmb[i], addr);
1480 	}
1481 
1482 release_bufs:
1483 	return dpaa_bman_release(dpaa_bp, bmb, i);
1484 
1485 release_previous_buffs:
1486 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1487 
1488 	bm_buffer_set64(&bmb[i], 0);
1489 	/* Avoid releasing a completely null buffer; bman_release() requires
1490 	 * at least one buffer.
1491 	 */
1492 	if (likely(i))
1493 		goto release_bufs;
1494 
1495 	return 0;
1496 }
1497 
1498 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1499 {
1500 	int i;
1501 
1502 	/* Give each CPU an allotment of "config_count" buffers */
1503 	for_each_possible_cpu(i) {
1504 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1505 		int j;
1506 
1507 		/* Although we access another CPU's counters here
1508 		 * we do it at boot time so it is safe
1509 		 */
1510 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1511 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1512 	}
1513 	return 0;
1514 }
1515 
1516 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1517  * REFILL_THRESHOLD.
1518  */
1519 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1520 {
1521 	int count = *countptr;
1522 	int new_bufs;
1523 
1524 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1525 		do {
1526 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1527 			if (unlikely(!new_bufs)) {
1528 				/* Avoid looping forever if we've temporarily
1529 				 * run out of memory. We'll try again at the
1530 				 * next NAPI cycle.
1531 				 */
1532 				break;
1533 			}
1534 			count += new_bufs;
1535 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1536 
1537 		*countptr = count;
1538 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1539 			return -ENOMEM;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1546 {
1547 	struct dpaa_bp *dpaa_bp;
1548 	int *countptr;
1549 	int res, i;
1550 
1551 	for (i = 0; i < DPAA_BPS_NUM; i++) {
1552 		dpaa_bp = priv->dpaa_bps[i];
1553 		if (!dpaa_bp)
1554 			return -EINVAL;
1555 		countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1556 		res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1557 		if (res)
1558 			return res;
1559 	}
1560 	return 0;
1561 }
1562 
1563 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1564  * either contiguous frames or scatter/gather ones.
1565  * Skb freeing is not handled here.
1566  *
1567  * This function may be called on error paths in the Tx function, so guard
1568  * against cases when not all fd relevant fields were filled in.
1569  *
1570  * Return the skb backpointer, since for S/G frames the buffer containing it
1571  * gets freed here.
1572  */
1573 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1574 					  const struct qm_fd *fd)
1575 {
1576 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1577 	struct device *dev = priv->net_dev->dev.parent;
1578 	dma_addr_t addr = qm_fd_addr(fd);
1579 	const struct qm_sg_entry *sgt;
1580 	struct sk_buff **skbh, *skb;
1581 	int nr_frags, i;
1582 
1583 	skbh = (struct sk_buff **)phys_to_virt(addr);
1584 	skb = *skbh;
1585 
1586 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1587 		nr_frags = skb_shinfo(skb)->nr_frags;
1588 		dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1589 				 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1590 				 dma_dir);
1591 
1592 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1593 		 * it's from lowmem.
1594 		 */
1595 		sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1596 
1597 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1598 		dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1599 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1600 
1601 		/* remaining pages were mapped with skb_frag_dma_map() */
1602 		for (i = 1; i < nr_frags; i++) {
1603 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1604 
1605 			dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1606 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1607 		}
1608 
1609 		/* Free the page frag that we allocated on Tx */
1610 		skb_free_frag(phys_to_virt(addr));
1611 	} else {
1612 		dma_unmap_single(dev, addr,
1613 				 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1614 	}
1615 
1616 	return skb;
1617 }
1618 
1619 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1620 {
1621 	/* The parser has run and performed L4 checksum validation.
1622 	 * We know there were no parser errors (and implicitly no
1623 	 * L4 csum error), otherwise we wouldn't be here.
1624 	 */
1625 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1626 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1627 		return CHECKSUM_UNNECESSARY;
1628 
1629 	/* We're here because either the parser didn't run or the L4 checksum
1630 	 * was not verified. This may include the case of a UDP frame with
1631 	 * checksum zero or an L4 proto other than TCP/UDP
1632 	 */
1633 	return CHECKSUM_NONE;
1634 }
1635 
1636 /* Build a linear skb around the received buffer.
1637  * We are guaranteed there is enough room at the end of the data buffer to
1638  * accommodate the shared info area of the skb.
1639  */
1640 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1641 					const struct qm_fd *fd)
1642 {
1643 	ssize_t fd_off = qm_fd_get_offset(fd);
1644 	dma_addr_t addr = qm_fd_addr(fd);
1645 	struct dpaa_bp *dpaa_bp;
1646 	struct sk_buff *skb;
1647 	void *vaddr;
1648 
1649 	vaddr = phys_to_virt(addr);
1650 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1651 
1652 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1653 	if (!dpaa_bp)
1654 		goto free_buffer;
1655 
1656 	skb = build_skb(vaddr, dpaa_bp->size +
1657 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1658 	if (unlikely(!skb)) {
1659 		WARN_ONCE(1, "Build skb failure on Rx\n");
1660 		goto free_buffer;
1661 	}
1662 	WARN_ON(fd_off != priv->rx_headroom);
1663 	skb_reserve(skb, fd_off);
1664 	skb_put(skb, qm_fd_get_length(fd));
1665 
1666 	skb->ip_summed = rx_csum_offload(priv, fd);
1667 
1668 	return skb;
1669 
1670 free_buffer:
1671 	skb_free_frag(vaddr);
1672 	return NULL;
1673 }
1674 
1675 /* Build an skb with the data of the first S/G entry in the linear portion and
1676  * the rest of the frame as skb fragments.
1677  *
1678  * The page fragment holding the S/G Table is recycled here.
1679  */
1680 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1681 				    const struct qm_fd *fd)
1682 {
1683 	ssize_t fd_off = qm_fd_get_offset(fd);
1684 	dma_addr_t addr = qm_fd_addr(fd);
1685 	const struct qm_sg_entry *sgt;
1686 	struct page *page, *head_page;
1687 	struct dpaa_bp *dpaa_bp;
1688 	void *vaddr, *sg_vaddr;
1689 	int frag_off, frag_len;
1690 	struct sk_buff *skb;
1691 	dma_addr_t sg_addr;
1692 	int page_offset;
1693 	unsigned int sz;
1694 	int *count_ptr;
1695 	int i;
1696 
1697 	vaddr = phys_to_virt(addr);
1698 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1699 
1700 	/* Iterate through the SGT entries and add data buffers to the skb */
1701 	sgt = vaddr + fd_off;
1702 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1703 		/* Extension bit is not supported */
1704 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1705 
1706 		sg_addr = qm_sg_addr(&sgt[i]);
1707 		sg_vaddr = phys_to_virt(sg_addr);
1708 		WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1709 				    SMP_CACHE_BYTES));
1710 
1711 		/* We may use multiple Rx pools */
1712 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1713 		if (!dpaa_bp)
1714 			goto free_buffers;
1715 
1716 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1717 		dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1718 				 DMA_FROM_DEVICE);
1719 		if (i == 0) {
1720 			sz = dpaa_bp->size +
1721 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1722 			skb = build_skb(sg_vaddr, sz);
1723 			if (WARN_ON(unlikely(!skb)))
1724 				goto free_buffers;
1725 
1726 			skb->ip_summed = rx_csum_offload(priv, fd);
1727 
1728 			/* Make sure forwarded skbs will have enough space
1729 			 * on Tx, if extra headers are added.
1730 			 */
1731 			WARN_ON(fd_off != priv->rx_headroom);
1732 			skb_reserve(skb, fd_off);
1733 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1734 		} else {
1735 			/* Not the first S/G entry; all data from buffer will
1736 			 * be added in an skb fragment; fragment index is offset
1737 			 * by one since first S/G entry was incorporated in the
1738 			 * linear part of the skb.
1739 			 *
1740 			 * Caution: 'page' may be a tail page.
1741 			 */
1742 			page = virt_to_page(sg_vaddr);
1743 			head_page = virt_to_head_page(sg_vaddr);
1744 
1745 			/* Compute offset in (possibly tail) page */
1746 			page_offset = ((unsigned long)sg_vaddr &
1747 					(PAGE_SIZE - 1)) +
1748 				(page_address(page) - page_address(head_page));
1749 			/* page_offset only refers to the beginning of sgt[i];
1750 			 * but the buffer itself may have an internal offset.
1751 			 */
1752 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1753 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1754 			/* skb_add_rx_frag() does no checking on the page; if
1755 			 * we pass it a tail page, we'll end up with
1756 			 * bad page accounting and eventually with segafults.
1757 			 */
1758 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1759 					frag_len, dpaa_bp->size);
1760 		}
1761 		/* Update the pool count for the current {cpu x bpool} */
1762 		(*count_ptr)--;
1763 
1764 		if (qm_sg_entry_is_final(&sgt[i]))
1765 			break;
1766 	}
1767 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1768 
1769 	/* free the SG table buffer */
1770 	skb_free_frag(vaddr);
1771 
1772 	return skb;
1773 
1774 free_buffers:
1775 	/* compensate sw bpool counter changes */
1776 	for (i--; i >= 0; i--) {
1777 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1778 		if (dpaa_bp) {
1779 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1780 			(*count_ptr)++;
1781 		}
1782 	}
1783 	/* free all the SG entries */
1784 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1785 		sg_addr = qm_sg_addr(&sgt[i]);
1786 		sg_vaddr = phys_to_virt(sg_addr);
1787 		skb_free_frag(sg_vaddr);
1788 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1789 		if (dpaa_bp) {
1790 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1791 			(*count_ptr)--;
1792 		}
1793 
1794 		if (qm_sg_entry_is_final(&sgt[i]))
1795 			break;
1796 	}
1797 	/* free the SGT fragment */
1798 	skb_free_frag(vaddr);
1799 
1800 	return NULL;
1801 }
1802 
1803 static int skb_to_contig_fd(struct dpaa_priv *priv,
1804 			    struct sk_buff *skb, struct qm_fd *fd,
1805 			    int *offset)
1806 {
1807 	struct net_device *net_dev = priv->net_dev;
1808 	struct device *dev = net_dev->dev.parent;
1809 	enum dma_data_direction dma_dir;
1810 	unsigned char *buffer_start;
1811 	struct sk_buff **skbh;
1812 	dma_addr_t addr;
1813 	int err;
1814 
1815 	/* We are guaranteed to have at least tx_headroom bytes
1816 	 * available, so just use that for offset.
1817 	 */
1818 	fd->bpid = FSL_DPAA_BPID_INV;
1819 	buffer_start = skb->data - priv->tx_headroom;
1820 	dma_dir = DMA_TO_DEVICE;
1821 
1822 	skbh = (struct sk_buff **)buffer_start;
1823 	*skbh = skb;
1824 
1825 	/* Enable L3/L4 hardware checksum computation.
1826 	 *
1827 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1828 	 * need to write into the skb.
1829 	 */
1830 	err = dpaa_enable_tx_csum(priv, skb, fd,
1831 				  ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1832 	if (unlikely(err < 0)) {
1833 		if (net_ratelimit())
1834 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1835 				  err);
1836 		return err;
1837 	}
1838 
1839 	/* Fill in the rest of the FD fields */
1840 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1841 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1842 
1843 	/* Map the entire buffer size that may be seen by FMan, but no more */
1844 	addr = dma_map_single(dev, skbh,
1845 			      skb_tail_pointer(skb) - buffer_start, dma_dir);
1846 	if (unlikely(dma_mapping_error(dev, addr))) {
1847 		if (net_ratelimit())
1848 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1849 		return -EINVAL;
1850 	}
1851 	qm_fd_addr_set64(fd, addr);
1852 
1853 	return 0;
1854 }
1855 
1856 static int skb_to_sg_fd(struct dpaa_priv *priv,
1857 			struct sk_buff *skb, struct qm_fd *fd)
1858 {
1859 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1860 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1861 	struct net_device *net_dev = priv->net_dev;
1862 	struct device *dev = net_dev->dev.parent;
1863 	struct qm_sg_entry *sgt;
1864 	struct sk_buff **skbh;
1865 	int i, j, err, sz;
1866 	void *buffer_start;
1867 	skb_frag_t *frag;
1868 	dma_addr_t addr;
1869 	size_t frag_len;
1870 	void *sgt_buf;
1871 
1872 	/* get a page frag to store the SGTable */
1873 	sz = SKB_DATA_ALIGN(priv->tx_headroom +
1874 		sizeof(struct qm_sg_entry) * (1 + nr_frags));
1875 	sgt_buf = netdev_alloc_frag(sz);
1876 	if (unlikely(!sgt_buf)) {
1877 		netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1878 			   sz);
1879 		return -ENOMEM;
1880 	}
1881 
1882 	/* Enable L3/L4 hardware checksum computation.
1883 	 *
1884 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1885 	 * need to write into the skb.
1886 	 */
1887 	err = dpaa_enable_tx_csum(priv, skb, fd,
1888 				  sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1889 	if (unlikely(err < 0)) {
1890 		if (net_ratelimit())
1891 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1892 				  err);
1893 		goto csum_failed;
1894 	}
1895 
1896 	sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1897 	qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1898 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1899 	sgt[0].offset = 0;
1900 	addr = dma_map_single(dev, skb->data,
1901 			      skb_headlen(skb), dma_dir);
1902 	if (unlikely(dma_mapping_error(dev, addr))) {
1903 		dev_err(dev, "DMA mapping failed");
1904 		err = -EINVAL;
1905 		goto sg0_map_failed;
1906 	}
1907 	qm_sg_entry_set64(&sgt[0], addr);
1908 
1909 	/* populate the rest of SGT entries */
1910 	frag = &skb_shinfo(skb)->frags[0];
1911 	frag_len = frag->size;
1912 	for (i = 1; i <= nr_frags; i++, frag++) {
1913 		WARN_ON(!skb_frag_page(frag));
1914 		addr = skb_frag_dma_map(dev, frag, 0,
1915 					frag_len, dma_dir);
1916 		if (unlikely(dma_mapping_error(dev, addr))) {
1917 			dev_err(dev, "DMA mapping failed");
1918 			err = -EINVAL;
1919 			goto sg_map_failed;
1920 		}
1921 
1922 		qm_sg_entry_set_len(&sgt[i], frag_len);
1923 		sgt[i].bpid = FSL_DPAA_BPID_INV;
1924 		sgt[i].offset = 0;
1925 
1926 		/* keep the offset in the address */
1927 		qm_sg_entry_set64(&sgt[i], addr);
1928 		frag_len = frag->size;
1929 	}
1930 	qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1931 
1932 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1933 
1934 	/* DMA map the SGT page */
1935 	buffer_start = (void *)sgt - priv->tx_headroom;
1936 	skbh = (struct sk_buff **)buffer_start;
1937 	*skbh = skb;
1938 
1939 	addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1940 			      sizeof(struct qm_sg_entry) * (1 + nr_frags),
1941 			      dma_dir);
1942 	if (unlikely(dma_mapping_error(dev, addr))) {
1943 		dev_err(dev, "DMA mapping failed");
1944 		err = -EINVAL;
1945 		goto sgt_map_failed;
1946 	}
1947 
1948 	fd->bpid = FSL_DPAA_BPID_INV;
1949 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1950 	qm_fd_addr_set64(fd, addr);
1951 
1952 	return 0;
1953 
1954 sgt_map_failed:
1955 sg_map_failed:
1956 	for (j = 0; j < i; j++)
1957 		dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1958 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
1959 sg0_map_failed:
1960 csum_failed:
1961 	skb_free_frag(sgt_buf);
1962 
1963 	return err;
1964 }
1965 
1966 static inline int dpaa_xmit(struct dpaa_priv *priv,
1967 			    struct rtnl_link_stats64 *percpu_stats,
1968 			    int queue,
1969 			    struct qm_fd *fd)
1970 {
1971 	struct qman_fq *egress_fq;
1972 	int err, i;
1973 
1974 	egress_fq = priv->egress_fqs[queue];
1975 	if (fd->bpid == FSL_DPAA_BPID_INV)
1976 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
1977 
1978 	/* Trace this Tx fd */
1979 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1980 
1981 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1982 		err = qman_enqueue(egress_fq, fd);
1983 		if (err != -EBUSY)
1984 			break;
1985 	}
1986 
1987 	if (unlikely(err < 0)) {
1988 		percpu_stats->tx_errors++;
1989 		percpu_stats->tx_fifo_errors++;
1990 		return err;
1991 	}
1992 
1993 	percpu_stats->tx_packets++;
1994 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
1995 
1996 	return 0;
1997 }
1998 
1999 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2000 {
2001 	const int queue_mapping = skb_get_queue_mapping(skb);
2002 	bool nonlinear = skb_is_nonlinear(skb);
2003 	struct rtnl_link_stats64 *percpu_stats;
2004 	struct dpaa_percpu_priv *percpu_priv;
2005 	struct dpaa_priv *priv;
2006 	struct qm_fd fd;
2007 	int offset = 0;
2008 	int err = 0;
2009 
2010 	priv = netdev_priv(net_dev);
2011 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2012 	percpu_stats = &percpu_priv->stats;
2013 
2014 	qm_fd_clear_fd(&fd);
2015 
2016 	if (!nonlinear) {
2017 		/* We're going to store the skb backpointer at the beginning
2018 		 * of the data buffer, so we need a privately owned skb
2019 		 *
2020 		 * We've made sure skb is not shared in dev->priv_flags,
2021 		 * we need to verify the skb head is not cloned
2022 		 */
2023 		if (skb_cow_head(skb, priv->tx_headroom))
2024 			goto enomem;
2025 
2026 		WARN_ON(skb_is_nonlinear(skb));
2027 	}
2028 
2029 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2030 	 * make sure we don't feed FMan with more fragments than it supports.
2031 	 */
2032 	if (nonlinear &&
2033 	    likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2034 		/* Just create a S/G fd based on the skb */
2035 		err = skb_to_sg_fd(priv, skb, &fd);
2036 		percpu_priv->tx_frag_skbuffs++;
2037 	} else {
2038 		/* If the egress skb contains more fragments than we support
2039 		 * we have no choice but to linearize it ourselves.
2040 		 */
2041 		if (unlikely(nonlinear) && __skb_linearize(skb))
2042 			goto enomem;
2043 
2044 		/* Finally, create a contig FD from this skb */
2045 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2046 	}
2047 	if (unlikely(err < 0))
2048 		goto skb_to_fd_failed;
2049 
2050 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2051 		return NETDEV_TX_OK;
2052 
2053 	dpaa_cleanup_tx_fd(priv, &fd);
2054 skb_to_fd_failed:
2055 enomem:
2056 	percpu_stats->tx_errors++;
2057 	dev_kfree_skb(skb);
2058 	return NETDEV_TX_OK;
2059 }
2060 
2061 static void dpaa_rx_error(struct net_device *net_dev,
2062 			  const struct dpaa_priv *priv,
2063 			  struct dpaa_percpu_priv *percpu_priv,
2064 			  const struct qm_fd *fd,
2065 			  u32 fqid)
2066 {
2067 	if (net_ratelimit())
2068 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2069 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2070 
2071 	percpu_priv->stats.rx_errors++;
2072 
2073 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2074 		percpu_priv->rx_errors.dme++;
2075 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2076 		percpu_priv->rx_errors.fpe++;
2077 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2078 		percpu_priv->rx_errors.fse++;
2079 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2080 		percpu_priv->rx_errors.phe++;
2081 
2082 	dpaa_fd_release(net_dev, fd);
2083 }
2084 
2085 static void dpaa_tx_error(struct net_device *net_dev,
2086 			  const struct dpaa_priv *priv,
2087 			  struct dpaa_percpu_priv *percpu_priv,
2088 			  const struct qm_fd *fd,
2089 			  u32 fqid)
2090 {
2091 	struct sk_buff *skb;
2092 
2093 	if (net_ratelimit())
2094 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2095 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2096 
2097 	percpu_priv->stats.tx_errors++;
2098 
2099 	skb = dpaa_cleanup_tx_fd(priv, fd);
2100 	dev_kfree_skb(skb);
2101 }
2102 
2103 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2104 {
2105 	struct dpaa_napi_portal *np =
2106 			container_of(napi, struct dpaa_napi_portal, napi);
2107 
2108 	int cleaned = qman_p_poll_dqrr(np->p, budget);
2109 
2110 	if (cleaned < budget) {
2111 		napi_complete_done(napi, cleaned);
2112 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2113 
2114 	} else if (np->down) {
2115 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2116 	}
2117 
2118 	return cleaned;
2119 }
2120 
2121 static void dpaa_tx_conf(struct net_device *net_dev,
2122 			 const struct dpaa_priv *priv,
2123 			 struct dpaa_percpu_priv *percpu_priv,
2124 			 const struct qm_fd *fd,
2125 			 u32 fqid)
2126 {
2127 	struct sk_buff	*skb;
2128 
2129 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2130 		if (net_ratelimit())
2131 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2132 				   be32_to_cpu(fd->status) &
2133 				   FM_FD_STAT_TX_ERRORS);
2134 
2135 		percpu_priv->stats.tx_errors++;
2136 	}
2137 
2138 	percpu_priv->tx_confirm++;
2139 
2140 	skb = dpaa_cleanup_tx_fd(priv, fd);
2141 
2142 	consume_skb(skb);
2143 }
2144 
2145 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2146 					 struct qman_portal *portal)
2147 {
2148 	if (unlikely(in_irq() || !in_serving_softirq())) {
2149 		/* Disable QMan IRQ and invoke NAPI */
2150 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2151 
2152 		percpu_priv->np.p = portal;
2153 		napi_schedule(&percpu_priv->np.napi);
2154 		percpu_priv->in_interrupt++;
2155 		return 1;
2156 	}
2157 	return 0;
2158 }
2159 
2160 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2161 					      struct qman_fq *fq,
2162 					      const struct qm_dqrr_entry *dq)
2163 {
2164 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2165 	struct dpaa_percpu_priv *percpu_priv;
2166 	struct net_device *net_dev;
2167 	struct dpaa_bp *dpaa_bp;
2168 	struct dpaa_priv *priv;
2169 
2170 	net_dev = dpaa_fq->net_dev;
2171 	priv = netdev_priv(net_dev);
2172 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2173 	if (!dpaa_bp)
2174 		return qman_cb_dqrr_consume;
2175 
2176 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2177 
2178 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2179 		return qman_cb_dqrr_stop;
2180 
2181 	if (dpaa_eth_refill_bpools(priv))
2182 		/* Unable to refill the buffer pool due to insufficient
2183 		 * system memory. Just release the frame back into the pool,
2184 		 * otherwise we'll soon end up with an empty buffer pool.
2185 		 */
2186 		dpaa_fd_release(net_dev, &dq->fd);
2187 	else
2188 		dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2189 
2190 	return qman_cb_dqrr_consume;
2191 }
2192 
2193 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2194 						struct qman_fq *fq,
2195 						const struct qm_dqrr_entry *dq)
2196 {
2197 	struct rtnl_link_stats64 *percpu_stats;
2198 	struct dpaa_percpu_priv *percpu_priv;
2199 	const struct qm_fd *fd = &dq->fd;
2200 	dma_addr_t addr = qm_fd_addr(fd);
2201 	enum qm_fd_format fd_format;
2202 	struct net_device *net_dev;
2203 	u32 fd_status;
2204 	struct dpaa_bp *dpaa_bp;
2205 	struct dpaa_priv *priv;
2206 	unsigned int skb_len;
2207 	struct sk_buff *skb;
2208 	int *count_ptr;
2209 
2210 	fd_status = be32_to_cpu(fd->status);
2211 	fd_format = qm_fd_get_format(fd);
2212 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2213 	priv = netdev_priv(net_dev);
2214 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2215 	if (!dpaa_bp)
2216 		return qman_cb_dqrr_consume;
2217 
2218 	/* Trace the Rx fd */
2219 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2220 
2221 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2222 	percpu_stats = &percpu_priv->stats;
2223 
2224 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2225 		return qman_cb_dqrr_stop;
2226 
2227 	/* Make sure we didn't run out of buffers */
2228 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2229 		/* Unable to refill the buffer pool due to insufficient
2230 		 * system memory. Just release the frame back into the pool,
2231 		 * otherwise we'll soon end up with an empty buffer pool.
2232 		 */
2233 		dpaa_fd_release(net_dev, &dq->fd);
2234 		return qman_cb_dqrr_consume;
2235 	}
2236 
2237 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2238 		if (net_ratelimit())
2239 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2240 				   fd_status & FM_FD_STAT_RX_ERRORS);
2241 
2242 		percpu_stats->rx_errors++;
2243 		dpaa_fd_release(net_dev, fd);
2244 		return qman_cb_dqrr_consume;
2245 	}
2246 
2247 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
2248 	if (!dpaa_bp)
2249 		return qman_cb_dqrr_consume;
2250 
2251 	dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2252 
2253 	/* prefetch the first 64 bytes of the frame or the SGT start */
2254 	prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2255 
2256 	fd_format = qm_fd_get_format(fd);
2257 	/* The only FD types that we may receive are contig and S/G */
2258 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2259 
2260 	/* Account for either the contig buffer or the SGT buffer (depending on
2261 	 * which case we were in) having been removed from the pool.
2262 	 */
2263 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2264 	(*count_ptr)--;
2265 
2266 	if (likely(fd_format == qm_fd_contig))
2267 		skb = contig_fd_to_skb(priv, fd);
2268 	else
2269 		skb = sg_fd_to_skb(priv, fd);
2270 	if (!skb)
2271 		return qman_cb_dqrr_consume;
2272 
2273 	skb->protocol = eth_type_trans(skb, net_dev);
2274 
2275 	skb_len = skb->len;
2276 
2277 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2278 		return qman_cb_dqrr_consume;
2279 
2280 	percpu_stats->rx_packets++;
2281 	percpu_stats->rx_bytes += skb_len;
2282 
2283 	return qman_cb_dqrr_consume;
2284 }
2285 
2286 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2287 						struct qman_fq *fq,
2288 						const struct qm_dqrr_entry *dq)
2289 {
2290 	struct dpaa_percpu_priv *percpu_priv;
2291 	struct net_device *net_dev;
2292 	struct dpaa_priv *priv;
2293 
2294 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2295 	priv = netdev_priv(net_dev);
2296 
2297 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2298 
2299 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2300 		return qman_cb_dqrr_stop;
2301 
2302 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2303 
2304 	return qman_cb_dqrr_consume;
2305 }
2306 
2307 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2308 					       struct qman_fq *fq,
2309 					       const struct qm_dqrr_entry *dq)
2310 {
2311 	struct dpaa_percpu_priv *percpu_priv;
2312 	struct net_device *net_dev;
2313 	struct dpaa_priv *priv;
2314 
2315 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2316 	priv = netdev_priv(net_dev);
2317 
2318 	/* Trace the fd */
2319 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2320 
2321 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2322 
2323 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2324 		return qman_cb_dqrr_stop;
2325 
2326 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2327 
2328 	return qman_cb_dqrr_consume;
2329 }
2330 
2331 static void egress_ern(struct qman_portal *portal,
2332 		       struct qman_fq *fq,
2333 		       const union qm_mr_entry *msg)
2334 {
2335 	const struct qm_fd *fd = &msg->ern.fd;
2336 	struct dpaa_percpu_priv *percpu_priv;
2337 	const struct dpaa_priv *priv;
2338 	struct net_device *net_dev;
2339 	struct sk_buff *skb;
2340 
2341 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2342 	priv = netdev_priv(net_dev);
2343 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2344 
2345 	percpu_priv->stats.tx_dropped++;
2346 	percpu_priv->stats.tx_fifo_errors++;
2347 	count_ern(percpu_priv, msg);
2348 
2349 	skb = dpaa_cleanup_tx_fd(priv, fd);
2350 	dev_kfree_skb_any(skb);
2351 }
2352 
2353 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2354 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2355 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2356 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2357 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2358 	.egress_ern = { .cb = { .ern = egress_ern } }
2359 };
2360 
2361 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2362 {
2363 	struct dpaa_percpu_priv *percpu_priv;
2364 	int i;
2365 
2366 	for_each_possible_cpu(i) {
2367 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2368 
2369 		percpu_priv->np.down = 0;
2370 		napi_enable(&percpu_priv->np.napi);
2371 	}
2372 }
2373 
2374 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2375 {
2376 	struct dpaa_percpu_priv *percpu_priv;
2377 	int i;
2378 
2379 	for_each_possible_cpu(i) {
2380 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2381 
2382 		percpu_priv->np.down = 1;
2383 		napi_disable(&percpu_priv->np.napi);
2384 	}
2385 }
2386 
2387 static int dpaa_open(struct net_device *net_dev)
2388 {
2389 	struct mac_device *mac_dev;
2390 	struct dpaa_priv *priv;
2391 	int err, i;
2392 
2393 	priv = netdev_priv(net_dev);
2394 	mac_dev = priv->mac_dev;
2395 	dpaa_eth_napi_enable(priv);
2396 
2397 	net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2398 	if (!net_dev->phydev) {
2399 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2400 		err = -ENODEV;
2401 		goto phy_init_failed;
2402 	}
2403 
2404 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2405 		err = fman_port_enable(mac_dev->port[i]);
2406 		if (err)
2407 			goto mac_start_failed;
2408 	}
2409 
2410 	err = priv->mac_dev->start(mac_dev);
2411 	if (err < 0) {
2412 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2413 		goto mac_start_failed;
2414 	}
2415 
2416 	netif_tx_start_all_queues(net_dev);
2417 
2418 	return 0;
2419 
2420 mac_start_failed:
2421 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2422 		fman_port_disable(mac_dev->port[i]);
2423 
2424 phy_init_failed:
2425 	dpaa_eth_napi_disable(priv);
2426 
2427 	return err;
2428 }
2429 
2430 static int dpaa_eth_stop(struct net_device *net_dev)
2431 {
2432 	struct dpaa_priv *priv;
2433 	int err;
2434 
2435 	err = dpaa_stop(net_dev);
2436 
2437 	priv = netdev_priv(net_dev);
2438 	dpaa_eth_napi_disable(priv);
2439 
2440 	return err;
2441 }
2442 
2443 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2444 {
2445 	if (!net_dev->phydev)
2446 		return -EINVAL;
2447 	return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2448 }
2449 
2450 static const struct net_device_ops dpaa_ops = {
2451 	.ndo_open = dpaa_open,
2452 	.ndo_start_xmit = dpaa_start_xmit,
2453 	.ndo_stop = dpaa_eth_stop,
2454 	.ndo_tx_timeout = dpaa_tx_timeout,
2455 	.ndo_get_stats64 = dpaa_get_stats64,
2456 	.ndo_set_mac_address = dpaa_set_mac_address,
2457 	.ndo_validate_addr = eth_validate_addr,
2458 	.ndo_set_rx_mode = dpaa_set_rx_mode,
2459 	.ndo_do_ioctl = dpaa_ioctl,
2460 	.ndo_setup_tc = dpaa_setup_tc,
2461 };
2462 
2463 static int dpaa_napi_add(struct net_device *net_dev)
2464 {
2465 	struct dpaa_priv *priv = netdev_priv(net_dev);
2466 	struct dpaa_percpu_priv *percpu_priv;
2467 	int cpu;
2468 
2469 	for_each_possible_cpu(cpu) {
2470 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2471 
2472 		netif_napi_add(net_dev, &percpu_priv->np.napi,
2473 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 static void dpaa_napi_del(struct net_device *net_dev)
2480 {
2481 	struct dpaa_priv *priv = netdev_priv(net_dev);
2482 	struct dpaa_percpu_priv *percpu_priv;
2483 	int cpu;
2484 
2485 	for_each_possible_cpu(cpu) {
2486 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2487 
2488 		netif_napi_del(&percpu_priv->np.napi);
2489 	}
2490 }
2491 
2492 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2493 				   struct bm_buffer *bmb)
2494 {
2495 	dma_addr_t addr = bm_buf_addr(bmb);
2496 
2497 	dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2498 
2499 	skb_free_frag(phys_to_virt(addr));
2500 }
2501 
2502 /* Alloc the dpaa_bp struct and configure default values */
2503 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2504 {
2505 	struct dpaa_bp *dpaa_bp;
2506 
2507 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2508 	if (!dpaa_bp)
2509 		return ERR_PTR(-ENOMEM);
2510 
2511 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2512 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2513 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2514 
2515 	dpaa_bp->seed_cb = dpaa_bp_seed;
2516 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2517 
2518 	return dpaa_bp;
2519 }
2520 
2521 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2522  * We won't be sending congestion notifications to FMan; for now, we just use
2523  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2524  * before they reach our ingress queues and eat up memory.
2525  */
2526 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2527 {
2528 	struct qm_mcc_initcgr initcgr;
2529 	u32 cs_th;
2530 	int err;
2531 
2532 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2533 	if (err < 0) {
2534 		if (netif_msg_drv(priv))
2535 			pr_err("Error %d allocating CGR ID\n", err);
2536 		goto out_error;
2537 	}
2538 
2539 	/* Enable CS TD, but disable Congestion State Change Notifications. */
2540 	memset(&initcgr, 0, sizeof(initcgr));
2541 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2542 	initcgr.cgr.cscn_en = QM_CGR_EN;
2543 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2544 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2545 
2546 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2547 	initcgr.cgr.cstd_en = QM_CGR_EN;
2548 
2549 	/* This CGR will be associated with the SWP affined to the current CPU.
2550 	 * However, we'll place all our ingress FQs in it.
2551 	 */
2552 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2553 			      &initcgr);
2554 	if (err < 0) {
2555 		if (netif_msg_drv(priv))
2556 			pr_err("Error %d creating ingress CGR with ID %d\n",
2557 			       err, priv->ingress_cgr.cgrid);
2558 		qman_release_cgrid(priv->ingress_cgr.cgrid);
2559 		goto out_error;
2560 	}
2561 	if (netif_msg_drv(priv))
2562 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2563 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2564 
2565 	priv->use_ingress_cgr = true;
2566 
2567 out_error:
2568 	return err;
2569 }
2570 
2571 static const struct of_device_id dpaa_match[];
2572 
2573 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2574 {
2575 	u16 headroom;
2576 
2577 	/* The frame headroom must accommodate:
2578 	 * - the driver private data area
2579 	 * - parse results, hash results, timestamp if selected
2580 	 * If either hash results or time stamp are selected, both will
2581 	 * be copied to/from the frame headroom, as TS is located between PR and
2582 	 * HR in the IC and IC copy size has a granularity of 16bytes
2583 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2584 	 *
2585 	 * Also make sure the headroom is a multiple of data_align bytes
2586 	 */
2587 	headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2588 		DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2589 
2590 	return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2591 					      DPAA_FD_DATA_ALIGNMENT) :
2592 					headroom;
2593 }
2594 
2595 static int dpaa_eth_probe(struct platform_device *pdev)
2596 {
2597 	struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2598 	struct dpaa_percpu_priv *percpu_priv;
2599 	struct net_device *net_dev = NULL;
2600 	struct dpaa_fq *dpaa_fq, *tmp;
2601 	struct dpaa_priv *priv = NULL;
2602 	struct fm_port_fqs port_fqs;
2603 	struct mac_device *mac_dev;
2604 	int err = 0, i, channel;
2605 	struct device *dev;
2606 
2607 	dev = &pdev->dev;
2608 
2609 	/* Allocate this early, so we can store relevant information in
2610 	 * the private area
2611 	 */
2612 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2613 	if (!net_dev) {
2614 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2615 		goto alloc_etherdev_mq_failed;
2616 	}
2617 
2618 	/* Do this here, so we can be verbose early */
2619 	SET_NETDEV_DEV(net_dev, dev);
2620 	dev_set_drvdata(dev, net_dev);
2621 
2622 	priv = netdev_priv(net_dev);
2623 	priv->net_dev = net_dev;
2624 
2625 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2626 
2627 	mac_dev = dpaa_mac_dev_get(pdev);
2628 	if (IS_ERR(mac_dev)) {
2629 		dev_err(dev, "dpaa_mac_dev_get() failed\n");
2630 		err = PTR_ERR(mac_dev);
2631 		goto mac_probe_failed;
2632 	}
2633 
2634 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2635 	 * we choose conservatively and let the user explicitly set a higher
2636 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2637 	 * in the same LAN.
2638 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2639 	 * start with the maximum allowed.
2640 	 */
2641 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2642 
2643 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2644 		   net_dev->mtu);
2645 
2646 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2647 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2648 
2649 	/* device used for DMA mapping */
2650 	arch_setup_dma_ops(dev, 0, 0, NULL, false);
2651 	err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2652 	if (err) {
2653 		dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2654 		goto dev_mask_failed;
2655 	}
2656 
2657 	/* bp init */
2658 	for (i = 0; i < DPAA_BPS_NUM; i++) {
2659 		int err;
2660 
2661 		dpaa_bps[i] = dpaa_bp_alloc(dev);
2662 		if (IS_ERR(dpaa_bps[i]))
2663 			return PTR_ERR(dpaa_bps[i]);
2664 		/* the raw size of the buffers used for reception */
2665 		dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2666 		/* avoid runtime computations by keeping the usable size here */
2667 		dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2668 		dpaa_bps[i]->dev = dev;
2669 
2670 		err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2671 		if (err < 0) {
2672 			dpaa_bps_free(priv);
2673 			priv->dpaa_bps[i] = NULL;
2674 			goto bp_create_failed;
2675 		}
2676 		priv->dpaa_bps[i] = dpaa_bps[i];
2677 	}
2678 
2679 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2680 
2681 	memset(&port_fqs, 0, sizeof(port_fqs));
2682 
2683 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2684 	if (err < 0) {
2685 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2686 		goto fq_probe_failed;
2687 	}
2688 
2689 	priv->mac_dev = mac_dev;
2690 
2691 	channel = dpaa_get_channel();
2692 	if (channel < 0) {
2693 		dev_err(dev, "dpaa_get_channel() failed\n");
2694 		err = channel;
2695 		goto get_channel_failed;
2696 	}
2697 
2698 	priv->channel = (u16)channel;
2699 
2700 	/* Start a thread that will walk the CPUs with affine portals
2701 	 * and add this pool channel to each's dequeue mask.
2702 	 */
2703 	dpaa_eth_add_channel(priv->channel);
2704 
2705 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2706 
2707 	/* Create a congestion group for this netdev, with
2708 	 * dynamically-allocated CGR ID.
2709 	 * Must be executed after probing the MAC, but before
2710 	 * assigning the egress FQs to the CGRs.
2711 	 */
2712 	err = dpaa_eth_cgr_init(priv);
2713 	if (err < 0) {
2714 		dev_err(dev, "Error initializing CGR\n");
2715 		goto tx_cgr_init_failed;
2716 	}
2717 
2718 	err = dpaa_ingress_cgr_init(priv);
2719 	if (err < 0) {
2720 		dev_err(dev, "Error initializing ingress CGR\n");
2721 		goto rx_cgr_init_failed;
2722 	}
2723 
2724 	/* Add the FQs to the interface, and make them active */
2725 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2726 		err = dpaa_fq_init(dpaa_fq, false);
2727 		if (err < 0)
2728 			goto fq_alloc_failed;
2729 	}
2730 
2731 	priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2732 	priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2733 
2734 	/* All real interfaces need their ports initialized */
2735 	err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2736 				  &priv->buf_layout[0], dev);
2737 	if (err)
2738 		goto init_ports_failed;
2739 
2740 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2741 	if (!priv->percpu_priv) {
2742 		dev_err(dev, "devm_alloc_percpu() failed\n");
2743 		err = -ENOMEM;
2744 		goto alloc_percpu_failed;
2745 	}
2746 	for_each_possible_cpu(i) {
2747 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2748 		memset(percpu_priv, 0, sizeof(*percpu_priv));
2749 	}
2750 
2751 	priv->num_tc = 1;
2752 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2753 
2754 	/* Initialize NAPI */
2755 	err = dpaa_napi_add(net_dev);
2756 	if (err < 0)
2757 		goto napi_add_failed;
2758 
2759 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2760 	if (err < 0)
2761 		goto netdev_init_failed;
2762 
2763 	dpaa_eth_sysfs_init(&net_dev->dev);
2764 
2765 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
2766 		   net_dev->name);
2767 
2768 	return 0;
2769 
2770 netdev_init_failed:
2771 napi_add_failed:
2772 	dpaa_napi_del(net_dev);
2773 alloc_percpu_failed:
2774 init_ports_failed:
2775 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
2776 fq_alloc_failed:
2777 	qman_delete_cgr_safe(&priv->ingress_cgr);
2778 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2779 rx_cgr_init_failed:
2780 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2781 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2782 tx_cgr_init_failed:
2783 get_channel_failed:
2784 	dpaa_bps_free(priv);
2785 bp_create_failed:
2786 fq_probe_failed:
2787 dev_mask_failed:
2788 mac_probe_failed:
2789 	dev_set_drvdata(dev, NULL);
2790 	free_netdev(net_dev);
2791 alloc_etherdev_mq_failed:
2792 	for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2793 		if (atomic_read(&dpaa_bps[i]->refs) == 0)
2794 			devm_kfree(dev, dpaa_bps[i]);
2795 	}
2796 	return err;
2797 }
2798 
2799 static int dpaa_remove(struct platform_device *pdev)
2800 {
2801 	struct net_device *net_dev;
2802 	struct dpaa_priv *priv;
2803 	struct device *dev;
2804 	int err;
2805 
2806 	dev = &pdev->dev;
2807 	net_dev = dev_get_drvdata(dev);
2808 
2809 	priv = netdev_priv(net_dev);
2810 
2811 	dpaa_eth_sysfs_remove(dev);
2812 
2813 	dev_set_drvdata(dev, NULL);
2814 	unregister_netdev(net_dev);
2815 
2816 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2817 
2818 	qman_delete_cgr_safe(&priv->ingress_cgr);
2819 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2820 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2821 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2822 
2823 	dpaa_napi_del(net_dev);
2824 
2825 	dpaa_bps_free(priv);
2826 
2827 	free_netdev(net_dev);
2828 
2829 	return err;
2830 }
2831 
2832 static struct platform_device_id dpaa_devtype[] = {
2833 	{
2834 		.name = "dpaa-ethernet",
2835 		.driver_data = 0,
2836 	}, {
2837 	}
2838 };
2839 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2840 
2841 static struct platform_driver dpaa_driver = {
2842 	.driver = {
2843 		.name = KBUILD_MODNAME,
2844 	},
2845 	.id_table = dpaa_devtype,
2846 	.probe = dpaa_eth_probe,
2847 	.remove = dpaa_remove
2848 };
2849 
2850 static int __init dpaa_load(void)
2851 {
2852 	int err;
2853 
2854 	pr_debug("FSL DPAA Ethernet driver\n");
2855 
2856 	/* initialize dpaa_eth mirror values */
2857 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2858 	dpaa_max_frm = fman_get_max_frm();
2859 
2860 	err = platform_driver_register(&dpaa_driver);
2861 	if (err < 0)
2862 		pr_err("Error, platform_driver_register() = %d\n", err);
2863 
2864 	return err;
2865 }
2866 module_init(dpaa_load);
2867 
2868 static void __exit dpaa_unload(void)
2869 {
2870 	platform_driver_unregister(&dpaa_driver);
2871 
2872 	/* Only one channel is used and needs to be released after all
2873 	 * interfaces are removed
2874 	 */
2875 	dpaa_release_channel();
2876 }
2877 module_exit(dpaa_unload);
2878 
2879 MODULE_LICENSE("Dual BSD/GPL");
2880 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
2881